TRANSDOMINANT REV AND PROTEASE MUTANT PROTEINS OF HIV/SIV AS POTENTIAL ANTIVIRAL AGENTS IN VITRO AND IN VIVO

ANNUAL REPORT

FLOSSIE WONG-STAAL

SEPTEMBER 3, 1991

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21702-5012

Contract No. DAMD17-90-C-0094

The Regents of the University of California
University of California, San Diego
La Jolla, California 92037-0665

Approved for public release: distribution unlimited.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
The major goal of this contract is to use gene therapy to target essential genes of HIV/SIV in order to inhibit virus expression. Transdominant mutants of the rev and protease genes were to be constructed, assayed for their in vitro inhibitory activity, optimized for expression in appropriate retrovirus vectors, and evaluated in an in vivo model, i.e., the SCID-Hu-PBL system. We have so far constructed mutants of HIV-1 rev and HIV-2 protease, and demonstrated that one of the rev mutants indeed has a transdominant phenotype. Our plan for year two will be to continue these studies, to develop in parallel the infection of SCID mice using molecularly cloned HIV-1 and HIV-2 under study, and to incorporate antisense expression vectors directed at the RRE to inhibit Rev activity.
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

___Where copyrighted material is quoted, permission has been obtained to use such material.

___Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

___Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.

___In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

___For the protection of human subjects, the investigator(s) have adhered to policies of applicable Federal Law 45 CFR 46.

___In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

PI Signature: __________________________ Date: 10-26-91
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SCIENTIFIC PROGRESS</td>
<td>4</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>7</td>
</tr>
<tr>
<td>TABLES</td>
<td>8</td>
</tr>
<tr>
<td>FIGURES</td>
<td>13</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>18</td>
</tr>
</tbody>
</table>
INTRODUCTION:

AIDS continues to be a grave global epidemic associated with a sexually transmitted and blood borne pathogen, namely HIV. The latest statistics from epidemiological studies indicate that young adults (male and female) are among the major risk groups for infection. Therefore, the disease will have a tremendous impact on the workforce of all segments of society, including the military. Although a lot of progress has been made in the last few years relating to the molecular dissection of the HIV genome, as well as to efforts for vaccine and therapy development, there is as yet no "magic bullet" in sight. With regard to therapy, although there are some compounds already in the clinic that show some efficacy, most notably the deoxynucleoside analogs targeting the virus reverse transcriptase, the toxicity of these drugs as well as the emergence of drug resistant virus mutants significantly limit their long-term use. Therefore it is important to expand as much as possible our arsenal of anti-viral drugs to use in combination regimens. Such combinations may be particularly effective if they target different phases of the virus life cycle, i.e., the events prior to and after the integration event.

The genome of HIV encodes at least nine genes. Three of these, *gag*, *pol* and *env* are common to all retroviruses and engender either proteins that form the constituents of the virion particles (*gag* and *env*), or enzymes that are essential for virus replication (*pol*, which yields reverse transcriptase/RNase H, protease and integrase). Of the six remaining accessory genes of HIV, only two have been found to be essential for virus replication, namely, the *tat* and *rev* genes. Tat is a positive transactivator that presumably acts at both transcriptional and post-transcriptional levels to enhance virus expression and is required for expression of all viral proteins, while *rev* differentially activates expression of viral structural proteins post-transcriptionally (see Vaishnav and Wong-Staal, 1991 for review). Since both *tat* and *rev* are essential regulatory genes, they are, along with the viral enzymes, suitable targets for anti-viral strategies. The *rev* gene is a particularly attractive target because of our previous finding that an incomplete inhibition of *rev* could nonetheless result in complete block of Gag/Pol protein expression (Matsukura, et al., 1989), suggesting that virus expression is extremely sensitive to rev depletion.
Rev is a 20 kD phosphoprotein predominantly localized in the nucleoli (Cullen, et al., 1988; Felber, et al., 1989). It promotes the synthesis of viral structural proteins by increasing the level of unspliced (Gag-Pol) or singly spliced (Env, Vif) mRNA in the cytoplasm (Feinberg, et al., 1986). Although the precise mode of action of Rev has not been elucidated, it clearly represents a novel mechanism of gene regulation that affects the equilibrium between splicing and nuclear export of mRNA. Site-directed mutagenesis has revealed two functionally important domains in the protein: a nuclear/nucleolar localization domain which also contains a consensus RNA binding sequence, and a potential transactivating domain (Malim, et al., 1989). Genetic alterations in the transactivating domain has been shown to generate transdominant mutants.

