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ABSTRACT

A three-dimensional (3D) coupled normal mode model for studying

sound propagation in a complex coastal environment is developed.

This development corresponds to a significant upgrade of an earlier

version of the model in which a flat, rigid bottom was used. By

imposing the general bourr---y conditionb f-r an irreguiar, non-

rigid bottom, the coupling coefficient integrals in the system of

differential equations governing the mode amplitude are re-

formulated. The model upgrade entails a numerical implementation of

the revised formulae. With the improved physics, this latest

version is capable of modeling the 3D acoustic wave-field in

shallow water where sound speed, water depth and sediment

properties can vary with horizontal location. To demonstrate this

enhanced capability, the model is used here to simulate the

interactions of the normal modes as they propagate up a sloping

bottom.
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I. INTRODUCTION

A. BACKGROUND

There are three approaches to model three-dimensional (3D)

sound propagation in the ocean: ray theory, parabolic

equation approximation and normal mode theory.

Ray theory gives an approximate, planewave-like solution

to the wave equation, which is valid at high enough

frequencies and in media with gradual variations. The ray

solution is constructed by raytracing. The acoustic rays

provide for a visual, physical description of sound

transmission in the ocean. The ray solution, however,

neglects sound diffraction and dispersion and thus needs

corrections near caustics and turning points. These

corrections may sometimes be mathematically complicated. The

Hamiltonian Acoustic Ray Tracing Program for the Ocean (HARPO)

is the only 3D ray theory model available today. This computer

code was originally developed by Jones et al. [Ref. 1 for the

computation of 3D rays.

The parabolic equation approximation method (PE) was

introduced by Tappert (Ref. 21. PE is a "full-wave" method

that accounts for both sound diffraction and dispersion. It

provides for numerical solutions to the wave equation which

are accurate for energy propagating at low grazing angles. The

1



accuracy generally degrades as the angle increases. The

backscattered energy is generally neglected in this

approximation. A versatile 3D PE model has been developed by

Lee et al. [Ref. 3] using an implicit finite difference

scheme. Another 3D PE model was developed earlier by Baer

[Ref. 41 which uses a split-step Fourier algorithm. The PE

model of Lee has a wider angle capability, i.e., it models

sound energy travelling at steeper angles more accurately.

Finally, normal mode theory describes sound propagation as

"a collection of eigenfunctions, called normal modes, which are

"a natural set of vertical vibration modes in the sound

channel. Just like PE, normal mode theory is a "full-wave"

approach. The original normal mode theory assumes a

horizontz lly stratified propagation medium. This assumption is

valid for many short-range, deep-water cases, where range and

azimuthal variations are negligibly small. Pierce (Ref. 51

extended the theory to account for horizontal sound speed,

bathymetry and bottom-property variations. These variations

produce mode coupling phenomena (in which energy exchange

between modes takes place). A 3D coupled normal mode model has

been developed by Chiu and Ehret [Ref. 6]. This model is

capable of simulating mode-mode interactions due to a 3D

varying sound speed field. The effects of bottom bathymetry

variations and sediment property, however, are not modeled.

2



B. THESIS OBJECTIVES AND OUTLINE

The main objective of this thesis is to improve the Chiu-

Ehret [Ref. 6] 3D coupled normal mode model by including the

effects of bathymetry variations and sediment properties on

sound propagation. The improved model is useful for studying

sound propagation in shallow water environments where

significant bottom interaction is expected.

In Chapter II, 3D coupled mode theory is first reviewed.

The formulae for the mode coupling coefficients in the system

of differential equations governing the mode amplitude

functions are derived. In the derivation, the general boundary

conditions for an irregular, non-rigid bottom aie used.

In Chapter III, alternative expressions for the mode

coupling coefficients are derived. These expressions allow for

an easier numerical implementation. The improved model is used

to examine the effects of a sloping bottom on upslope sound

propagation. The validity of the adiabatic approximation is

also examined. Conclusions are given in Chapter IV.

The prcducts coming out of this thesis are computer

subroutines to include bathymetry variations and sediment

properties in the 3D coupled mode model of Chiu and Ehret

[Ref. 6]. The new routines are listed in the Appendix.

3



II. 3D COUPLED NORMAL MODE THEORY

In the mathematical formulation that follows, a

cylindrical coordinate system will be used (see Fig. 1). The

z-axis is perpendicular to the ocean surface and is positive

downward, r is range from the source location (i.e., the

origin) and 8 is the azimuthal angle (positive clockwise).

Sound speed in the water column, c,, is a function of r, z and

8, where sound speed in the sediment, c2 , is assumed to be r

and 8 dependent only. The density of the water column, p,, is

considered to be constant. The density of the sediment, P2, is

also considered to be constant. The water-sediment interface

is located at z=H(r,O).

A. THE MATHEMATICAL PROBLD(

In the case of isodensity layers, the 3D, homogeneous,

monofrequency Helmholtz Equation governing the acoustic

pressure, p, is:

V 2p(z,r,0) + k 2 (z,r,0)p(z,z,6) = 0 (1)

where k(z,r,O)=c 1,/c(z,r,O) is the acoustic wavenumber, w is the

source angular frequency and c is sound speed (c, in the water

layer and c2 in the sediment layer).

A quasi-separable solution to Eq. (1) is postulated, which

is locally a linear combination of normal modes or depth

4
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Figure 1. The model geometry
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functions, Z,:

p(z,r,O) = •Rn(r,O)Z (z;r,e) (2)

where R, are the mode amplitude functions and n is the mode

number.

The normal modes Z. are required to satisfy the depth

equation:

+ k 2 (z,r,0) - k 2 (r,O)iZ,(z;r,e) = 0 (3)
aZ 2

where k. is the horizontal component of the wavenumber

(eigenvalue) associated with the n' mode.

It can be easily shown, using the boundary conditions for

Z, (to be derived next) and the depth equation (Eq. (3)), that

the normal modes form a complete set of orthogonal functions,

with the inverse of the medium density p as a weighting

function in the normalization:

f ) Z,(z;r,O)Zm(z;r,O)dz = (4)

where 6 is the Kronecker delta. Note that the integration is

carried over the entire depth from 0 to w. Also, note that the

6



density p in the model is considered to be constant in each

layer (p, in the water and P2 in the sediment).

B. THE BOUNDARY CONDITIONS

The appropriate boundary condition for the acoustic

pressure at the sea surface is

p 1 (z=0;r,O) = 0 (5)

where the subscript 1 denotes the water column. This pressure

release condition implies that the normal modes Z, must also

be zero at the sea surface, i.e.,

Zn(z=o;r,e) = 0 (6)

It also implies that the horizontal derivatives of Z. at z=0

are zero, i.e.,

az' (Z =0r, 0)a: 0 (7)

1 Z'(z=O;rO)()
r 0

At the interface between the sediment and the water

column, i.e., at z=H(r,B), the boundary conditions are

continuity of pressure and continuity of the particle velocity

component normal to the interface:

7



p, (z=H; r,e) =p 2 (z=H; r,O) (9)

A 1 A (10)
!Vp 1 .n - Vp2 .n
Pi P2

The subscripts 1 and 2 denote the water column and the

sediment, respectively.

