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1    Introduction 

This Quarterly Report includes descriptions of various projects underway in the Computer Graphics 
Research Lab during January through March 1992. Included in this document are progress reports 
on new Jack features, the rule-based Spreadsheet Anthropometric Scaling System, contour bodies, 
locomotion, collision-avoidance reach, behavioral simulation, 3D motion analysis and reconstruction 
from monocular 2D views, task animation, radiosity rendering, ray tracing and filtering, and real- 
time sound interaction. Three Appendices include (A) an update on posture planning that will be 
presented in a poster session at the First AI Planning Conference, College Park, Maryland, in May 
1992, (B) a PhD proposal on automated synthesis of simplified 3D models from detailed data, and 
(C) a survey paper on virtual building walkthrough systems. 



2    John Granieri 

2.1    Recent Accomplishments 

• The Jack 5.5 release was shipped in March. 

• The Flock of Birds 6 DOF sensors from Ascension Technology were successfully integrated 
into Jack and were shown at NCGA in Anaheim. The interface library was written by Mike 
Hollick, and will be included in the next release of Jack. Several demos were also written that 
take advantage of the Birds to drive the human figure. 

• I attended the 1992 Symposium on 3D Interactive Computer Graphics (sponsored by ACM 
SIGGRAPH) held in Cambridge. Cary Phillips and I presented the paper "Automatic View 
Control for 3D Direct Manipulation". This paper introduces a novel technique for auto- 
matically adjusting the view when manipulating objects in a 3D shaded environment. The 
technique is implemented in Jack, and will be available in the next release, via the command 
"unobstruct view" on the view menu. We use a hemi-cube projection and the hardware 
z-buffer to determine the visibility of the camera from the site of interest, then search the 
visibility map for an un-occluded position for the camera. The technique is a very useful 
adjunct to the direct-manipulation process. 

• I also performed three days of training for Jacob Shiloah from Synergy Integration, a company 
which uses Jack in Israel to perform human factors analysis on a variety of design projects. 
They will also be distributing Jack in Israel. 

• I attended the Silicon Graphics Developers Forum in Mountain View CA. The imminent 
release of the OpenGL will allow us to port Jack to other platforms which eventually support 
the OpenGL. There were also a variety of speed and visual feature enhancements which 
I learned about which will make their way into future releases of Jack. I also visited Ed 
Bellandi's group at FMC, and Barry Smith's group at NASA Ames. It was very enlightening 
to see what people are using Jack for. 

• I've currently translated about 75% of Jack into fully ANSI-compliant C-code. This is nec- 
cessary to make Jack compile and build correctly under Irix 4.0, and for the migration to 
C++. 

2.2    Jack 5.5 Things 

• Anonymous FTP:   The anonymous ftp account (from ftp.cis.upenn.edu or 130.91.6.8), is 
where I place additional Jacfc-related programs and data files between formal Jack releases. 



Currently, there are several useful files there.   To log in, you would do something like the 
following: 

% ftp 130.91.6.8 
....user-id:  anonymous 
....password:  your-login-name (e.g.  I put granierifigraphics.cis.upenn.edu) 
ftp> binary 
ftp> cd pub/graphics 
ftp> Is 
ftp> get demojack.tar.Z 

ftp> quit 

% 

If you are having problems connecting or do not have a direct Internet connection (i.e. some 
people can receive mail but can't do ftp transfers), send mail tojack@graphics.cis.upenn.edu, 
and I will mail you files uuencode-ed. 

• More Contour bodies: In the anonymous ftp directory pub/graphics/bodies are 20 SASS- 
generated scaled human figures for use in Jack 5.5. We will use these until the new SASS is 
completed. 

• DXF Translator: There is also an AutoCAD DXF-to-Psurf translator, which can convert 
simple DXF files into Psurf (pss) format. This is in the ftp directory pub/graphics. 

• Parsepea: The Jack 5.5 distribution contained an incorrect version of parsepea (a program 
to translate environment files to ray tracer format). The correct version is in the ftp directory 
pub/graphics and can be downloaded any time. 

2.3    Next 3-6 months 

In the next quarter I plan to do the following: 

• Load carrying studies: We are modifying Jack to meet the needs of users at US ARMY 
HEL to support the analysis of human figures carrying a variety of loads. 

• Jack on networks: We will be spending a good part of the summer finishing the network 
versions of Jack for the Showcase exhibit at SIGGRAPH '92 (this was mentioned in the 
previous report). 



• Documentation: I hope to have an updated User's Guide for the next release of Jack. Also, 
I will be creating a Jack Reference Manual which will formally list all Jack commands, both 
thier interactive format and their corresponding JCL formats. This will also document the 
network interfaces that will exist in Jack. 

• Geometry translators: We will consolidate our geometry input programs for Jack, and 
be developing an IGES input/output geometry filter for Jack. 

3    Francisco Azuola 

3.1    Anthropometry Spreadsheet 

Since the last report, two major achievements have been made. First, SASS it has been brought 
back to operation. It has been successfully used in the creation of a series of scaled human figures 
both for the polygon model as well as for the contour model, for 1st, 5th, 50th, 95th and 99th 
percentiles. 

3.2    What to expect of SASS 

As was originally planned, SASS has been redesigned and implemented keeping an object oriented 
philosophy in mind. In the implementation sense, this is not really visible to the user but it is of 
major importance for those who plan on upgrading SASS in the future (and all the code is now 
ANSI C compatible). In the design sense, what we mean with object oriented reflects in the fact 
that a hierarchy has been established to define the human figure components. 

3.3    The Hierarchy of The Human Figure 

The previous version of SASS handled segments by gathering them in a (simple) linked list struc- 
ture. This was good enough to have any number of segments, but presented some inconveniences. 
In first place, the structure did not allow for defining relations among the segments in an easy way. 
Furthermore, the segments were defined as a triple of values, namely, an (x, y, z) tuple. These 
tuples were placed in the list in a fixed position, corresponding to the predefined location assigned 
to a particular segment. For example, (xl, yl, zl) corresponds to the head segment, (x2, y2, z2) 
corresponds to the neck segment, and so on. 



In the new version, the structure used is a hierarchical one (tree). At the bottom of the tree, 
the leaves correspond to the segments. The internal nodes correspond to, what we call, the body 
parts or body objects (which should not be confused with the "objects" in the implementation). 
The root of the tree is reserved for storing the figure's information. The body parts are composed 
of body segments and the figure itself is composed of body parts. One can think of the figure as 
corresponding to the complete tree. There is another category, the joints, which has been appended 
to the root of the tree. The joints are the linkages among the segments and also among the body 
objects. A figure can be defined as a collection of body parts, joined together by joints. Each 
body part, in turn, can be defined as a collection of body segments put together by joints. Each 
segment has been specified with an access code, a segment type, and a list of sites. Joints are 
defined similarly. Body objects are specified by a type, an access code, and a list of components, 
namely a list of segments, joints, and sites related to that object. It is important to make some 
remarks here. In addition to this being a more powerful structure, it is also much more flexible 
because it is user definable. Indeed, the user can modify the specification of the objects, segments 
and joints and even the figure itself by just writing down a figure description file. In this way, it is 
possible to create different types of relations among the pieces. 

3.4    The Rule System 

SASS has also changed in a deeper sense. SASS not only works on relations but also is rule based. 
As an example, SASS currently defines a rule for computing the height of an individual as the sum 
of the segments' lengths in a path that goes from head to feet. For those segments in the path, the 
rule allows to varying their lengths if the stature changes and; vice versa, to change the stature if 
the length of any of the segments in the path changes. There is an alternate rule that keeps the 
stature fixed and adjusts the segments' lengths accordingly, if the length of one of them varies. 

Another rule includes changing the mass according to the stature and, conversely, changing 
the stature according to a specific mass value; and rules for checking proper bounds in segment 
(object/figure) dimensions. 

The rule system of SASS is a simple one, though. At the present moment, we do not have 
a definite set of rules. Even the rules that have been implemented are waiting to be refined in 
the future. Depending on the complexity of the rules, we will be required to upgrade the rule 
engine. This is not a trivial task since rules might change from one situation to the other. It is 
conceivable that the rules themselves could be specified by the user as opposed to what the current 
implementation provides, i.e., a fixed (hardcoded) set of rules. 



3.5    Rules in SASS 

The stature of the human figure is computed using two different rules. In one case, the stature 
is kept variable. If the stature varies, the segment lengths in the stature path vary accordingly. 
Similarly, if the length of any segments in that path varies, then the stature changes. The underlying 
criterion for doing these changes is a linear one. The segments in the stature path have been defined 
as: (head, neck, upper torso, center torso, lower torso, upper leg, lower leg, feet). The length of 
each of these segments, except for the feet, is computed as the girth value in the z coordinate. For 
the feet, the length is computed as the girth value in the y coordinate (since for the feet, the girth 
in the z coordinate is the longitudinal dimension). It should be noticed that th' thickness and 
width of the segments are not affected by these changes, for there is no rule to decide the effects of 
stature changes in these parameters. 

The updating process must be done carefully, for it might happen that modifying the length of a 
given segment violates the range of possible stature values, or conversely, if the stature is changed, 
this change might not be satisfiable by variations in the segment lengths. 

The other case considers fixed stature. The idea is to adjust the segments' lengths along the 
stature path if the length of one of them varies, such that the global length (stature) remains 
constant. While this might appear easy to do at first, it is not a trivial matter. To understand 
why, we must study how the segments dimensions are obtained. Each segment's dimensions can be 
seen as a triple (x, y, z) of values. This triple of values, is obtained by interpolation from actual 
data provided by the user. This "real world" data corresponds, in fact, to the value of the girth in 
each of these coordinates for a set of different percentiles (e.g., 5th, 50th, 95th percentiles). SASS 
provides a given triple (x, y, z) for percentiles in the range 5-95 by means of interpolation (also, if 
the user specifies a triple, SASS provides a percentile value corresponding to that triple). Thus, a 
segment's dimensions are constrained by the "real world" value range. 

Furthermore, the stature itself is restricted by a "real" set of values (for each of the percentiles). 
When the user specifies a particular change in the triple (z coordinate) of a given segment, the 
underlying rule attempts to satisfy the constraint of fixed stature, that is. it tries to keep the 
stature value constant. For example, assume the length of the head has decreased. To keep the 
stature fixed, the lengths of the other segments in the stature path must vary in the opposite way. 
Currently, the modification is done in a linear way since there are no rules to define this otherwise. 
But it might be the case that in the updating process one of the segment's dimensions (namely 
length) cannot be satisfied. In other words, the resulting dimension is out of the range established 
by the 5-95th percentile values. In this situation, the rule sets up the length to its closest limit 
value (5th percentile value or 95th percentile value), and tries to satisfy the requirement of fixed 
stature by modifying the remaining segments in the path. Notice that there is a possibility that 
the stature can not be kept constant. There is one more step involved in the updating process that 



will be discussed later. In tüis mode (fixed stature), if the stature is globally varied by the user the 
segments change comspondingly (if possible). 

3.6    Object Level 

As discussed before, a figure is built up as a hierarchy: the segments in the lowest level, the body 
parts (objects) in the next level, and the figure itself as the root level. The body objects are defined 
(by the user) as sets of segments and joints. Fo; instance, the object 'leg' can je defined as a set 
containing two segments ('upper leg' and 'lower leg'), two sites, and six associated joints. 

For the matter of the following discussion, it is not relevant what the sites or the joints are 
but one can think of a simplified object involving only a set of segments. The object level is an 
abstraction of the idea of body parts. So we associate to each object a body part. It is important 
to keep in mind that the "real world" measurements are done on a segment basis. The objects 
(body parts) are defined to provide additional flexibility to the user. As the internal structure of 
each body part can be specified by the user, one can consider having as many parts as necessary (or 
as segments there are). By default, SASS has defined eight body parts, namely, head, torso, left 
arm, right arm, left leg, right leg, left foot, right foot. These objects encompass most of the (user 
defined) segments. Having objects allows the user to perform global modifications on a per body 
part basis, as opposed to doing localized changes on specific segments. Although it is possible to go 
and change values for a particular segment, it is generally desirable . > be able to do modifications 
on a body part, as a whole. The idea of having body parts presents some difficulties though. When 
body parts are introduced, the rule system must consider performing the appropriate (coherent) 
updates on two different levels simultaneously. If the user changes values on the segment level, 
these changes are reflected also at the object level, and conversely, when changes are done in the 
object level, these changes affect the segment level values. Also, recall that changing the segment 
level values was governed by a set of rules. There is an equivalent (compatible) set of rules for 
the object level. For instance, changing stature is governed by rules in the object level (and in the 
segment level). 

3.7    What Is An Object? 

Objects are implemented as artificial structures. The "real world" data doesn't provide information 
for any body parts, only for body segments. In a sense, objects can be considered as clusters 
of segments and each time an object is accessed the access is redirected to the corresponding 
segments. Conversely, if a segment is accessed, all the objects containing that particular segment 
are accessed. There is more under the definition of a body part. Actually, the object's dimensions 



are approximated by considering the bounding box around the segments of which it is composed. 
In this way, a body part comes to life as a tuple of (x, y, z) values. Why bother doing this? At 
first it might seem unnecessary since the components of an object, i.e., the segments, have some 
associated (x, y, z) tuples already. However, there two good reasons that justify our approach. 

In first place, using a bounding box strategy, we can bound the dimensions of the segments 
(components) of a given object. Also, it allows us to have two sets of dimensions: the expected 
dimensions and the actual dimensions. The expected dimensions are those determined by the 
bounding box approach. The actual dimensions are the dimensions of the body part when we think 
of it as a cluster of segments. Thus, the actual dimensions reflects accurately (up to the accuracy 
of the segments' dimensions) the dimensions of the object. 

Having these two dimension sets provides a way of constraining the growth of the body parts. 
The following rules apply. If a segment (member) in an object grows (or shrinks) then it should 
not grow beyond the limits of the object's expected dimensions for a given percentile, if we want to 
restrict an object's dimensions to be of a certain percentile. So we can, for example, try to adjust 
the dimensions of the other segments in the object's segment set so that we keep the object's 
percentile fixed. 

It is important to understand the back and forward process that goes on between objects 
and segments. We can have the global dimensions of the body, for instance, those of a 50% 
(standardized) human being, but we know that the body parts need not to be 50% all of them. In 
fact, we do not have a rule yet to specify the percentile of the body parts (segment-wise) for a given 
global body percentile. So keeping that in mind, we must be able to change dimensions of the body 
objects (segments) to comply with all the possible compositions of a 50% body. We must be careful 
when specifying other rules for, say, stature. We need to make sure that a given change of stature 
does not break any other rules, that is, we must assure that the resulting body composition (i.e., the 
percentiles of the body parts (objects/segments)) are those valid for a 50% body. Also, we require 
to comply with the restrictions on the segments' (in this case on the stature path) dimensions, 
i.e. we cannot scale a segment beyond the limits established for that segment by the population 
data. Also, we need to assure that the stature modification rules are respected (i.e, those rules we 
mentioned before in which the segments' lengths are modified following a specific layout; currently 
modifications are done linearly). It seems that a possible solution, in this particular case, is along 
the following lines. 

If the stature is modified, then a new global percentile is computed. For that new global 
percentile, we have a specific rule telling us what the possible compositions are. Thus, we use these 
compositions as our rules for doing the segment length modification, (instead of doing it linearly as 
it is done in the current version). Thus, there is no conflict. But that is only if there is a coherent 
definition of the possible compositions and the stature-path segments' length, i.e.. the compositions 
must agree with the segments' length under the population data being used. In other words, the 



compositions are not unique, they are dependent on the population data used. 

To illustrate this, suppose we have the following (partial) composition set: feet 30%, legs 45%, 
torso 60%, head 40%,... for a 50% body. Then suppose we want to change the stature in such a 
way that the resulting body percentile is 60%, and the analogous (partial) composition set is (feet 
40%, legs 56%, torso 50%, head 40%,...). Then we scale the objects in the stature path (which are 
those listed in the composition sets) to comply with this second composition set. But, we must 
be sure that there is no conflict in doing so, that is, for instance, the feet might be able only to 
grow from a 30% to a 40% under the population data being used. Thus, there is an inherent need 
for the compositions to be determined under a given population, i.e., different populations will 
have different compositions. Solving that problem, we must make sure that the scaling (of the 
segments) resulting out of this complies with the object's (body part) constraint, i.e., the bounding 
box limitations. This should be the case if we have composition sets that agree at both the segment 
level and the object level. 

In the previous example, for instance the compositions were stated at the object level. There 
must be an equivalent composition at the segment level. Following this example, the segment 
version of the composition for the 50% figure is, for instance, (... upper leg 45%, lower leg 60%, 
upper torso 76%, center torso 57%, lower torso 45%, ....), assuming legs decompose in two pieces 
and torso in three pieces. But what if the compositions, even though being based on a particular 
population data, are not available for all the possible percentiles? (With good luck we hope to 
have one for a few of the percentiles.) We would have to interpolate compositions (if it is sound to 
do that) and make sure a given segment's length is not violated (according to its percentile range) 
when trying to go from a composition for the 50% figure to that of the 60% figure. If we had 
only one such composition to work with to account for all possible compositions on the percentiles 
range, then it would be necessary to make sure that this composition is not violating the range of 
values a given segment's length can have for the population under consideration. 

This is basically what happens in the present version of SASS. Since we do not have a composi- 
tion analysis available, we have assumed decompositions are unique for a given population (i.e., one 
composition for all the percentiles (not one for each)) and furthermore, this composition is linear, 
i.e., for a 50% figure (feet 50%, legs 50%, torso 50%,...) and similarly for the segment composition 
(... upper leg 50%, lower leg 50%, ....). This has sensibly increased the difficulty of the problem 
because such an assumption is far from being applicable to real world situations. 

This has wound up in the need for additional rules in SASS to verify that there is an agreement 
among all parts. Recall, for instance, the stature problem. In that case, we are considering 
compositions to be linear. So we need to be especially careful not to end up with a segment's 
length violation. To avoid that we limit the growth of a segment to its 1% and its 99% (i.e., below 
and above limits). If we do not achieve the desired global growth, i.e, the local segment's growth 
was not sufficient, then we go and adjust the other segments in the stature path. This is done in 



an iterative way. Also, observe that we have to keep track of two levels of abstraction, that is, the 
segments and the body parts. It is necessary to double check, once for the segments' lengths not 
to violate their limits and once for the objects' lengths not to violate their limits. This is necessary 
because the objects' composition has been assumed to be linear. A similar situation arises when 
considering the other way around, that is, modifying a segment's length implies a careful set of 
steps along the hierarchy to keep track of this modification's effects on the objects' lengths and 
then the effects of these on the global length (i.e. stature) so that the resulting stature has a value 
between its percentile limits. (If the stature is kept fixed then we do not go all the way up in 
the tree but we need to perform a readjustment of all the other segments (objects) to assure the 
stature is kept constant, whenever possible.) Thus linearity is not the right solution (and it is even 
a difficult to implement one), but currently it is the only solution. 

From here we should conclude that there is a need for a sensible decomposition of the body at 
both the object and segment level (these two are not necessarily the same as we noted before) in 
order to be able to handle global and local growth. Incorporating these compositions will require 
of a more powerful rule system. 

3.8    Figure Creation 

SASS still cannot create a figure file due to the lack of a mapping between the population torso 
data and the model of the torso we use in Jack's environment (i.e.,the 17 segment torso). A function 
to do so (at least approximately) is being developed. 

However, to provide relief for the pain of SASS users, we have provided a function to produce a 
file containing the scaling of a figure, and then we rely on Jack to create the figure file. This might 
not make completely happy all of the SASS users, but we will explain in the following why we have 
decided to keep this as an option, even when we have available the figure file creation function. 

The reason we consider using scaling files rather than figure files is simple. Consider the situation 
in which the user in Jack wants to determine the percentile (dimension) ranges of the human figure 
to comply with a given task, that is, the problem of finding the specific figure (%) that can fit in 
a particular working environment. One can attempt to read each of the possible figure files out of 
Jack libraries and try to keep the figure in the position we want. The other (more sensible) option 
is not to load different figure files, but instead, to load different scaling files. Then the (same) figure 
can be scaled using all these different files to find the one that best suits the given environment. 
This is not only faster but it is even more appealing to the user. 

When a given scaling has been found best, if the user needs to do further adjustments, (for 
example if longer arms or longer legs required) a new scaling file can be created in Jack with the 
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required dimensions. There is still the problem of how to make sure the new scaling is in agreement 
with the population data. One possibility is to let SASS decide this. 

