Gray-Scale Linear Mapper (GLM)
Tactical Environmental Support System (TESS (3)) Documentation

Marla Helveston
Sverdrup Technology, Inc.
Stennis Space Center, MS 39529-5004

Jeffrey D. Hawkins
Remote Sensing Branch
Ocean Sensing and Prediction Division
Ocean Science Directorate

Approved for public release: distribution is unlimited. Naval Oceanographic and Atmospheric Research Laboratory, Stennis Space Center, Mississippi 39529-5004.
Abstract

The Gray-scale Linear Mapper (GLM) software module is a general purpose digital image processing function that permits the user to interactively change the linear intensity transformation of the input image. Most images contain a wide range of pixel values, whether they include clouds, ocean and/or land scenes. Thus, assigning the available gray shades to the entire dynamic range of the image stretches the contrast and brightness to a limit that typically does not adequately enable the viewer to see the full detail inherent in the full precision of the image.

The GLM function allows the operator to modify the contrast and brightness of a given image by moving the cursor within a triangle displayed on the screen via the cursor. The user can linearly change the intensity to gray-scale mapping in real time via the cursor and display literally hundreds of new enhancements within a matter of seconds. This permits the operator to zero in on the dynamic range of interest (e.g., 10-15 °C) and extract the full information content within the digital image. This powerful, but easy to use software function allows the user to glean more detail from the imagery for a variety of applications.

Acknowledgments

Software rehosting to the Massachusetts Computer Corporation machine at the Naval Research Laboratory Remote Sensing Branch was accomplished by Walt Osterman (Sverdrup Technology, Inc.). Documentation of this technical note was streamlined with the help of Mark Boston (NAVOCEANO) and carried out by the coauthors. This work was supported by the Chief of Naval Operations (OP-096), the Space and Naval Warfare Systems Command Satellite Applications and Techniques Program, under Program Element 0603704N, CDR Peter Ranelli, Program Manager.
1.0 SCOPE ... 1
1.1 Identification 1
1.2 CSCI Overview 1
1.3 Document Overview 1

2.0 APPLICABLE DOCUMENTS 1
2.1 Government Documents 1
2.2 Non-Government Documents 1

3.0 ENGINEERING REQUIREMENTS 2
3.1 CSCI External Interface Requirements 2
3.2 CSCI Capability Requirements 2
3.3 CSCI Internal Interfaces 3
3.4 CSCI Data Element Requirements 3
3.5 Adaption Requirements 3
3.6 Sizing and Timing Requirements 3
3.7 Safety Requirements 3
3.8 Security Requirements 4
3.9 Design Constraints 4
3.10 Software Quality Factors 4
3.11 Human Performance 4
3.12 Requirements Traceability 4

4.0 QUALIFICATION REQUIREMENTS 4

5.0 PREPARATION for DELIVERY 4

6.0 NOTES .. 4
GRAY-SCALE LINEAR MAPPER (GLM)
TACTICAL ENVIRONMENTAL SUPPORT SYSTEM (TESS(3))
DOCUMENTATION

1.0 SCOPE

1.1 Identification
The Computer Software Configuration Item (CSCI), identified as the Gray-scale Linear Mapper (GLM) Version 1.0, is a software module targeted for implementation on the Massachusetts Computer Corporation machine (MASSCOMP) and used to interactively enhance the display of a digital satellite image. This function will allow the user to quickly extract image information by focusing on pixel count values within a region of interest.

1.2 CSCI Overview
The GLM interactively manipulates a positive or negative linear intensity transformation of a displayed satellite image. Changes are made only to the image displayed on the MASSCOMP graphics monitor. The GLM is designed to be a general purpose routine that can be used to enhance any satellite image displayed on a MASSCOMP graphics monitor.

1.3 Document Overview
This Software Requirements Specification (SRS) establishes the requirements for the CSCI identified as the GLM Version 1.0.

2.0 APPLICABLE DOCUMENTS

2.1 Government Documents
Not applicable.

2.2 Non-Government Documents
The following documents, of the exact issue shown, form a part of this specification to the extent specified herein. In the event of conflict between the documents referenced and the contents of this specification, the contents of this specification shall be considered a superseding requirement.

3.0 ENGINEERING REQUIREMENTS

3.1 CSCI External Interface Requirements

The following items constitute the external interface required for the GLM routine.

