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ABSTRACT

One of the main benefits of object-orientation is reusability which allows

modules (classes/objects) developed for a previous appication to be used again for a new

application.

A Browser in object-oriented systems is a highly specialized system used in class

libraries for viewing, writing, changing, and saving code. However, as the number of

classes grows from the hundreds to the thousands to the tens of thousands, the Browser

approach is not sufficient.

The Class Storage and Retrieval System (CSRS) is a proposed system based on

the Computer Aided Prototyping System that aims to overcome the insufficiencies of the

Browser approach and therefore to enhance the reusability of classes in object-oriented

systems.

ItU

tkbwnacaurea 0i

Dist' A tt oeD'ir ii



TABLE OF CONTENTS

I. INTRODUCTION .......................................... I

A. GENERAL ......................................... 1

B. OBJECTIVES ....................................... 2

C. ORGANIZATION .................................... 2

II. SURVEY OF LITERATURE ................................. 3

A. OBJECT-ORIENTED PROGRAMMING .................... 3

1. Basic Concepts ................................... 3

a. Objects ..................................... 3

b. Classes ..................................... 4

c. M ethods .................................... 5

d. Inheritance and Hierarchies ....................... 6

(1) Inheritance ................................ 6

(2) Hierarchies ................................ 7

e. Polymorphism ................................ 8

2. Object-Oriented Database Management Systems ............ 8

B. REUSABILITY ...................................... 9

1. Conventional Systems ............................. 10

iv



2. Object-Oriented Environments ........................ 11

a. Browsers ................................... 13

b. Example Browsers ............................ 13

(1) Smalltalk-80 .............................. 14

(2) Smalltalk/V 286 ........................... 15

(3) Actor ................................... 17

(4) Sun C++ ................................. 19

(5) Borland C++ .. ............................ 21

(6) Prograph . ............................... 22

C. THE COMPUTER AIDED PROTOTYPING SYSTEM (CAPS) ... 24

1. General Overview ................................ 24

2. The Prototype System Description Language ............. 27

3. Storage/Retrieval of Reusable Components In/From CAPS ... 28

a. Syntactic Matching ............................ 29

b. Semantic Matching - OBJ3 ...................... 30

c. Alternative Methods ........................... 30

III. THE PROBLEM STATEMENT .............................. 32

A. CLASS DEFINITIONS IN AN 00 ENVIRONMENT .......... 32

B. THE BROWSER APPROACH .......................... 33

1. Advantages ..................................... 33

v



2. Disadvantages ................................... 34

3. Capitalizing on the Advantages ....................... 34

C. USING CAPS TO STORE AND RETRIEVE CLASS

DEFINITIONS ...................................... 35

1. PSDL Specifications and Class Definitions ............... 35

2. Syntactic Normalization/Matching ..................... 36

3. Semantic Normalization/IMatching ..................... 37

IV. THE CLASS STORAGE AND RETRIEVAL SYSTEM (CSRS) ....... 38

A. CLASS DEFINITION TRANSFORMATION INTO PSDL

COMPONENT ...................................... 38

1. Variables ...................................... 40

a. Class Variables .............................. 40

b. Instance Variables ............................ 40

2. M ethods ....................................... 41

3. Inheritance ..................................... 43

a. 'Automatic' Inheritance ......................... 44

b. 'Manual' Inheritance ........................... 46

B. IMPLEMENTATION SPECIFICATION AND BODY .......... 47

C. STORAGE/RETRIEVAL OF CLASS DEFINITIONS IN/FROM

CSRS ............................................ 48

V

vi



1. Stora ... a48

2. Retrieval ....................................... 49

a. ByQuery . .................................. 49

b. Browse .. .................................. 51

(1) By Type ................................. 51

(2) By Keyword . ............................ 52

(3) By Operator . ............................ 53

D. AN EXAMPLE APPLICATION: STORAGE/RETRIEVAL OF

COMPUTER ARCHITECTURE SIMULATION CLASSES IN/FROM

CSRS ............................................ 53

1. Transforming Classes into PSDL Specifications ........... 54

2. Storage/Retrieval of Classes in/from CSRS ............... 56

E. ANOMALIES ...................................... 58

V. SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE

RESEARCH ........................................... 60

A. SUMMARY ........................................ 60

B. CONCLUSIONS .................................... 61

C. RECOMMENDATIONS FOR FUTURE RESEARCH .......... 62

APPENDIX A .............................................. 64

vii



APPENDIX B .............................................. 69

APPENDIX C .............................................. 71

APPENDIX D .............................................. 74

APPENDIX E .............................................. 75

APPENDIX F .............................................. 85

LIST OF REFERENCES ..................................... 102

INITIAL DISTRIBUTION LIST ................................ 106

viii



LIST OF FIGURES

Figure 1. Smalltalk-80's System Browser ........................... 14

Figure 2. Smalltalk/V 286's Class Hierarchy Browser .................. 16

Figure 3. Actor's Browser ...................................... 18

Figure 4. Sun's C++ Sourcebrowser *.............................. 20

Figure 5. CAPS Structure ..................................... 25

Figure 6. CAPS Prototyping Process .............................. 26

Figure 7. Language Independent Class Definition ..................... 32

Figure 8. PSDL Component .................................... 39

Figure 9. PSDL Data Type ..................................... 39

Figure 10. PSDL Type Declaration ............................... 41

Figure 11. PSDL Operator Specification ............................ 42

Figure 12. PSDL Component Fuctionality ........................... 44

Figure 13. Input File Selection Window ............................ 49

Figure 14. Query File Selection Window ........................... 50

Figure 15. Component Selection Window ........................... 51

Figure 16. A Component's Specification View ....................... 52

Figure 17. Component Selection Window for the Type Selection ........... 53

Figure 18. Keyword Selection Menu Window ........................ 54

Figure 19. Storing a Class ...................................... 57

ix



Figure 20. Matches for the Test mux Class ......................... 58

x



ACKNOWLEDGMENT

I would like to take this opportunity to sincerely thank the Greek Navy; my thesis

advisor Michael Nelson, for his guidance and assistance, to accomplish my goal.

To my wife Myriam and my newborn son Dimitrios I dedicate this thesis for the

infinitely invaluable encouragement during the last nine months.

xi



I. INTRODUCTION

A. GENERAL

The 1990's will most likely be characterized by an increasing complexity and

diversity of software applications. The need for computerized solutions in almost every

human activity is increasing daily. In order for software production mechanisms to meet

these requirements it is necessary to achieve faster development, a quality finished

product, and easier maintenance and extensibility.

Object-oriented programming (OOP) is a relatively new approach that promises

to serve software development needs better than more traditional approaches. These

needs can be briefly described as creating reliable, sharable, easily reusable, extensible,

and maintainable modules of code. These modules of code are organized into classes

which form a hierarchy.

In order to maximize reusability of classes, a storage and retrieval mechanism for

their definitions is needed. With this mechanism (typically a browser), software

developers are able to search previously defined classes for those that are appropriate

to their needs. This mechanism needs to be as efficient and as automated as possible in

order to minimize software development costs and therefore fulfill the promise of

reusability in object-oriented (00) environments.

In most object-oriented environments the browser is a tool useful in viewing,

writing, and saving code, but only if the number of classes is relatively small. This is

S- • • w ...1



because the developer has to manually search the class library to determine if a specific

class already exists. But as the number of c~asses grows from the hundreds to the

thousands to the tens of thousands, the browser approach is not sufficient [NB921.

The Computer Aided Prototyping System (CAPS) is a rapid prototyping

environment for hard real-time systems [LK88, Luqi91]. CAPS uses an object-oriented

database management system (OODBMS) for the storage and retrieval of ADA

components, achieving a high degree of reusability. A system such as CAPS which

could be used in the storage and retrieval of class definitions would be a great

improvement over browsers.

B. OBJECTIVES

The primary objective of this thesis is to determine the suitability of a CAPS-like

approach to object-oriented class storage and retrieval. This thesis will also determine

if CAPS' storage and retrieval system can be used "as is", or if modifications will need

to be designed and implemented.

C. ORGANIZATION

Chapter II is a survey of the literature of basic object-oriented concepts, reusability

in both conventional and object-oriented environments, and CAPS. Chapter In gives a

detailed description of the problem statement. Chapter IV presents the Class Storage and

Retrieval System, our proposed solution. Chapter V includes conclusions and

suggestions for future research.
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II. SURVEY OF LITERATURE

This chapter describes some useful background concerning various concepts that

will be used throughout this Thesis. The first section introduces the basics of object-

oriented programming. The next section examines the concept of reusability in both

conventional and object-oriented environments. Finally, the third section gives a general

description of the Computer Aided Prototyping System.

A. OBJECT-ORIENTED PROGRAMMING

Object-oriented programming is a relatively new approach that promises to serve

software development needs better than more traditional approaches have; that is, faster

development, quality finished product, and easier maintenance and extensibility. To

achieve this, object-oriented systems introduce some fundamental ideas which

distinguish it from more conventional programming languages. We now give a brief

description of these basic concepts independent of any specific implementation language.

1. Basic Concepts

a. Objects

"An object has state behavior and identity; the structure and behavior of

similar objects are defined in their common class; the terms instance and object are

interchangeable." ([Booc91]: pp.77)

3



In every day life we use the term object to describe a tangible real-world

entity that has a specific structure and behavior. For example, my_bicycle is an object.

It has a specific structure that differentiates it from other objects, such as my dog. It

also has a specific behavior: with the help of a driver it can be moved within a

predetermined range of speed. 00 systems implement this idea of an object, including

intangible real-world entities1 .

Associated with an object is a set of instance variables which have

specific values for that object and defines its structure. In the previous bicycle example,

candidate instance variables would include the serial number, model, production date,

color, etc. As we shall see later, the only way to manipulate this set of instance variables

is with a set of methods (procedures) defined exclusively for that purpose2 [Nels9Oa].

The notion of object is fundamental in object-oriented programming

because it is one of the primary building blocks. Even the term object-oriented implies

that we need to view the world in terms of objects or collections of objects.

b. Classes

"A class is a set of objects that share a common structure and a common

behavior." ([Booc91]: pp.93)

The analytic description of an object in the previous section leads us to

categorize them into different classes according to the information that they maintain

'For example, an Array A (8xl) of integers is an object because it has a specific structure
and behavior, it has eight rows and one column and it can store only integers.

'This assumes an encapsulated approach - see Subsection c for more information on this.
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(structure) and their abilities (behavior). Thus, we find that "an object is an instance of

a class" ([WEK90]: pp.3 1).

In the previous example, my bicycle is an instance of a ciass Bicycle

that includes all bicycles; maria'sbicycle is another instance of the same class. A class

can have an infinite number of instances, and can be viewed as a factory that produces

objects [Cox86].

