A compact, quasi-active delay-line limiter/filter (QUADLF) was designed to limit high-power, fast-rise-time pulses and prevent spike leakage, which is common to conventional limiting techniques. The QUADLF design incorporates both waveguide and microstrip technologies. Over the operating frequency range, from 0.8 to 1.2 GHz, experimental results showed less than 2-dB transmission loss below 10-mW input power and greater than 20-dB in-band isolation above 5.0-W input power.

Design procedures are outlined and experimental data are presented that demonstrate feasibility and applicability. Data on frequency response, temporal response, and isolation characteristics are also shown.
Contents

1. Introduction .. 5

2. Design ... 6
 2.1 Waveguide Delay Line/Filter ... 6
 2.1.1 Waveguide Delay Line ... 6
 2.1.2 Waveguide Cavity Filter ... 9
 2.2 20-dB Microstrip Coupler .. 11
 2.3 Two-Diode Detector Circuit ... 12
 2.4 Biasing Arm ... 13
 2.5 Dual-Diode Limiter .. 14

3. Experimental Results ... 14

4. Conclusions .. 17

5. Future Work .. 18

Acknowledgements ... 19

References .. 19

Distribution .. 61

Appendices

A. Filter program source code .. 21
B. Touchstone circuit model of QUADLF ... 55

Figures

1. Idealized frequency response for QUADLF 6
2. Block diagram of QUADLF .. 7
3. Schematic diagram of prototype device .. 7
4. Plots of Q and ε_r versus frequency 7
5. Waveguide diagram showing placement of launchers 8
6. Port-to-port delay for waveguide delay line 9
7. Waveguide cavity filter schematic ... 9
8. Measured frequency response (S_{21}) of delay-line filter 10
9. Measured delay of delay-line filter .. 11
10. Touchstone output for microstrip coupler 11
11. I-V characteristics for dual-diode limiter 12
12. Calibration curve for detector circuit ... 13
13. Dual-diode limiter schematic ... 14
14. Dual-diode limiter voltage response .. 15
15. Laboratory setup diagram ... 15
16. Isolation characteristics for device with 10- and 1-μm dual-diode limiters .. 16
17. Spike energy out versus input power .. 16
18. Calculation of spike energy ... 17
19. Approximate size/weight variation with frequency band 18
1. **Introduction**

Conventional limiting techniques to protect against unwanted radio frequency (rf) signals in many cases leave the front end of an electronic system susceptible to HPM pulses because of spike leakage [1]. Spike leakage is the microwave energy that escapes through the limiter before it has time to turn on. For PIN diode limiters, the thickness of the intrinsic region (I-region) is proportional to this turn-on time [2]. Unfortunately, the I-region thickness is directly proportional to the amount of power the diode can safely absorb. Hence a compromise between I-region thickness and turn-on time is required, and as a result conventional high-power limiters tend to have spike leakage energies of about 100 nJ.

Spike leakage in limiting devices has become a considerable factor as more and more microwave systems incorporate semiconductor devices with small junctions as components in their front ends. Consequently, the amount of energy needed to damage components of certain systems has decreased. For a particular limiter the energy "leaking through" is determined by

\[
E = \int_0^t P(t) \, dt.
\]

Even if the turn-on time (\(t\)) is relatively small, the power can be of sufficient magnitude to create enough energy to damage or upset military systems. For example, energies of about 1 \(\mu\)J can damage modern monolithic microwave integrated circuit (MMIC) devices [3], and energies as small as 0.05 \(\mu\)J (50 nJ) can damage high-electron mobility transistors (HEMTs) [4].

A hardening solution for the front end of many systems would be a device that filters all out-of-band rf and provides limiting in-band with no spike leakage. Since spike leakage is a direct result of the turn-on time of the limiter configuration to the incoming HPM signal, it can be eliminated if the limiter is turned on before the pulse arrives. A mechanism must be provided to sense power levels above a given threshold and turn on the limiter before the HPM signal arrives. We could achieve this effect by inserting an element that delays the major portion of the input signal while a small portion of the signal is used to turn on the limiter. The result is that the limiter is completely turned on when the HPM signal arrives—thus no spike leakage. Figure 1 is an idealized frequency response for the quasi-active delay-line limiter/filter (QUADLF).
2. Design

Figure 2 is a block diagram of the QUADLF and figure 3 is a schematic diagram of the entire device. The device is made up of five separate components: a waveguide delay line/filter, a microstrip coupler, a two-diode detector, along with a biasing arm, and finally a dual PIN diode limiter.

2.1 Waveguide Delay Line/Filter

2.1.1 Waveguide Delay Line

To fabricate the delay line, rectangular blocks of high-dielectric ceramic material were obtained. This material has a relative dielectric constant (ε_r) of 80 and a loss tangent (tan δ) of about 1.8×10^{-4} at 1 GHz. Figure 4 shows plots of manufacturer specifications for Q and ε_r. We were able to obtain blocks with length (L) of 15.24 cm, width (a) of 2.57 cm, and height (b) of 1.4 cm.

We created a waveguide by coating the ceramic blocks with a layer of copper. With the given geometry we calculated the cutoff frequency (f_c) and the phase velocity in the TE$_{10}$ mode ($m = 1$, $n = 0$) as

$$f_c = c \sqrt{\frac{m^2}{a^2} + \frac{n^2}{b^2} / 2 \sqrt{\mu \varepsilon_r}} = (v/2a) = 0.6514 \text{ GHz},$$

where
Figure 2. Block diagram of QUADLF.

Figure 3. Schematic diagram of prototype device.

Figure 4. Plots of Q and ε_r versus frequency.

$c = \text{the speed of light in free space} = 3.0 \times 10^{10} \text{ cm/s},$

$\mu_r = \text{the relative permeability of the material} = 1.0,$ and

$\nu = \frac{c}{\sqrt{\varepsilon_r}}.$
Also

\[v_{ph} = \left(\frac{v}{\sqrt{1 - \left(\frac{f_c}{f_0} \right)^2}} \right) = 4.45 \times 10^9 \text{ cm/s} , \]

where

\(f_0 \) is the operating frequency, 1 GHz.

Spaces for probes were drilled out at \(\lambda_0/4 \) deep and a distance of \(\lambda_g/4 \) away from the waveguide ends (see fig. 5). The wavelength in the material (\(\lambda_0 \)) is calculated as

\[\lambda_0 = \frac{\nu}{f_0} = 3.38 \text{ cm} . \]

The guide wavelength (\(\lambda_g \)) is

\[\lambda_g = \frac{v_{ph}}{f_0} = 4.45 \text{ cm} . \]

The group velocity is

\[v_{gr} = \left(c \sqrt{1 - \left(\frac{f_c^2}{f_0} \right) / (\sqrt{\varepsilon_r} \mu_r)} \right) = v \sqrt{1 - \left(\frac{f_c^2}{f_0} \right)} = 2.56 \times 10^9 \text{ cm/s} . \]

The delay provided by the waveguide delay line is

\[\tau_D = (L/v_{gr}) = 5.95 \text{ ns} , \]

where

\(L = \) the waveguide length = 6 in.

Figure 5. Waveguide diagram showing placement of launchers.
This result agreed with the actual measurement of the delay, which was \(\sim 6 \) ns (see fig. 6).

2.1.2 Waveguide Cavity Filter

An excellent filter structure was designed inside the waveguide itself: a five-element waveguide cavity filter. Figure 7 indicates the positioning of the metal inserts that divide the elements, thereby creating separate cavities within the waveguide. The spacing and penetration of the inserts determine the filter response. Not only did the structure provide an adequate filtering response, but also it provided an additional delay to the delay line. Figure 8 is the measured frequency response \((S_{21}) \) of the device. Figure 8(a) shows the response for the delay line.
entire frequency range from 0.2 to 10 GHz. A good window is formed in the passband from about 0.8 to 1.2 GHz. Below the passband, the inherent cutoff properties of the waveguide act as an ideal filter. Above band are some fairly high peaks that could be pushed farther down into the noise by better manufacturing techniques. Figure 8(b) is a closer look at the passband. Although there is an exceptionally

Figure 8. Measured frequency response (S_21) of delay-line filter: (a) response for expanded frequency range and (b) passband.
good cutoff below band, and a well-defined passband window, the ripple within it is fairly intense. Again, more precise manufacturing (specifically the filter) would improve the response considerably. The delay was measured as well, and was shown to be 12.4 ns (see fig. 9). The filter was designed using the equations provided by Matthaei, Young, and Jones [5]. These equations were implemented using a computer program, FILTER, written by the author. The Pascal source code, FILTER.PAS, is in appendix A.

2.2 20-dB Microstrip Coupler

A microstrip coupler is used to tap off a portion of the incident power for biasing the limiter diodes. It is a simple coupled line configuration (see fig. 3). A combination of spacing and line width determines the amount of coupling provided. The circuit was modelled on TOUCHSTONE (see app B). Figure 10 is the output from the model.

Figure 9. Measured delay of delay-line filter.

Figure 10. Touchstone output for microstrip coupler.
It is also important to note that the coupler acts as a line of protection for the detector diodes; 20 dB was initially chosen as the coupling value.

