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FINAL REPORT FOR AFOSR GRANT 89-0497

HOMOTOPY METHODS IN CONTROL SYSTEM |; ..........
DESIGN AND ANALYSIS --- -Z 1, 1 64 t 1 /

Layne T. Watson ------ :__ .. Codes
Department of Computer Science t •

Virginia Polytechnic Institute & State University i a

Blacksburg, VA 24061

Period: 7/1/89 - 2/28/90 -------

Recent technologies have led to stringent control system requirements. This has increased the
importance and complexity of the analysis and design of control systems. For example, the design
of such control systems often requires the solution of systems of nonlinear equations of high order.
Homotopy algorithms which solve systems of nonlinear equations form the basis of the software
package known as HOMPACK. However, because of the high dimension and structure of modern
control problems, the HOMPACK code cannot be applied directly to many of the problems which

arise in control system design and analysis. Thus, the primary objective of the current research
is to extend and develop homotopy algorithms for a variety of computational problems in control.
In addition, these problems are being examined in the context of the algebraic and differential
geometry on which the homotopy methods are based. This will enable the classification of solutions
to a particular problem and consequently will allow the analyst or designer to extract the most
desirable solution.

Since the funding arrived too late to recruit a student for Fall 1989, work was begun on
preconditioned conjugate gradient algorithms for solving large, sparse systems of linear equations.
Regardless of what control algorithms are eventually developed, they will depend on sparse matrix
technology. Good progress has been made in this regard, as numerous experiments on realistic large
problems have been conducted with various PCG algorithms, GMRES, and Orthomin(k). This
work has been submitted to the SIAM Journal on Optimization, and current analyses of SYMLQ
will be presented at the Copper Mountain Conference on Iterative Methods in April, 1989.

In January, 1990, a graduate student, Dragan 2igiE, began work on the optimal projection
equations in papers of Bernstein, Hyland, and Richter. After some background study in linear
systems theory and optimal control, ZigiE should be able to make some progress on the control
design problems described in Section 2 of the proposal.

__ Fifteen conference presentations were given in 1989. Those published in proceedings were:

I eTwo on parallel homotopy algorithms for a hypercube - A. Chakraborty, D. C. S. Allison, C.
J. Ribbens, and L. T. Watson, "Parallel orthogonal decompositions of rectangular matrices for
curve tracking on a hypercube", in Proc. Fourth Conf. on Hypercube Concurrent Computers

_and Applications, J. Gustafson (ed.), ACM, Monterey, CA, 1989; A. Chakraborty, D. C.
S. Allison, C. J. Ribbens, and L. T. Watson, "Parallel unit tangent vector computation for

homotopy curve tracing on a hypercube", in Proc. 1990 ACM Eighteenth Annual Computer
Science Conference, Washington, DC, 1990, 103-108.

e Two optimal control problems - G. Vasudevan, L. T. Watson, and F. H. Lutze, "A homotopy
approach for solving constrained optimization problems", in Proc. Amer. Control Conf.,

Pittsburgh, PA, 1989, 780-785; G. Vasudevan, F. H. Lutze, and L. T. Watson, "A homotopy
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method for space flight rendezvous problems", in Proc. AAS/AAA Astrodynamics Specialist

Conf., AAS, Stowe, VT, 1989.

" Two chapters in books - L. T. Watson, "Modem homotopy methods in optimization", in
Impacts of Recent Computer Advances on Operations Research, R. Sharda, B. L. Golden, E.
Wasil, 0. Balci, W. Stewart (eds.), North-Holland, New York, 1989, 555-565; L. T. Watson
and M. P. Kamat, "Homotopy algorithms for engineering analysis", in Supercomputing in
Engineering Analysis, H. Adeli (ed.), Marcel Dekker, New York, 1990.

Journal papers completed and submitted were:

* A fluid mechanics application - C. J. Ribbens, C. Y. Wang, L. T. Watson, and K. A. Alexander,
"Vorticity induced by a moving elliptic belt", Comput. & Fluids.

" Two papers on truss design via homotopy methods - V. Arun, C. F. Reinholtz, and L. T. Wat-
son, "Enumeration and analysis of variable geometry truss manipulators", ASME J. Mecha-
nisms, Transmissions Automation Design; V. Arun, C. F. Reinholtz, and L. T. Watson, "New
homotopy solution techniques applied to variable geometry trusses", ASME J. Mechanisms,
Transmissions Automation Design.

" A paper on parallel curve tracking - A. Chakraborty, D. C. S. Allison, C. J. Ribbens, and L.
T. Watson, "Unit tangent vector computation for homotopy curve tracking on a hypercube",
Parallel Comput.

" A preliminary study of linear algebra techniques applicable to large sparse control problems -
K. M. Irani, C. J. Ribbens, H. F. Walker, L. T. Watson, and M. P. Kamat, "Preconditioned
conjugate gradient algorithms for homotopy curve tracking", SIAM J. Optim.

" A solid mechanics application - C. Y. Wang and L. T. Watson, "Rotation of polygonal space
structures", J. Astronaut. Sci.