In the present contract, we propose to use gene therapy for delivery of anti-viral compounds. The latter assume the forms of transdominant mutants of two key viral proteins: the protease enzyme and Rev. Although at the time we submitted this proposal, gene therapy was still largely an untrodden path, the ground has now been broken as the first patients are being treated by this novel approach. We are excited and optimistic that gene therapy will play an important role in controlling HIV infection in the near future.

Our objectives are as follows:

1. To construct mutants of \textit{rev} and \textit{protease} genes using site-directed mutagenesis of rev cDNA clones of HIV-1 and SIV\textsubscript{mac} and \textit{protease} genes derived from infectious clones of HIV-1 and HIV-2.

2. To evaluate the capacity of these mutants to inhibit activity of corresponding wild-type proteins in co-transfection experiments.

3. To insert these transdominant mutants in an amphotropic murine retrovirus vector and optimize expression in human T-cells using different internal promoters.
4. To transduce human PBL cells or neoplastic T-cell lines with retrovirus expressing these transdominant mutants to determine if uninfected cells could be protected from de novo infection or chronically infected cells would be repressed in virus production.

5. To determine if SCID-Hu mice reconstituted with human PBL transducing viruses carrying the transdominant mutant genes would be refractory to HIV infection and/or virus-induced CD4 cell depletion.
SCIENTIFIC PROGRESS:

Our strategy for accomplishing the specific goals is outlined in Fig. 1. The first phase of the project then was to construct the appropriate wild-type mutant genes. We first subcloned the coding regions of the rev and protease genes by PCR amplification of the pertinent regions of the respective wild-type viruses (see Table I) using appropriate 5' and 3' synthetic oligonucleotide primers (see Table 2). Each PCR fragment was then cloned into two vectors: (1) pSVL, an efficient eukaryotic expression vector for in vitro functional analysis of the genes in eukaryotic cells such as Cos-1, and (2) M13mp19, a single-stranded DNA bacteriophage that will enable us to perform site-directed mutagenesis using synthetic oligonucleotides. The general cloning strategy is depicted in Fig. 2. Each clone was verified by nucleotide sequencing for their authenticity.

The next step was to construct site-specific mutants of the four wild-type genes using the two-primer method of oligonucleotide-directed mutagenesis (Sambrook, J., Fritsch, E.F., and Maniatis, T. 1987). As a start, we chose a few sites in each gene, and began altering them by mutagenesis. The choice of these sites is based on previous findings that amino acid changes in them are both inactivating, and trans-dominant (Malim, et al., 1989). The proposed set of mutations are shown in Table 3 and Fig. 3. All the synthetic oligonucleotides used as mutagenic primers in these constructions were synthesized and purified in our laboratory (See Table 4).

Thus far, we have three confirmed mutations by dideoxy sequencing in the HIV-1 rev gene: 1.4, 1.3, and 1.5 and one confirmed mutation in the HIV-2 protease gene: 4.2. The last HIV-1 rev gene mutation is a fortuitous one which has been isolated together with mutant 1.4 (refer to Table 3). We have subcloned three mutant genes in the eukaryotic expression vector, pSVL and expressed each of the proteins, as well as their wild-type counterparts, in Cos-1 cells. We performed Western blot experiments on the cell lysates from these transfection experiments using polyclonal rabbit anti-Rev antibody. Results indicate that the relevant proteins are actually being produced, as evidenced by a band at ca. 17-18 kdal (data not shown). Functional assays of the Rev mutants are described below.
A. p1401
The structures of the three Rev variants are depicted in Figure 3A. p1401 has a F_{38}F_{39} mutation in the polyarginine tract of Rev, the domain of the protein thought to be responsible for its RNA binding and nucleolar localization properties. This segment is also thought to be part of the multimerization domain, which is responsible for the protein's ability to bind to and multimerize on its RNA target, the Rev-Response Element (RRE) (Malim et al., 1991). One report proposed that the Rev protein may ultimately "coat" the entire viral RNA, a process which may be important in Rev function (Wingfield, P., et al., 1991). Mutation in this region is predicted to affect any of these above functions and is expected to yield an inactive protein. However, such a negative phenotype is expected to be recessive.