All instances of a class have the same set of instance variables, but their

values are specific for each instance. For example my bicycle has serial-number, model,

production_ date, etc. while maria sbicycle has its own serialnumber, model,

production.date, etc.

Also associated with a class is a set of class variables. "A class variable

is shared in both name and value by all instances of a class" ([Nels90a]: pp.2). For

example we could define a class variable numberof wheels for the Bicycle class to

hold the value 2 as the number of wheels for each bicycle. The name and the unique

value of this class variable is shared by all instances of the class.

c. Methods

"The procedures or operations that are defined for the object are called

methods." ([Nels9Oa]: pp.2)

Methods are associated with either the instances of a class or the class

itself and define their behaviors. The former are called instance methods and the latter

class methods. However, both are defined as part of the class definition.

5



Ideally the state of an object or a class (i.e., the values of its instance

or class variables respectively) can be retrieved and updated only through its methods

[KA90]. The only way to communicate with an object is via instance methods defined

for the class that it belongs to. The only way to create new instances of a class is via

a class method. This property enforces the principle of information hiding and is called

encapsulation. A class/object encapsulates its structure from the environment.

In order for a method to be invoked, a message with the same name as

the method is sent to a specific object (receiver).

Continuing with our bicycle example, there may be a method

get-serialnumber defined for the Bicycle class. Sending the message

getserial number to my-bicycle would cause it to respond with its serial number.

d. Inheritance and Hierarchies

(1) Inheritance. "The principle that knowledge of a more general

category is applicable also to the more specific category is called inheritance." ([Bud9 1]:

pp.5)

Inheritance is a powerful mechanism that distinguishes object-

oriented programming from traditional programming. It is the result of the creation of

a kind-of hierarchy. Within this class hierarchy a subclass is allowed to use all or part

of the code (methods and variables) defined in its superclass(es), as though it were

defined within the subclass itself.
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A subclass is not restricted to using inherited methods and variables

as is. In most object-oriented languages they can be redefined, and possibly even

excluded from the definition of the new (sub)class [Nels9Oa].

They are two kinds of inheritance: single inheritance (referred to

simply as inheritance) in which a subclass may inherit from a single superclass, and

multiple inheritance (MI) that allows inheritance from several superclasses [KL89].

Some OOP languages provide both single and multiple inheritance, others provide only

single inheritance.

(2) Hierarchies. "Hierarchy is a ranking or ordering of abstractions."

([Booc91]: pp.54)

Trying to categorize objects in general, it is very useful to find

relationships among them. The most critical relationships are the kind-of and the part-of.

A bicycle is a kind-of a vehicle for example, but it is not a part-of a vehicle. The kind-

of relationship is generally implemented by inheritance, and the part-of relationship is

generally implemented through composition (i.e., the variables making up an object are

in turn other objects).

The result of the application of a kind-of or a part-of relationship

is a kind-of hierarchy or a part-of hierarchy respectively. In most object-oriented

programming languages the kind-of hierarchy is the class hierarchy and the part-of

hierarchy indicates the object structure, that is the type of the instance variables

[Booc9l, LP91].

7



e. Polymorphism

"Polymorphism means the ability to take several forms. In object-

oriented programming, this refers to the ability of an entity to refer at run time to

instances of various classes." ([Meye88]: pp.224)

Polymorphism, sometimes called operator overloading, is the property

that allows the same message name to be used for different objects of different classes,

and for each object to react accordingly. Thus, the control of the reaction of a method

invocation is transferred to the object itself. The user can send a message and leave the

implementation details entirely up to the receiving object [WEK90]. Modifying the code

of one object does not affect the behavior of another object. For this reason

polymorphism together with inheritance enhances the concept of extensibility in object-

oriented programming.

They are two kind of polymorphism: simplepolymorphism, which allows

several classes to each have their own implementation of an operation; and multiple

polymorphism, which allows each class to have several operations with the same name.

[Mica88]

2. Object-Oriented Database Management Systems

The development of applications that require more complex data, such as

computer-aided design (CAD), computer-aided software engineering (CASE), and

computer-aided manufacturing (CAM), along with the need to maintain that data for use

by several people and/or programs, has led to the need for new database systems. This

8



is because conventional database systems typically offer only a fixed set of data types

(such as integers and character strings) and lack the capability to define even simple new

types and operations, much less complex types and an inheritance scheme [NMO90].

An object-oriented database management system (OODBMS) generally

implements collections of objects, where each object represents a physical entity, an

idea, an event, or some aspect of interest to the database application [EN89].

A data model is a set of concepts that can be used to describe the structure

of a database [EN891. Although there is no standard object-oriented data model, an

object-oriented database management system can be defined as a database system which

directly supports an object-oriented data model [Kim9O].

B. REUSABILITY

"Reuse is the use of previously acquired concepts or objects in a new situation.

Reusability is a measure of the ease with which one can use those previous concepts or

objects in the new situation." ([PF87]: pp.7 )

In software development process, reusability plays a very important role in order

to reduce the effort of development and maintenance, and therefore to increase software

productivity. A way to achieve this is through source code reuse; that is, the

reapplication of code modules. We now describe the current state of the art in source

code reuse in both conventional and 00 systems, giving more emphasis to 00 systems.

9



1. Conventional Systems

Two factors have stimulated a lot of research efforts towards the direction of

code reuse: (1) dramatic increase in the cost of software in recent years; and (2) several

studies that indicate that much of the code of one system is virtually identical to

previously written code for another system [FG89].

Most of the systems developed with reusability in mind are composition-

based systems. That is, they are based on the reuse of atomic and unchanged

components of previously written code (building blocks) that are stored in large software

libraries. [BR87]

In order to be able to use a software library a retrieval mechanism must exist.

That is, a representation of and a search method for the software components must to

exist. Several representation and search methods for software components have been

proposed, including traditional library science methods, knowledge based methods, and

hypertext [FG89].

There are three main approaches for retrieval of reusable components:

browsers, informal specifications, and formal specifications [Ste91]. Browsers are of

particular interest to this thesis, and are described extensively in Section II.B.2.a.

Informal specifications are based on the idea of looking (searching) for

specified attributes of the desired component. There are several such search methods,

including keyword search, multi-attribute search, and natural language interfaces.

Keyword search is a search based upon a specified list of words relevant to the desired

10



component. Multi-attribute search is a search based upon an extended list of

component's attributes that could include the class of the component (procedure,

function, etc.), the number and type of parameters used, etc. Natural language interfaces

in which natural language queries are used to search for the appropriate component.

Advantages of informal specifications are simplicity and easy manipulation. Their most

serious disadvantage is that is difficult to create systems that achieve a high degree of

precision.

Formal specifications require that the software components and also the

queries upon them be written in a formal specification language, consistent with the

underlying implementation language, promising that automated and precise syntactic and

semantic matching can be achieved. Disadvantages of this approach are that automated

matching can be time consuming, and also the difficulty of writing formal specifications

for the components. [McDo9l]

Many of the recently developed reusable component systems, including Draco

[Neig84], Reusable Ada Packages for Information Systems Software (RAPID) [Vog89],

Reusable Software Library (RSL) [BW87], and Common Ada Missile Packages (CAMP)

[CAMP89, Ande88] use one or more of the above described retrieval methods.

2. Object-Oriented Environments

"Using object-oriented techniques, we can construct large reusable software

components." ([Bud9I]: pp.14)

11



One of the primary purposes of object-orientation is to maximize the

reusability of the constructed software modules. This is accomplished through the

concepts that were introduced in the previous section.

A software module in an 00 environment is simply a class. A class, as

previously described, encapsulates its behavior from the environment by allowing

manipulation only through its methods. "Classes provide not only modularity and

information hiding but also reusability enhanced by inheritance and polymorphism"

([WEK90]: pp.47).

Classes are related to one an other via inheritance (single or multiple), thus

creating a class hierarchy. This class hierarchy constitutes the base upon which

applications can be built. "Most 00 systems provide a set of predefined classes

(libraries of classes are also available from various sources) which can be used either

as is or for inheritance in designing new classes" ([NB92]: pp.562).

In order for an application to be built, users have to create their own classes

as subclasses of the already existing classes (if any). Because a subclass inherits all or

part of the behavior (code) defined for its superclass(es), the only thing that the user has

to do is to add variables/methods or modify some inherited methods to make the new

class(es) appropriate for the new application. It has been said that the entire generated

class hierarchy is nothing but reusable code [Mul9O]. Adding more classes to the class

library increases code reusability, making programming more a technique of

composition.

12



The construction of the class hierarchy is very critical for the kind of

applications that can be directly supported, because it determines the actual inheritance

paths that can be followed (i.e., the type and quantity of code that can be reused).

In order for a programmer to build an application, the appropriate

superclass(es) among all of those predefined in the class library must first be detected.

This means that in an 00 environment a search and retrieval mechanism for class

definitions is fundamentally necessity.

a. Browsers

A browser is a window-based software tool which allows potential users

of existing class libraries to retrieve and view classes and their code at various levels

of abstraction [Meye88]. It is an interactive tool, with characteristics and properties

dependent on the implemented 00 system, that applies the idea of programming by

looking around, permiting some form of navigation through the class library [WEK90].

A browser helps the programmer to understand and become familiar with the class

hierarchy, allowing efficient reuse of the predefined code.

b. Example Browsers

Different 00 systems implement provided browsing facilities differently.

We will now examine the browsers of some of the more common OOP languages in

more detail, considering their advantages and disadvantages.

13



(1) Smalltalk-80. Smalltalk-80 [Gold84] includes a System Browser

and a number of Class Browsers (see Figure 1), distinguished by the particular subset

of classes that can be accessed.

The System Browser is made up of five panes, each one having

pop-up submenu choices that provide several editing and source code compiling

facilities. In the Class Categories Menu (first pane), categories of classes are displayed.

Choosing one category causes the Class Names Menu (second pane) to display the

classes that belong to that category. Selecting a class from the Class Names Menu

causes the definition of the class to appear on the Text area (bottom pane), and its list

Colctos-te----------------- 
------ ------- ---

kaVopnics-0IspIay Guaudrangle coloring go:

* raphiCS-ViOW-------------- goercd
G3raphic $-Editor o ------ ot

"Place the receiver at the Center of its frame.
location frame center

100__ _ _ _ _ _ _ _ _ _ _ _ _

000 _ _ _ _ _ _ _ __ _ _ _ _ _ _ _

Figure 1. Smailtalk-8O's System Browser
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of categories of messages appears on the Message Categories Menu (third pane). Finally,

selecting a Message Category causes the methods that belong to this category to appear

on the Message Selectors Menu (fourth pane), and the source code for that method

appears on the Text (bottom pane).