3.9    Figure Scaling 

As we stated before, SASS output is a figure scaling file. The scales in this file are obtained 
directly from the (x, y, z) tuples of the segments or objects. Thus, this scaling file represents the 
dimensions specified in the (population's) girth file, for a given figure percentile. On the other hand, 
Jack provides a front end in which a figure is displayed and scaled according to the information in 
the scaling file Currently, two human figure models are used in Jack, the polybody and the contour 
body. The polybody is a (crude) approximation of a human body, containing a set of segments and 
joints. These segments do not correspond exactly to those segments defined in SASS. For instance, 
the polybody's torso is composed of 17 segments. SASS has three segments to account for the 
torso. The reason for this difference is that SASS1 segments correspond to actual measurements of 
the human torso, while Jack's segments were defined with the idea of simulating the human spine 
behavior. Thus, there is a mismatch between both definitions. More problems show up when we 
consider that a segment in SASS (and in Jack) is defined by a single tuple (x, y, z), that is, a 
uniform width and thickness is assumed in both cases. The final result is a human body model 
that has a (not so real) human-like appearance. 

The major problem with the scaling is due to these mismatches. For instance, the upper leg, 
once scaled appears to be too thick and too wide, in comparison to the lower leg. The same 
problem occurs with the upper arm and the lower arm. Also, the scaling of the pelvis of the 
polybody presents problems; it seems to be too wide and thick. As another example, the torso 
appears to be narrow and short. 

There are various solutions to these problems. The simplest one is to adapt the data to the 
model. In other words, modify the scaling factors in order to obtain a good (looking) figure scaling. 
There are no rules to do this though. The rule we use is to consider body lines as being (second 
order) continuous. There are no abrupt changes from one body part to the next one (assuming no 
deformations, like a hunched back, are present). Thus we approximate (in an arbitrary way) the 
scaling factors in order to achieve this continuity. The largest discrepancies are the ones mentioned 
above. Other minor ones are the scaled neck being too wide, hands being too narrow. In general, 
the scaling factors are not changed by more than 10%. Being the polybody is a linear model 
of the human figure (linear segments), this is possibly the only feasible solution. Attempting to 
change the actual model to adjust it to a particular data set does not seems like a very good idea, 
because it would be necessary to adjust the model for each such data set. In fact, there are even 
other difficulties to consider like for instance having the clavicles in the polybody as real external 
segments (no matching data available in SASS). The clavicles are part of the shoulder complex, 
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and they are used like an artificial supporting structure.  On the other end, in the contour body 
model the clavicles are only present for completeness of the model. 

We might then say, in conclusion, that the polybody model is a simple model of the human figure, 
and as any other model has advantages (e.g., simple, fairly accurate in behavior) and disadvantages 
(e.g., linear segments, gaps between segments). Thus, we should not expect a perfect match between 
this model and a real life human body data. 

A third solution is to improve the model. That is exactly where the contour model of the body 
becomes handy. In fact, the scaling factors generated by SASS are mapped into the contour body 
with almost no modifications necessary ( for the contour figure case, adjustments are done to the 
torso, legs, arms, and hands). These adjustments do not go over 5% of the actual values. Again, 
one must keep in mind that even though the contour model is a more accurate representation of 
the human body, it is not a perfect one. Moreover, we must recall that the SASS scaling factors 
file is created based on a generic (average) population and the figure resulting from that scaling 
might not completely match a real human being (for suppose that the population's average torso 
length is greater than the torso length of a given individual and the population's average leg length 
is smaller than the one of the same individual, then we end up with a not so real scaling for the 
contour model). Thus, even though we have assumed some adjustments are required, it is still 
necessary to prove if this is the right way to proceed. So far, the criterion that prevails is to display 
a good-looking (well proportioned) human figure. 

3.10    Short Term Goals 

The short term goal is to provide a figure definition function to be used as an alternative to the 
scaling definition function. Currently, this function is being designed (partially due to the lack of 
a real mapping between the "real" world torso measurements and the model torso segments). 

3.11    Longer Term Goals 

• (Shoulder Complex) We need to modify the definition of the shoulder complex. SASS can 
retain the same definition of (x, y, z) tuples for the upper and lower limit of the joints. 
However, the shoulder complex in Jack is defined with four degrees of freedom. The functions 
shoulder driver and clavicle driver in Jack do the conversion from the (x, y, z) format into a 
four degrees of freedom format. 

• (Strength Sheet) An upgrade of this sheet is required to introduce new rules and/or improve 
the existing ones. 
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• (Database) As for the database, we think it is necessary to have our own database rather 
than using a Prolog shell. That is, having a database implemented in C can be faster and 
also we avoid the need of a Prolog shell. 

• (Dynamics based model) It is necessary to introduce new center of mass and moments of 
inertia information for every segment in SASS. The figure file should be modified (and Jack 
should be able to recognize this changes) to incorporate this information. 

• (Rule system) As new rules become available, the rule system must be upgraded accordingly. 

• (Interaction Jack-SASS) A two way communication between SASS and Jack is necessary. 
The problem to solve is that of deciding whether changes in dimension done to the figure 
model, while working in Jack environment, are valid, under the population data used to 
(initially) create the figure. 

• (Figure fitting) We need to create a function in Jack that performs a figure fitting. Given 
a set of 99 figure scalings (one for each percentile) find the one that fits best on a given 
environment. 

• (Interface) There is a need for a new user interface, perhaps under X windows manager, to 
provide the user with more flexibility. We have not done much in this respect, even though 
we are aware of the problem. The current interface was designed in a very rigid way and it 
is difficult to change things around since everything is hardcoded. 

4    Pei-Hwa Ho 

4.1    Contour Body 

The switching between contour body and stick figure used to just switch the segment psurfs with 
the default scale factors in the figure definition file. If the figure to be swapped has been scaled by 
any means (e.g. through SASS the switching will not carry over the new scale factors. A modified 
switching command will now do the switching correctly and thus will be compatible with future 
SASS output file. 
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5    Hyeongseok Ko 

5.1    Locomotion 

The most prominent problems in utilizing rotoscopy data for human walking animation are: Gener- 
alization and Constraint Satisfaction. We devised an algorithm to generalize a given rotoscopy data 
(prototype) to other walks under different body conditions and different step lengths (generaliza- 
tion). We do not assume any predetermined anthropometric ratio among the body segments. The 
kinematics of Cartesian points (markers) are considered instead of the joint angle data, which is 
considered to be essential to overcome the cumulative error along the links (constraint satisfaction). 

For the generalization, we have a transformation algorithm that derives the walk of (S2,s/2) 
from the walk of (5i,s/i), where Si and sli represent subject (body condition) and step length, 
respectively. 

One of the desirable properties of our transformation is that it is transitive: Let £12 be the 
transformation from w(Si,sl\) to u)(52,s/2)- Let £23 be the transformation from w(S2,sl2) to 
1/^(53,5/3). Let w((S3,sl3) be the resulting walk profile by the real computation of the composite 
transformation £23 ° £12 applied to w(S\,sl\). Note that w is just a tuple of a subject and a step 
length, whereas w is the profile that contains all the information to generate the walking animation. 
Let £13 be the transformation from w(S\,sli) to w{S3,sl3). Let w(Si,sli) be the actual out come 
of it. Then 

w((S3,sl3) = w(Si,sli) (1) 

holds. 

The intuitive meaning of the above theorem is that the transformation preserves the original 
characteristics of the prototype. In other words, if a prototype is given, independently of the body 
condition and step length of the goal walk, our transformation algorithm tries to resemble the 
original characterisics. Therefore we can generate multiple styles of walking by having more than 
one prototype in our data base. 

The above algorithm is in implemenation phase. After it is complete, we will extend it to handle 
the local stepping, and then uneven terrain locomotion will be studied. 
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6    Wallace Ching 

6.1    Work done during the last quarter 

I have kept making enhancements to the path planner system. Some of these are theoretical 
enhancements to the path planner process. Others are system enhancements that make the software 
more user friendly and usable by others. 

Major enhancements include: 

• The translation of the figure is now unified and handled in the same way as the joint move- 
ments. 

• Starting and final configurations that collide with the environment are allowed. The system 
will find the nearest collision free configuration as the system start and goal node. 

• The strength model interface is being made independent of the strength data source. It should 
be easy to modify it once the strength data is available. 

6.2    Current and Future Work 

The current work involves updating the system to handle the current human body with multi- 
segmented torso. The coupling of the shoulder joints need special attention. The multi-segmented 
body will be approximated with a bounding box in the collision detection phase. A planar path 
planner is being constructed from existing components that can handle the translation of the figure. 
This means that the system can now plan a collision free path for the whole figure within a cluttered 
environment. 

Other work to be completed includes fine tuning of the searching process and better use of the 
strength data so that the resulting motion can be more natural. 

Finally, the software is being made more user friendly so that it can be embedded into the next 
Jack release. 
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7    Tripp Becket 

7.1    Walking and Behaviors 

We can apply multiple avoid or attract behaviors to a human figure that: 

• are sensitive to only one object, all objects of a cerain type (like all cylinders), or only the 
nearest or furthest k objects of a certain type. 

• have distance thresholds. 

Human figures, after figuring out which way they want to go, try to reduce the goal by walking. 
I have a heuristic algorithm for constructing the next step position that: 

• won't turn more than 45 degrees in a single step (by turn I mean reduce the current and 
desired heading - it doesn't stop and turn, it always keeps moving...) 

• makes step length a function of turning angle (if turning angle is 0 take maximum step, if 45 
take minimum step). 

• attempts to keep the feet 17cm apart laterally 

• while turning, makes outside foot take shorter steps (inside foot reduces most of the turning...) 

• decides on the next step only after the previous step is finished 

8    Jianmin Zhao 

8.1    Work in Progress 

Having had my dissertation proposal passed, I am now implementing it. I have converted the ten 
single arm reach data from MOCO to Jack motion format. This data is very simple and easy to 
reconstruct by our primary system. After I finish coding to deal with critical configuration, I shall 
try two-arm general motion. In case I cannot get real-data, I have to design simulated motion 
through Jack. 
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9    Libby Levison 

9.1    Previous Work 

My research began when I used Jack, Yaps and KB to animate a set of instructions describing a 
simple aircraft maintenance task. This project has led me to further work on building a language 
which will allow a user to specify high-level description of tasks and actions into Jack. 

Recently I re-animated the original "FCV removal" scene making use of Cary Phillips' animation 
behaviors. Although this generated a much more natural animation, each individual motion had to 
be scripted by hand. This means that each action must be decomposed into an explicit sequence of 
motions. Every time that an action is used, the same decompostion must be redone and restated. 
There is no current optimization nor method for defining and reusing sequences (possibly ones 
parameterized for various contexts). This strikes me as a logical continuation of Phillips' work: 
some of my current work begins to address this problem. 

9.2    Current Work 

My current research is in understanding instructions for the purpose of generating animations. As a 
member of the Animation and Natural Language project (AnimNL) I work between the Language, 
Information and Computation (LINC) Lab and the Graphics Lab, building animation definitions 
of those instructions which result in physical actions. 

If the purpose of an interaction is cooperation on a task, the computer must understand the 
user's instructions and act appropriately. This is relevant at the level of the human-computer 
interface as well as in the domain of the AnimNL project, in which we want to instruct a graphics 
program to generate certain animations. In building a system which will interpret the user's 
instruction, I am specifically interested in verb-object relations; I have identified wide variations 
in intended action which occur when a verb appears with different objects. For example, the verb 
open is associated with two distinct physical actions in the instructions open the door and open 
the soda can. If we believe that each verb has a unique meaning then we must account for these 
variations in interpretation at the sentence or the instruction level. I would argue that each verb has 
a partial, core meaning; this meaning is completed in an utterance with information carried by the 
verb's object, as well as by understanding the intention of the given instruction. For example,the 
definition of open might be something like: provide access to. One fact that I know about the door 
to my apartment, either from living in my house or through visual perception, is the door's degrees 
of freedom. (I might also know that this is a heavy door and that it is hung to swing shut if not 
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propped open.) If part of the definition of open includes moving its object, then interpreting how 
to open my door entails checking how my door moves - what its degrees of freedom are - either 
translation or rotation. If the door is marked as allowing translations then I probably have a sliding- 
glass door; not only do rotations indicate a hinged door, but positive rotation implies pulling, while 
negative requires pushing. These observations suggest that building animation definitions based 
solely on the verb or exclusively on the object won't work. I advocate instead a hybrid system 
in which the core meaning of the verb makes use of (geometrical) information associated with the 
object. 

Investigating these definitions requires an application that allows the user to give the system 
task instructions, as well as providing the user an easy way to check the computer's interpretation 
of those instructions - in other words, to verify that the correct action is performed. The anima- 
tion of repair instructions satisfies this requirement: to generate an animation the computer must 
understand the instructions, and the resulting animation provides an easy way for an engineer to 
(visually) check the correctness of both the original instructions and the interpretation - the result- 
ing simulation. (In addition, this application has real-world utility: rather than read an instruction 
manual, a technician or trainee can watch an animation of a simulated agent performing a repair 
or maintenance task.) 

My research uses Jack to provide 3D-modeling capabilities as well as extensive human factors 
and anthropometric analysis tools. At the same time that I am examining linguistic issues in the 
instructional texts, I am investigating methodologies which will enable an engineer to produce sim- 
ulations of task-level actions despite possibly limited knowledge of low-level animation techniques. 
I am using a minimal set of action directives:, animation instructions like move left foot or bend 
torso) to define higher-level actions such as grasp, attach or open. I call these composites task- 
actions. I hope to provide a richer set of task-action definitions as well as a utility for defining new 
task-actions. These action descriptions, from the viewpoint of animation, will allow an engineer 
with minimal knowledge of graphics to generate animations. The interpretation process will save 
the engineer from defining multiple animation procedures such as open-door, open-book and open- 
jewelry-box. I am trying for an economy of action definitions, relieving the engineer of the burden 
of specifying detail which the system might well be able to deduce. 

In summary, then, I believe that I can classify both the verbs and their objects in instructional 
texts according to their lexical semantics: the verbs based on the underlying physical action, the 
objects dependent on geometrical information. I am building a high-level utility, within the Jack 
framework, which will determine, in a given instantiation, exactly hov to apply the verb to its 
object by reasoning about such things as the geometry of the object. 1 will vse Jack animation 
directives - primitives which describe high-level motor control - to build compositional definitions 
of the physical actions underlying the instructional verbs. These task-actions will describe the tasks 
to be performed at a high-level and not on a movement-by-movement basis. 
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I am currently investigating three areas: 

1. Issues in Lexical semantics: 
Identify core meanings of verbs and build functional descriptions of nouns; 

2. Developing a language to describe actions: 
Build a minimal primitive set to use in defining actions, as well as defining the syntax of 
the actions description language. This entails developing a way to incrementally chain action 
primitives together. For example, push might be the chain: 
contact,  constrain-to, translate,  translate,  translate..., 
where the translate is repeated until the goal is acheived. 

One issue I am investigating is the usefulness of an underlying set of behaviors in terms of 
building the task-action definitions. For example, in instructing someone to reach the cup we 
would never specify don't try to put your hand through the table. While Jack provides collision 
detection: making use of it will make the resulting animation appear more realistic. However I 
am considering variations in the definition of reach-action when there are explicit background 
behaviors. For instance, if there was always a behavior don't put hand through solid 
object, it would never need to be explicitly stated, nor checked, in a task-action definition. 
Jack manages a large amount of the human motor control issues, and Phillips' behaviors 
allow us to step away from those details; a system of "world behaviors", describing how we 
(unconsciously) interact with the physical world, might make defining realistic set of task- 
actions a feasible task. 

3. Implementing an action interpretation algorithm: 
Develop an algorithm which combines the information required by the action definitions with 
the knowledge stored in the object definition. For now, I simply intend to get the data sharing 
implemented. I am using C++ in order to take advantage of classes and inherited knowledge; 
subclasses will automatically inherit information from super-classes. 

9.3    Future Work 

• Provide a way of specifying a chain of associated behaviors in Jack. 
This is a first step in building composite actions. Actions should be linked to provide basic 
manipulation ability in the interface, for instance, the user ought to be able to visually verify 
that a reach and a grasp are linked together to form a get; if the user wants to change the 
start time of the chain it ought to be possible to modify the entire chain at once. 

• Extend the JCL front end for the animation behaviors. 
Make it possible to read in animation behaviors that make use of symbolic names as the site 
of different movements. This is needed for testing and working the AnimNL code. 
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Build an object knowledge base. 
For various objects in the instruction sets, define them both geometrically and functionally. 
Objects that the AnimNL group is concerned with are doors, thermoses, boxes, and fortune 
cookies. 

10    Min-Zhi Shao 

10.1    Radiosity 

1. I have implemented the progressive radiosity method with adaptive meshing (patch to ele- 
ment) and analytical calculated form-factors (Baum el al, 1989). This should be the state of 
art progressive refinement radiosity method to date. 

2. I am working on a two pass (global and local) radiosity shooting method based on the above. 
Since in our method, the shooting patch is either very strong (light source in global shooting) 
or very near to the elements which gathering the light energy (local shooting), the more 
accurate analytical form-factors and the adaptive elements subdivision techniques are critical 
in our implementation. 

10.2    Future Goals 

My next goal is try to extend radiosity to general environment with non-diffuse and also non- 
specular surfaces. The following are some of our major considerations so far: 

1. Progressive form-factor refinement method as theoretical background (based on my 1988 
paper) 

2. Dense and even meshing for specular-like patches. But instead of keeping hemi-cube for every 
specular-like patch in the storage, we are going to store a list of patch numbers we fo-nd in the 
hemi-cube. We can also store the union of patch numbers of, say m by m neighboring ' atches. 
We expect the storage problem can be largely reduced with the trade-off of rebuildi ig hemi- 
cubes in each form-factor refinement iteration for specular-like patches. But z-buffer depth 
comparison can be largely reduced with the hemi-cube patch list in the storage. Therefore, 
the more complex of the environment, the more efficient (relatively) our method would be. 
And unlike the two-way (eye and light) ray tracing, the refinement procedure is much less 
dependent on the geometrical complexity of the environment. Furthermore, the solution is 
view-independent. 
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3. Adaptive meshing for diffuse-like patches based on the light energy distribution of light sources 
and specular-like patches. 

4. Real-time viewing the environment. Ray tracing post processing technique is neither real- 
time nor efficient and necessary for non-purely-mirror patches (which we are not going to 
simulate, our environment is somewhat in between ideal diffuse [including] and ideal specular 
[not including] environments). But if the meshing of specular surfaces is as fine as the pixel 
size level, the pure mirror surface could then be included. We are going to use Gouraud 
interpolation for display directional radiosity. But storing all directional radiosities (with the 
resolution of hemi-cube) is neither necessary nor practical with the limitation of the machine 
memory. Therefore, we are considering to use surface fitting techniques, such as piecewise 
bicubic Bezier patch. This is a adaptive fitting method. So, we can largely reduce the final 
radiosity output rtoiage by storing the necessary control points instead of radiosity in each 
direction. 

Finally, a preprocessor for the radiosity input environment (Jack peabody file) is nice to be 
added. This seems to be well suit for a term project. 

11     Jeffry S. Nimeroff 

11.1     Work Done in the Past Quarter 

During the first month of 1992, I completed a ray tracing implementation designed to allow me 
to easily test texture map antialiasing schemes. The first method that was completed and tested 
was a spatially invariant random weighted average method I designed based en solutions to the 
N-queens problem. A solution to the N-queens problem consists of the placement of N queens on 
an NxN chessboard so that none of the queens is threatened. The individual solutions make good 
discrete convolution masks for two dimensions and are treated as such v/hen reconstructing a single 
texture value from an NxN grid of texture samples. Although these results produced images of 
slightly higher quality than the simpler area averaging schemes (box, Bartlett, etc.), the method 
was abandoned since the quality increase did not meet expectations. 

Over the last two months, my research has consisted of reformulating the texture mapping 
process to be used in a prototypical version of the new Jack ray tracer. It was decided that a 
stochastic ray tracer would do a reasonable job of antialiasing the symbolic image function as long 
as no aliasing error was introduced by the texture mapping process. The texture mapping problem 
was sufficiently reduced to a reconstruction/low-pass filtering problem (relying on the ray tracer 
itself to deal with screen space antialiasing)   Fitting a bicubic b-spline surface to the texture image 
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reconstructs a C2 continuous version of the texture from its lattice samples. The C2 continuity 
constraint also bandlimits the reconstructed texture image providing some feasible Nyquist limit 
for the ray tracer to perform its point sampling. 