B. p1440
This variant rev has a double amino acid mutation E_{10}D_{11}----L_{10}Y_{11}, near the N-terminus of the protein. Since this alteration is outside of the two critical domains of rev, (namely, the nucleolar localization/multimerization domain at 35-50 and the trans-acting domain at 78-80), it is expected to possess wild-type phenotype.

C. p143
This plasmid encodes a rev gene containing a L_{78}----N_{78} mutation in the trans-acting domain, spanning positions 78-80. This domain is thought to interact with as yet unknown cellular factor(s) and hence, is thought to be crucial in the functional mechanism of rev action. As such, this rev variant is expected to be inactive. In addition, since this protein has intact multimerization domain, it would be able to heteromultimers with the wild-type protein and interfere with the activity of the latter. Alternatively, it could also act as a competitive inhibitor for binding to the RRE target. As such, it is expected to have a trans-dominant phenotype.

We have carried out functional characterization of the three rev mutant genes along with wild-type rev as a control. The plasmid pIIIAR (gift of C. Rosen) which consists of LTR-CAT-RRE sequences is dependent on both tat and rev functions for CAT expression. As shown in Fig. 4, the rev mutants
with alterations in the leucine-rich domain (p1403 or 1.3) and arginine rich domain (p1401 or 0.1) are inactive when transfected in Cos-1 cells and did not yield CAT activity over and above that seen by tat transfection alone, while a rev mutant with alterations in the amino-terminal sequences (p1404 or 0.4) is functionally equivalent to wild-type rev. Furthermore, co-transfection of wild-type rev and mutant 1.3 revealed that the latter exerted a negative dominant phenotype such that at a ratio of 2:1 mutant:wt DNA, almost complete inhibition was observed. These results are consistent with what has been reported previously, and defined the leucine-rich domain to be the activator domain (Malim, et al., 1989; Mermer, et al., 1990).

The transdominant property of the 1.3 mutant was further assessed in Hela cells constitutively producing Rev (Hela-Rev). In this system, although considerable CAT activity was detected upon tat transfection alone (Fig. 5, lane 1), a supply of exogenous wildtype rev DNA by transfection further increased activity of the pIIIAR plasmid (Fig. 5, lane 6). Transfection of increasing amount of 1.3 DNA (1 to 6 µg) led to increasing reduction of CAT activity in a dose dependent manner.

The HIV-2 Protease Variants

The mutant HIV-2 protease we have available has a change in $T_{26} \rightarrow V_{26}$ (fig. 3B). The phenotype of this mutant is not yet determined. We are currently exploring a simpler method to assay the HIV protease in vitro, using an octapeptide substrate containing the consensus tyr--procleavage site with covalently attached fluorescence probes in the N- and C-terminus.
CONCLUSIONS:

Because of our relocation to a new laboratory at the beginning of the year, progress was somewhat slow. Nonetheless, we were able to generate mutant constructs of rev and protease. Specifically, one of the rev mutants was shown to have a transdominant effect in vitro. Thus, we are ready to proceed to the second phase of the project, which is to optimize the level of expression of these mutant genes in appropriate retrovirus vectors. Our plans for year two, in addition to pursuing these experiments, would also include: (1) Setting up an infection model in SCID-Hu PBL mice, using molecularly cloned viruses of HIV-1 and HIV-2 currently in use in this laboratory. (2) To diversify the gene therapy approach to include transdominant mutants of other HIV genes as well as other ways of targeting the Rev transactivation pathway. For example, we have very encouraging data using anti-sense oligonucleotides directed at the Rev Response Element (RRE) for virus inhibition (Wong-Staal, 1991). Our plan would be to express the corresponding anti-sense sequence in a retrovirus vector. Our decision to broaden our scope is based on observations of other investigators (G. Pavlakis; B. Cullen; personal communications) that transdominant Rev mutants are variable in their effectiveness for inhibiting virus.
TABLE 1.