Period: 3/1/90 - 2/28/91

During the spring and summer Dragan 2igi6 worked through most of Kwakernaak and Sivan's
optimal control book, read several homotopy papers, and studied the optimal projection papers of
Bernstein, Collins, Hyland, and Richter in depth. The collaboration with Bernstein and Collins
of Harris Corporation in Melbourne has been extensive and very productive. They have provided
us with test data and guidance as to what is important, and we have improved their theoretical
results and numerical algorithms. The first fruit of this collaboration is a conference paper entitled
"A homotopy method for solving the optimal projection equations for the reduced order model
problem" to be presented at the IEEE Southeastcon meeting ia Williamsburg in April 1991. This
work, also part of tigi 's M.S. thesis, is summarized here:

The optimal projection approach is utilized on various problems arising in optimal
control. Hyland and Bernstein [1] give theoretical results for the application of that
method to the reduced order model problem, which is to find a reduced order model

im(t) =A,, , z(t) + Em u(t),

ym(t) = CM Xm(t),

for the system

i(t) = A z(t) + B u(t),

y(t) = Cz(t),
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that minimizes the quadratic model reduction error

J(Am,Bm,C,,) = Urm E[(y(t)-y.(t))t R(y(t)-y.(t))].
t 00 X

It is assumed that both the system and the model are asymptotically stable, control-
lable and observable. Necessary conditions for the optimal reduced order model can be
expressed in the form:

0 = r[AQ + QA t + BB t  , (1)

0 = [A'P + P A + C'R C]r, (2)
rank(Q) = ank(P) = rank (Q P) = (3)

where nn is the degree of the model, Q and P are pseudo-Gramians (analogous to Grani-
ans and have rank deficiency) and the skew projection operator r is a nonlinear function

of ( and P. The optimal model (Am, B, Cm) can be computed as a nonlinear function
of (A, B, C) and 0 and P.

Equations (1) and (2), called modified Lyapunov equations, resemble standard matrix
Lyapunov equations, but are highly nonlinear since they contain r. The algorithm pro-
posed in this paper utilizes probability-one homotopy theory as the main tool for solving
the system (1)-(3). There is a family of systems (a homotopy) which make a continu-
ous transformation from some initial system to the final system (1)-(3). Each system
along the homotopy path is itself solved by a homotopy algorithm-a homotopy within
a homotopy, so to speak. The central theorem of the paper shows the validity of the
whole process, i.e., determines the class of initial systems which certainly lead to the final
system along a homotopy path. Another, significantly simpler, homotopy is used to solve
the initial problem. Finally, it is shown how the optimal solution to the reduced order
model problem can be computed in an easy way from a solution to the system (1)-(3).

[1] D. C. Hyland and D. S. Bernstein, The Optimal Projection Equations for Model
Reduction and the Relationships Among the Methods of Wilson, Skelton and Moore,
IEEE Transactions on Automatic Control, Vol. AC-30, No. 12, December 1985, pp.
1201-1211.

Nine conference presentations were given in 1990. Those published in proceedings were:

* Two on parallel homotopy algorithms for a hypercube-A. Chakraborty, D. C. S. Allison, C.
J. Ribbens, and L. T. Watson, "Low dimensional homotopy curve tracking on a hypercube",
in Proc. 1990 Internat. Conf. on Parallel Processing, Vol. HI, P.-C. Yew (ed.), St. Charles,
IL, 1990, 44-51; A. Chakraborty, D. C. S. Allison, C. J. Ribbens, and L. T. Watson, "Parallel
homotopy curve tracking on a hypercube", in Parallel Processing for Scientific Computing, J.
Dongarra, P. Messina, D. C. Sorensen, and R. G. Voigt (eds.), SIAM, Philadelphia, PA, 1990,
149-153.

" Two mechanisms problems-V. Arun, C. F. Reinholtz, and L. T. Watson, "Application of
new homotopy continuation techniques to variable geometry trusses", in Cams, Gears, Robot
and Mechanism Design, DE-Vol. 26, A. Pisano, M. McCarthy, S. Derby (eds.), ASME, New
York, 1990, 87-92; V. Arun, C. F. Reinholtz, and L. T. Watson, "Enumeration and analysis
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of variable geometry truss manipulators", in Cams, Gears, Robot and Mechanism Design,
DE-Vol. 26, A. Pisano, M. McCarthy, S. Derby (eds.), ASME, New York, 1990, 93-98.

" A NATO ASI invited lecture-L. T. Watson, "Numerical analysis of nonlinear equations in
computer vision and robotics", in Numerical Linear Algebra, Digital Signal Processing and
Parallel Algorithms, NATO ASI Series F, G. Golub and P. Van Dooren (eds.), Springer-Verlag,
Berlin, 1990, 695-704.

Journal papers completed and submitted were:

" Four solid mechanics applications-L. T. Watson and C. Y. Wang, "Large deformations of
rotating polygonal space structures", Comput. Math. Appl.; C. Y. Wang and L. T. Watson,
"Large deformations of a whirling elastic cable", Acta Mech.; J. Rakowska, R. T. Haftka, and
L. T. Watson, "An active set algorithm for tracing parametrized optima", Struct. Optim.; J.
Rakowska, R. T. Haftka, and L. T. Watson, "Multi-objective control-structure optimization
via homotopy methods", SIAM J. Optim.

" A fluid mechanics problem in biology-Zs. Nagy-Ungvarai, J. J. Tyson, S. C. Miller, L.
T. Watson, and B. Hess, "Experimental study of spiral waves in the Ce-catalyzed Belousov-
Zhabotinskii reaction", J. Phys. Chem.

* Three survey papers on optimization-L. T. Watson and A. P. Morgan, "Serial and parallel
global optimization of polynomial programs via homotopy algorithms", SAM J. Optim.; L.
T. Watson, "Globally convergent homotopy algorithms for nonlinear systems of equations",
Nonlinear Dynamics; L. T. Watson, "A survey of probability-one homotopy methods for en-
gineering optimization", Arabian J. Sci. Engrg.

" A paper on sparse matrix technology-C. deSa, K. M. Irani, C. J. Ribbens, L. T. Watson,
and H. F. Walker, "Preconditioned iterative methods for homotopy curve tracking", SIAM J.
Sci. Stat. Comput.

* An analysis of paxallel homotopy algorithms-A. Chakraborty, D. C. S. Allison, C. J. Ribbens,
and L. T. Watson, "Analysis of function component complexity for hypercube homotopy
algorithms", IEEE Trans. Parallel Distrib. Sys.