Display Image - Image currently displayed on the MASSCOMP graphics monitor.

Minimum limit (ix) - Horizontal location of the cursor displayed within the triangle.

Maximum limit (iy) - Vertical location of the cursor displayed within the triangle.

Button State (ibutton) - Current mouse/trackball button state.

3.2 CSCI Capability Requirements

The GLM routine performs a linear intensity transformation on the input image based on the minimum and maximum limits specified. The transformation algorithm has the following form:

\[\text{colorbyte}(n) = \text{char}((k - \text{min}) \times 255.0 / 1.0 \times (\text{max} - \text{min})) \]

where:

- \(\text{colorbyte}(n) \) = one of three Red, Green, and Blue (RGB) values to be loaded into the color map register.

- \(k \) = the index number of the color map register to be loaded.

- \(\text{min} \) = the minimum intensity limit relative to the horizontal location of the mouse cursor within the triangle.

- \(\text{max} \) = the maximum intensity limit relative to the vertical location of the mouse cursor within the triangle.
3.3 CSCI Internal Interfaces

Data Definitions:

Display Image - Image displayed on the MASSCOMP graphics monitor.

Parameters - User supplied inputs, via mouse/trackball, used to control the transformation process.

Enhanced Image - Enhanced image displayed on the MASSCOMP graphics monitor.

Process Definitions:

GLM 1.0 - Linearly scales 255 shades of gray, ranging from black to white, based on the minimum and maximum limits specified by the user.

3.4 CSCI Data Element Requirements

Button State (ibutton) - Mouse button state, no default.

3.5 Adaptation Requirements

The GLM is specifically designed for a MASSCOMP graphics monitor.

3.6 Sizing and Timing Requirements

Changes made by GLM to the output image are immediate.

3.7 Safety Requirements

Not applicable.
3.8 **Security Requirements**
Not applicable.

3.9 **Design Constraints**
The GLM routine is designed to execute on the MASSCOMP machine with a pixel graphics monitor and mouse/trackball installed.

3.10 **Software Quality Factors**
Not applicable.

3.11 **Human Performance**
The mouse/trackball is used to select the minimum and maximum gray-scale limits, which are linearly transformed and immediately displayed on the MASSCOMP graphics monitor. Messages are provided to instruct the user on how to vary the gray-scale intensity using the mouse/trackball.

3.12 **Requirements Traceability**
Not applicable.

4.0 **QUALIFICATION REQUIREMENTS**
Not applicable.

5.0 **PREPARATION for DELIVERY**
Not applicable.

6.0 **NOTES**

Abbreviations and Acronyms:

- CSCI - Computer Software Configuration Item
- GLM - Gray-scale Linear Mapper
- MASSCOMP - Massachusetts Computer Corporation
- RGB - Red, Green, and Blue intensity values
- SRS - Software Requirements Specification
SOFTWARE DESIGN DOCUMENT

for the

GRAY-SCALE LINEAR MAPPER (GLM)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SCOPE</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Identification</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>System Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Document Overview</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>REFERENCED DOCUMENTS</td>
<td>1</td>
</tr>
<tr>
<td>3.0</td>
<td>PRELIMINARY DESIGN</td>
<td>1</td>
</tr>
<tr>
<td>3.1</td>
<td>CSCI Overview</td>
<td>1</td>
</tr>
<tr>
<td>3.1.1</td>
<td>CSCI Architecture</td>
<td>2</td>
</tr>
<tr>
<td>3.1.2</td>
<td>System States and Modes</td>
<td>2</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Memory and Processing Time Allocation</td>
<td>2</td>
</tr>
<tr>
<td>3.2</td>
<td>CSCI Design Description</td>
<td>2</td>
</tr>
<tr>
<td>3.2.1</td>
<td>GLM</td>
<td>2</td>
</tr>
<tr>
<td>4.0</td>
<td>DETAILED DESIGN</td>
<td>2</td>
</tr>
<tr>
<td>4.1</td>
<td>GLM Design Specification</td>
<td>2</td>
</tr>
<tr>
<td>4.2</td>
<td>GLM Design</td>
<td>3</td>
</tr>
<tr>
<td>5.0</td>
<td>CSCI DATA</td>
<td>4</td>
</tr>
<tr>
<td>6.0</td>
<td>CSCI DATA FILES</td>
<td>4</td>
</tr>
<tr>
<td>7.0</td>
<td>REQUIREMENTS TRACEABILITY</td>
<td>4</td>
</tr>
<tr>
<td>8.0</td>
<td>NOTES</td>
<td>4</td>
</tr>
<tr>
<td>9.0</td>
<td>APPENDIX</td>
<td>4</td>
</tr>
</tbody>
</table>
1.0 SCOPE