SUBCLONING BY PCR:

<table>
<thead>
<tr>
<th>GENE TO CLONE:</th>
<th>LENGTH OF PROTEIN PRODUCT: (# a.a.)</th>
<th>SOURCE TEMPLATE PLASMID</th>
<th>PCR AMPLIFIED REGION: (nt. positions)</th>
<th>SOURCE OF TEMPLATE PLASMID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1 rev</td>
<td>116</td>
<td>pKK rev</td>
<td>- - - - -</td>
<td>J. Rusche, Repligen</td>
</tr>
<tr>
<td>SIV<sub>mac</sub> rev</td>
<td>107</td>
<td>p8</td>
<td>339-662</td>
<td>S. Colombini, LTB</td>
</tr>
<tr>
<td>HIV-1 protease</td>
<td>99</td>
<td>pHXB2gpt</td>
<td>2252-2548</td>
<td>R. Sadaie, LTB</td>
</tr>
<tr>
<td>HIV-2 protease</td>
<td>99</td>
<td>B12</td>
<td>2079-2375</td>
<td>G. Franchini, LTB</td>
</tr>
</tbody>
</table>

aa = amino acids
nt = nucleotide
<table>
<thead>
<tr>
<th>NAME</th>
<th>LENGTH</th>
<th>SEQUENCE (5'-------3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1 rev</td>
<td>PP-3 5' 33</td>
<td>ATA TAT ATC TAG ATG GCA GGA AGA AGC GGA GAC</td>
</tr>
<tr>
<td></td>
<td>PP-4 3' 33</td>
<td>GCG CGC GGA GCT CTA TTC TTT AGC TCC TGA CTC</td>
</tr>
<tr>
<td>SIVmac rev</td>
<td>PP-5 5' 33</td>
<td>ATA TAT ATC TAG ATG AGC AGT CAC GAA AGA GAA</td>
</tr>
<tr>
<td></td>
<td>PP-6 3' 32</td>
<td>GCG CGC GGA GCT CAG TCC TGA GGA CTT TTC GA</td>
</tr>
<tr>
<td>HIV-1 pri</td>
<td>PP-7 5' 36</td>
<td>ATA TAT ATC TAG ATG CCT CAG GTC ACT CTT TGG CAA</td>
</tr>
<tr>
<td></td>
<td>PP-8 3' 35</td>
<td>GCG CGC GGA GCT CAA AAA TTT AAA GCTG CAA CCA AT</td>
</tr>
<tr>
<td>HIV-2 pri</td>
<td>PP-9 5' 36</td>
<td>ATA TAT ATC TAG ATG CCT CAA TTC TCT CTT TGG AAA</td>
</tr>
<tr>
<td></td>
<td>PP-10 3' 35</td>
<td>GCG CGC GGA GCT CAT AAA TTT AAT GAC ATG CCC AA</td>
</tr>
<tr>
<td>Subclone</td>
<td>Mutants</td>
<td>Abbreviated Designation</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>mLE2.1</td>
<td>eLE2.1</td>
<td>1.1</td>
</tr>
<tr>
<td>mEQ.1</td>
<td>eEQ.1</td>
<td>1.2</td>
</tr>
<tr>
<td>mLN.1</td>
<td>eLN.1</td>
<td>1.3</td>
</tr>
<tr>
<td>mRF2.1</td>
<td>eRF2.1</td>
<td>1.4</td>
</tr>
<tr>
<td>mLD2.m</td>
<td>eLD2.m</td>
<td>2.1</td>
</tr>
<tr>
<td>mEQ.1</td>
<td>eDQ.m</td>
<td>2.2</td>
</tr>
<tr>
<td>mLN.1</td>
<td>eLN.m</td>
<td>2.3</td>
</tr>
<tr>
<td>mRF2.m</td>
<td>eRF2.m</td>
<td>2.4</td>
</tr>
<tr>
<td>mDF.1</td>
<td>eDF.1</td>
<td>3.1</td>
</tr>
<tr>
<td>mTV.1</td>
<td>eTV.1</td>
<td>3.2</td>
</tr>
<tr>
<td>mGN.1</td>
<td>eGN.1</td>
<td>3.3</td>
</tr>
<tr>
<td>mGI.1</td>
<td>eGI.1</td>
<td>3.4</td>
</tr>
<tr>
<td>eGD.1</td>
<td>eGD.1</td>
<td>3.5</td>
</tr>
<tr>
<td>mDF.2</td>
<td>eDF.2</td>
<td>4.1</td>
</tr>
<tr>
<td>mTV.2</td>
<td>eTV.2</td>
<td>4.2</td>
</tr>
<tr>
<td>mGN.2</td>
<td>eGN.2</td>
<td>4.3</td>
</tr>
<tr>
<td>mGI.2</td>
<td>eGI.2</td>
<td>4.4</td>
</tr>
<tr>
<td>mGD.2</td>
<td>eGD.2</td>
<td>4.5</td>
</tr>
</tbody>
</table>

