
AD-A252 784

NAVAL POSTGRADUATE SCHOOL
Monterey, California

JUL 141992

SYSTEMATIC DEVELOPMENT OF HARD
REAL-TIME SOFTWARE:

A COMPARATIVE STUDY OF THREE METHODS

by
Yuh-jeng Lee

Luqi
Valdis Berzins

April 1992

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, California 93943 92-18424

NAVAL POSTGRADUATE SCHOOL

Monterey, California

REAR ADMIRAL R. W. WEST, JR. HARRISON SHULL
Superintendent Provost

This report was prepared for and funded by the Naval Postgraduate School.

This report was prepared by:

/

YUH-JENG LEE
Assistant Professor of Computer Science

Reviewed by: Released by:

VALDIS BERZINS (/ " PAUL 0
Associate Chairman for Dean of Research
Technical Research

UNCLASSIFIED
SECURITY CLASS1FICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;

distribution is unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NPSCS-92-007

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Science Dept. (ifapplicable) Naval Postgraduate School
Naval Postgraduate School CS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Naval Postgraduate School
Monterey, CA 93943-5100

8a. NAME OF FUNDING/SPONSORING 18b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (iapplicable) OM & N Direct Funding
Naval Postgraduate School

8c. ADDRESS (City, State, andZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

Monterey, CA 93943

11. TITLE (Include Security Classification)

Sytematic Development of Hard Real-Time Software: A Comparative Study of Three Methods

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT I13b. TIME COVERED I14. DATE OF REPORT (Year, Month, Day) 15. PAGE QQUNT
Technical I FROM TO jApril 1992

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse it necessaty and identify by block number)

FIELD GROUP SUB-GROUP Hard real-time systems, Systematic Software development, Structured
analysis, Computer aided prototyping, the Spec language.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

We present a comparative study on three software development methods which cover the entire development life
cycle for hard real-time systems: (1) Structured Analysis, (2) Computer Aided Prototyping, and (3) Spec formal
logic specification method. We use a simple example to demonstrate the software development process using all
three approaches. The strengths and weaknesses of each method are discussed.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT |21. ABSTRACT SECURITY CLASSIFICATION

[UNCLASSIFIED/UNLIMITED [] SAME AS RPT. C] DTIC USERS UNCLASSIFIED
a. 22b TELEPHONE (include Area Code) SY.L

Yuh- eng Lee (408) 646-2361 /Le
DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED

Systematic Development of Hard Real-Time Software:
A Comparative Study of Three Methods

Yuh-jeng Lee
Luqi

Valdis Berzins

Computer Science Department
Naval Postgraduate School

Monterey CA 93943

Abstract

We present a comparative study on three software development methods which
cover the entire development life cycle for hard real-time systems: (1) Structured
Analysis, (2) Computer Aided Prototyping, and (3) Spec formal logic specification
method. We use a simple example to demonstrate the software development process
using all three approaches. The strengths and weaknesses of each method are
discussed.

Keywords: Hard real-time systems, Systematic software development. Structured
analysis, Computer aided prototyping, the Spec language.

1 Introduction

Real-time software has to execute multiple processes efficiently according to timing con-
straints, and to provide mechanisms for synchronous and asynchronous process commu-
nication. It is usually embedded in large, complex systems such as flight control systems.
The correctness of such software depends on the time at which the results are produced
as well as the logical results of computation. Although real-time system design is mostly
ad hoc in current practice, there have been attempts to make this process a scientific
endeavour [Mok-88]. Many problems such as specification and verification techniques,
process scheduling, communication architectures, and automated/systematic hard real-
time software development methods that cover the entire software life cycle, remain to
be solved [Stankovic-88].

Typically, a real-time system includes a set of independent hardware devices that op-
erate at widely differing speeds. Real-time systems can fail because the system is unable
to execute its critical workload in time. It is important to utilize the available finite
resources within the system intelligently and with predictable results. A method for
developing real-time systems, therefore, needs to provide facilities to solve the following
problems: meeting stringent time requirements and performance specifications; process-
ing and protection of messages that arrive at irregular intervals, with variable input rates
and different priorities; mapping concurrent demands into a proper set of concurrent
processes; allocating concurrent processes to multiple processors, if more than one is
available; handling synchronization between concurrent processes for intra- as well as

I

inter-processor communication and protecting shared data: controlling hardware devices
such as communication lines, sensors, actuators, and computer resources; designing soft-
ware simulators for the hardware devices that are not available for the test phase; and
testing and debugging the system.

Methods for developing real-time systems must also address problems common to
developing any large software system, including the size of the development team, com-
plexity of the system, cost of communication between team members, reliability of the
system, and the life cycle maintenance of the system. A method for developing real-time
systems, therefore, also needs to address and support systematic planning and man-
agement, simple and manageable conceptual models, a modular design, precise design
documents (on-line), configuration control, extreme programming accuracy, and localized
decisions in single modules.

1.1 The Target System

Requirements of the Fish Farm Control System (FFCS): We are going to develop
a FFCS which is a small example of a typical embedded real-time control system. The
FFCS will control the fish food dispenser and water quality in a fish pond. The pond has
a mechanical feeder that drops pellets of fish food from a feeder tube suspended above
the pond. The feeder can be turned on and off by the computer. The pond also has a
water inlet pipe and a drain pipe with valves controlled by the computer, and sensors
that measure the water level (millimeters above the bottom), the oxygen level in the
water (parts per million), and the ammonia level in the water (parts per million).

The FFCS must deliver fish food at scheduled feeding times, repeated every day. The
times when each feeding starts and stops are displayed on the console of the FFCS and
can be adjusted from the keyboard.

The FFCS must keep the water level between 500 and 1000 mm, the oxygen level at
least 6 ppm, and the ammonia level at most 10 ppm. If the inlet valve setting is greater
than the drain valve setting, then the water level in the pond increases. The water in the
inlet pipe is high in oxygen and low in ammonia, so that increasing water flow increases
the oxygen level, and decreases the ammonia level. The FFCS must minimize water flow
subject to the above constraints.

Hardware Interfaces: There are three separate hardware devices in the FFCS: sensors,
valves, and the feeder. As part of the design process we must create the necessary software
components that accept inputs from these devices.

1.2 The Development Methods

We have chosen three development methods for our study: (1) Structured Analysis, (2)
Computer Aided Prototyping, and (3) Spec formal logic specification method.