1.1 Identification

The Computer Software Configuration Item (CSCI), identified as the Gray-scale Linear Mapper (GLM) Version 1.0, is a software routine targeted for implementation on the Massachusetts Computer Corporation machine (MASSCOMP) used to interactively enhance the display of a digital satellite image. This function will allow the user to quickly extract image information by focusing on pixel count values within a region of interest.

1.2 System Overview

The GLM interactively manipulates a positive or negative linear intensity transformation of a displayed satellite image. Changes are made only to the image displayed on the MASSCOMP graphics monitor. The GLM is designed to be a general purpose routine that can be used to enhance any satellite image displayed on a MASSCOMP graphics monitor.

1.3 Document Overview

This Software Design Document (SDD) describes the software design details of the GLM, Version 1.0.

2.0 REFERENCED DOCUMENTS

3.0 PRELIMINARY DESIGN

3.1 CSCI Overview

The GLM linearly scales 255 shades of gray, ranging from black to white, based on the minimum and maximum limits specified by the user.

The following items constitute a summary of the components required for the GLM routine:

- **Initialize GLM** - Initializes the GLM operation by assigning the graphics processor, loading the color map registers, and setting the graphics cursor mode.

- **Load Gray-scale** - Loads a linear transformation of the minimum and maximum gray-scale limits specified by the user into the appropriate color map registers.
3.1.1 CSCI Architecture

The GLM component initializes the MASSCOMP graphics processor and enhances the image on the MASSCOMP graphics monitor.

The following items constitute the interface for the GLM component:

- **Display image** - Image currently displayed on the MASSCOMP graphics monitor.
- **Minimum limit (ix)** - Horizontal location of the cursor displayed within the triangle.
- **Maximum limit (iy)** - Vertical location of the cursor displayed within the triangle.
- **Button State (ibutton)** - Current mouse/trackball button state.

3.1.2 System States and Modes

Not applicable.

3.1.3 Memory and Processing Time Allocation

The GLM is specifically designed for a MASSCOMP graphics monitor. Changes made by GLM to the output image are immediate.

3.2 CSCI Design Description

3.2.1 GLM

The GLM component initializes operation by setting up the graphics environment. The structure flow chart for GLM is shown in Appendix A.

The GLM component receives minimum and maximum gray-scale limits and button state from the user. The mouse/trackball is used to select these minimum and maximum gray-scale limits, which are linearly transformed and immediately displayed on the MASSCOMP color graphics monitor. Messages are provided to instruct the user on how to vary the gray-scale intensity.

4.0 DETAILED DESIGN

4.1 GLM Design Specification

The GLM initializes operation by assigning the graphics processor, loading the color map registers, and setting the graphics cursor mode. It then enhances the image on the MASSCOMP graphics monitor.
4.2 **GLM Design**

The following is the pseudocode for the GLM component:

- Display the GLM title and the date it was last modified.
- Assign the MASSCOMP graphics processor (MGIASNGP). This step may not be required within an integrated system where the graphics processor is assigned prior to calling the GLM routine.
- Set the graphics cursor mode where the cursor is displayed as it follows the tracking device (MGICURSMODE).
- Select the graphics plane on which to operate (MGIPLN).
- Load and enhance the gray-scale level of the output image based on minimum and maximum limits specified by the user via the mouse/trackball.

The minimum and maximum limits are linearly transformed and immediately displayed on the MASSCOMP graphics monitor.

- Deassign MASSCOMP graphics processor (MGIDEAGP). This step may not be required within an integrated system, as well.

- **Minimum limit (ix)** - Horizontal location of the cursor displayed within the triangle.
- **Maximum limit (iy)** - Vertical location of the cursor displayed within the triangle.
- **Button State (ibutton)** - Current mouse button state.