The unit directional vector A normal to the bottom

interface is

A alH(r,0) A_ aH(r,e) A
A V(z-H(r,e)) z ar r 0 (11)

ar r ae

where Z^,k and a are the unit directional vectors associated

with the z, r and 0 directions, respectively. In the case of

a small bottom slope, the boundary condition of Eq. (10) can

be approximated by

1 ap1 (z=H;r,8) _ 1 ap2 (z=H;r,e) (12)
Pi az P2  az

The small slope approximation is accurate when

8



(aH(r',) 1 . 1 1 _aH(r'()r, 1 (13)
ar ' r 01

Following Eq. (9) and Eq. (12), we obtain the following

boundary conditions at the water-sediment interface for the

normal modes:

- aZ1n(z=H;r,O) _1 aZ2,(z=H;r,O) (14)
Pi az P 2  az

Z,1 (z=H;r,e) = Z2n(z=H,r,O) (15)

These boundary conditions hold for each individual normal mode

because they are orthogonal functions.

The boundary condition for p at z -* w is

p 2 (z-o,r,e) = 0 (16)

This implies that the normal modes and their horizontal

derivatives are also zero as z * m:

Z2"(z---;r,O) = 0 (17)

(3Z2 .I(Z-o;r~ ) = 0 (18)
9r

9



a. aZ2 (z--;r,O) = 0 (19)r a

C. MODE COUPLING COEFFICIENTS DERIVATION

Substituting Eq. (2) into Eq. (1), multiplying by

Zm(z;r,O)/p, integrating over the entire depth and finally

rearranging terms, we obtain the coupled mode equations

governing the mode amplitude functions:

[Vh2 +k 2 m(r.8)] Rm(r, e) (r,O)VhRn(re) +B,(re)Rn(r,.)]
n

(20)

where the two mode coupling coefficients are defined as

A•(r,O) = 2f iZm(z~r.O)VhZn(z;r.8) dz (21)
0

and

B,. (r, 0) f- .(;r )vz,(;r )dB~r9 lmzrO)P ~lzz9d (22)

V. is the horizontal gradient operator, i.e.,

10



Aa + 1 a (23)Vh-- r• + 0a
h ar

The mode coupling coefficients are measures of the

significance of exchange of acoustic energy between modes

resulting from horizontal variations in the medium. As the

variations become stronger, the coupling coefficients become

larger and so is the energy exchange. In the case of a

completely range independent medium, the coupling

coefficients are identically zero and the RHS of Eq. (20)

vanishes. In such case, the modes propagate independently of

each other.For range-dependent cases, the neglect of mode

coupling leads to the adiabatic approximation [Ref. 5.

Cylindrical spreading can be removed from the coupled mode

equation (Eq. (20)) by replacing the mode amplitude function

R.(r,O) with P.(r,O)/r"'. T1e result is

2 +kM2 (r,e)+ + I (r,)
ajr2  r 28-0 2 4 r 2

)A (24)= (A•[mn ) [V (r,8 _ P,(r.8 ] (r, 0) pn(re)
n 2r

11



III. THE NUMERICAL MODEL AND EXAMPLE RUNS

In this chapter, the procedure to upgrade the Chiu-Ehret

model [Ref. 6) is discussed. The upgrade has entailed the

derivation of alternative expressions for the mode coupling

coefficients and the generation of new code to compute these

coefficients based on the alternative expressions.

The numerical results from two simple example model runs

associated with two different bottom slopes are also presented

in this chapter. Both cases deal with upslope propagation in

isospeed layers. These runs have allowed for an examination of

the coupling between modes caused by bathymetry change. In

addition, they have allowed for an examination of the validity

of the adiabatic approximation.

A. THE CHIU-EHRET APPROACH

In the far field, i.e., kr>>l , the coupled mode equation

(Eq. (24)) for the mode amplitude functions, can be recast as

[_a__ +k.2 (r,o) + I cl ] Pn(r, e)
ar 2  2 r 2 012

(25)
E (r,.e) .vhp,,(r,.e) +B. (r, e) P,,(re))

n

In the Chiu-Ehret model [Ref. 6], Pit is decomposed as

12



P" (r, e) = U, (r, 6) e: ('e

r (26)
4k (r,) =f k,(r, O) dr

0

where U, is the slowly varying complex envelope of P,

modulating the rapidly varying two-dimensional (2D) adiabatic

solution, i.e., exp(jP.), and 0. is the adiabatic phase. The

Chiu-Ehret model numerically computes the envelopes U, instead

of P, using Runge-Kutta schemes.

B. ALTERNATIVE EXPRESSIONS FOR THE MODE COUPLING COEFFICIENTS

For simpler numerical implementation, the expressions of

the mode coupling coefficients in Eq. (21) and Eq. (22) are

rewritten in alternative forms. These alternative forms do not

require integrations of expressions involving the horizontal

derivatives of normal modes. In the following, the derivation

of these alternative forms is presented.

1. VECTOR MODE COUPLING COEFFICIENT, A.

a. Case of =An

Applying the horizontal gradient operator Vh to

both sides of the depth equation (Eq. (3)), we get

13



a2Vhz'
S-2+ 2[k(z,r,0)Vhk(z,r,e) - k,(r,e) Vhkfl(r,O)]Zfl +

az 2

(27)

[k 2 (z,r,O) - k 2 n (rOY) 1VhZ = 0

Multiplying Eq. (27) by Z,(z;r,0)/p and then integrating over

the entire depth, we get

f z 0Vzf dz+ f (k 2 -k•2 ) 1Z, Vz., dz=
0 P0

00 (28)
2 kn V,1k 8n,, - f 1 kVhk Z Z. dz (8

0

In order to recast the first term of Eq. (28) in a form useful

for this derivation, we first use integration by parts twice

with respect to z. The resulting expre"sion, after some

lengthy manipulations, is

• Vhzn dz01 VhZn &Zm dz + 1 Z VhZln 0)+

zadVhZ2fl - _vzr. -, . Z2__ t

P2m z H P a -0 P2 3z H(r, )

(29)

14



Again, the subscripts 1 and 2 denote the water column and the

sediment, respectively.

Application of the boundary conditions Eqs. (6), (7), (8),

(14), (15), (17), (18) and (19) to Eq. (29), yields

subsequently

f•Z 1~ Z nIz dz=

0 az2 (30)

Z1[avhzlfl avhZ2fla (3z az I

z)I [ [ zVh ~ n- ' VhZ n] . H. ( z.e)

a(z p1  P2

Replacing the first term of Eq. (28) by Eq. (30) and then

making use of the depth equation (Eq. (3)), we obtain the

following alternative expression for the vector mode coupling

coefficient, for mznn

15



SA A 2[
Am(r,) =PZ + Y( - 2 2 [2fIk Vhk Z. Zn dz

0 P

'6 ( vhzlf 8aVhZ 2 flJ az A ~ V Z n __- h In IZH(,0

Pi 4Zaz az Pi~r8 P2hn VflI.(e

(31)

or equivalently, in light of the boundary conditions Eq. (14)

and Eq. (15),

-A A 20
Am.(r,o) = pf.r + ym.n = kn2(f-1k-V ZZn)Z+

_(_)(r,9)k, 2 (e) 0 z

P1 (1 1.h aVZ1~ I -Hr () I ) vzjl hJZHrID

Pi P2  az H) P2

(32)

The above expression only involves Z. and not their horizontal

derivatives in the integrands. Therefore, the corresponding

numerical evaluations are more efficient.

The last two terms of Eq. (32) express the direct

contribution of bathymetry change and sediment properties in

A.. They were excluded in the previous model but are included

in the latest version.