The Structured Analysis approach [cf., Yourdon-89] represents a class of informal
structured approaches to requirements analysis and system specification. This method
is well-known and is representative of state-of-the-art practice in industry. There are a

2

number of textbooks and supporting software tools. Structured analysis uses three mod-
els: the essential model, the user implementation model, and the design model. It applies
a top-down stepwise refinement process to capture what the system must do to satisfy
the user's requirements in an essential model. It captures information about the automa-
tion boundary, user interface, manual support activities, choices of hardware/software
technology and the system's operational constraints in a user implementation model. It
describes how the system fulfill essential and implementation requirements in a design
model which is ready to be built and tested.

The computer-aided prototyping method uses a series of prototypes and feedback
from users to converge to a viable software design. Computer Aided Prototyping System
(CAPS) [Luqi-Berzins-88] includes an integrated set of CASE tools for rapid prototyping
of hard real-time systems, making it possible for prototypes to be designed expeditiously
and to be executed for validating the requirements. CAPS uses the Prototyping Descrip-
tion Language (PSDL) to provide module specifications and their interconnections. It
also provides automated methods for retrieving, adapting, and combining reusable com-
ponents based on normalized module specifications; establishing feasibility of real-time
constraints via scheduling algorithms; simulating unavailable components via algebraic
specifications; automatically generating translators and real-time schedules for support-
ing execution; constructing a prototyping project database using derived mathematical
models; providing automated design completion and error checking facilities in a designer
interface containing graphical interface for design and debugging.

The Spec formal specification approach supports software system development via
black-box interface specifications [Berzins-Luqi-91]. The Spec language combines logic
with a simple underlying event model. It is sufficiently powerful for specifying many
kinds of software systems, and sufficiently flexible to allow software designers to express
their thoughts without forcing them into a restrictive framework. The Spec language is
also formal enough to support computer-aided design of software. Tools currently un-
der investigation include syntax-directed editors, consistency checkers, design completion
tools, test case generators and prototype generators.

1.3 Organization of the Paper

Section 2 analyzes the FFCS problem using the Structured Analysis approach to devel-
oping real-time software systems. Section 3 uses a semi-automated method supported by
CAPS to solve the FFCS problem. Section 4 uses the Spec formal development method
for the FFCS problem. Comparisons and concluding comments are in section 5.

2 Structured Analysis

Structured Analysis (SA) [Yourdon-89] is a widely used, informal method. It consists an
essential model, a user implementation model, and a design model, followed by imple-
mentation, testing, and maintenance activities.

3

2.1 The Essential Model

The essential model describes what the system must do to satisfy the user's requirements.
It has two major components: environmental model and behavioral model. The environ-
mental model defines the boundary between the system and the rest of the world. The
behavioral model describes the required behavior of the system.

2.1.1 The Environmental Model

The environmental model for the FFCS consists of the following:

Statement of purpose (purpose of the system):
The purpose of the Fish Farm Control System is to control water conditions and

feeding.

The event list (stimuli recognized by the system):
The event list of the FFCS consists of five events: (1) sensor sends oxygen level: (2)

sensor sends ammonia level: (3) sensor sends water level: (4) operator changes feeding
times; and (5) a feeding time occurs

The context diagram (system boundaries and interactions):
The context diagram, shown in Fig. 1, uses the following symbols:

* Terminators, 0 , represent people, organizations. or other systems with which
the system communicates.

* Data Flows, ->, and Control Flows, - - ->, represent the data that crosses the
boundary of the system.

* Data Stores, =, represent persistent data shared by the system and the termi-
nators.

* Boundary, Q, represents the boundary between the system and the rest of the
world.

SENSOR ["",0,2- ve inlet-etn VALVE

NH3 LEVEL NH-ee 0FC feee FEEDERn

WAE eefeeding-.times VRAVE

OPERATOR

Fig. I Context Diagram for the FFCS

4

2.1.2 The Behavioral Model

The behavioral model for the FFCS consists of the following:

Data Flow Diagram (DFD - system decomposition):
The top level DFD for the FFCS is shown in Fig. 2. In this case the system decom-

poses into two completely independent subsystems. The data store shows the requirement
that the FFCS must store the feeding schedule, so that operator input is needed only to
change feeding policies.

FEEIN>TME TIME feeder-setting

feeding-times CONTROL -e-s -EEDER

N ,.2*

\WACOTRO drain setting

--- " water _l vel W ATER dri-setn

Fig. 2 Top Level Data Flow Diagram

A complex system is explained by decomposing it into simpler subsystems. For example,
the bubble CONTROL_.VATER in Fig. 2 can be expanded into the diagram as shown
in Fig. 3.

TANK SATE waterjdepth

CONTROLOTRO dnait senAOseti 1
CNRL inlet setting, ; Acoessio n Fop

INLET ITIS GlA&I

4bDTIC TAB 0]
Unannounced [3

Fig. 3 DFD for CONTROL WATER Justificatio

5Ditribution,

D St pecial

r
Di

et
li

y Co
e

The purpose of the data store TANK.STATE is to combine inputs from three asyn-
chronous sensors.

Data Dictionary (system data types):
The data dictionary for the FFCS which defines the data types associated with flows

and stores is shown in Fig. 4. It describes the content and interpretation of the data
elements in the system.

drain-setting = [OPEN I CLOSED I
feeder-setting = [ON I OFF I
FEEDING-TIMES = start-time + stop-time
feeding-times = { FEEDING-TIMES }
hours = range : 0..23*
inlet-setting = [OPEN I CLOSED]
minutes = * range : 0..59 *

NH3_level = * ammonia level in water (parts per million) *

NH3_quality = C HIGH I OK]
NOW = * the current time of day *

02_level = * oxygen level in water (parts per million)
02_quality = [LOW I OK I

start-time = hours + minutes * time of day *
stop-time = hours + minutes * time of day *

TANK-STATE = water-depth + NH3_quality + 02_quality
water-depth = C LOW I OK I HIGH I
water-level = * water level in the pond (millimeters) *

Fig. 4 Data Dictionary

Process Specifications: The process specifications for the FFCS are shown in Fig. 5.