• A theoretical numerical analysis paper-G. Ulrich ard L. T. Watson, "Positivity conditions
for quartic polynomials", SIAM J. Sci. Stat. Comput.

* Another survey paper representing a major application of homotopy methods to circuit
simulation-R. C. Melville, Lj. Trajkovi6, S.-C. Fang, and L. T. Watson, "Globally convergent
homotopy methods for the DC operating point problem", SAM J. Optim.

HOMPACK has become the basis for a major circuit simulation code development effort within
AT&T Bell Labs. Over 200 requests for HOMPACK have been received, indicating 'at the work
is having an impact, thanks to AFOSR support.

Period: 3/1/91 - 4/30/92

The "homotopy within a homotopy" scheme described in the previous section, similar to
the homotopy algorithms of Collins and Richter, turned out to have theoretical and computational
flaws. 2igi6 devised a smooth homotopy based on the Drazin inverse (QP)I of QP, and successfully
solved a number of problems with this homotopy. This Drazin in.erse based homotopy is described
in the Williamsburg IEEE Southeastcon proceedings (April, 1991), and in a chapter in 2igi6's MS
thesis.

4



In late spring of 1991 ZigiE discovered a new formulation of (1)-(3), based on the contragredient

transformation, that does not involve the explicit calculation of Q and P or any generalized inverse.
A homotopy based on this contragredient formulation successfully solved every problem we could
find in the literature, as well as a realistic space structure control problem from Marshall Space
Flight Center in Huntsville. This algorithm became the basis for three journal papers (listed below)
and 7igi6's MS thesis.

ZigiE spent the summer of 1991 working on technical details for choosing a good starting point,
and submitted this work for the First Conference on Control Applications to be held in Dayton in
September 1992. This paper was accepted, and ranked among the top 10% of all papers submitted.
ZigiE graduated and returned to Yugoslavia in August 1991.

Yuzhen Ge, a Ph.D. in mathematics, took over from ZigiE in fall 1991. She spent six months
reading Zigi4's thesis, homotopy papers, and reports by Bernstein, Collins, Hyland, and Richter.
While the 2igi6 algorithm is accurate and robust, it involves too many unknowns to be practical
for large scale problems. Ge has spent all of 1992 implementing and testing an input normal form
homotopy suggested by Collins, which has a very small number of unknowns and might be practical
for large scale problems. That work is reported in the attached document "An input normal form
homotopy for the L2 optimal model order reduction problem". Unfortunately the input normal
form equations are inherently unstable, so a practical, robust homotopy for large scale problems
remains an open question.

Since the beginning of this grant, two MS students and one Ph.D. student have been supported.
The MS theses are

" Kashmira M. Irani, "Preconditioned sequential and parallel conjugate gradient algorithms for
homotopy curve tracking," M.S. thesis, Dept. of Computer Sci., Virginia Polytechnic Institute
and State Univ., Blacksburg, VA, May 1990.

* Dragan Zigi6, "Homotopy methods for solving the optimal projection equations for the reduced
order model problem," M.S. thesis, Dept. of Computer Sci., Virginia Polytechnic Institute
and State Univ., Blacksburg, VA, June 1991.

Fourteen conference presentations were given during the current period (3/1/91-4/30/92):

" Fifth SIAM Conference on Parallel Processing for Scientific Computing, Houston, TX, March,
1991 (2 papers).

* IEEE Southeastcon, Williamsburg, VA, April, 1991.

" Sixth Distributed Memory Computing Conference, Portland, OR, April, 1991.

" Second International Conference on Industrial and Applied Mathematics, Washington, DC,
July, 1991 (4 papers).

" Computational Structures Technology, Edinburgh, Scotland, August, 1991 (keynote lecture).

" 1991 International Conference on Parallel Processing, St. Charles, IL, August, 1991.

" Fourth SIAM Conference on Applied Linear Algebra, Minneapolis, MN, Sept., 1991.

" Sixth IIMAS-UNAM Workshop on Numerical Analysis and Optimization, Oaxaca, Mexico,
January, 1992.

* Copper Mountain Conference on Iterative Methods, Copper Mountain, CO, April, 1992.

" Scalable High Performance Computing Conference, Williamsburg, VA, April, 1992.

5



Those conference presentations published in refereed proceedings were:
e L. T. Watson, "Numerical analysis of nonlinear equations in computer vision and robotics",

in Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, NATO ASI
Series F, Computer and Systems Sciences, Vol. 70, G. Golub and P. Van Dooren (eds.),
Springer-Verlag, Berlin, 1991, 695-704.

* D. Zigi6, E. G. Collins, S. Richter, and L. T. Watson, "A homotopy method for solving optimal
projection equations for the reduced order model problem", in Proc. IEEE Southeastcon '91,
Vol. 2, IEEE, New York, 1991, 1193-1197.

e L. T. Watson, R. T. Haftka, F. H. Lutze, R. H. Plaut, and P. Y. Shin, "The application of
globally convergent homotopy methods to nonlinear optimization", in Advances in Numerical
Partial Differential Equations and Optimization, S. G6mez, J. P. Hennart, and R. A. Tapia
(eds.), SIAM, Philadelphia, PA, 1991, 284-298.

* J. R. Weimar, L. T. Watson, and J. J. Tyson, "Cellular automaton models for reaction diffusion
equations", in Proc. Sixth Distributed Memory Computing Conf., Q. Stout and M. Wolfe
(eds.), IEEE Computer Soc., Los Alamitos, CA, 1991, 431-434.

e D. C. S. Allison, K. M. Irani, C. J. Ribbens, and L. T. Watson, "Shared memory parallel
algorithms for homotopy curve tracking", in Proc. 1991 Internat. Conf. on Parallel Processing,
Vol. III, K. So (ed.), CRC Press, Boca Raton, FL, 1991, 17-20.