16



b. Case of m=n

In order to derive an expression for the vector

mode coupling coefficient for m=n, we differentiate the

orthonormal condition Eq. (4) using Leibniz rule. The result

is

A A
A .(r,6) = + y 0 = (33)

_ VhH(r,8) (I_12) Z IJ I
P1 P2 z=H(r, O)

Note that, this coupling coefficient is zero for a flat

horizontal bottom. The latest version of the model has

included this new term.

2. SCALAR MODE COUPLING COEFFICIENT, BMn

Taking the horizontal gradient of both sides of Eq.

(21), i.e., definition of the vector mode coupling

coefficient, and applying the Leibniz rule for

differentiation of a definite integral, we get after some

manipulations, the following expression for the scalar mode

coupling coefficient:

17



B (r,0) -. 0)V- ,of_ 1 . -f VZ dz-
2P (34)

1-)Zm VhZin. VhH(r, ) 1z=H(rO)!PI P2 ZHýZ

There is a unique property associated with a complete set of

orthonormal functions, called the "closure relationship." For

the normal modes, this relationship can be expressed as

S- z•(z;r,O) z((z';r,O) = ((z-z') (35)
n p

Taking the horizontal gradient of both sides of the closure

relationship, multiplying by Z.(z;r,O) and then integrating

over the entire depth, we get, after some rearranging of

terms,

VhZm(z;r,e) = - E E,(r,e)Z,(z;r,8) (36)
n

where

18



EmanrO= . A) (r,O) +

(37)
VhH (r, 6) Z,_i __)Zn(H; r, ) ZI,.(H;r, 0)

P1 P2

Substituting now Eq. (36) in Eq. (34), we finally obtain the

following alternative expression for B.:

B. -VA,, EO).Er, -
(38)

1ZM(z; r, e) VhZi,(Z; r,) .VhH(r, 0) l.•o1 1
p1 p2

Eq. (38) is valid for both the mnn and m=n cases. The last

term of Eq. (38), is new in the model. The magnitude of this

mode coupling coefficient is generally much less than the

magnitude of the vector coefficient.

C. NUMERICAL IMPLEMENTATION

The major part of the model upgrade was the replacement of

the old routines with new ones for the computations of the

rederived mode coupling coefficients according to Eqs. (32),

(33) and (38).

These new routines are contained in a program called

"sedbot" and are listed in Appendix C. Normal modes and the

19



horizontal gradient vector of the wavenumber as function of

position are required as input to "sedbot."

The normal mode field is created by a program called

"modes", whereas the horizontal gradients of the wavenumber

are calculated in the program "kder." These two programs are

listed in Appendices A and B, respectively.

D. EXAMPLE RUNS

For both example runs, the medium is taken to have two

isospeed, isodensity layers separated by a constant-slope

interface. Sound speed is taken to be 1500 m/sec in the water

column and 3000 m/sec in the sediment. Density is taken to be

1000 Kg/mr in the water column and 2500 Kg/ff3 in the sediment.

The source is taken to be harmonic in time, with a frequency

of 100 Hz, and is located at a depth of 50 m. The coupled mode

solution along two radii, 901 and 450, are displayed and

discussed.

1. BOTTOM SLOPE a .001 RADIANS

The bottom slope in this first case is taken to be

.001 radians. The water depth is 100 m at the source location

and 70 m after 30 km in the y direction (see Fig. 2).

At the source location there are twelve trapped modes in

the water layer. Only eight trapped modes exist at the

location 30 km upslope.

20
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Figure 2. Geometry of the first example case with a
constant slope of .001 radians along y-axis (a), and a plane
view showing the 0 - 900 and 9 m 450 propagation paths (b)
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Figure 6. Envelops phases of the first eight trapped modes
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Fig. 3 and Fig. 4 show the amplitude and phase of the

modulation envelope, U,, for the first eight modes travelling

in the upslope y direction, i.e., along the path 0 = 900 (see

Fig. 2). An upslope enhancement is noticed, especially for the

higher order modes, as they propagate into shallower water.

The phase of the envelope, which is the phase deviation from

the 2D adiabatic approximation, is very small (about 110

maximum). The amplitude fluctuations are between 15% and 30%

for all the modes. In light of tLe small amplitude and phase

fluctuations, the adiabatic approximation can be considered

reasonable along this propagation path.

Fig. 5 and Fig. 6 show the amplitude and phase of the

modulation envelope, U,, for the first eight modes, along the

propagation path 0 = 450 (see Fig. 2). Here, the upslope

enhancement is significantly less and the fluctuations of the

amplitude of the higher order modes at greater range are

slightly larger than along the previous path. We speculate

that this slight increase in the fluctuations is due to that

more interacting modes remain trapped in the water column at

longer ranges along this path. The higher order modes have

large phase deviations from the 2D adiabatic phases. These

large phase changes correspond to significant horizontal

refraction of the wave fronts due to the existence of a

transverse gradient in the bottom bathymetry.
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view showing the 9 900 and 9 450 propagation paths (b)
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2. BOTTOM SLOPE = .002 RADIANS

For this case, the same isospeed, isodensity, wedge

slape waveguide is used, except the bottom slope is now

doubled (.002 radians). The bottom depth at the source

location is now 100 m and shoals to 40 m after 30 km away from

the source in the y direction (see Fig. 7). At the source

position there are twelve trapped modes, but in 30 km upslope,

there are only five trapped modes in the water column.

Fig. 8 and Fig. 9 show the amplitudes and phases of the

modulation envelope, U., for the first eight trapped modes

travelling upslope in the y-axis direction, i.e. along the

path 0 = 900 (see Fig. 9). Upslope enhancement is much

stronger than the previous case, especially for the higher

modes. The fluctuations in amplitude is about 50t in some

modes and in phase more than 200. Thus, the adiabatic

approximation would induce considerably larger errors than the

case of a .001 bottom slope.

Fig. 10 and Fig. 11 show the amplitudes and phases of the

modulation envelope, U0 , for the same eight modes along the

propagation path, i.e., 0 = 450 (see Fig. 7). The horizontal

refraction phenomenon is much stronger here than for the case

of a .001 slope. Along this path, the adiabatic approximation

would also induce large errors. Typical percentages of

amplitude fluctuations are about 50% for the second mode and
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30% for the third and fourth modes. The phase deviation,

especially for the higher order modes, is also large.
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IV. CONCLUSIONS AND RZCOKkMDATIONS

A 3D coupled normal mode model for sound propagation in

shallow water with irregular bottom bathymetry, is developed

in this thesis. This model can be used to examine underwater

sound propagation involving significant bottom interaction. In

this model, sound speed is allow to vary in three dimensions

and water depth and sediment properties in horizontal

location.

It is shown here that, for a frequency of 100 Hz, the

adiabatic approximation is valid only for very mild bottom

slopes. Typical errors for a slope of .001 radians are 15% in

mode amplitude and 100 in its phase. For a slope of .002

radians, the errors are significantly larger.

The model presented in this thesis is capable of

simulating the interactions of the normal modes as they

propagate in complex environments. Propagation phenomena like

mode-mode interaction, horizontal refraction and slope

enhancement can be examined using this improved model.

In the development of the present model an approximation

(Eq. 12) in the bottom boundary conditions is used. The

validity of this approximation requires that the slope must be

much smaller than unity (Eq. 13). In order to be able to

handle very steep bottom slopes, i.e., order one slopes, one

needs to use the exact form of the bottom boundary conditions
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(Eq. 10). This could make the formulation more complicated but

it should be tractable.