11.2    Current Work 

Besides continuing my filtering research with the hopes of analyzing parameterized cubic inter- 
polation schemes, my current work includes leading a group of graduate students in the design 
and implementation of a C++ prototype of the new Jack ray tracer. A C++ implementation 
allows for greater flexibility by providing a level of data encapsulation not found in standard C. 
This implementation should provide a platform which will allow others to continually update and 
enrich. 

The texture antialiasing research that I am performing currently is going to be grafted into the 
new ray tracer during the coming quarter. 

12    Ranjit Bhatnagar 

12.1    Real-time Theremin 

Our goal was a real-time animation of the Jack figure playing a Theremin, combined with real- 
time synthesis of appropriate sounds, under control of ascension technology 'Flock of Birds' space 
tracker. 

The visual complexity of the Jack figure, full shaded animation is not possible at 'real-time' 
(approximately 12 or more frames per second) rates. Using wireframe animation and simplifying 
the Jack figure allows a rate of two to five frames per second, depending on the hardware. Further 
improvement may be possible. 

I experimented with various ways of controlling the Jack figure, and settled on the use of Jack's 
external figure control port facility. I had to modify the port code slightly. The theremin control 
program sends joint-angle update commands to Jack through a socket. In the future it may, instead 
of updating the Jack figure's arms, it control the position of invisible objects to which the figure's 
hands will be attached, thus using Jack's reaching algorithms for more natural animation. This 
will further decrease the frame rate and increase the latency of the animation, however. 
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The Indigo has appropriate hardware for sound synthesis. Earlier plans to use an external MIDI 
synthesizer are on hold, but that might be a useful technique in the future The theremin sound 
is generated as packets of samples, based on the user's input. Each packet is aoout one thirtieth 
of a second long, so the latency of sound output is just over l/30th of a second, quite sufficient for 
real-time operation. 

I have made a version of the theremin which plays recorded sounds rather than sine waves, and 
another which can have its pitch output quantized to any desired scale. 

12.2    Future Goals 

We are hoping to simplify the 3D model sufficiently that the animation can run at reasonable rates, 
even on the Indigo, which has very slow graphics. One current method of achieving higher frame 
rates is to run Jack on one of the very fast machines, and the theremin control and audio programs 
on the Indigo, communicating over the ethernet. (Because of the use of UNIX sockets for Jack's 
control ports, this is very simple.) The next project will be a virtual drumset. 

Since the animation will always have a much higher latency than the sound, it may be possible 
to improve the interactivity of the animation by predicting the user's control movements up to half 
a second in advance. Even if the prediction algorithm is not very accurate, it may still improve the 
effect. Also, using a custom-written graphics program rather than the very flexible and slow Jack 
software could improve graphics speed significantly. 
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A    Posture Planning for Agent Animation 
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Abstract 

A human motion planning method called pos- 
ture planning is described that addresses how 
an agent controls and coordinates body parts 
to achieve a given task in the Cartesian task 
space. 

1    THE PROBLEM 

Animating human bodies with respect to designed 
workspaces helps designers evaluate their design deci- 
sions. Motion planning is needed to generate motions 
to be animated. As an example, consider an agent who 
stands in front of a table (Figure 1 ) and is given a goal 
of picking up the block (Figure 2), which is under the 
table. Our goal is to find a motion plan by which the 
agent approaches the table, grasps the block, and lifts 
it up. 

The fundamental problem of motor control is the prob- 
lem of degrees of freedom, that is, how the body con- 
trols the massively redundant degrees of freedom of 
the body joints. The body postures can be uniquely 
represented in terms of joint angles directly. But there 
are 88 joint degrees of freedom in our body model (not 
counting fingers) and we do not know how the body 
actually controls massively redundant degrees of free- 
dom. 

The degrees of freedom problem is solved by suffi- 
ciently constraining the joint degrees of freedom by 
means of constraints imposed on the body. The body 
constraints are obtained from three sources: (i) the 
structural and physical properties of the body, (ii) the 
environment (e.g., obstacles), and (iii) the goals of the 
agent. Posture planning is a process to identify and 
solve these body constraints that are changing over 
time. 

Figure 1: The Agent In Front Of The Table. A Small 
Block Is Under The Table. 

Figure 2:   Reaching and Grasping The Block Under 
The Table. 



2 TASK-SPACE CONTROL 
PARAMETERS 

To control the redundant degrees of freedom of the 
joints, we represent body constraints in terms of 
higher-level control parameters called task-space con- 
trol parameters. Three kinds of task-space control 
parameters are posited: control points, control vec- 
tors, and pivot joints. Control points are important 
points on the body, e.g., the feet, the pelvis, the 
head, and the hands. Control vectors are important 
vectors defined on the body to control orientation 
of the body. For example, the torso upward vector 
is a control vector for controlling the bending orien- 
tation of the upper body. The control vectors in- 
clude pelvis-forward-vector, righthand-palm-upvector, 
rightfoot-forward-vector, and head-view-vector. Pivot 
joints are joints on the body relative to which control 
points/vectors are moved. At a given moment, only 
some of the task-space degrees of freedom are relevant, 
which are determined by a set of primitive motions se- 
lected to achieve given goals. The posture is viewed 
as a process that modifies postural states of the body 
using given motion strategies. Postural states of the 
body are defined by the values of the task-space control 
parameters identified above. Given values of the con- 
trol parameters, a body posture that satisfies them is 
found by a robust inverse-kinematics algorithm (Zhao 
1989) that formulates the body positioning problem 
as nonlinear optimization over the joint space of the 
body. 

3 POSTURE PLANNING 
STRATEGIES 

Motion strategies are obtained using gross-level struc- 
tural properties of the body. Examples of them are as 
follows: 

(1) A hand can be stretched to the ground 
by bending the upper body, while the pelvis 
is lowered. 
(2) To reach an object, the agent tends to 
stretch his arm as much as possible while 
bending the pelvis as little as possible. 
(3) When stretching a hand to reach the 
ground from the standing posture, the agent 
bends the upper body at the pelvis rather 
than lowering the pelvis (by bending the 
knee). 
(4) When orienting the body along the verti- 
cal axis, stepping is triggered to avoid twist- 
ing of knee joints. 

Using the motion strategies, the planner selects 
a partial sequence of primitive motions of con- 
trol parts/vectors using a standard planning method 
(Chapman 1987). A motion of a rontrol point or vec- 

tor is primitive if it has a single moving or rotation 
direction, respectively. Selected primitive motions are 
mentally simulated to determine whether selected mo- 
tions would satisfy the collision avoidance constraints. 
When a stepping motion is planned, the bounding box 
of the whole body is used to test collision between the 
body and obstacles. When other motions are consid- 
ered, collision of the end effector (a hand), the head, 
and the torso is tested. That is, collision of the elbow 
is not considered at planning stage. The assumption 
is that a workspace for the end effector is designed so 
that it may provide enough free space for the elbow if 
it provides the free space for the end effector. Collision 
is determined by checking if the polyhedral sweeping 
volumes generated by the end effector, the head, the 
torso intersect obstacles. If a planned motion causes 
the end effector, the head, or the torso to collide with 
an object, the face of that object that is in the way 
of the sweeping volume is identified. Then the motion 
is modified so that the sweeping volume would pass 
by the boundary of that face. The majority of robot 
motion planning methods (Lozano-Perez 1987, Ching 
1992) use the joint-space motion reasoning. That is, 
they assume that the goal configuration of the body is 
given in terms of a sequence of joint angles and con- 
structs the free joint-space (the set of joint angles at 
which the body does not touch obstacles) to find a 
collision-free path of the body. The posture planner 
complements the robot motion planner by providing a 
feasible macro-level path and by finding a goal posture 
of the body using heuristic motion strategies. 
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Abstract 

The goal of this research is to develop a system which enables automatic construc- 

tion of the detail hierarchy for complex objects in order to provide progressive object 

details for displaying complex geometric environments. Based on the constructed detail 

hierarchy, our system is able to display objects in various detail levels depending on 

the viewing position. Various possible methods towards geometric detail reduction are 

surveyed as an effort to find an appropriate method to be used in our hierarchy construc- 

tion module. Having decided to use superquadrics with global deformations and blobby 

models for our system, we present an automatic hierarchy construction scheme using 

these models. The mathematical formulations and recovery algorithms of these models 

are explained. In particular, we propose several improvements over Muraki's blobby 

model recovery algorithm which will result in significant gain in speed and efficiency. 

We deliver a detail hierarchy traversal algorithm which utilizes frame coherence. We 

discuss our selection of display metric and other issues related to display of the detail 

hierarchy. 
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Chapter 1 

Introduction 

1.1   Motivation 

Conventional representations of a geometric environment describe the objects in full 

detail. The conventional representation scheme often involves many problems when 

the objects are displayed. Firstly, all the objects in the environment will be computed 

for clipping, hidden-surface elimination, and illumination. Even though an efficient 

clipping computation is applied to those objects which are not in the view range, the 

viewer can hardly resolve all the details which were displayed on the screen with heavy 

computational overhead. This unresolvability is a combined result of the viewer's eye 

movement, limited resolution of the display device and the relatively small area the 

object occupies on the screen. 

Another problem occurs when too much detail falls into a small area of the display, 

hence generating aliasing effects [Amanatides 87]. Aliasing often makes the image 

unattractive and distracting to the viewer. Finally, we have to resolve the huge storage 

requirement for the large database in order to display a complex scene. Users occa- 

sionally have to divide the environment into subsets and composite the intermediate 

images in an ad-hoc way to cope with the storage requirement. This not only involves 

1 



unnecessary overhead but often gives an unsatisfactory final image resulting from some 

reflections and shadows being left out. 

All these problems can be solved when we adopt the hierarchical representation of 

object details as proposed by Clark which will allow transition among different levels 

of detail for the objects [Clark 76]. The hierarchical database can be developed by de- 

signers before display time, either manually or semi-automatically [Rubin 80, Rubin 82, 

Feiner 85]. The hierarchy has been built through a laborious process and in an ad-hoc 

manner. It has been largely an unsolved problem to create a relation automatically be- 

tween the data structures and the rendering process so that exactly the necessary level 

of detail is available [Badler 84]. 

A modeling hierarchy is obtained when an object is modeled. It records the way 

complex objects are built up out of simpler parts. When animating natural figures 

consisting of rigid limbs connected by joints it is usual to model a figure as a tree of 

dependent parts. Representing objects using such a modeling hierarchy is convenient 

for positioning objects and their components in space and for moving objects relative 

to one another. In addition, they offer considerable memory savings when objects and 

object components occur several times in a scene. In the modeling hierarchy, the leaf 

nodes typically contain nodes, edges, polygons, and possibly surface patches. 

Clark extended this normal object hierarchy [Foley 90] to include sub-hierarchies 

which contain objects modeled in greater and greater detail [Clark 76]. He gave a 

recursive descent algorithm for searches and traversals which proceed only down to the 

smallest resolvable level of detail. 

Clark's hierarchical representation, which will be called detail hierarchy in the rest of 

this article, specifies the entire environment as a tree where the root is interpreted as the 

whole environment. Each node in the tree is either a collection of objects or an object at 

a certain level of detail. Every arc in the tree contains information about a transformation 

which prescribes the relative position of the child from its parent node. There are two 

types of arcs in the tree: those that represent pointers to child objects whose orientation 
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"world"'        X 

Figure 1.1: A detail hierarchy of an environment 

and placement are defined relative to its parent and those that account for pointers to 

more detailed structure which collectively define a more detailed specification of the 

object. 

Each nonterminal node in this detail hierarchy represents a sufficient description 

of the object if it covers no more than some pre-specified area on the display. If the 

description formed at a level is inadequate because it covers a larger area on the screen, 

the object description is obtained from their child nodes at lower levels which supply 

more details. An example of using the hierarchy to describe an environment is shown 

in figure 1.1. In the figure, T' is a transformation to more detailed description of an 

object and T is an object's transformation relative to its parent node. 

As we mentioned previously, the conventional object representation almost always 

conveys certain hierarchy information. However, the detail hierarchy is different from 

the modeling hierarchy in the sense that the detail hierarchy does provide geometric 



approximations to the objects which provide intermediate details. On the other hand, 

in the modeling hierarchy only the leaf nodes contain the geometry information of the 

objects, providing only one level of detail of the objects. 

For example, a good geometric representation of a human body figure typically 

requires over 6,000 data points. The computer resources required to display and manip- 

ulate such large amounts of data are significant and often cause the figures to lose the 

real-time motion capability. It is desirable to have the human figure rendered as a cou- 

ple of blocks or a single rectangular polyhedron when the area it occupies is relatively 

small. 

The following table in figure 1.2 shows the polygon processing capability of current 

graphics hardware technology. In this table, we list series of personal IRISes [SG 91] 

for the hardware. With the higher end models, we can have approximately 30K polygons 

processed per second. Thus approximately only 30K / 60 hz = 0.5K polygons (or IK 

polygons when employing the interlacing technique) can be processed in real-time. This 

is the number of polygons in the geometric environment which users can manipulate in 

an interactive manner without noticing time delay in display. Therefore, it is imperative 

to develop a system which can provide multiple levels of detail for objects. 

A typical application of this detail hierarchy can be found in the area of computer 

controlled simulators such as flight simulator which need to render complex images. 

The flight simulator displays a dynamic, three-dimensional, out-of-the-window view of 

the scene in real time while responding to operator input from the command and control 

system. One of the major modules in a flight simulator is a scene manager. In the scene 

manager, the objects are usually represented in several levels of detail, with the detailed 

version shown only when the viewer is sufficiently close to the objects. This module is 

responsible for retrieving from mass storage the database objects within the panorama of 

the current pilot position and providing the appropriate levels of detail of these objects 

for further processing. The scene manager ought to be provided with the ability of 

ansition from one level of detail to the next one in a smooth manner [Yan 85]. 
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8bit color 24bit color 24bit color 

no Z buffer 24bit   Z 24bit   Z 

6K Polygons 6K Polygons 29K Polygons 

4D/35 16K Triangles 16K Triangles 40K Triangles 

92K Vectors 92K Vectors 219k Vectors 

6K Polygons 6K Polygons 29K Polygons 

4D/30 16K Triangles 16K Triangles 40K Triangles 

92K Vectors 92K Vectors 219K Vectors 

6K Polygons 6K Polygons 28K Polygons 
4D/2S 16K Triangles 16K Triangles 36K Triangles 

92K Vectors 92K Vectors 204K Vectors 

Polygons/sec = 
10x10 (100 pixel), 
full 24-bit color, 
unlighted, Gouraud-shaded, 
Z-buffered, 
arbitrary orientation. 

Triangles/sec = 

10x10 (50 pixel) mesh, 
full 24-bit color, 
unlighted, flat shaded, 
Z-buffered, 
arbitrary orientation. 

Vectors/sec = 

10 pixel, conncted, 

full 24-bit color, 3D, 
arbitrary orientation. 

Figure 1.2: Graphics configuration of personal IRISes 



Another arising area of application of the hierarchical representation of object detail 

is in virtual reality. Due to drastic cut-down in the price of computer hardware, virtual 

reality equipments have become affordable to a wider class of users. Virtual realities or 

virtual worlds help researchers visualize and manipulate complex data and help architects 

show complex building ideas to clients. The headgear mounted on the viewer includes a 

sensor to detect head orientation. If the computer is powerful enough or the scene itself 

is simple enough, the image can be updated with about 30 frames a second. This is fast 

enough to give viewers the impression that the scene is changing smoothly. However, 

the complexity of scene which can be managed by current or near future computer 

graphics hardware technology is limited. This complexity problem can be compensated 

by using the hierarchical representation of object details. 

1.2   Previous Work on Representing Objects with Detail 

Hierarchy 

As mentioned in the above, Clark introduced the object representation with detail hierar- 

chy [Clark 76]. Though Clark mentions that the hierarchy structure can be constructed 

by using a bottom-up approach from the most detailed description of objects, there was 

no proposal for automating this process. 

Rubin and Whined propose a scheme whereby the object space is represented only by 

bounding boxes [Rubin 80, Rubin 82]. The leaf nodes are rectangular parallelepipeds 

which are oriented to minimize their size and formed into an approximation of an 

object component. The creation of the bounding boxes is a rather tedious process that 

requires a human operator. Their approach using rectangular parallellepipeds with affine 

transformations contains a total generality of describing an arbitrary object but they are 

far from being efficient in representing arbitrary objects. 

In order to reduce time spent on ray object intersections in ray tracing techniques, 



many acceleration techniques used structure information which the scene bears [Goldsmith 87, 

Snyder 87, Weghorst 84, Kay 86]. Others subdivided space into an octree to speed up 

the ray-object computation [Glassner 84, Glassner 88]. Building tree hierarchy for ray- 

tracing, however, was done by merging objects hierarchically into larger groups by some 

bottom-up pruning of existing definitions of the objects. They did not attempt to provide 

simplified description of each object. 

Recently, Blake presented a viewer centered metric for computing adaptive detail 

as a methodical way of using adaptive detail [Blake 90]. He was successful in provid- 

ing some theoretical foundations underlying the practice of adaptive detail display of 

complex scenes but did not furnish any formula which can be used as a generic tool 

for rendering adaptive detail. Also, construction of the detail hierarchy for complex 

geometric environments was not addressed in his work. 

1.3   Statement of the Problem 

The goal of this research is to develop a system which enables automatic construction 

of the detail hierarchy for complex objects in order to provide progressive object details. 

Based on the constructed detail hierarchy, our system is able to display objects in various 

detail levels depending on the viewing position. Viewers can also specify which objects 

are more important thus need to be displayed in more detail by setting high values to the 

priority metric of the objects. The overall system configuration is given in figure 1.3. 

Given the input of a complex geometric environment, the hierarchy construction 

module performs as an off-line process and generates an extended geometric environ- 

ment with multi-level detail. Our automatic hierarchy construction scheme uses shape 

recovery algorithms to build simplified models from a detailed object data. It also de- 

fines a metric threshold value for each level of detail so it can be used by the display 

manager. 

The display module manages the environment with detail hierarchy and determines 
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Figure 1.3: A system configuration 



the adequate levels of detail according to the viewing condition and the object priority 

metric values specified by the viewer. Display manager computes a metric value for 

each level of detail and compare it with the metric threshold values to decide whether 

the object needs more or less detail. 

In our current research, we only consider static objects and do not attempt to apply 

our algorithm to deformable or articulated objects. Attributes such as surface color 

apparently play a very important role in users' perception of the object. Handling 

attributes requires research on determining the importance of each attribute in human 

perception of objects. For example, a red light, though small, may be clearly visible 

at detail levels which would normally subordinate its geometry. We do not attempt to 

study the effects of attributes; instead we will only concentrate on the importance of 

shape given by the geometric information at this time. 

1.4   Organization 

In chapter 2, we review various possible methods towards the geometric detail reduction. 

This survey was conducted in an effort to find an appropriate method to be used in our 

hierarchy construction module. Each method holds its own object representation scheme. 

Thus we analyze each method and its object representation scheme to judge its suitability 

in our application. The methods which will be discussed include implicitly defined 

surfaces (both iso-surfaces and generalized superquadrics surfaces), spatial subdivision 

methods, parametric surface patches, etc. 

Having decided to use superquadrics with global deformation and blobby models 

for the geometric detail reduction, we present more details on the automatic hierarchy 

construction scheme using these models in chapter 3 in a step by step fashion. The 

mathematical formulations and recovery algorithms of these models are explained in 

chapter 4. In particular, we propose several improvements over Muraki's blobby model 

recovery algorithm which will result in significant gain in speed and efficiency. We also 



discuss the rendering of blobby model and explain a polygonization algorithm. 

We discuss the display module in chapter 5. We deliver a detail hierarchy traversal 

algorithm which utilizes the frame coherence. This algorithm tries to minimize the 

number of node visits when the image needs to be updated because of moving objects 

or slight change in viewing condition. We also discuss the selection of metric and other 

issues related to display of the detail hierarchy. 

Finally, we give a summary of our research problem and explain work in progress. 