MONITOR-02:

IF 02_level < 6 ppm THEN set 02_quality = LOW

ELSE set 02_quality = OK
MONITORNH3:

IF NH3_level > 10 ppm THEN set NH3_quality = HIGH

ELSE set NH3_quality = OK
MONITOR-WATER:

IF water-level < 50 cm THEN set water-depth = LOW
ELSE IF water-level > 100 cm THEN set water-depth = HIGH
ELSE set water-depth = OK

CONTROL DRAIN:
IF water-depth = HIGH THEN set DRAIN-SETTING = OPEN

ELSE set DRAIN-SETTING = CLOSED
CONTROL INLET:

IF water-depth = LOW OR 02_quality = LOW OR NH3_quality = HIGH
THEN set inlet-setting = OPEN ELSE set inlet-setting = CLOSED

Fig. 5 Process Specifications

The process specifications are informai explanations of the required behavior of bubbles
that are not decomposed. The example shows the simplest plausible control policy for
water quality.

Entity Relationship Diagram (ERD - database schema):
An ERD consists of the following components:

" An entity, 0, represents a collection of objects.
" A relation, ,, represents a set of connections between the entities.
" An attribute is used to describe a property of an entity.

The ERD for the FFCS is shown in Fig. 6. The diagram is very simple because there
is only one data store containing a set of objects, and there are no stored relationships
between data stores in this case.

feeding

stantime stop-time

Fig. 6 Entity Relationship Diagram

State Transition Diagram (STD - time dependent control policies):
The STD for the CONTROLJFEEDER subsystem of the FFCS. shown in Fig. 7.

consists of the following components:

* States, [] , represent states of a finite state machine.
* Transitions, ->. represent possible state changes.
e Annotations that specify the conditions under which transition must occur and the

actions associated with each transition, in the form condition
alct iOn

Feeder
off

f.stop time = NOW for some f in feedin,_imes f.startime = NOW for some f in feeding times
feedersetting = OFF feeder-setting = ON

Feeder
on I

Fig. 7 State Transition Diagram for CONTROL FEEDER

In this case the conditions depend both on the current value of a real-time clock and
the current version of the stored feeding schedule.

2.2 The User Implementation Model

The user implementation model for FFCS consists of the following:

Technology to be used: personal computer with minimum 512K RAN!, a standard
keyboard and monitor, three hardware input connections for sensors, three hard-
ware output connections for valves and feeder, and operating system that supports
compiled Ada code.

Automation boundary: All processes within the essential model are considered within
automation boundary.

User interface: interactive, allowing entry of feeding time, displaying feeding times,
and for testing purposes, displaying valve settings and sensor readings.

Coding requirements: Ada language using top-down and structured programming

Manual support activities: Loading the fish feeder.

Operating constraints: Mlaximum of 10 feeding times allowed per day,

Reliability requirements: Time to repair less than one hour is required to maintain
stock of fish. Redundant systems with a back up power source are recommended.

2.3 The Design Model

The design model for the FFCS consists of the following:
The Processor Model (allocation of processes to processors): The entire essential

model of FFCS is allocated to a single processor.
The Task Model (identification of tasks on each processor): Three tasks identified

for FFCS are: (1) controlling water flow. (2) displaying and adjusting feeding times. and
(3) controlling the feeder.

The relations among the three tasks are shown in Fig.8.

valve settings F F C S
sensor madimgs feeding-times

Ifeccding-time feediniime

CONTROLWATER_ DISPLAY_&ADJUST CONTrROLFEEDER
FLOW FEEDING-T1MES

Task 1 Task 2 Task 3

Fig. 8 Relationships between Tasks

8

The Program Model (hierarchical module structure for each task): The structure
charts for the three tasks in FFCS are shown in Fig. 9 - 11. The program model
transforms asynchronous processes in the DFD into synchronous subprograms to improve
efficiency, based on the designer's judgement.

E CONTROLeWATEeRFLOW "ER inlet settin

[M O IN IT O R - O " N H 3 q u l t /L V L
x d r a i n - s e tt i n g C O N T R O L -I 'L E T I

E'r NV E H 7qa watcr__depth

I LEVEL F ATER_, i I 'LEV EL

MONITOR 2LEVEL -- measures the oxygen level in water and stores it.MONTORNH3LEVEL -- measures the ammonia level in water and stores it.

MONITORWATERLEVEL -- me Asures the water lever and store it.
CONTROL-DRAIN -- sets the drain valve due the the sensor readings when activated.
CONTROLINLET -- sets the inlet valve due to the sensor readings when activated.

Fig. 9 Structure chart for Task 1

DISPLAY-&ADJUST
FEEDING TIMES

feedingfeed ccngrj tmesfE -M NU " ,
_ "ime

GETTIME -- gets the new feeding schedule from the user.
GETMENUCHOICE -- displays a menu and gets the user choice.
DISPLAY -- displays all feeding times in the data store.
DISPLAYSENSORS -- displays current sensor readings and valve settings.

Fig. 10 Structure chart for Task 2

9

CONTROLFEEDER

NOW start_time

t stopjtime

GET_NEXT.EEDING _

GETNEXTFEEDING -- gets the end points of the next feeding time

Fig. 11 Structure chart for Task 3

Typical design goals such as high cohesion within modules, low coupling between

modules, and small module size (one page of code) serve as guidelines during the process.

There is no sure way to enforce these guidelines in structured analysis.

2.4 Programming and Testing

This step includes (1) choosing program units in a programming language for the modules
in the design, (2) deriving test cases from the specification of the response to each event

covered by the design, and (3) describing the input data and expected output for the test

case to confirm to the specification in user implementation model. These are all manual
activities.

The FFCS is implemented using the Ada programming language. The Ada interface

specification to the FFCS hardware is given below:

package FFCS-hardware-interface is
type valve-setting is (open, closed);
type feeder-setting is (on, off);

function water-level return natural; -- Units of mm.
function oxygen-level return natural; -- Units of ppm.
function ammonia-level return natural; -- Units of ppm.

procedure set.feeder(s: feeder-setting);
procedure set.inletvalve(s: valve-setting);
procedure set.drainvalve(s: valve-setting);

end FFCS-hardware-interface;

2.5 Maintenance

Software devel, oment often requires substantial maintenance effort due to changes in the

original requirements. Requirements changes could cause changes in all of the documents
shown in Sections 2.1 - 2.4. Such a costly operation is only weakly supported by

existing tools such as Software Through Pictures [STP-901, considering the tasks need to

be accomplished.

10

3 Computer Aided Prototyping

The Computer Aided Prototyping System, CAPS, has been designed for hard real-time
system development and iterative adjustment of requirements. The CAPS method is
based on an iterative process for discovering viable system structures. Through rapid
construction of executable prototypes, the behaviors of the expected system can be
demonstrated to the user for early feedback. To decide whether a system being built
really fulfills the user's need, instead of having the user inspecting formal requirements
documents in the beginning stage or waiting until the end of the project to observe the
system, CAPS offers real-time execution support to demonstrate system behavior before
actual implementation takes place. In addition to meeting diverse needs for both the
user and the designer, CAPS also contains software tools for automatic code generation
and incorporating reusable components to produce executable prototypes with real-time
schedules. The method and the supporting tool are described in [Luqi-91].