2.3 Two-Diode Detector Circuit

We chose the term "quasi-active" because of our method of using a rectified portion of the incoming signal to bias the limiter diodes positively. To do this, we designed a half-wave rectifier circuit (see fig. 3) using two Texas Instruments detector diodes, type A-1149. In earlier experimentation these were found to have the fastest turn-on time of all the detector diodes available to us.

The I-V curve for the two-diode limiter circuit (fig. 11) shows that V_r is approximately equal to 670 mV, where V_r is the minimum turn-on voltage of the limiter diode configuration. According to the calibration curve for the detector (fig. 12), it takes a power level of 1.4 W to produce this voltage.

With the detector circuit feeding off a 20-dB coupler, power of 140 W would be needed to achieve complete limiter turn-on. We can reduce this needed power level either by producing a more efficient detector circuit or decreasing the coupling value. The detector circuit configuration we began with was found to be the most efficient. Therefore, the coupling value was reduced experimentally.

Figure 11. I-V characteristics for dual-diode limiter.
2.4 Biasing Arm

Biasing is done by connecting the output of the rectifier to the center of the line containing the limiter diodes (see fig. 3). In order to properly bias the limiter diodes without interfering with the desired circuit response, we needed a DC biasing arm that was invisible to rf. To do this we connected the detector diodes and a high impedance, quarter-wavelength (at 1 GHz) biasing arm to ground through a capacitor (C_B). If C_B is properly valued, then rf will see a quarter-wavelength shorted stub while DC will see a pathway through the limiter diodes. Two conditions had to be met: First, the impedance of the biasing arm had to be much greater than the impedance of the line containing the limiter diodes; that is

$$Z_a \gg Z_0,$$

which we did by making the biasing line with very thin wire. Secondly, we wanted the impedance of the capacitor to be very small at the operating frequency, where

$$|Z_{CB}| \sim 1 \Omega$$

at 1 GHz.

Then

$$C_B = (1/2 \pi f_0) = 159 \text{ pF}.$$

Of course at DC, Z_{CB} is nearly infinite.
2.5 Dual-Diode Limiter

We were able to incorporate into our model a dual-diode limiter design that was originally produced by Robert J. Tan of Harry Diamond Laboratories [1]. According to Tan, the maximum energy level of spike leakage allowed, with all tested configurations, was 100 nJ. Depending on the width of the intrinsic region of the thickest diode, we can determine the maximum power dissipation of the limiter. We opted to use 10- and 1-μm diodes configured such that the larger diode is first to encounter the rf energy (fig. 13). With this configuration, we expected to see about 30 dB of isolation in-band. As can be seen from figure 3, a rectified portion of the input signal is used to bias the diodes. Considering the voltage response of the limiter (fig. 14) measured as a separate device, we see that the output voltage begins to level at about 0.7 V. The calibration curve made on the detector diode (fig. 12) shows that it takes about 1.4 W minimum input to the detector to achieve complete turn-on of the limiter. With the 20-dB coupler in place, 140 W of input power is needed to completely forward bias the limiter.

3. Experimental Results

Figure 15 shows the laboratory setup diagram that was used in this experiment. This configuration was such that both input and output power could be determined. By the time of experimentation, the coupler value was adjusted to 10 dB. This reduced the 140-W input power requirement to 14 W for completely forward-biasing the limiter diodes. Spike leakage still existed at the low power levels. We took measurements of input power and output power in the flat and spike...
regions. Our input pulses had risetimes of about 5 ns. Figure 16 shows a plot of these data, along with isolation lines. Due to limitations with our power sources, we were unable to acquire data above 11 W. Figure 14. Dual-diode limiter voltage response.

Figure 15. Laboratory setup diagram.
16 also shows that above 5 W the device gives about 20 dB of isolation, and above 10 W spike leakage disappears. This confirms the fact that the limiter diodes are beginning to completely turn on before the signal arrives at the diodes. At 10 W, the detector is putting out nearly 0.6 V. Figure 17 is a plot of spike energy out versus power in. Here we see a maximum energy of about 3.3 nJ at 0.3-W input. Above 10 W we see an energy of 0.6 nJ. This energy includes the energy in the spike as well as the flat leakage energy (see fig. 18).

The limiter configuration chosen was for the robustness of the 10-μm (I-region thickness) diode and the speed of the 1-μm. The experiment indicated that a single diode (either 10 or 1-μm) had much higher spike-leakage energies than the QUADLF using the dual diode limiter.
configuration. Also Tan’s spike-energy curves tended to increase with input power (fig. 9). We can conclude from this that the delay has a positive effect in influencing spike leakage.

4. Conclusions

Individually, each component of the QUADLF works within specified parameters. Cascading these elements introduces mismatches that tend to degrade the overall performance. Probably the most obvious example is the transition from the waveguide launchers to the microstrip circuit board. There are reflections caused by both machining discontinuities and impedance mismatch. The output frequency response of the device shown in figure 8 is representative of these effects. Better machining and more sophisticated matching attempts may improve the matching significantly enough to reduce the insertion loss to below 1 dB. As stated earlier, the delay has an influence on the total spike energy leaking through. The QUADLF reduces spike leakage and even eliminates it above 10-W input power.

Pulse width of the input pulse is a factor in the performance of the QUADLF. If a very narrow pulse, say less than 12 ns, enters the device, the limiter diodes will be biased on and off before the pulse reaches them because of the <12-ns delay given by the delay line. However, if this pulse is of any significant power, the diodes will limit on their own. A 12-ns pulse (or less) must be of a very significant power level to cause any type of damage or upset to a system.
Because waveguide is being used as the delay line and the filter, its size decreases as frequency increases. Figure 19 shows an approximate size/weight consideration of the entire device for different frequency bands of interest. Also, the microstrip line lengths decrease as the frequency increases. This would make the QUADLF more compact as frequency of operation is increased.

Finally, this work demonstrates that it is possible to design a device that limits high-power, fast-rise-time pulses and significantly reduces spike leakage, even eliminating it above a certain threshold. Size and weight are critical considerations in today's systems. With this in mind, we see that a material with an even higher relative dielectric constant ($\varepsilon_r = 100$) would reduce the length of the QUADLF and thus the weight as well. If the manufacturing is done with care, many losses and mismatches can be reduced.

5. Future Work

Several things can be done to improve upon and add to this work. First of all, a much better device could be machined using the design criteria laid out in this report. More attention should be given to mismatches between device elements. Design objectives should be a much cleaner passband with minimal loss, and an out-of-band response that is nearer to the noise floor. The in-band isolation of the limiter could be improved to 30 dB or better for the input power levels tested. Secondly, more of the parameters should be varied for future tests. Higher input power levels, faster and slower risetimes, different frequencies, and even variations on the modulation scheme—all could be used to completely characterize the device. Thirdly, several different diode pairs should be used in the limiter configuration to

<table>
<thead>
<tr>
<th>Frequency band</th>
<th>Volume (cubic in.)</th>
<th>Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>3.0</td>
<td>0.8</td>
</tr>
<tr>
<td>S</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>C</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>X</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Figure 19. Approximate size/weight variation with frequency band.
determine the limits between robustness and speed, so that a system
designer can make the best choice according to the application.
Finally, the problem of matching into a variable load impedance can
be studied. This problem arises when we try to transfer maximum
voltage from the detector diodes into the limiter diodes. In this case
both the source and load impedances are changing. Normally, one
impedance value is picked and matching is done for that case. It would
be much better to match over the entire impedance dynamic range.

Acknowledgements

Special thanks to David A. Sumner for his unflagging assistance in
testing this device.

Thanks to Robert Tan for insight and ideas.

References

[1] R. J. Tan and R. Kaul, Dual Diode Limiter for High-Power/Low-Spike-
Leakage Applications, 1990 IEEE MTT Symposium Digest, 2 (May 1990),
757-760.

Spike Leakage, Recovery Time, and Damage, 1988 IEEE MTT Symposium
Digest, 1 (May 1988), 275-278.

ening Design Guide for Systems, Harry Diamond Laboratories, HDL-
CR-89-709-2b, contract DAAL01-87-C-0709 (15 October 1989).

Program Review, Mission Research Corp., Newington, VA (18 April
1990).

[5] G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-
Matching Networks, and Coupling Structures, McGraw-Hill, New
York (1964).
Appendix A. FILTER Program Source Code
Program FILTER;
Uses CRT,PRINTER;

{ Program name: FILTER.PAS:

Purpose: Implements design specifications for the design
of low-pass and bandpass filters. Returns lumped
element values as well as impedance and line length
information for transmission-line applications. Also
calculates parameters for waveguide filter structures.

References: G. Matthaei, L. Young, and E. M. T. Jones, Microwave
Filters, Impedance-Matching Networks, and Coupling

Edward Wolff and Roger Kaul, Microwave Engineering

Programmer: Chance M. Glenn, Harry Diamond Laboratories,
in conjunction with Quasi-Active Delay Line/Filter
project.