The functionality of the System Browser requires that the user

know in advance the category that a class belongs to in order to find it. If the user does

not know the construction of the system's library well, it becomes more and more

difficult to find a class. This results in a gradual degradation of the entire performance

of the System Browser. It should also be obvious that as the number of classes grows,

it will become more difficult for the user to know which category to search.

An alternative way to create a browser (for only one class) is by

creating an instance of the class Browser for a specific class. The result is a browser for

only that specific class.

(2) SmalltalkIV 286. Smalltalk/V 286 [Dig88] introduces the notions

of Class Hierarchy Browser (see Figure 2) and Class Browser. They are used as follows

to facilitate program development.

The Class Hierarchy Browser is a window consisting of five panes.

The class hierarchy pane displays all of the classes in the system in a hierarchical order

using indentation. Selecting a class from the library causes the class definition, including

its superclass, its instance and class variables, and its pool dictionaries, to be displayed

on the contents pane. In addition, the class or the instance methods are displayed on the

15



* m tvar..............
hla l allw o or : half t on l .h~...........

Behaoior-o. black maig r

v*al bounceigt 4

ChaFriuerScamm8 s

An imattion defau txJi b:
€omuder ditrect ion !

me hod lsoae, eedigo.tecoi.o th usro thecresodn8caso

Otub teerla : o String poen: pFonn
-ii has•a weditinog p ccoltr is at

cls ddefiittioi origin ucag neod.
Char-ergcamor ms

/tllsevesraf clhleraci lont: &reao;
oB.Fort i lort: h enpftonc

bachColor: half'tmon classabitsl•
displav: &Str lng

as: -. if" iocatiom - aront width & string size

0 &ForA height / 2)

Figure 2. Smalltalk/V 286's Class Hierarchy Browser

method list pane, depending on the choice of the user on the corresponding class or

instance pane. Choosing a particular method from the list pane causes its source code

to be displayed on the contents pane. The contents pane is not only a displaying pane,

it has also editing capabilities.

All the information concerning a class is stored in a separate file

for each class (with the extension .cls). This file is re~compiled each time anything in the

class definition is changed.

Several other facilities are also offered in the Class Hierarchy

Browvser. The most important of these are the Senders and Implementors choice. With

Senders, Smalltalk searches all of the methods in the environment for senders of a
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selected message. With Implementors, Smalltalk searches all of the classes for

implementors of the selected message.

The Class Browser is a window that is opened for a specific class

and allows the manipulation of the source code of that class.

The Class Hierarchy Browser allows navigation through the class

hierarchy that is much easier if the hierarchy is organized as a tree. From the moment

that the programmer knows which is the desired class, its definition and its source code

are easily manipulated with the provided menu choices. But when the programmer does

not know where to begin, all class definitions must be searched to find the appropriate

one. This problem becomes worse as the number of classes in the library is grown.

(3) Actor. Actor [WG90] (version 3.0) is a pure 00 language like

Smalltalk. A Browser in Actor (see Figure 3) is a highly specialized editor for viewing,

writing, changing, and saving code. It is a window with several menu choices that

allows the user to create new classes, create/modify methods/variables, and study the

classes and methods in the development environment. [WG90]

A Browser is created by clicking the mouse on the Browse menu

of the Actor Workspace (the main working window of Actor's environment), or by

sending a browse message to a class, or by clicking on the browse menu of an already

active Browser. With this way it is possible to have multiple browsers open.

A Browser has four areas. The Class Box area displays all of the

classes in the library and their objects (instances), indented according to the class
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hierarchy, or alphabetically. The Variables Box displays class and instance variables and

also inherited variables from ancestor classes for a selected class of the Class Box. The

Methods Box displays a list of the class or object (instance) methods, defined for the

particular selected class (or object) in the Class Box. By clicking a method, its source

code appears in the Editing area of the Browser. There is no way to display inherited

methods from ancestor classes. The user has to manually search the ancestor classes and

their methods to discover the code that is inherited.

Several useful editing, compiling, debugging, and other facilities

exist that allow the user to easily manipulate the source code and navigate through the

system supplied class library. Actor comes with a library of about one hundred
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predefined classes forming a standard class hierarchy. Every newly defined class must

be a descendant of an existing class. Although the system supplied class library is not

large, a lot of time is spent in manual search of the library every time a new class is

defined because:

1. The appropriate superclass has to be found.

2. All inherited methods of the ancestor classes have to be examined separately to
discover the useful ones for the new user's application.

3. All inherited class variables have to be examined to discover what is inherited and
from where.

The time to do this increases considerably as the class library grows.

(4) Sun C++. The Sun C++ version 2.1 [Sun9l] Browser is called the

Sourcebrowser. The Sourcebrowser (see Figure 4) was developed to help new

programmers in joining a programming team, especially in the development of large

programs. Using a "what you see is what you browse" paradigm, it is a tool to help

understand how applications work by locating all occurrences of desired symbols and

strings. Sourcebrowser can be used with Sun C, ANSI C, FORTRAN, Pascal, and

Modula-2, in addition to Sun C++ [Sun9l].

When issuing a query, Sourcebrowser searches in a specialized

database (that contains pertinent information about the files that are browsed) to find

matches of the symbol or the string constant that has been specified. This database is

built using the -sb option during the compilation of source files. More specifically, the
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Figure 4. Sun's C++ Sourcebrowser

-sb option causes the compiler to create a .bd (browser data) file for each source file.

Then, prior to responding to the initial query following a compilation, the Sourcebrowser

creates an index file which it uses to locate information in the .bd files. The .bd files

together with the index file, are stored in a separate subdirectory .sb (SourceBrowser).

Each time a source file is recompiled with the -sb option a new .bd file is created. The

index file is updated when issuing the first query following the compilation.
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Sourcebrowser's user interface consists of a main window with

several menu/submenu choices and some pop-up windows necessary for controling its

functionality. Matches are displayed on the Match pane section of the main window, and

the respective source code on the Source pane section.

Due to Sourcebrowser being developed in this way, it offers a more

useful editing facility than might be expected in a search tool for a library in an object-

oriented programming language. For this reason it can also be used in languages that are

not object-oriented as previously mentioned.

The latest version, SPARCworks Professional C++ 3.0, includes a

set of programming tools including a SourceBrowser and a ClassBrowser. The

functionality of the SourceBrowser is the same as in Version 2.1. ClassBrowser offers

the ability to display a class hierarchy, navigate through it, and display source code,

class data, or member functions for a particular class.

(5) Borland C++. The latest version of Borland Turbo C++ (3.0)

[Bor9l] includes an ObjectBrowser that graphically shows relationships between objects

and allows the programmer to navigate through the source code.

The ObjectBrowser is a window that can be accessed from the

Browse menu of Turbo C++, or from the source code of a program by clicking the right

mouse button on a specific class, function, or variable. The source code has to be

compiled before the ObjectBrowser is called.
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The Classes choice from the Browse menu of the ObjectBrowser

offers a horizontal tree display of all the classes of an application. This allows the

programmer to see the class hierarchy of the particular application. By choosing a

specific class from the class tree it is possible to display the source code that defines this

class and inspect its functions and data elements.

With the Functions or Variables choice from the Browse menu a

window with all the functions or all the global variables, respectively, of the program

is opened. Class member functions are listed together by class. It is possible for the

programmer to choose a function or variable and go to the source code that defines it

to inspect its declaration.

The way that predefined source code is ttreated by the

ObjectBrowser is very useful. The programmer can search in the existing class tree

hierarchy to discover the class(es) that could become superclass(es) in their application,

examining the previously defined functions and variables. However, as the number of

classes in the class library grows, this manual search becomes more and more time

consuming.

(6) Prograph. Prograph [Gun9Oa,90b,91] is a language that combines

object-oriented, pictorial, and dataflow features. At this time it is designed to run only

on Macintosh machines.

Even the latest version of Prograph (2.5) [Gun9 1] does not directly

support a browser. The term browser does not even exist in the Prograph language.
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Nevertheless, most of the functionalities of a typical browser that the previously

described languages usually support are included in Prograph through different menu

selections.

The Info choice of the Info menu displays the Info window on the

screen which offers information about different categories of elements. Among these

categories the most important for us are the Primitives, Classes, Attributes, Methods, and

Universal Methods that list the functions, classes, defined and inherited variables,

methods for each class, and global methods of the system, respectively. In order to find

a particular primitive, class, variable, or method, the user has to know in advance its

existence in the system's library, and scroll through the respective list of the Info

window. Clicking the mouse on a specific primitive, class, variable, or method causes

its comments to appear on the right pane of the Info window.

The submenus of Windows menu open respective windows with

useful information about the class structure and behavior. With the submenu Class

choice, a pictorial tree representation of the class hierarchy is displayed on the screen.

Clicking the mouse on the icon that represents a specific class gives the user the ability

to display the variables or the methods of the class. Again, every search is manual,

requiring users to have knowledge about the structure of the class library in order to

facilitate the building of their application.
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C. THE COMPUTER AIDED PROTOTYPING SYSTEM (CAPS)

1. General Overview

Building large real-time systems and systems which have hard real-time

constraints using the traditional classical project life cycle approach does not allow the

designer to know if the system can be built with the necessary timing and control

constraints until much time and effort have been spent on the implementation.

In contrast to the classical project life cycle, the prototyping method extracts,

presents, and refines a user's needs by building a working model of the ultimate system

quickly and in context [Boa84]. This model is called a prototype, and is only used to

model the system's requirements.

The Computer Aided Prototyping System CAPS [LK88, Luqi91], an ongoing

project in the Naval Postgraduate School Computer Science Department, is a software

development environment that provides a means to rapidly construct an executable

prototype representing a large real-time software system with hard real-time constraints

[Cum90].

The major subsystems of CAPS (see Figure 5) are as follows:

1. The User Interface, that has graphics capabilities and allows a graphical
representation of the prototype(s).

2. The Execution Support System, that gives the designer the ability to execute the
constructed prototype(s).

3. The Software database, that provides a repository of reusable Ada components
(Software base) and an engineering database management system with an embedded
design management system.
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Figure 5. CAPS Structure [Ste9l]

CAPS prototypes a system through translation of the high level specification

language, Prototyping System Description Language (PSDL) [LBY88], into Ada code

along with the incorporation of atomic Ada reusable components [LBY88]. PSDL is

used to specify the interface and functionality of the atomic components in order to

make automated searches of the reusable component library feasible.