The transformation algorithm has the following form:

\[
\text{colorbyte}(n) = \text{char}\left((k - \text{min}) \times 255.0 / 1.0 \times (\text{max} - \text{min})\right)
\]

where:

- \(\text{colorbyte}(n)\) = one of three Red, Green, and Blue (RGB) values to be loaded into the color map register.
- \(k\) = index number of the color map register to be loaded.
- \(\text{min}\) = minimum intensity limit relative to the horizontal location of the mouse cursor within the triangle.
max = maximum intensity limit relative to the vertical location of the mouse cursor within the triangle.

5.0 CSCI DATA

Button State (ibutton) - Mouse button state, no default.

6.0 CSCI DATA FILES

Not applicable.

7.0 REQUIREMENTS TRACEABILITY

Not applicable.

8.0 NOTES

Abbreviations and Acronyms:

- CSC - Computer Software Component
- CSCI - Computer Software Configuration Item
- CSU - Computer Software Unit
- GLM - Gray-scale Linear Mapper
- MASSCOMP - Massachusetts Computer Corporation
- RGB - Red, Green, and Blue intensity values
- SDD - Software Design Document
- SRS - Software Requirements Specification

9.0 APPENDIX

Appendix A contains the flow chart for the GLM software.
Appendix A

GLM Flow Charts
SOFTWARE TEST DESCRIPTION

for the

GRAY-SCALE LINEAR MAPPER (GLM)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SCOPE</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Identification</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>System Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Document Overview</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>REFERENCED DOCUMENTS</td>
<td>1</td>
</tr>
<tr>
<td>3.0</td>
<td>FORMAL QUALIFICATION TEST PREPARATIONS</td>
<td>1</td>
</tr>
<tr>
<td>4.0</td>
<td>FORMAL QUALIFICATION TEST DESCRIPTIONS</td>
<td>1</td>
</tr>
<tr>
<td>4.1</td>
<td>GLMTC</td>
<td>1</td>
</tr>
<tr>
<td>4.1.1</td>
<td>GLMTC Requirements Traceability</td>
<td>2</td>
</tr>
<tr>
<td>4.1.2</td>
<td>GLMTC Initialization</td>
<td>2</td>
</tr>
<tr>
<td>4.1.3</td>
<td>GLMTC Test Inputs</td>
<td>2</td>
</tr>
<tr>
<td>4.1.4</td>
<td>GLMTC Expected Test Results</td>
<td>2</td>
</tr>
<tr>
<td>4.1.5</td>
<td>GLMTC Criteria for Evaluating Results</td>
<td>2</td>
</tr>
<tr>
<td>4.1.6</td>
<td>GLMTC Test Procedure</td>
<td>2</td>
</tr>
<tr>
<td>4.1.7</td>
<td>GLMTC Assumptions and Constraints</td>
<td>2</td>
</tr>
<tr>
<td>5.0</td>
<td>NOTES</td>
<td>3</td>
</tr>
</tbody>
</table>
1.0 SCOPE

1.1 Identification

The Computer Software Configuration Item (CSCI), identified as the Gray-scale Linear Mapper (GLM) Version 1.0, is a software routine targeted for implementation on the Massachusetts Computer Corporation machine (MASSCOMP) and used to interactively enhance the display of a digital satellite image. This function will allow the user to quickly extract image information by focusing on pixel count values within a region of interest.

1.2 System Overview

The GLM interactively manipulates a positive or negative linear intensity transformation of a displayed satellite image. Changes are made only to the image displayed on the MASSCOMP graphics monitor. The GLM is designed to be a general purpose routine that can be used to enhance any satellite image displayed on a MASSCOMP graphics monitor.

1.3 Document Overview

The Software Test Description (STD) provides the test case and procedures necessary to perform formal qualification testing of the GLM, Version 1.0.

2.0 REFERENCED DOCUMENTS

3.0 FORMAL QUALIFICATION TEST PREPARATIONS

Not applicable.

4.0 FORMAL QUALIFICATION TEST DESCRIPTIONS

The Gray-scale Linear Mapper Test Case (GLMTC) will receive input parameters and produce an enhanced image on the MASSCOMP graphics monitor. The following sections describe the GLMTC using an input test image file, SSTIMAGE.DAT, containing Sea Surface Temperatures (SST).

4.1 GLMTC

The mouse/trackball is used to select minimum and maximum gray-scale limits, which are linearly transformed and immediately displayed on the MASSCOMP color graphics monitor. Messages are provided to instruct the user on how to vary the gray-scale intensity.
4.1.1 **GLMTC Requirements Traceability**

The GLMTC is specifically designed for a MASSCOMP graphics monitor.

