1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
07/92

3. REPORT TYPE AND DATES COVERED
POP Test (06/92)

4. TITLE AND SUBTITLE
Performance Oriented Packaging Testing of Container, Shipping and Storage, Mk 3 Mods 0, 1, 2, and 3 for Packing Group II Solid Hazardous Materials

5. FUNDING NUMBERS

6. AUTHOR(S)
Victor D. Saul

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Weapons Station Earle Test and Evaluation Branch (Code 5023) Colts Neck, NJ 07722-5000

8. PERFORMING ORGANIZATION REPORT NUMBER
DODPOPHM/USA/DOD/NADTR92018

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Commander, Naval Sea Systems Command (PMS-422) Department of the Navy Washington, DC 20362-5101

10. SPONSORING/MONITORING AGENCY REPORT NUMBER
Same as above

11. SUPPLEMENTARY NOTES
N/A

12. DISTRIBUTION AVAILABLE FROM SECURITY CLASSIFICATION OF THIS PAGE
This document has been approved for public release and sale; its distribution is unlimited

13. ABSTRACT (Maximum 200 words)
This Performance Oriented Packaging (POP) test was conducted to ascertain whether the Mk 3 Mod 3 Shipping and Storage Container meets the Packing Group II requirements specified by the United Nations Recommendation on the Transportation of Dangerous Goods Document, ST/SGB/AC.101, Revision 6, Chapters 4 and 9 and the Code of Federal Regulations, Title 49 CFR, Parts 107 through 178, dated 1 October 1991. The packaged commodity used for the test was a simulated load of 20 mm inert linked ammunition weighing 48 kg (105 pounds). This represents the current maximum commodity weight. To compensate for future growth variations in product and/or packaging, 3 kg (7 pounds) were added. Gross weight of the loaded container was 59 kg (130 pounds). The test results indicate that the container has conformed to the POP requirements.

In addition, due to their similarities in design, size, and weight, this test is considered representative of qualification testing for the Mk 3 Mods 0, 1, and 2 Shipping and Storage Containers as per the variation in Title 49 CFR 107, Sec. 178.601h.

14. SUBJECT TERMS
POP Test of Mk 3 Mods 0, 1, 2, and 3 Shipping and Storage Container

15. NUMBER OF PAGES
8

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE
UL

19. SECURITY CLASSIFICATION OF ABSTRACT
UL

20. LIMITATION OF ABSTRACT
UL
PERFORMANCE ORIENTED PACKAGING TESTING
OF
CONTAINER, SHIPPING AND STORAGE, MK 3 MODS 0, 1, 2, AND 3
FOR PACKING GROUP II SOLID HAZARDOUS MATERIALS

Author:
Victor D. Saul
Mechanical Engineering Technician

Performing Activity:
Naval Weapons Station Earle
Colts Neck, New Jersey 07722-5000

July 1992

DISTRIBUTION UNLIMITED

Sponsoring Organization:
Naval Sea Systems Command
(Code PMS-422)
Department of the Navy
Washington, DC 20362-5101

92-20929

FINAL

Accession For

NTIS CRAI □
DTIC TAB □
Unannounced □
Justification

By
Distribution:

Availability Codes

[] A-1
Special

DTIC QUALITY INSPECTED
INTRODUCTION

This Performance Oriented Packaging (POP) test was performed to ascertain whether the Mk 3 Mod 3 Shipping and Storage Container (Packing Group II) meets the requirements specified by the United Nations Recommendation on the Transportation of Dangerous Goods Document, ST/SG/AC.10/1, Revision 6, Chapters 4 and 9 and the Code of Federal Regulations, Title 49 CFR, Parts 107 through 178, dated 1 October 1991. The packaged commodity used for the test was a simulated load of 20 mm inert linked ammunition weighing 48 kg (105 pounds). This represents the current maximum commodity weight. To compensate for future growth variations in product and/or packaging, 3 kg (7 pounds) were added. Gross weight of the loaded container was 59 kg (130 pounds).

Due to unavailability only one container was used for testing. This is less than the number required by the regulations. Approval for this deviation has been granted by the Under Secretary of Defense, Memorandum for the Joint Logistics Commanders dated 22 February 1990.