Another future improvement to the model will be to include

sound energy absorption (attenuation). One way to do this is

by introducing imaginary parts in the eigenvalues

(wavenumbers). Lastly, a test for the accuracy of the improved

model is needed. This can be achieved by comparing the results

generated by this model with some exact analytic solutions.
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APPENDIX A. FORTRAN ROUTINES FOR COMPUTING NORMAL MODES

FIELD

The following program creates the normal mode field,

"amode.dat", for a given geographical area of the ocean. Sound

speed, density, and bottom depth, are defined for every grid

point. Given sound speed field and density, the normal modes

are calculated using a standard mode solver routine.

******************* *** ** ******* ************* ****************

* This program computes the normal modes in a given *
* area. *
* *

c
c INPUT/ARGUMENTS
c f frequency, Hz
c xmax maximum position in x direction, meters
c ymax maximum position in y direction, meters
c h(nx,ny) depth at x,y position, meters
c nx number of stations in x direction
c ny number of stations in y direction
c nz number of stations in z direction
c xo initial x position, meters
c yo initial y position, meters
c dz step size in z direction, meters
c cf(nx,ny,nz) sound speed field in every x,y position,
c m/s
c df(nx,ny,nz) density field in every x,y position,
c kgr/mA3
c isw switch index : I write / 0 do not write
c mm maximum number of allowable trapped
c modes
c
"c OUTPUT/ARGUMENTS
"c for each horizontal station x,y:
"c ksqr(nz) squared eigenvalues for each trapping
c mode (real)
"c efun r(nz,nz) eigenfunctions (real)
"c h(nxny) water depth (meters)
"c c(nz) sound speed profile in a specific grid

36



C position
c d(nz) density profile in a specific grid
C position
c w source angular frequency (rad/sec)
c dx,dy,dz step size in x,y and z directions (meters)
c nx,ny,nz number of stations in x,y and z directions
c (metrers)
c

program modes
c

parameter(xanax=3QQOO.dO,ymax=3QQQO.dO,nx=ll,ny=ll,
* ~nz=100 ,mm=20)

implicit real*8 (a-h,o-z)
real*8 cf(nx,ny,nz),c(nz),df(nx,ny,nz),d(nz)
real*8 h(nx,ny) ,ksq~r(nz) ,ksqji(nz)
real*8 efun -r(nz,nz),efun_i(nz,nz),efun(nz,mm)
real*8 ks(mm),x(nx),y(ny),z(nz),ksed,kwat
logical ex

c
data isw /1/

c
inquire (file='amode .dat' ,exist=ex)
if (ex) then

open(unit=13,file='amode.dat' ,status='old')
close (13 ,status=' delete')

endif
open(unit=4, file=' /home/noise/sagos/modes/amode.dat',

*form='unformatted' ,status='new')
inquire (file=' od.sys' ,exist=ex)
if (ex) then

open(unit=13,file='mode.sys' ,status='old')
close (13, status='delete')

endi f
open(unit=6, file=' /home/noise/sagos/modes/mcode.sys',

*form='forrnatted' ,status='new')

write(6,*) 'output field'
dx=xmax/dfloat (nx- 1)
dy=ymax/dfloat (ny-i)
dz=2 .dO
pi=4 .dO*datan(l.dO)
f=224 .dO
w=2 .dO*pi*f

c
call data(cf,df,h,nx,ny,nz,dx,dy,dz,xo,yo,x,y, z)

c
nxn=nz -2
write(4) w,dx,dy,dz
write(4) nx,ny,nz

c
if (isw.eq.l) then
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write(6,*)'dz= ',dz, I meters'
write(6,*)'nxz ',nx,' ny- ',ny,' nz- ',nz
write(6,*) 'interface depth'
write(6,*)'h= ',h(l,I) I' meters'
write(6,*) 'sound speed profile, m/s'
write(6,*) (cf(l,1,iz) ,iz-1.nz,2)
write(6,*) 'density profile, kgr/mA3I
write(6, *) (df(1,l, iz) ,iz-l,nz,2)

endif
C

mcntr-O
C

do ix=l,nx
do iy=l,ny

icounter=O
ichk=O
if (ix.eq.1.and.iy.eq.1) ichk=4

write (4) h (ix, iy)
do iz-1,nz

c (iz) -Cf(ix, jy, iz)
d(iz)=df(ix,iy,iz)

enddo
write(4) c
write(4) d
write(6,*)'ix=',ix,' iy=',iy,' ichk=',ichk
call mode (f,nz,dz, c,d,nm,ksq~r,ksc~i,

* efun-r,efun-i,ichk)
C

"c choose only the trapped modes
"c cs :sound speed in the sediment (constant)
"c cw :sound spedd in the water column,next to the
c interface
c

cs-c (nt (h(ix. iy) /dz) +2)
cw=c (it (h(ix. iy) /dz) -1)

c
c set zeros in the eigenvalues-eigenfunctions arrays
C

do i=l,mm
ks (i)=O.dO
do J=l,nz

efunk'j j)=O.dO
enddo

enddo
C

do i-l,nm
ksed= (w/cs) **2
Icwat= (w/cw) **2
if (ksed.1t.ksg~r(i).and.ksc~r(i) .lt.kwat)

* then
icounter=icounter+ 1
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ks (icounter) =ksq~r(i)
do iz=1,nz

efun(iz, icounter) =efun-r(iz, i)
enddo

endif
enddo

C
if (isw.eq.1) then

write(6..*)'h= ',h(ix~iy)
write(6,*)'limits for trapped modes
write (6, *) kwat,ksed
write(6,*) 'icounter= ',icounter
write(6,*) IkflA2I
write (6, *) (ks (i) ,i-1, mm)

endif
C

if (ix.eq.3.and.iy.eq.3) then
write(6,*) 'efun(iz,18)1
write(6,*)(e~fun(iz,18),iz=1,nz)

endif
C

write(4) icounter
if (icounter.gt.mm.and.icounter.gt.mcntr)

* mcntr=icounter
write(4) Ics
write(4) efun

enddo
enddo

C
if (mcntr.ne.O) write(6,10O1)mcntr

1001 format(i3,' trapped modes, exceeds limit, increase nun
c and rerun')

close (4)
close (6)
end

*The following program provides an example data input. *

c
"c INPUT/ARGUTMENTS
"c nx number of stations in x direction
"c ny number of stations in y direction
"c nz number of stations in z direction
"c dx step size in x direction, meters
"c dy step size in y direction, meters
"c dz step size in z direction, meters
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c Xo initial x Position, meters
c yo initial y position, meters
C

c OUTPUT/ARGUMENTS
c cf(nx,ny,nz) sound speed field in every x,y position,
c rn/s
"c df(nx,ny,nz) density field in every x,y position,
c kgr/m^3
"c h(nx,ny) interface depth, meters
C

subroutine data(cf,df,h,nx,ny,nz,dx,dy,dz,xo,yo,X,y, z)
C

implicit real*8 (a-h,o-z)
real*8 cf(nx,ny,nz) ,df(nx,ny~nz),h(nx,ny)
real*8 x(nx) ,y(ny) ,z(nz)

C

do ix=1,nx
do iy=1,ny

x(ix) =xo+dx*dfloat fix-i)
y(iy) =yo+dy*dfloat (iy-1)

c

C bathymetry field
C

h(ix, iy)=-.0005d0*x(ix) +100.dO
c
C sound speed and density fields
C

do iz=l,nz
z (iz) =dz*dfloat (iz-1)
if (z(iz).le..h(ix,iy)) then

cf(ix,iy,iz)=.QOO5dO*x(ix) -
* .ldO*z(iz) +1490.dO

df (ix, iy, iz) =1000 .dQ
else

cf (ix, iy, iz) -1800 .do
df (ix, iy, iz) =2000 .d0

endif
enddo

enddo
enddo

c
return
end
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APPENDIX B. FORTRAN ROUTINE FOR COMPUTING WAVENUMBER

DERIVATIVES

This program inputs from "amode.dat" as created by the

previous program "modes". Computes the horizontal derivatives

of the total wavenumber k, at every position of the acoustic

field. The derivative calculation requires definition of a

computational domain. Output is to the file "kder.det".