We conclude with a section detailing the resulting contributions from this research. 
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Chapter 2 

Methods for Geometric Detail 

Reduction 

2.1    Overview 

One of the most widely used representation scheme for geometric objects is the bound- 

ary representation in which nodes, edges and faces are explicitly stored. Considering the 

goal of our work which is to generate intermediate geometric approximations to objects, 

an obvious and intuitive approach is to directly manipulate these boundary representation 

and smooth out some of the details. However, direct manipulation of boundary repre- 

sentation to generate simplified models from detailed input data poses a more complex 

problem than it appears and so far no satisfactory algorithms have been reported. In 

this work, we would like to approach the problem of reducing the geometric details of 

an object by identifying the outstanding features of the object and representing them in 

certain simplified formulations so that the minute surface details will be smoothed out. 

There are many surface or volume modeling schemes which have been used in 

computer graphics and machine vision community. Moreover, work in model recovery 

has generated many algorithms to recover volumetric models from input data which 
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were formulated as optimization problems [Solina 87, Muraki 91]. An alternative ap- 

proach to the approximation of surfaces was taken by surface fitting using paramet- 

ric Bezier surfaces [Schmitt 86, Cheng 89]. An effort to incorporate the global shape 

parameter with the local degrees of freedom has produced deformable superquadrics 

[Terzopoulos 91, Metaxas 91]. Implicit surfaces were generalized by using modal de- 

formations and displacement maps to provide local and fine surface detail by offsetting 

the surface of the solid along its surface normals [Sclaroff 91, Pentland 91]. The re- 

search on model based shape recovery suggests a solution to our problem because it 

provides a method of distinguishing features and averaging out surface detail at the 

same time. 

Requicha [Requicha 80] provides a list of the properties desirable in a solid represen- 

tation scheme. Although our interest does not exactly fall into the solid representation 

scheme, the list can serve as criteria for comparing and analyzing many available object 

representation methods and finally help to select one scheme for our purpose. 

Some of the items on this list are: 

• The domain of representation must be large enough to allow a useful set of physical 

objects to be represented. 

• A representation should be compact to save space, which in turn may save com- 

munication time in a distributed system. 

• A representation should allow the use of efficient algorithms for computing desired 

physical properties, and most important for us, for creating images. 

The criteria which are particularly important in our modeling were not enumerated 

in Requicha's list. For example, our object representation should be able to provide 

adequate intermediate levels of detail which can be used to incrementally approximate 

the object. The representation should also provide an easy and efficient way to compute 

these intermediate levels. 
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In this chapter, we review the available object representation schemes and select the 

best scheme based on the given criteria. 

2.2   Voxel Representation 

Under this scheme, objects are decomposed into identical cells named voxels (volume 

elements) which are arranged in a fixed and regular grid. Representing an object is 

easy under this scheme since all required is to decide which cells are occupied and 

which are not [Foley 90]. Editing with voxels is not intuitive to users. Thus, voxel 

representation is usually recovered from other commonly used representation such as 

boundary representation or a set of data points obtained through an image processor. It 

is often used in biomedical applications to allow volume visualization where the data 

are usually obtained from sources such as computerized axial tomography (CAT) scans. 

Under this scheme, operations such as deciding whether a cell is inside or outside of 

the solid and determining whether two objects are adjacent are simple to carry out. They 

ha' e thus been used in hardware-based solid modeling systems intended for applications 

in which the gain in speed of Boolean set operations outweighs the coarseness of the 

resulting images. 

However, voxels do not allow partial occupancy though fractional density values 

may be stored in non-binary voxel spaces, thus many solids can be only approximated. 

Storage of the voxels require enormous space since up to n3 occupied cells are needed 

to represent an object at a resolution of n voxels in each of the three dimensions. 

2.3   Octrees 

Octree representation is a hierarchical variant of the voxel representation.   It is de- 

signed to remedy the issue of demanding storage requirements of voxel representation 
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[Samet 88a, Samet 88b, Carlbom 85]. In this representation, the entire object space is 

divided repeatedly into cubes or rectangular parallelepipeds resulting in a tree structure. 

The leaf nodes do not contain primitives such as edges and polygons but are rather ho- 

mogeneous cells which give the occupancy information. Octrees approximate the object 

components by repeated subdivision into cubes or parallelepipieds to some degree of 

precision. 

The spatial decomposition provides a representation applicable to a wide class of 

objects and allows geometrical properties to be computed rapidly. Octrees have been 

generalized to represent polyhedral objects and named as poly tree [Carlbom 85] or ex- 

tended octree[Brunet 90]. Octrees do allow the detail in the projected image to be varied 

by changing the depth to which the octree is processed. This can be done adaptively 

depending on the resolution of the display [Sandor 85]. 

Octrees do not provide the memory savings offered by object decomposition, nor does 

it provide any structure for managing or interacting with components of a complex object. 

The storage requirement is still severe as compared to other representation schemes. 

Besides, octrees can only represent bounded solids. Moreover, the rectilinearity is 

definitely not an advantage in object appearance. 

2.4    Superquadrics 

Superquaric surfaces were introduced to computer graphics to allow complex solids 

and surfaces to be constructed and altered easily from a few interactive parameters 

[Barr 81]. Barr developed solid modeling operations which simulate twisting, bending, 

tapering or similar transformations of geometric objects [Barr 84]. The deformations 

extend the shape of solid primitives and allow modeling to be done by intuitive and 

easily visualized operations. 

Solina formulated an optimization problem which can recover the superquadrics with 

global deformations such as bending and tapering from input data [Solina 87]. Based 
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on Solina's recovery procedure, Gupta developed a volumetric segmentation algorithm 

which can recover the structured pan hierarchy of an object [Gupta 91]. We will explain 

superquadric models in more detail in a later chapter. 

2.5   Dynamic Superquadrics with Local and Global De- 

formations 

Terzopoulos and Metaxas presented a physically-based approach to fitting complex 

3D shapes using dynamic models [Terzopoulos 91, Metaxas 91]. They formulated de- 

formable superquadrics which incorporate the global shape parameters of a conventional 

superellipsoid with the local degrees of freedom of a spline. The local deformation pa- 

rameters help to reconstruct the details of complex shapes which the global abstraction 

misses. They formulated the model fitting to visual data by transforming the data into 

forces and simulating the equations of motion through time to adjust the translational, 

rotational, and deformational degrees of freedom of the models. 

They argue that geometry is often insufficient for analyzing the motions and inter- 

actions of complex objects. A model based on computational physics is suggested to 

remedy its shortcomings. Thus in addition to geometry, their models includes simulated 

forces, masses, strain energies, and other physical quantities. 

This complex formulation may generate well-fitted superellipsoid at the expense of 

heavy computation overhead. To generate the intermediate geometric approximations in 

our system, one does not require the full dynamics property that this fitting procedure 

adopts. Also their models have shown to work only on pre-segmented data. Thus, we 

opt for a different fitting procedure which is simpler and more efficient 
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2.6   Modal Deformations with Displacement Maps 

Pentland and Sclaroff used modal deformations to describe the overall shape of an 

object where displacement maps are used to provide local and fine surface details by 

offsetting the surface of the solid along its surface normals [Sclaroff 91, Pentland 91]. 

The advantage of this approach as a modeling scheme is that collision detection and 

dynamic simulation become simple and inexpensive even for complex shapes. They 

also provided a method for fitting such models to three dimensional point data by 

determining bother the deformation parameters and a displacement map. 

The distance maps were designed to describe shape details. They are not adequate to 

represent a whole object which consists of many parts. Moreover, in their ThingWorld 

system, the displacement maps are represented by a regularly spaced grid in the surface's 

parametric space. Therefore, the detail which their models can capture depends on the 

grid resolution rather than the inherent shape detail of the object The blobby model 

which we will discuss later will remedy both of these problems. 

2.7   Spline Surfaces 

Schmitt et al proposed a top down method for the problem of surface fitting from sampled 

data [Schmitt 86]. This method is based on an adaptive subdivision approach. It begins 

with a rough approximating surface and progressively refines it in successive steps to 

adjust the regions where the data is poorly approximated. Their method constructs a 

parametric piecewise polynomial surface representation. The surface fitting is effected 

through a use of subdivision techniques. The subdivision creates new vertices which 

are then positioned so as to achieve a closer approximation of the underlying data. 

The method has been implemented using a parametric piecewise bicubic Bernstein- 

Bezier surface possessing G1 continuity. An example of a surface fitting to a human 

head data was shown in the original paper. 
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One advantage of this approach is that the refinement is essentially local, reducing 

the computational requirements which permits the processing of large databases. Fur- 

thermore, the subdivision method provides a hierarchical epresentation of the surface 

as a quadtree-like structure which may be utilized in our system. 

However, for surfaces with minute details or undulating surfaces, this algorithm 

may actually try to fit to those details and hence generate a large number of surfaces in 

the process. This is an undesirable feature considering the goal of our system design 

which is to generate intermediate geometric approximations typically consisting of fewer 

polygons. Therefore we choose to adopt a different modeling scheme. 

2.8   Potential Surfaces 

Potential surfaces are iso-surfaces of potential energy emerging from a number of origins. 

They have the property that the iso-surfaces are smoothly continuous even though the 

origins are separated. They are simple to edit since all required to do is to crsate, move 

and delete the corresponding origins, and change a few parameters in the potential field 

formulation [Wyvill 86, Blinn 82]. 

The hlobby model introduced by Blinn is one form of potential surface [Blinn 82]. 

Muraki has developed a recovery procedure for this blobby model from input data[Muraki 91]. 

By adjusting the number of blobs used in the fitting process, we can obtain a hierarchy 

of intermediate representations. Wyvill et a/'s soft object is different from the blcbby 

model in the formulation of the field function. That is, the soft object adopted a poly- 

nomial field function so thai the function do not influence any point beyond a certain 

distance away. 
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2.9 Distance Surfaces and Convolution Surfaces 

Distance surfaces are a generalized form of potential surfaces which allow polygonal 

skeletons instead of point skeletons [Requicha 83, Payne 92]. This is done by computing 

the potential from only the nearest point of the polygon. The distance surface gives the 

union of the volumes generated by all the individual points of the collective skeleton. 

Thus a skeleton consisting of two line segments may generate bulges at the joint. 

Convolution surfaces have almost the same shape as distance surfaces except that 

they generate smooth blending by convolving the skeleton with a three-dimensional 

Gaussian filter kernel [Bloomenthal 91]. 

So far no recovery procedure has been developed for this class of modeling schemes. 

It is conceivable that the recovery of the distance surfaces or convolution surfaces may 

be difficult due to their complex formulations. 

2.10 Medial Axis Transform 

Blum has introduced a transformation, known as the symmetric axis transform or me- 

dial axis transform that decomposes a figure in 2-D into simpler figures [Blum 78]. In 

an attempt to extend the medial axis transform, Nackman generalized the mathemati- 

cal tools used by Blum to three dimensions for further study of Blum's transform in 

three dimensions [Nackman 82]. However, there was no algorithm provided for shape 

description and we found that application of his work is not yet feasible. 

O'Rourke and Badler presented an algorithm which decomposes a three-dimensional 

object, specified by a set of surface points, into a collection of overlapping spheres 

[ORourke 79]. This spherical decomposition permits the computation of points on the 

symmetric surface of an object in 3-D. All the sphere centers resulting from their sphere 

decomposition algorithm lie on the medial surface of the object. However, the sphere 

centers do not necessarily cover the symmetric surface.   Thus, for a very complex 
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object, the sphere centers represent a sampling from its complicated symmetric surface. 

Recovering symmetric surfaces from the scattered surface points has not been addressed. 

2.11    Summary 

Our goal here is to find a suitable modeling scheme which fits into our application, 

namely, building a detail hierarchy for displaying complex environments. To justify 

our selection, we compared the aforementioned modeling schemes based on the given 

criteria (figure 2.1). 

There was no known recovery method for the convolution surface and distance 

surface. The sphere decomposition algorithm by O'Rourke and Badler allows the com- 

putation of symmetric surface points. However, an effective sphere search algorithm 

which can minimize the number of recovered spheres was not provided. Therefore, in 

the worst case, the number of spheres can match the number of surface points. 

One of the basic problems of the spatial subdivision methods such as voxels or 

octrees was their huge storage requirement. In addition, each cell is a box with an 

intensity value. The cell cannot convey the surface tangent information which is very 

important in rendering the shape with visual fidelity to the modeled object. Although 

we are considering only static objects in this research, we would like to see a scheme 

which can be easily extended to articulated figures. The space subdivision methods do 

not have this desirable property since they cannot deliver any structure information. 

Superquadrics with global deformations were adopted in our scheme to represent 

coarse object descriptions because of its simplicity and descriptive capability of shapes. 

Deformable superquadrics with global and local deformations and generalized implicit 

surfaces, on the other hand, were considered too complex to use for coarse descriptions. 

As mentioned before, they work only on pre-segmented parts so they can not be used 

to describe complex objects which may contain structured part hierarchy. 
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Figure 2.1: A table comparing the merits of different representation schemes 
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An adaptive fitting algorithm for surface patches given by Schmitt et al provides 

a possible hierarchy construction scheme for smoothly defined objects. However, the 

smoothness assumption is not satisfied by many geometric objects in graphics applica- 

tion. Also they require the input data to be regularly spaced in rectangular grids. 

We have chosen to use the blobby model to build intermediate geometric approxima- 

tions for complex objects. The blobby model can capture the part structure of the input 

object and give an effect of low pass filtering of the input data. The recovery algorithm 

for this model provided by Muraki reveals some shortcomings at the current stage. We 

propose a number of enhancements to Muraki's work such as using superquadrics as 

primitives. Especially we try to speed up the recovery process of multiple primitives by 

performing residual analysis and proposing other improvements. More details will be 

discussed in chapter 4. 
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Chapter 3 

Synthesis 

3.1    Overview 

As we have discussed in the previous chapter, superquadrics with global deformation 

will be used to construct the intermediate geometric approximation to the input object. 

Due to their inherent limitation in the object shape vocabulary, however, superquadrics 

are not adequate to approximate an object with intricate detail to a high level of fidelity. 

Thus, we will also use the blobby model for the intermediate geometric approximation to 

obtain a better approximation to the original object than the superquadric surfaces. The 

formulation of the blobby model facilitates this better approximation: it is an implicitly 

defined surface with a summation of potential functions. 

In this chapter, we are going to explain how superquadrics and blobby model are 

used in our detail hierarchy construction scheme. As we noted in the previous chapter, 

recovery algorithms from the input or range data points are available for these models. 

We use the shape recovery algorithm to fit these models to the given input object. The 

recovered models are used as the intermediate geometric approximations to the original 

object We fit the models to the input object in various levels of accuracy and construct 

the detail hierarchy from the recovered models. 

22 



human figure 

( head ) torso leftLeg |   | rightLegl |leftArm 

71\   ./fv 

(upperTorso)   I lowerTorsd 

rightArnj 

7K 

[upperLeftArm) [lowerLeftArni] 

[ thumb) [indexFingelf [middleFingttfringFingeftlittleFinger)( pa/m) 

internal nodes containing only 
structural information 

CD terminal nodes containing 
geometric information 

Figure 3.1: An example object with user denned hierarchy: a human figure 

The types of figures given as input to our system can be categorized into two classes. 

Objects in the first class have a user-defined object hierarchy. An example of such a 

hierarchy for a human figure is shown in figure 3.1. Since we handle only static objects, 

we assume that this human figure remains in the given posture. Objects created with the 

editing facility in conventional computer aided design (CAD) systems usually belong 

to this class. Objects in the second class contain only geometric information with no 

explicit hierarchy definition. Examples are objects obtained through a range sensing 

device, a 3-D digitizer, or from a conversion program for CAD systems. From now on, 

we will call the first class objects as DOH (Defined Object Hierarchy) objects and the 

second class objects as NOH (No Object Hierarchy) objects. 
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In the description of the hierarchy construction, we use the term object to mean any 

part of the object for which we are trying to construct coarser levels of detail. Thus an 

object may be a whole figure, a set of segments (or links), or a segment (or link). 

The hierarchy construction process can be divided into five steps. At the first step, 

fitting of a superquadric model with global deformation is conducted at each node of a 

DOH object or to the input object in the case of a NOH object By storing the recovered 

superquadric models at the nodes, we provide coarser description of the object which 

corresponds to that level of the hierarchy. 

By analyzing the squareness parameters of the recovered superquadric model, we 

can categorize it into a cylinder, round object, cuboid, or ellipsoid. Thus, the next step 

is to obtain a more simplied model from the recovered superquadric model through the 

categorization. That is, the recovered superquadric model can be further approximated 

as a simple cuboid, cylinder, etc. This level of description will be useful when the object 

is very far from the viewer so it occupies very little area on the screen. 

At the third step, we propose to apply the volumetric segmentation in an effort to 

recover the inherent structured part hierarchy of the object. However, this volumetric 

segmentation problem has been considered difficult to solve for very complex objects. It 

is still a subject that is being pursued in computer vision community. This step remains 

optional at this time. 

The next step is applied only to complex objects with more pronounced features 

which the superquadric model can not capture. In other words, we try to recover 

more elaborate detail by using blobby models and store them between a superquadric 

approximation and the given input object. This process is done at the current terminal 

nodes and increases the depth of the subtree by adding intermediate nodes before the 

processed terminal node. 

The last step is not directly related to the synthesis of simplied models. We further 

process the hierarchy constructed so far to be used by a display manager by defining 

the threshold values of the display metric in each internal node. These threshold values 
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are used in determining the levels of detail to be displayed. 

3.2   Hierarchy Construction Process 

The hierarchy construction process is depicted in figure 3.2. Each step is explained in 

the following subsections. Thd new detail hierarchy which is expanded by this process 

from the given human figure (figure 3.1) is shown in figure 3.3. 

3.2.1 Fitting Superquadric Models 

The superquadric fitting is done is a recursive descent manner. The algorithm is as 

follows: 

1. Transform all the segments in the figure into a global coordinate system. 

2. Set NODE = root of the tree. 

3. Run a superquadric fitting module on the geometric data that belongs to the whole 

subtree whose root is NODE. Then we store the fitted superquadrics into the 

data structure of NODE. 

4. Set NODE to each child of NODE and recursively execute the previous step 

until the whole tree is traversed. 

3.2.2 Classifying Superquadric Models 

Though the superquadrics reduce the detail dramatically for complex objects, the result- 

ing polyhedral approximation to the superquadric model can still consist of too many 

polygons. The actual polygonization of the superquadrics is done by an adaptive method 

which starts with evenly spaced angles in two dimensions and subdivides the angles if 
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Figure 3.2: Abstract view of hierarchy construction 
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Figure 3.3: The same hierarchy for the human figure after the intermediate representa- 
tions are computed and stored in the nodes 
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the tangents at the two adjacent angles position show a big discrepancy. This will gen- 

erate more polygons at places with sharp curvature. Therefore, if the object occupies 

only a few pixels on display (i.e. very far from the view point), it is a "waste of com- 

putation to display all the polygons. Hence, we propose to add another level of coarser 

description. 

Based on the values of the superquadric model parameters, we can categorize the 

fitted model into several classes: box, round, edged ellipsoid, and cylinder [Bajcsy 90] 

(figure 3.4). For example, cylinders can be either circular or elliptical based on the 

ratio of their two smaller, superquadric size parameters. Then for each class, we can 

define a simplified polyhedron depending on the size and the parameter values of the 

fitted model. This simplified polyhedron consists of fewer polygons and hence is more 

efficient for small display area. 

We can extend the notion to have this added level not only at the root of the tree but 

also at every internal node. The effectiveness of this extra level remains to be verified 

from an experimentation. 

3.2.3   Applying Volumetric Segmentation 

The next step is an optional step. We can attempt to apply the volumetric segmentation 

process to the object This is to recover the inherent part hierarchy in the object. This is 

more useful for NOH objects since they do not come with a structural hierarchy. After 

this volumetric segmentation process, the NOH objects will have a hierarchy defined 

and hence can be treated similarly as DOH objects. 

For DOH objects, since they already come with a hierarchy defined, the segmentation 

process may serve to refine the hierarchy. For NOH objects, since they do not come 

with a hierarchy, the objective of the segmentation process will then be to create a 

structural hierarchy for them. 

Note that the intermediate geometric approximations will be obtained automatically 
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Figure 3.4: illustration of the categorization process 

for each node in the subtree created in this segmentation process. This process in effect 

creates new leaves and increases the depth of the hierarchy tree. 