Date of latest modification: 07-25-90 }

Var
Elem,g,Z,GT,Ce,CMe,Cfe,Jkk,Cs,spacing,
width,KZ0,XZ0,Theta,XZ0La,da,d: ARRAY[0..501] of REAL;
a,b,t,f0,f1,f2,ripple,Z0,Y0,omega1,epsilon,Zs,omegaQ,Lambda4,Yaj,
omega2,theta0,w,bj,YA,omega0,tbratio,L,ICfe,lambda0,wL: REAL;
nelements,i,j,k,initelement: INTEGER;
ID,DATE: STRING;
Units: ARRAY[0..501] of STRING;
Choice: INTEGER;
dFLAG: BOOLEAN;

Const
pi = 3.1415926547;
c = 1.18102362E+10; {Speed of light in in/s}
omega1prime = 1.0;
Appendix A

Function TAN(\(\phi\): REAL): REAL;
Begin
 \(\tan := \sin(\phi) / \cos(\phi)\);
End;

Function COT(\(\phi\): REAL): REAL;
Begin
 \(\cot := 1.0 / \tan(\phi)\);
End;

Function CSC(\(\phi\): REAL): REAL;
Begin
 \(\csc := 1.0 / \sin(\phi)\);
End;

Function SINH(\(\phi\): REAL): REAL;
Begin
 \(\sinh := (\exp(\phi) - \exp(-\phi)) / 2.0\);
End;

Function COTH(\(\phi\): REAL): REAL;
Begin
 \(\coth := \exp(-\phi) / (\exp(\phi) - \exp(-\phi))^2 + 1\);
End;

Function \(\lambda_{\theta}(f,e,a):\) REAL;
Begin
 \(\lambda_{\theta} := c / (f \times \sqrt{e * (1.0 - \sqrt{c / (2.0 \times a \times \sqrt{e})})})\);
End;

Procedure MAKE_WINDOW(\(x_0,y_0,\) width,\(w_{length},bordercolor,windowcolor,shadowcolor,titlecolor\): INTEGER; Title: STRING);
var
 j,center,ptitle: INTEGER;
Begin
 ptitle := (Width div 2) - (Length(title) div 2);
 Window(x0+2,y0+1,x0+width+2,y0+wlength+1);
 Textbackground(shadowcolor);
 Clrscr;
 Window(x0,y0,x0+width,y0+wlength);
 Textbackground(windowcolor);
 Clrscr;
Appendix A

Textcolor(bordercolor);

GotoXY(1,1);
Write(#218);
GotoXY(1,wlength+1);
Write(#192);
For j := 2 to wlength do
Begin
 GotoXY(1,j);
 Write(#179);
 GotoXY(width,j);
 Write(#179);
End;
GotoXY(width,1);
Write(#191);
GotoXY(width,wlength+1);
Write(#217);
For j := 2 to width-1 do
Begin
 GotoXY(j,1);
 Write(#196);
 GotoXY(j,wlength+1);
 Write(#196);
End;
Textcolor(titlecolor);
GotoXY(ptitle,1);
Write(' ,title,');
End;

Procedure HOLDUNTIL(Check: CHAR);
var
 Letter: CHAR;
Begin
 Letter := #0;
 While (Letter <> Check) do
 Begin
 Letter := Readkey;
 End;
 Letter := #0;
End;
Appendix A

Procedure INTRO;
Begin
 Textbackground(15);
 Clrscr;
 MAKE_WINDOW(10,3,60,18,14,1,8,15,'FILTER CALC');
 Textcolor(12);
 GotoXY(15,3);
 Write('Filter Synthesis Calculations');
 GotoXY(15,4);
 Write('---');

 Textcolor(10);
 GotoXY(8,6);
 Write('An interactive program which performs calculations for various microwave filter structures.');
 GotoXY(14,14);
 Write('Programmer: Chance M. Glenn');
 GotoXY(17,15);
 Write('Harry Diamond Laboratories');
 Textcolor(31);
 GotoXY(23,19);
 Write('Press Esc...');
 HOLDUNTIL(#27);
 Textcolor(15);
 GotoXY(23,19);
 Write('Press Esc...');
End;

Procedure MENU1;
var
 ChNum: CHAR;
 errorcode: INTEGER;
Begin
 MAKE_WINDOW(12,5,50,13,14,4,8,15,'Filter Types');
 Textcolor(3);
 GotoXY(12,6);
 Write('1. Quarter-wavelength Low-pass');
 GotoXY(12,7);
 Write('2. Inter-digital');
 GotoXY(12,8);
Write('3. Comb-Line');
GotoXY(12,9);
Write('4. Waveguide');
TextColor(14);
GotoXY(12,6);
Write('1.');
GotoXY(12,7);
Write('2.');
GotoXY(12,8);
Write('3.');
GotoXY(12,9);
Write('4.');
TextColor(31);
GotoXY(16,14);
Write(' Select number...');

ChNum := #32;
While (ChNum<>'1') and (ChNum<>'2') and (ChNum<>'3') and (ChNum<>'4') do
Begin
ChNum := Readkey;
End;
Val(ChNum,Choice,errorcode);

TextColor(15);
GotoXY(16,14);
Write(' Select number...');
End;

Procedure LOW_PASS_INPUT;
var
 MChoice: CHAR;
 errorcode: INTEGER;
Begin

MAKE_WINDOW(10,2,60,7,14,4,0,15,'Identification Information');
GotoXY(3,3);
TextColor(2);
Write('Project ID:');
TextColor(10);
Window(24,4,65,5);
Readln(ID);
Appendix A

Window(10,2,70,9);
GotoXY(3,5);
Textcolor(2);
Write('Date: ');
Textcolor(10);
Window(19,6,50,7);
Readln(DATE);

MAKE_WINDOW(15,6,50,4,14,4,0,15,'Matching Information');
GotoXY(3,3);
Textcolor(2);
Write('System impedance (Ohms): ');
Textcolor(10);
Window(43,8,55,9);
Readln(Zs);

MAKE_WINDOW(15,10,50,6,14,4,0,15,'Physical Parameters');
GotoXY(3,3);
Textcolor(2);
Write('Relative dielectric constant: ');
Textcolor(10);
Window(47,12,57,11);
Readln(epsilon);
Window(15,9,65,15);
GotoXY(3,5);
Textcolor(2);
Write('Substrate thickness (inches): ');
Textcolor(10);
Window(47,13,55,14);
Readln(b);
Window(15,9,65,15);
GotoXY(3,6);
Textcolor(2);
Write('Conductor thickness (inches): ');
Textcolor(10);
Window(47,14,55,15);
Readln(t);

MAKE_WINDOW(15,13,50,6,14,4,0,15,'Frequency Information');
GotoXY(3,3);
Textcolor(2);
Write('Pass-band edge frequency (GHz): ');
Textcolor(10);
Window(49,15,57,16);
Readln(f1);
Window(15,13,65,18);
GotoXY(3,5);
Textcolor(2);
Write('Cut off frequency (GHz): ');
Textcolor(10);
Window(42,17,55,18);
Readln(f2);

MAKE_WINDOW(15,16,50,6,14,4,0,15,'Modelling Specifications');
GotoXY(3,3);
Textcolor(2);
Write('Ripple (dB): ');
Textcolor(10);
Window(30,18,57,19);
Readln(Ripple);
Window(15,16,65,22);
GotoXY(3,4);
Textcolor(2);
Write('Number of elements: ');
Textcolor(10);
Window(37,19,55,21);
Readln(nelements);
Window(15,16,65,22);
GotoXY(18,5);
Textcolor(2);
Write('Begin with...');
GotoXY(5,6);
Write('0. Shunt capacitor 1. Series inductor');
Textcolor(10);
GotoXY(5,6);
Write('0.');
GotoXY(26,6);
Write('1.');

MChoice := #0;
While (MChoice <> '0') and (MChoice <> '1') do
Beginning
MChoice := Readkey;
End;
Val(MChoice,initelement,errorcode);
Appendix A

Procedure BAND_PASS_INPUT;
Begin

MAKE_WINDOW(10,2,60,7,14,4,0,15,'Identification Information');
GotoXY(3,3);
TextColor(2);
Write('Project ID: ');
TextColor(10);
Window(24,4,65,5);
Readln(ID);
Window(10,2,70,9);
GotoXY(3,5);
TextColor(2);
Write('Date: ');
TextColor(10);
Window(19,6,50,7);
Readln(DATE);

MAKE_WINDOW(15,6,50,4,14,4,0,15,'Matching Information');
GotoXY(3,3);
TextColor(2);
Write('System impedance (Ohms): ');
TextColor(10);
Window(43,8,55,9);
Readln(Zs);