In order to generate a prototype the designer uses the graphic editor to create

a graphic representation of the proposed system. From the graphic representation a part

of an executable description of the proposed system is generated in PSDL as shown in

Figure 6, using a rewrite subsystem. PSDL descriptions are used to search the software
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base to find reusable components that match the specifications. If only one component

meeting the specifications is found, it is retrieved; if more than one are found, the

designer has to choose one; otherwise the specification has to be decomposed into

simpler specifications applying the entire process to those specifications, or the user has

to implement the component manually. A transformation schema is then used to

transform the PSDL specifications into Ada code that controls and connects the retrieved

reusable components. The prototype is then compiled and executed and the designer

evaluates its behavior to see if the requirements are met or if the entire process needs

to be repeated. In this way a system that will finally meet the users requirements will

be produced. [Ste9l]

2. The Prototype System Description Language

PSDL forms the basis of CAPS, allowing the system designer to create

executable prototypes of the prospective system. It is built using the concepts of data

abstraction, function abstraction, and control abstraction, and is capable of supporting

hierarchically structured prototypes that preserve their modularity. [LBY88]

The grammar of PSDL (included in Appendix A) allows a prototype to be

either an abstract data type (ADT) or an operator. A software module is modeled as a

network of operators that communicate via data streams [Ste91]. Each data stream

carries values of a fixed abstract data type. Formally, the computational model on which

PSDL is based on is an augmented graph:
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G=(V,E,T(v),C(v))

where G is the graph that represents the prototype, V is the set of vertices, E is the set

of edges, T(v) is the maximum execution time for each vertex v, and C(v) is the set of

control constraints for each vertex v. [LBY88]

The prototypes constructed in PSDL can be executed in CAPS if they are

supported by software components in an underlying programming language. The

software components are stored in the CAPS Software base. The current version of

CAPS uses Ada as the underlying programming language, but plans are for future

versions to support more languages. [LBY88]

3. Storage/Retrieval of Reusable Components In/From CAPS

As previously discussed, one of CAPS tasks is to provide the designer a tool

for rapid prototyping. In order to achieve this, CAPS is designed to take full advantage

of reusable components stored in a Software base, minimizing the search time of the

library by automating the search.

The Software base uses the ONTOS Object-Oriented Database Management

System (OODBMS) (Onto90]. ONTOS supports a multi-user networked environment

and is not constrained by a particular data model such as relational or hierarchical

systems. It was developed to be able to store components, to browse them, search them

by query, and integrate them after locating so that the execution support system can

produce an executable prototype. [McDo9l ]
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In order to be able to automate the search mechanism of the software base,

the PSDL specification of every software component to be stored in the Software base

passes through a syntactic and then a semantic normalization. Syntactic normalization

involves format changes and statistical calculations that standardize the component's

interface characteristics [MacDo91]; semantic normalization requires specification

expansion and transformations and standardizes the component's behavior. The produced

normalized specification is stored with each component in the software base [Ste91].

a. Syntactic Matching

The purpose of syntactic matching is to find those software components

stored in the Software base that have PSDL specifications that syntactically match the

PSDL specification of the posed query. For this reason the interface characteristics of

each component are exploited and components that do not meet the specification of the

query are eliminated from further consideration.

The syntactic matching rules (described in [MacDo9l]) are first used to

derive a set of module attributes that will be used to eliminate components with

unsuitable interfaces. Examples of these module attributes include:

1. If the number of input parameters in S(q) is not equal to the number of input
parameters in S(m), then S(m) can be eliminated from the search.'

2. If the number of output parameters in S(q) is greater than the number of output
parameters in S(m), then S(m) can be eliminated from the search.

3S(q) is the PSDL interface specification for a query module q, and S(m) is the PSDL
interface specification for a Software base module m.
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The rest of the components are checked one by one against the syntactic rules

until the final candidates will be selected. [MacDo9l]

It is very important to realize that this process involves only the PSDL

specification; neither the implementation specification nor the implementation code of

the component is used.

b. Semantic Matching - OBJ3

An optional item for each PSDL component is its formal description,

called the axioms. An algebraic specification language known as OBJ3 [GW88] is used

for the axioms of each component that express the semantics of the PSDL specification

of the component. Before a component is stored in the Software base its OBJ3

specification is normalized. The specification of each query is also normalized and a

technique called query by consistency is used to exploit the OBJ3 formal semantics in

order to achieve semantic matches. [Ste9l]

Semantic matching is not yet integrated into CAPS Software base, but is

proposed to be used on those components that have first achieved a syntactic match in

order to produce a final list of candidate components for evaluation by the designer.

Writing formal specifications in OBJ3 may be a difficult and time consuming procedure,

but it ensures high degree of precision [Ste9 1].

c. Alternative Methods

This automated storage and retrieval process may slow down the execution

of the system, but it ensures precision, maximum degree of reusability, and also avoids
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the time consuming manual search of the library, especially as the number of the stored

components grows.

Alternative ways to search the software base for candidate components are

with a keyword query that lists all the components that possess one or more of the query

keywords, and named look up that browses all components of a particular library

alphabetically [MacDo91].

All of these functionalities, combined with addition, deletion, and update

operations, are provided by the CAPS Software Base graphical user interface, a

windowing system that integrates the communication of the Software base with the

designer.
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III. THE PROBLEM STATEMENT

A. CLASS DEFINITIONS IN AN 00 ENVIRONMENT

Associated with each class in every 00 environment is its definition. By class

definition, we mean all of the necessary information about a class that the potential user

searching the class library needs to be able to understand what this class includes, and

how instances of the class are manipulated.

The information provided for each class definition should be minimized so that the

performance of the system is not degraded as the number of classes grows. At the same

time, however, it must be detailed enough to ensure that the user knows all that he needs

to know about the class.

As discussed in Chapter II, there is no universally accepted definition of OOP.

However, the language independent class definition, as shown in Figure 7, does

encompass the class definition of every OOPL that we have surveyed. That is, actual

Class <class_name>
Superclasses : <superclass_l>, <superclass_2>, ...
Class Variables : <classyar-l>, <class-var..2>,
Instance Variables : <instvar_l>, <instvar_2>, ...
Methods : <method_name,_l>, <methodramrne_2>,

Figure 7. Language Independent Class Definition [Nels9Oa]
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class definitions from any OOPL are easily converted to and from this language-

independent form. Therefore, this is the form of class definition that we will work from

in this thesis.

B. THE BROWSER APPROACH

The promise of object-orientation is to create reliable, sharable, easily reusable,

extensible, and maintainable modules of code (i.e., classes). Existing 00 systems

support these fundamental principles by implementing some form of browser. A browser

is usually a window-based software tool that allows the user to manipulate a predefined

class library facilitating class definition and code search and retrieval.

We now summarize the advantages and disadvantages of the browser approach as

a result of the examination of browsers as contained in Chapter II.

1. Advantages

The browser approach is based on the idea of programming by looking

around [WEK90]. For that reason browsers are developed in order to facilitate a manual

search, allowing programmers to search previously defined classes for those that are

appropriate to their needs.

As window-based tools they offer the capability to display a variety of

information regarding a class library such as the class hierarchy, the class definitions,

the superclasses or subclasses of a specific class, locally defined variables and methods,

inherited variables and methods, and underlying code. How all this information is
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organized and provided to the potential user is a matter of user interface and is the only

real difference among the browsers we have surveyed.

For a small number of classes the browser approach is a very powerful tool

that helps programmers to develop their own applications by building upon existing

code, one of the primary benefits of the 00 approach.

2. Disadvantages

The main common characteristic and also the largest disadvantage of

browsers is that they obligate potential users of the class library to manually examine

the class definition of each class in the library in order to find candidate class(es) for

their application. Even if the class library is not so large (some hundreds of classes) and

even if the system comes with manuals for the predefined classes, a large amount of

time is spent until the user becomes familiar with this set of classes. Increasing the

classes of the library (say to the thousands) considerably increases the search time,

gradually eliminating the reusability benefits of object-orientation.

3. Capitalizing on the Advantages

In order for the browser approach in a large class library to be useful it

should be integrated with an automated class definition storage and retrieval mechanism.

This mechanism should standardize class definitions, store them in a class definition

database, and each time a class is needed this mechanism should perform an efficient

automated search of the class database to detect the appropriate class(es). That is, an

automated system should search the available set of classes, providing a relatively small
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number of classes that can then be searched manually using a browser. We believe that

software development time under this approach will be considerably reduced and that

the reusability benefit of object-orientation will then be fully realized.

C. USING CAPS TO STORE AND RETRIEVE CLASS DEFINITIONS

CAPS, as described in Chapter II, uses an efficient automated storage and retrieval

mechanism (which is basically based on syntactic and semantic matching of PSDL

specifications) to enhance the reusability of predeveloped software components. This

mechanism ensures precision, maximum degree of reusability and avoids the time

consuming manual search of the software library.

Using the CAPS Software base as a class definition database would benefit the

user with its automated storage and retrieval mechanisms, and therefore would be a great

improvement over browsers.

1. PSDL Specifications and Class Definitions

The idea to use CAPS's storage and retrieval mechanism to store and retrieve

class definitions arises from the realization that a class definition is simply a software

component. Further consideration of this observation leads to the functional commonality

of a software component's PSDL specification and a class definition. A software

component's PSDL specification consists of the specification of the component's

underlying code and is also the basis upon which storage and automated retrieval is

achieved. A class definition consists of the specification of the class' underlying code
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and is also the basis upon which manual storage and retrieval is achieved in most 00

systems (via browsers).

In order to be able to store a class definition in the CAPS Software base, it

must first be transformed into a PSDL specification. Therefore transformation rules need

to be developed that will transform a class definition into a PSDL specification. These

rules must create proper PSDL grammar and also preserve the fundamental concepts of

the class definition.

Each PSDL specification in the CAPS Software base is accompanied by an

implementation specification and an implementation body file that include the Ada

specification and body of the component, respectively. Since we will not be working

with Ada, the use of these files will need to be considered in our solution.

2. Syntactic Normalization/Matching

A PSDL class definition would be treated by the CAPS Software base

automated storage and retrieval mechanisms as though it were a regular component's

PSDL specification (i.e., Ada specification and body files available). A normalized

version of the PSDL specification is automatically created and stored with each class

definition. Each time the user needs to know if a class with a particular structure and

behavior exists in the Software base, the prospective class definition must be

transformed into a PSDL specification in order to use the automated retrieval mechanism

for potential syntactic matches.
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3. Semantic Normalization/Matching

Semantic normalization and matching, as described in Chapter H, requires the

semantics of each component to be written in OBJ3. This is a difficult and time

consuming process that is not yet integrated in the Software base. Therefore, it will not

be considerd in this thesis.
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IV. THE CLASS STORAGE AND RETRIEVAL SYSTEM (CSRS)

PSDL, as previously described, was originally designed for describing prototypes

of hard real time software systems. It forms the basis of CAPS, and in particular of the

storage and retrieval mechanisms of the Software base. Therefore, whatever extensions

to the usefulness of the language in order for 00 concepts to be supported should not

modify its grammar constructs as this would detract from the current use of the system.

