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1 Introduction

This Quarterly Report includes descriptions of various projects underway in the Computer Graphics
Research Lab during January through March 1992. Included in this document are progress reports
on new Jack features, the rule-based Spreadsheet Anthropometric Scaling System, contour bodies,
locomotion, collision-avoidance reach, behavioral simulation, 3D motion analysis and reconstruction
from monocular 2D views, task animation, radiosity rendering, ray tracing and filtering, and real-
time sound interaction. Three Appendices include (A) an update on posture planning that will be
presented in a poster session at the First Al Planning Conference, College Park, Maryland, in May
1992, (B) a PhD proposal on automated synthesis of simplified 3D models from detailed data, and
(C) a survey paper on virtual building walkthrough systems.




2 John Granieri

2.1

Recent Accomplishments

o The Jack 5.5 release was shipped in March.

e The Flock of Birds 6 DOF sensors from Ascension Technology were successfully integrated

2.2

into Jack and were shown at NCGA in Anaheim. The interface library was written by Mike
Hollick, and will be included in the next release of Jack. Several demos were also written that
take advantage of the Birds to drive the human figure.

I attended the 1992 Symposium on 3D Interactive Computer Graphics (sponsored by ACM
SIGGRAPH) held in Cambridge. Cary Phillips and I presented the paper “Automatic View

~ Control for 3D Direct Manipulation”. This paper introduces a novel technique for auto-
pap q

matically adjusting the view when manipulating objects in a 3D shaded environment. The
technique is implemented in Jack, and will be available in the next release, via the command
“unobstruct view” on the view menu. We use a hemi-cube projection and the hardware
z-buffer to determine the visibility of the camera from the site of interest, then search the
visibility map for an un-occluded position for the camera. The technique is a very useful
adjunct to the direct-manipulation process.

I also performed three days of training for Jacob Shiloah from Synergy Integration, a company
which uses Jack in Israel to perform human factors analysis on a variety of design projects.
They will also be distributing Jack in Israel.

I attended the Silicon Graphics Developers Forum in Mountain View CA. The imminent
release of the OpenGL will allow us to port Jack to other platforms which eventually support
the OpenGL. There were also a variety of speed and visual feature enhancements which
I learned about which will make their way into future releases of Jack. I also visited Ed
Bellandi’s group at FMC, and Barry Smith’s group at NASA Ames. It was very enlightening
to see what people are using Jack for.

I've currently translated about 75% of Jack into fully ANSI-compliant C-code. This is nec-
cessary to make Jack compile and build correctly under Irix 4.0, and for the migration to
C++.

Jack 5.5 Things

Anonymous FTP: The anonymous ftp account (from ftp.cis.upenn.edu or 130.91.6.8), is
where I place additional Jack-related programs and data files between formal Jack releases.




Currently, there are several useful files there. To log in, you would do something like the
following:

% ftp 130.91.6.8

....user-id: anonymous

....password: your-login-name (e.g. I put granieri€graphics.cis.upenn.edu)
ftp> binary

ftp> cd pub/graphics

ftp> 1s

ftp> get demojack.tar.Z

ftp> quit

A

If you are having problems connecting or do not have a direct Internet connection (i.e. some
people can receive mail but can’t do ftp transfers), send mail to jack@graphics.cis.upenn.edu,
and I will mail you files uuencode-ed.

e More Contour bodies: In the anonymous ftp directory pub/graphics/bodies are 20 SASS-
generated scaled human figures for use in Jack 5.5. We will use these until the new SASS is
completed.

e DXF Translator: There is also an AutoCAD DXF-to-Psurf translator, which can convert
simple DXF files into Psurf (pss) format. This is in the ftp directory pub/graphics.

e Parsepea: The Jack 5.5 distribution contained an incorrect version of parsepea (a program
to translate environment files to ray tracer format). The correct version is in the ftp directory
pub/graphics and can be downloaded any time.

2.3 Next 3-6 months

In the next quarter I plan to do the following:

e Load carrying studies: We are modifying Jack to meet the needs of users at US ARMY
HEL to support the analysis of human figures carrying a variety of loads.

e Jack on networks: We will be spending a good part of the summer finishing the network
versions of Jack for the Showcase exhibit at SIGGRAPH 92 (this was mentioned in the
previous report).




e Documentation: I hope to have an updated User’s Guide for the next release of Jack. Also,
I will be creating a Jack Reference Manual which will formally list all Jack commands, both
thier interactive format and their corresponding JCL formats. This will also document the
network interfaces that will exist in Jack.

e Geometry translators: We will consolidate our geometry input programs for Jack, and
be developing an IGES input/output geometry filter for Jack.

3 Francisco Azuola

3.1 Anthropometry Spreadsheet

Since the last report, two major achievements have been made. First, SASS it has been brought
back to operation. It has been successfully used in the creation of a series of scaled human figures
both for the polygon model as well as for the contour model, for 1st, 5th, 50th, 95th and 99th
percentiles.

3.2 What to expect of SASS

As was originally planned, SASS has been redesigned and implemented keeping an object oriented
philosophy in mind. In the implementation sense, this is not really visible to the user but it is of
major importance for those who plan on upgrading SASS in the future (and all the code is now
ANSI C compatible). In the design sense, what we mean with object oriented reflects in the fact
that a hierarchy has been established to define the human figure components.

3.3 The Hierarchy of The Human Figure

The previous version of SASS handled segments by gathering them in a (simple) linked list struc-
ture. This was good enough to have any number of segments, but presented some inconveniences.
In first place, the structure did not allow for defining relations among the segments in an easy way.
Furthermore, the segments were defined as a triple of values, namely, an (x. y, z) tuple. These
tuples were placed in the list in a fixed position, corresponding to the predefined location assigned
to a particular segment. For example, (x1, y1, z1) corresponds to the head segment, (x2, y2, z2)
corresponds to the neck segment, and so on.




In the new version, the structure used is a hierarchical one (tree). At the bottom of the tree,
the leaves correspond to the segments. The internal nodes correspond to, what we call, the body
parts or body objects (which should not be confused with the “objects” in the implementation).
The root of the tree is reserved for storing the figure’s information. The body parts are composed
of body segments and the figure itself is composed of body parts. One can think of the figure as
corresponding to the complete tree. There is another category, the joints, which has been appended
to the root of the tree. The joints are the linkages among the segments and also among the body
objects. A figure can be defined as a collection of body parts, joined together by joints. Each
body part, in turn, can be defined as a collection of body segments put together by joints. Each
segment has been specified with an access code, a segment type, and a list of sites. Joints are
defined similarly. Body objects are specified by a type, an access code, and a list of components,
namely a list of segments, joints, and sites related to that object. It is important to make some
remarks here. In addition to this being a more powerful structure, it is also much more flexible
because it is user definable. Indeed, the user can modify the specification of the objects, segments
and joints and even the figure itself by just writing down a figure description file. In this way, it is
possible to create different types of relations among the pieces.

3.4 The Rule System

SASS has also changed in a deeper sense. SASS not only works on relations but also is rule based.
As an example, SASS currently defines a rule for computing the height of an individual as the sum
of the segments’ lengths in a path that goes from head to feet. For those segments in the path, the
rule allows to varying their lengths if the stature changes and; vice versa, to change the stature if
the length of any of the segments in the path changes. There is an alternate rule that keeps the
stature fixed and adjusts the segments’ lengths accordingly, if the length of one of them varies.

Another rule includes changing the mass according to the stature and, conversely, changing
the stature according to a specific mass value; and rules for checking proper bounds in segment
(object/figure) dimensions.

The rule system of SASS is a simple one, though. At the present moment, we do not have
a definite set of rules. Even the rules that have been implemented are waiting to be refined in
the future. Depending on the complexity of the rules, we will be required to upgrade the rule
engine. This is not a trivial task since rules might change from one situation to the other. It is
conceivable that the rules themselves could be specified by the user as opposed to what the current
implementation provides, i.e., a fixed (hardcoded) set of rules.




3.5 Rules in SASS

The stature of the human figure is computed using two different rules. In one case, the stature
is kept variable. If the stature varies, the segment lengths in the stature path vary accordingly.
Similarly, if the length of any segments in that path varies, then the stature changes. The underlying
criterion for doing these changes is a linear one. The segments in the stature path have been defined
as: (head, neck, upper torso, center torso, lower torso, upper leg, lower leg, feet). The length of
each of these segments, except for the feet, is computed as the girth value in the z coordinate. For
the feet, the length is computed as the girth value in the y coordinate (since for the feet, the girth
in the z coordinat~ is the longitudinal dimension). It should be noticed that th thickness and
width of the segments are not affected by these changes, for there is no rule to decide the effects of
stature changes in these parameters.

The updating process must be done carefully, for it might happen that modifying the length of a
given segment violates the range of possible stature values, or conversely, if the stature is changed,
this change might not be satisfiable by variations in the segment lengths.