MAKE_WINDOW(15,10,50,6,14,4,0,15,'Physical Parameters');
GotoXY(3,3);
TextColor(2);
Write('Relative dielectric constant: ');
TextColor(10);
Window(47,12,57,11);
Readln(epsilon);
Window(15,9,65,15);
GotoXY(3,5);
TextColor(2);
Write('Substrate thickness (inches): ');
TextColor(10);
Window(47,13,55,14);
Readln(b);
Window(15,9,65,15);
GotoXY(3,6);
TextColor(2);
Write('Conductor thickness (inches): '); Textcolor(10); Window(47,14,55,15); Readln(t); MAKE_WINDOW(15,13,50,6,14,4,0,15,'Frequency Information'); GotoXY(3,3); Textcolor(2); Write('Lower edge frequency (GHz): '); Textcolor(10); Window(46,15,57,16); Readln(f1); Window(15,13,65,18); GotoXY(3,5); Textcolor(2); Write('Upper edge frequency (GHz): '); Textcolor(10); Window(46,17,55,18); Readln(f2); MAKE_WINDOW(15,16,50,6,14,4,0,15,'Modelling Specifications'); GotoXY(3,3); Textcolor(2); Write('Ripple (dB): '); Textcolor(10); Window(30,18,57,19); Readln(Ripple); Window(15,16,65,22); GotoXY(3,4); Textcolor(2); Write('Number of elements: '); Textcolor(10); Window(37,19,55,20); Readln(nelements); Window(15,16,65,22); GotoXY(3,5); Textcolor(2); Write('Element electrical length (degrees): '); Textcolor(10); Window(55,20,62,21); Readln(thetaO);
Appendix A

Procedure WAVEGUIDE_INPUT;
var
 instring: STRING;
 errorcode: INTEGER;
Begin
 dFLAG := FALSE;
 MAKE_WINDOW(10,2,60,7,14,4,0,15,'Identification Information');
 GotoXY(3,3);
 Textcolor(2);
 Write('Project ID: ');
 Textcolor(10);
 Window(24,4,65,5);
 Readln(ID);
 Window(10,2,70,9);
 GotoXY(3,5);
 Textcolor(2);
 Write('Date: ');
 Textcolor(10);
 Window(19,6,50,7);
 Readln(DATE);

 MAKE_WINDOW(15,6,50,4,14,4,0,15,'Matching Information');
 GotoXY(3,3);
 Textcolor(2);
 Write('System impedance (Ohms): ');
 Textcolor(10);
 Window(43,8,55,9);
 Readln(Instring);
 Val(Instring,Zs,errorcode);

 MAKE_WINDOW(15,10,50,6,14,4,0,15,'Physical Parameters');
 GotoXY(3,3);
 Textcolor(2);
 Write('Relative dielectric constant: ');
 Textcolor(10);
 Window(47,12,57,11);
 Readln(epsilon);
 Window(15,9,65,15);
 GotoXY(3,6);
 Textcolor(2);
 Write('Waveguide width (inches): ');
 Textcolor(10);
Window(43,14,55,15);
Readln(a);

MAKE_WINDOW(15,13,50,6,14,4,0,15,'Frequency Information');
GotoXY(3,3);
Textcolor(2);
Write('Lower edge frequency (GHz): ');
Textcolor(10);
Window(46,15,57,16);
Readln(a1);
Window(15,13,65,18);
GotoXY(3,5);
Textcolor(2);
Write('Upper edge frequency (GHz): ');
Textcolor(10);
Window(46,17,55,18);
Readln(f2);

MAKE_WINDOW(15,16,50,6,14,4,0,15,'Modelling Specifications');
GotoXY(3,3);
Textcolor(2);
Write('Ripple (dB): ');
Textcolor(10);
Window(30,18,57,19);
Readln(Ripple);
Window(15,16,65,22);
GotoXY(3,5);
Textcolor(2);
Write('Number of elements: ');
Textcolor(10);
Window(37,20,55,21);
Readln(nelements);

End;

Procedure g_CALCULATE;
var
 Beta, Gamma: REAL;
 a,b: ARRAY[0..50] of REAL;
 Zflag: INTEGER;
Begin
 Beta := Ln(Coth(Ripple/17.37));
Appendix A

Gamma := Sinh(Beta / (2*nelements));
g[0] := 1.0;
For k := 1 to nelements do
Begin
a[k] := Sin((2*k-1)*pi / (2*nelements));
b[k] := Sqr(Gamma) + Sqr(Sin(k*pi / nelements));
End;
g[1] := 2*a[1] / Gamma;
For k := 2 to nelements do
Begin
 g[k] := (4*a[k-1]*a[k]) / (b[k-1] * g[k-1]);
End;
If (nelements / 2.0 <> nelements div 2) then
Begin
 g[nelements + 1] := 1.0
End;
If (nelements / 2.0 = nelements div 2) then
Begin
 g[nelements + 1] := Sqr(Coth(Beta / 4.0));
End;
MAKE_WINDOW(5,3,40,nelements+6,14,7,0,15,'Tchebyscheff Element Values g(i)');
Textcolor(4);
For k := 0 to nelements + 1 do
Begin
 GotoXY(9,k+3);
 Write('g',k,' = ');
End;
Textcolor(0);
For k := 0 to nelements + 1 do
Begin
 GotoXY(15,k+3);
 Write(g[k]);
End;
Textcolor(31);
GotoXY(13,nelements+7);
Write(' Press Esc...');
HOLDUNTIL(#27);
Textcolor(15);
GotoXY(13,nelements+7);
Write(' Press Esc...');
Appendix A

Procedure LOW_PASS_CALCULATE;
 var
 Zflag: INTEGER;
 Begin

 YA := 1.0/Zs;
 tbratio := t/b;
 omega1 := 2.0*pi*f1*1.0E+9;
 omegaQ := 2.0*pi*f2*1.0E+9;
 f0 := (f2+f1)/2.0;
 w := (f2-f1)/f0;
 theta0 := pi/2.0;
 Elem[0] := (Zs/g[0])*g[0];
 Elem[nelements+1] := (Zs/g[0])*g[nelements+1];
 Zflag := initelement;
 Z[0] := Elem[0];
 Z[nelements+1] := Elem[nelements+1];
 Units[0] := 'Ohms';
 Units[nelements+1] := 'Ohms';
 For k := 1 to nelements do
 Begin
 If (Zflag = 0) then
 Begin
 Elem[k] := ((g[0]/Zs)*(1.0/omega1))*g[k];
 Z[k] := Tan((pi/2.0)*(omega1/omegaQ))/(omega1*Elem[k]);
 Zflag := 1;
 Units[k] := 'Farads';
 End
 Else
 Begin
 Elem[k] := ((Zs/g[0])*(1.0/omega1))*g[k];
 Z[k] := (omega1*Elem[k])/Tan((pi/2.0)*(omega1/omegaQ));
 Zflag := 0;
 Units[k] := 'Henries';
 End;
 End;

 Lambda4 := (1000.0*c)/(4.0*Sqrt(epsilon)*f2*(1.0E+9)*2.54); {mils}
 End;

Procedure COMB_LINE_CALCULATE;
 Begin
Appendix A

\[w := (f_2-f_1)/f_0; \]
\[YA := 1.0/Z_s; \]
\[tbratio := t/b; \]
\[omega_1 := 2.0\pi f_1 1.0E+9; \]
\[omega_2 := 2.0\pi f_2 1.0E+9; \]
\[f_0 := (f_2+f_1)/2.0; \]
\[omega_0 := 2.0\pi f_0 1.0E+9; \]
\[theta_0 := (\pi*theta_0)/180.0; \]

{Normalized susceptance slope parameters}

\[bj := (Yaj/YA)*(Cot(theta_0)+theta_0*SQR(Csc(theta_0)))/2.0; \]

\[GT[1] := w*bj/(g[0]*g[1]*omega_1); \]

For \(j = 1 \) to nelements-1 do

Begin

\[Jkk[j] := (w/omega_1)*SQR(bj*bj/(g[j]*g[j+1])); \]
End;

\[GT[nelements] := w*bj/(g[nelements]*g[nelements+1]*omega_1); \]

{Normalized capacitances per unit length between each line and ground}

\[Ce[0] := (376.7*YA/SQR(epsilon))*(1.0-SQR(GT[1])); \]

\[Ce[1] := (376.7*YA/SQR(epsilon))*(Yaj/YA - 1.0 + GT[1] - Jkk[1]*Tan(theta_0)) + Ce[0]; \]

For \(j = 2 \) to nelements-1 do

Begin

\[Ce[j] := (376.7*YA/SQR(epsilon))*(Yaj/YA - Jkk[j-1]*Tan(theta_0) - Jkk[j]*Tan(theta_0)); \]
End;

\[Ce[nelements+1] := (376.7*YA/SQR(epsilon))*(1.0-SQR(GT[nelements])); \]

\[Ce[nelements] := (376.7*YA/SQR(epsilon))*(Yaj/YA - 1.0 + GT[nelements] - Jkk[nelements-1]*Tan(theta_0)) + Ce[nelements+1]; \]
Appendix A

{Normalized mutual capacitances per unit length between adjacent lines}

\[C_{Me[0]} := (376.7 \cdot \frac{YA}{\sqrt{\epsilon}}) - C_e[0]; \]

For \(j = 1 \) to \(n_{\text{elements}-1} \) do
Begin
\[C_{Me[j]} := (376.7 \cdot \frac{YA}{\sqrt{\epsilon}}) \cdot J_{kk[j]} \cdot \tan(\theta_0); \]
End;

\[C_{Me[n_{\text{elements}}]} := (376.7 \cdot \frac{YA}{\sqrt{\epsilon}}) - C_e[n_{\text{elements}}+1]; \]

{Lumped capacitances}

For \(j = 1 \) to \(n_{\text{elements}} \) do
Begin
\[C_{s[f][j]} := Y_{aj} \cdot \left(\cot(\theta_0) / \omega_0 \right); \]
End;