"* This program assigns the source position relative to *
"* the input field via ixorig and iyorig. *
"* This program also specifies the radial increment for the
"* spline definition, the number of intervals, and the *
"* angular increment between integration paths (dr,nr,da) *

* Procedure: xy-spline at each depth *
* evaluate dk/dx,dk/dy *
* transform into dk/dr,dk/da *
* *
*** ******************************************************** *

C
program kder

C
parameter(nx=ll,ny=ll,nz=100,nm=20,ndum=nz*nm,

* ixorig=l,iyorig=3,nwk=2*ny*nx+2*maxo(nx,ny))
implicit real*8 (a-h,o-z)
real*8 kd(nx,ny,nz,2),k(nx,ny),kdxy(6),kc(2,nx,2,ny)
real*8 x(nx),y(nyý,ang(nx,ny),c(nz),ct(nx,ny,nz)
real*8 wk(nwk) ,efun(ndum) ,hork(nz)
character*20 filename
logical ex

c
C --------------------------------------------

c open statements
C-----------------------------------------------------

c
inquire(file='kder.dat',exist=ex)
if (ex) then

open(unit=13,file='kder.dat',status='old')
close(13,status='delete')

endif
inquire(file='kder.sys',exist=ex)
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if (ex) then
open (unit=13, FILE='kder.sys' ,status=' old')
close (13 ,status=' delete')

endi £
inquire (file=' efun o rig.dat' ,exist=ex)
if (ex) then

open(unit=13,file-'efun orig.dat' ,status='old')
close (13,status='delete'7)

endif
open(unit=4, file='amode.dat' ,form='unforniatted',

* status='old' ,err=2001)
open(unit=14,file='kder.dat' ,form='unformatted',

* status='new' ,err=2002)
open (unit=24, file=' efun -orig .dat' ,form=

* unformatted' ,status='nlew' ,err=2003)
open(unit=6,file='kder.sys' ,form='formatted',

* status='new' ,err=2004)
C

c input w (rad/sec), dx,dy (meters), dz (meters)
read(4) w,dx,dy,dz

C

c input: number of x indices, no. y indices
c number of mod~es, TOTAL vertical increments

read(4) nxt,nyt,nzt
C

write(6,1009) w

write(6,*)' dx~dy,dz~ )d~)

if (m.ne.nm) write(6,*)'m='I,m,' nm=',nm
if (nx.ne.nxt) write(6,*)'nx=~',nx,' rixt=',nxt
if (ny.ne.nyt) write(6,*)'ny=',ny,' nyt=',nyt
if (nzpl.ne.nzt) write(6,*)'nzpl=',nzpl,' nzt=',nzt

c

Pi =dacos(-1.dO)
c
*----------------distribution parameters for spline ------------

dda =.8d0

da =dda*pi/180.

dr =3000.dO

c number of points in spline
nr = (nx-ixorig)*dxldr +1
write(6,*) nr,' spline locations with interval=',dr

* number of radial paths
tang =datan( .5*dy*(ny-1) / (dx*(nx-l))

c na =2*idint(tanglda) + 1
na= 3
write(6,*) na,' integration paths for da=',dda,' deg,

c-------------------------------------------------------------
c
c horizontal field grid in meters

do 11 ix=1,nx
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11 x(ix) = dfloat(ix-ixorig)*dx
do 12 iy-l,ny

12 y(iy) = dfloat(iy-iyorig)*dy
write(6,*) 'x range: (',x(l),2', ,x(nx) , )#

wri~te(6,*)'y range: (',y'(l),',,,y(ny),')'
C
"c read in c-field and
"c calculate angle (ccw from x-axis)

do 14 ix=l,nx
do 14 iy=1,ny

"c full sound speed profile(nzpl) (0-5000m)
read(4) h
read(4) c
read(4) dens
read(4) icounter
read(4) hork
read(4) efun

"c create file to obtain initial conditions
if (iy.eq.iyorig.and.ix.eq.ixorig) write(24)efun
do iz=l,nz
ct(ix,iy,iz) = c(iz)
enddo
if (ix.eq.ixorig) then
if (iy.ge.iyorig) ang(ix,iy) = piI2.
if (iy.lt.iyorig) ang(ix,iy) =-pi/2.
else
ang(ix,iy) = datan((y(iy))/(x(ix)))
endif

14 continue
C
"c calculate derivatives from first station below surface to
"c bottom
c

do 100 iz=1,nz
do 110 ix=1,nx
do 110 iy=1,ny

c
c wavenumber is in rad/m
c

110 k(ix,iy) = w/ct(ix,iy,iz)
c
c fit bi-cubic spline to iz-th level waveno.
c

ic = ax
call ibcccu(k,x,nx,y,ny,kc,ic,wk,ier)
if (ier.ne.0) write(6,100l) ier

c
"c use spline to evaluate-cartesian derivatives at each grid
"c point
"c transform derivatives into cylindrical coordinates
c
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do 120 ix=1,nx
do 121 iy=1,ny
call dbcevl(x,nx,y,ny,kc,ic,x(ix),y(iy),kdxy,ier)
if (ier.ne.0)

* write(6,1007) ix,iy,X(ix),Y(iy),ier
call cyl(ang(ix,iy) ,kdxy(2) ,kdxy(3),

* ~kd(ix,iy,iz,l) ,kd(ix,iy,iz,2))
121 continue
120 continue

if (iz..eq.l) then
write(6,*)' For first subsurface layer'
write(6, 1005)
write(6,1006) ((ct(ix,iy,1),ix=1,nxc),iy=ny,1,-1)
write (6, 1011)
write(6,1016) ((k(ix,iy),ix=1,nx),iy=ny,1,-1)
write(6, 1003)
write(6,1002) ((kd(ix,iy,1,1),ix=l,nx),iy=ny,l,-1)
write (6,1004)
write(6,1002) ((kd(ix,iy,1,2),ix=1,nx),iy=ny,1,-1)
write (6, *)

endif
c

100 continue
c

write (14) ixorig, iyorig
write(14) da,na,dr,nr
write(6,*) 'da,na,dr,nr' ,da,na,dr,nr
write(14) kd

c
write(6,*)' For bottom level'
write (6, 1005)
write(6,1006) ((ct(ix,iy,nz),ix=1,nx),iy=ny,l,-1)
write (6, 1011)
write(6,1016) ((k(ix,iy),ix=1,nx),iy~ny,l,-l)
write(6, 1003)
write(6,1002) ((kd(ix,iy,nz,1),ix=l,nx),iy=ny,1,-l)
write (6, 1004)
write(6,1002) ((kd(ix,iy,nz,2),ix=1,nx),iy=ny,1,-1)
write(6, *)
write(6,1008) (kd(4,3,iz,l) ,iz=1,nz,2) ,kd(4,3,nz,1)
goto 2020