3.2.4   Fitting Blobby Models 

For objects that have more pronounced features, the superquadrics fitting process may 

fail to capture these features into the superquadrics model. For example, let us consider 

the head of a human figure. The whole head segment will be represented by one 

superquadric model which can not describe all the features such as the nose and the ears 

clearly. This may be true even if the volumetric segmentation process is applied. 

For these types of leaves that the superquadrics fitting process does not generate a 

good fit for the original geometric data, we can generate a better intermediate repre- 

sentation using a different fitting process, the blobby model fitting process. This class 

of model has the capability of representing more detail features. Blobby model will be 

described in more detail in chapter 4. The model generated will be stored into the data 
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structure of the node as before. 

3.2.5    Determining Metric Thresholds 

The threshold values of the metric that we store in the nodes of the hierarchy determine 

the levels of detail to be displayed under a viewing condition. The threshold values 

are to be measured empirically. Experiments are conducted so that different types of 

objects can be displayed in various viewing conditions. Users try to determine at which 

point coarser levels of description can be turned on as the objects are translated away 

from the viewer. The system will then compute the metric values at these thresholds. 

A collection of these data can be generalized and served as metric thresholds. 

The generic metric thresholds defined through the above process may perform poorly 

for some objects. For example, an object with many features may need a more strict 

threshold. On the other hand, a geometrically simple object can apply a loose threshold 

without much loss of the quality of the image. We will attempt to compensate these 

poorly defined metric thresholds by allowing users to modify the thresholds for some 

particular objects. This can be implemented as a simple editing facility. Thus specified 

values will then serve as the metric thresholds for those objects. 

In our current research, we do not tackle the problem of finding the best metric or 

the best method of determining the metric thresholds. More details about computing the 

metric values will be explained in chapter 5 on display mechanism. 

3.3   Segmentation Process 

This is a process to divide up the input object into meaningful parts. Gupta performed 

residual analysis to create clusters and initiated the fitting procedure for parts using 

superquadrics models [Gupta 91]. The intermediate models from this fitting process may 

be used to expand the structural hierarchy for the object. The volumetric segmentation 
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is an active research area in computer vision. 

3.4   Polygonization of the Superquadric and Blobby Mod- 

els 

We render the superquadric or blobby model in the intermediate geometric approxima- 

tion by polygonizing it and displaying the approximated polyheron. A superquadric 

model can be formulated as a parametric surface of two angular parameters. Thus an 

adaptive polygonization can be devised by starting at evenly spaced parameter values 

and recursively refining the parameters when the tangents at the two adjacent parameter 

values differ significantly. We can not apply this simple method to a blobby model be- 

cause it can not be formulated this way and its shape often exhibits concavity. Note that 

concavity in the superquadric model occurs only when the global deformation is applied 

which is accounted for by the parametric formulation. Thus, for blobby models we are 

going to use a polygonization algorithm developed for implicitly defined surfaces. The 

polygonization algorithm and other rendering options are further discussed in chapter 4 

when we give more specific explanation on each model. 

One interesting observation is that we can link the polygonization process with the 

metric threshold valuer TTiat is, we know that which range of the resolution the object 

will need on the screen. We can compute the inter-pixel distance on the object and use 

it when sampling the surface points. 
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Chapter 4 

Intermediate Models 

In this chapter, we describe the models and their recovery procedures we have chosen 

for intermediate geometric approximations in more detail. In section 1, we introduce 

superquadrics. Section 2 describes a recovery procedure of superquadrics with global 

deformations for a single-part object as given by Solina [Solina 87]. Section 3 explains 

the blobby model defined by Blinn [Blinn 82] and section 4 explains a blobby model 

recovery proce ;e given by Muraki [Muraki 91]. In section 5, we propose several 

improvements over Muraki's algorithm. Finally we discuss rendering of the blobby 

models in section 6. 

4.1    Superquadrics 

Barr provided an explanation of geometrical meaning of the superquadric surfaces by 

using a spherical product of two two-dimensional curves [Barr 81]. Given two two- 

dimensional curves, 

h(uj) = wo < w < u>i 
h2(uj) 
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and 

m(ri) = 
7711(77) 

m2(v) 
,r?o<f? <Vu 

the spherical product x_ = m. ® h. of the two curves is a surface defined by 

3L(TJ,U) = 

mi(r})hi(u) 

mi(r})h2(u) 

m2(ri) 

U>o < U> < U>\ 

Geometrically, h(u>) is a horizontal curve vertically modulated by 221(77). r/ is a north- 

south parameter, like latitude, whereas u; is an east-west parameter, like longitude. For 

example, if 21(77) is a half circle and £(u>) is a hull circle, then the spherical product of 

these two produces a unit sphere: 

_ 

221(g) h — 
COST] 

sinr) 
® 

COSUJ 

sinu 
= 

cosrjcosuj 

cosTjsinu 

sinrj 

-7I-/2 < 77 < TT/2 

— 7T < U < 7T 

In two dimensions the sine-cosine curve 

x = acosl$ 

y = bsinl0 
-7T < 6 < IT 

or 

(f)*+(f)*-i 
is called a superellipse. 

The spherical product of pairs of these types of curves produces a representation 

for the superquadrics. The two exponents are squareness parameters. They are used to 

pinch, round, and square off portions of the solid shapes and to soften the sharpness 

of square (figure 4.1). The shape progresses square, round, bevel, and pinch as the 

exponents increase from 0 to 3: 

e < 1 shape is somewhat square. 
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Figure 4.1: The two-dimensional basis functions of superellipses 

e w 1 shape is round. 

e « 2 shape has a flat bevel. 

e > 2 shape is pinched. 

Position vector of superellipsoid is given: 

x{ri,u) = 
cosfl(rj) 

® 
a,iCOSC2(u>) 

a2sin'2(w) 

—7T < a; < 7T 
(4.1) 

a-[Cos11 (rj)cos^ (u>) 

a2cosil{,q)sint'i{u) 

a3sinll(r}) 

Parameter aua2, and a3 define the superquadric size in x, y, and z direction re- 

spectively in object centered coordinate system. ex is the squareness parameter in the 

north-south direction; e2 is the squareness parameter in the east-west direction (fig- 

ure 4.2). Cuboids are produced when both ti and e2 are < 1. Cylindroids are produced 

when t] a 1 and e2 < 1.   Pinched shapes are produced when either et or e2 > 2. 
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Figure 4.2: Superquadric shapes: 0.1 < ei,e2 < 1.0 

Flat-beveled shaped are produced when either ei or e2 = 2. If both ei and e2 are 1, the 

surface defines an ellipsoid. 

Superquadric implicit equation is derived from equation 4.1 by eliminating 77 and e 

[Solina 87]: 

(4.2) {& + &)" + & = - 

4.2   Single-part Recovery 

The inside-outside function for superquadric model is modified to be used for the re- 

covery procedure by adding the exponent ci in the equation 4.2 [Solina 87]: 

F(x,y,z) = •«)* + (i)*l,' + (i)* 

The outmost exponent ex was added by Solina to cancel out the effect of low values 
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of ei during the model recovery process. Similar modification was also done in the modal 

deformations [Sclaroff 91]. Gupta showed that the modified inside-outside function F 

for a point (x, y, z) is the square of the factor by which the superquadric has to be scaled 

to make it pass through the point (x, y, z) [Gupta 91]. That is, this factor is the amount 

a superquadric has to be expanded or contracted to make it pass through an arbitrary 

point. 

Solina has formulated the optimization function (goodness of fit) in general position 

and orientation for deformed superquadric model: 

GOF = ^IS^-jr £(F(:r.-, y„ *.-) - l)2) 

The condition that a point should satisfy the inside-outside functions provides the con- 

straint for a point to lie on the superquadric model. The y/aia2a3 factor provides for 

the smallest volume satisfying the surface constraint. 

The global deformations such as tapering and bending [Barr 84] are also accounted 

for into this optimization formula. These deformations are only performed relative to 

the z-axis. Thus if the z-axis is determined incorrectly, the deformation can not be 

recovered. We can improve this situation by determining the z-axis as the axis which 

keeps the symmetry of the object for the tapering and bending deformations. 

The optimization is done by an iterative non-linear minimization method. Levenberg- 

Marquardt method was used in the recovery procedure. This method is based on Newton 

method and incorporates a gradient method [Reklaitis 83]. By combining the two meth- 

ods, Levenberg-Marquardt method tries to improve the convergence rate even if the 

given initial values are not close enough to the solutions. 

4.3    Blobby Model 

Blobby model expresses a 3D object in terms of the isosurface of a scalar field which is 

generated from many primitives. Blobby model was introduced by Blinn for displaying 

36 



molecular models [Blinn 82]. The field value Vi(x, y, z) at any point (x, y, z) generated 

by a primitive at a point (x,,y,, z.) is given as follows: 

VJ(z, y, *) = &,e*p{-a,/.(*, y, z)}. (4.3) 

The function /,(x, y, z) defines the shape of the scalar field. In the case of a spherical 

field, fi is given as 

fi(x, y, z) = (x - x,)2 + (y - y<)2 + (* - «02, 

and in the case of a superquadric shaped field, it is given as 

£(x,y, z) = {(x - x,)^ + (y - yOM^ + (* - *i)^- 

In the case of spherical shape, the exponential term in equation 4.3 brings a Gaus- 

sian bump centered at (x,, y^, z.) with height 6, and variance ^-. When there are several 

primitives at once, the scalar field from each primitive is added and the resulting iso- 

surface can show a very complicated shape. The field from N primitives at any point 

(x, y, z) is expressed as 

N 
V(x,y,z) = ^2biexp{-aifi(x,y,z)}. (4.4) 

t=i 

The isosurface of value T(> 0) is defined as an implicit function: 

V(x,y,z) = T. 

4.4   Blobby Model Fitting 

Evalue constitutes the surface constraint and is given as: 

M 

Evalue = £{ V(x;, y„ *,-) - T}2. (4.5) 
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In order to ensure that the blobby model is fitted into the correct inside or outside 

direction, the surface normals of the range data are considered. Thus En0Tmai is defined 

as: 

(4.6) 
M 

•'-'normal —   /  ,, 
N(xj,yj,zj) 

|N(xj,yj,zj)| 

Here N(x, y, z) is the normal vector of the blobby model and is defined so that it coin- 

cides with the negative direction of the gradient of the scalar field which is represented 

as: 

N(x,y,z) = -W(x,y,z), 

where V is the vector operator, 

Kdx'dy'dz}' 

The unit surface normal nj of a data point j is calculated by averaging out the face 

normals adjacent to the data point. 

In the case of a flat surface, any primitive with the values of a, = 0 and 6, = T 

satisfies both equations 4.5 and 4.6. However, there is no constraint on the shape 

forming in the area where there is no range data. Therefore, there is a possibility that 

the primitive which fits to the range data makes strange shapes away from the vicinity 

of the range data points. To avoid these problems, a new constraint is added which 

minimizes the influence of the field of each primitive. The equation of the field of a 

primitive over 3D space is expressed as: 

/oo     yoo     f°° /ir\2 
/      /     Vi(x,y,z)dxdydz = ( — J   &,. 

-oo J—oo J — oo \fl,/ 

Considering the case where b{ is negative, the shrinking constraint is defined as follows: 

N    .i 
E3Hrink = (Y,a77\bt\)

2. (4.7) 
t=i 

By combining equations 4.5, 4.6, and 4.7, we obtain a minimization function for 

fitting a blobby model to range data as follows [Muraki 91]: 

E = -j-j(Evaiue + aEnormal) + ßE,hrink- 
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Here a and ß are weighing parameters which control the strength of the surface normal 

constraint and the shrink constraint. 

Muraki's algorithm makes an initial fit between a primitive and the range data, 

and then divide the primitive into two primitives so as to increase the goodness of fit. 

Continuing this division for all primitives, the detailed surface of the object can be 

expressed by the isosurface, which is generated by the primitives. To find a primitive 

which will strongly influences the result of the minimization, they examine all of the 

primitives and determine how much the energy value is reduced by the division of the 

primitive, and then adopt the division which reduces the energy value the most. The 

selected primitive is divided into two primitives while holding fixed the parameters of 

the other primitives in the list. 

Blobby model recovery can be applied to hierarchical analysis of an object by consid- 

ering the way a set of primitives branch out from a parent primitive. It is our observation 

that blobby model recovery can be used as a tool for volumetric segmentation by an- 

alyzing the proximity and sizes of the recovered blobs. Object reconstruction can be 

achieved up to minute detail by fitting a blobby model to range data although it was 

shown to be a very computationally expensive process. 

4.5    Improvements over Muraki's blobby model recovery 

The procedure for blobby model fitting given in [Muraki 91] can be improved substan- 

tially by adopting the following enhancements: 

• We can introduce residual analysis to incorporate the fitting result from the previ- 

ous step in the selection process of the dividing primitive. 

• We can create multiple primitives rather than two primitives originating from the 

selected primitive. The initialization of the new multiple primitives can be done 

by analyzing clusters. 
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• Muraki's method recovers only the parameters of two newly bifurcated primitives 

with other primitive parameters fixed. Instead, we can recover all the parameters 

of all the primitives involved. 

• We can extend the shape of blobby model to superquadrics. The improved blobby 

model will be able to represent flat surfaces efficiently as well. 

In the following subsections, we describe each item in more detail. 

4.5.1    Selecting A Splitting Primitive 

Muraki uses an exhaustive search to select a blob which will be divided into two blobs. 

That is, the algorithm examines all the primitives in the list and computes how much 

the energy value is reduced by the division of each primitive. Then the primitive which 

reduces the energy value the most is adopted for the division at the next step. With 

large numbers of primitives, this results in a great deal of waste in computation because 

we will choose only one primitive for division and all the computation done on other 

primitives will not be utilized at all. 

The selection process can be expedited by incorporating the fitting result from the 

previous stage. In order to pursue this, we pick the primitive which affects many 

numbers of poorly fitted data points from the previous fitting step for ihe next splitting 

primitive. 

In our approach, each primitive maintains a list of data points which are affected by 

the primitive the most among all the recovered primitives. Also, each data point keeps 

the residual value which bears the information on how well the data point is fitted to 

the recovered blobby model. 

Let's define the energy value for a data point (x,y,z) from a primitive P, as in 

equation 4.3: V,(x,y,z) = biexp{—aif,(x,y,z)}. Each primitive P keeps a list of data 

points whose energy value from P is the biggest. That is, the data points belonging to 
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the list of a primitive are those who have the biggest energy value from the primitive 

among all the primitives recovered. A residual value for a data point (x, y, z) is defined 

as: 

R(x,y,z) = \V{x,y,z)-T\ 

where V(x,y,z) is given as equation 4.4: V(x,y,z) = Yl?=ibiexp{-aifi(x,y,z)}. 

The total residual value for a primitive is defined as the sum of the residual values 

of the data points in the list of the primitive. Then, we select the primitive with the 

greatest total residual value for the next dividing primitive. Here, note that we compare 

the energy values of a data point to find out the primitive which influences the data 

point the most. For the indicator of the fitting for each data point, however, we use the 

optimization function value which is called a residual value. 

4.5.2    Splitting A Primitive Into Multiple Primitives 

We can further speed up the recovery process by dividing the selected primitive into 

multiple primitives rather than only two primitives. The number of new primitives and 

the initial values of their parameters are determined by using some heuristics which are 

obtained by performing residual analysis on the result from the previous fitting. 

We mentioned in the above section that each primitive maintains a list of data points 

whose energy values are the largest from that primitive. We can create clusters from 

the data points in the list of the selected primitive. This process is similar to clustering 

in [Gupta 91]. That is, each data point in the list can be classified into three classes: 

overestimated, exact, and underestimated. Each maximal set of overestimated data points 

which are connected forms a cluster. Also, we create another cluster by collecting all 

the exact and underestimated data points. Each cluster with data points more than a 

given threshold is considered non-trivial. 

Then the number of the new non-trivial primitives originating from the divided 

primitive is decided as the number of new primitives. The initial values of the parameters 
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for each primitive arc obtained from the center, radius, and variance of each cluster. 

4.5.3    Simultaneous Fitting 

Another problem with Muraki's algorithm is in recovering the parameters of only the 

two new primitives from the division while holding the parameters of other primitives 

fixed. Instead we can recover the parameters of all the primitives at the same time. 

For example, let's consider an object which consists of three spheres. After recovery 

of two primitives, one of them is chosen to be divided. If we use Muraki's bifurca- 

tion method for the fitting, the result of fitting will be still unsatisfactory because the 

parameters of one primitive are fixed through the fitting process (figure 4.3). There- 

fore, the fitting will continue until the number of primitives grows huge in order to 

obtain sufficiently good fit. On the other hand, with the simultaneous fitting, only three 

primitives are needed to get a very good fit to the object. Therefore, the simultaneous 

fitting enables efficient fitting to some objects which may involve great overhead in the 

bifurcation method. 

However, recovering all the parameters may create a large linear equations system 

when the number of the primitives is large. When the order of matrix is large, the 

commonly used Gaussian method tends to show the round off errors. Therefore, we 

need to adopt an iterative method for solving the large linear equations system in the 

optimization process. 

4.5.4   Using Superquadric Shaped Blobby Model 

The formulation of the optimization problem for blobby model fitting can be extended to 

superquadric shaped blobby models. Superquadric blobby model will increase the shape 

vocabulary by far. Especially, flat surfaces can be represented by the blobby model 

[Bloomenthal 91]. 
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(a) 

(b) 
fixed 

new primitives 

(c) 
Figure 4.3: An example which shows the limitation of the bifurcation method (a) initial 
fitting with one primitive (b) one primitive splits into two (c) one primitive splits again 
while the other stays fixed, resulting in poor overall fitting even with three primitives 

43 



4.5.5   A new fitting algorithm 

A blobby model fitting algorithm incorporating all the suggested improvements is given 

as follows: 

1. Fit a blob to the range data by solving the minimization problem. 

2. Repeat the following steps until the residual is small enough. 

3. Select a primitive P, which has the greatest total residual value. 

4. Perform clustering of the data points listed in P{. 

5. Split Pi into multiple primitives. Delete P< from primitive list and add all new 

primitives into the list. 

6. Fit all the primitives in the list to the range data by solving the minimization 

problem. 

7. Insert each data point in the divided primitive into the list of one of the newly 

created primitives by comparing the energy values. Then compute the total residual 

values for each primitive. 

Note that this last step can be done with little computation because the residual 

values and the energy values of all the data points were already computed during the 

fitting procedure. Also we assume that each primitive can still retain the data points in 

its list even if its shape changed during the new fitting process. Likewise, for the data 

points from the selected primitive for division, we only compare the energy values from 

the newly divided primitives to find the primitive with the biggest influence on the data 

points. This will avoid excessive comparison among all the primitives for each data 

point in the list of the divided primitive. 
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4.6    Rendering Blobby Models 

There are three common approaches in rendering implicit functions. One method is 

to polygonize the implicit function [Bloomenthal 88, Hall 90, Wyvill 86] and use the 

conventional rendering of polyhedrons. Another rendering technique is to use a method 

based on ray tracing [Blinn 82, Kalra 89, Hanrahan 83]. The third method is a scan line 

method for shaded display of polynomial functions [Sederberg 89]. 

The ray tracing and polygonization method are capable of displaying arbitrary im- 

plicit surface, but do not operate in real or near real time on today's workstations 

[Bloomenthal 90]. Since our aim is to provide a geometric environment representation 

for efficient real-time rendering and manipulation, we can not rely on ray-tracing based 

mechanisms. 

For our interactive applications, we need to polygonize the blobby models and store 

them as polyhedrons. Besides, modern hardware provides built-in procedures for dis- 

playing polygons rapidly. On the other hand, storing the intermediate geometry approx- 

imations using the parameters is a compact and efficient storage method for ray tracing 

if need for ray tracing arises for better picture quality. 

4.6.1    Survey of Polygonization Techniques for Implicit Surfaces 

Hall and Warren presented a method for finding an adaptive polygonal approximation of 

piecewise imp'icit functions [Hall 90]. The polygonalization can then be rendered using 

standard shaded polygon drawing techniques. The class of implicit functions they tackled 

was the contours of trivariate polynomial functions represented in Bernstein/Bezier form. 

Their approach ensures to yield an approximation guaranteed accurate to within some 

user-specified tolerance of the actual surface for the algebraic svtuces. 