{Element line length (inches)}

\[L := \frac{1000.0 \cdot \theta_0 \cdot c}{2.0 \pi \sqrt{\epsilon} \cdot f_0 \cdot 1.0 \cdot E9}; \] \{mils\}

End;

Procedure COMB_LINE_FOLLOW_UP;
Begin
Writein;
Writeln;
Writeln('From table of curves (p. 188 "Microwave Filters..." Enter:');
Writein;
Writeln;
Writeln('Spacing to substrate thickness ratio');
Writeln('--');
Writeln;
For \(i = 0 \) to \(n_{\text{elements}} \) do
Begin
\[\text{Write}('s/b ',i+1,': '); \]
Readln(spacing[i]);
\[\text{spacing}[i] := 1000.0 \cdot \text{spacing}[i] \cdot b; \]
End;

37
Appendix A

WriteIn;
WriteIn;
WriteIn('Fringing capacitances');
WriteIn('');
WriteIn;
For i := 0 to nelements do
Begin
 Write('(Cfe/n) ',i,i+1,': ');
 Readln(Cfe[i]);
End;
Write('Isolated fringing capacitance (p. 190): '); Readln(ICfe);

width[0] := (1000.0*b/2.0)*(1.0-t/b)*(Ce[0]/2.0-ICfe-Cfe[0]);
For i := 1 to nelements do
Begin
 width[i] := (1000.0*b/2.0)*(1.0-t/b)*(Ce[i]/2.0-Cfe[i-1] - Cfe[i]);
End;
width[nelements+1] := (1000.0*b/2.0)*(1.0-t/b)*(Ce[nelements+1] /2.0-ICfe-Cfe[nelements+1]);

WriteIn(LST);
WriteIn(LST,'Fringing capacitances');
WriteIn(LST,'');
WriteIn(LST);
For i := 0 to nelements do
Begin
 WriteIn(LST,i,' ',Cfe[i]);
End;
WriteIn(LST,'Isolated fringing capacitance: ',ICfe);
WriteIn(LST);
WriteIn(LST);
WriteIn(LST,'Element widths (mils)');
WriteIn(LST,'');
WriteIn(LST);
For i := 0 to nelements+1 do
Begin
 WriteIn(LST,i,' ',width[i]);
End;
WriteIn(LST);
WriteIn(LST);
WriteIn(LST,'Element spacings (mils)');
Writeln(LST,
 Writeln(LST); For i := 0 to nelements do Begin
 Writeln(LST,i,',',i+i,' ',spacing[i]);
 End;
End;

Procedure WAVEGUIDE_CALCULATE;
 Begin

 YA := 1.0/Zs;
 omega1 := 2.0*pi*f1*1.0E+9;
 omega2 := 2.0*pi*f2*1.0E+9;
 f0 := (f2+f1)/2.0;
 omega0 := 2.0*pi*f0*1.0E+9;

 {Plane wave wavelength at f0}
 lambda0 := c/(SQRT(epsilon)*f0*1.0E+9);

 {Guide-wavelength fractional bandwidth}
 wL := (Lambdag(f1*1.0E+9,epsilon,a)-Lambdag(f2*1.0E+9,epsilon,a))
 /Lambdag(f0*1.0E+9,epsilon,a);

 {Normalized impedance inverter parameters}
 KZO[0] := SQRT((pi/2.0)*(wL/
 (g[0]*g[1]*omega1prime)));
 For i := 1 to nelements-1 do Begin
 KZO[i] := (pi*wL/(2.0*omega1prime*SQR(g[i]*g[i+1])));
 End;
 KZO[nelements] := SQRT((pi/2.0)*(wL/
 (g[nelements]*g[nelements+1]
 *omega1prime)));

 {Shunt Reactances}
 For i := 0 to nelements do Begin
 XZ0[i] := KZO[i]/(1.0 - SQR(KZO[i]));
 XZ0La[i] := (XZ0[i]/a)*(Lambdag(f0*1.0E+9,epsilon,a));
 End;

Appendix A
Appendix A

(Element spacing electrical lengths)
For i := 1 to nelements do
Begin
 Theta[i] := pi-0.5*(ArcTan(2.0*XZ0[i-1])+ArcTan(2.0*XZ0[i]));
 spacing[i] := Theta[i]*Lambdag(f0*1.0E+9,epsilon,a)/(2.0*pi);
End;
End;

Procedure LOW_PASS_SUMMARY;
Begin
 MAKE_WINDOW(2,1,76,23,7,1,0,15,ID);
 Textcolor(3);
 GotoXY(5,2);
 Write('Date:');
 GotoXY(5,3);
 Write('System impedance (Ohms):');
 GotoXY(5,4);
 Write('Relative dielectric constant:');
 GotoXY(5,5);
 Write('Substrate thickness (inches):');
 GotoXY(5,6);
 Write('Conductor thickness (inches):');
 GotoXY(5,7);
 Write('Band edge frequency (GHz):');
 GotoXY(5,8);
 Write('Cutoff frequency (GHz):');
 GotoXY(5,9);
 Write('Ripple (dB):');
 GotoXY(5,10);
 Write('Number of elements:');
 GotoXY(5,11);
 Write('Line length (mils):');
 GotoXY(5,12);
 Write('g(i)');
 GotoXY(21,12);
 Write('g(i)');
 GotoXY(21,13);
Write('-----');
GotoXY(38,12);
Write('Element values');
GotoXY(38,13);
Write('-----');
GotoXY(58,12);
Write('Impedances (Ohms)');
GotoXY(58,13);
Write('-----');

Textcolor(11);
GotoXY(11,2);
Write(DATE);
GotoXY(35,3);
Write(Zs);
GotoXY(35,4);
Write(epsilon);
GotoXY(35,5);
Write(b);
GotoXY(35,6);
Write(t);
GotoXY(35,7);
Write(f1);
GotoXY(35,8);
Write(f2);
GotoXY(35,9);
Write(Ripple);
GotoXY(35,10);
Write(nelements);
GotoXY(35,11);
Write(Lambda4);

For i := 0 to nelements+1 do
Begin
 GotoXY(5,14+i):
 Write(i);
 GotoXY(14,14+i):
 Write(g[i]);
 GotoXY(36,14+i):
 Write(Elem[i]);
 GotoXY(58,14+i):
 Write(Z[i]);
End;
Appendix A

Textcolor(31); GotoXY(32,24); Write(' Press Esc '); HOLDUNTIL(#27);
End;

Procedure LOW_PASS_PRINT_OUT;
Begin
 Writeln(LST,'OUTPUT');
 Writeln(LST,'———');
 Writeln(LST);
 Writeln(LST,ID);
 Writeln(LST);
 Writeln(LST);
 Writeln(LST,' Matching information');
 Writeln(LST,' ————');
 Writeln(LST);
 Writeln(LST,'System Impedance Zs: ',Zs);
 Writeln(LST);

 Writeln(LST,' Substrate/Conductor information');
 Writeln(LST,' ————');
 Writeln(LST);
 Writeln(LST,'Relative dielectric constant: ',epsilon);
 Writeln(LST,'Substrate thickness (inches): ',b);
 Writeln(LST,'Conductor thickness (inches): ',t);
 Writeln(LST);
 Writeln(LST);

 Writeln(LST,' Frequency information');
 Writeln(LST,' ————');
 Writeln(LST);
 Writeln(LST,'Band edge frequency (GHz): ',f1);
 Writeln(LST,'Cutoff frequency (GHz): ',f2);
 Writeln(LST);
 Writeln(LST);

 Writeln(LST,' Filter Modeling specifications');
 Writeln(LST,' ————');
 Writeln(LST);
 Writeln(LST,'Ripple (dB): ',ripple);
Appendix A

Writeln(LST);
Writeln(LST,'Number of elements: ',nelements);
Writeln(LST);
For i := 0 to nelements+1 do
Begin
 Writeln(LST,'g(',i,')': 'g[i]);
End;
Writeln(LST);
Writeln(LST,' Lumped element values');
Writeln(LST,'------------------');
Writeln(LST);
For i := 0 to nelements+1 do
Begin
 Writeln(LST,'Element(',i,'): ',Elem[i], ' ',Units[i]);
End;
Writeln(LST);
Writeln(LST,' Element impedances (Ohms)');
Writeln(LST,'---------------------------');
Writeln(LST);
For i := 0 to nelements+1 do
Begin
 Writeln(LST,' Element(',i,'):,Z[i]);
End;
Writeln(LST);
Writeln(LST,'Transmission line length: ',Lambda4,' mils');
Writeln(LST,#12);
End;

Procedure BAND_PASS_PRINT_OUT;
Begin
 Writeln(LST,'OUTPUT');
 Writeln(LST,'------------------');
 Writeln(LST);
 Writeln(LST,ID);
 Writeln(LST);
 Writeln(LST);
 Writeln(LST,'Matching information');
 Writeln(LST,'---------------------------');
 Writeln(LST);
 Writeln(LST,'System Impedance Zs: ',Zs);
 Writeln(LST);
 Writeln(LST);
Appendix A

Writeln(LST);