* L. S. Auvil, C. J. Ribbens, and L. T. Watson, "Problem specific environments for parallel
computing", in Proc. Scalable High Performance Computing Conference, R. Voigt (ed.),
IEEE Computer Soc. Press, Los Alamitos, CA, 1992, 149-152.
Journal papers completed and submitted were:

e Parallel sparse matrix homotopy algorithm-D. C. S. Allison, K. M. Irani, C. J. Ribbens, and
L. T. Watson, "High dimensional homotopy curve tracking on a shared memory multiproces-
sor", J. Supercomputing, 5 (1991) 347-366.

* Two mathematical biology papers-J. R. Weimar, J. J. Tyson, and L. T. Watson, "Diffusion
and wave propagation in cellular automaton models of excitable media", Phys. D, 55 (1992)
309-327; J. R. Weimar, J. J. Tyson, and L. T. Watson, "Third generation cellular automaton
for modeling excitable media", Phys. D, 55 (1992) 328-339.

* Three control theory papers-D. ZigiR, L. T. Watson, E. G. Collins, Jr., and D. S. Bernstein,
"Homotopy methods for solving the optimal projection equations for the H2 reduced order
model problem", Internat. J. Control; D. Zigi , L. T. Watson, E. G. Collins, Jr., and D.
S. Bernstein, "Homotopy approaches to the 112 reduced order model problem", J. Math.
Systems, Estimation, Control; D. ZigiE, L. T. Watson, and C. A. Beattie, "Contragredient
transformations applied to the optimal projection equations", Linear Algebra Appl.

e Two engineering applications-J. Rakowska, R. T. Haftka, and L. T. Watson, "Tracing the
efficient curve for multi-objective control-structure optimization", Comput. Systems Engrg.;
C. J. Ribbens, L. T. Watson, and C. Y. Wang, "Steady viscous flow in a triangular cavity",
Comput. & Fluids.

* Parallel mathematical software-C. J. Ribbens, L. T. Watson, and C. deSa, "Toward parallel
mathematical software for elliptic partial differential equations", ACM Trans. Math. Software.

* Application of robust statistics to image processing-Y. Mainguy, J. B. Birch, and L. T.
Watson, "A robust variable order facet model for image data", Comput. Vision, Graphics,
Image Processing: Image Understanding.

e Sparse matrix technology-W. D. McQuain, C. J. Ribbens, L. T. Watson, and R. C. Melville,
"Preconditioned iterative methods for sparse linear algebra problems arising in circuit simu-
lation", SIAM J. Sci. Stat. Comput.
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ATTACHMENT- AF050z 87-O't?7

AN INPUT NORMAL FORM HOMOTOPY FOR THE L2 OPTIMAL
MODEL ORDER REDUCTION PROBLEM

Yuzhen Get, Emmanuel G. Collins, Jr.*, Layne T. Watsont

1. Introduction.
The L2 optimal model reduction problem, i.e., the problem of approximating a higher order

dynamical system by a lower order one so that a model reduction criterion is minimized, is of
significant importance and is under intense study. Several earlier attempts to apply homotopy
methods to the L2 optimal model order reduction problem v'ore not entirely satisfactory. Richter
[1], [21 devised a homotopy approach which only estimated certain crucial partial derivatives and
employed relatively crude curve tracking techniques. Zigi , Bernstein, Collins, Richter, and Watson
[31, [4], [5], [6] formulated the problem so that numerical linear algebra techniques could be used
to explicitly calculate partial derivatives, and employed sophisticated homotopy curve tracking
algorithms, but the number of variables made large problems intractable. We propose here several
ways to reduce the dimension of the homotopy map so that large problems are computationally
feasible.

The problem can be formulated as: given the asymptotically stable, controllable, and observable
time invariant continuous time system

(t) = A x(t) + B u(t), (1)

y(t) = C x(t),

where A e Rnxn, B E Rn"x, C E R lxn, the goal is to find a reduced order model

,,,(t) = Am Zm(t) + Bm u(t), (2)

Y.(t) = C. Xm(t),

where Am E Rn'" xfn-, Bm E R'n"' xm, Cm E Rlxnm, nm < n which minimizes the cost function

J(Am,Bm,Cm) =- im E [(y - y.n)t R(y - Yin)], (3)

where the input u(t) is white noise with symmetric and positive definite intensity V and R is a
symmetric and positive definite weighting matrix.

The optimal projection equations of Hyland and Bernstein [101, [11], described in Section 5, are
basis independent and correspond to the maximum number of degrees of freedom one could plausibly
use. Richter and Coffins [3] use this maximum number, and 2igiE [41 reduced it somewhat. At the
other extreme, the minimal number of unknowns corresponds to the input normal form described in
Section 2, and developed into a homotopy algorithm in Sections 3 and 4. Subtle differences between
the optimal projection equations and input normal form formulations are explored in Section 5.
Section 6 gives numerical results for the input normal form homotopy on the test set of 2igi6 [4].

t Department of Computer Science, Virginia Polytechnic Institute and State University, Blacks-
burg, VA 24061-0106.

* Harris Corporation, Government Aerospace Systems Division, Melbourne, FL 32902.



2. Input normal form formulations.
The following theorem is needed to present the homotopy method for the input normal form.
THEOREM 1 [7]. Suppose Am is asymptotically stable. Then for every minimal (Am, Bm, Cm),

i.e., (Am, m) is controllable and (p .1, Cm) is observable, there exist a similarity transformation
U and a positive definite matrix fl = diag(w1,... ) such that Am = U- 1 A.U, Bm= U-1fm,
and Cm = CmU satisfy

o = Am + AT + BmVB ,

0 AT, +$2Am +CTRCn. (4)

In addition,
(Am).. = -1BVB),

(Amjj j(BmVBT)jj,

(CTRCm),,
(BmVBT)ii'

(CmTRCm) ij - j (EmVBj) j
(Am)ij =i -W v if wi wj.