3.1 Iterative Prototyping Process

The process of developing software using CAPS consists of (1) determining initial re-
quirements (2) constructing the prototype: (3) demonstrating prototype behavior: (4)
adjusting requirements and iterating: and (5) when stable, implementing and optimizing
the system.

The initial prototype design starts with an analysis of the problem and a decision
about which parts of the proposed system are to be prototyped. Requirements for the
prototype are then generated, either informally (e.g., in English) or using a formal nota-
tion. These requirements may be refined by asking the user to verify their completeness
and correctness.

The next step is to use PSDL (Prototype System Description Language) for the
specification of the prototype, according to the requirements. It involves the construction
of dataflow diagrams enhanced with nonprocedural timing and control constraints, data
stream types, and unified data and control flows. A PSDL description of a system or
subsystem contains a specification part and an implementation part. The specification
part is used to determine whether the required functionalities of a system or subsystem
(called an operator in CAPS) can be performed by a reusable component already in
the software base. If this is indeed the case, the implementation part is simply an Ada
module (or whatever language the component is written in) and the component is called
atomic. Otherwise, the component is composite and needs to be decomposed into more
primitive operations if possible, or to be hand-coded. This process is illustrated in Fig.
12.

11

Specifications Rewrite ___7) o7lt Search forIScfaSpecifications com nents

S rttpeiy Retrive

system component

connections c m o e t

Fig. 12 Prototyping in CAPS

When all the components are integrated into a prototype, the execution support of
CAPS provides an efficient way to demonstrate prototype behavior. The translator binds
all the components together and generates executable Ada code for the prototype. The
static scheduler analyzes all hard real-time constraints to construct a schedule that guar-
antees all time-critical computations meet their requirements. The dynamic scheduler
schedules the computations that do not have hard real-time constraints in time slots not
used by the time-critical computations. The debugger exercises the prototype and allows
modifications to be made. Changes can be done at the PSDL specification level and
a revised prototype can be assembled for further demonstration. This process can be
repeated until a satisfactory prototype is produced. as illustrated in Fig. 13.

SInitial requirements

Construct / modify I

prototype

Translate / schedule Execution

Revised requirements prototype in Ada support
system

I Execute I

Fig. 13 Iterative Prototyping Process in CAPS

12

The process of software development using CAPS consists of the following steps:

1. Determine initial requirements
2. Construct prototype

* Find reusable components
* Decompose
e Write Ada code

3. Demonstrate
* Generate schedule and executable
* Demo typical scenarios
* Get feedback

4. Adjust requirements and iterate
5. When stable, implement and optimize

* Complete non-critical parts
* Transform to gain efficiency
" Port to operating environment

3.2 Initial Requirements for the FFCS

The initial prototype design starts with an analysis of the problem and a decision about
which parts of the proposed system are to be prototyped. The FFCS Requirements
presented in Section 1.1 are used for the construction of the FFCS software prototype.

3.3 FFCS Prototype Construction

Since a reusable FFCS is not available, we decompose the system into a set of operators.
Refinements can be made in PSDL by (1) adding constraints to the specifications and
retrieving new reusable components or (2) doing further decompositions to make the
implementation correspond to the refined specification. Optimizations are performed at
the PSDL level by introducing alternative decompositions that eliminate unnecessary
processing or allow more efficient algorithms. This results in a preliminary design free
from programming level details.

The PSDL description for the FFCS is given in Fig.14.

OPERATOR fishf arm

SPECIFICATION
DESCRIPTION { Prototype of the fish farm control system

and the systems it controls }
STATES feeding-times: set[feedingtime] INITIALLY empty

END

IMPLEMENTATION

GRAPH

13

50 ms 50 ms

O utlet-InletyL Inlet

valve- valve setink.

settingeetig ule..av..stig

Desire...inet...alveleetin...02
50ie..net.vle.setn..H settingetin

H20...ut- leN..l eel 0l..e el naturale

OPERATORe Outet 0-aleno MAXIMU RESPOSETIE le
OPEATO Deerie..atal.vualve-lv..sttn

O e tORCttieng MAXIMU val e SP NS TIME 1 sec

OPEATO D eviel seiedneting sirdsetting...NH3g

OPERATOR Display-e. .actainnl tn.valve..settin

feedng yste- dsird- stti140

MAXIMUM RESPONSE TIME I sec
OPERATOR Inlet-valve MAXIMUM RESPONSE TIME I sec
OPERATOR Determine-desiredinlet-valve_seting_02

MAXIMUM RESPONSE TIME I sec
OPERATOR 02_sensor MAXIMUM RESPONSE TIME 1 sec

END

Fig. 14 PSDL Description of the FFCS

According to the CAPS method, the FFCS operator can be decomposed into the net-
work of operators as shown in the graph of Fig. 14. This graph is different from a DFD
in structured analysis in several ways: (1) each operator in the graph has an associated
maximum execution time for that operator - this is a constraint that must be satisfied by
the scheduler; (2) each operator can have annotated control constraints specifying condi-
tional requirements for the firing of operators; (3) data streams are implicitly buffered so
that data stores are not necessary; (4) hardware components such as sensors are included
in the representation - this not only gives a complete picture of the source and destina-
tion of a data stream, but also provides important information for interface design; (5)
formal descriptions of the representation are generated automatically, in PSDL (Proto-
type System Description Language), which allows for schedulability analysis as well as
code synthesis.

3.4 FFCS Prototype Demonstration

The CAPS execution support system includes a translator, static scheduler, and dynamic
scheduler. The translator generates code binding together the reusable components ex-
tracted from the software base. Its main functions are to implement data streams and
control constraints. The static scheduler allocates time slots for operators with real-time
constraints. If the allocation succeeds, all operators are guaranteed to meet their dead-
lines even with worst-case execution times. The dynamic scheduler invokes operators
without real-time constraints in the time slots not used by the operators with real-time
constraints. The debugger lets the designer control and examine the execution of the
prototype.

4 The Spec Method

The Spec language [Berzins-Luqi-91] is a formal specification language designed to sup-
port conceptual modeling and helps analysts impose structure on apparent chaos by
factoring out coherent pieces in an active process that combines discovery with reformu-
lation, concept formation, generalization, and reorganization. It can specify the behavior
of three different types of software modules:

1. Functions: do not exhibit internal memory; output depends only on current input.
2. Machines: modules with internal memory; output depends on both internal state

and input.

15

3. Types: abstract data types provides a set of instances and a set of operations
involving the instances. There are two kinds of types: (1) immutable types, whose
instances are values without internal states (for example, numbers); and (2) mutable
types, whose instances are objects with internal states (for example, windows).

These modules can interact only via three different types of messages: normal messages,
exceptions, and generators.

4.1 FFCS Requirements Analysis using Spec

Spec is logic based and provides a formal mechanism to record and validate :-quirements
which should be precise, testable, and feasible. To achieve this, analysts must formalize
the initial problem statement so that it is subject to mathematical modeling. This also
aids discovery of unstated requirements and resolution of inconsistencies. Analysts must
determine constraints on the development, and analyze, design, or implement high-risk
parts to establish feasibility. The use of logic in Spec allows one to formally define laws
expressing or partially describing the semantics of new attributes and relationships. Fig.
15 illustrates the Spec requirements formulation method.

Problem Statement

S Problem Specify

Modl Goals Model. Goals . Snci cation

Estimate and Estimne an FModelE Refine Spec

Model. Goals
Specification

Review M odel II R v e p c_ _
and Goals Model. Goals +Functional Specification

Fig. 15 Requirements Formulation in Spec

A requirements document contains the following:

1. An environment model: This is the basis for communication and agreement be-
tween the customer and the developer. The model defines the concepts needed for
describing the world in which the proposed system will operate.

2. Goals: These define the automation boundary of the system and document the
relation of software requirements to general system requirements and design goals.

16

3. Constraints: This include implementation constraints (hardware, operating sys-
tem, and programming language), performance constraints (time and space), and
resource constraints (budget and schedule).

Given these components, the analysts propose external interfaces for the system meeting
the formalized requirements. This is the process of functional specification - deciding
what is to be built, not how to build it. This completes the requirements analysis.

4.1.1 Deriving Goals and Subgoals

Following the procedure describe above, we proceed as follows:

Statement of purpose: The purpose of the Fish Farm Control System is to control the
fish feeding and water quality (oxygen, ammonia, water level) in the fish pond. This is
accomplished by monitoring water quality and adjusting water flow. The feeding times
shall be controlled by the fish farm operator.

High level goals and requirements: These are derived from the initial problem
statement and are usually organized into a hierarchy, with lower level goals specifying in
more detail how the system is supposed to realize the higher level goals, as shown in Fig.
16.

GI: The goal of the fish farm is to make a profit by selling fish.
The fish farm would like to maximize it profits.

G1.1 The fish farm would like to maximize its production of fish.
RI.1.1 The fish farm control system must provide a sufficient

supply of fish food.
RI.1.2 The fish farm control system must provide adequate

water quality.

G1.2 The fish farm would like to minimize its costs.
R1.2.1 The fish farm control system must avoid waste of fish food.
R1.2.2 The fish farm control system must avoid excess water flow.
RI.2.3 The fish farm control system must decrease labor costs.

Fig. 16 Top Level Goals

Requirements Ri. 1. 1 can further be refined, by locating the undefined concepts in the
high-level goals, and determining in more detail what they are supposed to mean, as
illustrated in Fig. 17.

R1.1.1 The fish farm control system must provide
a sufficient supply of fish food.

GI.1.1.1 The operator must decide the feeding schedule for fish food.
The feeding schedule defines how much food
should be delivered at what time.

RI.1.1.1.1 The fish farm control system must provide
a means to display the current feeding schedule.

17

See event displayfeeding.schedule.
R1.1.1.1.2 The fish farm control system must provide

a means to update the current feeding schedule.
See event updatefeeding.schedule.

G1.1.1.2 The operator is responsible for keeping an adequate
supply of fish food in the fish feeder.

R1.1.1.3 The fish farm control system must automatically deliver
fish food according to the schedule given by the operator.
See definition fish-fed-on.time.
See temporal event feeding-time.

Fig. 17 Refinement of R1. 1. 1

R1. 1.2 and G1.2 can be refined in a similar way, to reach goals that can be mapped into
the set of stimuli to which the FFCS must respond.

This hierarchy identifies stimuli recognized by the FFCS, shows the justifications for
the software requirements in terms of the goals of the entire system and the customer
organization, and is the basis for negotiation of the automation boundary. This document
records and makes visible decisions that are implicit in the other methods, so that they
cna be reviewed at an early stage. The goal hierarchy is also useful for training the
impact of changes in system requirements on the software requirements, particularly for
very large systems.

4.1.2 Formalizing Goals and the Environment Model

The goals in the hierarchy are usually informal and very general at the top, and get more
specific at the lower levels. It is sometimes useful to formalize the goals at the leaves,
especially if the system concepts are unfamiliar to the developers or if the code is to
be mathematically proven to meet the requirements. The FFCS example is relatively
simple and easy to understanG informally, so that formalization of the goals and domain
concepts is not really necessary. To illustrate how the method would be used in more
complex applications, we show the formalized goals for the FFCS in Fig. 18.

DEFINITION fish-farm-control-system-requirements
INHERIT feeding-schedule-definitions
INHERIT fish-farm.control-system-definitions -- context diagram information
INHERIT water-quality-definitions -- gives values for symbolic constants
IMPORT goal FROM requirement-model -- reusable concepts
IMPORT now FROM time-definitions -- reusable concepts

CONCEPT fish-fedontime: boolean -- R1.1.1.3
WHERE fish-fed-on-time <=>

(fish-feeder-on <=> feedingtime(current-feeding-cschedule, now)),
goal(fishfed-ontime, fish-farm.control-system)

CONCEPT safe-oxygen.level: boolean -- R1.1.2.1
WHERE safe.oxygen-level <=> oxygen-level >= minimum.oxygen-level,

goal(safeoxygen-level, fish.farm-controlsystem)

18

CONCEPT safe-ammonia-level: boolean -- R1.1.2.2
WHERE safe-ammoniajlevel <=> ammonia-level <= maximum-ammonia-level

goal (safe-ammonia-level, fish-farmcontrol-system)

CONCEPT safe-water-level: boolean -- R1.1.2.3
WHERE safe-water-level <=>

minimum-water-level <= water-level <= maximum-water-level,
goal(safe-water-level, fishfarm-control-system)

END

Fig. 18 Formalized Goals

These goals are expressed in the Spec language [Berzins-Luqi-911. Specifications in the
Spec language are organized in units called modules. The modules used in requirements
analysis are delimited by the keywords DEFINITION and END, and contain definitions for
a set of concepts which represent objects and properties of the problem domain and
are used to describe software systems. INHERIT and IMPORT support controlled sharing
of concepts without replicating definitions. WHERE is followed by logical assertions that
describe the meanings of the concepts precisely but without forcing overspecification of
details. Concepts can also be defined informally using English comments.

The environmental model is the result of a domain analysis. Such a domain analysis
is optional, but it can be useful if many systems that address similar problems are to be
developed, because the environment model becomes the organizing structure for reuse and
sharing of designs and code. The environmental model is built by identifying and defining
the concepts needed to formalize the goals. For example, goal RI1. 1. 1. 3 introduces the
concept of a feeding schedule, which is defined in Fig. 19. In more complex examples,
constructing a formal environment model can help identifv implicit requirements, which
are added to the goal hierarchy.

DEFINITION feeding-schedule-definitions
IMPORT time FROM time-definitions

CONCEPT feeding-schedule: type
CONCEPT current.feedingschedule: feeding-schedule
CONCEPT feeding.time(f: feeding-schedule, t: time)

VALUE(b: boolean)

CONCEPT time-tostartfeeding(f: feeding-schedule, t: time)
VALUE(b: boolean)
WHERE b <=> feeding.time(f, t) &

SOME(ti: time ::
ALL(t2: time :: ti <= t2 < t => "feeding-time(f, t2)))

END

Fig. 19 Properties of Feeding Schedules

19

4.1.3 Constraints

Three kinds of constraints are relevant to requirements analysis:

1. implementation constraints: hardware, operating system, and programming lan-
guage;

2. performance constraints: time, space, and reliability;
3. resource constraints: budget and development schedule.

Many of the implementation constraints usually come from the initial problem statement
and are straightforward to specify. Performance constraints are sometimes derivable
from the characteristics of the problem domain and can be either flexible or absolute.
Typically, limits on resources are given by the customer with relatively little flexibility,
and the analyst must specify the best system that can be achieved within those limits.
The constraints for the fish farm control system are given as follows:

Cl: The fish farm control system must be implemented in Ada.
C2: The project must be completed in two months.
03: Three people are available to do the programming.

4.2 Functional Specification

A functional specification is a black-box model of the proposed software system's behavior
which consists of the system's interactions with other systems. The major goals in
constructing functional specifications are to:

* define the external interfaces of the proposed system,
& check that the proposed system solves the customer's real problem, and
* check the feasibility of the proposed system.

The functional specification can be developed in two phases: (1) abstract functional
specification which is a black-box description of each major subsystem to be built that
describes the information content, and (2) concrete functional specification which de-
scribes the formats of the data crossing the boundaries of the system via transformations
from concrete external inputs to abstract inputs, and abstract outputs into concrete
external outputs.

In this approach, central modules are not decomposed into lower-level modules in
the functional specification, as in many popular informal approaches. Instead, black-box
specifications are partitioned by subsystems, interfaces, messages, and responses to show
the structure of the system's functionality. The Spec language uses the event model
to define the black-box behavior of proposed and external systems. The event model's
four kinds of primitives (modules, messages, events, and alarms) form the semantic basis
for Spec. Modules have no visible internal structure and can be used to model external
systems such as users and peripheral hardware devices, as well as software components.
Messages can be used to model user commands, system responses, and interactions be-
tween internal subsystems.

20

4.2.1 Abstract Functional Specification for the FFCS

For abstract functional specification, we consider only the information content of the mes-
sages crossing the boundaries of the proposed system, instead of the data formats of those
messages. The first step is to identify external systems and major internal subsystems.
In the FFCS problem, there is one proposed system, the fish-farm-control-system,
and two external systems, the operator representing the human user and the fish-tank
representing the external hardware system. The example is not large enough to separate
the proposed system into multiple major internal subsystems.

Fig. 20 shows the top level interface for the FFCS. This corresponds to the context
diagram in Fig. 1, but is simpler because individual data flows are not shown and because
related terminators are aggregated into external systems (the sensors and valves are
different functional aspects of the fish tank). This approach enables tractable descriptions
of larger systems.

OPERATOR

Feeding View

Fish Farm Control System

Inlet Control View
Outlet Control View

F FISH TANK

Fig. 20 Top Level Interface for the FFCS

The operator interface and the fish tank interface correspond to two different views of the
proposed fish-farm-control-system. The interface views partition the set of stimuli
and drive a divide and conquer strategy for determining an event list as shown in Fig.
21. The benefit of this is systematic separation of concerns, which is a major theme of
the Spec method, are most apparent for complex systems much larger than the FFCS,
which can have dozens or hundreds of separate interfaces.

operator view
MESSAGE display-feeding-schedule R1.1.1.1.1, R1.2.3.1
MESSAGE update-feeding-schedule R1.1.1.1.2, R1.2.3. 1
TEMPORAL feeding-time R1.1.1.3, R1.2.3.1

fish tank view
MESSAGE oxygen-level R1.1.2.1, R1.2.2, R1.2.3.1
MESSAGE ammonia-level R1.1.2.2, R1.2.2, R1.2.3.1
MESSAGE water-level R1.1.2.3, R1.2.2, RI.2.3.1

21

Fig. 21 Spec Event List

Both MESSAGE and TEMPORAL are Spec primitives. Messages represent arrival of input data
for a module. while temporals are used to represent alarms triggering scheduled events.
The requirements corresponding to each event are listed for traceability. The event
list and the two actuators of the FFCS determine the decomposition of the functional
specification shown in Fig. 22 and Fig. 23

MACHINE fish-farm-control-system
INHERIT feeding-.view
INHERIT inlet-.control-view
INHERIT outlet-.control-view

END

Fig. 22 Top Level Functional Specification

opcrator view fish tank view

fish farm .ontrol system machine

Fig. 23 Specification Inheritance for the FFCS

The bechavioral specifications for the FFCS are given in Figs. 24 -- 26.

MACHINE feeding-.view
INHERIT feeding.schedule-.definitions
IMPORT feeding feedings FROM feeding-.schedule
IMPORT second FROM time-unit

STATE (schedule: feeding-.schedule)
INVARIANT true INITIALLY feedings(schedule) {}

MESSAGE display-feeding-.schedule
REPLY(s: feeding-.schedule) WHERE schedule = s

MESSAGE update-.feeding-.schedule(s: feeding-.schedule)
TRANSITION schedule = s

TEMPORAL feeding-.time
WHERE tiuae-.tostart-feeding(schedule, TIME), DELAY <= (1 minute)

CHOOSE(next-.feeding: feeding SUCH THAT next-.feeding
IN feedings(schedule) k next-feeding.start = time-of-day(TIME))

22

SEND fish-feeder-on TO fish-tank WHERE DELAY = 0
SEND fish-feeder-off TO fish-tank
WHERE DELAY = (next-feeding.stop - next-feeding.start)

END

Fig. 24 Specification of Feeder Control

The specifications describe the required responses for each stimulus in the event list.
Responses are described using either logical WHERE assertions or informal comments.
Automated testing against the specification and proofs of code are possible if logical as-
sertions are provided. Time delays can be constrained using postconditions, as illustrated
in Fig. 24. The temporal event is defined by the condition time.to.startfeeding.
The first DELAY statement says the temporal event must be recognized within one minute
of the instant the condition becomes true. The second DELAY savs the feeder must be
turned on immediately when the temporal event is recognized. and the third DELAY savs
the feeder must be turned off when the scheduled feeding period has elapsed.

MACHINE inlet-control-view
INHERIT sensor-state-view -- defines state variables oxygen, ammonia, and water
INHERIT water-quality-definitions -- gives values for symbolic constants

MESSAGE oxygen-level(level: concentration)
WHEN level <= minimum-oxygen-level
SEND set-inlet-valve(vs: valve-setting) TO fish-tank -- inlet-valve-open
WHERE vs = #open, DELAY <= (1 second)

WHEN all-levels-ok
SEND set-inlet-valve(vs: valve-setting) TO fish-tank -- inlet-valve-closed
WHERE vs = #closed, DELAY <= (1 second)

OTHERWISE -- Do nothing.

MESSAGE ammonia-level(level: concentration)
WHEN level >= maximum-ammonia-level
SEND set-inlet-valve(vs: valve-setting) TO fish-tank -- inlet-valve-open

WHERE vs = #open, DELAY <= (1 second)
WHEN all-levels-ok
SEND set-inlet-valve(vs: valvesetting) TO fish-tank -- inlet-valve-closed

WHERE vs = #closed, DELAY <= (1 second)
OTHERWISE -- Do nothing.

MESSAGE water-level(level: distance)
WHEN level <= minimum-water-level
SEND set-inletvalve(vs: valve-setting) TO fish-tank -- inlet-valve.open
WHERE vs = #open, DELAY <= (I second)

WHEN all-levels-ok
SEND set-inlet-valve(vs: valve-setting) TO fish-tank -- inlet-valve-closed
WHERE vs = #closed, DELAY <= (I second)

OTHERWISE -- Do nothing.

CONCEPT all-levels-ok: boolean
WHERE all-levels.ok <=> oxygen >= minimum-oxygen-level &

23

water >= minimum.water.level k
ammonia <= maximum.ammonia-level

END

Fig. 25 Specification of Inlet Control

FUNCTION outlet-control-view
MESSAGE waterlevel(level: distance)
WHEN level >= maximum-water-level

SEND set.outletvalve(vs: valve-setting) TO fish-tank -- outlet.valve-open
WHERE vs = #open, DELAY <= (1 second)

WHEN level <= minimum-water-level
SEND set-outlet-valve(vs: valve-setting) TO fish-tank -- outlet-valve-closed
WHERE vs = #closed, DELAY <= (1 second)

OTHERWISE -- do nothing.
END

Fig. 26 Specification of Outlet Control

4.2.2 Concrete Functional Specification for the FFCS

The concrete functional specification specifies detailed formats for external inputs and
outputs, including error messages, and define error correcting protocols. It defines the
behavior of the software encapsulations for each external system, such as the operator
and the fish tank. These encapsulations transform the abstract data types that appear in
the abstract functional specification into the actual data representations that are passed
physically to the external systems, and vice versa.

4.3 Architectural Design

The Spec approach to software development decomposes the proposed system into a
hierarchy of small independent modules in an architectural design activity that follows
functional specification. For the FFCS each message and temporal is simple enough
to be implemented as a single unit, so that no additional decompositions are needed.
The architectural design activity must also determine programming language represen-
tations for module interfaces, such as Ada package specifications. The last step can be
automated.

5 Conclusion

Although the development of a real-time system typically requires a broad view at the
level of system engineering, software engineers should be involved in the initial develop-
ment of the requirements for the whole system. The requirements for such system must
be satisfied with a combination of computer hardware, software, and special devices, and
their formulation involves many trade-offs, such as the choice of what should be done in

24

software and what should be done in hardware. The process of developing software for
such systems is complex and expensive. We have presented three methods that cover a
wide spectrum of systematic approaches to real-time software development. This section
draws distinctions between the three methods and summarizes the strengths as well as
the weaknesses of each method.

5.1 Formality and Potential for Automation

Among the three methods, Structured Analysis represents the informal end of the spec-
trum, the Spec method represents the formal end, and the CAPS approach is semi-formal.
All three methods can be considered systematic - the development process is divided
into a sequence of well-defined steps, each of which has clearly defined results. It is only
through a systematic approach that we can control large development efforts and produce
high quality software and control its cost.

A systematic process alone, however, does not guarantee success, especially in large-
scale software development activities, where precise communication and a high degree of
automation are absolutely necessary. Precise communication is critical because in large
projects a group of people must arrive at a consistent understanding of the proposed
system to successfully build it. Automation is important at all stages of software devel-
opment to improve accuracy and productivity. The degree of formality determines the
amount of automation that is feasible. In a completely formal approach to software de-
velopment, the process is represented, carried out, and evaluated by mathematical laws.
This enables software tools to use mechanized reasoning to carry out parts of the process.

Structured Analysis relies on informal modeling tools such as dataflow diagrams,
entity-relationship diagrams, and state transition diagrams. The method is simple and
encourages modular design. However, it relies on human intelligence to provide precise
interpretations for the documents, to produce explanations, to answer questions about
the proposed design, or to produce implementations.

The CAPS approach, like Structured Analysis, is simple, encourages modular design,
and uses graphics to represent system decompositions. The graphics are augmented with
control constraints that can be used to expeditiously make small adjustments to the
behavior of the prototype, without modifying the subsystems identified in a decompo-
sition, which is useful in prototyping and exploratory design. The underlying semantic
model is richer, formally defined, and more specific than the Structured Analysis models.
The semantics of data streams includes implicit buffering, with a choice of two buffering
disciplines determined by the control constraints. Consequences of this are that syn-
chronization of data from different sources is automatic and that no special symbols for
data stores are needed. The CAPS model is sufficiently formal to enable a variety of
automated synthesis and analysis procedures, including real-time scheduling.

Spec is a formal specification language that is based on logic and spans the entire
software development process. The Spec method supports development of very large
systems that must be reliable. The Spec language is designed to localize information
and to limit the size of the text that must be examined to understand each aspect of
system behavior, so that complex systems can be kept intellectually manageable. The

25

logic is sufficiently expressive to capture all aspects of system behavior, and the model is
sufficiently formal to support just about any computer-aided design process.

5.2 Automated Tool Support

There are commercial software tools such as Software Through Pictures to support Struc-
tured Analysis. However, automation is limited to graphical and text editing, structural
consistency checking, and on-line manual configuration control. The method does not
have automated support for analyzing the feasibility of timing constraints. All program-
ming and testing tasks are done manually.

In addition to providing execution support to demonstrate system behavior and to
check the validity of the requirements, CAPS also offers tools which span the entire soft-
ware development process. In addition, fully-automated design-database and software-
base systems are being developed to support configuration control and software reusabil-
ity.

For Spec, tools are currently being developed to support a highly automated im-
plementation process, including tools for detecting errors in the design, computer-aided
construction and checking of program proofs, and for automatically testing implementa-
tions relative to the Spec, with required manual effort only for examining test results for
failure cases.

5.3 Real-Time Features

Traditional Structured Analysis approach does not provide an integrated treatment of
the real-time aspect of software systems. It adds control flows and control processes to
the dataflow diagrams and uses a state transition diagram to model the internal states of
control processes. The Hatley-Pirbhai extension allows the specification of some timing
requirements: the repetition rate of primitive external signals and the maximum response
time of the processes defined using state transition diagrams. These facilities do not cover
all of the real-time constraints that arise in practice, and there is no mechanism to check
the feasibility of timing constraints.

The CAPS method allows a decomposition to be augmented with timing constraints.
CAPS has a richer set of timing specification features than the Hatley-Pirbhai extension
of Structured Analysis, and it provides tools to check feasibility and to realize the timing
requirements.

In Spec, real-time constraints can be specified and attached to an event or a transac-
tion. The underlying logic can be used together with the use of events as reference points
in time to express just about any timing constraint. A library of pre-defined abstractions
to simplify the specification of sophisticated real-time systems could be defined using
Spec, but such a library is not yet developed.

26

5.4 Learning the Methods

Conceptually, it is fairly easy to learn the underlying mechanism of Structured Analysis
in a short period of time and apply it to real problems. The method has been popular and
is the current state-of-the-art practice in the software industry. Although systematic in
principle, its practice remains an art, not engineering nor science. Proficiency in applying
this method is usually obtained only through years of practical experience.

CAPS is a sophisticated system, with its own set of integrated tools and the Prototype
System Description Language. Prototype System Description Language can be learned
with effort comparable to learning Structured Analysis. It takes somewhat longer to
learn how to make the most effective use of all the software tools in the CAPS system.
However, once the method is mastered, the increase in productivity associated with using
the method should outweigh the extra time spent in training.

Spec is based on second order predicate logic, and requires considerably more training
in mathematics and computer science concepts than the other methods. However, use of
this method should enable significant increases in the reliability of the systems produced.

5.5 Software Life Cycle Activities
Structured Analysis is mainly for requirements analysis and system specification. Since
all the documentations are informal, it is rather difficult, if not impossible, to verify the
requirements formally. Although guidelines have been developed to ensure that the user
requirements are accurately modeled and that the system specifications are complete and
internally consistent, there is no way to enforce them. Implementation and testing are
purely laborious work in this approach. When modification to the system is required,
all the documentations have to be examined and changed manually, program recoded,
and testing redone. The cost, time, and error rate associated with this manual effort
encourage developers not to keep the requirements documents consistent with an evolving
implementation.

The computer aided prototyping approach provides an efficient and effective mecha-
nism for requirements tracing. In addition, one major advantage of the CAPS approach
is rapid formulation of appropriate, useful, and feasible system specifications and designs.

The Spec method requires more design effort than the informal methods. However,
this extra effort is justified in situations where people enter and leave a large develop-
ment team, so that all decisions must be formalized (made explicit and recorded) rather
than informal (left implicit by relying on "common sense"). The effort is also justified
by the increased precision made possible by various supporting tools. The major ad-
vantage of the formal approach is that it allows automated testing and verification of
implementations against the specification. This makes it more feasible to ensure that
the specifications really correspond to the code, so that they can be of real utility during
system maintenance.

27

5.6 Concluding Remarks

Structured Analysis is very handy for developing small and simple systems. CAPS is
especially useful when the initial requirements are not clear or the feasibility of the
system is uncertain. The Spec approach is necessary when reliable large systems are
needed. We believe that each method has its own merits and limitations. The user
should make the choice of the methods based on the nature of the application.

References

V. Berzins, Luqi, Software Engineering with Abstractions, Addison-Wesley, 1991.

D. Hatley and I. Pirbhai, Strategies for Real-Time System Specifications, Dorset House, New
York, 1987.

K. B. Kenny and K. Lin, Building Flexible Real-Time Systems Using the Flex Language IEEE
Computer, May 1991.

Luqi. Computer Aided Software Prototyping, IEEE Computer, September 1991.

Luqi. Real- Time Constraints in a Rapid Prototyping Language. Journal of Computer Languages.
to appear.

Luqi and V. Berzins. Rapidly Prototyping Real-Time Systems, IEEE Software. September 1988.

A. Mok, A Systematic Approach to the Design of Hard Real-Time Systems, ONR Workshop
on Foundations of Real-Time Computing Research Initiative, Falls Church. Virginia. 29-30
November 1988.

Software Through Pictures, Reference Manual. Interactive Development Environment, San
Francisco, California. 1990.

J. Stankovic, Misconceptions About Real-Time Computing, IEEE Computer, October 1988.

E. Yourdon, Modern Structured Analysis, Yourdon Press, New Jersey, 1989.

28

Distribution List

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943

Chairman, Computer Science Department I
Code CS
Naval Postgraduate School
Monterey, CA 93943

Prof. Yuh-jeng Lee 30
Code CS/Le
Naval Postgraduate School
Monterey, CA 93943