In addition, due to their similarities in design, size, and weight, this test is considered representative of qualification testing for the Mk 3 Mods 0, 1, and 2 Shipping and Storage Containers as per the variation in Title 49 CFR 107, Sec. 178.601h.

TESTS PERFORMED

1. Base Level Vibration Test

This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.608. The container was placed on a repetitive shock platform which has a vertical linear motion of 1-inch double amplitude. Movement of the container was restricted during vibration in all but the vertical direction. The frequency of the platform was increased until the container left the platform 1/16 of an inch at some instant during each cycle. Test time was 1 hour.

2. Stacking Test

This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.606. The container was subjected to a force applied to its top surface equivalent to the total weight of identical packages stacked to a minimum height of 3 meters (including the test container). A weight of 531 kg (1,170 pounds) was stacked on the test container. The test was performed for 24 hours. The weight was then removed and the container examined.

3. Drop Test

This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.603. Five drops were performed from a height of 1.2 meters (4 feet), impacting the following surfaces:
a. Flat bottom.

b. Flat top.

c. Flat on long side.

d. Flat on short side.

e. One corner.

PASS/FAIL

1. Base Level Vibration Test

The criteria for passing the base level vibration test is outlined in Title 49 CFR, Sec. 178.608(c): No test sample should show any deterioration which could adversely affect transportation safety or any distortion liable to reduce packaging strength.

2. Stacking Test

The criteria for passing the stacking test is outlined in Title 49 CFR, Sec. 178.606(d): No test sample may show any deterioration which could adversely affect transportation safety or any distortion likely to reduce its strength, cause instability in stacks of packages, or cause damage to inner packagings likely to reduce safety in transportation.

3. Drop Test

The criteria for passing the drop test is outlined in Title 49 CFR, Sec. 178.603(f): A package is considered to successfully pass the drop tests if for each sample tested, no rupture occurs which would permit spillage of loose explosive substances or articles from the outer packaging.

TEST RESULTS

1. Base Level Vibration Test
 Satisfactory.

2. Stacking Test
 Satisfactory.

3. Drop Test
 Satisfactory.
DISCUSSION

1. Base Level Vibration Test

 The input vibration frequency was 3.8 Hz. Immediately after the vibration test was completed, the container was removed from the platform, turned on its side and inspected. No unfavorable distortion or deterioration was observed.

2. Stacking Test

 The container was inspected after the 24-hour period was over. No unfavorable distortion or deterioration was observed.

3. Drop Test

 After each drop, the container was inspected. The contents were completely retained by the container.

REFERENCE MATERIAL

C. Bureau of Explosives Tariff No. BOE 6000K Hazardous Materials Regulations of the Department of Transportation by Air, Rail, Highway, Water including Specifications for Shipping Containers.

DISTRIBUTION LIST

Defense Technical Information Center (2 copies)
ATTN: DTIC/FDA
Bldg. 5, Cameron Station
Alexandria, VA 22304-6145

Defense General Supply Center
ATTN: DDRV-TMPA, D. Gay
Richmond, VA 23219

Commander
ATTN: Crane Division (Code 4053)
Naval Surface Warfare Center
Crane, IN 47522-5000
TEST DATA SHEET

POP MARKING:

UN 4A1/Y59/S/**/USA/DOD/NAD

YEAR LAST PACKED OR MANUFACTURED

DATA SHEET:

<table>
<thead>
<tr>
<th>Container: Mk 3 Mods 0, 1, 2, and 3 Shipping and Storage Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: 4A1</td>
</tr>
<tr>
<td>Specification Number: MIL-B-18876</td>
</tr>
<tr>
<td>Gross Weight: 59 kg (130 pounds)</td>
</tr>
<tr>
<td>Closure (Method/Type): Over-Center Latches</td>
</tr>
<tr>
<td>Additional Description: Ammunition Box</td>
</tr>
</tbody>
</table>

PRODUCT:

<table>
<thead>
<tr>
<th>Name: See table 1</th>
<th>NSN(s): See table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Nations Number: See table 1</td>
<td></td>
</tr>
<tr>
<td>United Nations Packing Group: II</td>
<td></td>
</tr>
<tr>
<td>Physical State (Solid, Liquid, or Gas): Solid</td>
<td></td>
</tr>
<tr>
<td>Vapor Pressure (Liquids Only): N/A At 50 °C: N/A At 55 °C: N/A</td>
<td></td>
</tr>
<tr>
<td>Consistency/Viscosity: N/A</td>
<td>Density/Specific Gravity: N/A</td>
</tr>
<tr>
<td>Amount Per Container: See table 1</td>
<td>Flash Point: N/A</td>
</tr>
<tr>
<td>Net Weight: See table 1</td>
<td></td>
</tr>
</tbody>
</table>