NOTE:

- e = in pSVL
- m = in M13mp19
- ODM = oligonucleotide-directed mutagenesis
- Hrev = HIV-1 rev
- Srev = SIVmac rev
- H1prt = HIV-1 protease
- H2prt = HIV-2 protease
TABLE 4.

MUTAGENIC Oligos

<table>
<thead>
<tr>
<th>MUTATION DESIGNATION</th>
<th>LENGTH</th>
<th>SEQUENCE (5'------ 3')</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1 rev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LE2.1</td>
<td>28</td>
<td>pAGA GTA AGT CTA AGC TCC GGT GGT AGC T</td>
<td>9236</td>
</tr>
<tr>
<td>EQ.1</td>
<td>19</td>
<td>pGTA AGT CTC TGA AGC GGT G</td>
<td>6293</td>
</tr>
<tr>
<td>LN.1</td>
<td>21</td>
<td>pAAG TCT CTC ATT CGG TGG TAG</td>
<td>6947</td>
</tr>
<tr>
<td>RF2.1</td>
<td>28</td>
<td>pCTT CTT CTA TTG AAG AAG GCC TGT CGG G</td>
<td>9236</td>
</tr>
<tr>
<td>SIV<sub>mac</sub> rev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD2.m</td>
<td>28</td>
<td>pTGA ATA GTC AAA AGG TCA GGC GTA TCA G</td>
<td>9236</td>
</tr>
<tr>
<td>DQ.m</td>
<td>21</td>
<td>pAAT AGT CAA CTG AAG AGG CGT</td>
<td>6947</td>
</tr>
<tr>
<td>LN.m</td>
<td>21</td>
<td>pAGT CAA GTC ATT AGG CGT ATC</td>
<td>6947</td>
</tr>
<tr>
<td>RF2.m</td>
<td>28</td>
<td>pCTC CTT CTT TGG AAG AAC TGG TTG GCA G</td>
<td>9236</td>
</tr>
</tbody>
</table>
TABLE 4. CONTINUED