The other case considers fixed stature. The idea is to adjust the segments’ lengths along the
stature path if the length of one of them varies, such that the global length (stature) remains
constant. While this might appear easy to do at first, it is not a trivial matter. To understand
why, we must study how the segments dimensions are obtained. Each segment’s dimensions can be
seen as a triple (x, y, z) of values. This triple of values, is obtained by interpolation from actual
data provided by the user. This “real world” data corresponds, in fact, to the value of the girth in
each of these coordinates for a set of different percentiles (e.g., 5th, 50th, 95th percentiles). SASS
provides a given triple (x, y, z) for percentiles in the range 5-95 by means of interpolation (also, if
the user specifies a triple, SASS provides a percentile value corresponding to that triple). Thus, a
segment’s dimensions are constrained by the “real world” value range.

Furthermore, the stature itself is restricted by a “real” set of values (for each of the percentiles).
When the user specifies a particular change in the triple (z coordinate) of a given segment, the
underlying rule attempts to satisfy the constraint of fixed stature, that is, it tries to keep the
stature value constant. For example, assume the length of the head has decreased. To keep the
stature fixed, the lengths of the other segments in the stature path must vary in the opposite way.
Currently, the modification is done in a linear way since there are no rules to define this otherwise.
But it might be the case that in the updating process one of the segment’s dimensions (namely
length) cannot be satisfied. In other words, the resulting dimension is out of the range established
by the 5-95th percentile values. In this situation, the rule sets up the length to its closest limit
value (5th percentile value or 95th percentile value). and tries to satisfy the requirement of fixed
stature by modifying the remaining segments in the path. Notice that there is a possibility that
the stature can not be kept constant. There is one more step invol-ed in the updating process that




will be discussed later. In tuis mode (fixed stature), if the stature is globally varied by the user the
segments change cori« spondingly (if possible).

3.6 Object Level

As discussed before, a figure is built up as a hierarchy: the segments in the lowest level, the body
parts (objects) in the next level, and the figure itself as the root level. The body objects are defined
(by the user) as sets of segments and joints. Fo: instance, the object ’leg’ can ve defined as a set
containing two segments ("upper leg’ and ’lower leg’), two sites, and six associated joints.

For the matter of the following discussion, it is not relevant what the sites or the joints are
but one can think of a simplified object involving only a set of segments. The object level is an
abstraction of the idea of body parts. So we associate to each object a body part. It is important
to keep in mind that the “real world” measurements are done on a segment basis. The objecis
(body parts) are defined to provide additional flexibility to the user. As the internal structure of
each body part can be specified by the user, one can consider having as many parts as necessary (or
as segments there are). By default, SASS has defined cight body parts, namely, head, torso, left
arm, right arm, left leg, right leg, left foot, right foot. These objects encompass most of the (user
defined) segments. Having objects allows the user to perform global modifications on a per body
part basis, as opposed to doing localized changes on specific segments. Although it is possible to go
and change values for a particular segment, it is generally desirable . > be able to do modifications
on a body part, as a whole. The idea of having body parts presents some difficulties though. When
body parts are introduced, the rule system must consider performing the appropriate (coherent)
updates on two different levels simultaneously. If the user changes values on the segment level,
these changes are reflected also at the object level, and conversely, when changes are done in the
object level, these changes affect the segment level values. Also, recall that changing the segment
level values was governed by a set of rules. There is an equivalent (compatible) set of rules for
the object level. For instance, changing stature is governed by rules in the object level (and in the
segment level).

3.7 What Is An Object?

Objects are implemented as artificial structures. The “real world” data doesn’t provide information
for any body parts, only for body segments. In a sense, objects can be considered as clusters
of segments and each time an object is accessed the access is redirected to the corresponding
segments. Conversely. if a segment is accessed. all the objects containing that particular segment
are accessed. There is more under the definition of a body part. Actually, the object’s dimensions
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are approximated by considering the bounding box around the segments of which it is composed.
In this way, a body part comes to life as a tuple of (x, y, z) values. Why bother doing this? At
first it might seem unnecessary since the components of an object, i.e., the segments, have some
associated (X, y, z) tuples already. However, there two good reasons that justify our approach.

In first place, using a bounding box strategy, we can bound the dimensions of the segments
(components) of a given object. Also, it allows us to have two sets of dimensions: the expected
dimensions and the actual dimensions. The expected dimensions are those determined by the
bounding box approach. The actual dimensions are the dimensions of the body part when we think
of it as a cluster of segments. Thus, the actual dimensions reflects accurately (up to the accuracy
of the segments’ dimensions) the dimensions of the object.

Having these two dimension sets provides a way of constraining the growth of the body parts.
The following rules apply. If a segment (member) in an object grows (or shrinks) then it should
not grow beyond the limits of the object’s expected dimensions for a given percentile, if we want to
restrict an object’s dimensions to be of a certain percentile. So we can, for example, try to adjust
the dimensions of the other segments in the object’s segment set so that we keep the object’s
percentile fixed.

It is important to understand the back and forward process that goes on between objects
and segments. We can lLave the global dimensions of the body, for instance, those of a 50%
(standardized) human being, but we know that the body parts need not to be 50% all of them. In
fact, we do not have a rule yet to specify the percentile of the body parts (segment-wise} for a given
global body percentile. So keeping that in mind, we must be able to change dimensions of the body
objects (segments) to comply with all the possible compositions of a 50% body. We must be careful
when specifying other rules for, say, stature. We need to make sure that a given change of stature
does not break any other rules, that is, we must assure that the resulting body composition (i.e., the
percentiles of the body parts (objects/segments)) are those valid for a 50% body. Also, we require
to comply with the restrictions on the segments’ (in this case on the stature path) dimensions,
i.e. we cannot scale a segment beyond the limits established for that segment by the population
data. Also, we need to assure that the stature modification rules are respected (i.e, those rules we
mentioned before in which the segments’ lengths are modified following a specific layout; currently
modifications are done linearly). It seems that a possible solution, in this particular case, is along
the following lines.

If the stature is modified, then a new global percentile is computed. For that new global
percentile, we have a specific rule telling us what the possible compositions are. Thus, we use these
compositions as our rules for doing the segment length modification, (instead of doing it linearly as
it is done in the current version). Thus, there is no conflict. But that is only if there is a coherent
definition of the possible compositions and the stature-path segments’ length, i.e.. the compositions
must agree with the segments’ length under the popnlation data being used. In other words, the




compositions are not unique, they are dependent on the population data used.

To illustrate this, suppose we have the following (partial) composition set: feet 30%, legs 45%,
torso 60%, head 40%,... for a 50% body. Then suppose we want to change the stature in such a
way that the resulting body percentile is 60%, and the analogous (partial) composition set is (feet
40%, legs 56%, torso 50%, head 40%,...). Then we scale the objects in the stature path (which are
those listed in the composition sets) to comply with this second composition set. But, we must
be sure that there is no conflict in doing so, that is, for instance, the feet might be able only to
grow from a 30% to a 40% under the population data being used. Thus, there is an inherent need
for the compositions to be determined under a given population, i.e., different populations will
have different compositions. Solving that problem, we must make sure that the scaling (of the
segments) resulting out of this complies with the object’s (body part) constraint, i.e., the bounding
box limitations. This should be the case if we have composition sets that agree at both the segment
level and the object level.

In the previous example, for instance the compositions were stated at the object level. There
must be an equivalent composition at the segment level. Following this example, the segment
version of the composition for the 50% figure is, for instance, (... upper leg 45%, lower leg 60%,
upper torso 76%, center torso 57%, lower torso 45%, ....), assuming legs decompose in two pieces
and torso in three pieces. But what if the compositions, even though being based on a particular
population data, are not available for all the possible percentiles? (With good luck we hope to
have one for a few of the percentiles.) We would have to interpolate compositions (if it is sound to
do that) and make sure a given segment’s length is not violated (according to its percentile range)
when trying to go from a composition for the 50% figure to that of the 60% figure. If we had
only one such composition to work with to account for all possible compositions on the percentiles
range, then it would be necessary to make sure that this composition is not violating the range of
values a given segment’s length can have for the population under consideration.

This is basically what happens in the present version of SASS. Since we do not have a composi-
tion analysis available, we have assumed decompositions are unique for a given population (i.e., one
composition for all the percentiles (not one for each)) and furthermore, this composition is linear,
i.e., for a 50% figure (feet 50%, legs 50%, torso 50%,...) and similarly for the segment composition
(... upper leg 50%, lower leg 50%, ....). This has sensibly increased the difficulty of the problem
because such an assumption is far from being applicable to real world situations.

This has wound up in the need for additional rules in SASS to verify that there is an agreement
among all parts. Recall, for instance, the stature problem. In that case, we are considering
compositions to be linear. So we need to be especially careful not to end up with a segment’s
length violation. To avoid that we limit the growth of a segment to its 1% and its 99% (i.e., below
and above limits). If we do not achieve the desired global growth, i.e, the local segment’s growth
was not sufficient, then we go and adjust the other segments in the stature path. This is done in




an iterative way. Also, observe that we have to keep track of two levels of abstraction, that is, the
segments and the body parts. It is necessary to double check, once for the segments’ lengths not
to violate their limits and once for the objects’ lengths not to violate their limits. This is necessary
because the objects’ composition has been assumed to be linear. A similar situation arises when
considering the other way around, that is, modifying a segment’s length implies a careful set of
steps along the hierarchy to keep track of this modification’s effects on the objects’ lengths and
then the effects of these on the global length (i.e. stature) so that the resulting stature has a value
between its percentile limits. (If the stature is kept fixed then we do not go all the way up in
the tree but we need to perform a readjustment of all the other segments (objects) to assure the
stature is kept constant, whenever possible.) Thus linearity is not the right solution (and it is even
a difficult to implement one), but currently it is the only solution.