TEST PRODUCT:

<table>
<thead>
<tr>
<th>Name: 20 mm Inert Ammunition</th>
<th>Physical State: Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistency: N/A</td>
<td>Density/Specific Gravity: N/A</td>
</tr>
<tr>
<td>Test Pressure (Liquids Only): N/A</td>
<td></td>
</tr>
<tr>
<td>Amount Per Container: N/A</td>
<td>Net Weight: 51 kg (112 pounds)</td>
</tr>
<tr>
<td>Additional Description: The net weight includes the current maximum product weight plus an additional 3 kg (7 pounds).</td>
<td></td>
</tr>
</tbody>
</table>
Products Approved for Shipping in the Mk 3 Mods 0, 1, 2, and 3 Shipping and Storage Container

<table>
<thead>
<tr>
<th>NALC/ DODIC</th>
<th>NSN</th>
<th>Product Nomenclature</th>
<th>Packing Drawing Number</th>
<th>Haz Class/Div</th>
<th>UN Number</th>
<th>Units/ Cntr</th>
<th>Total Net Weight (lb)</th>
<th>Total Gross Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW33</td>
<td>1361-01-023-5175</td>
<td>Signal Underwater</td>
<td>2127915</td>
<td>1.1D</td>
<td>0034</td>
<td>6</td>
<td>42.3</td>
<td>57.3</td>
</tr>
<tr>
<td>SW04</td>
<td>1361-00-071-5077</td>
<td>Signal Underwater</td>
<td>2127915</td>
<td>1.1D</td>
<td>0034</td>
<td>6</td>
<td>83.9</td>
<td>98.9</td>
</tr>
<tr>
<td>SW06</td>
<td>TBD</td>
<td>TBD</td>
<td>2128042</td>
<td>TBD</td>
<td>TBD</td>
<td>6</td>
<td>41.0</td>
<td>56.0</td>
</tr>
<tr>
<td>SW18</td>
<td>1361-00-22-9967</td>
<td>TBD</td>
<td>2127927</td>
<td>1.1D</td>
<td>0034</td>
<td>6</td>
<td>32.0</td>
<td>47.0</td>
</tr>
<tr>
<td>SW20</td>
<td>1361-00-220-9965</td>
<td>TBD</td>
<td>2127927</td>
<td>1.1D</td>
<td>0034</td>
<td>6</td>
<td>32.0</td>
<td>47.0</td>
</tr>
<tr>
<td>SW21</td>
<td>1361-00-220-9964</td>
<td>TBD</td>
<td>2127927</td>
<td>1.1D</td>
<td>0034</td>
<td>6</td>
<td>32.0</td>
<td>47.0</td>
</tr>
<tr>
<td>SW23</td>
<td>1361-00-220-9962</td>
<td>TBD</td>
<td>2127927</td>
<td>1.1D</td>
<td>0034</td>
<td>6</td>
<td>32.0</td>
<td>47.0</td>
</tr>
<tr>
<td>SW24</td>
<td>1361-00-220-9961</td>
<td>TBD</td>
<td>2127927</td>
<td>1.1D</td>
<td>0034</td>
<td>6</td>
<td>32.0</td>
<td>47.0</td>
</tr>
<tr>
<td>B545</td>
<td>1310-00-678-9996</td>
<td>Ctg, 40 mm Blank Saluting</td>
<td>328874 329494 564203 564212</td>
<td>1.3C</td>
<td>0327</td>
<td>18</td>
<td>52.0</td>
<td>67.0</td>
</tr>
<tr>
<td>A862</td>
<td>1305-01-003-2461</td>
<td>Ctg, 20 mm Linked</td>
<td>328874 329494 564203 564212</td>
<td>1.2E</td>
<td>0321</td>
<td>128</td>
<td>82.0</td>
<td>97.0</td>
</tr>
<tr>
<td>A672</td>
<td>1305-00-139-5923</td>
<td>Ctg, 20 mm TP</td>
<td>328874 329494 564203 564212</td>
<td>1.4C</td>
<td>0339</td>
<td>130</td>
<td>105.0</td>
<td>120.0</td>
</tr>
<tr>
<td>A747</td>
<td>1305-00-055-1282</td>
<td>Ctg, 20 mm Linked</td>
<td>328874 329494 564203 564212</td>
<td>1.2E</td>
<td>0321</td>
<td>130</td>
<td>105.0</td>
<td>120.0</td>
</tr>
<tr>
<td>A855</td>
<td>1305-00-250-0200</td>
<td>Ctg, 20 mm Linked</td>
<td>328874 329494 564203 564212</td>
<td>1.2E</td>
<td>0009</td>
<td>130</td>
<td>105.0</td>
<td>120.0</td>
</tr>
<tr>
<td>B850</td>
<td>1310-01-240-5741</td>
<td>Ctg, 40 mm, Blank Saluting</td>
<td>328874 329494 564203 564212</td>
<td>1.3C</td>
<td>0327</td>
<td>18</td>
<td>52.0</td>
<td>67.0</td>
</tr>
</tbody>
</table>