c
1001 format(' ier:',i3,' for ibcccu, xy-spline')
1002 forrnat(S(1x,e12.5))
1003 formnat(' dk/dr ((rad/m) Im P)'
1004 format(' dk/rda ((rad/m) Im P))
1005 format(' c (mis)')
1006 format(5(2x,f8.3))
1016 format(5(2x,f8.5))
1007 format(' ix,iy,X,Y,ier for dbcevl: ',213,2F6.1,i3)
1008 format(' at ix,iy-4,3 dk/dr(z)'/11(5(lx,dll.5)/)
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1009 format(' frequency,rad/sec :',d14.7)
1010 format(' k'/7(4(3x,dll.4)/3x,3(3x,dll.4)/)
1011 format(' k (rad/m)')

c
C ----------------------------------------
c close statements
C --------------------------------------

c
2001 filename='amode.dat'

goto 2010
2002 filename='kder.dat'

goto 2010
2003 filename='efun-orig.dat'

goto 2010
2004 filenamee=-'kder.sys'
2010 write(*,2011) filename
2011 format(' ERROR OPENING FILE ',A)
2020 close(4)

close (14)
close (6)
end

subroutine cyl (ang,x,y, r,a)
c polar transformation subroutine

implicit real*8 (a-h,o-z)
r = x*dcos(ang) + y*dsin(ang)
a = x*dsin(ang) - y*dcos(ang)
return
end
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APPENDIX C. FORTRAN ROUTINES FOR COMPUTING THE COUPLING
COEFFICIENTS

*********************************************** *********** **

* ,

* This program manages the subroutines "subl.f", "sub2.f",*
* "sub3.f", "partial.f" which compute the two mode *
* coupling coefficients. The input is from "amode.dat" *
* and "kder.dat", specifically the modes, horizontal, *
* wavenumber, horizontal derivatives of total wavenumber, *
* bathymetry and density. The output file is "mcoupl.dat".*

********************* * **** ** *** ** ************* ** ***

c
c rhol : water column density-constant in depth (kg/mý3)
c rho2 : sediment density-constant in depth (kg/mA3)
c dz : vertical step size (m)
C nm : maximum number of trapped modes,in the water column
c nx,ny : number of stations in x and y directions
c h : bottom bathymetry
c zb : acoustic pressure eigenfunctions,at the interface
c depth
c zbml : acoustic pressure eigenfuctions,one step size
c above the interface depth
c zbm : zb for the mth mode
c zbmml : zbml for the mth mode
c zbn : zb for the nth mode
c zbnml : zbml for the nth mode
c ar : range component of the first coupling coeff.
c aa : angle component of the first coupling coeff.
c cr : correction at the range component of the first
c coupling coeff.
c ca : correction at the angle component of the first
c coupling coeff.
c b : second coupling coeff.
c k : square of horizontal wavenumbers(eigenvalues) of
c the modes
c

program sedbot
c

parameter(nx=5,ny=5,nz=lo0,nw=2*nx*ny+2*max(nx,ny),
* nm=20)
implicit real*8 (a-h,o-z)
real*8 h(nx,ny),zbm(nx,ny),b(nm,nm,nx,ny) ,km(nx,ny)
real*8 zbinml(nx,ny) ,cr(nm,nm,nx,ny),ca(nm,nm,nx,ny)
real*8 ar(nm,nm,nx,ny) ,aa(nm,nm,nx, ny),kn(nx,ny)
real*8 zbn(nx,ny) ,zbniml(nx,ny) ,c(2,nx,2,ny) ,wk(nw)
real*8 crl(nx,ny),cal(nx,ny),x(nx),y(ny)
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real*8 zbnpr(nx,ny) ,zbnpa(nx,ny) ,zb(nxr,nx,ny)
real*8 zbnpx(nx,ny) ,zbnpy(nx,ny) ,hpr(nx,ny) ,hpa(nx,ny)
real*8 hpx(nx,ny) ,hpy(nx,ny) ,bl(nx,ny) ,kk(nm)
real*8 rhol(nx,ny) ,rho2(nx,ny) ,k(nx,ny,nz)
real*8 cs(nz),d(nz),efun(nz,nxn),kd(nx,ny,nz,2)
integer icounter (nx, ny)
logical ex

c
inquire (file=' mcoupl .dat' ,exist=ex)
if (ex) then

open (unit=13..file='mcoupl.dat' ,status='ola')
close (13, status=' delete')

endif
open(unit=4, file=' /home/noise/sagos/modes/amode.dat',

*form='unformatted' ,status='old')
inquire (file=' coupi .sys' ,exist=ex)
if (ex) then

open (unit=13, file=' coupi .sys' ,status='old')
close (13,status='delete')

endi f
open (unit=E. file=' /home/noise/sagos/modes/coupl .sys',

*form='formatted' ,status='new')
open(unit=8, file=' /home/noise/sagos/modes/mcoupl .dat',

*form='unformatted' ,status='new')
open (uniLt=14, file=' /home/noise/sagos/modes/kder.dat',

*form='unforrnatted' ,status='old')
C

read(4) w,dx,dy,dz
C

rewind 4
C

read(14) ixorig, iyorig
read(14) da,na,dr,nr
write (8) ixorig, iyorig
write(8) da,na,dr,nr
read(14) kd

C

do ix=1,nx
x (ix) =dx*dfloat (ix- ixorig)

enddo
C

do iy=1,ny
y (iy) zdy*dfloat (iy- iyorig)

enddo
C

write(6,*) 'x range: (' ,x(1) ,' , ',x(nx) ,' )
write(6,*)'y range: (',y(1),',',y(ny),')'

C

c computation of first mode coupling coefficients
c
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do n=1, nm
do m- 1, nm

read(4) w,dx,dy,dz
read(4) nxx,nyy,nzz

C
do ix=1~nx

do iy=l,ny
read (4) h (ix, iy)

C

c i, is the last station in the water column
C

i=int (h (ix, iy) /dz) + 1
read(4) cs

C

c calculate the total wavenumrber
C

do iz=l,nz
k (ix, iy, iz) =w/cs (iz)

enddo
read(4) d
rhol (ix, iy) =d (i)
rho2 (ix, iy) =d(i+1)
read(4) icounter(ix, iy)
read(4) kk
km(ix, iy) =kk(m)
kn(ix, iy) =kk(n)
read(4) ef un

C
if (m.eq.n) then

ar(m,n,ix,iy)=O.dO
aa(m,n, ix, iy) =O.do

else
C

"c trapezoid integration, to find the integral part of
"c first coefficient
C

sunx=O .dO
sumy=O dO
denom=km(ix, iy) -kn(ix, iy)

C
do iz=l,nz

a-k(ix, iy, iz) *efun(iz,n) *
* efun(iz,m)/d(iz)

sumnx~sumx+a*kd(ix, iy, iz, 1)
sumy=sumy+a*kd(ix, iy, iz,2)

enddo,
C

if (m.eq.17.and.n.eq.16)
* ~write(6,*)'ix,iy~sumrx,sumy',ix,iy,

* ~sumxsumy
ar (m,n, ix, iy) =4 .dO*sumx*dz/denom
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aa (n, n,ix, jy) 4. do*suiny*dz/denom
if (m.eq.17.and.n.eq.16)