The method of Wyvill, McPheeters, and Wyvill involves creating an array of cubes 

and evaluating the function at each comer point.   For each cube that exhibits a sign 
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change between vertices, the method constructs a linear approximation to the surface 

[Wyvill 86]. One major drawback of their method is that their algorithm may sample 

heavily in areas in which the function is nearly linear and therefore relatively uninter- 

esting. That is, their algorithm developed for soft object data structure does not propose 

an adaptive algorithm. 

Bloomenthal extended this method to do adaptive subdivision according to surface 

curvature by using an octree space partitioning technique [Bloomenthal 88]. The im- 

plicit function is adaptively sampled as it is surrounded by a spatial partitioning. The 

partitioning is represented by an octree and a peicewise polygonal representation is de- 

rived from the octree. Criteria for subdivision of an octree node were based on object 

characteristics such as tangency and curvature. 

4.6.2    Our Polygonization Algorithm 

The number of polygons generated in the polygonization is critical in our problem. This 

cause us to choose an adaptive algorithm. 

We use Barr's straddling box method to generate spatial partitions which divides 

space into convex polyhedral cells, whose union surrounds the surface. This guarantees 

that no part of the surface is missing from the spatial partitioning. Note that Wyvill's or 

Bloomenthal's methods may result in holes by ignoring some fine features. We perform 

adaptive subdivision by subdividing a cell when it generates more than one polygon or 

when the tangents at the corner points differ significantly. 

A crack may occur along the shared face of two cells if one cell is subdivided and 

the other is not as pointed out in [Bloomenthal 88]. We solve this problem by choosing 

the edges generated from the subdivided cell for the polygons from both of the cells. 

We can also try to combine any two adjacent faces if their tangents are close enough 

by merging their enclosing boxes and computing a new polygon. The surface tangent 

at the center of the polygon is used. 
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Chapter 5 

Display Mechanism 

5.1 Overview 

In this chapter, we are going to review the display mechanism that determines the level 

of details to be displayed for the objects in the environment under the current viewing 

condition. This involves traversing the hierarchy and selecting the appropriate level to 

display based on a metric. We will first discuss the metric to be used and then the 

algorithms for traversing the hierarchy. 

5.2 Selecting a Metric for Adaptive Details 

The level of details to be displayed for an object is determined based on a metric. 

Generally speaking, the metric is a function of the area which the object occupies on the 

screen in terms of the number of pixels and the distance of the object from t^e viewer. 

The term perspective effects has long been used by artists to mean the way the 

appearances of things change with increasing distance from the viewer. It meant both 

the loss of spatial detail seen in objects, and the color changes over longer distances. 

The metric is primarily dependent on distance and it measures perspective effects in the 
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broad sense defined above. The primary cause of loss of detail is the inverse square law 

which describes the relative diminution of areas with distance. A secondary cause of 

loss of detail is atmospheric perspective which results because light traveling through the 

air is scattered and absorbed. Under normal conditions the geometric perspective effect 

predominates in the medium range of distances. The longer range is always dominated 

by atmospheric effects. 

The ideal metric should measure the importance of the object to the viewer and not 

just its size on the image. This metric will then be dependent on the frequency and 

color of the object as well as its size and location on the screen. 

In our system, we use a relatively simple metric which basically measures the number 

of pixels the object occupies on the screen under the current viewing condition. This is 

actually computed by using the bounding volume of the object. The bounding volume 

of an object can be easily obtained by a simple bottom up method which goes through 

the object hierarchy and records the maximum and minimum values in x,y and z. 

A bounding cuboid can then be represented by these values. These values are pre- 

processed and stored in the nodes of hierarchy during the hierarchy construction process 

as described in Chapter 3. 

During the real-time display, the current viewing transformation is applied to the 

bounding volume of the object and the screen area of the bounding volume (hence 

the metric value) can then be computed. Recall that we have stored threshold value 

of the metric in the nodes of the hierarchy during the hierarchy construction process 

(Chapter 3). The current metric value is then compared to these threshold values and 

determine the level of details to be displayed. This procedure is explained in more detail 

in the following sections. 

Other types of bounding volumes were suggested for efficient ray object intersection 

test. Of particular interests are bounding volumes developed by Weghorst, Hooper, and 

Greenberg [Weghorst 84]. In order to determine the optimal bounding volumes, they 

examined the cost of intersecting the volume, the item complexity, and the project void 
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areas. They determine a bounding volume from three candidates, namely, a sphere, a 

rectangular parallelepiped, and a cylinder. Considering the project void area is especially 

interesting to us. Kay and Kajiya also come UD with a new type of bounding volume 

which can be made to fit the convex hull of an object arbitrarily tightly in exchange for 

the complexity of representation [Kay 86]. 

Another possible component to be considered in the metric is the goodness-of-fit of 

the intermediate geometric representation to the original data. The rationale behind this 

is that if the object occupies a large screen area and the goodness-of-fit for the current 

node is poor, it may suggest us to go down another level to use a better representation. 

However, the effectiveness of this metric is not fully obvious yet and awaits further 

experimentation. 

The display system may also allow viewers to specify the importance of an object to 

them. This user specified priority metric of an object will overwrite the system defined 

default metric threshold. The system will display an object with high priority metric in 

more detail and an object with low priority metric in less detail. This kind of facility 

will be useful when a user is manipulating a very complex object (or environment) but 

is interested in only a relatively small part of the object (or environment). The priority 

metric will shorten the response time of the system and provide a better interactive 

feeling and control to the viewer. 

The metric we have adopted can be categorized as a spatial metric [Blake 90]. There 

is another type of metric called dynamic metric which concerns with moving objects 

and measures the speed with which the projected image moves. Since our work focuses 

mainly on static objects, this type of metric is not considered here. 
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5.3 Intermediate Geometric Approximations in the Hi- 

erarchy 

The intermediate geometric approximations stored in the nodes of the hierarchy are 

essentially parametric equations of either superquadrics or blobby models. We can save 

these intermediate geometric approximations by storing only the parameter values and 

leave the polygonization for the real time display process. Or we can precompute the 

polygonization and store the polyhedrals into the data file explicitly. 

The former method will result in considerable reduction in disk storage but require 

running the polygonization module to retrieve the surface shape in real time display. 

On the other hand, storing the polygons explicitly will require more disk space but it 

will be faster in display. The decision between these two schemes can be done after 

careful consideration of this tradeoff including the speed of the polygonization algorithm 

and the storage efficiency of the resulting polyherons. For better real time interactive 

performance, we opt for the latter option to store all the polygons into the data file, 

which can be compressed to minimize the storage requirement. 

5.4 Traversal of the Hierarchy for Real Time Display 

5.4.1    Initial Display of the Environment 

The procedure for displaying a geometric environment is as follows: 

1. Set NODE to the root of hierarchy. 

2. Apply the viewing transformation to the segment corresponding to NODE. Com- 

pute the area it occupies on the screen. We use the bounding cuboid of the object 

in the computation since computing with the original segment data is expensive. 
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3. Recall that each internal node contains the metric value in terms of threshold area 

or distance. Compare the size of the area with the threshold metric value stored in 

the node. If the area is smaller than the threshold area, this means that the current 

level of detail is good enough for the object under the current viewing condition. 

4. Otherwise, set NODE to each child of NODE. Apply the previous procedure 

to each new NODE. In effect, we are traversing the hierarchy in a recursive 

descent way and utilizing more complex intermediate geometric approximation of 

the object. Clipping can also be done during the tree traversal. 

An example showing how the algorithm works is shown in figure 5.1. 

5.4.2   Changing Viewing Conditions 

Whenever the viewpoint is changed, e.g. zooming, or any object translates or rotates in 

the environment, the viewing condition is changed and we need to recompute the level 

of details to be displayed for the objects involved in the operation. Based on the frame 

coherence property which means that the objects in the scene are not going to change 

drastically in display between two consecutive frames, we do not need to restart the 

computation from the root of the hierarchy. Instead, we can start at the current level of 

detail and move up or down the hierarchy as necessary. 

At any time in display, we maintain a list of nodes of the hierarchy which constitute 

the current levels of detail for all the objects in the environment. Let's call the nodes 

used for display under the current viewing condition as appearance nodes and name the 

list of appearance nodes as appearance list. The appearance list is actually implemented 

as an array of lists where each array member corresponds to each level of the hierarchy 

tree and each list enumerates all the appearance nodes at that level. 

The algorithm for deciding the levels of detail for the next frame maintains other 

data structures as well. The active list is initialized to appearance list and keeps track 
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1 (b) 

Figure 5.1: an example demonstrating how an object such as a human figure is displayed: 
(a) the traversal of the hierarchy (b) the human figure displayed with intermediate details 
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of all the nodes which need further processing. The active list is also implemented as 

an array of lists like appearance list which contains each list for each depth level. 

We start the computation from the lowest level of the hierarchy tree. Thus, we 

compute the metric for nodes which are in the lowest level of the tree from the active 

list. If the metric area is larger than threshold metric value then we have to descend to 

its children. So we add all its children to a new list, display candidate list or candidate 

list. The display candidate list maintains all nodes which needs computation to decide 

whether it is in the appropriate level of detail or it will call for further descending to 

their children. But any node in the display candidate list assures that it needs at least 

that level of detail, thus it will not ascend the tree. 

If the metric value is smaller than the threshold value, then we have to decide 

whether we can display its parent instead of the current node. This process is not 

simple because one of the siblings may need further detail. Therefore we employ an 

request!acknowledge scheme. We add the request from the current node to its parent. 

Then the first step for each node in the active list is to test whether it has requests from 

all its children. If not, it simply adds all the children who sent their requests to the 

display candidate list. If it has all the requests, then it computes its own metric and 

decides which level is appropriate for display. 

An algorithm which achieves this procedure is given in the following: 

1. Initialize Active list to Appearance list. Set N to the biggest depth of nodes in 

Active list. 

2. For each node in the Active list, send virtual request from all its children. This is 

done as part of the initialization. 

3. Repeat the following until AT is 0 or the active list is empty 

(a) Set NODE to an element of the active list in depth N and delete NODE 

from the list. 
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(b) Test whether NODE has received requests from all its children. If not, 

we ought to display its children instead of NODE. Add the children of 

NODE who sent request to appearance list. 

We insert them directly to appearance list because all the necessary tests 

have been done already in the previous iterations and we know that they 

sent request to NODE because they wanted coarser detail rather than more 

detail. We are done the processing of NODE in case that NODE does not 

have all requests and we can proceed to next iteration with another NODE 

or a new value of N. 

(c) Compute the metric value for NODE using its bounding cuboid. 

(d) Compare the size of the area with the threshold metric value store in the 

NODE. If the area is larger then the threshold area, this means that the 

display area is too big for the object to be display with this level of detail 

and we have to use its children to display. At this stage, we know that all 

its children sent a request There are two types of requests: virtual request 

or request. Note that virtual requests are raised only as part of initialization 

and in this case all the children of NODE have virtual requests. 

i. virtual request: Add each child of NODE into candidate list if the 

child is an internal node or appearance list if a leaf node. 

ii. request: Add all the children of NODE who sent request to NODE to 

appearance list. Here again, the child nodes who sent request are those 

who do not need more detail. So we add them directly into appearance 

list. 

(e) Otherwise, we ought to display NODE or its parent. Add the parent node 

of NODE to the active list and issue request from NODE to the newly 

added parent node. This newly added node will be taken care of at the next 

iteration of this process with a decreased value of depth N. 

(0 If the active list at depth N is empty, set N = TV - 1. 
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4. Process each element in the candidate list to get an appropriate level of detail by 

descending the hierarchy as follows: 

(a) Set NODE to an element in the candidate list and delete it from the can- 

didate list. 

(b) Compute the metric value for NODE using its bounding cuboid. 

(c) If the metric area is smaller then the threshold area, then add NODE to 

the appearance list. That is, NODE is the level of detail which will be 

rendered on display, this means that the display area is too big for the object 

to be display with this level of detail and we have to use its children to 

display. Add the children of NODE who sent request to candidate list 

(d) Otherwise, add all the children of NODE into candidate list. 

(e) Repeat this process until the candidate list is empty. 

Let's take an example of a tree whose initial tree configuration is shown in fig- 

ure 5.2 (a). All the nodes in the active list are colored grey. Recall that these nodes are 

also the appearance nodes before the viewing condition changes. Since the maximum 

depth from the active list is 4, we start processing the active nodes with the depth value 

of N = 4. Note that the arrow symbols from the active nodes at the level of N indicate 

either ascending or descending from the node according to the result from the metric 

comparison. 

The result after the first iteration of the algorithm is shown in figure 5.2 (b). After 

processing node 13, node 20 is inserted into appearance list since it is a leaf node while 

node 19 is inserted into candidate list. Also node 7 becomes active because of the 

request from node 14. Likewise, the results after processing for different level depth 

values are presented in figure 5.2 (c), 5.3 (d), and 5.3 (e). In figure 5.2 (c), node 14 

becomes an appearance node even if it is an internal node because it raised request to its 

parent for coarser detail. Figure 5.3 (f) shows all the appearance nodes after processing 

candidate list. 
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11       22 

(a)   initial active list(N=4) 

(c)    after N=3 

Figure 5.2: an example demonstrating the view changing algorithm (a)-(c) 

56 



2T 24 (0    after processing display list 

I      nodes in active list 
•     nodes in display list 
•      nodes in appearance  list 

Figure 5.3: an example demonstrating the view changing algorithm(d)-(f) 
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5.4.3   Discussion on efficiency 

The algorithm given in the above is complex and may raise a question to readers whether 

this will be really more efficient than starting all over from the root. The answer can 

be yes or no depending on the given hierarchy and viewing condition. Certainly there 

may be situations where this new algorithm is more complex than the one given in the 

previous section. However, if the given geometric environment is complex and if the 

frame coherence is satisfied, then this new algorithm is more efficient because it requires 

descending or ascending from the current levels of detail only a few steps. Therefore, 

in general, this new algorithm is more efficient. 

5.5    Other Issues 

5.5.1 Display Technique 

In order to avoid flickering in transition between two levels of detail, we perform 

fade in / fade out technique by making the old description transparent while the new 

description is taking its shape. This is in effect interpolating the two descriptions which 

can be either linear or nonlinear. This ought to reduce the abruptness of change of detail 

in the object 

5.5.2 Handling Attributes 

Color of an object, for instance, can be non-uniform and requires special treatment 

when the object is transformed to a coarser description. For each face in the coarser 

description, the color of that face can be assigned to the dominant color of the underlying 

faces. The dominant color is determined as the one which occupies the most area of the 

underlying faces. 

A more effective solution to the attribute problem is to use the texture mapping 
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technique, which the hardware has managed to handle in real time in advanced graphics 

machines during recent years. By using the shrinkwrap technique [Bier 86] which allows 

texture mapped to multiple faces from a 2-D rectangular texture pattern, we can impose 

the texture of the details on the surface of the lower detail description. 

5.6 Handling Articulated Figures 

As mentioned before, in our current research we only consider static objects and do 

not attempt to apply our algorithm to deformable or articulated objects. However, 

our approach lends itself to a feasible extension to handle articulated objects. This 

process can be helped by recovering the part hierarchy of an object through volumetric 

segmentation. A rough idea for manipulating articulation in the simplified model is to 

divide the coarser model into several parts which correspond to the segments or links 

in the articulated object. Whenever a joint is rotated or translated, we can compute 

a transformation matrix which will perform the movement. Then we can apply the 

movement to the corresponding parts by multiplying the transformation matrix to the 

parts. This matrix multiplication can be done efficiently by hardware. 

5.7 Performance Analysis 

We plan to do performance analysis on several objects. The analysis will be done on 

objects with the defined object hierarchy (DOH) such as a human figure model or a 

house. Objects with no given hierarchy (NOH) but with fairly compler geometry and 

multiple components such as a tank will also be tested. For each object, we will compare 

the rendering time of the object under view changes and some static environments in 

various levels of details. 
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Chapter 6 

Conclusion 

6.1    Work in Progress 

We have implemented Muraki's blobby model fitting algorithm by using the surface and 

shrink (volume) constraints and have tested on simple objects. It still needs to include 

the surface normal constraint to recover complex objects correctly and we are currently 

working on it An adaptive polygonization is also being implemented. 

We will then work on the enhancement to Muraki's algorithm as described in a 

previous chapter. We will implement the control structure of the system including the 

hierarchy construction module. Subsequently we will work on the display traversal 

routine. The hierarchy tree traversal will be implemented on the top of JACK so that 

the geometric environment can be displayed in JACK. JACK also provides a convenient 

tool to build up the user interface for allowing users to specify the priority metric of the 

objects. Finally, we will run our system on a number of sample objects and analyze the 

performance gain in different cases. 
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6.2   Contribution 

The principal contributions of this work are as follows: 

• We propose a novel scheme to construct the intermediate geometric approximations 

for complex objects. Different levels of details are obtained automatically in the 

process and can be used for effective real-time display of complex environment. 

• The system will be useful in areas like flight simulation systems or virtual reality 

environments in which complex geometric environments have to be displayed in 

real time. Our system automates the hierarchy construction process which will 

reduce the modeling effort significantly. 

• We survey the existing object representation schemes and analyze their merits for 

our geometric detail reduction application. 

• We extend Muraki's blobby model fitting algorithm to superquadrics shaped blobby 

model. We improved the algorithm by using residual analysis technique and in- 

corporating heuristics in the blob splitting process. 

• Based on the existing polygonization methods of implicit surfaces, we develop a 

new adaptive polygonization algorithm for implicitly defined surfaces. 

• We devise a display algorithm utilizing the intermediate geometric approximations. 

The algorithm makes use of a metric in determining the level of detail to be 

displayed. In particular, the algorithm explores the frame coherence property and 

keeps traversal of the hierarchy minimal. 
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1 Abstract 

This paper outlines and examines the use of pre-computation and adaptive refinement methods in 

interactive virtual building walkthrough applications. In particular, the paper focuses on contrast- 

ing potentially visible set attainment and traversal methods. These methods reduce the polygon 

display space by rendering only a potentially visible subset of the model space for a particular view- 

point. This method requires model space subdivision pre-computation before display, but results 

in greatly increased display rates. In addition, adaptive refinement during display techniques are 

examined. These techniques use hierarchical model representations as well as a sieve approach to 

image refinement for increased scene realism. 

2 Introduction 

While the advance of modern hardware technology has allowed today's graphic superworkstations 

to reach rendering rates of hundreds of thousands of polygons per second, this is still too slow 

to support acceptable user interaction in complex static scenes. However, acceptable levels of 

interaction can occur by focusing on the static nature of most environments. In particular, the 

use of pre-computation and progressive refinement can be used to greatly increase the display 

performance in these environments. One such environment, the virtual building, is particularly 

well suited for such methods due to its inherent static and axial attributes. This environment also 

faces the additional demands of high-cost illumination models and real-time user interaction when 

used to produce realistic graphical "walkthroughs" of the building model. In this application of 

the virtual building, the goal is to produce the most realistic interior image possible at a framerate 

where a virtual-world illusion takes hold. Thus, the virtual building walkthrough (VBW) system 

faces two diametrically opposed goals; increased realism and detail (more polygons and high-cost 
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illumination models) vs. higher framerate (less polygons and low-cost illumination models). To 

satisfy both goals, a VBW system must use knowledge of its environment as well as of human 

visual perception and interaction to strike a satisfactory balance. Use of knowledge of the model 

environment and of the human user come in the form of precomputation and adaptive refinement, 

respectively. 

In precomputation, a priori knowledge of the building model can relieve much of the burden of 

on-the-fly computations during user interaction. This approach can be used to examine all viewing 

areas to determine the visible set of polygons at any given instant and thereby reduce the visibility- 

space for that view. In addition, precomputation can effectively solve much of the lighting model 

calculations, making complexly illuminated scenes possible. 

While precomputation is independent of the interactive walkthrough, adaptive refinement uses 

its knowledge of perceptual rates to make display-time adjustments during the walkthrough. Scene 

complexity is reduced or increased depending on the movement of the user. During stationary or 

slowly moving periods, more time is available for calculations and the image complexity is increased. 

This paper will examine the use of the two aforementioned methods in virtual building environ- 

ments to produce continuous user interaction at perceptually acceptable rates. Three systems are 

examined, each of which takes a different approach to using precomputation in the visibility-space 

reduction problem. 