Writeln(LST,' Substrate/Conductor information');
Writeln(LST,'…………………………');
Writeln(LST);
Writeln(LST,'Relative dielectric constant: ',epsilon);
Writeln(LST,'Substrate thickness (inches): ',b);
Writeln(LST,'Conductor thickness (inches): ',t);
Writeln(LST,'t/b ratio: ',tbratio);
Writeln(LST);
Writeln(LST);

Writeln(LST,' Frequency information');
Writeln(LST,'…………………………');
Writeln(LST);
Writeln(LST,'Center frequency (GHz): ',f0);
Writeln(LST,'Low-end frequency (GHz): ',f1);
Writeln(LST,'High-end frequency (GHz): ',f2);
Writeln(LST,'Fractional bandwidth: ',w);
Writeln(LST);
Writeln(LST);

Writeln(LST,' Filter Modeling specifications');
Writeln(LST,'…………………………');
Writeln(LST);
Writeln(LST,'Ripple (dB): ',ripple);
Writeln(LST);
Writeln(LST,'Number of elements: ',nelements);
Writeln(LST);
Writeln(LST);

For i := 0 to nelements+1 do
Begin
 Writeln(LST,'g(',i,'): ',g[i]);
End;
Writeln(LST);
Writeln(LST);

Writeln(LST,' Miscellaneous parameters');
Writeln(LST,'…………………………');
Writeln(LST);
Writeln(LST);

Writeln(LST,'Yaj/YA = ',Yaj/YA);
Writeln(LST,'bj/YA = ',bj);
Writeln(LST);
Appendix A

Writeln(LST,'GT1/YA = ',GT[1]);
For i := 1 to nelements-1 do
Begin
 Writeln(LST,'J',i,i+1,'/YA = ',Jkk[i]);
End;
Writeln(LST,'GT',nelements,'/YA = ',GT[nelements]);
Writeln(LST);
Writeln(LST);

Writeln(LST,' Capacitance values');
Writeln(LST,'---------------------------');
Writeln(LST);
Writeln(LST,'Normalized cap./unit length between line & ground');
Writeln(LST);
For i := 0 to nelements+1 do
Begin
 Writeln(LST,'C',i,'/n = ',ei);
End;
Writeln(LST);
Writeln(LST,' Mutual capacitances');
Writeln(LST);
For i := 0 to nelements do
Begin
 Writeln(LST,'C',i,i+1,'/n = ',CMe[i]);
End;
Writeln(LST);
Writeln(LST,' Lumped capacitances');
Writeln(LST);
For i := 1 to nelements do
Begin
 Writeln(LST,'Cs',i,' = ',Cs[i]);
End;
Writeln(LST);
Writeln(LST);
Writeln(LST,'Line length = ',L,' mils');
Writeln(LST,#12);

End;

Procedure WAVEGUIDE_SUMMARY;
Begin
Appendix A

MAKE_WINDOW(2,1,76,23,7,1,0,15,1D);
Textcolor(3);
GotoXY(5,2);
Write('Date:');
GotoXY(5,3);
Write('System impedance (Ohms):');
GotoXY(5,4);
Write('Relative dielectric constant:');
GotoXY(5,5);
Write('Waveguide width(inches):');
GotoXY(5,6);
Write('Lower edge frequency (GHz):');
GotoXY(5,7);
Write('Upper edge frequency (GHz):');
GotoXY(5,8);
Write('Center frequency (GHz):');
GotoXY(5,9);
Write('Ripple (dB):');
GotoXY(5,10);
Write('Number of elements:');
GotoXY(5,11);
Write('a/\lambda_0:');

GotoXY(5,12);
Write('i');
GotoXY(5,13);
Write('-');
GotoXY(21,12);
Write('d(\i)');
GotoXY(21,13);
Write('—');
GotoXY(38,12);
Write('Spacing (inches):');
GotoXY(38,13);
Write('—');
GotoXY(58,12);
Write('Reactances (Ohms):');
GotoXY(58,13);
Write('—');

Textcolor(11);
GotoXY(11,2);
Write(DATE);
GotoXY(35,3);
Write(Zs);
GotoXY(35,4);
Write(epsilon);
GotoXY(35,5);
Write(a);
GotoXY(35,6);
Write(f1);
GotoXY(35,7);
Write(f2);
GotoXY(35,8);
Write(f0);
GotoXY(35,9);
Write(Ripple);
GotoXY(35,10);
Write(nelements);
GotoXY(35,11);
Write(a / lambda0);

For i := 0 to nelements do
Begin
 GotoXY(5,14+i);
 Write(i);
 If dFLAG then
 Begin
 GotoXY(14,14+i);
 Write(d[i]);
 End;
 If (i >= 1) then
 Begin
 GotoXY(36,14+i);
 Write(spacing[i]);
 End;
 GotoXY(58,14+i);
 Write(XZ0La[i]);
End;

Textcolor(31);
GotoXY(32,24);
Write(' Press Esc ');
HOLDUNTIL(#27);
Textcolor(15);
Appendix A

GotoXY(32,24);
Write(' Press Esc ');
End;

Procedure WAVEGUIDE_DISTANCES;
Begin
 dFLAG := TRUE;
 MAKE_WINDOW(3,2,40,nelements+5,7,1,0,15,'Element Distances');
 GotoXY(5,2);
 Write(' From graph 8.06-2a on p. 453...');
 For i := 0 to nelements do
 Begin
 Textcolor(9);
 GotoXY(7,i+4);
 Write('d/a_',i,':');
 Textcolor(15);
 GotoXY(17,i+4);
 Read(da[i]);
 d[i] := da[i]*a;
 End;
 End;
 Textcolor(31);
 GotoXY(14,nelements+6);
 Write(' Press Esc ');
 HOLDUNTIL(#27);
 Textcolor(15);
 GotoXY(14,nelements+6);
 Write(' Press Esc ');
End;

Procedure WAVEGUIDE_PRINT_OUT;
Begin
 Writeln(LST,'OUTPUT');
 Writeln(LST,'———');
 Writeln(LST);
 Writeln(LST,ID);
 Writeln(LST);
 Writeln(LST);
 Writeln(LST,' Matching information');
 Writeln(LST,' ————');
 Writeln(LST);
 Writeln(LST,'System Impedance Zs: ',Zs);
 Writeln(LST);
Appendix A

Writeln(LST);

Writeln(LST,' Waveguide physical parameters');
Writeln(LST,' ----------------------------------');
Writeln(LST);
Writeln(LST,'Relative dielectric constant: \epsilon');
Writeln(LST,'Width (inches): a');
Writeln(LST,'Width to plane-wave wavelength ratio: a/\lambda_0');
Writeln(LST);
Writeln(LST);

Writeln(LST,' Frequency information');
Writeln(LST,' ------------------------');
Writeln(LST);
Writeln(LST,'Center frequency (GHz): f_0');
Writeln(LST,'Low-end frequency (GHz): f_1');
Writeln(LST,'High-end frequency (GHz): f_2');
Writeln(LST,'Guide-wavelength fractional bandwidth: w_L');
Writeln(LST);
Writeln(LST);

Writeln(LST,' Wavelengths');
Writeln(LST,' -----------');
Writeln(LST);
Writeln(LST,'\lambda_0 (inches): \lambda_0');
Writeln(LST,'\lambda_g (inches): \lambda_g(f_0, \epsilon, a)');
Writeln(LST,'\lambda_g (inches): \lambda_g(f_1, \epsilon, a)');
Writeln(LST,'\lambda_g (inches): \lambda_g(f_2, \epsilon, a)');
Writeln(LST);
Writeln(LST);

Writeln(LST,' Filter Modeling specifications');
Writeln(LST,' ---------------------------------');
Writeln(LST);
Writeln(LST,'Ripple (dB): ripple');
Writeln(LST);
Writeln(LST,'Number of elements: nelements');
Writeln(LST);
For i := 0 to nelements+1 do
Begin
 Writeln(LST,'g(i): g[i]);
End;
Appendix A

Writeln(LST);
Writeln(LST);

Writeln(LST,' Miscellaneous parameters');
Writeln(LST,' ------------------------');
Writeln(LST);
For i := 0 to nelements do
Begin
 Writeln(LST,'K',i,i+1,'/Z0: ',KZ0[i]);
End;
Writeln(LST);
For i := 0 to nelements do
Begin
 Writeln(LST,'X',i,i+1,'/Z0: ',XZ0[i]);
End;
Writeln(LST);
For i := 0 to nelements do
Begin
 Writeln(LST,'(X',i,i+1,'/Z0)*(Lambdag0/a): ',XZ0La[i]);
End;
Writeln(LST);
Writeln(LST);
Writeln(LST,' Element specifications');
Writeln(LST,'------------------------');
Writeln(LST);
For i := 1 to nelements do
Begin
 Writeln(LST,'Theta',i,'(radians): ',Theta[i]);
End;
Writeln(LST);
For i := 1 to nelements do
Begin
 Writeln(LST,'Spacing',i,'(inches): ',spacing[i]);
End;
Writeln(LST);
For i := 0 to nelements do
Begin
 Writeln(LST,'d',i,'(inches): ',d[i]);
End;
Writeln(LST,#12);

End;
Procedure SELECT;
Begin
 If (Choice = 1) then
 Begin
 LOW_PASS_INPUT;
 g_CALCULATE;
 LOW_PASS_CALCULATE;
 LOW_PASS_SUMMARY;
 End;
 If (Choice = 2) then
 Begin
 BAND_PASS_INPUT;
 g_CALCULATE;
 End;
 If (Choice = 3) then
 Begin
 BAND_PASS_INPUT;
 g_CALCULATE;
 COMB_LINE_CALCULATE;
 End;
 If (Choice = 4) then
 Begin
 WAVEGUIDE_INPUT;
 g_CALCULATE;
 WAVEGUIDE_CALCULATE;
 WAVEGUIDE_SUMMARY;
 WAVEGUIDE_DISTANCES;
 WAVEGUIDE_SUMMARY;
 End;
End;

Procedure EXIT_OPTIONS;
var
 ChNum: CHAR;
 EChoice, errorcode: INTEGER;
Begin
 MAKE_WINDOW(15,9,50,10,14,4,8,15,'Options');
 Textcolor(3);
 GotoXY(10,4);
 Write('1. Data hardcopy');
 GotoXY(10,5);
 Write('2. Re-calculate same filter type');
Appendix A

GotoXY(10,6);
Write('3. Restart program');
GotoXY(10,7);
Write('4. Quit');
Textcolor(11);
GotoXY(10,4);
Write('1.');
GotoXY(10,5);
Write('2. ');
GotoXY(10,6);
Write('3. ');
GotoXY(10,7);
Write('4. ');
Textcolor(31);
GotoXY(16,11);
Write(' Select number... ');

ChNum := #32;
While (ChNum<>'1') and (ChNum<>'2') and (ChNum<>'3') and
(ChNum<>'4') do
Begin
 ChNum := Readkey;
End;
Val(ChNum, EChoice, errorcode);

Textcolor(15);
GotoXY(16,11);
Write(' Select number... ');

If (EChoice = 1) then
Begin
 If (Choice = 1) then
 Begin
 LOW_PASS_PRINT_OUT;
 End;
 If (Choice = 2) then
 Begin
 BAND_PASS_PRINT_OUT;
 End;
 If (Choice = 3) then
 Begin
 BAND_PASS_PRINT_OUT;
 End;

52
If (Choice = 4) then
 Begin
 WAVEGUIDE_PRINT_OUT;
 End;
End;
If (EChoice = 2) then
 Begin
 SELECT;
 End;
If (EChoice = 3) then
 Begin
 MENU1;
 End;
If (EChoice = 4) then
 Begin
 Halt;
 End;
End;

BEGIN
 INTRO;
 MENU1;
 SELECT;
 EXIT_OPTIONS;
END.
Appendix B. Touchstone Circuit Model of QUADLF
(Excluding Waveguide Filter)
Appendix B

! Touchstone circuit model for Delay line limiter/filter.
! Project: Quasi-Active Delay Line Limiter/Filter.
! Project Engineer: Chance M. Glenn
! Date: 15Aug90
!
! Circuit filename: CMGDLF.CKT
!
DIM
FREQ GHz
LNG mil
CAP pF
VAR
! Substrate parameters
epsilon = 2.55 ! Relative dielectric constant
Height = 62.50 ! Substrate thickness
Thick = 1.00 ! Conductor thickness
Resis = 1.00 ! Relative resistivity of conductor
RGH = 8.00E-3 ! RMS surface roughness of conductor

! Transmission line parameters
Lambda4 = 1847.00 ! Quarter wavelength stub length
Linput1 = 200.00 ! Length of input line
Linput2 = 200.00 ! Length of input line
Linput3 = 200.00 ! Length of input line
W50 = 173.20 ! Line width for 50 ohms

! PIN diode parameters
DjCap = 0.30 ! PIN diode junction capacitance
DRs = 1.00 ! PIN diode series resistance
DLs = 0.90 ! PIN diode series inductance
DCp = 0.18 ! PIN diode package capacitance

! Waveguide delay-line parameters
WGeps = 78.99 ! Waveguide dielectric constant
Lwvgd1 = 6000.00 ! Limiter positioning in waveguide
WGwth = 1020.00 ! Waveguide width
WGht = 551.00 ! Waveguide height
Appendix B

! Miscellaneous parameters

\[
\begin{align*}
C_f &= 2.70 & \text{! Filtering capacitor} \\
C_c &= 0.30 & \text{! Coupling capacitor} \\
C_{\text{Notch}} &= 160.00 & \text{! Notching circuit capacitance} \\
R_{\text{lim}} &= 8000.00 & \text{! Limiter diode resistance} \\
W_f &= 27.10 & \text{! Width of filter line} \\
L_{\text{bias}} &= 1000.00 & \text{! Length of DC bias line} \\
L_f &= 500.00 & \text{! Length of filter line} \\
R_{\text{bias1}} &= 8000.00 & \text{! Value of biasing resistor (Shunt)} \\
R_{\text{bias2}} &= 1.00 & \text{! Value of biasing resistor} \\
W_{\text{bias}} &= 20.00 & \text{! Width of DC bias line} \\
W_{\text{Notch}} &= 50.00 & \text{! Width of notching line} \\
L_{\text{Notch}} &= 2000.00 & \text{! Length of notching line} \\
L_{\text{out1}} &= 500.00 & \text{! Length of output line}
\end{align*}
\]

CKT

! Micro-Strip substrate

\[
\text{MSUB } \epsilon^\text{er} \times \text{epsilon } h^\text{er} \times \text{Height } T^\text{T} \times \text{Thick } \rho^\text{er} \times \text{Rho } \rho^\text{er} \times \text{Resis } \rho^\text{er} \times \text{RGH}
\]

! Input line

MLIN 1 2 w^\text{W50} L^\text{Linput}

! DC Biasing circuit

CAP 2 3 C^\text{Cc} \\
RES 3 0 R^\text{Rbias1} \\
RES 3 4 R^\text{Rbias2} \\
MLIN 4 5 W^\text{Wbias} L^\text{Lbias}

! Low Pass Filter

MLIN 2 6 W^\text{W50} L^\text{Linput2} \\
CAP 6 0 C^\text{Cf} \\
MLIN 6 7 W^\text{Wf} L^\text{Lf} \\
CAP 7 0 C^\text{Cf} \\
MLIN 7 8 W^\text{W50} L^\text{Linput3}

! Delay/Waveguide Section

RWG 8 9 a^\text{WGwth} b^\text{WGght} c^\text{Lwvgd} d^\text{WGeps} Rho^\text{er} \times \text{Resis}

! Two Diode Limiter Section

PIN2 9 0 CJ^\text{DjCap} RJ^\text{Rlim} RS^\text{DRs} LS^\text{DLs} CP^\text{DCp} \\
MLIN 9 10 W^\text{W50} L^\text{Lmbda4} \\
PIN2 10 0 CJ^\text{DjCap} RJ^\text{Rlim} RS^\text{DRs} LS^\text{DLs} CP^\text{DCp}
MLIN 10 5 W^WNotch L^LNotch
CAP 5 0 C^CNotch
MLIN 10 11 W^W50 L^Lout1

! Output definition
DEF3P 1 4 11 CMGDLF
FREQ
 SWEEP 0.10 10.0 0.099
OUT
 CMGDLF dB[S31] GR1
 CMGDLF dB[S21] GR1
GRID
 RANGE 0.20 10.0 0.99
 GR1 0 -70 5
Distribution

Administrator
Defense Technical Information Center
Attn: DTIC-DDA (2 copies)
Cameron Station, Building 5
Alexandria, VA 22304-6145

US Army Aviation Systems Command
Attn: AMSLV-ES, J. Snyder
4300 Goodfellow Blvd
St. Louis, MO 63120-1798

Director
US Army Ballistic Research Laboratory
Attn: SLCBR-VL-A, E. M. Vogel
Aberdeen Proving Ground, MD 21005-5066

US Army Combined Arms Center
Attn: CACDA; MID; DE DIV, J. DeBroux
FT Leavenworth, KS 66027

US Army Electronics Technology & Devices Laboratory
Attn: SLCET-IB-H, E. Baidy
Attn: SLCET-M, H. Heislmair
Attn: SLCET-M, V. Gelnovatch
Attn: SLCET-MH, T. Burke
FT Monmouth, NJ 07703

US Army Foreign Science Technology Center
Attn: AIFRTA, T. Caldwell
220 7th Street NE
Charlottesville, VA 22901-5396

Commander
Belvoir RDE Center
Attn: STRBE-JMC, J. Owen
Attn: STRBE-JMC, C. J. Wanner
FT Belvoir, VA 22060-5605

US Army Laboratory Command, Vulnerability Assessment Lab
Attn: SLCVA-TAC, L. Gomez
Attn: SLCVA-TAC, D. Alvarez
White Sands Missile Range, NM 88002

Commander
US Army Materiel Command
Attn: AMC-DE-AR-E, J. Kreck
5001 Eisenhower Avenue
Alexandria, VA 22333-0001

OSD
DDDRER & AT
Attn: J. Whittier
The Pentagon, 3D1089
Washington, DC 20301-3080

The Pentagon, 3D 1089

Defense Advanced Research Project Agency
Attn: ESTO, E. Cohen
Attn: ESTO, E. Sobolewski
3701 N. Fairfax Dr
Arlington, VA 22203-1714