* write(6,*)'ix,iy,ar(17,16,ix,iy)',
* ~~ix, iy,ar(1.7, 16, ix, iy)
endif

c

zbm(ix, iy)=efun(i,m)
zbmml (ix,iy) =efun(i-l,m)
zbn(ix, jy) =efun(i,n)
zbnmin(ix, iy) =efun(i-1,n)

enddo
endriu

call partial (h,nx,ny,x,y,hpr,hpa,nw,hpx,hpy,c,wk)

call partial(zbn,nx,ny,x,y,zbnpr,zbnpa,nw,
* ~zbnpx, zbnpy, c,wk)

C

if (m.eq.17.and.n.eq.16) then
write (6, *) Izbn =I
write(6,100l) ((zbn(ix,iy),ix=l,nx),

* ~iy=ny,1, -4)
write(6,*)'zbnpr ='
write(6,l001) ((zbnpr(ix,iy) ,ix=l,nx),

* ~iy=ny, 1,-i)
write(6,*)'zbnpa =-,
write(6,1001) ((zbnpa(ix,iy),ix=1,nx),

* ~iy=ny,1, -1)
1001 forrnat(S(2x,el2.4))

endi f
C

if (m.ne.n) call subl(rhol,rho2,dz,zbm,zbn,zbmmin,
* ~zbrrnl,crl,cal,krn,kn,m,n,zbnpr,zbnpa,x,y)

C

if (m.eq.n) call sub2(rhol,rho2,zbm,h,crl,ca1,
* nx,ny,hpr,hpa~x,y)

C

do ix=1,nx
do iy=l,ny

cr (in,n,ix, iy) =crl (ix, iy)
ca (n, n,ix, iy) =cal (ix, iy)

enddo
enddo

C

if (m.eq.17.and.n.eq.16) then
write(6,*)'checking quadrature :'
write(6,*) 'ar(,ix,iy)='

write(6,*) 'aa(17,16,ix,iy)='
write(6,100)((aa(,17,l6,ix,iy),ix=1,5),iy=1,5)

endif
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C

do ix=1, nx
do iy=1, ny

ar (in,n,ix, iy) =ar (i, n, ix, jy) icr (n, n,ix, iy)
aa (m,n, ix, iy) =aa (m,n, ix, iy) +ca (n, n, ix, iy)

enddo
enddo

rewind 4

enddo

do ix=1,nx
do iy=l,ny

zb(n, ix, iy) =zbn(ix, iy)
enddo

enddo
C

enddo
C

c computation of second mode coupling coefficients
C

do n=1,nm
do m=1,nm

C

call sub3(rhol,rho2,zb,h,bl,ar,aa,n,in,hpr,hpa,
* ~zbnpr, zbnpa,x,y)

C

do ix=l,nx
do iy=l,ny

if (icounter(ix,iy) .lt.n.or.
* icounter(ix,iy).lt.m) then

b(m,n, ix,iy)=O.dO
else

b(m,n, ix, iy) =bl (ix, iy)
endif

enddo
enddo

C

enddo
enddo

C

write(6,*) 'checking the mode coupling coefficients :

write(6,100)((ar(16,17,ix,iy),ix=l,5),iy=1,5)
write(6,*)'aa(16,17,ix,iy)-'
write(6,lOO)((aa(16,l7,ix,iy),ix=1,5),iy=l,5)

write(6,100)((b(16,17,ix,iy),ix=1,5),iy=1,5)
100 forrnat(5(1x,e12.5))
c
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write(8) ar
write(8) aa
write (8) b

c
close (4)
close (8)
close (14)
end
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"* This subroutine computes the vector mode coupling*
"* coefficient correction, due to small bathymetry*
"* variations between two different modes (m different*
"* than n.*

subroutine subi (rhol, rho2,dz, zbm, zbn, zbmml, zbnml,
* crl,cal,km,kn,m,n,zbnpr,zbnpa,x,y)

c
parameter (nx=ll,ny=ll,nw=2*nx*ny+2*max(nx,ny))
implicit real*8 (a-h,o-z)
real*8 c(2,nx,2,ny),wk(nw),crl(nx,ny),cal(nx,ny),

* ~zbm(nx, ny)
real*8 zbmml(nx,ny),zbn(nx,ny) ,zbnml(nx,ny) ,kn(nx,ny)
real*8 zbnpz(nx,ny) ,zbmpz(nx,ny) ,zbnpzpr(nx,ny),

* ~kx(nx,.ay)
real*8 zbnpzpa(nx,ny) ,zbnpzpx(nx,ny) ,zbnpzpy(nx,ny),

* ~zbnpr (ax,nfy)
real*8 zbnpa (nx, ny) ,rhol (nx,ny) ,rho2 (nx, ny)
real*8 x(n~x),y(ny)

c
do ix=l,ax

do iy=l,ny
zbnpz(ix,iy)=(zbn(ix,iy)-zbnml(ix,iy))/dz
zbmpz (ix, iy) =(zbm(ix, iy) -zbmml (ix, iy) )/dz

enddo
enddo
call partial (zbnpz,nx,ny,x,y,zbnpzpr,zbnpzpa,nw,

* ~zbnpzpx, zbnpzpy, c,wk)
if (m.eq.2.and.n.eq.18) then

write(6,*) 'zbnpz(3,3)=' ,zbnpz(3,3)
write(6,*)'zbnpzpr(3,3)=',zbnpzpr(3,3)
write(6, *) 'zbnpzpa(3, 3)=', zbrnpzpa(3, 3)
write(6,*) 'zbnpr(3,3)= , zbnpr(3,3)
write(6,*) 'zbnpa(3,3)=' ,zbnpa(3,3)

endif
c

do ix=l 'nx
do iy=1,ny

r=dsqrt(x(ix)**2 + y(iy)**2)
if (r.1t.l.d-20) goto 100
cr1 (ix, iy) =zbnpzpr(ix, iy) *zbm(ix, iy) *

* ~(1.dO-rho2(ix,iy)/rhol(ix,iy))/rhol(ix,iy)-
* ~~zbmpz (ix, iy) *zbnpr (ix, iy) *
* (l.dO/rhol(ix,iy)-l.do/rho2(ix,iy))

cal (ix, iy) =zbm(ix, iy) *zbnpzpa (ix, iy) *
* ~~(1.dO-rho2 (ix, iy) /rhol (ix, iy)) /
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* (rhol(ix,iy)*r) - zbmpz(ix,iy)*
* zbnpa (ix, iy) *
* ~(1.dO/rhol(ix,iy) -1.dO/rho2(ix,iy))/r

crl(ix,iy)=crl(ix,iy)*2.dO/(kn(ix,iy) -km(ix,iy))

100 continue
enddo

enddo
C

return
end
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"* This subroutine computes the vector mode coupling*
"* coefficient correction due to small bathymetry*
"* variations, in the case of m equals n.*

c
subroutine sub2 (rhol,rho2,zbm,h, crl,cal~nx,nfy,

* hpr, hpa, x,y)
c

implicit real*8 (a-h,o,z)
real*8 crl(nx,ny) ,cal(nx,ny) ,zbm(nx,ny) ,rhol(nx,ny),

* ~rho2 (nx,ny)
real*8 hpr(nx,ny) ,hpa(nx,ny) ,x(nx) ,y(ny)

c
do ix=l,nx

do iy=1,ny
r=dsqrt(x(ix)**2 + y(iy)**2)
if (r.lt.1.d-20) goto 100
crl(ix,iy)=- (1.dO/rhol(ix,iy)