The first method analyzed, BSP trees, was originally developed to compute priority orderings 

of coherent viewing areas. Schumacker developed the BSP tree to partition space into these areas; 

Fuchs modified this approach to create a total visibility ordering of the space. Schumacker's notion 

of model space partitioning was later adapted to fit the virtual building environment. The latter 

two methods examined are of this genre. Airey's method is examined first. This method uses BSP 

trees to partition the model space, and visible polygon sets are computed for each "room". The last 



method examined is Teller's visible set reduction solution. This method too divides the space using 

BSP trees; however only the set of visible "rooms" for each room are computed, not an exhaustive 

list of polygons. 

Following the examination of the model-space reduction methods, the use of precomputation 

in the lighting calculations is detailed. In addition, Airey's system's use of progressive refinement 

under stationary camera positioning is detailed. 

3    Background 

Before presenting the specific methodologies to be analyzed, some background and terminology 

must be introduced. In order to understand the problems in achieving interactive display rates, 

this rate itself must be defined and the display process must be understood. 

3.1    Motion Frame Rates 

Visual perception is naturally attuned to the rotoscopic process. It is this fact that allows the 

movie illusion to be perceptually fluid. However, this illusion falters when the frame rate decreases 

under some threshold. This threshold is not absolute; instead it depends on the relative velocity of 

the viewer and scene among other factors. Video and film rates are respectively 30 and 24 frames 

per second (fps), and in most instances this is adequate for creating smooth motion. However when 

some object in a scene moves too much from one frame to another, temporal aliasing occurs. This 

results in at best a perception of jerkiness in the animation, and at worst a complete loss of motion 

sensation. 

In an interactive building walkthrough, the environment is static and camera motion is relatively 

slow. This allows the motion continuity perception to start at rates as low as 6 fps [ARB90]. The 

visual illusion and corresponding interactivity increases as the frame rate increases. At rates greater 



than 20 fps, the perceptual gains lessen. 

3.2    Display Process 

Most graphical system rely on polygonal geometry as the basis of its display primitives. This is 

especially true for the display of architectural structures due to the inherent polygonal nature of 

most buildings. For this reason, this paper will not discuss other solid model representations. 

The display of polygonal objects, or segments, is typically accomplished in a graphical pipeline. 

This process consists of traversing the display model and obtaining primitives for the next pipeline 

state. These primitives, in this case convex polygonal faces, are then passed to a geometry stage 

which transforms and clips this object-space data (the polygons' vertices) into screen coordinates. 

The screen coordinates are then used to rasterize the primitives thereby "filling in" the polygons 

in screen coordinates. It is in this stage that individual pixel values are calculated, and correct 

depth cuing is generally performed. This screen data (pixel data) is then displayed by a display 

subsystem. 

As was noted above, the rasterization subsystem performs depth cuing. This process displays 

only polygons which are "closer" to the viewer. This operation is done in most systems using a 

variant of the Z-buffer technique. This technique uses the Z-coordinate or depth of the particular 

point of the viewpoint-transformed polygon it is displaying. If and only if this point's depth or Z 

value is less that that of the existing pixels Z value, it overwrites that pixel. Depth or Z values are 

therefore maintained for every pixel on the screen, thereby resulting in a "Z-buffer". 

The above display process is the foundation of most graphical superworkstations, with variations 

in the parallelization which occurs within the pipeline. In each case, however, hardware limits the 

processing rate of the primitives to current rates in the order of 106 primitives per second. In a 

comlex building environment, having 106 convex polygons has become commonplace, with many 



environments containing orders of magnitude more. In addition, in radiosity modeled environments 

each segment's polygonal faces are divided into smaller patches to facilitate more complex lighting 

models. This further increases the display list of polygonal primitives. Furthermore, current 

hardware provides frame buffer bandwidths of approximately 40 million pixels per second. This is 

already severely taxed due to the raster overwrite rendering methods which potentially render each 

polygon fully [MF89]. Speedup of this rendering pipeline is limited to only such user-controllable 

matters as the lighting model used or whether or not Z buffering is enabled. 

Whereby these two display parameters are controllable, they in themselves do not contribute 

greatly to display speedup. The overwhelming factor determining display frame rates remains the 

shear number of primitives passed through the pipeline. For each frame image, every polygon in 

the model is sent through the pipeline. This display lisfs length is directly proportional to the time 

required to display the image. While this might seem uncontrollable for a particular environment, 

reduction can be accomplished if one notes that at any instance in a scene, many polygons are not 

visible at all. This fact is magnified in a building environment, where walls act as delimiters of 

the environment. Assuming opacity of the walls, they obscure the neighboring rooms. Doors and 

windows, together defined as portals, are the exception to this observation. 

Therefore, any system which through pre-computation can determine the visible set of polygons 

and thereby reduce the number passed through the display pipeline can increase the system frame 

rate. This is the commonality of the described methods in this paper, known as the potentially 

visible set or PVS problem [ARB90], and is this paper's major focus. Other methods for speedup 

such as described above are also later discussed. The following section presents the basis of many 

of the current PVS methods employed today. 



4    Fuchs' BSP Trees 

One of the earliest effective preprocessing methods for performing visibility calculations is the 

binary space-partitioning (BSP) tree algorithm. This method has many applications in solving the 

PVS problem, with several outlined below. 

The BSP tree method was developed by Henry Fuchs, Zvi Kedem, and Bruce Naylor [FKN80]. 

The approach is based on a method of space subdivision developed by Schumacker [SBGS69] and 

explored by Sutherland [SSS74]. Schumacker's method used the observation that if a plane can 

be found which wholly separates one group of faces from another, then faces on the same side 

of the plane as the viewing position cannot be obscured by any of the faces on the other side of 

the plane. These groups of faces Schumacker termed clusters. By manually introducing invisible 

dividing planes into the scene, areas could be built in which the obscuring priority of the cluster is 

known through generation of what Fuchs later termed a BSP tree. Fuchs' use of BSP trees uses the 

scene polygons themselves as the dividing planes to create the tree. Before detailing the creation 

and exploitation of the BSP tree in calculating the PVS, an introduction to the BSP structure is 

necessary. 

4.1    The BSP (Jfc-d) Tree 

The BSP tree is a particular instance of the k-d tree, formally developed by Bentley [Ben75]. The 

k-d tree is a data structure for the storage of fc-space dimensional data for the efficient retrieval 

through associative searches. Bentley introduced various operations for the k-d tree. He showed 

that the cost of an initial sort is O(ralogn), demonstrated that neighbor queries are linear time 

ordered, and provided a method for general intersection queries. The importance of these contri- 

butions will be seen shortly. 

The fc-d tree is a data structure which stores fc-tuple data records in a multidimensional binary 



search tree. In this tree, each record represents a node and each node may have none, one, or two 

children. In addition, each node has associated with it a discriminator field used in creation and 

searches. These features are described in detail in   [Ben75]. 

As formerly noted, BSP trees are specific invocations of k-d trees, where fc is the dimension of 

the graphical scene space (in VBW systems, k = 3). In every BSP representation, internal nodes 

represent the k — 1 dividing plane which divide a space into two subspace regions. In a 2-dimensional 

space, these nodes represent a dividing line and each subspace is itself a half-plane. In 3-dimensional 

space, the nodes represent a 2-dimensional plane splitting a volume into two half-space volumes. 

4.2    Schumacker's Use 

The development of the BSP tree can be traced back to Schumacker's 1969 [SBGS69] introduction of 

a informalized hidden-surface algorithm. This method was further explored by Sutherland, Sproull, 

and Schumacker's Characterization of Ten Hidden-Surface Algorithms [SSS74], where notions of its 

coherence properties were first noted. 

Schumacker's use of the then unamed structure makes use of a tree structure to calculate the 

cluster priority depending on the viewpoint location. In this application, a cluster is taken to be 

a collection of faces that can be assigned a fixed set of priority numbers which provide correct 

view-independent visibility ordering after backface culling (see Figure 1). This ordering is for 

polygons within each cluster; inter-cluster priority follows directly from the BSP tree. This method 

does however rely on human selection of the clusters and the subsequent introduction of invisible1 

partitioning planes into the environment before creating the tree. 

Once a tree is created, its internal nodes represent the partitioning planes and its leaves are 

regions in space.   Associated with each leaf is a priority ordering (see Figure 2).   This ordering 

'Invisible here means not part of any display list and only used in calculations 
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Figure 2: Inter-cluster BSP Tree 



provides a unique determination of which clusters can obscure one another if the viewpoint is 

located within that region. Because by definition each intra-cluster priority is known, a correct 

image can be rendered by traversing the tree to the leaf area containing the viewpoint and using 

its cluster priority ordering as the display order of the clusters. In this case, higher priority (closer) 

clusters are not obscured by lower priority clusters since they are rendered later in the process, 

thereby relying on the overwrite capabilities of the display. 

4.3    Fuchs' Modification 

While Shumacker's method is effective for creating a correct depth oredering for any view, it does 

rely on operator segregation of individual clusters and is very costly [SSS74]. An alternative method 

also relies on the BSP structure to create priority orderings; however this method does not require 

cluster discernment. This method is Fuchs' visible surface method, introduced in On Visible Surface 

Generation by A Priori Tree Structures [FKN80] using a formalized and named BSP tree. 

Fuchs' BSP algorithm uses the environment's polygons themselves as the partitioning planes of 

the scene space. This produces not a cluster priority order; rather the BSP tree creates a polygon 

priority order (see Figure 3). This order is obtained directly through traversal of the tree in modified 

in-order method. For each frame, traversal of the tree produces a list of polygons in back-to-front 

order. This permits polygons rendered later to overwrite those rendered earlier. An alternative 

traversal produces a front-to-back ordering in which a pixel is written only if it has not yet been 

written. This method can reduce the frame buffer traffic, thereby easing the potential for frame a 

buffer bandwidth bottleneck. 

Fuchs' method of visible surface generation consists of two phases; namely the preprocessing 

phase and the image generation phase. These stages contain the following functionality: 
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Figure 3: Example Model and Corresponding BSP Tree 

• PREPROCESSING: In this step, the BSP tree is actually created. This involves recursively 
dividing the polygon space according to which side of a dividing plane each polygon falls on. 
Polygons incident with this plane are split in this step. Polygon splitting is performed only 
in this stage. 

• IMAGE GENERATION: This step occurs repeatedly during the display process. For each 
frame, a complete traversal of the tree occurs with the traversal order according to the view- 
point location. During each traversal, the polygons are either assigned priorities for later 
display or are painted during the traversal. 

Each stage is formalized below. 

4.3.1     Preprocessing 

The preprocessing stage consists of creation of the BSP tree given the set of directional2 polygons 

P = {Pi>P2>-- • iPn}- In choosing a polygon pk, the space P is divided into two half-spaces S^ 

and Sj, indicating positive and negative sides of plane on which polygon pk lies, respectively. All 

polygons are classified according to in which half-space they lie. If a polygon q falls incident to this 

dividing plane, it is divided at the line of intersection into two new polygons qsk and qst, each of 

2We assume each polygon is directional according to the direction of its normal 
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Figure 4: Example Model and Corresponding BSP Tree with Split Polygons 

which gets placed in its respective space (see Figure 4). Each half space is similarly divided selecting 

a polygon from the respective subspace. This recursive process is repeated until all polygons have 

been selected as a dividing polygon. This is demonstrated in the following pseudo-code: 

Tree Make_BSP.tree(List polygon.list) 

Polygon qpos,qneg; 

List.index i,k; 

/* k : polygon's index */ 

/* pk : dividing polygon */ 

/* Sk : positive subspace*/ 

/* Sk-: negative subspace*/ 

/* All polygons of space */ 

/* except dividing poly */ 

k»Select_dividing_polygon(polygon_list); 

pk=polygon_list[k]; 

pos_list*NULL; 

neg_list*NULL; 
FOR i»l TO Size.of(polygon.list) DO { 

IF (i <> k) THEN { 

/•Sets qpos to polygon i if entirely in positive subspace. 

«Sets qneg to polygon i if entirely in negative subspace. 

•If polygon i is in both subspaces, splits polygon into 

•two polygons at line of intersection and sets qpos to 

«positive half and qneg to negative half. 

*/ 
Split_polygon(polygon_list,i,k,qpos,qneg); 

Add (qpos, pos.list); /* Put pos poly in Sk */ 

Add (qpos, pos.list); /* Put neg poly in Sk-*/ 
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}END IF; 
>END FOR; 
tree.left.child = Make_BSP_tree(pos_list);      /* left child */ 
tree.node = pk; /* node • */ 
tree.right_child= Make_BSP_tree(neg_list);       /* right child */ 
RETURN (tree); 

} 

As can be infered from this process, the possible splitting of each polygon during each iteraction 

can result in exponential growth of the display set. This resulting BSP tree is created once during 

the preprocessing stage and is subsequently traversed once per frame during the image generation 

phase. 

4.3.2     Image Generation 

At each frame, the BSP tree created above is traversed for the current viewpoint. As noted 

previously, this can produce a priority ordering or directly drive a painter's algorithm3, which 

paints each polygon onto the screen as it is encountered. The pseudo-code for the latter approach 

follows. 

void Back.to.front(Position eye; BSP.tree tree) 
•C 

IF Not.null(tree)  THEN { 
IF pos_side_of(tree.root, eye) THEN {        /*Eye in pos half    */ 

Back_to_front(eye, tree.right_child);  /* negative branch */ 
Display_polygon(tree.node); /* current polygon */ 
Back_to_front(eye, tree.left.child);    /* positive branch */ 

}ELSE{ /*Eye in neg half    */ 
Back_to_front(eye, tree.left.child);    /• positive branch */ 
Display.polygon(tree.node); /* current polygon */ 
Back_to.front(eye, tree.right.child);  /* negative branch */ 

}ENDIF; 
}ENDIF; 

A painter's algorithm renders polygons in a back-to-front order with closer polygons overwriting any pixels 
previously drawn 
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The analogous front-to-back algorithm for writing to a pixel only if it has not been written is 

directly derivable from above. 

4.4    Characteristics of BSP Tree 

As seen in Section 4.3.1, the possible splitting of the polygons can result in a fc-exponential growth 

in the number of polygons, where k is the dimension of the space. This growth can be limited by 

several heuristic approaches. Among these are choosing the root polygon at each stage to be the 

one which splits the minimum number of polygons in its list, or in concert, maximizing the number 

of "polygon conflicts" eliminated as detailed in [FKN80]. Testing only a few polygons (five or six) 

provides a good approximation to the best selection [FAG83]. 

In addition, the use of the Ar-dimensional BSP tree for space subdivision results in a worst-case 

number of subspaces (leaves) given n polygons defined by: 

«•'•sO 
resulting in 2/jt(n) - 1 nodes in the tree. 

Fuchs' also gives formulas for the number of interior nodes given unbounded and bounded 

polygons. These formulas were given as 

m 
and 

respectively. 

The second equation as given is incorrect, partially due to an assumed typing mistake.   The 
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Figure 5: Fuch's Model Subdivision Using BSP Tree 

corrected equation is 

;+»'- 

although this too overstates the bound, as seen by the fact that the sum of the inner nodes and 

the leaves should equal the total nodes, which for the three-dimensional case does not. Regardless, 

this gives a close approximation to the maximum number of interior nodes. 

Although the above worst-case representations display polynomial growth, experimental evi- 

dence suggests typical increases of only single digit multiples on n [FAG83]. This implies a practi- 

cal use of this implementation. A sample virtual building model partitioning using a partitioning 

heuristic shows a well-balanced tree as seen in Figure 5. 
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heuristic shows a well-balanced tree as seen in Figure 5. 

1.5 Extended Uses of the BSP tree 

If the initial set of polygons is equivalent to the extended planes, this results in maximum tessella- 

tions. This enables precomputation of each area's priority ordering, since it is not possible to be on 

two sides of a polygon extension in the same area. This application, however, is extremely memory 

intensive. 

Fuchs implies the use of the BSP tree to assist in clipping. This is addressed in [FvDFH91] 

where any polygon extension not intersecting the view volume contains one subtree lying outside 

of the volume. This branch can therefore be eliminated from further consideration. This is indeed 

a powerful tool in reducing the display list at a particular viewpoint. 

4.6 Comments on BSP Trees 

The two described BSP tree uses demonstrate different approaches and applications for the struc- 

ture. While Fuchs' use of the model's polygons as the partitioning planes provides a useful foun- 

dation for automatic partitioning, the resulting priority polygon ordering presents little savings 

in today's Z-buffering superworkstations. Instead, Schumacker's use of the BSP tree for creating 

coherent PVS regions is far more advantageous in VBW applications. A compromise of the two 

techniques using the model polygons as the partitioning planes and obtaining priority orderings of 

the subspaces proves to be the best tradeoff. Fuchs' solution only becomes effective for the VBW 

application when used to assist in clipping, for great reductions in the display list can be accom- 

plished. This is also directly applicable to Schumacker's use if priorities are computed at display 

time instead of being pre-stored. 

A possible extension of the clipping application is to make use of the frame coherence that 
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typifies the VBW system. Since view areas typically do not drastically change from frame to 

frame, it might be possible to use the previous viewcone location to facilitate BSP tree pruning, 

thereby saving location checking for each partitioning plane node. It is not clear whether the costs 

associated with such a method outweigh the iterative savings. 

5    Airey's Approximate PVS Solution 

While the BSP tree method is a general hidden surface method with functionality applicable to 

virtual buildings, it is not specifically tailored to the VBW problem. In virtual building envi- 

ronments, the visible polygon set does not change much from frame to frame. Since in Fuchs' 

application the BSP tree is traversed for each frame, it does not take into consideration this inher- 

ent frame coherence in such cell-based environments4. An alternative method which uses and relies 

on this coherence is Airey's automatic model-space subdivision PVS system [Air90]. This system 

divides the environment into intuitive rooms or cells, and uses intra-cell view coherence in its PVS 

calculations. 

In Towards Image Realism with Interactive Update Rates in Complex Virtual Building Environ- 

ments [ARB90], Airey presents a cohesive rendering package specifically geared toward producing 

real-time user interaction in a virtual building. This system uses extensive pre-computation before 

display to reduce the search space for the PVS problem. It also relies on adaptive refinement to 

produce highly detailed scenes whenever possible. The latter functionality is addressed in Section 7. 

Whereas the BSP tree uses pre-computation to produce a traversal order for the entire model 

space for each view, Airey's method uses pre-computation to reduce the model space to potentially 

visible sets for related views. During the image generation stage, only the reduced PVS for each 

4 A modified use of the BSP tree makes use of frame coherence for maximum tessellation environments.   This 
method involves storing last priority orderings for use if the next viewpoint is located in same coherent area 
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view is rendered in contrast to Fuchs' traversal of the entire model space. 

5.1 Model Assumptions 

Airey used several characteristics of the virtual building environment to guide the design decisions 

of the system. The relevant properties for the PVS problem are 

• The model is changed much less often than the viewpoint 

• Buildings have high average depth complexity and are therefore nearly isotropic. 

• Most of a model is not visible from any given viewpoint 

• There is strong frame coherence except when crossing portals, e.g. doors. 

These features enable significant reductions in the average display lists at any given view. The 

first feature suggests that pre-computation is a viable method for speedup. The next two items 

suggest that reduction of the display list is valuable on average for all views. The last characteristic 

implies a natural decomposition of the building space into rooms for reduction of the PVS. 

5.2 Subdivision Method 

As noted above, rooms in a building represent natural cell space subdivisions which have strong 

intra-cell frame coherence. For all viewpoints within a cell, the union of all possible visible polygons 

is significantly smaller than the entire environment space. This reduced set of polygons is the 

potentially visible set (PVS) for that cell. 

While the decomposition of a building space into rooms seems intuitive, there is no simple 

algorithm for computer implementation. Rather, Airey relies on a heuristic approach to accomplish 

this partitioning. His approach circumvents the major problem facing Schumacker's clusters by 

providing automatic division into cells (clusters). This partitioning process attempts to strike a 

balance between two conflicting objectives, namely 
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• Minimize the size of the potentially visible set to get the maximum space reduction for that 
set 

• Minimize the number of sets to keep the space requirements at reasonable levels. 

In addition, calculation of the PVS for each cell is of limited use unless the cell containing the 

current viewpoint is easily determinable. Otherwise this causes additional system latency since 

this determination is required for each frame. Therefore an efficient data structure is needed for 

location searching. For this reason, Airey uses a BSP tree compromise of Schumacker's and Fuchs' 

approaches. As noted earlier BSP trees inherit the k-d tree properties and therefore location can 

be determined in logarithmic time. 

