One of the most significant results to emerge from this contract is the systems theory approach to thermospheric dynamics which was developed as part of the Dissertation research of Mihail Codrescu, a Ph.D. student supported by AFOSR. The basic components of the computational approach are a piecewise linearization method capable of preserving nonlinear features of a dynamical system (in this case, the NCAR TIGCM), and a response function "library" consisting of quasi-steady state and sample response functions characteristic of the system. A typical usage would be approximating the dynamical thermospheric response to an arbitrary change in forcing by performing a specialized convolution between the specified forcing and an appropriate set of response functions from the "library". This methodology may provide the basis for computationally efficient real-time (operational) predictions without on-line use of a TIGCM.
FINAL TECHNICAL REPORT

AFOSR Contract F49620-88-C-0111

entitled

SELF-CONSISTENT MODELING OF THE IONOSPHERE-THERMOSPHERE-MAGNETOSPHERE SYSTEM

31 May 1992
Prof. Jeffrey M. Forbes, Principal Investigator
Center for Space Physics and
Department of Aerospace and Mechanical Engineering
Boston University, Boston, MA 02215
1. OVERVIEW

The main focus of research under Contract F49620-88-C-0111 (1 Aug 1988 - 31 Dec 1991) entitled "Self-Consistent Modeling of the Ionosphere-Thermosphere-Magnetosphere System" was to better understand the interactions between the ionosphere, thermosphere, and magnetosphere systems through the use of self-consistent mechanistic models and analyses of data, with a view towards developing parameterizations for these interactions which will provide significantly improved and more efficient predictive capabilities. These overall goals have been satisfied, and are embodied in the publications and presentations listed in the following sections. All of the reprints and preprints corresponding to the following manuscripts have been forwarded to AFOSR/NC.

2. PUBLISHED PAPERS AND MANUSCRIPTS IN PRESS

3. PRESENTATIONS

[4.] Observations of neutral circulation at midlatitudes during the equinox transition study, M.J. Buonsanto et al., fall meeting of the AGU, December, 1988.

[5.] Latitudinal penetration of geomagnetic storm effects: a comparison between TIGCM and ionosonde data, M. Codrescu et al., spring meeting of the AGU, Baltimore, 1989.

4. SIGNIFICANCE OF RESULTS

One of the most significant results to emerge from this contract is the systems theory approach to thermospheric dynamics which was developed as part of the Dissertation research of Mihail Codrescu, a Ph.D. student supported by AFOSR. Besides Mr. Codrescu’s Dissertation, this work appeared in publication number 3 of the list provided in Section 2. The basic components of the computational approach are a piecewise linearization method capable of preserving nonlinear features of a dynamical system (in this case, the NCAR TIGCM), and a response function "library" consisting of quasi-steady state and sample response functions characteristic of the system. A typical usage would be approximating the dynamical thermospheric response to an arbitrary change in forcing by performing a specialized convolution between the specified forcing and an appropriate set of response functions.
from the "library". This methodology may provide the basis for computationally efficient real-time (operational) predictions without on-line use of a TIGCM.

Another significant accomplishment of this contract was the development and evaluation of several coupling parameterizations with potential application in magnetosphere-ionosphere-thermosphere modeling. Such parameterizations were derived for low, middle, and high-latitude applications, and are described in publications 2,5,7 and 8 of Section 2. The goals of this work were to (a) better understand atmosphere-ionosphere interactions, and (b) to derive simple analytic relationships between characteristic fields of the ionosphere and thermosphere systems. The methodology involved experiments using comprehensive numerical models and utilizing fitting methods to establish analytic relationships. Potential applications of this work are anticipated in transitioning current predictive numerical models to the operational environment.

5. PERSONNEL

Personnel supported under this grant included:

[1.] Prof. Jeffrey M. Forbes, Principal Investigator

[2.] Prof. William Oliver, faculty Co-Investigator

[3.] Mr. Mihail Codrescu, Ph.D. Student. Mr. Codrescu’s Dissertation was entitled "Thermospheric Dynamics: A Systems Theory Approach". He was awarded the Ph.D. in Engineering in 1990.