* -1.dO/rho2(ix,iy))*(zbm(ix,iy)**2)*ho~r(ix,iy)
cal (ix, iy) =- (1.dO/rhol (ix, iy) -l.dO/rho2 (ix, iy) )*

* ~~(zbm(ix, iy) **2) *hpa (ix, iy) /r
100 continue

enddo
enddo

c
return
end
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"* This subroutine computes the scalar mode coupling*
"* coefficient small bathymetry changes included.

c
subroutine sub3(rhol,rho2,zb,h,bl,ar,aa,n,m,hpr,hpa,

* ~zbnpr, zbnpa,x,y)
C

parameter (nx=ll,ny=ll,nw=2*nx*ny+2*max(nx,ny) ,nm=20)
implicit real*8 (a-h,o-z)
real*8 c(2,nx,2,ny),wk(nw),zb(nm,nx,ny),h(nx,ny),

* ~bi(nx,ny)
real*8 hpr(nx,ny) ,hpa(nx,ny) ,ar(nm,nAM,nx,ny),

* aa (nm, nm , n~x, ny)
real*8 zbnpr(nx,ny) ,zbnpa(nx,ny) ,ern(nm,nix,ny)
real*8 ean(nm,nx,ny) ,sum(nx,ny) ,armn(nx,ny),

* aam-- (nx, ny)
real*8 arpr(nx,ny) ,arpa(nx,ny) ,arpx(nx,ny) ,arpy(nx,ny)
real*8 aapr(nx,ny) ,aapa(nx,ny) ,aapx(nx,ny) ,aapy(nx,ny)
real*8 x(nx),y(ny),erm(nm,nx,ny),eam(nim,nx,ny)
real*8 rhol(nx,ny) ,rho2(nx,ny)

c
np= 17
mp=16

C
if (n.eq.np.and.m.eq.mp) then

write (6, *) I'rhol '
write(6,100) ((rhol(ix,iy) ,ix=l,5) ,iy=5,l, -1)
write(6,*) 'rho2'
write(6,1OO)((rho2(ix,iy),ix=1,5),iy=5,1,-l)
write(6,*) 'hpr'
write(6,100)((hpr(ix,iy),ix=1,5),iy=5,1,-1)
write(6,*) 'zb(' ,m,l '....'
write(6,1OQ)((zb(m,ix,iy),ix=1,5),iy=5,1,-l)
write(6,*) 'zb(' ,n,' ... I
write(6,100)((zb(n,ix,iy),ix=1,5),iy=5,1,-1)

endif
c

do ix=l,nx
do iy=l,ny

sum(ix, iy) =O.dO
enddo

enddo
c

do l=l,nzn
do ix=l,nx

do iy=l,ny
r=dsqrt(x(ix)**2 + y(iy)**2)
if (r.lt.1.d-20) goto 110
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ern(1,ix,iy)=.5d0*ar(n,l,ix,iy) + hpr(ix,iy) *
* ~(1.dO/rhol(ix,iy) -l.dO/rho2 (ix,iy)) *
*zb (n, ix, iy) * zb (1, ix, iy)

ean(1,ix,iy)=.5--d0*aa(n,1,ix,iy) + hpa(ix,iy)*
* (1.do, .:hol(ix,iy)-l.dO/rho2(ix,iy))*
* ~~zb(n, ix, iy) *zb(l, ix, iy) /r

erzn(l,ix,iy)=.5d0*ar(m,l,ix,iy) + hpr(ix,iy)*
* ~(1.dQ/rhol(ix,iy)-1.dQ/rho2(ix,iy) )*
* ~~zb (n, ix, iy) *zb (1,ix, iy)

eain(l,ix,iy)=.5dO*aa(m,l,ix,iy) + hpa(ix, iy) *
* ~~(l.dO/rhol.(ix, iy) -l.dO/rho2 (ix, iy)) *
* ~~~zb (in,ix, iy) *zb (1,ix, iy) /r

110 continue
enddo

enddo
enddo

C

do ix=1,nx
do iy=1,ny

do l=1,nm
sum(ix,iy)=suin(ix,iy) +

* ~ern(1,ix,iy) *erin(1,ix,iy) +
* ean(l,ix,iy) *eam(l,ix,iy)
enddo

enddo
enddo

C
if (n.eq.np.and.m.eq.mp) then

write(6,*)'sum for iin,in='I,mp,np
write(6,100)((sum(ix,iy),ix=l,5),iy=5,1,-l)

100 forrnat(5(lx,e12.3))
endif

C
do ix=1,nx

do iy=1,ny
armn(ix, iy) =ar(in,n, ix, iy)

enddoi)=am~~x~y
enddo

call partial (arnmn,nx,ny,%,y,arpr,arpa,nw,
* ~arpx,arpy, c,wk)

call. partial(aainn,nx,ny,x,y,aapr,aapa,nw,
* ~aapx, aapy,c, wk)

C
do ix=1,nx

do iy=1,ny
r=dsqrt(x(ix)**2 + y(iy)**2)
it (r.lt.1.d-20) then
bl(ix,iy)=.5d0*arpr(ix,iy) - sum(ix,iy) -

* ~(1.dO/rho1(ix,iy)-1.dO/rho2(ix,iy))*zb(in,ix,iy)*

56



* (hpr(ix,iy)*zbnpr(ix,iy)
else
bi (ix, iy)=.5d0*arpr (ix, iy) +.5d0*ar (in,n, ix, jy) /r+

* ~.5*dO*aapa(ix,iy)/r - sum(ix,iy)-
* ~(l.dO/rhol(ix,iy) -
* li.dO/rho2 (ix,iy) )*zb(m,ix,iy)*
* ~~(hpr (ix, iy) *zbnpr(ix, iy) +
* ~hpa(ix, iy) *zbnpa(ix, jy) /r**2)

endi f
enddo

enddo
C

return
end
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"* This subroutine computes the partial derivatives with
"* respect to range and azimuthal angle of a given function*
"* f(x,y). It uses a bicubic spline to calculate the*
"* cartesian derivatives and then perform a coordinate*
"* transformation to cylindrical coordinates.*

subroutine partial(f,nx,ny,x,y,fpr,fpa,nw,fpx,fpy,
*~c, wk)

c
implicit real*8 (a-h,o-z)
real*8 f(nx,ny) ,x(nx),y(ny),fpr(nx,ny),fpa(nx,ny)
real*8 wk(nw),fpx(nx,ny),fpy(nx,ny),c(2,nx,2,ny)

C

external ibcccu
C

i C= fx
pi=dacos (-1. dO)

c
call ibcccu(f,x,nx,y,ny,c,ic,wk,ier)

C

do ix=l,nx
do iy=1,ny

fpx(ix,iy) =c(2,ix,l,iy)
fpy(ix, iy) =c (1,ix,2, iy)
if (x(ix).eq.O.dO) then

theta=dsign(y(iy) ,1.dO) *pi/2.dO
else

theta-datan(y(iy) /x(ix))
endif
r=dsqrt (x(ix) **2+y(iy) **2)
fpr(ix, iy) =fpx(ix, jy) *dcos (theta) +

* ~fpy(ix, iy) *dsin(thet-a)
fpa (ix, iy)=-fpx (ix, iy) *r*dsin (theta) +

* ~fpy(ix, jy) *r*dcos (theta)
enddo

enddo
C

return
end
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