Like Fuchs, Airey's approach uses the polygons themselves as the partitioning planes. The ob- 

jective of this partitioning is to generate volumes representing the cells, analogous to Schumacker's 

division of clusters. This partitioning is guided by the above objectives, and does so by critiquing 

each axial-aligned polygon as a possible partitioning plane at each recursion. The criteria considered 

are 

• Balance: how evenly the plane separates the model 

• Occlusion Factor: how well the plane hides the two sides from each other 

• Split Factor:  how little the plane splits individual polygons, which requires split polygons 
being put in both partitions 

Each criteria is quantified between 0 and 1. These values are weighted and linearly combined 

to produce the following partition equation: 

partition priority = .5 * occlusion + .3 * balance + .2 * split. 

This heuristic was devised based on Airey's experience in hand-tooling the divisions and based 

on statistics on balance, split and occlusion factors in sample environments. This equation is only 
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Figure 6: Airey and Teller's Model Subdivision Using BSP Tree 

an approximation of the true relation. Because of a quadratic expense for the balance and split 

calculations, Airey uses an approximation which is linear in the number of faces [Air90]. Because 

this approximation's accuracy declines as the cell is further divided, the associated weights of 

these criteria are attenuated as the BSP tree depth increases. Airey readily admits other good 

partitioning methods may exist; Section 6 details an alternative approach. 

Since the objective of the partitioning process is to produce regions, not an exhaustive partition, 

this algorithm must make determinations as to when an acceptable level of PVS coherence has been 

reached. Again, Airey uses a heuristic approach to terminate cell division based on the following 

criteria  [Air90]: 
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• No partitioning plane is found whose partition priority exceeds a user-defined threshold 

• The volume of the cell is below a certain value based on an "average" size room 

• A predefined limit on the depth of the BSP tree has been reached, effectively limiting the 
viewpoint location time during display. 

• The number of polygons in the cell is less than a preset value. 

The thresholds provide control over the resulting partitioning of the model space into the leaves 

of the BSP tree. A sample partitioning is shown in Figure 6. 

5.3    PVS Calculation 

The use of model space subdivision as described above is to provide coherent areas or cells in terms 

of the PVS of that cell. The display system then renders only the PVS of the cell in which the 

viewpoint is located. This requires precomputation of the PVS for each cell. If a cell in enclosed, 

the PVS for that cell is simply the set of polygons comprising that cell, much as in a room with no 

doors or windows. If there are holes or portals in the cell boundary, i.e. doors and windows, then 

polygons from other cells are potentially visible and the set becomes more complex. 

The visibility set of this cell, however, is equal to the visibility set of the portals. This in itself is 

a complex problem, especially since the portals are unrestricted in structure. To simplify this prob- 

lem, Airey developed a method of portal decomposition based on a plane sweep algorithm [Meh84] 

which reduces the possibly concave portal to a collection of convex triangular regions. The visibility 

of the portal is therefore reduced to the union of the visible sets of all triangles. 

To summarize the above procedure, the model space is divided into cells, and the PVS of each 

cell is exactly the union of the visible polygons of each of the triangular decompositions of the cell's 

portals. This problem of determining the visible polygons is equivalent to determining the set of 

polygons illuminated by an area light source [NN85]. For this reduced problem, an exact solution 

is very costly and difficult.   Even an good approximate solution may take a month to process a 
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7000 polygon model on a 10 MIPS workstation [Air90]. 

Airey therefore relies on using estimation approaches which border the true solution. One ap- 

proach produces an underestimation of the PVS, possibly resulting in "holes" in the final display. 

The second approach produces an overestimation of the PVS, resulting in reduced speedup results. 

Airey compares several tested methods, summarized in Table 1. The environment-independent 

sampling methods are ray-casting sampling methods based on radiosity hemicube [CG85] and hemi- 

sphere solutions. Variations of these methods such as rotated sampling and jittering are shown to 

increase performance. Airey also explores the use of environment-dependent sampling based on 

targeting other cells' portal triangles in a centroid-gravitated sampling. Airey only implements 

one overestimation method, although he details several in [Air90]. His solution is based on the 

computation of shadow volumes introduced by [Cro77] and extended by [NN83]. Shadow volumes 

compute the polygons shaded (occluded candidates) by a shadow-casting polygon (occluding poly- 

gon set) from an area light source (portal triangle). Due to Airey's simplification of the process, 

his method produces an overestimation of the polygons "shaded". 

Airey notes that although the exact solution is bounded by overestimation and underestimation 

methods, he has no current method to effectively combine the results. In practice, his system uses 

only the sampling based underestimation methods. This is glossed over in [ARB90], but more fully 

explored in [Air90]. Depending on timing restrictions, Airey first "tweaks" run-time parameters to 

get the desired cell partitioning resolution. The PVS calculations are then distributed to as many 

workstations as possible. After most machines are finished, the remaining processes are killed and 

restarted with less demanding parameters. He then views the results, noting cells with "noticeable" 

missing polygons. For these cells, he recomputes the PVS using edge-deletion or overestimation 

methods. 
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PVS Computation Methods 

Method CPU Time 
(seconds) 

Relative Time PVS Size Relative PVS Size 

392   ray   cosine-weighted   hemi- 
sphere. Source points spaced 24" 

2235.81 1.637 1026 0.647 

450 ray linear-radius hemisphere. 
Source points spaced 12" 

7137.24 5.225 1259 0.793 

5000 ray linear-radius hemisphere. 
Source points spaced 12" 

54909.91 40.198 1490 0.939 

1  targeted ray per polygon.     1 
source point per portal 

1365.99 1.00 1509 0.951 

7 targeted  ray per polygon.     1 
source point per portal 

7366.80 5.393 1531 0.965 

7 targeted ray per polygon. Source 
points spaced 24" 

47,297.51 34.625 1.0 1587 

Over-estimation 109,936.34 80.481 3211 2.023 

Table 1: Preprocessing PVS Comparisons for One Cell (Airey) 

5.4    Comments 

As can be seen from Table 1, the precomputation costs of Airey's method are enormous. These 

costs are extremely prohibitive to a practical application [TS91]. 

There are other obstacles which Airey hardly mentions but which also inhibit an automatic PVS 

system. Foremost of these problems is the automation of the detection of missing polygons due to 

the underestimation procedure. While Airey "eyeballs" the correctness of the resulting display, this 

is hardly an adequate solution. Airey states the automation of his methodology simply amounts 

to managing a generic large scale computation, yet he provides no insights into the lone step of 

detecting these underestimations. 

Another facet of Ariey's procedure which is not expounded upon is the treatment of non-axial 

aligned polygons. While Airey notes the use of a BSP tree for detection of intersections in the 

non-axial set, he himself notes that the algorithm would have to be extended to run efficiently 

[Air90]. 
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Airey's approach also does not use viewing direction to limit the search space. He does mention 

the possible modification to store the PVSs for each portal instead of each cell and crop the list 

according to which portals lie in the viewing frustum. While this approach could produce significant 

display list savings, handling the overlap in portal lists could prove too costly due to the number of 

portal regions due to triangularization. A possible solution to this would be to provide a grouping 

of close portal regions to limit the overlap. 

6    Teller and Sequin's Exact PVS Solution 

Another approach which borrows concepts from the two previous approaches is Teller and Se- 

quin's visibility preprocessing method described in Visibility Preprocessing for Interactive Walk- 

throughs [TS91]. Like Airey, Teller uses model space subdivision to construct coherent cells. Like 

Fuchs, Teller uses the model polygons to partition the space into a BSP tree. The goal of this 

approach and the aforementioned is different, however. Whereas Airey's approach computes a set 

of polygons which are seen from a portal, Teller's method computes a set of cells which can be seen 

from a portal. 

6.1    Model Assumptions 

As with Airey's approach, Teller's is tailored specifically for architectural floorplans. Consequently, 

his assumptions of the model follow Airey's. He also limits his focus to axial line faces, as does Airey 

in his choice for partitioning planes. Teller's method does impose one further restriction on the 

model; coordinate data occurs on a grid. This restriction is enforced to permit exact comparisons 

between positions, lengths, and areas and to simplify calculations. In the case of architectural 

models, the grid data requirement is very reasonable. 
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6.2    Subdivision Method 

The subdivision of the model space into cells follows Airey's approach of using the polygons them- 

selves as partitioning planes to form a BSP tree with leaves representing the resulting cell areas. 

Teller uses a different method to determine the best partitioning polygon at each step, however. 

Before examining this procedure, some notation of Teller must first be introduced. At each step 

in the partitioning process, each polygon F under considsration is classified with respect to that 

node's cell as being one of the following: 

• disjoint : F has no intersection with the cell 

• spanning : F partitions the cell interior into components that intersect only on their bound- 
aries 

• covering : F lies on the cell boundary 

• incident : F is none of the above (enclosed entirely in the interior) 

In addition, Teller uses the notion of cleaving in which face A cleaves face B if the extension of 

face A intersects B on B's relative interior. This is analogous to Airey's split factor criteria. 

Teller's choice of the partitioning plane is subject to the following procedure: 

if a spanning face exists, split on the median spanning face; 
otherwise split on a sufficiently obscured minimum cleaving abscissa. 

Again, this is analogous to Airey's formulation.   Here, sufficiently obscured minimum cleaving 

abscissa means the split factor is above some threshold. If there exists several minimum cleaving 

abscissa, the one closest to the median face is choosen. 

The split factor threshold value is used to terminate the partitioning branches, as in Airey's 

method. In addition, partitioning ceases if the current cell has no incident faces which could possibly 

obscure a viewpoint. 

As noted above, Teller's choice is in direct correspondence with Airey's except the weighting 
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scheme is different. A spanning face is simply a face with an occlusion factor of 1. Choosing the 

median spanning face is an attempt to account for the balance factor. The minimum cleaving 

criteria represents the split factor. 

As Airey notes in [Air90], the costs in finding the balance and split criteria is quadratic in the 

number of faces. Teller's approximation in taking the median diminishes the balance complexity, 

while Teller's requirement that all polygons be axial-aligned reduces the complexity of determining 

the split factor to linear time in the number of faces in the cell. This is possible through performing 

an initial sort of all the faces, whereas this is not possible in Airey's system since his requirement 

is that only partitioning planes must be axial aligned. Although Airey's split-factor calculations 

might appear to be more unrr ..: ave, the additional complexity actually would be of no benefit 

since Teller's goal is not concerned with internal cell occlusion. 

The resulting BSP tree from this method again contains leaves which represent areas or cells. 

Along with each cell, the portals are enumerated and stored along with an identifier of the neigh- 

boring ceil to which the portal leads. This in effect creates an adjacency graph over the leaf cells. 

The determination of the portals is simplified in creating a bounding-box around the portal or by 

decomposing the portal into rectangular regions similar to Airey's approach. 

6.3    PVS Calculation 

After the decomposition of the model space into room-like cells, Teller computes inter-cell visibility 

for each cell as part of the preprocessing step. This is in contrast to Airey's approach, which cal- 

culates cell-to-polygon visibility and not cell-to-cell visibility. Teller's result is therefore a superset 

of Airey's solution5. 

Teller's system does not stop there, however.  During the display process, the PVS is further 

5Assuming Airey's use of an exact or overestimation method 
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reduced by computing eye-to-cell visibility, a subset of the precomputed cell-to-cell visibility 1 educed 

by culling against the viewcone. The resulting set is still a superset of the true visible set, and 

consists entirely of the union of cells. 

6.3.1 Cell to Cell Visibility 

Cell-to-cell visibility is only possible through a line of sight which passes through portals. If a 

non-neighboring cell is visible, this sightline must pass through a portal sequence, i.e. two open 

doors. Therefore, the problem of determining cell-to-cell visibility reduces to determine sightlines 

which traverse portal sequences. 

To accomplish this, Teller performs a depth-first search on the adjacency graph of the portals 

which produces an ordered portal sequence at each incremental step. At each increment, the 

sequence is checked for admittance of a sightline. Since the portals are axial aligned, the existence 

of a sightline can be solved in linear time to the sequence length [Meg83] [Sie90] in two-dimensional 

space and 0(n log n) in three-dimensions. If no sightline exists at some stage, that particular 

recursive branch of the traversal terminates. The valid sequences are stored as a stab tree of 

reachable cells (see Figure 7). The nodes of the stab tree represent the potentially visible set of 

cells from the root cell, and the edges represent the portal sequence to reach the cells. 

6.3.2 Eye to Cell Visibility 

While the cell-to-cell visibility preprocessing can significantly reduce the display list of viewpoints 

located in that cell, it does not fully exploit the potential of the stab tree. Since the stab tree tells 

not only visible cells but also the portals which leads to each, it can be used to further cull member 

cells if they fall out of the current viewing area. That is, because a viewpoint has an associate field 

of view or view cone, some cells in the PVS might not be visible for a particular viewpoint and 
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Figure 7: Sightlines and Stab Tree from Cell I 

direction.  Using the stab tree rooted at the viewpoint containing cell, cells outside the viewcone 

can be eliminated by several methods. These are listed below, in order of increasing effectiveness 

and computational complexity. 

• Disjoint Cell Cull : removes cells which fall outside the view cone. 

• Connected Component Cull : removes branches of the stab tree which have the branch root 
cell outside of view cone. 

• Incident Portal Cull : removes branches of the stab tree which have the portal edge outside 
of the view cone. 

• Exact Eye-to-Cell Cull : removes cells which have no sightline from the viewpoint lying inside 
of the view cone. 

The exact approach uses a depth-first search traversal of the stab tree to successively narrow 

the visible area "wedge" (see Figure 8, top). The resulting pruned stab tree is shown in Figure 8, 

bottom. The result, of this reduction in model space is seen in Table 2 for a two-dimensional model 
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Figure 8: View Cone and Pruned Stab Tree 

consisting of 1000 axial faces and 10,000 visibility queries. The precomputation of this model took 

a total of about 45 CPU seconds, and resulted in roughly 10,500 stab tree vertices. Teller provides 

no empirical data on three-dimensional computations. 

6.4     Comments 

As Teller's three-dimensional implementation was not complete at the time of the paper, no speedup 

vs. cost figures are available. The two-dimensional data does suggest a significant potential savings. 

The ability of the system to handle environments with large numbers of portals is yet to be seen. 

Teller discusses the extension to non-axial systems and the major problems in implementation. 

A compromise solution could follow Airey's example and permit only axial-aligned partitioning 

planes. While this does not permit non-axial cells, it does support more generic models. 

Teller also notes the use of frame coherence to expedite the display process. Stab trees are valid 
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PVS (Cell) Computation Methods 

Culling Method 360 deg view cone 60 deg view cone 
vis. 

area 
reduction 

factor 
vis. 

area 
reduction 

factor 
none (cell-to-cell visibility) 8.1% lOx 8.1% lOx 

disjoint ceil 8.1% lOx 3.1% 30x 

connected component 8.1% lOx 2.4% 40x 

incident portals 8.1% lOx 2.2% 40x 

exact eye-to-cell 4.9% 20x 1.8% 50x 

exact visible area 2.1% 50x 0.3% 300x 

Table 2: Preprocessing PVS Comparisons for One Cell (Teller) 

within cells, and the eye-to-cell culling might benefit from this property as well. 

7    Adaptive Refinement : Realism vs. Time 

While the above precomputation strategies reduce the demands on the display system, they cannot 

be applied to all facets of the this process. In order to increase performance during times when more 

computation time is available such as with slow or non-moving viewpoints, adaptive refinement is 

used. This strategy uses hierarchies of model space representations and sieve technique formally 

defined in   [LNL87], which pass an input through refinement sieves so long as time is available. 

Airey's system relies on using a radiosity lighting model due to its linear properties and pre- 

computation capabilities. Radiosity models subdivide model polygons into smaller patches and 

computes color values for these patch vertices during a precomputation step. Since typical hard- 

ware is time dependent on the number of rendered polygons, smaller patches increase display time. 

For this reason, a grosser resolution of patches is precomputed for the model and a secondary level 

of patch refinement is available as time permits. 

Further refinement of the image is done through functional sieves. The first sieve is an intelligent 

triangulation of the quadrilateral patches for bilinear interpolation of the color vertices.  Normal 
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triangulation may not follow the natural color coherence of the vertices. If time permits, vertices 

are compared and the triangulation occurs according to color closeness of opposing vertices as in 

Figure 9. 

The second refinement sieve is anti-aliasing through supersampling methods. Additional images 

for the current viewpoint are calculated and blended smoothly into the accumulated image using 

appropriate filter weights. 

8    Comparisons and Conclusion 

While the above methodologies convey a chronological progression of PVS problem solving, it is 

interesting to note that the most current method of Teller has come full circle back to Schumacker's 

use of the BSP tree for separating clusters. While neither Schumacker nor Fuchs formulated the BSP 

tree around VBW applications, its application is readily apparent in Airey and Teller's systems. 

Teller's method appears to hold the most promise of a real-world application. While Airey's 
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method is the more powerful in terms of preprocessing reduction, his system suffers from exorbitant 

precomputation costs as well as unresolved necessary user interaction. Teller's method may not 

initially provide the reduction in space matching Airey; however the eye-to-cell culling provide a 

powerful tool for display-time reductions. 

Airey's system is however the only complete VBW system of the systems named. Valuable 

insights into the problems of such a system are presented in [Air90], although the precomputation 

problems are somewhat belittled. The paper does offer significant contributions in the area of 

portal decomposition as well as presenting some practical adaptive refinement techniques. While 

his system does suffer from serious shortcomings, he provides a solid foundation for possible future 

work as well as an overview of a project of such large scope. He details many of the problems in 

implementation, such as floating point size limits and relative versus absolute position comparisons. 

Teller's system uses many of the same techniques of model subdivision as Airey, yet his system 

trades accuracy for simplicity and speed. His additional model requirements facilitate faster cal- 

culations, and his simpler partitioning plane selection process is faster for almost every evaluation 

criteria. While this speedup is only for the model partitioning stage of preprocessing, this is im- 

portant because it is largely sequential in nature while the PVS calculations can be accomplished 

in parallel. Whether Teller's tradeoff helps or hurts in producing a reasonable subdivision at faster 

speeds is yet to be seen. A possible extension to this and Airey's system would be to parallelize 

the subdivision process by spawning off subprocesses to handle each subspace partitioning. This 

could be distributed over many machines. 

Teller's system does suffer from potential problems in three-dimensional implementation. Fore- 

most of the problems is the portal decomposition which Airey addresses. Teller suggests the use 

of decomposition into rectangles, but an implementation similar to Airey's triangulation would be 

necessary.  He also notes the possible use of bounding boxes for the portals, yet this suffers from 
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additional overestimation consequences. 

Teller's system also suffers from problems inherent to the approach. Since the system is only con- 

cerned with inter-cell visibility, minimal reduction is possible in models containing room-connecting 

hallways. The view from the end of a hallway cell contains all of the cells adjacent to the hall- 

way. Therefore all cells must be processed. While eye-to-cell culling alleviates some of this during 

walking, the potential problem for certain models still exists. The extent of this potential will not 

be known until a three-dimensional implementation is complete. Even the two-dimensional data is 

minimal compared to Airey's testbed. 

While the focus has been on the two latter methods, Fuchs' method still holds promise for an 

effective VBW implementation. As already noted, the viewcone culling can significantly reduce 

the display lists at any given viewpoint. In addition, this approach might benefit from Teller's use 

of viewcone narrowing from portals. By identifying portals during precomputation, the viewcone 

could be narrowed during BSP traversal as portals are reached to further prune the display list. 

This method has apparently not been mentioned in the literature. An advantage of Fuchs' method 

is that it also permits non-axial polygons, a major hurdle in the prior mentioned implementations. 

All of the above strategies rely on some form of BSP tree. While both Teller and Airey attempt 

an intelligent heuristic for building the tree, more emphasis needs to be placed in all systems on 

examination and reconstruction of the tree for maximal balance. 

Since precomputation is the basis of all of the presented methods, modifications to the model 

are very costly. Research into making minor modifications as well as limited interaction is still 

an open area. These interactions could include opening and closing doors, moving furniture, or 

changing lighting colors or intensities. 

Further adaptive refinement techniques also need to be applied in future systems. Potential 

applications such as hierarchical building models and the use of varied lighting models could aid in 
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speedup and realism. This area holds great promise in permitting acceptable motion rates while 

maintaining high image resolution when necessary. Any effective VBW system must make use of 

these techniques as well as significantly reduce the display list at each viewpoint, for at least on 

current systems, hardware limitations remains the major consideration. 
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