DEFINITION 1. The triple (Am,Bm,C,) satisfying (4) or (5) is said to be in input normal
form.

Under the assumption that a solution (Am, Bm, Cm) in input normal form is sought, the only
independent variables are Bm and Cm, and in this case the domain is

{ (Am, Bm, Cm): Am is stable, (Am, Bm, Cm) is minimal and in input normal form}.

The cost function (3) can be written as

J(Am,Bm, Cm) = tr (QR) (6)

where Q is a symmetric and positive definite matrix satisfying

Q + 0,,ir + 1= 0, (7)

and

A=(/0A CTRC CTRCm M-VE BE
Am -CmRC CIRCm BmVBT BmVBT"

Q can be written as

. (1 Q12

where Qj E RnX ", Q12 E Rnx and 02 E Rnm X.
The goal of minimizing (6) under the constraints (4) and (7) leads to the Lagrangian

L(A,Bm,C.jl, ) tr[Q] + (Am + AT + BmVBT)Mc

+(A T + QAm + CTRCm) M, +(AQ + OA T + )P] 8)

where the symmetric matrices M, M,, and P are Lagrange multipliers.

2



Setting OL/8Q = 0 gives
ATP + 15A + f = o, (9)

where P is symmetric positive definite and can be partitioned as

OL/OaQ = 0 and OL/OAm = 0 yield

0 = 2M, + 2flM + 2(PITQ2 1 +P2Q 2 ), 0 (AMo)., 1 < i < nm. (10)

A straightforward calculation shows

8L = 2(PT2 B + P2B,) V + 2MBmV,OB..,
7Th (11)

OL = 2R(CmQ 2 - CQ1 2 ) + 2RCmM.
89Cm

THEOREM 2 [8]. The matrices M, and M, in (11) satisfy

M.= -(1S-- +Mflo)

(M) Z(A.)i(M.)i, (12)

(M.)i =(S),, - (S),,
- 2(wj - w,) '

where S = 2(PIQ 12 + P2Q2). 
(13)

3. A homotopy approach.
A homotopy approach following [8] is now described. Let A1 , B1 , Cf , Rf, and V! denote A,

B, C, R, and V in the above and define

A(A) = Ao + A(Af - Ao),

B(A) = Bo + A(Bf - Bo), V(A)=O+A(Ri-Ro),

C(A) = Co + A(C1 - Co),

For brevity, A(A), B(A), C(A), V(A), and R(A) will be denoted by A, B, C, V, and R respectively
in the following. Let

HB.(,A) = -L = 2(PTB + P2Bm)V + 2M.B.V,OBM (14)

c.(O, A) = 'L= 2R(C.,Q2 - CQ12) + 2RC.Mo,

3



where
[Vec C.

denotes the independent variables Bm and Cm, M and M, satisfy (12), and Q and P satisfy
respectively (7) and (9). Vec(P) for a matrix P E RPx q is the concatenation of its columns:

P2i
Vec(P) E :. E R P x q.

The homotopy map is defined as

- Vec [H, (0 A)] (15)p(O, A)= Vec [Hc. (0, A)]'

and its Jacobian matrix is
Dp(O, A) = (Dep(O, A), DAp(O, A)). (16)

Define
rBm ('6(j), Mij)) = 2(PT(j)B + Pj)Bm) V + 2Mc(iB,.V,

OW) (17)

AC W, M(W))= 2R(CGrQ j )  CQW) + 2RCmM ( ) ,

where the superscript (j) means 8/8j: yO) =O. Using the above definitions, we have for

Oj= (B.) kL,
6HB _ HBM (!P(j),MO')) +2(/52 + (kIV,

Y(B, )k (18)
OHc. = HIc (OU), MW)),

5(B,,m)k I i

and for O9 - (CmI)k, I

OHB. =M B, ('6(j), MMJ),

o(Cm)kI (19)
Mc.= 4 C, ({('),M(')) + 2RE(k,) (Q2 + M0),

8(Cm )kL

where E(k,J) is a matrix of the appropriate dimension whose only nonzero element is eki = 1. f'(j)
and O(i) can be obtained by solving the Lyapunov equations

0 = X) + + Q(a)AT + AT(i) + f0),

0 = AT(j)P + ATJP(j) + P(J) A + PAU) + 2j).

Similaxly for A, using a dot to denote O/OA,

OHBm AB,.B(P,Mkc) + 2P,(B V + By ) + 2 (P + M-) Bm.Vi,
A- (21)

OHc,,. Ac. (Q, ko) + 2/Cm (Q2 + M) - 2(AC + RC )Q12,

OA4



where P and Q are obtained by solving the Lyapunov equations

0= AQ+AQ+QA T +QAT+V,

0 = +ATP + P + +PA+R.

4. Numerical algorithm for input normal form homotopy.
The initial point (9, A) = (Or 0) = ((Bn)0 , (C,)o, 0) is chosen so that the triple

((Am) 0 , (Bi) 0, (Cm)) is in input normal form and satisfies p(Oo, 0) = 0.
THEOREM 3 [9]. Suppose A is asymptotically stable. Then for every minimal (A, B, U), i.e.,

(A, B) is controllable and (A, C) is observable, th.e exist a similarity transformation T and a

positive definite matrix A = diag (da,d 2, .,d,n) such that A = T-'AT, B = T-1 B, and C = CT
satisfy

0 = AA + AAT + BVBT,

0 = ATA + AA + CTRC.

DEFINITION 2. The triple (A, B, C) in the above theorem is balanced.

According to Moore [9], under certain conditions, the leading principal n.. x nm block of A,
the leading principal nm x m block of B, and the leading principal I x n,, block of C in balanced
form are good approximations to the reduced order model. This suggests that the initial point
(0o, 0) be chosen as follows:

1) Transform the given triple (A1 , B1 , C1 ) to balanced form (Ab, Bb, Cb).
2) Partition (Ab, Bb, Cb) as

nnm

Ab n. All A12 ), B=n.1 (BI) C= (C C2"

3) (Ao, Bo, Co) is chosen as

Ao = A1 0B B , Co= (C 0)0 A 22 '0 '"

4) The initial point for the reduced order model is chosen as

0 (Vec (Bin)0 ' (Vec Bi'
Vec (C )o J Vec Cl '

and (A )o = All by construction.
5) Transform the initial point ((Ain) 0,(]3..) 0 ,(Cm) 0 ) to input normal form so that the initial

reduced order model is

((A.)o, (B)o,(Cn)o) = (T-1 (A, m)oT, T- (B)o, (C.)o T).

The initial point for the homotopy map is then (0o,0), where

Vec (Bn)o
Vec (Cm)o "
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Once the initial point is chosen, the rest of the computation is as follows:
1) Set A := 0, 0 := 0o.
2) Calculate Am from (5), R, V, and compute Q and P according to (7) and (9).
3) Evaluate S from (13) and M, and M, according to (12).
4) Evaluate the homotopy map p(O, A) in (15) and Dp(O, A) in (16).
5) Predict the next point Z(0 ) = (00), A(°)) on the curve 7.
6) For k := 0, 1, 2, -- until convergence do

Z(k+1) = [Dp(Zk))]tp(Z(k)),

where [Dp(Z)]t is the Moore-Penrose inverse of Dp(Z). Let (01,A,) = lim Z(k).
k-o

7) If A, < 1, then set 0 := 01, A := A,, and go to step 2).
8) If A, > 1, compute the solution 0 at A = 1. Am is then obtained from (5).

5. Comparison with optimal projection equations approach.
THEOREM 4 [10] [111. Suppose (A,,Bmn,C,) solves the problem (1)-(3). Then there exist

pseudogramians Q, P that are a solution to modified Lyapunov equations

0 = r[r A + A'+BVB'], (22)

0 = [At'P+PA+CRC(r,

and satisfy rank conditions

rank (Q) = rank (P) = rank ( Q P) =n,

such that the optimal model is given by

Am = r AGt,

Bm = rB, (23)

Cm = CGt ,

where G and r come from a (G, M, r)-factorization -f Q15:

SP =G t Mr, (24)

r Gt =I.,

G, r E Rnm x n, M E R n " X n.is positive semisimple and r = Gt r.
Equations (22) are called the optimal projection equations, which after a lot of algebra described

in [5], can be written in a form suitable for computation as

U, AWZW l t + E W:At + U, BV Bt = 0, (nn n)
AtUltE+Ul2U1 AW 1 +CtRCW =0, (nnn) (25)

U( W1 -1=o. (n'

The unknowns are WI E Rnxn - , U E R. - x n and symmetric E E Rn.I- xn- .
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Hyland and Bernstein [111 stated that the optimal projection equations can have at most ( n
nm

solutions. It is shown by the following 2-dimensional example that this is not true in general.
The system [121 is given by

A -0.05 -0.99 ) B , C=(1 100). (26)
-0.99 -5000.0 ( 10 C

PROPOSITION: For the system (1) defined by (26), the solution set of the optimal projection
equations contains three isolated solutions and a one-dimensional manifold parametrized by one
element of either W1 or U1 .

Proof. The three isolated solutions are

Am = (-0.005004234), Bm = (1.0002127), Cm = (1.0002127),

Am = (-4998.0786133), Bm = (100.0001907), Cm = (100.0001907),

Am = (-0.4659163), Bm = (-1.9404824), Cm = (-1.9404824),

which were obtained by both POLSYS from HOMPACK [17] and by a homotopy approach [41-[6].
The one-dimensional manifold of solutions corresponds to

Am = (-0.4851515), B = (0.0), Cm = (0.0),

which can be derived directly from the optimal projection equations as follows.

Let W, = (1), U1 = (X3,z 4), and E = x5. The optimal projection equations (25) for this

problem can be written as

2 20 a1 1 x1 X3 X5 + a 12 X1 X2X3 X5 + a21 1X, 4 X5 + a22XIX 2X 4X5

+ alzxzs + a12X2 Xs + (BVBt)uIz 3 + (BVBt) 2 1z 4 ,
2 20au1xxz 3z5 + a12x2x3x5 + a21xlz 2x4x5 + a22z~z4x5

+ a21 X1X5 + a22X2 z5 + (BVBt) 1 2X3 + (BVB*)22 X4,

2 2
0 = ali1 xz3x5 + a12X2X3X5 + a2lXlX3X4 XS + a22 X2X3X 4xT5 (27)

+ all Z3Z5 + a21X 4X5 + (CtRC)ulxl + (CtRC)12X2,

0 = alllXz3X4 XS + a12X2x3x 4z 5 + a21 Xz1 zxs + a22 X2 x 4

+ a12X325 + a22X4x5 + (C'RC)21X1 + (CtRC)22 T2 ,

0 = Z1Z 3 + Z2z 4 - 1.

The triple (Am, Bm, Cm) is given by

Am, = rAG' = (X X)(all a12 ' X(1

(a2l a22 X2

= zl(a1X3 + a21X4) + 2(a12X3 + a22x4),

Em, = rE = (X3 X4 ) (b) buX3 +b 2 2X4 , (28)

Cm = CGT = (C11 C12) (Xl = Cllzl +C1 z2 ,
72
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where r = u, and G = Wl. Substituting (26) into (27) and (28), setting Bm= X3 + 100X4 = 0 and
Cm = XI + 100X2 = 0 gives x, = -100X2, X3 = -100x4, and Am = -4852X2X4. Equations (27)
become

0 = 485200x2X4X: - 0.49X2X5, (29)

0 = 485200X2X4X5 - 0.49X4XS, (30)

0 = 4852X:X4X5 + 4901X2XS, (31)

0 = 4852:2X4XS + 4901X4X5, (32)

0 = 10001X2X4 - 1. (33)

If X2 = 0 or X4 = 0, equation (33) will not be satisfied. Only the situation that x2 # 0 and x4 0
is possible. Then equations (29)-(33) can be reduced to

0 = 485200X2X4X5 - 0.49xs,

0 = 4852x2X4X5 + 4901xs, (34)

0 = 10001X2X4 - 1.

If xs # 0 then (34) becomes
0 = 485200X2X4 - 0.49,

0 = 4852X2X4 + 4901, (35)

0 = 10001X2X4 - 1,

which does not have a solution.
Thus xs = 0, and equation (34) reduces to

10001X2:4 - 1 = 0,

which gives Am = -4852/10001 = -0.4851515 corresponding to a one-dimensional manifold
paxametrized by X2 or X4. Hence the solution Am = -0.4851515, Bm= 0 and Cm = 0 (which is not
controllable or observable) corresponds to a one-dimensional manifold of solutions of the optimal
projection equations. Q.E.D.

The set of solutions of the input normal form equations contains the same set of isolated solutions
as the optimal projection equations, and also a fourth isolated solution given by Am = B, = Cm = 0.
Therefore the solution sets of the two formulations are different.

The input normal form equations can be rewritten as

0 = 2( 1
2P B + P2 Bm) V + 2McBm V, (36)

0 2R(CmQ 2 - CQ12 ) + 2RCmM,,.

Setting Bm = Cm = 0, the equations become

0= P 1 BV, ()
0 = RC0 1 2 ,

8



where P 12 and Q12 satisfy respectively

0 = ATP1 2 + P2Am,

0 = AQ12 + Q12A .,

which has a solution A1 2 = Q12 = (0). Am satisfies

Am+At +BmVBT=Am+A' =0

which gives Am = 0.

6. Numerical results and comparisons.
In this section numerical results for the input normal form formulations are given for nine

systems. These systems have been studied and solved in [4], [51, [6] using the optimal projection
equations approach. Comparisons are made between the input normal form formulations and the
optimal projection equations.

The cost J is computed for each model as tr (Q 1?), according to (38). For all examples
V = R = I. All the answers are given in input normal form. The solutions obtained by the input
normal form formulation are the same as those obtained by the optimal projection equation method,
unless indicated otherwise.

EXAMPLE 1 [12]. The system is given by

(-0.05 -0.99 B (1 =
A = 0.99 -5000.0) B (100) C 1 100).

The homotopy algorithm converges to a solution corresponding to the model of order nn = 1 given
by

A,, (-0.00500423), Bm (-0.100042), Cm = (-10.000021),

which is not in the solution set of [4], [5], [6] by the optimal projection equation approach. This
model yields the (maximum) cost J = 10000.

In the first step of choosing an initial point, (A1 , B1 , Cf) is transformed to (Ab, Bb, Cb), where
orthogonal decompositions of two matrices are needed. If the eigenvalues of one of the matrices are
rearranged in ascending order, then a different solution is obtained, namely

Am = (-4998.078625), Bm = (-99.980784), Cm = (-100.019608).

This model yields the (minimum) cost J = 96.078058.
EXAMPLE, 2 [13]. The system is given by

A= -100) B 1 1) C=(1 -0.2).

A model of order nm = 1 is

Am = (-11.979443), Bm = (-4.859135 0.589656), Cm = (2.760762).

This model yields the cost J = 0.598377.
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EXAMPLE 3 [12]. The system is given by

A- -0.25 -0. B= 1 C =(1 1.2).

A model of order n.. = 1 is

A, = (-0.838521), B, =(-1.295006), Cm,, (1.825580).

This model yields the cost J = 0.107256.
EXAMPLE 4 [141. The system is given by

- 3 B= 2) , C=(1 0 0).
4 -5 -

A model of order n,,, = 1 is

Am = (-0.286334), Bn = (-0.756748) Cm = (0.878161).

This model yields the cost J = 1.228834 and this solution is different from that obtained by the
optimal projection equation method [4], [5], [6]. A model of order n,, = 2 is

-2.513846 -3.600739 ' 2.683557' -1.090926

This model yields the cost J = 0.0197781.
EXAMPLE 5 [12]. The system is given by

- 1 0 1), B ) , -(1 0 0).
-1 0 01

A model of order n,,, = 1 is

A,n = (-0.157898), B = (0.561956), Cm = (0.318537).

This model yields the cost J = 0.0107792. A model of order n,, = 2 is

-0.139652 0.100607 -(0528492\ _ 0.203A -ono = lO 2O) ,o o BoMo
Am = -0.600971 -0.4481921' B==0.946775)' C -0.0961019

This model yields the cost J = 0.000329024.
EXAMPLE 6. The system is given by

0 1 0 0 0 0
A -2 -0o2 1 0 ,) B= ( C=(0 1 0 0).

0.001 -0.1 -0.001)
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For this system, the initialwo's are approximately the same, which leads to a significant numerical
error in computing M. and the numerical failure of the homotopy algorithm. Therefore this technique
for choosing initial points fails, and some modification to the algorithm is needed to avoid this kind
of ill conditioning. However, it is not at all dear how to systematically avoid nearly equal w's, and
this remains an open question.

EXAMPLE 7 [9], [15]. The system is given by

(0 0 0 -150)0 01 0 -12413

0 0 1 -19 0

A model of order nn = 1 is

Am = (-0.495187), Bm = (0.995175), Cm = (0.0148426).

This model yields the cost J = 4.90749. 10 - . A model of order nm = 2 is

2.840074 -3.172419]' Bm= -2.518896' C=(0.0149143 0.00682097).

This model yields the cost J = 4.159. 10- 7. A model of order nm = 3 is

-0.437810 -0.483078 -0.0370108Am = [2.826317 -3.135361 -0.612598)

(-4.651841 13.160394 -12.554152

0935746

Bm -2.504141 , Cm = (0.0149143 0.00682180 0.000635413).
5.010819)

This model yields the cost J = 4.59. 10- 10.
EXAMPLE 8 [9]. The system is given by

0 01 00
A= B = 1=(), C=(50 15 1 0).0 0 0 1 0

-50 -79 -33 -5/

A model of order nm = 1 is

Am = (-0.576205), Bm = (1.073504), Cm = (0.588692).

This model yields the cost J = 0.104740. A model of order nm = 2 is

Am -0.532330 -0.598751 ) ( 1.031824 Ct 
- (0.588704)

A 3.800771 -4.815122)' Em = 3.103263)' m - 0.278923)"

This model yields the cost J = 0.0269278. A model of order nm= 3 is

Am = 2.888921 -2.235622 -3.721286
-1.084500 6.305395 -0.746729/
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B = (1.020109 -2.114532 1.222072), Cm = (0.586461 0.307967 0.105043).

This model yields the cost J = 0.00148438.
EXAMPLE 9 [16]. The system is given by

-6.2036 15.054 -9.8726 -376.58 251.32 -162.24 66.827)
0.53 -2.0176 1.4363 0 0 0 0

16.846 25.079 -43.555 0 0 0 0
A = 377.4 -89.449 -162.83 57.998 -65.514 68.579 157.57

0 0 0 107.25 -118.05 0 0
0.36992 -0.14445 -0.26303 -0.64719 0.49947 -0.21133 0

0 0 0 0 0 376.99 0

'89.353 0
376.99 0

0 0 0 0 0 o 0)
0 0 C ( 0 0 0 0 0 1

0 0.21133
0 0

A model of order n. = 1 is

Am = (-0.199272), Bm = (0.631300 -0.00187918), Cm = (-0.187347 -354.430393).

This model yields the cost J = 27632.2. A model of order nm = 2 is

( -0.199608 -0.0763006
Am = 3.331193 -13.275827)'

( 0.631832 -0.00191612 ( -0.201050 0.800899
Em = .- 5.151821 -0.101952 ' Cm = -354.414137 -66.187284)

This model yields the cost J = 23262.3. A model of order nm = 3 is

-0.198769 0.235666 -0.02481363)
Am = -1.087392 -0.912444 9.201811 ,

-0.115288 -9.502428 -0.0261157/

Em = 1.350879 0C3m7 354.222032 -164.479031 26.635498
-0.630503 0.00216112), C =( 0.291338 -0.0265117 -4.035696)-0.222387 -0.0526803 ]34223 14493 6659

This model yields the cost J = 0.673079. A model of order nm = 4 is

-0.198769 0.235667 -0.0248136 0.000915746 \

Am -1.087390 -0.912440 9.201811 -0.00904508 9
-0.115288 -9.502427 -0.0261155 0.00159031 '
-5.465132 -11.698410 -1.929974 -37.554401 1

(-0.630503 0.00216112, 0.291340 354.222032\
-1.350876 -0.00377141 -0.0265302 -164.479038

Em -~10.222386 -0.0526803 -4.035692 26.6354538j
(-8.666510 -0.0203036 ) 0.0861885 -0.815898 I

12



This model yields the cost J = 3.22. 10- 7 .

For this example with nm = 3, 4, the columns of the initial Jacobian matrices axe so badly
scaled that the numerical linear algebra in HOMPACK fails. Modifying HOMPACK to use the
LINPACK subroutine DQRDC for the QR factorization of the initial Jacobian matrices enables
HOMPACK to successfully overcome the ill conditioning and find a solution.

Table 1 gives the CPU times in seconds and the number of steps needed to obtain the results
for each example. The CPU times are for a DEC station 5000/200, using double precision, IEEE
arithmetic, and the MIPS RISC f77 compiler. Table 2 gives the comparison of the optimal projection
equations approach and the input normal form formulation for Examples 8 and 9. The asterisks in
Table 2 indicate cases that required special numerical linear algebra techniques to deal with severe
scaling errors.

TABLE 1. ALGORITHM MEASURES FOR INPUT NORMAL FORM HOMOTOPY.

example n. steps time (sec)

1 1 5 0.06
2 1 21 0.13
3 1 19 0.10
4 1 12 0.14
4 2 7 0.20
5 1 10 0.12
5 2 10 0.22
7 1 11 0.22
7 2 8 0.30
7 3 6 0.46
8 1 10 0.20
8 2 18 0.50
8 3 10 0.65
9 1 11 0.71
9 2 123 8.0
9 3 6 1.3
9 4 6 1.9

TABLE 2. COMPARISON OF METHODS

Example 8

Optimal projection Input normal form

n. # steps time (sec) # steps time (sec)

1 31 0.6 10 0.20
2 59 2.7 18 0.50
3 89 14 10 0.65

Example 9
2 575 88 123 8.0
3 601 223 6* 1.3
4 671 518 6* 1.9
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As shown by Table 1, the input normal form homotopies can be very efficient. Also there is no
need to adjust any parameter to achieve this efficiency ( although to obtain the minimum solution
of Example 1, some adjustment of the initial point was necessary). However, note that the potential
ill conditioning of the input normal form formulation can result in failure (Example 6) or the need
for extraordinarily delicate linear algebra (Example 9).
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