From here we should conclude that there is a need for a sensible decomposition of the body at
both the object and segment level (these two are not necessarily the same as we noted before) in
order to be able to handle global and local growth. Incorporating these compositions will require
of a more powerful rule system.

3.8 Figure Creation

SASS still cannot create a figure file due to the lack of a mapping between the population torso
data and the model of the torso we use in Jack’s environment (i.e.,the 17 segment torso). A function
to do so (at least approximately) is being developed.

However, to provide relief for the pain of SASS users, we have provided a function to produce a
file containing the scaling of a figure, and then we rely on Jack to create the figure file. This might
not make completely happy all of the SASS users, but we will explain in the following why we have
decided to keep this as an option, even when we have available the figure file creation function.

The reason we consider using scaling files rather than figure files is simple. Consider the situation
in which the user in Jack wants to determine the percentile (dimension) ranges of the human figure
to comply with a given task, that is, the problem of finding the specific figure (%) that can fit in
a particular working environment. Ozne can attempt to read each of the possible figure files out of
Jack libraries and try to keep the figure in the position we want. The other (more sensible) option
is not to load different figure files, but instead, to load different scaling files. Then the (same) figure
can be scaled using all these different files to find the one that best suits the given environment.
This is not only faster but it is even more appealing to the user.

When a given scaling has been found best, if the user needs to do further adjustments, (for
example if longer arms or longer legs required) a new scaling file can be created in Jack with the
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required dimensions. There is still the problem of how to make sure the new scaling is in agreement
with the population data. One possibility is to let SASS decide this.

3.9 Figure Scaling

As we stated before, SASS output is a figure scaling file. The scales in this file are obtained
directly from the (x, y, z) tuples of the segments or objects. Thus, this scaling file represents the
dimensions specified in the (population’s) girth file, for a given figure percentile. On the other hand,
Jack provides a front end in which a figure is displayed and scaled according to the information in
the scaling fiie Currently, two human figure models are used in Jack, the polybody and the contour
body. The polybody is a (crude) approximation of a human body, containing a set of segments and
joints. These segments do not correspond exactly to those segments defined in SASS. For instance,
the polybody’s torso is composed of 17 segments. SASS has three segments to account for the
torso. The reason for this difference is that SASS’ segments correspond to actual measurements of
the human torso, while Jack’s segments were defined with the idea of simulating the human spine
behavior. Thus, there is a mismatch between both definitions. More problems show up when we
consider that a segment in SASS (and in Jack) is defined by a single tuple (x, y, z), that is, a
uniform width and thickness is assumed in both cases. The final result is a human body model
that has a (not so real) human-like appearance.

The major problem with the scaling is due to these mismatches. For instance, the upper leg,
once scaled appears to be too thick and too wide, in comparison to the lower leg. The same
problem occurs with the upper arm and the lower arm. Also, the scaling of the pelvis of the
polybody presents problems; it seems to be too wide and thick. As another example, the torso
appears to be narrow and short.

There are various solutions to these problems. The simplest one is to adapt the data to the
model. In other words, modify the scaling factors in order to obtain a good (looking) figure scaling.
There are no rules to do this though. The rule we use is to consider body lines as being (second
order) continuous. There are no abrupt changes from one body part to the next one (assuming no
deformations, like a hunched back, are present). Thus we approximate (in an arbitrary way) the
scaling factors in order to achieve this continuity. The largest discrepancies are the ones mentioned
above. Other minor ones are the scaled neck being too wide, hands being too narrow. In general,
the scaling factors are not changed by more than 10%. Being the polybody is a linear model
of the human figure (linear segments), this is possibly the only feasible solution. Attempting to
change the actual model to adjust it to a particular data set does not seems like a very good idea,
because it would be necessary to adjust the model for each such data set. In fact, there are even
other difficulties to consider like for instance having the clavicles in the polybody as real external
segments (no matching data available in SASS). The clavicles are part of the shoulder complex,
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and they are used like an artificial supporting structure. On the other end, in the contour body
model the clavicles are only present for completeness of the model.

We might then say, in conclusion, that the polybody model is a simple model of the human figure,
and as any other model has advantages (e.g., simple, fairly accurate in behavior) and disadvantages
(e.g., linear segments, gaps between segments). Thus, we should not expect a perfect match between
this model and a real life human body data.

A third solution is to improve the model. That is exactly where the contour model of the body
becomes handy. In fact, the scaling factors generated by SASS are mapped into the contour body
with almost no modifications necessary ( for the contour figure case, adjustments are done to the
torso, legs, arms, and hands). These adjustments do not go over 5% of the actual values. Again,
one must keep in mind that even though the contour model is a more accurate representation of
the human body, it is not a perfect one. Moreover, we must recall that the SASS scaling factors
file is created based on a generic (average) population and the figure resulting from that scaling
might not completely match a real human being (for suppose that the population’s average torso
length is greater than the torso length of a given individual and the population’s average leg length
is smaller than the one of the same individual, then we end up with a not so real scaling for the
contour model). Thus, even though we have assumed some adjustments are required, it is still
necessary to prove if this is the right way to proceed. So far, the criterion that prevails is to display
a good-looking (well proportioned) human figure.

3.10 Short Term Goals

The short term goal is to provide a figure definition function to be used as an alternative to the
scaling definition function. Currently, this function is being designed (partially due to the lack of
a real mapping between the “real” world torso measurements and the model torso segments).

3.11 Longer Term Goals

e (Shoulder Complex) We need to modify the definition of the shoulder complex. SASS can
retain the same definition of (x, y, z) tuples for the upper and lower limit of the joints.
However, the shoulder complex in Jack is defined with four degrees of freedom. The functions
shoulder driver and clavicle driver in Jack do the conversion from the (x, y, z) format into a
four degrees of freedom format.

o (Strength Sheet) An upgrade of this sheet is required to introduce new rules and/or improve
the existing ones.
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e (Database) As for the database, we think it is necessary to have our own database rather
than using a Prolog shell. That is, having a database implemented in C can be faster and
also we avoid the need of a Prolog shell.

e (Dynamics based model) It is necessary to introduce new center of mass and moments of
inertia information for every segment in SASS. The figure file should be modified (and Jack
should be able to recognize this changes) to incorporate this information.

¢ (Rule system) As new rules become available, the rule system must be upgraded accordingly.

e (Interaction Jack-SASS) A two way communication between SASS and Jack is necessary.
The problem to solve is that of deciding whether changes in dimension done to the figure
model, while working in Jack environment, are valid, under the population data used to
(initially) create the figure.

o (Figure fitting) We need to create a function in Jack that performs a figure fitting. Given
a set of 99 figure scalings (one for each percentile) find the one that fits best on a given
environment.

o (Interface) There is a need for a new user interface, perhaps under X windows manager, to
provide the user with more flexibility. We have not done much in this respect, even though
we are aware of the problem. The current interface was designed in a very rigid way and it
is difficult to change things around since everything is hardcoded.

4 Pei-Hwa Ho

4.1 Contour Body

The switching between contour body and stick figure used to just switch the segment psurfs with
the default scale factors in the figure definition file. If the figure to be swapped has been scaled by
any means (e.g. through SASS the switching will not carry over the new scale factors. A modified
switching command will now do the switching correctly and thus will be compatible with future
SASS output file.
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5 Hyeongseok Ko

5.1 Locomotion

The most prominent problems in utilizing rotoscopy data for human walking animation are: Gener-
alization and Constraint Satisfaction. We devised an algorithm to generalize a given rotoscopy data
(prototype) to other walks under different body conditions and different step lengths (generaliza-
tion). We do not assume any predetermined anthropometric ratio among the body segments. The
kinematics of Cartesian points (markers) are considered instead of the joint angle data, which is
considered to be essential to overcome the cumulative error along the links (constraint satisfaction).

For the generalization, we have a transformation algorithm that derives the walk of (52, sl2)
from the walk of (S,,s!;), where S; and s/; represent subject (body condition) and step length,
respectively.

One of the desirable properties of our transformation is that it is transitive: Let £,2 be the
transformation from w(S$;,sl;) to w(Sz,sly). Let &3 be the transformation from w(Ss,sl;) to
w(S3,8l3). Let w((S3,sl3) be the resulting walk profile by the real computation of the composite
transformation £33 o §;7 applied to w(S;,sl;). Note that w is just a tuple of a subject and a step
length, whereas w is the profile that contains all the information to generate the walking animation.
Let &3 be the transformation from w(S),s!1) to w(S3,sl3). Let &(S5y,sl) be the actual out come
of it. Then

w({S3,8l3) = w(S1,sh1) (1)

holds.

The intuitive meaning of the above theorem is that the transformation preserves the original
characteristics of the prototype. In other words, if a prototype is given, independently of the body
condition and step length of the goal walk, our transformation algorithm tries to resemble the
original characterisics. Therefore we can generate multiple styles of walking by having more than
one prototype in our data base.

The above algorithm is in implemenation phase. After it is complete, we will extend it to handle
the local stepping, and then uneven terrain locomotion will be studied.
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6 Wallace Ching

6.1 Work done during the last quarter

I have kept making enhancements to the path planner system. Some of these are theoretical
enhancements to the path planner process. Others are system enhancements that make the software
more user friendly and usable by others.

Major enhancements include:

o The translation of the figure is now unified and handled in the same way as the joint move-
ments.

e Starting and final configurations that collide with the environment are allowed. The system
will find the nearest collision free configuration as the system start and goal node.

o The strength model interface is being made independent of the strength data source. It should
be easy to modify it once the strength data is available.

6.2 Current and Future Work

The current work involves updating the system to handle the current human body with multi-
segmented torso. The coupling of the shoulder joints need special attention. The multi-segmented
body will be approximated with a bounding box in the collision detection phase. A planar path
planner is being constructed from existing components that can handle the translation of the figure.
This means that the system can now plan a collision free path for the whole figure within a cluttered
environment.

Other work to be completed includes fine tuning of the searching process and better use of the
strength data so that the resulting motion can be more natural.

Finally, the software is being made more user friendly so that it can be embedded into the next
Jack release.
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7 'Tripp Becket

7.1 Walking and Behaviors

We can apply multiple avoid or attract behaviors to a human figure that:

e are sensitive to only one object, all objects of a cerain type (like all cylinders), or only the
nearest or furthest k objects of a certain type.

o have distance thresholds.

Human figures, after figuring out which way they want to go, try to reduce the goal by walking.
I have a heuristic algorithm for constructing the next step position that:

e won’t turn more than 45 degrees in a single step (by turn I mean reduce the current and
desired heading — it doesn’t stop and turn, it always keeps moving...)

e makes step length a function of turning angle (if turning angle is 0 take maximum step, if 45
take minimum step).

e attempts to keep the feet 17cm apart laterally
o while turning, makes outside foot take shorter steps (inside foot reduces most of the turning...)

o decides on the next step only after the previous step is finished

8 Jianmin Zhao

8.1 Work in Progress

Having had my dissertation proposal passed, I am now implementing it. I have converted the ten
single arm reach data from MOCO to Jack motion format. This data is very simple and easy to
reconstruct by our primary system. After I finish coding to deal with critical configuration, I shall
try two-arm general motion. In case I cannot get real-data, I have to design simulated motion
through Jack.
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9 Libby Levison

9.1 Previous Work

My research began when I used Jack, Yaps and KB to animate a set of instructions describing a
simple aircraft maintenance task. This project has led me to further work on building a language
which will allow a user to specify high-level description of tasks and actions into Jack.

Recently I re-animated the original “FCV removal” scene making use of Cary Phillips’ animation
behaviors. Although this generated a much more natural animation, each individual motion had to
be scripted by hand. This means that each action must be decomposed into an explicit sequence of
motions. Every time that an action is used, the same decompostion must be redone and restated.
There is no current optimization nor method for defining and reusing sequences (possibly ones
parameterized for various contexts). This strikes me as a logical continuation of Phillips’ work:
some of my current work begins to address this problem.

9.2 Current Work

My current research is in understanding instructions for the purpose of generating animations. As a
member of the Animation and Natural Language project (AnimNL) I work between the Language,
Information and Computation (LINC) Lab and the Graphics Lab, building animation definitions
of those instructions which result in physical actions.

If the purpose of an interaction is cooperation on a task, the computer must understand the
user’s instructions and act appropriately. This is relevant at the level of the human-computer
interface as well as in the domain of the AnimNL project, in which we want to instruct a graphics
program to generate certain animations. In building a system which will interpret the user’s
instruction, I am specifically interested in verb-object relations; I have identified wide variations
in intended action which occur when a verb appears with different objects. For example, the verb
open is associated with two distinct physical actions in the instructions open the door and open
the soda can. If we believe that each verb has a unique meaning then we must account for these
variations in interpretation at the sentence or the instruction level. I would argue that each verb has
a partial, core meaning; this meaning is completed in an utterance with information carried by the
verb’s object, as well as by understanding the intention of the given instruction. For example,the
definition of open might be something like: provide access to. One fact that I know about the door
to my apartment, either from living in my house or through visual perception, is the door’s degrees
of freedom. (I might also know that this is a heavy door and that it is hung to swing shut if not
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propped open.) If part of the definition of open includes moving its object, then interpreting how
to open my door entails checking how my door moves — what its degrees of freedom are - either
translation or rotation. If the door is marked as allowing translations then I probably have a sliding-
glass door; not only do rotations indicate a hinged door, but positive rotation implies pulling, while
negative requires pushing. These observations suggest that building animation definitions based
solely on the verb or exclusively on the object won’t work. I advocate instead a hybrid system
in which the core meaning of the verb makes use of (geometrical) information associated with the
object.

Investigating these definitions requires an application that allows the user to give the system
task instructions, as well as providing the user an easy way to check the computer’s interpretation
of those instructions — in other words, to verify that the correct action is performed. The anima-
tion of repair instructions satisfies this requirement: to generate an animation the computer must
understand the instructions, and the resulting animation provides an easy way for an engineer to
(visually) check the correctness of both the original instructions and the interpretation — the result-
ing simulation. (In addition, this application has real-world utility: rather than read an instruction
manual, a technician or trainee can watch an animation of a simulated agent performing a repair
or maintenance task.)

My research uses Jack to provide 3D-modeling capabilities as well as extensive human factors
and anthropometric analysis tools. At the same time that I am examining linguistic issues in the
instructional texts, I am investigating methodologies which will enable an engineer to produce sim-
ulations of task-level actions despite possibly limited knowledge of low-level animation techniques.
I am using a minimal set of action directives:, animation instructions like move left foot or bend
torso) to define higher-level actions such as grasp, attach or open. I call these composites task-
actions. I hope to provide a richer set of task-action definitions as well as a utility for defining new
task-actions. These action descriptions, from the viewpoint of animation, will allow an engineer
with minimal knowledge of graphics to generate animations. The interpretation process will save
the engineer from defining multiple animation procedures such as open-door. open-book and open-
Jjewelry-boz. 1 am trying for an economy of action definitions. relieving the engineer of the burden
of specifying detail which the system might well be able to deduce.

In summary, then, I believe that I can classify both the verbs and their objects in instructional
texts according to their lexical semantics: the verbs based on the underlying physical action, the
objects dependent on geometrical information. I am building a high-level utility, within the Jack
framework, which will determine, in a given instantiation, ex:.ctly hov to apply the verb to its
object by reasoning about such things as the geometry of the object. 1 will vse Jack animation
directives — primitives which describe high-level motor control - to build compositional definitions
of the physical actions underlying the instructional verbs. These task-actions will describe the tasks
to be performed at a high-level and not on a movement-by-movement basis.
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I am currently investigating three areas:

1. Issues in Lexical semantics:

9.3

Identify core meanings of verbs and build functional descriptions of nouns;

Developing a language to describe actions:

Build a minimal primitive set to use in defining actions, as well as defining the syntax of
the actions description language. This entails developing a way to incrementally chain action
primitives together. For example, push might be the chain:

contact, constrain-to, translate, translate, translate...,

where the translate is repeated until the goal is acheived.

One issue I am investigating is the usefulness of an underlying set of behaviors in terms of
building the task-action definitions. For example, in instructing someone to reach the cup we
would never specify don’t try to put your hand through the table. While Jack provides collision
detection: making use of it will make the resulting animation appear more realistic. However I
am considering variations in the definition of reach-action when there are explicit background
behaviors. For instance, if there was always a behavior don’t put hand through solid
object, it would never need to be explicitly stated, nor checked, in a task-action definition.
Jack manages a large amount of the human motor control issues, and Phillips’ behaviors
allow us to step away from those details; a system of “world behaviors”, describing how we
(unconsciously) interact with the physical world, might make defining realistic set of task-
actions a feasible task.

. Implementing an action interpretation algorithm:

Develop an algorithm which combines the information required by the action definitions with
the knowledge stored in the object definition. For now, I simply intend to get the data sharing
implemented. I am using C++ in order to take advantage of classes and inherited knowledge;
subclasses will automatically inherit information from super-classes.

Future Work

Provide a way of specifying a chain of associated behaviors in Jack.

This is a first step in building composite actions. Actions should be linked to provide basic
manipulation ability in the interface, for instance, the user ought to be able to visually verify
that a reach and a grasp are linked together to form a get; if the user wants to change the
start time of the chain it ought to be possible to modify the entire chain at once.

Extend the JCL front end for the animation behaviors.
Make it possible to read in animation behaviors that make use of symbolic names as the site
of different movements. This is needed for testing and working the AnimNL code.
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e Build an object knowledge base.
For various objects in the instruction sets, define them both geometrically and functionally.
Objects that the AnimNL group is concerned with are doors, thermoses, boxes, and fortune
cookies.

10 Min-Zhi Shao

10.1 Radiosity

1. I have implemented the progressive radiosity method with adaptive meshing (patch to ele-
ment) and analytical calculated form-factors (Baum el al, 1989). This should be the state of
art progressive refinement radiosity method to date.

2. I am working on a two pass (global and local) radiosity shooting method based on the above.
Since in our method, the shooting patch is either very strong (light source in global shooting)
or very near to the elements which gathering the light energy (local shooting), the more
accurate analytical form-factors and the adaptive elements subdivision techniques are critical
in our implementation.

10.2 Future Goals

My next goal is try to extend radiosity to general environment with non-diffuse and also non-
specular surfaces. The following are some of our major considerations so far:

1. Progressive form-factor refinement method as theoretical background (based on my 1988
paper)

2. Dense and even meshing for specular-like patches. But instead of keeping hemi-cube for every
specular-like patch in the storage, we are going to store a list of patch numbers we fo''nd in the
hemi-cube. We can also store the union of patch numbers of, say m by m neighboring - atches.
We expect the storage problem can be largely reduced with the trade-off of rebuildi 1g hemi-
cubes in each form-factor refinement iteration for specular-like patches. But z-buffer depth
comparison can be largely reduced with the hemi-cube patch list in the storage. Therefore,
the more complex of the environment, the more efficient (relatively) our method would be.
And unlike the two-way (eye and light) ray tracing, the refinement procedure is much less
dependent on the geometrical complexity of the environment. Furthermore, the solution is
view-independent.
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3. Adaptive meshing for diffuse-like patches based on the light energy distribution of light sources
and specular-like patches.

4. Real-time viewing the environment. Ray tracing post processing technique is neither real-
time nor efficient and necessary for non-purely-mirror patches (which we are not going to
simulate, our environment is somewhat in between ideal diffuse {including) and ideal specular
[not including] environments). But if the meshing of specular surfaces is as fine as the pixel
size level, the pure mirror surface could then be included. We are going to use Gouraud
interpolation for display directional radiosity. But storing all directional radiosities (with the
resolution of hemi-cube) is neither necessary nor practical with the limitation of the machine
memory. Therefore, we are considering to use surface fitting techniques, such as piecewise
bicubic Bezier patch. This is a adaptive fitting method. So, we can largely reduce the final
radiosity output <tc.age by storing the necessary control points instead of radiosity in each
directioa.

Finally, a preprocessor for the radiosity input environment (Jack peabody file) is nice to be
added. This seems to be well suit for a term project.

11 Jeffry S. Nimeroff

11.1 Work Done in the Past Quarter

During the first month of 1992, I completed a ray tracing implementation designed to allow me
to easily test texture map antialiasing schemes. The first method that was completed and tested
was a spatially invariant random weighted average method I designed based cn solutions to the
N-queens problem. A solution to the N-queens problem consists of the placement of N queens on
an Nz N chessboard so that none of the queens is threatened. The individual solutions make good
discrete convolution masks for two dimensions and are treated as such when reconstructing a single
texture value from an Nz N grid of texture samples. Although these results produced images of
slightly higher quality than the simpler area averaging schemes (box, Bartlett, etc.), the method
was abandoned since the quality increase did not meet expectations.

Over the last two months, my research has consisted of reformulating the texture mapping
process to be used in a prototypical version of the new Jack ray tracer. It was decided that a
stochastic ray tracer would do a reasonable job of antialiasing the symbolic image function as long
as no aliasing error was introduced by the texture mapping process. The texture mapping problem
was sufficiently reduced to a reconstruction/low-pass filtering problem (relying on the ray tracer
itself to deal with screen space antialiasing) Fitting a bicubic b-spline surface to the texture image
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reconstructs a C? continuous version of the texture from its lattice samples. The C? continuity
constraint also bandlimits the reconstructed texture image providing some feasible Nyquist limit
for the ray tracer to perform its point sampling.

11.2 Current Work

Besides continuing my filtering research with the hopes of analyzing parameterized cubic inter-
polation schemes, my current work includes leading a group of graduate students in the design
and implementation of a C++ prototype of the new Jack ray tracer. A C++ implementation
allows for greater flexibility by providing a level of data encapsulation not found in standard C.
This implementation should provide a platform which will allow others to continually update and
enrich.

The texture antialiasing research that I am performing currently is going to be grafted into the
new ray tracer during the coming quarter.

12 Ranjit Bhatnagar

12.1 Real-time Theremin

Our goal was a real-time animation of the Jack figure playing a Theremin, combined with real-
time synthesis of appropriate sounds, under contro] of ascension technology 'Flock of Birds’ space
tracker.

The visual complexity of the Jack figure, full shaded animation is not possible at 'real-time’
(approximately 12 or more frames per second) rates. Using wireframe animation and simplifying
the Jack figure allows a rate of two to five frames per second, depending on the hardware. Further
improvement may be possible.

I experimented with various ways of controlling the Jack figure, and settled on tle use of Jack’s
external figure control port facility. I had to modify the port code slightly. The theremin control
program sends joint-angle update commands to Jack through a socket. In the future it may, instead
of updating the Jack figure’s arms, it control the position of invisible objects to which the figure’s
hands will be attached, thus using Jack’s reaching algorithms for more natural animation. This
will further decrease the frame rate and increase the latency of the animation, however.
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The Indigo has appropriate hardware for sound synthesis. Earlier plans to use an external MIDI
synthesizer are on hold, but that might be a useful technique in the future. The theremin sound
is generated as packets of samples, based on the user’s input. Each packet is about one thirtieth
of a second long, so the latency of sound output is just over 1/30th of a second, quite sufficient for
real-time operation.

I have made a version of the theremin which plays recorded sounds rather than sine waves, and
another which can have its pitch output quantized to any desired scale.

12.2 Future Goals

We are hoping to simplify the 3D model sufficiently that the animation can run at reasonable rates,
even on the Indigo, which has very slow graphics. One current method of achieving higher frame
rates is to run Jack on one of the very fast machines, and the theremin control and audio programs
on the Indigo, communicating over the ethernet. (Because of the use of UNIX sockets for Jack's
control ports, this is very simple.) The next project will be a virtual drumset.

Since the animation will always have a much higher latency than the sound, it may be possible
to improve the interactivity of the animation by predicting the user’s control movements up to half
a second in advance. Even if the prediction algorithm is not very accurate, it may still improve the
effect. Also, using a custom-written graphics program rather than the very flexible and slow Jack
software could improve graphics speed significantly.
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A Posture Planning for Agent Animation
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Posture Planning For Agent Animation

Moon R. Jung
Dept. of Computer and Information Science
University of Pennsylvania

Philadelphia PA 19104-6389

Abstract

A human motion planning method called pos-
ture planning is described that addresses how
an agent controls and coordinates body parts
to achieve a given task in the Cartesian task
space.

1 THE PROBLEM

Animating human bodies with respect to designed
workspaces helps designers evaluate their design deci-
sions. Motion planning is needed to generate motions
to be animated. As an example, consider an agent who
stands in front of a table (Figure 1 ) and is given a goal
of picking up the block (Figure 2), which is under the
table. Our goal is to find a motion plan by which the
agent approaches the table, grasps the block, and lifts
it up.

The fundamental problem of motor control is the prob-
lem of degrees of freedom, that is, how the body con-
trols the massively redundant degrees of freedom of
the body joints. The body postures can be uniquely
represented in terms of joint angles directly. But there
are 88 joint degrees of freedom in our body model (not
counting fingers) and we do not know how the body
actually controls massively redundant degrees of free-
dom.

The degrees of freedom problem is solved by suffi-
ciently constraining the joint degrees of freedom by
means of constraints imposed on the body. The body
constraints are obtained from three sources: (i) the
structural and physical properties of the body, (i1) the
environment (e.g., obstacles), and (iii) the goals of the
agent. Posture planning is a process to identify and
solve these body constraints that are changing over
time.

Norman I. Badler
Dept. of Computer and Information Science
University of Pennsylvania
Philadelphia PA 19104-6389

Figure 1: The Agent In Front Of The Table. A Small
Block Is Under The Table.

Figure 2: Reaching and Grasping The Block Under
The Table.



2 TASK-SPACE CONTROL
PARAMETERS

To control the redundant degrees of freedom of the
joints, we represent body constraints in terms of
higher-level control parameters called task-space con-
trol parameters. Three kinds of task-space control
parameters are posited: control points, control vec-
tors, and pivot joinits. Control points are important
points on the body, e.g., the feet, the pelvis, the
head, and the hands. Control vectors are important
vectors defined on the body to control orientation
of the body. For example, the torso upward vector
is a control vector for controlling the bending orien-
tation of the upper body. The control vectors in-
clude pelvis-forward-vector, righthand-palm-upvector,
rightfoot-forward-vector, and head-view-veclor. Pivol
Joints are joints on the body relative to which control
points/vectors are moved. At a given moment, only
some of the task-space degrees of freedom are relevant,
which are determined by a set of primitive motions se-
lected to achieve given goals. The posture is viewed
as a process that modifies postural states of the body
using given motion strategies. Postural states of the
body are defined by the values of the task-space control
parameters identified above. Given values of the con-
trol parameters, a body posture that satisfies them is
found by a robust inverse-kinematics algorithm (Zhao
1989) that formulates the hody positioning problem

as nonlinear optimization over the joint space of the
body.

3 POSTURE PLANNING
STRATEGIES

Motion strategies are obtained using gross-level struc-
tural properties of the body. Examples of them are as
follows:

(1) A hand can be stretched to the ground
by bending the upper body, while the pelvis
is lowered.

(2) To reach an object, the agent tends to
stretch his arm as much as possible while
bending the pelvis as little as possible.

(3) When stretching a hand to reach the
ground from the standing posture, the agent
bends the upper body at the pelvis rather
than lowering the pelvis (by bending the
knee).

(4) When orienting the body along the verti-
cal axis, stepping is triggered to avoid twist-
ing of knee joints.

Using the motion strategies, the planner selects
a partial sequence of primitive motions of con-
trol parts/vectors using a standard planning method
(Chapman 1987). A motion of a control point or vec-

tor is primitive if it has a single moving or rotation
direction, respectively. Selected primitive motions are
mentally simulated to determine whether selected mo-
tions would satisfy the collision avoidance constraints.
When a stepping motion is planned, the bounding box
of the whole body is used to test collision between the
body and obstacles. When other motions are consid-
ered, collision of the end effector (a hand), the head,
and the torso is tested. That is, collision of the elbow
is not considered at planning stage. The assumption
is that a workspace for the end effector is designed so
that it may provide enough free space for the elbow if
it provides the free space for the end effector. Collision
is determined by checking if the polyhedral sweeping
volumes generated by the end effector, the head, the
torso intersect obstacles. If a planned motion causes
the end effector, the head, or the torso to collide with
an object, the face of that object that is in the way
of the sweeping volume is identified. Then the motion
is modified so that the sweeping volume would pass
by the boundary of that face. The majority of robot
motion planning methods (Lozano-Perez 1987, Ching
1992) use the joint-space motion reasoning. That is,
they assume that the goal configuration of the body is
given in terms of a sequence of joint angles and con-
structs the free joint-space (the set of joint angles at
which the body does not touch obstacles) to find a
collision-free path of the body. The posture planner
complements the robot motion planner by providing a
feasible macro-level path and by finding a goal posture
of the body using heuristic motion strategies.
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Abstract

The goal of this research is to develop a system which enables automatic construc-
tion of the detail hierarchy for complex objects in order to provide progressive object
details for displaying complex geometric environments. Based on the constructed detail
hierarchy, our system is able to display objects in various detail levels depending on
the viewing position. Various possible methods towards geometric detail reduction are
surveyed as an effort to find an appropriate method to be used in our hierarchy construc-
tion module. Having decided to use superquadrics with global deformations and blobby
models for our system, we present an automatic hierarchy construction scheme using
these models. The mathematical formulations and recovery algorithms of these models
are explained. In particular, we propose several improvements over Muraki’s blobby
model recovery algorithm which will result in significant gain in speed and efficiency.
We deliver a detail hierarchy traversal algorithm which utilizes frame coherence. We
discuss our selection of display metric and other issues related to display of the detail

hierarchy.
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Chapter 1

Introduction

1.1 Motivation

Conventional representations of a geometric environment describe the objects in full
detail. The conventional representation scheme often involves many problems when
the objects are displayed. Firstly, all the objects in the environment will be computed
for clipping, hidden-surface elimination, and illumination. Even though an efficient
clipping computation is applied to those objects which are not in the view range, the
viewer can hardly resolve all the details which were displayed on the screen with heavy
computational overhead. This unresolvability is a combined result of the viewer’s eye
movement, limited resolution of the display device and the relatively small area the

object occupies on the screen.

Another problem occurs when too much detail falls into a small area of the display,
hence generating aliasing effects [Amanatides 87]. Aliasing often makes the image
unattractive and distracting to the viewer. Finally, we have to resolve the huge storage
requirement for the large database in order to display a complex scene. Users occa-
sionally have to divide the environment into subsets and composite the intermediate

images 1n an ad-hoc way to cope with the storage requirement. This not only involves
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unnecessary overhead but often gives an unsatisfactory final image resulting from some

reflections and shadows being left out.

All these problems can be solved when we adopt the hierarchical representation of
object details as proposed by Clark which will allow transition among different levels
of detail for the objects [Clark 76]. The hierarchical database can be developed by de-
signers before display time, either manually or semi-automatically [Rubin 80, Rubin 82,
Feiner 85]. The hierarchy has been built through a laborious process and in an ad-hoc
manner. It has been largely an unsolved problem to create a relation automatically be-
tween the data structures and the rendering process so that exactly the necessary level
of detail is available [Badler 84].

A modeling hierarchy is obtained when an object is modeled. It records the way
complex objects are built up out of simpler parts. When animating natural figures
consisting of rigid limbs connected by joints it is usual to model a figure as a tree of
dependent parts. Representing objects using such a modeling hierarchy is convenient
for positioning objects and their components in space and for moving objects relative
to one another. In addition, they offer considerable memory savings when objects and
object components occur several times in a scene. In the modeling hierarchy, the leaf

nodes typically contain nodes, edges, polygons, and possibly surface patches.

Clark extended this normal object hierarchy [Foley 90] to include sub-hierarchies
which contain objects modeled in greater and greater detail [Clark 76]. He gave a
recursive descent algorithm for searches and traversals which proceed only down to the

smallest resolvable level of detail.

Clark’s hierarchical representation, which will be called detail hierarchy in the rest of
this article, specifies the entire environment as a tree where the root is interpreted as the
whole environment. Each node in the tree is either a collection of objects or an object at
a certain level of detail. Every arc in the tree contains information about a transformation
which prescribes the relative position of the child from its parent node. There are two

types of arcs in the tree: those that represent pointers to child objects whose orientation




camera

object_n

Figure 1.1: A detail hierarchy of an environment

and placement are defined relative to its parent and those that account for pointers to
more detailed structure which collectively define a more detailed specification of the

object.

Each nonterminal node in this detail hierarchy represents a sufficient description
of the object if it covers no more than some pre-specified area on the display. If the
description formed at a level is inadequate because it.covcrs a larger area on the screen,
the object description is obtained from their child nodes at lower levels which supply
more details. An example of using the hierarchy to describe an environment is shown
in figure 1.1. In the figure, 7" is a transformation to more detailed description of an

object and T is an object’s transformation relative to its parent node.

As we mentioned previously, the conventional object representation aimost always
conveys certain hierarchy information. However, the detail hierarchy is different from

the modeling hierarchy in the sense that the detail hierarchy does provide geometric

3




approximations to the objects which provide intermediate details. On the other hand,
in the modeling hierarchy only the leaf nodes contain the geometry information of the

objects, providing only one level of detail of the objects.

For example, a good geometric representation of a human body figure typically
requires over 6,000 data points. The computer resources required to display and manip-
ulate such large amounts of data are significant and often cause the figures to lose the
real-time motion capability. It is desirable to have the human figure rendered as a cou-
ple of blocks or a single rectangular polyhedron when the area it occupies is relatively
small.

The following table in figure 1.2 shows the polygon processing capability of current
graphics hardware technology. In this table, we list series of personal IRISes [SG 91]
for the hardware. With the higher end models, we can have approximately 30K polygons
processed per second. Thus approximately only 30K / 60 hz = 0.5K polygons (or 1K
polygons when employing the interlacing technique) can be processed in real-time. This
is the number of polygons in the geometric environment which users can manipulate in
an interactive manner without noticing time delay in display. Therefore, it is imperative

to develop a system which can provide multiple levels of detail for objects.

A typical application of this detail hierarchy can be found in the area of computer
controlled simulators such as flight simulator which need to render complex images.
The flight simulator displays a dynamic, three-dimensional, out-of-the-window view of
the scene in real time while responding to operator input from the command and control
system. One of the major modules in a flight simulator is a scene manager. In the scene
manager, the objects are usually represented in several levels of detail, with the detailed
version shown only when the viewer is sufficiently close to the objects. This module is
responsible for retrieving from mass storage the database objects within the panorama of
the current pilot position and providing the appropriate levels of detail of these objects
for further processing. The scene manager ought to be provided with the ability of

-ansition from one level of detail to the next one in a smooth manner [Yan 85].




Base Sys. G TG
8bit color 24bit color 24bit color
no Z buffer 24bit Z 24bit Z
6K Polygons | 6K Polygons | 29K Polygons
4D/35 16K Triangles | 16K Triangles | 40K Triangles
92K Vectors | 92K Vectors | 219Kk Vectors
6K Polygons | 6K Polygons | 29K Polygons
4D/30 16K Triangles | 16K Triangles | 40K Triangles
92K Vectors | 92K Vectors | 219K Vectors
6K Polygons | 6K Polygons | 28K Polygons
4D/25 | 16K Triangles | 16K Triangles | 36K Triangles
92K Vectors | 92K Vectors | 204K Vectors
Polygonsisec =
10 x 10 (100 pixel).
full 24-bit color,
unlighted, Gouraud-shaded,
Z-buffered,
arbitrary orientation.
Triangles/sec =
10x10 (50 pixel) mesh,

full 24-bit color,
unlighted, flat shaded,
Z-buffered,

arbitrary orientation.

Vectorsisec =
10 pixel, conncted,

full 24-bit color, 3D,
arbitrary orientation.

Figure 1.2: Graphics configuration of personal IRISes




Another arising area of application of the hierarchical representation of object detail
is in virtual reality. Due to drastic cut-down in the price of computer hardware, virtual
reality equipments have become affordable to a wider class of users. Virtual realities or
virtual worlds help researchers visualize and manipulate complex data and help architects
show complex building ideas to clients. The headgear mounted on the viewer includes a
sensor to detect head orientation. If the computer is powerful enough or the scene itself
is simple enough, the image can be updated with about 30 frames a second. This is fast
enough to give viewers the impression that the scene is changing smoothly. However,
the complexity of scene which can be managed by current or near future computer
graphics hardware technology is limited. This complexity problem can be compensated

by using the hierarchical representation of object details.

1.2 Previous Work on Representing Objects with Detail

Hierarchy

As mentioned in the above, Clark introduced the object representation with detail hierar-
chy [Clark 76]. Though Clark mentions that the hierarchy structure can be constructed
by using a bottom-up approach from the most detailed description of objects, there was

no proposal for automating this process.

Rubin and Whitted propose a scheme whereby the object space is represented only by
bounding boxes [Rubin 80, Rubin 82]. The leaf nodes are rectangular parallelepipeds
which are oriented to minimize their size and formed into an approximation of an
object component. The creation of the bounding boxes is a rather tedious process that
requires a human operator. Their approach using rectangular parallellepipeds with affine
transformations contains a total generality of describing an arbitrary object but they are

far from being efficient in representing arbitrary objects.

In order to reduce time spent on ray object intersections in ray tracing techniques,
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many acceleration techniques used structure information which the scene bears [Goldsmith 87,
Snyder 87, Weghorst 84, Kay 86]. Others subdivided space into an octree to speed up
the ray-object computation [Glassner 84, Glassner 88]. Building tree hierarchy for ray-
tracing, however, was done by merging objects hierarchically into larger groups by some
bottom-up pruning of existing definitions of the objects. They did not attempt to provide

simplified description of each object.

Recently, Blake presented a viewer centered metric for computing adaptive detail
as a methodical way of using adaptive detail [Blake 90]. He was successful in provid-
ing some theoretical foundations underlying the practice of adaptive detail display of
complex scenes but did not furnish any formula which can be used as a generic tool
for rendering adaptive detail. Also, construction of the detail hierarchy for complex

geometric environments was not addressed in his work.

1.3 Statement of the Problem

The goal of this research is to develop a system which enables automatic construction
of the detail hierarchy for complex objects in order to provide progressive object details.
Based on the constructed detail hierarchy, our system is able to display objects in various
detail levels depending on the viewing position. Viewers can also specify which objects
are more important thus need to be displayed in more detail by setting high values to the

priority metric of the objects. The overall system configuration is given in figure 1.3.

Given the input of a complex geometric environment, the hierarchy construction
module performs as an off-line process and generates an extended geometric environ-
ment with multi-level detail. Our automatic hierarchy construction scheme uses shape
recovery algorithms to build simplified models from a detailed object data. It also de-
fines a metric threshold value for each level of detail so it can be used by the display

manager.

The display module manages the environment with detail hierarchy and determines

7




hierarchy construction module

simple objects

.'.----...------.-.-.....---....----:
]
: complex . .
complex + objects| automatic * /environment
environment ) et TG . with detail
. construction . hierarchy
. scheme -
. .
s u
o |
8 .
. |
. 5

designer

viewing condition
display
manager

object priority metric

<<.nuu...

display
module

objects
at various
levels of detai

viewer

viewing
transformation

4 s SSsSSSSSSasSssssasSSseSkssas

peseeeenpmdEsssnEEEEES

Figure 1.3: A system configuration




the adequate levels of detail according to the viewing condition and the object priority
metric values specified by the viewer. Display manager computes a metric value for
each level of detail and compare it with the metric threshold values to decide whether

the object needs more or less detail.

In our current research, we only consider static objects and do not attempt to apply
our algorithm to deformable or articulated objects. Attributes such as surface color
apparently play a very important role in users’ perception of the object. Handling
attributes requires research on determining the importance of each attribute in human
perception of objects. For example, a red light, though small, may be clearly visible
at detail levels which would normally subordinate its gecometry. We do not attempt to
study the effects of attributes; instead we will only concentrate on the importance of

shape given by the geometric information at this time.

1.4 Organization

In chapter 2, we review various possible methods towards the geometric detail reduction.
This survey was conducted in an effcrt to find an appropriate method to be used in our
hierarchy construction module. Each method holds its own object representation scheme.
Thus we analyze each method and its object representation scheme to judge its suitability
in our application. The methods which will be discussed include implicitly defined
surfaces (both iso-surfaces and generalized superquadrics surfaces), spatial subdivision

methods, parametric surface patches, etc.

Having decided to use superquadrics with global deformation and blobby models
for the geometric detail reduction, we present more details on the automatic hierarchy
construction scheme using these models in chapter 3 in a step by step fashion. The
mathematical formulations and recovery algorithms of these models are explained in
chapter 4. In particular, we propose several improvements over Muraki’s blobby model

recovery algorithm which will result in significant gain in speed and efficiency. We also
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discuss the rendering of blobby model and explain a polygonization algorithm.

We discuss the display module in chapter 5. We deliver a detail hierarchy traversal
algorithm which utilizes the frame coherence. This algorithm tries to minimize the
number of node visits when the image needs to be updated because of moving objects
or slight change in viewing condition. We also discuss the selection of metric and other

issues related to display of the detail hierarchy.

Finally, we give a summary of our research problem and explain work in progress.

We conclude with a section detailing the resulting contributions from this research.
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Chapter 2

Methods for Geometric Detail

Reduction

2.1 Overview

One of the most widely used representation scheme for geometric objects is the bound-
ary representation in which nodes, edges and faces are explicitly stored. Considering the
goal of our work which is to generate intermediate geometric approximations to objects,
an obvious and intuitive approach is to directly manipulate these boundary representation
and smooth out some of the details. However, direct manipulation of boundary repre-
sentation to generate simplified models from detailed input data poses a more complex
problem than it appears and so far no satisfactory algorithms have been reported. In
this work, we would like to approach the problem of reducing the geometric details of
an object by identifying the outstanding features of the object and representing them in

certain simplified formulations so that the minute surface details will be smoothed out.

There are many surface or volume modeling schemes which have been used in
computer graphics and machine vision community. Moreover, work in model recovery

has generated many algorithms to recover volumetric models from input data which
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were formulated as optimization problems [Solina 87, Muraki 91]. An alternative ap-
proach to the approximation of surfaces was taken by surface fitting using paramet-
ric Bezier surfaces [Schmitt 86, Cheng 89]. An effort to incorporate the global shape
parameter with the local degrees of freedom has produced deformable superquadrics
[Terzopoulos 91, Metaxas 91]. Implicit surfaces were generalized by using modal de-
formations and displacement maps to provide local and fine surface detail by offsetting
the surface of the solid along its surface normals [Sclaroff 91, Pentland 91]. The re-
search on model based shape recovery suggests a solution to our problem because it
provides a method of distinguishing features and averaging out surface detail at the

same time.

Requicha [Requicha 80] provides a list of the properties desirable in a solid represen-
tation scheme. Although our interest does not exactly fall into the solid representation
scheme, the list can serve as criteria for comparing and analyzing many available object

representation methods and finally help to select one scheme for our purpose.

Some of the items on this list are:

e The domain of representation must be large enough to allow a useful set of physical

objects to be represented.

e A representation should be compact to save space, which in turn may save com-

munication time in a distributed system.

e A representation should allow the use of efficient algorithms for computing desired

physical properties, and most important for us, for creating images.

The criteria which are particularly important in our modeling were not enumerated
in Requicha’s list. For example, our object representation should be able to provide
adequate intermediate levels of detail which can be used to incrementally approximate
the object. The representation should also provide an easy and efficient way to compute

these intermediate levels.
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In this chapter, we review the available object representation schemes and select the

best scheme based on the given criteria.

2.2 Voxel Representation

Under this scheme, objects are decomposed into identical cells named voxels (volume
elements) which are arranged in a fixed and regular grid. Representing an object is
easy under this scheme since all required is to decide which cells are occupied and
which are not [Foley 90]. Editing with voxels is not intuitive to users. Thus, voxel
representation is usually recovered from other commonly used representation such as
boundary representation or a set of data points obtained through an image processor. It
is often used in biomedical applications to allow volume visualization where the data

are usually obtained from sources such as computerized axial tomography (CAT) scans.

Under this scheme, operations such as deciding whether a cell is inside or outside of
the solid and determining whether two objects are adjacent are simple to carry out. They
hae thus been used in hardware-based solid modeling systems intended for applications
in which the gain in speed of Boolean set operations outweighs the coarseness of the

resulting images.

However, voxels do not allow partial occupancy though fractional density values
may be stored in non-binary voxel spaces, thus many. solids can be only approximated.
Storage of the voxels require enormous space since up to n3 occupied cells are needed

to represent an object at a resolution of n voxels in each of the three dimensions.

2.3 Octrees

Octree representation is a hierarchical variant of the voxel representation. It is de-

signed to remedy the issue of demanding storage requirements of voxel representation
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[Samet 88a, Samet 88b, Carlbom 85]. In this representation, the entire object space is
divided repeatedly into cubes or rectangular parallelepipeds resulting in a tree structure.
The leaf nodes do not contain primitives such as edges and polygons but are rather ho-
mogeneous cells which give the occupancy information. Octrees approximate the object
components by repeated subdivision into cubes or parallelepipieds to some degree of

precision.

The spatial decomposition provides a representation applicable to a wide class of
objects and allows geometrical properties to be computed rapidly. Octrees have been
generalized to represent polyhedral objects and named as polytree[Carlbom 85] or ex-
tended octree[Brunet 90]. Octrees do allow the detail in the projected image to be varied
by changing the depth to which the octree is processed. This can be done adaptively
depending on the resolution of the display [Sandor 85].

Octrees do not provide the memory savings offered by object decomposition, nor does
it provide any structure for managing or interacting with components of a complex object.
The storage requirement is still severe as compared to other representation schemes.
Besides, octrees can only represent bounded solids. Moreover, the rectilinearity is

definitely not an advantage in object appearance.

2.4 Superquadrics

Superquaric surfaces were introduced to computer graphics to allow complex solids
and surfaces to be constructed and altered easily from a few interactive parameters
[Barr 81]. Barr developed solid modeling operations which simulate twisting, bending,
tapering or similar transformations of geometric objects [Barr 84]. The deformations
extend the shape of solid primitives and allow modeling to be done by intuitive and

easily visualized operations.

Solina formulated an optimization problem which can recover the superquadrics with

global deformations such as bending and tapering from input data [Solina 87]. Based
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on Solina’s recovery procedure, Gupta developed a volumetric segmentation algorithm
which can recover the structured part hierarchy of an object [Gupta 91]). We will explain
superquadric models in more detail in a later chapter.

2.5 Dynamic Superquadrics with Local and Global De-

formations

Terzopoulos and Metaxas presented a physically-based approach to fitting complex
3D shapes using dynamic models [Terzopoulos 91, Metaxas 91]. They formulated de-
formable superquadrics which incorporate the global shape parameters of a conventional
superellipsoid with the local degrees of freedom of a spline. The local deformation pa-
rameters help to reconstruct the details of complex shapes which the global abstraction
misses. They formulated the model fitting to visual data by transforming the data into
forces and simulating the equations of motion through time to adjust the translational,

rotational, and deformational degrees of freedom of the models.

They argue that geometry is often insufficient for analyzing the motions and inter-
actions of complex objects. A model based on computational physics is suggested to
remedy its shortcomings. Thus in addition to geometry, their models includes simulated

forces, masses, strain energies, and other physical quantities.

This complex formulation may generate well-fitted superellipsoid at the expense of
heavy computation overhead. To generate the intermediate geometric approximations in
our system, one does not require the full dynamics property that this fitting procedure
adopts. Also their models have shown to work only on pre-segmented data. Thus, we

opt for a different fitting procedure which is simpler and more efficient.
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2.6 Modal Deformations with Displacement Maps

Pentland and Sclaroff used modal deformations to describe the overall shape of an
object where displacement maps are used to provide local and fine surface details by
offsetting the surface of the solid along its surface normals [Sclaroff 91, Pentland 91].
The advantage of this approach as a modeling scheme is that collision detection and
dynamic simulation become simple and inexpensive even for complex shapes. They
also provided a method for fitting such models to three dimensional point data by

determining bother the deformation parameters and a displacement map.

The distance maps were designed to describe shape details. They are not adequate to
represent a whole object which consists of many parts. Moreover, in their ThingWorld
system, the displacement maps are represented by a regularly spaced grid in the surface’s
parametric space. Therefore, the detail which their models can capture depends on the
grid resolution rather than the inherent shape detail of the object. The blobby model

which we will discuss later will remedy both of these problems.

2.7 Spline Surfaces

Schmitt et al proposed a top down method for the problem of surface fitting from sampled
data [Schmitt 86]. This method is based on an adaptive subdivision approach. It begins
with a rough approximating surface and progressively refines it in successive steps to
adjust the regions where the data is poorly approximated. Their method constructs a
parametric piecewise polynomial surface representation. The surface fitting is effected
through a use of subdivision techniques. The subdivision creates new vertices which

are then positioned so as to achieve a closer approximation of the underlying data.

The method has been implemented using a parametric piecewise bicubic Bernstein-
Bezier surface possessing G' continuity. An example of a surface fitting to a human

head data was shown in the original paper.
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One advantage of this approach is that the refinement is essentially local, reducing
the computational requirements which permits the processing of large databases. Fur-
thermore, the sutdivision method provides a hierarchical - spresentation of the surface

as a quadtree-like structure which may be utilized in our system.

However, for surfaces with minute details or undulating surfaces, this algorithm
may actually try to fit to those details and hence generate a large number of surfaces in
the process. This is an undesirable feature considering the goal of our system design
which is to generate intermediate geometric approximations typically consisting of fewer

polygons. Therefore we choose to adopt a different modeling scheme.

2.8 Potential Surfaces

Potential surfaces are iso-surfaces of potential energy emerging from a number of origins.
They have the property that the iso-surfaces are smoothly continuous even though the
origins are separated. They are simple to edit since all required to do is to crzate, move
and delete the corresponding origins, and change a few parameters in the potential field
formulation [Wyvill 86, Blinn 82].

The hlobby mode! introduced by Blinn is one form of potential surface [Blinn 82].
Muraki has developed a recovery procedure for this blobby model from input data[Muraki 91].
By adjusting the number of blobs used in the fitting process, we can obtain a hierarchy
of intermediate representations. Wyvill et al’s soft object is different from the blcbby
model in the formulation of the field function. That is, the soft object adopted a poly-
nomial field function so tha: the function do not influence any point beyond a certain

distance away.
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2.9 Distance Surfaces and Convolution Surfaces

Distance surfaces are a generalized form of potential surfaces which allow polygona’
skeletons instead of point skeletons [Requicha 83, Payne 92]. This is done by computing
the potential from only the nearest point of the polygon. The distance surface gives the
union of the volumes generated by all the individual points of the collective skeleton.

Thus a skeleton consisting of two line segments may generate bulges at the joint.

Convolution surfaces have almost the same shape as distance surfaces except that
they generate smooth blending by convolving the skeleton with a three-dimensional

Gaussian filter kernel [Bloomenthal 91].

So far no recovery procedure has been developed for this class of modeling schemes.
It is conceivable that the recovery of the distance surfaces or convolution surfaces may

be difficult due to their complex formulations.

2.10 Medial Axis Transform

Blum has introduced a transformation, known as the symmetric axis transform or me-
dial axis transform that decomposes a figure in 2-D into simpler figures [Blum 78]. In
an attempt to extend the medial axis transform, Nackman generalized the mathemati-
cal tools used by Blum to three dimensions for further study of Blum’s transform in
three dimensions [Nackman 82]. However, there was no algorithm provided for shape

description and we found that application of his work is not yet feasible.

O’Rourke and Badler presented an algorithm which decomposes a three-dimensional
object, specified by a set of surface points, into a collection of overlapping spheres
[ORourke 79]. This spherical decomposition permits the computation of points on the
symmetric surface of an object in 3-D. All the sphere centers resulting from their sphere
decomposition algorithm lie on the medial surface of the object. However, the sphere

centers do not necessarily cover the symmetric surface. Thus, for a very complex
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object, the sphere centers represent a sampling from its complicated symmetric surface.

Recovering symmetric surfaces from the scattered surface points has not been addressed.

2.11 Summary

Our goal here is to find a suitable modeling scheme which fits into our application,
namely, building a detail hierarchy for displaying complex environments. To justify
our selection, we compared the aforementioned modeling schemes based on the given

criteria (figure 2.1).

There was no known recovery method for the convolution surface and distance
surface. The sphere decomposition algorithm by O’Rourke and Badler allows the com-
putation of symmetric surface points. However, an effective sphere search algorithm
which can minimize the number of recovered spheres was not provided. Therefore, in

the worst case, the number of spheres can match the number of surface points.

One of the basic problems of the spatial subdivision methods such as voxels or
octrees was their huge storage requirement. In addition, each cell is a box with an
intensity value. The cell cannot convey the surface tangent information which is very
important in rendering the shape with visual fidelity to the modeled object. Although
we are considering only static objects in this research, we would like to see a scheme
which can be easily extended to articulated figures. The space subdivision methods do

not have this desirable property since they cannot deliver any structure information.

Superquadrics with global deformations were adopted in our scheme to represent
coarse object descriptions because of its simplicity and descriptive capability of shapes.
Deformable superquadrics with global and local deformations and generalized implicit
surfaces, on the other hand, were considered too complex to use for coarse descriptions.
As mentioned before, they work only on pre-segmented parts so they can not be used

to describe complex objects which may contain structured part hierarchy.
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