TBD = To Be Determined
TABLE 1 (Continued)
Products Approved for Shipping in the
Mk 3 Mods 0, 1, 2, and 3 Shipping and Storage Container

<table>
<thead>
<tr>
<th>NALC/ DODIC</th>
<th>NSN</th>
<th>Product Nomenclature</th>
<th>Packing Drawing Number</th>
<th>Haz Class/Div</th>
<th>UN Number</th>
<th>Units/Cntr</th>
<th>Total Net Weight (lb)</th>
<th>Total Gross Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D685</td>
<td>1320-00-832-7981</td>
<td>Reducer, Flash Propellant Charge</td>
<td>328874</td>
<td>0027</td>
<td>6</td>
<td>69.0</td>
<td>84.0</td>
<td></td>
</tr>
<tr>
<td>B550</td>
<td>1310-00-866-9744</td>
<td>Ctg, 40 mm, Blank Saluting</td>
<td>328874 329494 564203 564212</td>
<td>1.3C</td>
<td>0327</td>
<td>18</td>
<td>50.0</td>
<td>67.0</td>
</tr>
<tr>
<td>SW08</td>
<td>1361-00-065-7733</td>
<td>Signal Underwater</td>
<td>2127915</td>
<td>1.1D</td>
<td>0034</td>
<td>6</td>
<td>43.7</td>
<td>58.7</td>
</tr>
<tr>
<td>SW09</td>
<td>1361-00-065-7734</td>
<td>Signal Underwater</td>
<td>2127915</td>
<td>1.2D</td>
<td>0409</td>
<td>6</td>
<td>43.7</td>
<td>58.7</td>
</tr>
<tr>
<td>SW19</td>
<td>1361-00-220-9966</td>
<td>Signal Underwater</td>
<td>2127927</td>
<td>1.1D</td>
<td>0034</td>
<td>6</td>
<td>32.0</td>
<td>47.0</td>
</tr>
<tr>
<td>SW22</td>
<td>1361-00-220-9963</td>
<td>Signal Underwater</td>
<td>2127927</td>
<td>1.1D</td>
<td>0034</td>
<td>6</td>
<td>32.0</td>
<td>47.0</td>
</tr>
<tr>
<td>SW30</td>
<td>1361-00-101-4909</td>
<td>Signal Underwater</td>
<td>2127915</td>
<td>1.1D</td>
<td>0034</td>
<td>6</td>
<td>43.7</td>
<td>58.7</td>
</tr>
<tr>
<td>SW33</td>
<td>1361-00-406-1989</td>
<td>Signal Underwater</td>
<td>2127915</td>
<td>1.1D</td>
<td>0034</td>
<td>6</td>
<td>43.7</td>
<td>58.7</td>
</tr>
<tr>
<td>SW37</td>
<td>1361-00-376-5612</td>
<td>Signal Underwater</td>
<td>2127915</td>
<td>1.1D</td>
<td>0034</td>
<td>6</td>
<td>43.7</td>
<td>58.7</td>
</tr>
</tbody>
</table>

TBD = To Be Determined