Commander
Belvoir RDE Center
Attn: STRBE-JMC, J. Owen
Attn: STRBE-JMC, C. J. Wanner
FT Belvoir, VA 22060-5605

Missile Research, Development, and Engineering Center
Attn: AMSMI-RD-DE-UB, R. Conrad
Attn: AMSMI-RD-DE-UB, B. Jennings
Redstone Arsenal, Al 35898-5000

US Army Armament Research, Development, and Engineering Center
Attn: SMCAR-AE, G. Taylor
Attn: SMCAR-AEB, P. L. Marinkas
Picatinny Arsenal, NJ 07806-5000

HQ
Defense Nuclear Agency
Attn: RAEE, G. Baker
6801 Telegraph Rd
Alexandria, VA 22310-3398

FT Belvoir, VA 22060-5605

61
Distribution

Deputy Commander
US Army Strategic Defense Command
Attn: CSSD-H-LS, N. Bell
PO Box 1500
Huntsville, AL 35807-3801

Director
Vulnerability Lethality Assessment
Management Office
Attn: AMSTE-TC-C, D. Bassett
Attn: R. Reitz
Aberdeen Proving Ground, MD 21005-5001

Walter Reed Army Institute of Research
Attn: SGRD-UWI-D, H. Bassen
Washington, DC 2037-5100

Commander
Naval Air Systems Command
Attn: AIR 5161G CG-1, Room 940,
D. Fellin
Attn: C. Caposel
Washington, DC 20361

Naval Research Laboratory
Attn: Code 4000, W. Willis
Attn: Code 4650, T. Wieting
Attn: Code 6800, G. Borsuk
Attn: Code 6835, W. Anderson
Washington, DC 20375-5000

Space and Naval Warfare Systems Command
Attn: PMW-145, CPT J. Fontana
Washington, DC 20363-5101

Air Force Electronic Systems Division
Attn: ESD/ICC, CPT K. E. Sears, JR
Hanscom AFB, MA 01731

Department of the Air Force
Air Force Phillips Laboratory
Attn: PL/XPW, W. L. Baker

Department of the Air Force (cont’d)
Air Force Phillips Laboratory
Attn: PL/XPW, P. Vail
Kirtland AFB, NM 87117-6008

Air Force Rome Air Development Center
Attn: RADC, J. Rooks
Attn: RADC/RBCT, T. Pesta
Griffiss AFB, NY 13441

Commander
Wright Research Development CTR
Attn: WRDC/ELM, T. Kemerley
Bldg. 620, Area B
Wright Patterson AFB, OH 45433-6543

Los Alamos National Laboratory
Attn: R. Reinovsky
Attn: K. Callahan, MS H851
PO Box 1663
Los Alamos, NM 87545

Lawrence Livermore National Laboratory
Attn: L-86, Hriar S. Cabayan
P.O. Box 808
Livermore, CA 94550

Sandia National Laboratories
Attn: Division 1235, J. Hoffman
Attn: L. Bacon, Div 1244
PO Box 5800
Albuquerque, NM 87185-5800

Georgia Institute of Technology Georgia Tech
Research Institute
Attn: E. E. Donaldson
Electronics and Computer Systems Laboratory
Atlanta, GA 30332

Ball Systems Engineering Division
Attn: J. Vanderstar
2901 Juan Tabo NE
Albuquerque, NM 87124
Distribution

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boeing Aerospace MS 84-06</td>
<td>Attn: E. Nalos, PO Box 3999, Seattle, WA 98124</td>
</tr>
<tr>
<td>Booz Allen & Hamilton, Inc</td>
<td>Attn: L. Albright, 4330 East-West Hwy, Bethesda, MD 20814-4455</td>
</tr>
<tr>
<td>Electromagnetic Compatibility Analysis Center</td>
<td>Attn: IITRI/DNA, J. Weidner, North Severn, Annapolis, MD 21402-1187</td>
</tr>
<tr>
<td>General Dynamics Pomona Div</td>
<td>Attn: K. Brown, 1675 W. Mission Blvd, PO Box 2507, Pomona, CA 91769-2507</td>
</tr>
<tr>
<td>Grumman Electronic Systems Div</td>
<td>Attn: C. Vasile, Sunrise Highway, Great River, NY 11739</td>
</tr>
<tr>
<td>Hughes Aircraft Company Ground System Group</td>
<td>Attn: W. Freeley, 1901 Malvern Avenue, Fullerton, CA 92634</td>
</tr>
<tr>
<td>Hughes Aircraft Company Missile Systems Group</td>
<td>Attn: G. Saran, 8433 Fallbrook Avenue, Canoga Park, CA 91304</td>
</tr>
<tr>
<td>Kaman Sciences Corporation</td>
<td>Attn: D. R. Smith, Attn: L. Allen, 1500 Garden of the Gods Road, PO Box 7463, Colorado Springs, CO 80933</td>
</tr>
<tr>
<td>Kaman Sciences Corporation</td>
<td>Attn: J. Demarest, 6400 Uptown Blvd, NE, Suite 300E, Albuquerque, NM 87110</td>
</tr>
<tr>
<td>McDonald Douglas Helicopter Co</td>
<td>Attn: G. Booth, 5000 E. McDowell Road, Mesa, AZ 85405-9797</td>
</tr>
<tr>
<td>McDonald Douglas Missile System Co.</td>
<td>Attn: C. Larson, PO Box 516, ST Louis, MO 63166</td>
</tr>
<tr>
<td>Mission Research Corp</td>
<td>Attn: J. McAdoo, Attn: M. Bollen, 8560 Cinderbed Rd, Newington, VA 22122</td>
</tr>
<tr>
<td>Pacific Monolithics Inc.</td>
<td>Attn: A. Podell, Attn: C. Mohwinkel, Attn: E. Stoneham, 245 Santa Ana Court, Sunnyvale, CA 94086-4512</td>
</tr>
<tr>
<td>Rand Corporation</td>
<td>Attn: E. Wojtaszek, 1700 Main Street, Santa Monica, CA 90406</td>
</tr>
</tbody>
</table>
Distribution

Raytheon Company, Missile Systems Division
Attn: MTA9-3, G. Colpoys
Hartwell Road
Bedford, MA 01730

Science Applications International Corp
Attn: T-4, R. W. Sutton
1710 Goodridge Drive
McLean, VA 22102

Sparta Corporation
Attn: R. E. O’Connor
4901 Corporate Drive, Suite 102
Huntsville, AL 35805

SRI International
Attn: G. August
333 Ravenswood Blvd
Menlo Park, CA 94025

The Mitre Corporation
Attn: MS-K101, G. Krantweiss
Burlington Road
Bedford, MA 01730

Westinghouse Electric Systems Group
Attn: L. Whicker, MS 3K13
Attn: S. Patel, Mail Stop 3T15
PO Box 1521
Baltimore, MD 21203

Low Observable Tech. Applications
Attn: SLCLT, G. Roffman

US Army Laboratory Command
Attn: AMSLC-TP-PA, T. White
Attn: SLCSM-C3, J. Sczepanski

USAISC

Harry Diamond Laboratories
Attn: Laboratory Directors
Attn: Division Directors
Attn: SLCHD-SD-TL, Library
Attn: SLCHD-SD-TL, Library (Woodbridge)
Attn: SLCHD-CS, Chief Scientist
Attn: SLCHD-DD, J. Scully
Attn: SLCHD-NW, Deputy Director
Attn: SLCHD-NW-EH, Chief
Attn: SLCHD-NW-EH, J. Beilfuss
Attn: SLCHD-NW-EP, Chief
Attn: SLCHD-NW-ES, Chief
Attn: SLCHD-NW-HPM, A. Kehs
Attn: SLCHD-NW-HPM, F. J. Agee
Attn: SLCHD-NW-HPM, H. Brisker
Attn: SLCHD-NW-P, J. Gwaltney
Attn: SLCHD-NW-RF, C. Fazi
Attn: SLCHD-NW-RF, C. Glenn (25 copies)
Attn: SLCHD-NW-RF, Chief
Attn: SLCHD-NW-RF, G. Tran
Attn: SLCHD-NW-RF, J. Tatum
Attn: SLCHD-NW-RF, L. Jasper
Attn: SLCHD-NW-RF, M. Berry
Attn: SLCHD-NW-RF, R. Kaul
Attn: SLCHD-NW-RF, R. Tan
Attn: SLCHD-NW-RF, S. Kaplan
Attn: SLCHD-NW-RF, S. Saddow
Attn: SLCHD-NW-RF, T. Turner
Attn: SLCHD-NW-RP, Chief
Attn: SLCHD-NW-RS, A. Bromborsky
Attn: SLCHD-NW-RS, Chief
Attn: SLCHD-NW-RS, L. Libelo
Attn: SLCHD-NW-TN, Chief
Attn: SLCHD-NW-TS, Chief
Attn: SLCHD-SLCTO, N. Berg
Attn: SLCHD-ST-MW, W. Wiebach
Attn: SLCHD-TA-ES, R. Wardell