4.1.2 **GLMTC Initialization**

The GLMTC initializes the GLM operation by assigning the graphics processor, loading the color map registers, and setting the cursor mode.

4.1.3 **GLMTC Test Inputs**

The following items constitute the interface between the GLMTC and the external environment:

- **Display image** - Image currently displayed on the MASSCOMP graphics monitor
- **Minimum limit** - Horizontal location of the cursor displayed within the triangle.
- **Maximum limit** - Vertical location of the cursor displayed within the triangle.
- **Button State** - Current mouse button state.

4.1.4 **GLMTC Expected Test Results**

The GLMTC will enhance the image displayed on the MASSCOMP graphics monitor. Changes are made only to the graphics screen.

4.1.5 **GLMTC Criteria for Evaluating Results**

The GLMTC will use any digital satellite image that is displayed on the monitor as input. The image on the MASSCOMP graphics monitor must be visually examined to evaluate its quality during GLM execution. The brightness and contrast of the gray-scale levels can be raised and lowered to provide a more viewable image.

4.1.6 **GLMTC Test Procedure**

To execute the GLMTC, enter the following commands:

1. Invoke the program by entering the command "GLM."

2. Roll the mouse/trackball to enhance the displayed output image pressing button 2. Up - increases max temperature values. Right - increases min temperature values.

3. Click mouse/trackball button 1 or 3 when finished.

4.1.7 **GLMTC Assumptions and Constraints**

The GLM test will be performed on a MASSCOMP GA1000 running Real Time UNIX 4.0A or higher.
5.0 NOTES

Abbreviations and Acronyms:

CSCI - Computer Software Configuration Item
GLM - Gray-scale Linear Mapper
GLMTC - Gray-scale Linear Mapper Test Case
MASSCOMP - Massachusetts Computer Corporation
SDD - Software Design Document
SRS - Software Requirements Specification
SST - Sea Surface Temperature
STD - Software Test Description
DISTRIBUTION LIST

Fleet Numerical Oceanography Center
Monterey, CA 93943-5105
Attn: Commanding Officer, Capt. Plant
Code 42, Mike Clancy
Code 43, Mr. Jim Cornelius
Code 70, Ms. P. Chavasant

Naval Research Laboratory
Washington, DC 20375
Attn: Dr. Ken Johnston, Code 4200
Dr. Vince Noble, Code 4200
Library (2)

Space and Naval Warfare Systems Command
2511 Jeff Davis Hwy.
Washington, DC 20362-5100
Attn: Code PMW 165, CDR Ranelli
Code PMW 165, Ed Harrison
Code PMW 165, CDR Trumbower
Code PMW 165, Mr. Don Montgomery

Institute for Naval Oceanography
Building 1103
Stennis Space Center, MS 39429
Attn: Dr. John Apel, Director

Naval Eastern Oceanography Center
McAdle Bldg (U-117)
Naval Air Station
Norfolk VA 23511-5399
Attn: Mr. Chuck Weigand

Naval Oceanographic Office
Stennis Space Center, MS 39522-5001
Attn: Commanding Officer, Capt. Felt
Code TD, Mr. Landry Bernard
Code M, Mr. Doug Gordon
Code MSF, Mr. Mark Boston
Code DO, Dr. Jerry Carroll
Code O, Dr. Bill Jobst
Code OP, Dr. Vance Sprague
Code OPT, Mr. A. Johnson
Code OPTA, Mr. T. Bennett, Dr. C. Horton
Code OC, CDR Denny Whitford, Mr. Phil Bylsma
Code OPTR, Mr. J. Rigney
Library (2)

Naval Postgraduate School
Monterey, CA 93943
Attn: Code 68, Dr. C. Collins, Dr. C. Wash
Gray-Scale Linear Mapper (GLM) Software Module

The Gray-scale Linear Mapper (GLM) software module is a general purpose digital image processing function that permits the user to interactively change the linear intensity transformation of the input image. Most images contain a wide range of pixel values, whether they include clouds, ocean and/or land scenes. Thus, assigning the available gray shades to the entire dynamic range of the image stretches the contrast and brightness to a limit that typically does not adequately enable the viewer to see the full detail inherent in the full precision of the image.