Following are the necessary assumptions in order for the basic 00 concepts to be

represented in PSDL. These assumptions are derived from a subset of the PSDL

grammar rules that is included in Appendix B.

A. CLASS DEFINITION TRANSFORMATION INTO PSDL COMPONENT

There are two basic bulding blocks in the PSDL grammar: abstract data types

(ADT) and operators (see Figure 8).

An ADT is both a data type and a set of operators valid for that type. Because an

ADT encapsulates both its structure and operators from the environment, it is a close

relation to a class definition. The only thing missing from an ADT is the concept of

inheritance. Therefore during the transformation of a class definition into a PSDL

component we will represent a class as an ADT, addressing the problem of inheritance

later.

A data type (see Figure 9) is described by the reserved word "type" and the

identification (id) of the type (in our case this corresponds to the class name), followed
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Figure 8. PSDL Component

by the type specification (typeWspec). The type specification requires the reserved word

"specification" to be written after the identification of the type (class name) followed by

one or more from a set of optional items which will be discussed later.

"d a ta jy p e ty e Sc[ty p e -d ec l]

"specification" {opemtor" id

Id -t" _spec)

tYPe-SpeM[ geaic"
""cr typedecl]
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Figure 9. PSDL Data Type

39



Returning to the bicycle example of Chapter II, the class definition of the class

Bicycle written in PSDL would begin as follows:

TYPE Bicycle SPECIFICATION

The class definition of the class Vehicle that includes all kind of existing vehicles

(and could be a superclass of the class Bicycle) would be:

TYPE Vehicle SPECIFICATION

1. Variables

Among the provided set of additional optional items for the type

specification is the declaration of the variables making up that type, the type.decl. The

grammar rules for this declaration (see Figure 10) require each variable's name

(type name) to be specified, and also provide for more than one type-name to be

declared.

a. Class Variables

PSDL does not include grammar rules to support class variables. Class

variables could be included in the same way that instance variables are, but the CSRS

would not differentiate between them. Inclusion of class variables is left as a suggestion

for future research (see Chapter V).

b. Instance Variables

In our transformation a type declaration corresponds to an instance

variable declaration. Each time an instance variable is declared it has to be followed by

its type, called the typename. One or more instance variables can be included in the
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Figure 10. PSDL Type Declaration

specification of each class definition.

With the addition of instance variables the PSDL class definitions of our

previous example would now be:

TYPE Vehicle SPECIFICATION TYPE Bicycle SPECIFICATION

serial-number : integer serial-number : integer

2. Methods

Another optional item for the type specification that may also appear zero or

more times is the declaration of an operator. An operator is declared by the reserved

word "operator" followed by its identification and then by the reserved word
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"specification". The specification of an operator (see Figure 11) consists of its interface

and its functionality, describing it through a set of optional attributes by various reserved

words ("input", "output", "states", etc.).

"geneai type-dec

opcratorspec "-npW typedecl

"ospecification interface -"ouput type-.dadl

attnibute sttetp-a
finterlace) "inidally"

[reqmts-;rac] initial-exPre-mlmist

[functionality] "exceptions id~list

S"maxdmum
executo time"time

"Ivnd"

Figure 11. PSDL Operator Specification

In our transformation the declaration of an operator will correspond to the

declaration of a method. The input and output parameters (if any) of each method will

be described by the type declaration following the reserved words "input" and "output"

of the attribute optional items. Each input or output parameter consists of its name and

its type. The optional items [functionality] of operator__spec, [reqmts-trace] of interface,

and "generic", "states", "exceptions", and "maximum execution time" of attribute are not

necessary for our transformation, and are therefore not included in the grammar of

Appendix B.
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Continuing with our bicycle example the PSDL class definition of the Vehicle

class, including its methods, would now be:

TYPE Vehicle SPECIFICATION

serial_number : integer

OPERATOR geLserial number SPECIFICATION
OUTPUT

number : integer
END

The PSDL class definition of the Bicycle class would be:

TYPE Bicycle SPECIFICATION

serialnumber : integer

OPERATOR getLserialnumber SPECIFICATION
OUTPUT

number : integer
END

3. Inheritance

According to its specification, PSDL supports hierarchically structured

prototypes [LBY88]. For this reason the PSDL grammar provides constructs for a part-

of hierarchy. It is not possible with the current provided facilities of the language to

have a kind-of hierarchy that would allow inheritance among our class definitions. We

have identified two solutions to this problem. The first, called 'automatic' inheritance,

assumes that the CSRS will be able to construct a class definition based upon its

ancestor classes. The second, called 'manual' inheritance requires the designer to

manually enter all of the inherited variables and methods.

43



a. 'Automatic' Inheritance

This approach should completely eliminate the problem of inheritance

if CSRS were to be further integrated into a more independent system. The actual

implementation, however, is left as a suggestion for future research, as discussed in

Chapter V.

The optional item [functionality] of the type spec allows for a

component to be described by a set of optional keywords (see Figure 12) that are

specified after the reserved word "keywords". In our proposed solution, the id list that

follows the reserved word "keywords" will be used to specify the superclass(es) (if any)

of the class. An automated system could then be developed that would scan the class

functio [keywords [inforialde [for desc

keywordbs informal desc
"keywords" .-

Wd ist IV" tI x of &

Figure 12. PSDL Component Fuctionality
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definitions of the specified superclass(es) in this idlist to see if more superclasses are

specified in their "keywords" idlist, etc. In this way the system would "walk up" the

class hierarchy, and it would therefore be possible to automatically inherit variables and

methods from a class' ancestors.1

The final form of the PSDL class definitions of the bicycle example

using 'automatic' inheritance would be:

TYPE Vehicle SPECIFICATION

serialnumber : integer

OPERATOR get&serial-number SPECIFICATION
OUTPUT

number : integer
END

KEYWORDS
vehicle

DESCRIPTION
( A class that includes all vehicles )

END

TYPE Bicycle SPECIFICATION

KEYWORDS
vehicle, bicycle

DESCRIPTION
[ Subclass of vehicle }

END

The item [formal-description] consists of the "axioms" of the the component that, as
described in Chapter II, would have to be be written in OBJ3. Therefore, they are not included
in this discussion or in Appendix B.
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b. 'Manual' Inheritance

In this approach it is the programmer that has to do the work of the

automated system. That is,the superclasses specified in the [keywords] of a specific class

must be manually searched for inherited variables and methods which are then included

in the class specification. Continuing with our example, the PSDL class definitions using

'manual' inheritance would be:

TYPE Vehicle SPECIFICATION

serialnumber : integer

OPERATOR geLserialnumber SPECIFICATION
OUTPUT

number : integer
END

KEYWORDS
vehicle

DESCRIPTION
{ A class that includes all vehicles }

END

TYPE Bicycle SPECIFICATION

serialnumber : integer

OPERATOR get_serial_number SPECIFICATION
OUTPUT

number : integer
END

KEYWORDS
vehicle, bicycle
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DESCRIEMON
( Subclass of vehicle)

END

B. IMPLEMENTATION SPECIFICATION AND BODY

In order for the designer to be able to store and execute the developed prototypes

in CAPS the PSDL specification files must be accompanied by actual software

components. That is, an implementation specification file and an implementation body

file. The current version of CAPS is restricted to the use of Ada for these components,

but plans are for future versions to provide the ability to choose from other

programming languages.

At this time, however, we only want to use CAPS to store and retrieve class

definitions. We are not interested in a system that will also provide mechanisms to

execute these classes. Therefore, we will not be concerned with supporting CSRS's

classes with actual implementation specification and body files (especially as Ada does

not include inheritance).

For these reasons the item typejmpl of the data type (see Figure 9) is not

included in the grammar of Appendix B. The implementation specification and

implementation body files will be created (as they are required by the current system),

but they will be empty. Therefore continuing with our bicycle example the following

empty files would be created:

* vehicle.imp.spec

0 vehicle.body.a
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"* bicycle.imp.spec

"* bicycle.body.a

If 00 languages (such as C++, Smalltalk, etc.) are supported by CAPS in the

future, each PSDL class definition could be accompanied by its actual code, thereby

achieving a more integrated system.

C. STORAGE/RETRIEVAL OF CLASS DEFINITIONS IN/FROM CSRS

All of the storage and retrieval facilities provided by the CAPS Software base can

be accessed by the Software base graphical user interface or by the command line

interface [MacDo9l]. The command line interface requires the designer to manually

enter several commands in order to communicate with the system. We believe, however,

that this approach would not be efficient for CSRS in terms of overall performance and

simplicity; therefore we will explain the storage and retrieval of PSDL class definitions

only through the graphical user interface which is a window based environment

consisted of a main window with the File, Browse, and Query menu choices.

1. Storage

With the Add Component submenu choice of the File menu the Input File

Selection pop-up window appears on the screen (see Figure 13) prompting for the PSDL

specification, implementation specification, and implementation body files to be

specified.2

2 The Software base does not provide an editing facility; therefore any available editor

could be used to create these three files.
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Figure 13. Input File Selection Window

After selecting the appropriate files followed by the OK button, storage of

the PSDL class definition is achieved according to the automated mechanisms described

in Chapter III. Continuing with our bicycle example the vehicle.spec, vehicle.imp.spec,

and vehicle.body.a files correspond to the vehicle class definition. Similarly, the

bicycle.spec, bicycle.imp.spec, and bicycle.body.a files correspond to the bicycle class

definiton. Therefore they would be selected as triplets of files into the Input File

Selector of the Software base.

2. Retrieval

a. By Query

Retrieval of stored classes by Query is the primary retrieval method of

the CAPS Software base because it benefits the designer with an automated search
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method of the stored classes. Selecting the Query menu choice of the Software base

main window, the Query File Selection window (see Figure 14) appears on the screen

prompting the user for a PSDL specification file based upon which the Software base

is searched for syntactic matches. The matches (if any) appear on the Component

Selection window (see Figure 15). Selecting one of the classes that matches causes its

PSDL specification to appear on a View (see Figure 16), allowing the designer to

examine the PSDL class definition and manipulate it in several usefull ways (such as

print, save, and delete).

Query File Selection
PSDL Pile

•et vehicle €J

[bicycle.body.a

bicycle.imp. s.mc
F igcrcle. Q yec

r50

velhicie.w v. Spec
vehicle. spec

work/tlliapalthesislexamplel

S Cancel OK

Figure 14. Query File Selection Window
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Figure 15. Component Selection Window

b. Browse

The Browse option is provided as an alternative method to search the

Software base. It does not include a browsing capability like those of the examined

browsers in Chapter II, but it offers adequate help to the designer that desires to

manually search the Sotware base. It provides three submenu choices: search By Type,

By Keyword, or By Operator.

(1) By Type. This selection causes the Component Selection window

(see Figure 17) to appear on the screen again, but now it contains all of the stored

Software base types (classes) in alphabetical order. Selecting a class causes its PSDL

specification to appear on a view as previously described.
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File Find View Spec
E vehicle SECIFICATION

serialnumber : integer

OPEUATOl getserialnumber SPECIFICATION4

number : integer

XEYWO1WS
vehicle

DESCRIPTION
I a class that includes all vehicles )

Figure 16. A Component's Specification View

(2) By Keyword. This selection causes the Keyword Selection Menu

window that contains all keywords of all the stored Software base classes to appear on

the screen (see Figure 18). Selecting a keyword causes the PSDL specification of the

class(es) that include that keyword to appear in a View. In CSRS we include each

class's superclasses in its keyword list; therefore, selecting a keyword that corresponds
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Figure 17. Component Selection Window for the Type Selection

to a class with a subclass will cause the PSDL specification of both classes to appear

on the screen.

(3) By Operator. This selection causes a Component Selection

Window that contains all of the stored Software base operators to appear on the screen.

In CSRS a component (class) is implemented only as a data.type and never as an

operator, so we do not use this option.

D. AN EXAMPLE APPLICATION: STORAGE/RETRIEVAL OF COMPUTER

ARCHITECTURE SIMULATION CLASSES IN/FROM CSRS

In order to examine the feasibilty of CSRS we will now apply our solution to a

previously developed set of 00 classes. The Tanenbaum [Tan9O] microarchitecture

simulation classes [NFZ92, Font9l] (see Appendices C,D) have been chosen for this

purpose.
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Figure 18. Keyword Selection Menu Window

1. Transforming Classes into PSDL Specifications

From the Tanenbaum microarchitecture simulation classes, two sets of PSDL

specifications have been developed. The first (see Appendix E) is derived by applying

the above described method of 'automatic' inheritance, and the second (see Appendix

F) is derived applying the 'manual' inheritance method.
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The Tanenbaum classes were developed using Prograph as the implementation

languge. We have attempted to transform them into PSDL specifications in such a way

that Prograph's language dependent features are not lost. We now discuss this

transformation.

All types of instance variables and input/output parameters of the methods

that correspond to input/output data to the various components are of the general type

string of.bits, which is our adaptation of the actual Prograph code.

All input/output parameters of the developed methods that correspond to

control signals are of type boolean if they are binary operations, or of type bit if they

correspond to a one bit signal.

The methods logical and, logical-or, logical-not, and math of the class Alu

produce as outputs the r, and z signals. However the n and z signals are provided by the

positive?, and zero? methods of this class. For this reason it is assumed that whenever

one of the three above methods is called, the underlying code of the method would call

the methods positive? and zero? to provide the necessary outputs. This approach is

similar to the concept of public and private methods that some OOP languages provide.

The methods logical-and, logicalor, logical-not, and math are public methods and

the methods positive? and zero? are the private methods of the class alu.

The Alu-shifter class inherits all methods of the Alu class without any

modifications. It then specifies three more methods for the necessary functionality of a

shifter.
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The Control-store, Memorybank, and Register-bank classes inherit the

methods of Storage_bank class and modify the type of the inherited instance variable

contents from array oLstorage-locations to array-oLmicroinstructions, and from

array ofmemoryjlocations to array-of-registers, respectivelly.

The Memoryjlocation and Register classes inherit all code from the

Storagejlocation class without any additions or modifications.

The Mir class modifies the type of the inherited instance variable contents

from string-of bits to microinstruction in order to be able to hold an entire

microinstruction as it has been defined by the superclass.

The Mar, Mbr, and Mpc classes inherit all the code of Register class

without any modifications. However, additional methods are specified for the Mpc class.

2. Storage/Retrieval of Classes in/from CSRS

The storage and retrieval of computer architecture simulation class definitions

in/from the Software base is achieved according to the mechanisms described in the

previous section.

Every PSDL specification file is accompagnied by an empty implememtation

specification file and an empty implementation body file (see Figure 19) before being

stored in the Software base.

When the user needs to automatically search the Software base for a

particular class, a PSDL specification of that class is written for use with the previously

described Query mechanism for possible matches. As an example, Figure 20 shows the
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Figure 19. Storing a Class

classes that match the following PSDL specification:

TYPE Test mux SPECIFICATION

OPERATOR test-multiplexer SPECIFICATION
INPUT

inc string
mir" string
sign signal

OUTPUT
out : string

END

KEYWORDS
test_mux

DESCRIPTION
f test class for the mux class }

END

When the user needs to manually search the Software base, either the

Keyword Selection Menu window or the Component Selection window may be used to
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Figure 20. Matches for the Test-mux Class

provide information about the keywords of each class or offer all of the stored classes,

respectivelly.

E. ANOMALIES

After the development of the PSDL class definitions for the Tanenbaum

microarchitecture simulation classes and their storage in CSRS, the following anomalies

have been encountered:

1. The Update Component submenu of the File menu choice of the Software base
main window does not work. If the designer needs to modify a PSDL class definition
it must be deleted from the Software base and then the modified definition is added
using the Add Component submenu.

2. Selecting a keyword (class) in the Keyword Selection Menu that belongs to more
than one class causes the system to respond with an error message. The same error
occurs when selecting two different keywords that belong to two different classes.
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Because CAPS is an on going research project these anomalies are not considered

to be serious at this time as they should be eliminated in some future version of the

system.
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V. SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE

RESEARCH

A. SUMMARY

Chapter I of this thesis introduced the increasing need for reusable software,

object-orientation as a new approach to serve this need, and the Computer Aided

Prototyping System as a system that could be used in the storage and retrieval of class

definitions in order to enhance their reusability.

In Chapter II the fundamental principles of object-oriented programming were

described independently of any specific implementation language, and then reusability

in both conventional software systems and object-oriented environments was examined.

Because a browser is the only actual tool that most 00 environments provide to enhance

the reusability of class definitions, we also examined the browsers of several of the more

common OOP systems. Finally an extensive description of the Computer Aided

Prototyping System, and especially of its automated storage and retrieval mechanism for

the software components, was given.

In Chapter III we concluded that the main disadvantage of the browser approach

is that the time required to manually search the class library increases considerably as

the number of classes in the library increases. This disadvantage has stimulated our

research effort towards the direction of CAPS because it provides an automated search
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mechanism for the library of the stored components that in our case could be used to

automatically search previously stored class definitions.

Because CAPS requires the specification of the components to be written in PSDL

before stored in the Software base, transformation rules have been developed as

explained in Chapter IV, creating the Class Storage and Retrieval System. These rules

transform a class definition into a PSDL specification creating proper PSDL grammar

while preserving the fundamental concepts of the class definition. The transformed class

definition can now be stored in a standardized form in the Software base, benefiting

from its syntactic matching rules whenever a query for a particular class is posed to it.

Finally, an example application demonstrating the entire process of transforming a set

of classes into PSDL specifications in order to store them in the Software base and then

using the automated search mechanism whenever the designer needs to know if a

particular class exists in the class library.

B. CONCLUSIONS

The browser approach as implemented in most 00 systems today fails to meet

software development needs because it obligates the user to manually search a class

library for candidate classes. This increases software development time, especially when

the number of classes in the library increases beyond a relatively small number.

The Class Storage and Retrieval System enhances the reusability of class

definitions and reduces software development time giving the designer a powerful tool

that automatically selects the candidate classes from a class library (i.e., those classes
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that have a functional description similar to the one that is needed). The benefit of this

approach becomes even more apparent as the number of classes in the class library

increases because more classes are eliminated from the manual search, thus reducing the

search component of the overall software development cost. Therefore, we conclude that

the use of CSRS greatly enhances the promise of reusability in 00 environments.

Transforming a class definition into a PSDL specification using the developed

transformation rules is a straight forward process that adds very little overhead and does

not pose any difficulties even though PSDL was developed for completely different

applications.

C. RECOMMENDATIONS FOR FUTURE RESEARCH

The Class Storage and Retrieval System serves to store and automatically retrieve

class definitions. Suggested improvements to the system include the following:

Make the system capable of including class variables' representation in the PSDL

class definition. This could be achieved by modifying the PSDL grammar rules.

The development of a system that would automatically scan the class definitions

of the specified superclass(es) in the idlist of the keywords of a PSDL class definition

to see if more superclasses are specified in their "keywords" idjist (i.e., implement the

'automatic' inheritance method introduced in Chapter IV). In this way the system would

"walk up" the class hierarchy, and it would therefore be possible to automatically inherit

variables and methods from a class' ancestors.
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The development of a browser with the standard manual browsing capabilities

described in Chapter II that would browse the set of classes that consist a match for a

specific Query of the Software base. This would allow the CSRS to provide a set of

candidate classes which could then be manually searched using a conventional browser

approach.

Finally, if 00 languages (such as C++, Smalltalk, etc.) are supported by CAPS

in the future, then actual code could be included in the implementation specification and

body files. This would extend the usefulness of CSRS to support execution of the

designed classes, thus achieving a complete system.
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APPENDIX A

This Appendix contains the PSDL grammar [LBY88].

Optional items are enclosed in [ square brackets ]. Items which may appear zero or
more times appear in ( braces ). Terminal symbols appear in "double quotes ".

Groupings appear in ( parentheses).

psdl
= (component)

component
- data ype
I operator

data-type
= "type" id type-spec typeimpl

type-spec
= "specification" ["generic" type.decl] [typedecl]

("operator" id operator._spec)
[functionality] "end"

operator
= "operator" id operator...spec operatorimpi

operator-spec
= "specification" (interface) [functionality] "end"

interface
= attribute [reqmts_trace]

attribute
"= "generic" type-decl
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"I "input" type,_decl
"I "output" type_decl
"I "states" type_decl "initially" initial expression_list
"I "exceptions" idlist
"I "maximum execution time" time

type-decl
= idlist ":" type-name "," idjist ":" type-name)

type-name
= id
I id "[" typedecl "I"

idlist
= id ("," id)

reqmts..trace
"= "required by" idlist

functionality
= [keywords] [informal-desc] [formaldesc]

keywords
= "keywords" idlist

informal desc
= "description" "?" text "}"

formaldesc
= ofaxioms" "T" text "}"

type impl
= "implementation ada" id "end"
I "implementation" type-name {"operator" id operator impl) "end"

operatorjimpl
= "implementation ada" id "end"
I "implementation" psdlimpl "end"

psdl impl
= dataflow diagram [streams] [timers] [control-constraints]

[informaldesc]

65



data flowdiagram

"= "graph" (vertex ) (edge)

vertexe "vertex" opid [":" time]

-- time is the maximum execution time

edge
= "edge" id [":" time] opid "->" op-id

-- time is the latency

op-id
= id ["(" [id-list] IT' [id-list] ")"I

streams
= "data stream" type-decl

timers
= "timer" id list

control-constraints
= "control constraints" constraint (constraint)

constraint
"operator" opid

["triggered" [trigger] ["if" expression] [reqmts trace]]
["period" time [reqmtsjtrace]]
["finish within" time [reqmts,.trace]]
["minimum calling period" time [reqmtsjtrace]]
["maximum response time" time [reqmtsjtracell]
(constrainLoptions)

constraintoptions
= "output" idjlist "if' expression [reqmts..trace]
I "exception" id ["if' expression] [reqmts.trace]
I timer op id ["if' expression] [reqmts trace]

trigger
= "by all" id.list

I "by some" idjlist

timer op
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"= "reset timer"
I "start timer"
I "stop timer"

initial_expression-list
= initial expression {"," initial-expression)

initiaLexpression
= "1stule"

"I "false"
I integerliteral
I realjliteral
I string-literal
I id
I typename "." id ["(" initial_expressionjlist ")"]
"I "(" initial_expression ")"
initial-expression binary-op initial-expression

I unary-op initial-expression

binaryop
= "and" I "or" I "xor"
I 1<1 I ">" I "-=" I 1>=1 I "<--" I "I-"
I "+I1" I "-" I "&" I "*" I "IT I "rood" I "rem" I "**"

unary-op" "not" I "abs" I "-" I"+

time
- integerjiteral unit

unit
"microsec"

"Im"s"
I "sec"
"I "min"
"I "hours"

expression_list
= expression (""expression)

expression S"true"
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"I "false"
I integerjiteral
time
realliteral

I string-literal
I id
I type-name "." id ["(" expression-list ")"]
"I "(" expression ")"
I initial-expression binary-op initiaLexpression
I unary op initial-expression

id
= letter (alpha_numeric)

realliteral
= integerHliteral "." integer..literal

integer-literal
= digit (digit)

string-literal
= ("" (char) """

char
= any printable character except "}"

digit
= "O .. 9"

letter

= "a.. z
I"1A .. TO

alpha.numberic
= letter
I digit

text
= (char)
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APPENDIX B

This Appendix contains the subset of the PSDL grammar that is used by our

system.

Optional items are enclosed in [ square brackets ]. Items which may appear zero or
more times appear in ( braces 1. Terminal symbols appear in " double quotes ".

Groupings appear in ( parentheses).

psdl
= (component)

component
= datatype
I operator

data-type
"= "type" id type-spec typejimpl

type-spec
"specification" ["generic" typeOdecl] [type.decl]
("operator" id operator spec)
[functionality] "end"

operator spec
= "specification" (interface) [functionality] "end"

interface
= attribute [reqmts.trace]

attribute
= "generic" typedecl
I "input" type decl
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I "output" typedecl
I "states" typedecl "initially" initiaLexpressionlist
I "exceptions" idlist
I "maximum execution time" time

type-decl
= id-list ":" typename ("," id.list ":" type-_nae)

type-name
= id
I id "[" typeldecl ""

idlist
= id 1"," id)

functionality
= [keywords] [informal desc] [formaldesc]

keywords
= "keywords" id-list

informaldesc
"= "description" "(" text "}"
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APPENDIX C

This Appendix contains the Tanenbaum microarchitecture simulation classes

[NFZ92, Font9l].

Class : Alu
Superclasses : none
Variables: none
Methods: and, or, math, zero?, positive?

Class : Alu shifter
Superclasses : Alu
Variables : none
Methods: shiftleft, shift-right, noshift

Class : Control store
Superclasses : Storagebank
Variables : contents : array of_microinstructions
Methods : none

Class : Mar
Superclasses : Register
Variables: none
Methods: mar

Class: Mbr
Superclasses : Register
Variables : none
Methods: mbr

Class : Memory~bank
Superclasses : Storage-bank
Variables : contents : array-of-memoryjocations
Methods: none
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Class : Memoryjlocation
Superclasses : storagejocation
Variables : none
Methods: none

Class : Microsequencer
Superclasses : none
Variables : none
Methods : generatesignal

Class : Microinstruction
Superclasses : none
Variables : instruction : string,.ofLbits
Methods : none

Class : Mir
Superclasses : Register
Variables : contents : microinstruction
Methods: decode

Class : Mpc
Superclasses : Register
Variables: none
Methods: set, increment, jump

Class: Mux
Superclasses : none
Variables : none
Methods: mux

Class : Register
Superclasses : Storagejocation
Variables : none
Methods: none

Class : Register-bank
Superclasses : Storage-bank
Variables : contents : array-ofjregisters
Methods: none
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Class : Storagebank
Superclasses : none
Variables: arrayof_storage jocations
Methods: read, write, initialize, load

Class : Storagejlocation
Superclasses : none
Variables : contents : string-ofpbits
Methods: initialize, read, write, binary-read, binary-write
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APPENDIX D

This Appendix presents the class hierarchy of the Tanenbaum microarchitecture

simulation (adapted from [NFZ92, Font9 1]).

Alu I It

Mux ]

Storage-jocatio

mahr 7F Mbrh

Storag...bank

Conmr~tr Memory.ben I Regite!..bn
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APPENDIX E

This Appendix contains the PSDL specifications for the Tanenbaum

microarchitecture simulation classes that have derived applying the 'automatic'

inheritance.

TYPE Alu SPECIFICATION

OPERATOR logicaland SPECIFICATION
INPUT

input-one : string-oLbits,
inputtwo : string-of-bits

OUTPUT
result : suing-oLfbits,

END

OPERATOR logical-or specification
INPUT

inputone :string_oLfbits,
input-two :string-ofjbits

OUTPUT
result : string.ofjbits,

END

OPERATOR logicalnot SPECIFICATION
INPUT

input-one : stringof-bits
OUTPUT

outinverted : stringof bits,
END

OPERATOR math SPECIFICATION
INPUT

input-one : string.of~bits,
inputtwo : string.ofbits

OUTPUT
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result : string-of.bits,
END

OPERATOR zero? SPECIFICATION
OUTPUT

z : boolean
END

OPERATOR positive? SPECIFICATION
OUTPUT

n : boolean
END

KEYWORDS
alu

DESCRIPTION
{ combinatorial circuit with no state)

END

TYPE Alu shifter SPECIFICATION

OPERATOR shift_left SPECIFICATION
INPUT

data : string_of_bits
OUTPUT

left_shifted_data :string_of_bits
END

OPERATOR shift-right SPECIFICATION
INPUT

data : sting-of )s
OUTPUT

rightshifted_data : stringof.bits
END
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OPERATOR noshift SPECIFICATION
INPUT

data : string-of bits
OUTPUT

data : string ofjbits
END

KEYWORDS
alu, alu_shifter

DESCRIPTION
(combined ALU & shifter,

shifts functions added to inherited ALU functions)
END

TYPE Control store SPECIFICATION

contents : array-ofmicroinstructions

KEYWORDS
storage.bank, controlstore

DESCRIPTION
(contains the microprogram which must be loaded
before the simulation begins)

END

TYPE Mar SPECIFICATION

OPERATOR memoryaddressregister SPECIFICATION
INPUT

signal : control_signal
END

KEYWORDS
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register, mar

DESCRIPTION
( a memory-location within a memorybank)

END

TYPE Mbr SPECIFICATION

OPERATOR memoryjbuffer~jegister SPECIFICATION
INPUT

signal : control-signal
END

KEYWORDS
register, mbr

DESCRIPTION
( interface to the memoryjbank}

END

TYPE Memory bank SPECIFICATION

contents : array of_memory-locations

KEYWORDS
storagebank, memory-bank

DESCRIPTION
( an array of memory locations)

END
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TYPE Memory location SPECIFICATION

KEYWORDS
storagejocation,memory jocation

DESCRIPTION
[ the smallest individually addressable memory unit)

END

TYPE Microsequencer SPECIFICATION

OPERATOR generate-signal SPECIFICATION
INPUT

n : bit,
z : bit,
mircond : string_ofbits

OUTPUT
out-mux : control-signal

END

KEYWORDS
microsequencer

DESCRIPTION
[ the micro sequencer component of Tanenbaum's architecture)

END
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TYPE Microinstruction SPECIRCATION

instruction : string-oLbits

KEYWORDS
microinstuction

DESCRIPTION
( defines the various fields necessary to make up a microprogram instruction

END

TYPE Mir SPECIFICATION

contents : microinstuction

OPERATOR decode SPECEFICATION

END

KEYWORDS
register, mir

DESCRIPTION
( contains control signals for routing to other components

END
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TYPE Mpc SPECIFICATION

OPERATOR set SPECIFICATION
INPUT

location : microinstructionaddress
END

OPERATOR increment SPECIFICATION

END

OPERATOR jump SPECIFICATION
INPUT

location : microinstructionaddress
END

KEYWORDS
register, mpc

DESCRIPTION
( microprogram counter)

END

TYPE Mux SPECIFICATION

OPERATOR multiplexer SPECIFICATION
INPUT

incaddr: string.ofjbits,
miraddr: stringofbits,
signal : controlsignal

OUTPUT
out : string-of.bits

END
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KEYWORDS
mux

DESCRIPTION
( multiplexer, combinatorial circuit with no state)

END

TYPE Register SPECIFICATION

KEYWORDS
storagejlocation, register

DESCRIPTION
( essentially the same as a memory-location;

use,speed, and possibly size are the major differences )

END

TYPE Register-bank SPECIFICATION

contents arrayofiregisters

KEYWORDS
storage-bank, registerbank

DESCRIPTION
( an array of registers )

END
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TYPE Storagebank SPECIFICATION

contents : array_oLfstoragejocations

OPERATOR read SPECIFICATION
INPUT

location : memorylocation_address
OUTPUT
element : string.of_bits

END

OPERATOR write SPECIFICATION
INPUT

element : string-ofbits,
location : memoryjocationaddress

END

OPERATOR initialize SPECIFICATION
INPUT

init : arrayofstring of bits
END

OPERATOR load SPECIFICATION
INPUT

element : string~ofbits,
location : memoryjocationaddress

END

KEYWORDS
storage_.bank

DESCRIPTION
( an array of storage locations )

END
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TYPE Storagelocation SPECIFICATION

contents : string of_bits

OPERATOR initialize SPECIFICATION
INPUT

init : string of bits
END

OPERATOR read SPECIFICATION
OUTPUT

element : integer
END

OPERATOR write SPECIFICATION
INPUT

element : integer
END

OPERATOR binaryread SPECIFICATION
OUTPUT

binary-element : stringof_bits
END

OPERATOR binary-write SPECIFICATION
INPUT

binaryelement: string.of bits
END

KEYWORDS
storage_location

DESCRIPTION
{ represents a storage location that can be initialized,

read, or written in either integer or binary form j
END
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APPENDIX F

This Appendix contains the PSDL specifications for the Tanenbaum

microarchitecture simulation classes that have derived from applying the 'manual'

inheritance.

TYPE Alu SPECIFICATION

OPERATOR logicaland SPECIFICATION
INPUT

inputone : stringofjbits,
input-wo : stringof.bits

OUTPUT
result : string..ofbits,

END

OPERATOR logical-or specification
INPUT

input.one :stringof.bits,
inputjwo :stringof.bits

OUTPUT
result : stringof bits,

END

OPERATOR logical-not SPECIFICATION
INPUT

inputone : string of.bits
OUTPUT

out-inverted : stringof bits,
END
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OPERATOR math SPECIFICATION
INPUT

inpuLone : string-ofbits,
inputtwo: string-of bits

OUTPUT
result : string.of bits,

END

OPERATOR zero? SPECIFICATION
OUTPUT

z : boolean
END

OPERATOR positive? SPECIFICATION
OUTPUT

n : boolean
END

KEYWORDS
alu

DESCRIPTION
( combinatorial circuit with no state)

END
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TYPE Aiu shifter SPECIFICATION

OPERATOR logicaland SPECIFICATION
INPUT

input-one : string.ofLbits,
inpuLtwo : string-ofbits

OUTPUT
result : string-of-bits,

END

OPERATOR logical-or specification
INPUT

input-one :string.of.bits,
inputtwo :string.of.bits

OUTPUT
result : string-of-bits,

END

OPERATOR logical_not SPECIFICATION
INPUT

input-one : string..ofbits
OUTPUT

out-inverted : string-oLbits,
END

OPERATOR math SPECIFICATION
INPUT

inputone : stringof~bits,
input two : stringofjbits

OUTPUT
result : string of bits,

END

OPERATOR zero? SPECIFICATION
OUTPUT

z : boolean
END

OPERATOR positive? SPECIFICATION
OUTPUT

n : boolean
END
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OPERATOR shiftleft SPECIFICATION
INPUT

data : stringof bits
OUTPUT

lefLshifteddata :string-ofbits
END

OPERATOR shiftright SPECIFICATION
INPUT

data : stringof_bits
OUTPUT

rightshifteddata : stringof bits
END

OPERATOR no_shift SPECIFICATION
INPUT

data : string of bits
OUTPUT

data : string..ofbits
END

KEYWORDS
alu, alushifter

DESCRIPTION
(combined ALU & shifter,

shifts functions added to inherited ALU functions)
END
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TYPE Control store SPECIFICATION

contents : array of_microinstructions

OPERATOR read SPECIFICATION
INPUT

location : memoryjocationaddress
OUTPUT
element : stringofibits

END

OPERATOR write SPECIFICATION
INPUT

element : stringofjbits,
location: memoryjocationaddress

END

OPERATOR initialize SPECIFICATION
INPUT

init : array ofstring of.bits
END

OPERATOR load SPECIFICATION
INPUT

element : string.of.bits,
location : memoryjocation-address

END

KEYWORDS
storage-bank, controlstore

DESCRIPTION
[ contains the microprogram which must be loaded

before the simulation begins )
END
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TYPE Mar SPECIFICATION

contents : string.of.bits

OPERATOR initialize SPECIFICATION
INPUT

init: string-ofbits
END

OPERATOR read SPECIFICATION
OUTPUT

element : integer
END

OPERATOR write SPECIFICATION
INPUT

element : integer
END

OPERATOR binary-read SPECIFICATION
OUTPUT

binaryelement : stringof_bits
END

OPERATOR binary-write SPECIFICATION
INPUT

binary element : string-ofbits
END

OPERATOR memory-address-register SPECIFICATION
INPUT

signal : control-signal
END

KEYWORDS
register, mar

DESCRIPTION
( a memoryjocation within a memory.bank)

END
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TYPE Mbr SPECIFICATION

contents : string-ofbits

OPERATOR initialize SPECIFICATION
INPUT

init : string_of.bits
END

OPERATOR read SPECIFICATION
OUTPUT

element : integer
END

OPERATOR write SPECIFICATION
INPUT

element : integer
END

OPERATOR binaryread SPECIFICATION
OUTPUT

binaryelement : stringofbits
END

OPERATOR binary-write SPECIFICATION
INPUT

binaryelement : stringof_bits
END

OPERATOR memory-buffer~jegister SPECIFICATION
INPUT

signal : controlsignal
END

KEYWORDS
register, mbr

DESCRIPTION
( interface to the memoryjbank }

END
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TYPE Memory bank SPECIFICATION

contents : array.oLmemory_locations

OPERATOR read SPECIFICATION
INPUT

location : memoryjocationaddress
OUTPUT
element : string_oLfbits

END

OPERATOR write SPECIFICATION
INPUT

element : string of bits,
location : memoryjocationaddress

END

OPERATOR initialize SPECIFICATION
INPUT

init : array.ofstring-of.bits
END

OPERATOR load SPECIFICATION
INPUT

element : string.ofbits,
location : memoryjocationaddress

END

KEYWORDS
storagebank, memoryjbank

DESCRIPTION
( an array of memory locations }

END
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TYPE Memory/ocation SPECIFICATION

contents : string-ofbits

OPERATOR initialize SPECIFCATION
INPUT

init : string.of_bits
END

OPERATOR read SPECIFICATION
OUTPUT

element : integer
END

OPERATOR write SPECIFICATION
INPUT

element : integer
END

OPERATOR binaryread SPECIFICATION
OUTPUT

binary_element : stringofbits
END

OPERATOR binarywrite SPECIFICATION
INPUT

binary-element : string.o.fbits
END

KEYWORDS
storagejlocation,memory-location

DESCRIPTION
( the smallest individually addressable memory unit)

END

93



TYPE Micro-sequencer SPECIFICATION

OPERATOR generate-signal SPECIFICATION
INPUT

n : bit,
z : bit,
mircond : string_of.bits

OUTPUT
outnmux : control-signal

END

KEYWORDS
microsequencer

DESCRIPTION
( the micro sequencer component of Tanenbaum's architecture)

END

TYPE Microinstruction SPECIFICATION

instruction : stringof bits

KEYWORDS
microinstuction

DESCRIPTION
( defines the various fields necessary to make up a microprogram instruction)

END
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TYPE Mir SPECIFICATION

contents : microinstuction

OPERATOR initialize SPECIFICATION
INPUT

init : stringofjbits
END

OPERATOR read SPECIFICATION
OUTPUT

element : integer
END

OPERATOR write SPECIFICATION
INPUT

element : integer
END

OPERATOR binary-read SPECIFICATION
OUTPUT

binaryelement : stringof_bits
END

OPERATOR binarywrite SPECIFICATION
INPUT

binary_element: string.of bits
END

OPERATOR decode SPECIFICATION

END

KEYWORDS
register, mir

DESCRIPTION
{ contains control signals for routing to other components)

END
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TYPE Mpc SPECIFICATION

contents : string.of~bits

OPERATOR initialize SPECIFICATION
INPUT

init : string.ofjbits
END

OPERATOR read SPECIFICATION
OUTPUT

element : integer
END

OPERATOR write SPECIFICATION
INPUT

element : integer
END

OPERATOR binaryread SPECIFICATION
OUTPUT

binary element : string.of bits
END

OPERATOR binarywrite SPECIFICATION
INPUT

binary element : string-of bits
END

OPERATOR set SPECIFICATION
INPUT

location : microinstructionaddress
END

OPERATOR increment SPECIFICATION

END

OPERATOR jump SPECIFICATION
INPUT

location : microinstruction_address
END
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KEYWORDS
register, mpc

DESCRIPTION
{ microprogram counter)

END

TYPE Mux SPECIFICATION

OPERATOR multiplexer SPECIFICATION
INPUT

inc addr: stringofbits,
mir addr: stringofpbits,
signal : control-signal

OUTPUT
out : stringofjbits

END

KEYWORDS
mux

DESCRIPTION
{ multiplexer, combinatorial circuit with no state }

END
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TYPE Register SPECIFICATION

contents : string_ofbits

OPERATOR initialize SPECIFICATION
INPUT

init : string_ofbits
END

OPERATOR read SPECIFICATION
OUTPUT

element : integer
END

OPERATOR write SPECIFICATION
INPUT

element : integer
END

OPERATOR binaryread SPECIFICATION
OUTPUT

binary-element : string-ofbits
END

OPERATOR binary.write SPECIFICATION
INPUT

binary-element : stringofbits
END

KEYWORDS
storage location, register

DESCRIPTION
(essentially the same as a memorylocation;
use,speed,and possibly size are the major differences)

END

98



TYPE Register-bank SPECIFICATION

contents : arrayofjregisters

OPERATOR read SPECIFICATION
INPUT

location : memory-location-address
OUTPUT
element : string-of bits

END

OPERATOR write SPECIFICATION
INPUT

element : string-of-bits,
location : memoryjocation-address

END

OPERATOR initialize SPECIFICATION
INPUT

init : arrayof string.ofbits
END

OPERATOR load SPECIFICATION
INPUT

element : string.ofbits,
location : memoryjlocationaddress

END

KEYWORDS
storage-.bank, register-bank

DESCRIPTION
( an array of registers }

END
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TYPE Storage bank SPECIFICATION

contents : array.of storageJocations

OPERATOR read SPECIFICATION
INPUT

location : memoryjocationaddress
OUTPUT
element : string-of bits

END

OPERATOR write SPECIFICATION
INPUT

element : string~oLbits,
location : memoryjocationaddress

END

OPERATOR initialize SPECIFICATION
INPUT

init : array, of.string ofbits
END

OPERATOR load SPECIFICATION
INPUT

element : string-of bits,
location : memorylocation-address

END

KEYWORDS
storage_bank

DESCRIPTION
( an array of storage locations )

END
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TYPE Storage/ocation SPECIFICATION

contents : string_of_bits

OPERATOR initialize SPECIFICATION
INPUT

init : string.of_bits
END

OPERATOR read SPECIFICATION
OUTPUT

element : integer
END

OPERATOR write SPECIFICATION
INPUT

element : integer
END

OPERATOR binary-read SPECIFICATION
OUTPUT

binaryelement : string ofbits
END

OPERATOR binary-write SPECIFICATION
INPUT

binary-element : string._of_bits
END

KEYWORDS
storagelocation

DESCRIPTION
{ represents a storage location that can be initialized,

read, or written in either integer or binary form)
END
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