MUTAGENIC OLIGOS

<table>
<thead>
<tr>
<th>MUTATION DESIGNATION</th>
<th>LENGTH</th>
<th>SEQUENCE (5'------ 3')</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1 (\text{pr}t)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF.1</td>
<td>21</td>
<td>TGC TCC TGT AAA TAA TAG AGC</td>
<td>6867</td>
</tr>
<tr>
<td>TV.2</td>
<td>21</td>
<td>ATC TGC TCC TAC ATC TAA TAG</td>
<td>6867</td>
</tr>
<tr>
<td>GN.1</td>
<td>23</td>
<td>TAT CAT CTG CGT TTG TAT CAT AT</td>
<td>7521</td>
</tr>
<tr>
<td>GI.1</td>
<td>21</td>
<td>TTT GA" Aaa AAT TCC AAT TCC</td>
<td>6867</td>
</tr>
<tr>
<td>GD.1</td>
<td>21</td>
<td>CAG ATT TCT GTC AAT TAT GTT</td>
<td>6867</td>
</tr>
<tr>
<td>HIV-2 (\text{pr}t)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF.2</td>
<td>21</td>
<td>AGC CCC TGT GAA TAG TAA AAC</td>
<td>6867</td>
</tr>
<tr>
<td>TV.2</td>
<td>21</td>
<td>GTC AGC CCC TAC GTC TAG TAA</td>
<td>6867</td>
</tr>
<tr>
<td>GN.2</td>
<td>23</td>
<td>AGT CGT CAG CGT TTG TGT CTA GT</td>
<td>7521</td>
</tr>
<tr>
<td>GI.2</td>
<td>21</td>
<td>ATT TAT GAA TAT TCC TAT TCC</td>
<td>6867</td>
</tr>
<tr>
<td>GD.2</td>
<td>19</td>
<td>ATA TTT CTG TCA AAA ATG T</td>
<td>6213</td>
</tr>
</tbody>
</table>
FIGURE 1.

PROJECT STRATEGY

HIV-1/SIVmac
rev mutants

Co-transfect cos-1 with pgtat
Assay for activity

active (i.e., WT phenotype)

inactive

inactive (i.e., trans-dominant)

Insert TD mutant into retrovirus vector for expression in human T-cells.

Transduce uninfected cells, then:

Infect w/ virus (HIV-1/2, SIVmac)

FI

no protection

protection

suppression of virus production

Reconstitute SCID-hu mice with hu-PBL harboring TD rev or prt mutant

Challenge with virus (HIV-1/2, SIVmac)

no protection

Protection from infection and/or CD4+ cell depletion

Try out as therapy in humans (HIV-1/2), or Macaques (SIVmac/HIV-2)

Legend:

pmd = plasmid
prt = protease
TD = transdominant
Cloning Strategy for rev and prt

parental plasmid: codon

5' ATG TGA 3'

18-21 bases

3' TGA ACT 5'

Stop codon

Note: artificial start and stop codons introduced into prt genes

rev / prt PCR fragment

VPI intron

SV40 late promoter

SV40 ori

MCS

SV40 late poly(A) site

pSVL (4889 bp)
pBR322 ori

ampr

- for high-level transient expression in cos-1 cells
- increased plasmid copy no. in bacteria

M13mp19 (7250 bp)

- for mutagenesis

Figure 2
HIV-1 rev

Mutations:
- L78E + g79L... LE2.1 1.1
- E79Q... EQ.1 1.2
- L78N... LN.1 1.3
- R38F+R39F... RF2.1 1.4

SIVmac rev

Mutations:
- LgaD + D70L... LD2.M 2.1
- D70Q... DQ.M 2.2
- L69N... LN.M 2.3
- R36F + R37F... RF2.M 2.4

Fig. 3A
HIV-1 Protease

21-30
(a.s.)
25-27
1
P
EALDLTGADD
48-54
83-91
96-98
F

mutations: D 25 F 3.1
T 26 V 3.2
G 27 N 3.3
G 32 3.4
G 86 D 3.5

EVLLDTGADD
GGIGGFI
NILGRNLLT
TLN

16
P
1
25-27
(a.s.)
U-30

HIV-2 Protease

48-54
83-91
96-98
L

mutations: D 25 F 4.1
T 26 V 4.2
G 27 4.3
G 32 4.4
G 86 D 4.5

Figure 3B
Figure 4A

Cells: COS-1
Transfection method: Calcium phosphate
Plasmid designation: 1.3 (1.0G3), 0.5 (1.0E), 0.1 (1.0D); WT = Wild type Rev
Vector: p-SVL

<table>
<thead>
<tr>
<th>µg of plasmid</th>
<th>1.3</th>
<th>1.0E</th>
<th>1.0D</th>
<th>1.0G3</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Tat</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>p-REV</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p-SVL</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p-SVL + WT</td>
<td>1</td>
<td>1.3</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 4B
REFERENCES:

