Abstract This report presents the computation procedure that is used to produce load rating charts for cranes operating on platforms in the ocean environment. A rating charge defines the load that can be safely lifted for each boom angle in the boom operating range. The platform supporting the crane may be a fixed offshore platform or a ship or barge. During the crane operating cycle, loads will be lifted from or placed on a work boat or some other small vessel. The procedures utilizes the relative motion of the supporting platform and the vessel alongside to determine dynamic load factors. The dynamic load factors are applied to the land rating to derate the crane for marine operations. The computation procedure has been implemented in a computer program that is also discussed.
METRIC CONVERSION FACTORS

Approximate Conversions to Metric Measures

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>inches</td>
<td>2.5</td>
<td>centimeters</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>0.3048</td>
<td>meters</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.9144</td>
<td>meters</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.6093</td>
<td>kilometers</td>
</tr>
</tbody>
</table>

AREA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>in²</td>
<td>square inches</td>
<td>6.4516</td>
<td>square centimeters</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.0929</td>
<td>square meters</td>
</tr>
<tr>
<td>yd²</td>
<td>square yards</td>
<td>0.8361</td>
<td>square meters</td>
</tr>
<tr>
<td>m²</td>
<td>square miles</td>
<td>2.4711</td>
<td>square kilometers</td>
</tr>
<tr>
<td>ac</td>
<td>acres</td>
<td>0.4047</td>
<td>hectares</td>
</tr>
</tbody>
</table>

MASS (weight)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>oz</td>
<td>ounces</td>
<td>28.35</td>
<td>grams</td>
</tr>
<tr>
<td>lb</td>
<td>pounds</td>
<td>0.4546</td>
<td>kilograms</td>
</tr>
<tr>
<td></td>
<td>(2,000 lb)</td>
<td>0.9072</td>
<td>tonnes</td>
</tr>
</tbody>
</table>

VOLUME

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>tsp</td>
<td>teaspoons</td>
<td>5.0468</td>
<td>milliliters</td>
</tr>
<tr>
<td>Tbsp</td>
<td>tablespoons</td>
<td>15.2087</td>
<td>milliliters</td>
</tr>
<tr>
<td>fl oz</td>
<td>fluid ounces</td>
<td>30.8165</td>
<td>milliliters</td>
</tr>
<tr>
<td>c</td>
<td>cups</td>
<td>0.2402</td>
<td>liters</td>
</tr>
<tr>
<td>pt</td>
<td>pints</td>
<td>0.4732</td>
<td>liters</td>
</tr>
<tr>
<td>qt</td>
<td>quarts</td>
<td>0.9463</td>
<td>liters</td>
</tr>
<tr>
<td>gal</td>
<td>gallons</td>
<td>3.7854</td>
<td>liters</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic feet</td>
<td>0.0283</td>
<td>cubic meters</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic yards</td>
<td>0.7646</td>
<td>cubic meters</td>
</tr>
</tbody>
</table>

TEMPERATURE (exact)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply by</th>
<th>To Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Celsius</td>
<td>9/5 (then add 32)</td>
<td>Fahrenheit</td>
</tr>
</tbody>
</table>

Notes:

1 in = 2 5/16 (exact). For other exact conversions and more detailed tables, see NBS Misc. Publ. 286, Units of Weights and Measures, Price $2.25, SD Catalog No. C13 10 286.
This report presents the computation procedure that is used to produce load rating charts for cranes operating on platforms in the ocean environment. A rating charge defines the load that can be safely lifted for each boom angle in the boom operating range. The platform supporting the crane may be a fixed offshore platform or a ship or barge. During the crane operating cycle, loads will be lifted from or placed on a work boat or some other small vessel. The procedures utilize the relative motion of the supporting platform and the vessel alongside to determine dynamic load factors. The dynamic load factors are applied to the land rating to derate the crane for marine operations. The computation procedure has been implemented in a computer program that is also discussed.
RATING LIFT CRANES OPERATING ON PLATFORMS IN THE OCEAN ENVIRONMENT

INTRODUCTION

This report contains the completed proposed Society of Automotive Engineers (SAE) Recommended Practice J-1366. The Recommended Practice has been developed and tested using a computer program in order to simplify understanding the rating procedure being employed and to simplify implementing the procedure in daily practice. The theory used in the procedure has been documented in publications which are listed in the reference section of the proposed document. Further documentation appears unnecessary and redundant. This report, however, presents the recommended practice, including the accompanying computer program for review and approval purposes.

An example problem section is included in this report to facilitate understanding how one might use the recommended practice. A library of crane supporting platform response amplitude operators has been included to help demonstrate what is required from the customer. These data were produced using the RELMO computer program, available from the Naval Civil Engineering Laboratory. A second program, RELMOSAE was used to extract the operators required in the SAE J-1366 procedure. An example crane is also included to help demonstrate how to prepare the crane data. This example can be enhanced in a number of ways as shown in the crane modeling guide section. Rating charts are provided for each of the platforms in the library to demonstrate how the ratings differ for various supporting platforms.

Engineers desiring to use the program on cranes of their manufacture are invited to contact the Society of Automotive Engineers. The section discussing obtaining the program shows the various options that are available. A section discussing how one runs the program is also included.
ACKNOWLEDGMENT

The material presented in this report is the product of the Society of Automotive Engineers Off-road Machinery Technical Committee (ORMTC), Subcommittee Thirty-one Cranes and Lifting Devices, Working Group H Dynamic Operating. Members of this committee during the development period include:

Kenneth V. Johnson, Chairman
Robert Fredstrom
Carl W. Ireland
Frank Monteiro
Tom E. Merritt
Frank R. Johnson
J. Lear
Donald J. Marcotte
Percy Malone
C.C. Stevens
Joseph Brokaw Tiffin
Richard Edward Welch
C. Wick
Jim Reid

Bucyrus-Erie Co.
Clyde Division of AMCA Int.
American Hoist and Derrick
Naval Civil Engineering Lab.
Unit Crane Company
Manitowoc Engineering Co.
Naval Facilities Engr. Command
Cable Crane and Exc. Div. FMC
Chiapetta, Welch & Assoc.
Harnischfeger Corp.
U.S. Coast Guard Ship Design Branch
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>SECTION I - PROPOSED RECOMMENDED PRACTICE - SAE J-1366</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1. Purpose</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2. Scope</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3. Applications</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>4. Definitions</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>5. Dynamic Load</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>6. Calculation Procedure</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>7. Marine Crane Rating Chart Format</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>8. Rating for List</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>9. Pendulation</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>10. References</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A - Calculation of the Dynamic Load Rating</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>B - Static Side Loading of Barge-Mounted Cranes</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>SECTION II - CRANE RATING COMPUTER PROGRAM</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>Disclaimer</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>1. Obtaining the Crane Rating Program</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>2. Using the Crane Rating Program</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>3. Crane Modeling Guide</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>5. Example Problem</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>6. Program J1366 Listing</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C - Program J1366 Listing</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>SECTION III - RELATED DOCUMENTATION</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D - Procedures for Determining Load Ratings for Truck Cranes Supported on a Floating Platform Moored in the Open Sea</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>E - Dynamic Vertical Forces on a Crane Loading (Unloading) a Floating Platform</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>F - Dynamic Loads on a Shipboard Crane Boom Due to Ship Motion</td>
<td></td>
<td>133</td>
</tr>
</tbody>
</table>
Contents

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Percent Offlead and Sidelead</td>
<td>13</td>
</tr>
<tr>
<td>II.</td>
<td>Marine Crane Rating Chart for Floating Platform</td>
<td>14</td>
</tr>
<tr>
<td>III.</td>
<td>Data File Input Record Format</td>
<td>43</td>
</tr>
<tr>
<td>IV.</td>
<td>Wind and Sea Scale for Fully Arisen Sea</td>
<td>49</td>
</tr>
<tr>
<td>V.</td>
<td>Characteristics for Typical Crane Supporting Vessels</td>
<td>50</td>
</tr>
<tr>
<td>VI.</td>
<td>Typical RAO Data File - C3.RAO for the C3 Hull with a 135° Incident Wave Direction</td>
<td>51</td>
</tr>
<tr>
<td>VII.</td>
<td>Land Rating Chart for the EXAM4000 Crane</td>
<td>62</td>
</tr>
<tr>
<td>VIII.</td>
<td>Typical Crane Data File - EXAM4000.DAT for the EXAM4000 Crane</td>
<td>62</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Platform Motion Coordinate System</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>Standard Crane Rating Conditions: Crane Orientation and Sea Direction</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>Plan Frame Crane Models for Various Machine Configurations</td>
<td>41</td>
</tr>
<tr>
<td>4.</td>
<td>Two-Dimensional Crane Model Nomenclature</td>
<td>44</td>
</tr>
<tr>
<td>5.</td>
<td>Typical C3 Response Amplitude Operators</td>
<td>52</td>
</tr>
<tr>
<td>6.</td>
<td>Typical C4 Response Amplitude Operators</td>
<td>53</td>
</tr>
<tr>
<td>7.</td>
<td>Typical C5 Response Amplitude Operators</td>
<td>54</td>
</tr>
<tr>
<td>8.</td>
<td>Typical C7 Response Amplitude Operators</td>
<td>55</td>
</tr>
<tr>
<td>9.</td>
<td>Typical De Long Type A Barge Response Amplitude Operators</td>
<td>56</td>
</tr>
<tr>
<td>10.</td>
<td>Typical De Long Type B Barge Response Amplitude Operators</td>
<td>57</td>
</tr>
<tr>
<td>11.</td>
<td>Supporting Platform Model for the Example Problem Using a C3 Hull</td>
<td>58</td>
</tr>
<tr>
<td>12.</td>
<td>Crane Model for the EXAM4000 Crane Used in the Example Problem</td>
<td>59</td>
</tr>
</tbody>
</table>
SECTION I
PROPOSED RECOMMENDED PRACTICE - SAE J-1366

1. PURPOSE: The purpose of this recommended practice is to establish the design dynamic loads, the calculation procedures for rated loads, and a load-rating chart format for lift cranes operating in a variety of sea conditions.

2. SCOPE: The scope of this recommended practice is limited to a lift crane mounted on a fixed or floating platform lifting loads from a vessel alongside. The size of the vessel is assumed not to exceed that of a workboat as defined in 4.15.

3. APPLICATIONS: This recommended practice establishes a method of arriving at standard dynamic loads presumed to act on a crane operating in various specified sea conditions. The load factors are used to determine dynamic rated loads for the crane when operating in the specified sea conditions. The dynamic loads specified were arrived at by consultations between crane manufacturers, users, and Navy personnel on the interaction between environmental effects and ship motions.

3.1 Crane Manufacturers Responsibility: To calculate the static and dynamic rated capacity of the crane for the standard specified sea conditions and to publish the rating chart.

3.2 Users Responsibility: To determine sea condition existing when lift work is to be performed so that the proper rated-load column can be selected. The sea condition may be determined by consultation with on-site expert personnel such as ship captain, lift work superintendent, etc. The appropriate rating thus determined should be relayed to the crane operator and stay in effect until similarly revised.

3.3 Customers Responsibility: Provide the crane manufacturer with the required response amplitude operators for the crane supporting vessel. The heave, roll, and pitch response amplitude operators for a 135 deg incident wave shall be provided for the desired operating water depth.
The response amplitude operators are complex numbers in polar form for each wave frequency to be considered. They are expressed in terms of the modulus (feet/foot or radius/foot) and amplitude (radians). Additionally, the customer shall specify the location of the crane on the deck of the supporting vessel and the height of the deck above the water. The customer shall also provide the necessary crane parameters such as the desired boom length and number of parts of load hoist line. The customer-supplied information will be used as input for the rating program described in Appendix A. The computer program and user documentation can be obtained through the Society of Automotive Engineers.

3.4 Special Considerations Affecting Application:

3.4.1 Ballasting systems capable of reducing load-induced platform motion throughout the crane operating procedure(s) are to be considered in determination of list and trim loading on the crane (Appendix B).

3.4.2 A mooring system of anchor winches capable of adequately limiting platform response to wave action is to be considered in determination of platform motion response factors.

3.4.3 A heave-compensating device used in the load hoist system may allow an increase in the dynamic rated load. The amount of reduction should be based on the crane manufacturer's interpretation of performance test data.

3.4.4 For loads lifted from a platform on which a crane is mounted, \(V_D, A_D, \) and \(V_{BP} \) in Equation 2 are assumed zero, and the picking peak dynamic load is greatly reduced. A rated load greater than the static rated load as defined in paragraph 6.3 shall not be used.

3.4.5 After the crane lifts the load, the load rating should consider boom point acceleration and load pendulation effects (see paragraph 9.0).

4. DEFINITIONS

4.1 Significant value is the average of the highest one-third of given population values. Population values may refer to wave height, roll, pitch, or yaw angles, etc. The significant value is twice the standard deviation, assuming a zero mean time history.
4.2 Sea state is an indicator relating the height of the waves to sea conditions in relative terms.

4.3 Wave instrument reading as used on the load rating chart indicates the value obtained from a wave buoy or a wave staff that relates to the sea conditions. The wave instrument reading can be analyzed to form the ratio of the average wave height to the average period (\(H/T \)).

4.4 Wave height is the vertical distance from wave crest to trough.

4.5 Surge is the single amplitude (SA) fore and aft ship motion along the longitudinal axis through the center of gravity (see Fig. 1).

4.6 Sway is the SA athwart ship motion along the transverse axis through the center of gravity (see Fig. 1).

4.7 Heave is the SA vertical ship motion along the vertical axis through the center of gravity (see Fig. 1).

4.8 Roll is the SA angular ship motion about the longitudinal axis through the center of gravity (see Fig. 1).

4.9 Pitch is the SA angular ship motion about the transverse axis through the center of gravity (see Fig. 1).

4.10 Yaw is the SA angular ship motion about the vertical axis through the center of gravity (see Fig. 1).

4.11 Offlead is the percent slope from the vertical in the vertical plane of the boom that locates the position of the load with respect to the tip of the boom.

4.12 Sidelead is the percent slope from the vertical normal to the vertical plane of the boom that locates the position of the load with respect to the tip of the boom.

4.13 Dynamic rated load \((W_D) \) is the maximum load that can be lifted under specified dynamic conditions without exceeding allowable strength limits.

4.14 Static rated load \((W_S) \) is 75% of the maximum load that can be lifted under normal land conditions without exceeding allowable strength limits.

4.15 A typical workboat is a vessel of 180-ft length, 40-ft beam, and 1,500-long-ton displacement.

4.16 List is the angle of inclination of ship about the longitudinal axis through the center of gravity.

4.17 Trim is the angle of inclination of ship about the transverse axis through the center of gravity.

4.18 Load hoist line velocity is the full load hoist speed at the drum based on the maximum rated load for the specified rope.
5. **DYNAMIC LOAD**: The dynamic load being addressed is imposed on the crane at the time of load liftoff from the moving deck of the vessel alongside. Additionally, consideration is directed to the effects of the horizontal displacement in the plane of the boom and normal to the plane of the boom caused by surge and sway of the vessel.

After studying the motions of a workboat, it is assumed that the vertical motion follows wave amplitude and that horizontal motions include sway, surge, and yaw, but exclude drift.

The vertical dynamic load, P (lb), that occurs when the lifted load W (lb) is directly under the boom tip is given by the equation:

$$P = W \left\{ 1 + \left[\frac{K}{g} \left(V_D + V_H \right)^2 + \left(\frac{A_D}{g} \right)^2 \right]^{1/2} \right\}$$

(1)
where: \(g = \) acceleration due to gravity \((\text{ft/sec}^2)\)

\(K = \) vertical structural stiffness component with the load force at appropriate offlead \((\text{lb/ft})\)

\(V_D = \) vertical velocity of the workboat deck at the pick point \((\text{ft/sec})\)

\(V_H = \) velocity of the load hook which includes the load hoist line velocity, parts of line, and the boom point velocity \(V_{BP} \) \((\text{ft/sec})\)

\(A_D = \) acceleration of the workboat deck at the pick point \((\text{ft/sec}^2)\)

Since Equation 1 is a quadratic equation in terms of \(W \), Equation 1 may be solved for \(W \) and called \(W_D \):

\[
\frac{1}{W_D} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \tag{2}
\]

where: \(A = p_{\text{max}}^2 \)

\[
B = -2p_{\text{max}} \frac{K V_D + V_H^2}{g}
\]

\[
C = 1 - \frac{A_D^2}{g}
\]

Wave heights and periods, \(V_D \), \(A_D \), and \(V_{BP} \) are calculated considering the sea spectrum, ship motion response to the spectrum sea and boom point position. The values for \(V_D \), \(A_D \), and \(V_{BP} \) selected for rating purposes, are the 90% probability of occurrence values (see Appendix A). The crane is assumed to be in a rating position as shown in Fig. 2. Implicit in
5. (Continued)

![Diagram of crane rating conditions]

FIG. 2 - STANDARD CRANE RATING CONDITIONS: CRANE ORIENTATION AND SEA DIRECTION

well as sidelead and offlead effects. See Table I for sidelead and offlead values. Equation 2 is to be used to calculate a series of values for W_D corresponding to values of \bar{H}/\bar{T}, such as those listed in Table II.

6. **CALCULATION PROCEDURE**: The dynamic rating calculation procedure outlined below is implemented in a computer program which is described in Appendix A. The calculated dynamic rated loads (W_D) will not produce a peak dynamic load that will exceed the land rated load (P_L).

6.1 **Land Rated Load**: Begin the calculation procedure with a land rated load (P_L) for each W_D that will be listed on the dynamic rating chart. The land rated load, P_L, is determined by referencing strength margins to standard industry test practice for land cranes, without limitations due to the number of parts of load hoist line. This paragraph does not imply
6.1 (Continued)

that a crane test is required, however, it does imply that the crane has been properly rated for land use, that is, it would pass SAE J987 if tested.

6.1.1 Strength margins for land rated loads in all areas above the top slewing ring mounting face shall be not less than those specified in SAE-J987 (structures) and J959 (ropes) with an applied vertical load P_L that has been modified to include an out of plane side load and optionally implane off lead according to Table I for each sea state shown in the dynamic rating chart. The SAE-J987 test rated crane may be derated for additional effect of sideleads in excess of $2.7\% \times W_s$ by using calculation procedures such as those specified in SAE J1093.

6.1.2 Strength margins for land rated loads in all areas below the bottom of the slewing ring mounting face shall not be less than those specified in Section 5 of the AISC Manual of Steel Construction (Ref 9) with $1.5 P_L$ as the applied load, or 1.5 times the strength margin specified by SAE J987 when calculated or tested with $1.0 P_L$ as the applied load (see paragraph 6.1).

6.1.3 The strength margin within the swing circle assembly including fasteners shall be such that the computed stress with dead load plus $3.75 P_L$ shall not exceed the engineering ultimate tensile strength of the material.

6.2 Calculate P_{max}: For each W_D to be shown find P_{max}, the smallest of

$$P_{\text{max}} = \frac{P_L \cos \beta}{\cos (\beta - \alpha)}$$

which accounts for offlead when offlead is not considered in paragraph 6.1.1 or

$$P_{\text{max}} = \frac{N_p F_{\text{BS}}}{3.5}$$

which accounts for the number of parts of line where:
6.2 (Continued)

\[P_L = \text{the land rated load (lb)} \]
\[\beta = \text{the boom angle (degrees)} \]
\[\alpha = \text{the offlead angle (degrees)} \]
\[N_p = \text{the number of parts of line in the load hoist system} \]
\[F_{BS} = \text{the load hoist line breaking strength (lb)} \]

6.3 Calculate \(W_S \): Calculate the static rated load \(W_S \) where \(W_S \) is the smallest of

\[W_S = 0.75 \cdot P_L = \frac{P_L}{1.33} \]

which accounts for the crane components or.

\[W_S = \frac{N_p \cdot F_{BS}}{(1.33)(3.5)} = \frac{N_p \cdot F_{BS}}{4.66} \]
\[\frac{N_p \cdot F_{BS}}{5.0} \]

which accounts for the load hoist ropes. The 5.0 factor has been included to be consistent with the American Petroleum Institute (API) 2C 1983 standard.

6.4 Calculate \(K \): For each radius to be shown calculate the vertical stiffness (spring rate) of the system, effective at the load point. The system stiffness is a function of the load line, suspension line, A-frame, boom, pedestal, and jib under service loads. Fewer components may be used as this will make the resulting ratings more conservative.

6.5 Calculate \(V_H \): From the heave, pitch, and roll response amplitude operators supplied by the customer calculate the vertical velocity of the boom point. The absolute velocity of the hook \((V_H) \) is determined by adding the vertical velocity of the boom point to the block hasting
TABLE I - PERCENT OFFLEAD AND SIDELEDA

| Beaufort Wave Height | Significant Wave Height $H_{1/3}$ (ft) | Wave Average Period T (sec) | Average Wave Length λ (ft) | Wave Instrument $\frac{H}{T}$ Reading, ft/sec | Offlead (%) | Sidelead (%) |
|----------------------|--|-----------------------------|--------------------------------'|---------------------------------|-------------|-------------|
| Static | - | - | - | - | 0 | 0 | 2.7%
Dynamic	3	1.0	2.4	20.0	0.26	6	3
	4	2.9	3.9	52.0	0.46	8	4
	5	6.9	5.4	99.0	0.79	12	6
	6	13.0	7.3	164.0	1.15	16	8
	7	23.0	8.7	258.0	1.64	22	11

A Alternatively,

% offlead or sidelead = \frac{(180 \text{ ft})(% \text{ indicated})}{\text{boom tip height above boat deck}}

Minimum sidelead not to be less than 2.7% of static load W_s.

B Readings taken at the center of the Beaufort Wind Force range (Table 11-10, Ref 1).
TABLE II - MARINE CRANE RATING CHART FOR FLOATING PLATFORM

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Crane Model</th>
<th>Serial Number</th>
<th>Boom Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crane Supporting Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance From Platform Deck to Sea Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crane Location: Distance From Stern to Center of Rotation</th>
<th>Distance From Port Side to Center of Rotation</th>
<th>Distance From Platform Deck to Boom Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Hoist Line: 7/8 6x25 IWRC - EIPS]

<table>
<thead>
<tr>
<th>Radius (ft)</th>
<th>Boom Angle (deg)</th>
<th>Static Rating (lb)</th>
<th>Dynamic Ratings at Following Instrument Readings, H/T (ft/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.26 0.46 0.79 1.15 1.64</td>
</tr>
<tr>
<td>Four-Part Main Hoist Line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>78.5</td>
<td>90,000</td>
<td>72,000 56,000 42,900 30,500</td>
</tr>
<tr>
<td>30</td>
<td>75.6</td>
<td>90,000</td>
<td>69,000 56,000 42,900 30,500</td>
</tr>
<tr>
<td>40</td>
<td>69.6</td>
<td>90,000</td>
<td>67,900 56,000 41,900 30,500</td>
</tr>
<tr>
<td>50</td>
<td>64.0</td>
<td>82,000</td>
<td>56,300 46,900 34,700 25,400</td>
</tr>
<tr>
<td>One-Part Whip Hoist Line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>80.1</td>
<td>22,700</td>
<td>18,900 16,900 16,300 13,900 11,500</td>
</tr>
<tr>
<td>30</td>
<td>76.1</td>
<td>22,700</td>
<td>18,900 16,900 16,300 13,900 11,500</td>
</tr>
<tr>
<td>40</td>
<td>70.3</td>
<td>22,700</td>
<td>18,900 16,900 16,200 13,900 11,500</td>
</tr>
<tr>
<td>50</td>
<td>64.0</td>
<td>22,700</td>
<td>18,400 16,500 15,800 13,400 11,000</td>
</tr>
</tbody>
</table>
6.5 (Continued):

speed which is the load hoist line velocity, defined in paragraph 4.18, divided by the number of parts of line.

6.6 Calculate \(V_D \) and \(A_D \): Using the assumptions that the work boat motion follows the wave motion calculate the vertical velocity and acceleration of the deck at a point directly under the boom tip. The Bretschneider two parameter spectrum is assumed to describe the motion of the sea.

6.7 Calculate \(W_D \): For each radius and sea state to be shown on the rating chart calculate \(W_D \) using Equation 2. Furthermore, no \(W_D \) shall be greater than \(W_S \).

6.8 **Rated Load Reduction.** The calculated load for a given sea state shall be adjusted so that no rated load exceeds that for a smaller operating radius.

6.9 **Calculate Swing Torque Requirement:** The swing system shall be designed to start and stop any load within rated capacity at any rotational position of the crane, and it shall be designed to hold any load within rated capacity against the maximum calculated or expected sidelead as shown in Table I, and any deck inclination. Consideration must also be given to the unloaded configuration. This provision is not in the program described in Appendix A, although the significant pitch and roll are computed in the program and printed.

7. **MARINE CRANE RATING CHART FORMAT:** A suggested format for a marine crane rating chart is given in Table II. This format is suggested for use at the discretion of each manufacturer; some suggestions and comments regarding the content of this chart follow:

7.1 Each rating chart should be prepared for a fixed number of parts of load hoist line.

7.2 Each rating chart should also indicate ratings for a whipline if the crane is so equipped.

7.3 The wave instrument reading, \(\bar{H}/\bar{T} \), is a statistical description of the sea condition which is intended to be obtained from a wave recorder as described in paragraph 4.3. Note that
7.3 (Continued)

\[
\frac{\bar{H}}{\bar{T}} \approx 0.62 \frac{H_{1/3}}{\bar{T}}
\]

where \(\bar{H}, H_{1/3}\) and \(\bar{T}\) are taken at the center of the Beaufort wind force range.

8. **RATING FOR LIST:** In many applications the crane is mounted on a platform (e.g., barge) that has a considerable list when a load is lifted even in calm seas. The list may be constant, or may vary as the load is swung to a different orientation on the platform. For these applications in calm seas, structural consideration must be given to sidelead and offlead. Particularly, the swing system and boom must be capable of withstanding the maximum calculated or expected sidelead. The calculations shown in Appendix A do not include rating for list.

8.1 **Constant List Rating (Static):** These ratings are for specified list conditions when list is invariant with swing angle and no mounting vessel specifications are known. List \((\theta_T)\) is specified in Appendix A. The calculations in Appendix A do not include constant list rating.

8.1.1 **Sidelead:** The \% sidelead to be designed for is:

\[
SL = 100 (\sin \theta_T \cos \psi) + 2.7
\] \hspace{1cm} (5)

where: \(\theta_T = \) barge list angle (deg)

\(\psi = \) crane rotation angle (deg)

8.1.2 **Offlead:** The \% offlead to be designed for is:

\[
OL = 100 (\sin \theta_T \sin \psi)
\] \hspace{1cm} (6)

8.1.3 Stresses throughout the machine are calculated at various rotation angles (\(\psi\)) to find worst combinations of OL and SL.
8.2 **Variable List Rating (Near Static):** The ratings are for calm sea conditions when barge mounting specifications are known. See Appendix B for derivation and nomenclature. Appendix A calculations do not include variable list rating.

8.2.1 **Sidelead, Variable:** The % sidelead to be designed for is:

\[SL = 100 \left(\cos \psi \sin \theta_T - \sin \psi \sin \theta_L \right) + 2.7 \]

where: \(\theta_T, \theta_L \), and other nomenclature are defined in Appendix B.

8.2.2 **Offlead, Variable:** The % offlead to be designed for is:

\[OL = 100 \left(\sin \psi \sin \theta_T - \cos \psi \sin \theta_L \right) \]

8.2.3 Stresses throughout the machine are calculated at various rotation angles (\(\psi \)) to find worst combinations of OL and SL.

9. **PENDULATION:** After the load is picked from the workboat, the continued boom point motion of the floating-platform-mounted crane causes pendulation of the load. Load pendulation can cause considerable damage to surrounding cargo, vessels, or the crane itself. It is recommended that tagline restraint systems be used to restrain pendulation of the load.

10. **REFERENCES:**

10. (Continued)

APPENDIX A

CALCULATION OF THE DYNAMIC LOAD RATING

A.1 OBJECTIVE: The dynamic load rating will be discussed and an algorithm for its determination will be presented.

A.2 SCOPE: In the usual practice of lifting a load from the deck of a heaving ship, the crane operator begins the hoist operation at some arbitrary position on a wave. Because of the relationship between hoist speed and wave speed, the pickpoint will be assumed at a random point where the velocity and the acceleration of the pickpoint on the workboat deck can be any value, but correlated with each other.

The workboat motion is induced by wave action, which is a function of sea state, hull shape, and the displacement of the boat. The common workboat used around offshore platforms is usually 1,500-ton displacement or less. Boats of this size respond strongly to the sea, and it is assumed for these calculations, based upon ship motion studies, that the vertical motion of the workboat rear quarter deck is the same as the vertical wave motion.

A crane mounted on a ship or barge is subject to the motion of its supporting vessel. This motion induces loads on the structure that are not considered in land operations. The peak dynamic load is incurred when the load is lifted from a moving workboat. This load is a function of the relative velocity between the hook and the workboat deck. The velocity of the hook includes the hoist velocity and the velocity of the boom point caused by the motion of the supporting vessel.

The response amplitude operators for the crane supporting vessel are assumed to be the responsibility of the customer. It is assumed that a
linear ship motion theory will be employed. Rating calculations are the responsibility of the crane manufacturer. The sea used by the manufacturer shall be described with a Bretschneider spectrum (Ref 1).

A.3 APPROACH: The dynamic rated load is determined from Equation 2, which requires values for the maximum static load, the work boat deck velocity and acceleration, and the hook velocity. The maximum static load (P_{max}) is a function of the rated load including provision for sidelead for the entire machine (determined outside of this procedure) modified for off-lead and the number of parts of load hoist line. The work boat motion is assumed to follow the wave; therefore, the velocity and acceleration amplitudes are a function of $H_{\text{1/3}}$ and \bar{T} and the average wave length. The boom point velocity amplitude is obtained by transforming the ship response amplitude operators to the boom point and multiplying by the appropriate Bretschneider spectrum. The velocity of the load hoist line is combined with the boom point velocity in order to get the velocity of the hook.

A simulation of the desired motion is performed. A sinusoidal simulation is used to simplify the random description of the sea. The random sea waves are represented by a sinusoidal wave having a frequency related to the wave average period. The amplitudes of the wave displacement, velocity and acceleration are related to the significant wave height. The motion of the boom point is assumed to follow the supporting platform, therefore, the associated phase angle is zero. The motion of the work boat, under the boom point, is out of phase with respect to the supporting platform and the boom point. This phase difference is accounted for by relating the horizontal distance from the center of gravity of the supporting platform to a point under the boom point, to the ocean wave average wave length. The dynamic rated load is calculated using values required by Equation 2 at 101 different locations on the simulated wave. The minimum dynamic rated load is selected for each operating radius shown in the rating chart. The algorithm details for determining the dynamic rated load follow.
A.3.1 Algorithm: The procedure that follows describes the computer program that is used to calculate the dynamic chart.

1. Basic Input Parameters: The input parameters required are defined in the SAE J-1366 computer program manual available from the society. They will not be described at this point, suffice it to say that the basic crane geometry, crane member properties, ship system properties, and other geometric and related data are required.

2. Land Rated Load, \(P_{\text{max}} \), and Static Rated Load: The land rated load is the standard SAE J-987 rating for the crane with modifications for sidelead and optionally off lead. The standard land rated load with a 2.0% sidelead is modified to include each of the additional sideleads and optional off lead shown in Table I of the standard. These ratings are not determined as part of this procedure but are part of the input parameters along with the associated boom radius and boom point elevations. The off lead rating, if not previously considered, is determined as:

\[
P_{OL} = P_L \cos \beta \frac{\cos \alpha}{\cos (\beta - \alpha)}
\]

which was determined by solving for a constant boom foot moment using the nomenclature below:

\[\text{FIG. A-1 - BOOM OFFLEAD RATING EQUATION NOMENCLATURE}\]
A.3.1 (Continued):

where: \(L = \) the length of the boom (ft)
\[\beta = \text{the boom angle (degrees)} \]
\[\alpha = \text{the offlead angle (degrees)} \]
\[P_{OL} = \text{the offlead load that will give the same boom foot moment as the vertical load (lb)} \]
\[P_L = \text{the vertical load (lb)} \]

The load line rating \(P_{LL} \) is determined from the breaking strength of the load line ropes and the number parts of line between the boom point and the hook. This value is reduced by 3.5 as specified in SAE J-959:

\[P_{LL} = \frac{N_P F_{BS}}{3.5} \]

where: \(N_P = \) the number of parts of line in the load hoist system
\[F_{BS} = \text{the load line breaking strength} \]

The \(P_{max} \) term used in Equation 2 of the standard is the minimum of the offlead rating and the load line rating.

Finally, the static rated load, \(W_S \), is determined so no dynamic load, \(W_D \), will exceed \(W_S \), where \(W_S \) is the smallest of:

\[W_S = 0.75 P_L = \frac{P_L}{1.33} \]

which accounts for the crane components or,
A.3.1 (Continued)

\[W_s = \frac{N_p F_{BS}}{(1.33)(3.5)} = \frac{N_p F_{BS}}{4.66} \]

which accounts for the load hoist ropes. This procedure, including replacing the constant 4.66 by 5.0, is done so the SAE ratings do not exceed those produced by the American Petroleum Institute (API-2C, 1983) ratings.

3. Locate the Point of Interest Under the Boom Point. Considering the general coordinate system is located at the center of gravity of the crane supporting platform. The crane may be located at an arbitrary position on the platform. The vector in the horizontal plane that locates the boom point with respect to the platform center of gravity is calculated as follows:

\[r_x = O_r \cos(\gamma) + X_{cr} \]
\[r_y = O_r \sin(\gamma) + Y_{cr} \]
\[r = \sqrt{r_x^2 + r_y^2} \]
\[\varepsilon = 180.0 - \frac{180.0}{\pi} \tan^{-1} \left(\frac{r_y}{r_x} \right) \]

where:
- \(O_r \) = the operating radius (ft)
- \(X_{cr}, Y_{cr} \) = the x and y distances between the ship cg and the center of rotation (ft)
- \(r_x, r_y \) = the x and y distance to the point under the boom point in the x-y plane (ft)
- \(\gamma \) = the swing angle with respect to the x axis (degrees)
A.3.1 (Continued)

\[\epsilon = \text{location of the } r \text{ vector with respect to the negative x axis (degrees)} \]

4. Calculate the Velocity and Acceleration of the Pick Point on the Work Boat Deck. The work boat is assumed to follow the wave. The wave is described using the Bretschneider two parameter \((H_{1/3}, \bar{T})\) spectrum. The area under this spectrum is the variance of the wave motion for a given sea state (Ref 5). The variance \((\sigma^2)\) for a zero mean record can be converted to \(a_{1/3}\) (single amplitude) or \(H_{1/3}\) (double amplitude) significant wave heights by appropriate factors \((2\sigma \text{ and } 4\sigma, \text{ respectively})\) according to Refs. 6 and 7. In this procedure a constant amplitude sinusoidal wave is used to simulate the motion of the work boat. The wave amplitude is \(a_{1/3}\), the frequency is derived from the average period \((\bar{T})\) of the random sea, \(\omega = 2\pi/\bar{T}\) in rad/s. The phase angle, \(\phi\), with respect to the center of gravity of the supporting platform is determined by comparing a projection of the \(r\) vector, determined in step 3, upon the average wave length vector \(\lambda\) as follows:

\[\phi = 2\pi \frac{r \cos (\xi - \epsilon)}{\lambda} \]

where: \(\xi = \text{the direction of the incident waves with respect to the negative x axis (degrees)}\)

\(\epsilon = \text{the location of the } r \text{ vector with respect to the negative x axis (degrees)}\)

\(\lambda = \text{the average wave length of the impinging waves (ft)}\)

The work boat motion with respect to time \(t\) (sec) is given by

\[D_D = a_{1/3} \sin (\omega t + \phi) \]
A.3.1 (Continued)

\[V_D = \omega a^{1/3} \cos (\omega t + \phi) \]

\[A_D = -\omega^2 a^{1/3} \sin (\omega t + \phi) \]

where: \(\omega = \frac{2\pi}{T} \)

and \(D_D, V_D, \) and \(A_D \) are the work boat deck displacement, velocity, and acceleration respectively.

5. **Vertical Stiffness:** The vertical deflection of the crane boom tip is computed using the stiffness matrix method of analysis (Ref 8). The origin of the coordinate system used to describe the crane is the boom foot. Various members can be included in the model (the boom, pendants, and gantry, for example). The method employed uses a two dimensional model. Provision is made to permit certain crane components to change position as the boom angle changes; the mast, pendants and boom move as a unit when the boom is raised or lowered, for instance. A pedestal crane, a crawler crane, a truck crane, a ring supported crane, or any general configuration may be modeled.

The vertical deflection of the load hoist fall is computed separately from the boom tip deflection, then the two quantities are combined. The deflection of the load hook due to the load line is:

\[
\Delta_{LL} = \frac{12.0 P_H (B_L + N_p (D_{BP} + D_W))}{N_p^2 A_R E_R}
\]

where: \(\Delta_{LL} = \) the deflection of the load line (in.)

\(P_H = \) the load on the hook, a dummy 10,000 lb load is used

\(B_L = \) the boom length (ft)
5. (Continued)

\[N_p = \text{the number of parts of line} \]

\[D_{BP} = \text{the distance between the deck and the boom point (ft)} \]

\[D_w = \text{the distance between the deck and the water surface (ft)} \]

\[A_R = \text{the area of the rope (in.}^2) \]

\[E_R = \text{the modulus of elasticity of the ropes (psi)} \]

The vertical stiffness is computed from the deflection. The vertical boom point deflection is added to the deflection of the load hoist hook times the cosine of the offlead angle to account for offlead. Then the hook load (10,000 lb) is divided by the total vertical deflection to produce the vertical stiffness. Of course, this procedure is repeated for each boom angle shown on the load rating chart.

Vertical stiffness values are generally calculated by individual manufacturers using their own design programs. This standard uses the above procedure to make it generally applicable to all manufacturers. Alternate methods such as SAE HS J-1093, for computing the vertical stiffness are acceptable. However, appropriate modification to the rating programs would have to be done by the manufacturer.

6. **Boom Point Velocity and Hook Velocity:** The boom point vertical velocity is determined from the ship response amplitude operators (RAO) and the Bretschneider spectrum. The customer is responsible for providing the heave, roll, and pitch displacement RAOs. These quantities must include the modulus (absolute value) and amplitude (argument) of the function in order to fully describe the complex number RAOs in polar form. The RAO is assumed to be determined with respect to the crane supporting platform center of gravity. The displacement RAO for the point of interest (i.e., the boom point) is computed using the appropriate transformation.
A.3.1 (Continued)

6. (Continued)

The displacement RAOs are converted to auto spectrum functions by multiplying the Bretschneider two parameter sea spectrum. The crane supporting platform vertical displacement RAOs for a unit wave are transformed to the boom point to represent the boom point vertical displacement. Multiplying the square of the boom point vertical displacement RAO by the Bretschneider spectrum (e.g., $H_{1/3} = 8.0$ ft and $\bar{T} = 5.7$ seconds) produces the auto spectrum (PSD) for the boom point vertical displacement. This displacement auto spectrum is converted to velocity by multiplying each ordinate by the corresponding angular frequency. The area under the spectrum is the variance of the velocity time history (assuming a zero mean velocity time history). The boom point velocity can be selected knowing the variance is related to the standard deviation by the square root function. A standardized variable may be used in conjunction with the standard deviation to give a particular value where one can be assured that there is a small chance of exceeding that value. For example, a standardized variable equal to 1.28 multiplied by the standard deviation of the boom point vertical velocity (V_{BP}) yields approximately a 10% chance of exceeding that product value.

A sinusoidal simulation of the boom point velocity, consistent with the simulation of the workboat can be accomplished. Using the standard deviation and a 1.28 standardized variable for the desired amplitude, the boom point vertical velocity can be simulated by $V_{BP} \cos (\omega t)$. To this quantity for each t, $\bar{T}/100$ increments, add the constant load line velocity to get the velocity of the hook. Notice that $\cos (\omega t)$ was used in order to be consistent with the workboat velocity simulation explained in step 4. Since the amplitude of the $\cos (\omega t)$ term is the boom point vertical velocity, $\omega \cos (\omega t)$ would be redundant.

7. Solve for the Dynamic Rated Load: The dynamic rated load is solved using a quadratic equation for W_D. This equation is:
\[
\frac{1}{W_D} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}
\]

where: \(A = P_{\text{max}}^2 \)

\[B = -2.0 P_{\text{max}} \left(\frac{K V_D + V_H^2}{g} \right) \]

\[C = 1 - \frac{A_D^2}{g} \]

\(A_D = \) acceleration of the work boat deck (ft/s²)

\(V_D = \) velocity of the work boat deck (ft/s)

\(V_H = \) the vertical velocity of the hook which includes the vertical velocity of the boom point and the load hoist system (ft/s)

\(P_{\text{max}} = \) (defined under step 2 above) (lb)

\(g = \) the acceleration due to gravity (ft/sec²)

\(K = \) the vertical stiffness (lb/in.)

As with any quadratic equation there are three possibilities for solution: (1) two equal roots \((B^2 - 4AC = 0)\), (2) two real and distinct roots \((B^2 - 4AC > 0)\), and (3) conjugate complex numbers \((B^2 - 4AC < 0)\). The last case is not practical for this application, therefore it is considered erroneous.

The dynamic rated load is defined as the minimum safe load that can be lifted at a given boom angle. Thus, the minimum value is selected for case (1) or (2) above. Furthermore, a sinusoidal simulation of the work boat velocity \((V_D)\) and acceleration \((A_D)\), and the boom point
velocity \(V_{BP}\) is done at \(T/100\) increments to insure the proper relationship exists between these quantities and to ensure the computed load population contains the minimum dynamic load. Lastly, the computed dynamic rated load is compared against the static load defined in section 2 above to ensure that this later load is not exceeded. A provision has been added to ensure the dynamic rated load is never larger than the dynamic rated load for smaller operating radii.
APPENDIX B

STATIC SIDE LOADING OF BARGE-MOUNTED CRANES

B.1 INTRODUCTION. Cranes operating on floating barges induce list and trim that vary with the slew angle of the crane, load being handled, and vertical and horizontal position of the unbalanced load relative to the metacenter. List is the angle between the plane of the barge and the horizon in the transverse direction, and trim is the angle between the plane of the barge and the horizon in the longitudinal direction. Because most barges are not built or loaded symmetrically, the combined list and trim may result in a sidelead as well as an offlead angle. It is the purpose of this appendix to develop a concise mathematical approximation for the estimation of these static side loading components for any arbitrary crane orientation.

B.1.1 Naval Architecture Method: To calculate the list and trim produced by a crane operating on a barge of known characteristics, it is first necessary to determine the location of the barge metacenter and the loads and moments with respect to the metacenter.

1. The following assumptions are made:

a. The crane is mounted on a rectangular, wall-sided barge. The weight of the barge, crane, load, and foundation is W (pounds) and the area of the barge at the water plane is A (ft²).

b. For small angles of list and trim, the changes in A are negligible.

2. The average barge draft, d, is calculated:
B.1.1 (Continued)

2. (Continued):

\[d = \frac{W}{\lambda A} \text{ (ft)} \quad (B-1) \]

where \(\lambda \) is the density of seawater, 64 lb/ft\(^3\).

3. The transverse metacentric height above the center of gravity, \(GM_T \), is given by:

\[GM_T = BM_T - BG \quad (B-2) \]

where \(BG \) is the distance from the center of buoyancy (approximately \(d/2 \)) to the center of gravity, and \(BM_T = b^2/12d \), where \(b \) is the width of the barge.

4. Similarly, the longitudinal metacentric height, \(GM_L \), is given by:

\[GM_L = BM_L - BG \quad (B-3) \]

where \(BM_L = L^2/12d \), where \(L \) is the length of the barge.

5. The list angle \(\theta_T \) and the triangle \(\theta_L \) are given by:

\[\theta_T = \sin^{-1} \left[\frac{FM_T + RM \sin (\psi)}{W \cdot GM_T} \right] \quad (B-4) \]

and

\[\theta_L = \sin^{-1} \left[\frac{FM_L + RM \cos (\psi)}{W \cdot GM_L} \right] \quad (B-5) \]
B.1.1 (Continued)

5. (Continued)

where: \(F_M = \) fixed moment in the transverse direction (ft-lb)

\(R_M = \) rotating moment (ft-lb)

\(\psi = \) angle of rotation of the crane with respect to the longitudinal center line of the barge

B.1.2 Alternative Solution Method: Where only the barge dimensions are known, or the customer requests assistance from the crane manufacturer in selecting a proper barge size, the following method gives list and trim angles sufficiently accurate for final design.

1. The following assumptions are made:

 a. An unbalanced load \(P \) (pounds) is applied to a rectangular wall-sided barge at an original radius \(R \) (feet) from barge center and a height \(H \) above the center of gravity of the loaded barge. It is standard practice, when using this method to size a barge, to take \(P \) and \(R \) as the total weight and center of gravity of the loaded crane including any counterweight and to select the values of \(P \) and \(R \) that produce the maximum moment about the barge centerline.

 b. For small angles of list and trim, the changes in barge area \(A \) at the water plane are negligible.

2. Considering the barge list \(\theta_T \):

 a. The average barge draft (and the draft at the longitudinal barge axis) is given by:
B.1.2 (Continued)

\[d = \frac{W}{\gamma A} \text{ (ft)} \quad \text{(B-6)} \]

where: \(W \) = total weight of balanced and unbalanced loads (lb)
\(\gamma = \) density of seawater, 64 lb/ft\(^3\)

b. The actual barge draft at any distance \(X \) from the longitudinal barge axis is given by:

\[d_X = d \pm x \tan (\theta_T) = \frac{W}{\gamma A} \pm x \tan (\theta_T) \quad \text{(B-7)} \]

and also by:

\[d_X = \frac{1}{\gamma} \left(\frac{W}{A} \pm \frac{M_X}{I_T} \right) \]

resulting in the equation:

\[\tan \theta_T = \frac{1}{\gamma} \frac{M}{I_T} = 0.0156 \frac{M}{I_T} \quad \text{(B-8)} \]

where \(I_T = \) barge transverse moment of inertia = \(L b^3/12 \) (ft\(^4\)).

c. The barge list causes the momentum of \(P \) to increase such that:

\[M = P \left[R_T + H \tan \theta_T \right] = P R_T + 0.0156 \frac{M H P}{I_T} \]

\[M I_T = P R_T I_T + 0.0156 M H P \]
B.1.2 (Continued)

c. (Continued)

\[
M = \frac{PR_T I_T}{IT - 0.0156 HP} \quad (B-9)
\]

d. Substituting into Equation B-7 provides:

\[
\theta_T = \tan^{-1}\left[\frac{0.0156 PR_T}{IT - 0.0156 HP}\right] \quad (B-10)
\]

3. Similarly:

\[
\theta_L = \tan^{-1}\left[\frac{0.0156 PR_L}{IL - 0.0156 HP}\right] \quad (B-10)
\]

where \(I_L \) = barge longitudinal moment of inertia \(L^3 \) \(b/12 \) (ft\(^4\)).

B.2 GEOMETRY: Assume a right-handed coordinate axis fixed at the CG of the barge with the "x" axis in the longitudinal direction as shown in Figure B-1:

![FIG. B-1 - BARGE COORDINATE SYSTEM.](image-url)
B.2 (Continued)

The unit vector, \mathbf{R}, indicates the orientation of the crane boom and the rotating moment,

$$
\mathbf{R} = \cos(\psi) \hat{i} + \sin(\psi) \hat{j}
$$

where \hat{i}, \hat{j}, and \hat{k} are unit vectors in the x, y, and z directions, respectively.

Allow the barge to undergo a small angular rotation about the "x" and "y" axes, θ_T and θ_L, respectively as shown in Figure B-2:

![Diagram showing the barge trim and list angles](image)

FIG. B-2. BARGE TRIM AND LIST ANGLES.

It can readily be seen that the horizontal plane passes through the three points $\{0,0,0\}$, $\{\cos(\theta_L), 0, \sin(\theta_L)\}$, and $\{0, \cos(\theta_T), \sin(\theta_T)\}$, resulting in the equation,

$$
\begin{vmatrix}
 x & y & z \\
 \cos(\theta_L) & 0 & \sin(\theta_L) \\
 0 & \cos(\theta_T) & \sin(\theta_T)
\end{vmatrix} = 0
$$

$$
x \sin(\theta_L) \cos(\theta_T) + y \sin(\theta_T) \cos(\theta_L) - z \cos(\theta_L) \cos(\theta_T) = 0
$$
B.2 (Continued)

The horizontal plane has a perpendicular vector, \vec{V}, which represents the direction of gravity.

$$\vec{V} = \sin(\theta_L) \cos(\theta_T) \hat{i} + \sin(\theta_T) \cos(\theta_L) \hat{j} - \cos(\theta_L) \cos(\theta_T) \hat{k}$$

$$- \vec{V} \cdot \hat{k} = |\vec{V}| \cos(\theta_M) = \cos(\theta_L) \cos(\theta_T)$$

where: $|\vec{V}|$ is the absolute value of \vec{V}.

$$|\vec{V}| = \sqrt{\cos^2(\theta_L) + \cos^2(\theta_T) - \cos^2(\theta_L) \cos^2(\theta_T)}$$

and θ_M is the maximum combined angle between the barge and the horizontal.

For small angles, $\vec{V} = 1$; therefore:

$$\theta_M = \cos^{-1}\left[\cos(\theta_L) \cos(\theta_T) \right]$$

The side loading on the crane is given by the triple scalar product,

$$S = \frac{\vec{V} \cdot \hat{k} \times \vec{R}}{|\vec{V}|}$$

$$S = \frac{\cos(\psi) \sin(\theta_L) \cos(\theta_T) - \sin(\psi) \sin(\theta_T) \cos(\theta_T)}{\cos^2(\theta_L) + \cos^2(\theta_T) - \cos^2(\theta_L) \cos^2(\theta_T)}$$

A positive value of S indicates counterclockwise loading of the boom.

Once again, for small angles of θ_L and θ_T, the expression can be simplified to:

$$S\% = 100 \left[\cos(\psi) \sin(\theta_T) - \sin(\psi) \sin(\theta_L) \right]$$
B.3 REFERENCES

SECTION II
CRANE RATING COMPUTER PROGRAM

DISCLAIMER

This program is furnished by the Society of Automotive Engineers and is
accepted and used by the recipient with the express understanding that the
Society makes no warranties, expressed or implied, concerning the accuracy,
completeness, reliability, usability, or suitability for any particular pur-
pose of the information and data contained in this program or furnished in
connection therewith, and the Society shall be under no liability whatsoever
to any person by reason of any use made thereof. The program belongs to the
Society. Therefore, the recipient further agrees not to assert any propri-
etary rights therein or to represent this program to anyone as other than a
Society program.

1. OBTAINING THE CRANE RATING PROGRAM: The SAE J 1366 recommended practice
for rating lift cranes operating in the ocean environment has been imple-
mented in a computer program. This program can be obtained from the
Society of Automotive Engineers:

Society of Automotive Engineers
400 Commonwealth Drive
Warrendale, PA 15096-0001

The program was developed using FORTRAN following the ANSI X3.9-1978
full language standard. Most people refer to this standard as FORTRAN 77.
Therefore, the program can be easily installed on any computer that has a
FORTRAN compiler that implements the full language ANSI standard.

The program, a test problem, and typical supporting platform
response operators can be purchased from the Society. This information
will be delivered on a 360K byte, double sided, double density, 5.25-inch
diskette which can be read by any of the IBM compatible microcomputers.
The program can then be installed on the microcomputer or it can be tele-communicated to a larger machine using any terminal emulator such as PC-TALK III or CROSSTALK.

The SAE J 1366 diskette will contain the following files:

a. Program source statements, 6 files:

 BOAT.FOR
 BPVEL.FOR
 FRAME.FOR
 FREQ.FOR
 SAEJ1366.FOR
 SOLVE.FOR

b. The crane test problem used in this report, 1 file:

 EXAM4000.DAT

c. A library of platform RAO's for the C3, C4, C5, ... C7 ship and DELONG A and B barge platforms, 6 files:

 C3.RAO
 C4.RAO
 C5.RAO
 C7.RAO
 DELONGA.RAO
 DELONGB.RAO

d. An executable file for the IBM-PC. This file was prepared using the Ryan-McFarland (IBM Professional) FORTRAN compiler. The program requires a math co-processor and 360K of memory.

 SAEJ1366.EXE

2. USING THE CRANE RATING PROGRAM: When the program begins to run, the following questions will be asked of the user at his terminal:
<NAME OF CRANE DATA FILE>

Reply with the crane data file name without typing the required extension .DAT (e.g. EXAM4000 for EXAM4000.DAT)

<TYPE OF RATING, FIXED OR MOVING PLATFORM>

Reply with either FIXED or MOVING. This option permits running the problem without the effects of the crane supporting platform motion, a quasi SAE J1238 rating.

<NAME OF SHIP RAO DATA FILE>

Reply with the RAO data file name without typing the required extension .RAO (e.g. C3 for C3.RAO).

We have found that it is very easy to create either the crane data file (name.DAT) or the RAO data file (name.RAO) using a screen editor or word processing program. However, certain features should be supported. The left hand tab feature makes it possible to easily insert floating point numbers and character strings in their required fields, the right hand tab likewise makes it very easy to insert integer numbers. A character file (American National Standard Code for Information Interchange (ASCII), ANSI X3.4-1977 codes 32 through 127) with embedded blanks instead of tab controls must be produced so the SAE rating program can recognize the data in the file. A users manual is included showing how to set the required tabs for the crane and RAO data files.

3. **CRANE MODELING GUIDE:** The crane, plane frame, model is used to determine the vertical stiffness in the plane of the boom. The model may be as complete as desired; however, simple models will produce more conservative ratings. Each crane component is represented by a single beam element, such as the boom, pendants, and boom hoist, with appropriate equivalent section and material properties. Various machine configurations can be represented as shown in Figure 3:
(a) Crawler or truck with a floating harness.

(b) Crawler or truck with a mast.

(c) Pedestal mounted marine crane.

FIG. 3 - PLANE FRAME CRANE MODELS FOR VARIOUS MACHINE CONFIGURATIONS.

If desired, a component, the marine crane boom for example, can be modeled with more than one beam element, each with different equivalent section properties.

The plane frame model of the crane may be replaced by the manufacturer. Each manufacturer has their own methods to compute the vertical stiffness of the crane, these methods may be used, however, the computer program and user manual will have to be appropriately modified.

4. COMPUTER PROGRAM MANUAL: The computer program manual that follows describes the typical line of data input. The data are organized in a fixed format style instead of the free format style. This format has been chosen because checking columnar data, characteristics of the fixed
4. (Continued).

form, reduces input errors. Furthermore, a screen editor or word processing program with left, right, and decimal tabulation features facilitate preparing these files.

There are two files used to input the data, each will be described below. The first file contains basic crane descriptive data as well as general problem parameters. The second file provides the platform motion data. These data are the amplitude response operators: heave, roll, and pitch for the supporting platform. Table III provides a description of each type of data input line with associated tabulation stops. The definition of each variable name is listed below. Figures 2 and 4 provide a pictorial definition for some of the variable names.

4.1 Crane Data File: The crane data file contains the problem parameters that describe the crane and other pertinent data. The name of the data file should reflect the name of the crane that is being rated. Eight characters are used plus the extension .DAT. (e.g., EXAM4000.DAT).

4.1.1 Rating parameter input line type A:

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-40</td>
<td>MANUFAC</td>
<td>Name of manufacturer, 40 characters maximum</td>
</tr>
<tr>
<td>41-50</td>
<td>CRANE</td>
<td>Crane name, 10 characters maximum</td>
</tr>
<tr>
<td>51-60</td>
<td>SERIAL</td>
<td>Crane serial number, 10 characters maximum</td>
</tr>
</tbody>
</table>

4.1.2 Rating parameter input line type B:

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>BETA</td>
<td>Wave direction (degrees) with respect to the stern, counterclockwise. This angle must coincide with the wave direction angle used to describe the ship motion data described hereafter. Depth of water in feet.</td>
</tr>
<tr>
<td>11-20</td>
<td>DEPTH</td>
<td>Swing angle (degrees) with respect to the stern, counterclockwise.</td>
</tr>
<tr>
<td>21-30</td>
<td>ALPHA</td>
<td>Velocity (ft/min) of the load hoist line at the drum, positive up.</td>
</tr>
</tbody>
</table>
TABLE III - DATA FILE INPUT RECORD FORMAT

<table>
<thead>
<tr>
<th>A</th>
<th>MANUPAC</th>
<th>CRANE</th>
<th>SERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>BETA (deg)</th>
<th>DEPTH (ft)</th>
<th>ALPHA (deg)</th>
<th>LINSPEED (ft/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>DKEV (ft)</th>
<th>BL (ft)</th>
<th>CRBF (ft)</th>
<th>DXBF (ft)</th>
<th>CRX (ft)</th>
<th>CRY (ft)</th>
<th>AROPE (in.)</th>
<th>EROPE (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>BRKSTR (lb)</th>
<th>NUMPRT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>NM</th>
<th>NJ</th>
<th>NUMRAD</th>
<th>LEDOFF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

REPEAT NJ TIMES

<table>
<thead>
<tr>
<th>F</th>
<th>X (ft)</th>
<th>Y (ft)</th>
<th>X RST (ft)</th>
<th>Y RST (ft)</th>
<th>Z RST (ft)</th>
<th>MDR (ft)</th>
<th>NODE ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>62</td>
</tr>
</tbody>
</table>

REPEAT NM TIMES

<table>
<thead>
<tr>
<th>G</th>
<th>JJ</th>
<th>JK</th>
<th>JMER</th>
<th>KMER</th>
<th>AR (in.)</th>
<th>IZ (in.)</th>
<th>E (psi)</th>
<th>MEMBRID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>72</td>
</tr>
</tbody>
</table>

REPEAT NUMRAD TIMES

<table>
<thead>
<tr>
<th>H</th>
<th>BRAD (ft)</th>
<th>BPLEV (ft)</th>
<th>SLAND</th>
<th>PLAND (lb) FOR SIDE LEAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>3% 40 4% 50 6% 68 8% 70 11% 80</td>
</tr>
</tbody>
</table>

SHIP MOTION FILE - NAMED

<table>
<thead>
<tr>
<th>I</th>
<th>FRQMIN (rad/sec)</th>
<th>FRQMAX (rad/sec)</th>
<th>NUMFREQ</th>
<th>NAMSHIP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>32</td>
</tr>
</tbody>
</table>

REPEAT NUMFREQ TIMES

<table>
<thead>
<tr>
<th>J</th>
<th>DZ (ft/ft)</th>
<th>PHI (rad/ft)</th>
<th>THE (rad/ft)</th>
<th>AZ (rad)</th>
<th>APHI (rad)</th>
<th>THE (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>
FIG. 4 - TWO-DIMENSIONAL CRANE MODEL NOMENCLATURE.

4.1.3 Rating parameter input line type C:

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>DKELV</td>
<td>Deck elevation above the water surface (ft)</td>
</tr>
<tr>
<td>11-20</td>
<td>BL</td>
<td>Boom length (ft)</td>
</tr>
<tr>
<td>21-30</td>
<td>CRBF</td>
<td>Center of rotation to boom foot (ft)</td>
</tr>
<tr>
<td>31-40</td>
<td>DKBF</td>
<td>Deck to boom foot (ft)</td>
</tr>
<tr>
<td>41-50</td>
<td>CRX</td>
<td>Platform CG to center of rotation of crane in the X direction (ft)</td>
</tr>
<tr>
<td>51-60</td>
<td>CRY</td>
<td>Platform CG to center of rotation of the crane in the Y direction (ft)</td>
</tr>
<tr>
<td>61-70</td>
<td>AROPE</td>
<td>Cross section area of load hoist rope (in.2)</td>
</tr>
<tr>
<td>71-80</td>
<td>EROPE</td>
<td>Modulus of elasticity of load hoist rope (psi)</td>
</tr>
</tbody>
</table>

4.1.4 Rating parameter input line type D:

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>BRKSTR</td>
<td>Load hoist rope breaking strength (lbs)</td>
</tr>
<tr>
<td>11-20</td>
<td>NUMPRT</td>
<td>Number of parts of load hoist line</td>
</tr>
</tbody>
</table>
4. (Continued)

4.1.5 Crane size input line type E:

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>NM</td>
<td>Number of members in the crane model, (maximum 50).</td>
</tr>
<tr>
<td>11-20</td>
<td>NJ</td>
<td>Number of nodes in the crane model, (maximum 50).</td>
</tr>
<tr>
<td>21-30</td>
<td>NUMRAD</td>
<td>Number of operation radii (boom angles) in the rating chart, (maximum 20).</td>
</tr>
<tr>
<td>31-40</td>
<td>LEDOFF</td>
<td>Has off lead been considered in the land rating chart input data below? Yes or No</td>
</tr>
</tbody>
</table>

The crane is described using the notion of nodes and members common to most matrix methods for framed structures analysis (Ref 8). The model is a plane frame model. This means the displacements are restricted to a single plane defined by rectangular coordinates. Each member in the plane frame model is defined by two nodes, one at each member end. Thus, the total number of members are determined by counting the node pairs defining the member ends.

4.1.6 Crane geometry input, lines type F, repeated NJ times.

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>X</td>
<td>X coordinate of a node in the crane model, feet.</td>
</tr>
<tr>
<td>11-20</td>
<td>Y</td>
<td>Y coordinate of a node in the crane model, feet.</td>
</tr>
<tr>
<td>21-30</td>
<td>XRST</td>
<td>X restraint for a node, 1 is fixed, 0 is free.</td>
</tr>
<tr>
<td>31-40</td>
<td>YRST</td>
<td>Y nodal translational restraint for a joint, 1 is fixed, 0 is free.</td>
</tr>
<tr>
<td>41-50</td>
<td>ZRST</td>
<td>Rotational restraint about the z axis (Z = X \times Y), 1 is fixed, 0 is free.</td>
</tr>
<tr>
<td>51-60</td>
<td>ICOR</td>
<td>0 Signifies the node is independent of changes in the boom angle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Signifies the node will rotate with changes in boom angle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Signifies the top of the gantry mast configurations Models with a mast require the boom, pendent, and mast move as a triangle. Therefore, ICOR = 1 for nodes on the boom and the mast including the boom and mast tip nodes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Floating harness configurations 3 Signifies the location of the floating harness boom hoist sheaves. The boom pendant is located between the ICOR = 3 node and the last node in the list which must be the boom tip node.</td>
</tr>
<tr>
<td>62-80</td>
<td>NODEID</td>
<td>The description of the node point, 19 characters maximum.</td>
</tr>
</tbody>
</table>
The nodes are defined by coordinates in a rectangular coordinate system having its origin at the boom foot pin. Each node is described by \(x, y \) pairs denoting the horizontal (\(x \)) and vertical (\(y \)) distances from the boom foot. It is customary to have the positive \(x \) axis to the right of the observer and the positive \(y \) axis vertical. This coordinate system is tied to the ship coordinate system through the variables \(CRBF, DKBF, CRX, \) and \(CRY \). Each node may be free to translate or rotate in space. If one desires, the nodes may be restricted from translation, \(x \) or \(y \), and rotation. Some nodes, the boom tip, the mast tip or optional intermediate nodes in the boom must follow the changes in boom angle. The ICOR provision accomplishes this requirement. The last node in the list must define the coordinate of the boom tip. This location is also the place where the load is applied.

4.1.7 Crane member input, lines type G, repeated \(NM \) times.

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>JJ</td>
<td>Node number for the member at end A.</td>
</tr>
<tr>
<td>11-20</td>
<td>JK</td>
<td>Node number for the member at end B.</td>
</tr>
<tr>
<td>21-30</td>
<td>JMER</td>
<td>Member end release for the end A, 0 the end is fixed or 1 the end is released.</td>
</tr>
<tr>
<td>31-40</td>
<td>KMER</td>
<td>Member end release for the end B, 0 the end is fixed or 1 the end is released.</td>
</tr>
<tr>
<td>41-50</td>
<td>AR</td>
<td>Member area (in.(^2)).</td>
</tr>
<tr>
<td>51-60</td>
<td>IZ</td>
<td>Moment of inertia about the member z axis (1g.(^4)).</td>
</tr>
<tr>
<td>61-70</td>
<td>E</td>
<td>Modulus of elasticity for the member (1lb/in.(^2)).</td>
</tr>
<tr>
<td>72-80</td>
<td>MEMBRID</td>
<td>Member description, maximum 9 characters.</td>
</tr>
</tbody>
</table>

A crane member is defined by two nodal end points, one at end A and the other at end B. For example, the boom may be described by a node at the boom foot, end A, and a node at the boom tip, end B. This would be one member. The boom may also be described as a series of members; a base, 10-foot insert, 20-foot insert and a tip, for example. In this case there would be four members described by five nodes. Each member end is assumed to have three reactions: a normal force, a shear force, and a moment. There are occasions where the moment may not be desired.
4. (Continued)

(released), therefore, a member end release feature is provided. This feature permits the node to be free to rotate but restricts the member from carrying a moment at the specified end.

4.1.8 Land crane rating chart input, lines type H, repeated NUMRAD times.

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>BRAD</td>
<td>Operating radius (ft)</td>
</tr>
<tr>
<td>11-20</td>
<td>BPELV</td>
<td>Boom point elevation (ft)</td>
</tr>
<tr>
<td>21-30</td>
<td>SLAND</td>
<td>Static land rating (lb) for 2.7% sidelead</td>
</tr>
<tr>
<td>31-40</td>
<td>PLAND(1)</td>
<td>Static land rating (lb) for 3% sidelead</td>
</tr>
<tr>
<td>41-50</td>
<td>PLAND(2)</td>
<td>Static land rating (lb) for 4% sidelead</td>
</tr>
<tr>
<td>51-60</td>
<td>PLAND(3)</td>
<td>Static land rating (lb) for 6% sidelead</td>
</tr>
<tr>
<td>61-70</td>
<td>PLAND(4)</td>
<td>Static land rating (lb) for 8% sidelead</td>
</tr>
<tr>
<td>71-80</td>
<td>PLAND(5)</td>
<td>Static land rating (lb) for 11% sidelead</td>
</tr>
</tbody>
</table>

The land rating chart for the crane is described. The operating radius is measured from the center of rotation and the boom point elevation is measured from the ground for land cranes or deck for marine cranes. The static land rated load is the static rating for the crane excluding load hoist ropes for each operating radius. A static land rating is required for each of the sidelead and offlead (optional) values listed in Table I.

4.2 Ship Motion Data File: The ship motion data file is supplied by the customer. The file name should represent the ship being used. Eight characters with the extension .RAO form the complete file name (e.g., NEVRSAIL.RAO). It contains the response amplitude operators for the ship or platform that will support the crane to be rated. Each set of response amplitude operators is dependent upon the wave direction (BETA) of the incident wave.

4.2.1 Ship motion parameter line type I:

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>FRQMIN</td>
<td>Minimum angular wave frequency in radians per second which is associated with the first ship motion operator value.</td>
</tr>
</tbody>
</table>
4. (Continued)

11-20 FRQMAX Maximum angular wave frequency in radians per second which is associated with the last ship motion operator value.

21-30 NUMFRQ Number of angular wave frequency values used to obtain the ship motion operators, which is also the number of ship motion operators values (maximum 80).

32-70 NAMSHP Name of the supporting platform, 39 characters maximum.

4.2.2 Ship motion input, lines type J, each motion function has NUMFRQ values:

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>DZ</td>
<td>Heave motion response operator (ft/ft).</td>
</tr>
<tr>
<td>11-20</td>
<td>PHI</td>
<td>Roll motion response operator (radians/ft).</td>
</tr>
<tr>
<td>21-30</td>
<td>THE</td>
<td>Pitch motion response operator (radians/ft).</td>
</tr>
<tr>
<td>31-40</td>
<td>AZ</td>
<td>Heave phase angle (radians).</td>
</tr>
<tr>
<td>41-50</td>
<td>APHI</td>
<td>Roll phase angle (radians).</td>
</tr>
<tr>
<td>51-60</td>
<td>ATHE</td>
<td>Pitch phase angle (radians).</td>
</tr>
</tbody>
</table>

5. EXAMPLE PROBLEM: An example problem producing the rating for a typical mast configured crane supported on a C3 hull is presented to illustrate how to prepare the data for the SAE J1366 program.

5.1 Sea Characteristics: The characteristics of various sea states are presented in Table IV. The table has been presented to help SAE J1366 users relate to sea characteristics required in the rating procedure.

5.2 Ship and Barge Characteristics: Ship and barge characteristics for typical crane support platforms are presented in Table V. SAE J1366 requires the customer to provide the response amplitude operators (RAO) for the crane support vessel. RAOs for the vessels listed in Table V are included with SAE J1366 program to allow the user to gain experience rating the example crane on various platforms.

The RAOs for the platforms listed in Table V were prepared for 135° incident wave direction. The RAOs for the C1, C4, C5, and C7 vessels and the DeLong Type A and B barges were prepared using the relative motion program RELMO developed by NCEL. RELMO uses a linear strip theory to compute the RAOs.
TABLE IV - WIND AND SEA SCALE FOR FULLY ARISEN SEA

<table>
<thead>
<tr>
<th>Sea state</th>
<th>Description</th>
<th>Beaufort wind force</th>
<th>Description</th>
<th>Range, knots</th>
<th>Wind velocity, knots***</th>
<th>Average</th>
<th>Significant</th>
<th>Wind, 1/10 highest</th>
<th>Significant range of waves, sec</th>
<th>Mean square of maximum energy of spectrums</th>
<th>T</th>
<th>Average period</th>
<th>T</th>
<th>Average wave length</th>
<th>Min. maximum fetch, km</th>
<th>Min. maximum duration, hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>See like a mirror.</td>
<td>0</td>
<td>Calm</td>
<td><1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Small waves, should not be pronounced; crests are a glassy appearance, but do not break.</td>
<td>1</td>
<td>Light breeze</td>
<td>1-3</td>
<td>2</td>
<td>0.05</td>
<td>0.06</td>
<td>0.10</td>
<td>up to 1.2 sec</td>
<td>0.7</td>
<td>0.5</td>
<td>10 in.</td>
<td>5</td>
<td>18 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Large waves, crests begin to break; foam of glassy appearance. Perhaps scattered white horses.</td>
<td>2</td>
<td>Gentle breeze</td>
<td>7-10</td>
<td>8.5</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
<td>0.650</td>
<td>3.4</td>
<td>2.4</td>
<td>20</td>
<td>9.8</td>
<td>1.7 hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Small wave, becoming larger; fairly frequent white horses.</td>
<td>3</td>
<td>Moderate breeze</td>
<td>11-18</td>
<td>12</td>
<td>1.4</td>
<td>2.2</td>
<td>2.8</td>
<td>1.070</td>
<td>1.8</td>
<td>3.4</td>
<td>20</td>
<td>9.8</td>
<td>1.7 hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Moderate waves, taking a more pronounced long form; many white horses are formed (chance of some spray).</td>
<td>4</td>
<td>Fresh breeze</td>
<td>17-21</td>
<td>18</td>
<td>8.1</td>
<td>8.7</td>
<td>9.0</td>
<td>5.100</td>
<td>8.1</td>
<td>5.7</td>
<td>111</td>
<td>70</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Strong waves begin to form; the white foam crests are more extensive everywhere (probably some spray)</td>
<td>5</td>
<td>Strong breeze</td>
<td>22-27</td>
<td>22</td>
<td>4.0</td>
<td>10</td>
<td>15</td>
<td>3.200</td>
<td>2.7</td>
<td>1.6</td>
<td>190</td>
<td>100</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sea heats up and white foam from breaking waves begins to be blown in streaks along the direction of the wind (spindrift begins to be seen).</td>
<td>6</td>
<td>Moderate gale</td>
<td>23-33</td>
<td>28</td>
<td>11</td>
<td>18</td>
<td>22</td>
<td>6.155</td>
<td>11.3</td>
<td>7.9</td>
<td>212</td>
<td>230</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Moderately high waves of greater length; edges of crests break into spindrift. The foam is blown in well-marked streaks along the direction of the wind. On the whole, the surface of the sea takes a white appearance. The rolling of the sea becomes heavy and choppy. Visibility affected.</td>
<td>7</td>
<td>Fresh gale</td>
<td>34-40</td>
<td>34</td>
<td>19</td>
<td>20</td>
<td>30</td>
<td>5.150</td>
<td>8.1</td>
<td>6.0</td>
<td>60</td>
<td>80</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>High waves. Dense streaks of foam along the direction of the wind. Sea begins to roll. Visibility affected.</td>
<td>8</td>
<td>Strong gale</td>
<td>41-47</td>
<td>42</td>
<td>51</td>
<td>60</td>
<td>64</td>
<td>7.023</td>
<td>17.0</td>
<td>12.0</td>
<td>492</td>
<td>830</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Very high waves with long overlapping crests. The resulting foam is in great patches and is blown in dense white streaks along the direction of the wind. On the whole, the surface of the sea takes a white appearance. The rolling of the sea becomes heavy and choppy. Visibility affected.</td>
<td>9</td>
<td>Whole gale</td>
<td>48-65</td>
<td>48</td>
<td>44</td>
<td>71</td>
<td>90</td>
<td>7.528</td>
<td>18.4</td>
<td>13.8</td>
<td>650</td>
<td>150</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Exceptionally high waves (small and medium-sized ships might for a long time be lost to view behind the waves). The sea is completely covered with long white patches of foam lying along the direction of the wind. Everywhere the edge of the waves crests are blown into froth. Visibility affected.</td>
<td>10</td>
<td>Storm</td>
<td>55-63</td>
<td>58</td>
<td>64</td>
<td>103</td>
<td>130</td>
<td>8.531</td>
<td>22.8</td>
<td>18.3</td>
<td>910</td>
<td>2100</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Air filled with foam and spray. Sea completely washed with creeping spray; visibility very seriously affected.</td>
<td>11</td>
<td>Hurricane</td>
<td>64-71</td>
<td>>64</td>
<td>>60**</td>
<td>>128**</td>
<td>>164**</td>
<td>10-32</td>
<td>24</td>
<td>17.0</td>
<td>945</td>
<td>2500</td>
<td>101</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*For hurricane winds (and often whole gale and storm winds) required durations and fetches are rarely attained. Seas are therefore not fully arisen.

**For such high winds, the seas are confused. The wave crests blow off, and the water and the air mix.

***A heavy bow showed that values means that the waves fluctuated at the center of the Beaufort range.

Piersen, Newmann, James, "Practical Methods for Observing and Forecasting Ocean Waves." New York University College of Engineering, 1953
5.2 (Continued)

Figures 4 through 9 show the RAO functions with respect to wave period. Table VI is the C3.RAO data file that was used in the example problem.

5.3 Crane and Supporting Platform Model: Data preparation notes for the support platform and the crane are presented to help the user understand how to use Table III.

5.3.1 Ship Geometry: The ship geometry for the EXAM4000 test problem is shown in Figure 11. The ship's geometry variables listed in Table III of the SAE J1366 program user manual are represented. Figure 11 should be correlated with the EXAM4000.DAT file listing. See Table VI how to prepare the ship's geometry data.

<table>
<thead>
<tr>
<th>Class</th>
<th>Length (ft)</th>
<th>Beam (ft)</th>
<th>Displacement (lb x 10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ships</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>470</td>
<td>69</td>
<td>31.9</td>
</tr>
<tr>
<td>C4</td>
<td>540</td>
<td>82</td>
<td>46.8</td>
</tr>
<tr>
<td>C5</td>
<td>582</td>
<td>78</td>
<td>55.2</td>
</tr>
<tr>
<td>C7</td>
<td>670</td>
<td>85</td>
<td>44.8</td>
</tr>
<tr>
<td>Barges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Long Type A</td>
<td>296</td>
<td>80</td>
<td>3.75</td>
</tr>
<tr>
<td>De Long Type B</td>
<td>150</td>
<td>60</td>
<td>1.46</td>
</tr>
</tbody>
</table>
TABLE VI - TYPICAL RAO DATA FILE - C3.RAO FOR THE C3 HULL WITH A 135° INCIDENT WAVE DIRECTION

<table>
<thead>
<tr>
<th>LINE</th>
<th>TYPE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>0.1050</td>
<td>4.0000</td>
<td>80 C3 HULL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J-1</td>
<td></td>
<td>0.9910</td>
<td>0.0010</td>
<td>0.0020</td>
<td>0.0040</td>
<td>1.6690</td>
<td>1.6000</td>
</tr>
<tr>
<td>J-2</td>
<td></td>
<td>0.9780</td>
<td>0.0020</td>
<td>0.0030</td>
<td>0.0070</td>
<td>1.7200</td>
<td>1.6160</td>
</tr>
<tr>
<td>J-3</td>
<td></td>
<td>0.9580</td>
<td>0.0030</td>
<td>0.0030</td>
<td>0.0120</td>
<td>1.7790</td>
<td>1.6340</td>
</tr>
<tr>
<td>J-4</td>
<td></td>
<td>0.9310</td>
<td>0.0040</td>
<td>0.0040</td>
<td>0.0170</td>
<td>1.8490</td>
<td>1.6540</td>
</tr>
<tr>
<td>J-5</td>
<td></td>
<td>0.8970</td>
<td>0.0050</td>
<td>0.0050</td>
<td>0.0220</td>
<td>1.9360</td>
<td>1.6770</td>
</tr>
<tr>
<td>J-6</td>
<td></td>
<td>0.8550</td>
<td>0.0070</td>
<td>0.0060</td>
<td>0.0250</td>
<td>2.0440</td>
<td>1.7040</td>
</tr>
<tr>
<td>J-7</td>
<td></td>
<td>0.8040</td>
<td>0.0100</td>
<td>0.0060</td>
<td>0.0250</td>
<td>2.1790</td>
<td>1.7340</td>
</tr>
<tr>
<td>J-8</td>
<td></td>
<td>0.7470</td>
<td>0.0140</td>
<td>0.0070</td>
<td>0.0220</td>
<td>2.3570</td>
<td>1.7690</td>
</tr>
<tr>
<td>J-9</td>
<td></td>
<td>0.6820</td>
<td>0.0240</td>
<td>0.0080</td>
<td>0.0110</td>
<td>2.6240</td>
<td>1.8110</td>
</tr>
<tr>
<td>J-10</td>
<td></td>
<td>0.6120</td>
<td>0.0460</td>
<td>0.0080</td>
<td>-0.0110</td>
<td>-3.0940</td>
<td>1.8630</td>
</tr>
<tr>
<td>J-60</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-1.3080</td>
<td>-2.2470</td>
<td>-2.5290</td>
</tr>
<tr>
<td>J-61</td>
<td></td>
<td>0.0010</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-1.0920</td>
<td>-2.6480</td>
<td>-0.0590</td>
</tr>
<tr>
<td>J-62</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.8540</td>
<td>2.3950</td>
<td>0.5920</td>
</tr>
<tr>
<td>J-63</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2.2570</td>
<td>0.9520</td>
<td>0.8730</td>
</tr>
<tr>
<td>J-64</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2.3340</td>
<td>0.5280</td>
<td>-2.4590</td>
</tr>
<tr>
<td>J-65</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2.1930</td>
<td>-0.6420</td>
<td>-2.2490</td>
</tr>
<tr>
<td>J-66</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.4600</td>
<td>-2.1220</td>
<td>-2.7500</td>
</tr>
<tr>
<td>J-67</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-1.1770</td>
<td>-2.3200</td>
<td>0.6580</td>
</tr>
<tr>
<td>J-68</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0600</td>
<td>-1.5680</td>
<td>-0.9010</td>
</tr>
<tr>
<td>J-69</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.1030</td>
<td>-1.5400</td>
<td>1.8610</td>
</tr>
<tr>
<td>J-70</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-2.8830</td>
<td>1.2870</td>
<td>1.3690</td>
</tr>
<tr>
<td>J-71</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.5660</td>
<td>-0.8520</td>
<td>-1.6540</td>
</tr>
<tr>
<td>J-72</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1860</td>
<td>-1.5920</td>
<td>-1.5120</td>
</tr>
<tr>
<td>J-73</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.7320</td>
<td>-0.5930</td>
<td>0.8340</td>
</tr>
<tr>
<td>J-74</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0740</td>
<td>-0.5310</td>
<td>-2.1080</td>
</tr>
<tr>
<td>J-75</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.7380</td>
<td>-2.0820</td>
<td>2.8430</td>
</tr>
<tr>
<td>J-76</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-1.9660</td>
<td>2.6300</td>
<td>1.9480</td>
</tr>
<tr>
<td>J-77</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-2.7570</td>
<td>1.3710</td>
<td>-0.3790</td>
</tr>
<tr>
<td>J-78</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.3470</td>
<td>-0.5990</td>
<td>-0.7410</td>
</tr>
<tr>
<td>J-79</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.8910</td>
<td>-1.8240</td>
<td>2.8170</td>
</tr>
<tr>
<td>J-70</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-1.7020</td>
<td>2.1590</td>
<td>2.8590</td>
</tr>
</tbody>
</table>

Table III in the SAE J1366 user manual defines the variables for the ship motion data presented here.
FIG. 5 - TYPICAL C3 RESPONSE AMPLITUDE OPERATORS.
FIG. 6 - TYPICAL C4 RESPONSE AMPLITUDE OPERATORS.
FIG. 7 - TYPICAL C5 RESPONSE AMPLITUDE OPERATORS.
FIG. 8 - TYPICAL C7 RESPONSE AMPLITUDE OPERATORS.
FIG. 9 - TYPICAL DE LONG TYPE A BARGE RESPONSE AMPLITUDE OPERATORS.
FIG. 10 - TYPICAL DE LONG TYPE B BARGE RESPONSE AMPLITUDE OPERATORS.
FIG. 11 - SUPPORTING PLATFORM MODEL FOR THE EXAMPLE PROBLEM USING A C3 HULL
5.3.2 Crane Geometry: The crane geometry for the EXAM4000 test problem is shown in Figure 12. The following section property computations demonstrate how the crane geometry data required by Table III may be computed and present the material properties that are used.

FIG. 12 - CRANE MODEL FOR THE EXAM4000 CRANE USED IN THE EXAMPLE PROBLEM.
Boom

Single circular tube section

- \(d_0 = 4.75 \text{ in.} \)
- \(d_1 = 4.0 \text{ in.} \)
- \(r = \frac{d}{2} \)
 - \(r_0 = 2.375 \text{ in.} \)
 - \(r_1 = 2.0 \text{ in.} \)
- \(A = \pi(r_0^2 - r_1^2) \)
 - \(A = 4.96 \text{ in.}^2 \)
- \(I_{zz} = I_{yy} = \frac{1}{4}\pi(r_0^4 - r_1^4) \)
 - \(I = 12.42 \text{ in.}^4 \)

Four circular tube chords

- Height = 47 in.
- \(A_T = 4 (5.15) \text{ in.}^2 \)
- \(\bar{I} = \bar{I} + A d^2 \)
 - \(= 12.42 + 20.60 (47/2)^2 \)
 - \(= 11,388.77 \text{ in.}^4 \)
- \(I_T = 4 (11,388.77) \)
 - \(I_T = 45,555.08 \text{ in.}^4 \)
 - \(E = 30 \times 10^6 \text{ psi} \)

Pendants

- \(A = 1.59 \text{ in.}^2 \)
- \(A_T = 4 A = 4 (1.59) \)
- \(A_T = 6.36 \text{ in.}^2 \)

Boom Hoist Rope

- \(A = 0.142 \text{ in.}^2 \)
- \(A_T = 16 A \text{ for 16 strands} \)
- \(A_T = 16 (0.142) \)
- \(A_T = 2.27 \text{ in.}^2 \)

The pendant and boom hoist ropes do not support bending, so the bending moment of inertia does not have meaning, however, the plane frame stiffness method of analysis requires non-zero moments of inertia. Therefore, a very small moment of inertia is used for the pendant and boom hoist member properties.

- \(I = 0.2 \text{ in.}^4 \)
- \(E = 24 \times 10^6 \text{ psi} \)

Mast

- Two rectangular tube sections
 - 5-1/2 x 16 x 1/4
 - \(A = 0.582 \text{ in.}^2 \)
 - \(A = 10.5 \text{ in.}^2 \)

Load Hoist Rope

- 1-in. diam
 - \(F_B = 103,400 \text{ lb} \)
Mast

\[I = 325.7 \text{ in.}^4 \]
\[A_T = 2 (10.5) \]
\[A_T = 21.0 \text{ in.}^2 \]
\[I_T = 2 (325.7) \]
\[I_T = 651.4 \text{ in.}^2 \]
\[E = 30 \times 10^6 \text{ psi} \]

Load Hoist Rope

\[E = 15 \times 10^6 \text{ psi} \]

Hook velocity = 100 fpm

Four parts of line

5.3.3 Land Load Ratings With Sidelead: The land crane rating chart (Table VII for the EXAM4000) input required in line type H of Table III are computed separately from the SAE J1366 rating procedure. The procedure requires the crane to be designed so it would pass SAE J987 if it were tested. This criterion establishes the 2.0% sidelead ratings. Strength margins, Section 5 of the AISC Manual of Steel Construction, are evaluated for each of the respective sideleads. Appropriate vertical load derating is required where the allowable margins are exceeded in any of the crane components. The offlead consideration in this rating at this stage is optional.

5.4 Example Solution: A solution for the EXAM4000 example crane supported on a C3 platform is presented in the following pages. The EXAM4000.DAT file shown in Table VIII and the C3.DAT file shown in Table VI were used to produce this solution, which is found in the EXAM4000.MOV file after the SAE J1366 has executed. The EXAM4000.DAT and the C3.DAT files are provided with the program on the distribution diskette.
TABLE VII - LAND RATING CHART FOR THE EXAM4000 CRANE

<table>
<thead>
<tr>
<th>Operating Radius (ft)</th>
<th>Boom Point Elevation (ft)</th>
<th>Land Rated Load (lb) With Side Load/Off Lead (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0/0</td>
<td>2.7/0</td>
<td>3.0/6</td>
</tr>
<tr>
<td>30.0</td>
<td>107.0</td>
<td>264,600</td>
</tr>
<tr>
<td>35.0</td>
<td>105.5</td>
<td>211,500</td>
</tr>
<tr>
<td>40.0</td>
<td>104.0</td>
<td>172,000</td>
</tr>
<tr>
<td>45.0</td>
<td>102.0</td>
<td>144,000</td>
</tr>
<tr>
<td>50.0</td>
<td>99.5</td>
<td>124,100</td>
</tr>
<tr>
<td>60.0</td>
<td>93.5</td>
<td>96,200</td>
</tr>
<tr>
<td>70.0</td>
<td>86.0</td>
<td>78,000</td>
</tr>
<tr>
<td>80.0</td>
<td>76.0</td>
<td>65,200</td>
</tr>
<tr>
<td>90.0</td>
<td>62.5</td>
<td>55,700</td>
</tr>
<tr>
<td>100.0</td>
<td>41.0</td>
<td>46,400</td>
</tr>
</tbody>
</table>

TABLE VIII - TYPICAL CRANE DATA FILE - EXAM4000.DAT FOR THE EXAM4000 CRANE

<table>
<thead>
<tr>
<th>LINE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890</td>
<td>243093033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>THE ABC CRANE COMPANY</td>
<td>EXAM4000</td>
<td>243093033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>135.0</td>
<td>75.0</td>
<td>135.0</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>50.0</td>
<td>100.0</td>
<td>5.0</td>
<td>8.708</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>103400.0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>-20.83</td>
<td>0.000</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2 GANTRY TOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.0</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0 BOOM FOOT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>-3.2642</td>
<td>44.8817</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 MAST TOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>57.3575</td>
<td>81.915</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 BOOM TIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2.27</td>
<td>0.2 24.0 E6 HOIST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>21.0</td>
<td>651.4 30.0 E6 MAST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>6.36</td>
<td>0.2 24.0 E6 PENDENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>20.6</td>
<td>45555.0 30.0 E6 BOOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>30.0</td>
<td>107.0</td>
<td>264600.0</td>
<td>264600.0</td>
<td>251370.0</td>
<td>238140.0</td>
<td>224910.0</td>
<td>211680.0</td>
</tr>
<tr>
<td>H</td>
<td>35.0</td>
<td>105.5</td>
<td>211500.0</td>
<td>211500.0</td>
<td>200925.0</td>
<td>190350.0</td>
<td>179775.0</td>
<td>169200.0</td>
</tr>
<tr>
<td>H</td>
<td>40.0</td>
<td>104.0</td>
<td>172000.0</td>
<td>172000.0</td>
<td>163400.0</td>
<td>154800.0</td>
<td>146200.0</td>
<td>137600.0</td>
</tr>
<tr>
<td>H</td>
<td>45.0</td>
<td>102.0</td>
<td>144000.0</td>
<td>144000.0</td>
<td>137180.0</td>
<td>129960.0</td>
<td>122740.0</td>
<td>115520.0</td>
</tr>
<tr>
<td>H</td>
<td>50.0</td>
<td>99.5</td>
<td>124100.0</td>
<td>124100.0</td>
<td>117895.0</td>
<td>111690.0</td>
<td>105485.0</td>
<td>99280.0</td>
</tr>
<tr>
<td>H</td>
<td>60.0</td>
<td>93.5</td>
<td>96200.0</td>
<td>96200.0</td>
<td>91390.0</td>
<td>86580.0</td>
<td>81770.0</td>
<td>76960.0</td>
</tr>
<tr>
<td>H</td>
<td>70.0</td>
<td>86.0</td>
<td>78000.0</td>
<td>78000.0</td>
<td>74100.0</td>
<td>70200.0</td>
<td>66300.0</td>
<td>62400.0</td>
</tr>
<tr>
<td>H</td>
<td>80.0</td>
<td>76.0</td>
<td>65200.0</td>
<td>65200.0</td>
<td>61940.0</td>
<td>58680.0</td>
<td>55420.0</td>
<td>52160.0</td>
</tr>
<tr>
<td>H</td>
<td>90.0</td>
<td>62.5</td>
<td>55700.0</td>
<td>55700.0</td>
<td>52915.0</td>
<td>50130.0</td>
<td>47345.0</td>
<td>44560.0</td>
</tr>
<tr>
<td>H</td>
<td>100.0</td>
<td>41.0</td>
<td>46400.0</td>
<td>46400.0</td>
<td>44080.0</td>
<td>41760.0</td>
<td>39440.0</td>
<td>37120.0</td>
</tr>
</tbody>
</table>
SAE J1366 VERSION 4.0 RATINGS FOR A EXAM4000 CRANE

MANUFACTURER: THE ABC CRANE COMPANY
CRANE: EXAM4000 SERIAL NUMBER: 243093033

WAVE DIRECTION ANGLE - ZERO TO STERN, CCW 135.00 DEG
WATER DEPTH 75.00 FT
SWING ANGLE - ZERO OVER STERN, CCW 135.00 DEG
LOAD HOIST VELOCITY, POSITIVE UP 100.00 FT/MIN
STANDARDIZED VARIABLE FOR VELOCITY 1.28
DECK ELEVATION ABOVE WATER SURFACE 50.00 FT
BOOM LENGTH 100.00 FT
CENTER OF ROTATION TO BOOM FOOT 5.00 FT
DECK TO BOOM FOOT 8.71 FT
X LOCATION OF CENTER OF ROTATION 0.00 FT
Y LOCATION OF CENTER OF ROTATION 0.00 FT
AREA OF LOAD HOIST ROPE 0.58 IN**2
MODULUS OF ELASTICITY OF LOAD HOIST ROPE 15000000. PSI
LOAD HOIST ROPE BREAKING STRENGTH 103400. LB
LOAD HOIST NUMBER OF PARTS OF LINE 4
NUMBER OF MEMBERS IN CRANE MODEL 4
NUMBER OF JOINTS IN CRANE MODEL 4
NUMBER OF BOOM ANGLES IN RATING CHART 10
LAND RATING INCLUDES OFF LEAD NO

CRANE MODEL IN THE PLANE OF THE BOOM, ORIGIN AT THE BOOM FOOT

<table>
<thead>
<tr>
<th>NODE</th>
<th>LOCATION</th>
<th>COORDINATES (FT)</th>
<th>RESTRAINTS</th>
<th>RAISE/LOWER WITH BOOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
<td>DX</td>
</tr>
<tr>
<td>1</td>
<td>GANTRY TOP</td>
<td>-20.83</td>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>BOOM FOOT</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>MAST TOP</td>
<td>-3.26</td>
<td>44.88</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>BOOM TIP</td>
<td>57.36</td>
<td>81.92</td>
<td>0</td>
</tr>
</tbody>
</table>

BOOM TIP NODE NUMBER IS NODE 4

<table>
<thead>
<tr>
<th>MEMBER</th>
<th>END NODES</th>
<th>ROTATION END RELEASE</th>
<th>AREA (IN**2)</th>
<th>MOMENT OF INERTIA (IN**4)</th>
<th>MODULUS OF ELASTICITY (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 HOIST</td>
<td>1 3</td>
<td>0 0</td>
<td>2.27</td>
<td>0.2</td>
<td>240000000.</td>
</tr>
<tr>
<td>2 MAST</td>
<td>2 3</td>
<td>0 0</td>
<td>21.00</td>
<td>651.4</td>
<td>300000000.</td>
</tr>
<tr>
<td>3 PENDENT</td>
<td>3 4</td>
<td>0 0</td>
<td>6.36</td>
<td>0.2</td>
<td>240000000.</td>
</tr>
<tr>
<td>4 BOOM</td>
<td>2 4</td>
<td>0 0</td>
<td>20.60</td>
<td>45555.0</td>
<td>300000000.</td>
</tr>
<tr>
<td>OPERATING RADIUS (FT)</td>
<td>BOOM POINT ELEVATION (FT)</td>
<td>STATIC RATED LOAD (LB)</td>
<td>SIDELEAD (%)</td>
<td>OFFLEAD (%)</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.7</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>30.00</td>
<td>107.00</td>
<td>264600.</td>
<td>264600.</td>
<td>251370.</td>
<td>238140.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>118171.</td>
<td>118171.</td>
<td>118171.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82720.</td>
<td>82720.</td>
<td>82720.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20680.</td>
<td>20680.</td>
<td>20680.</td>
</tr>
<tr>
<td>35.00</td>
<td>105.50</td>
<td>211500.</td>
<td>211500.</td>
<td>200925.</td>
<td>190350.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>118171.</td>
<td>118171.</td>
<td>118171.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82720.</td>
<td>82720.</td>
<td>82720.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20680.</td>
<td>20680.</td>
<td>20680.</td>
</tr>
<tr>
<td>40.00</td>
<td>104.00</td>
<td>172000.</td>
<td>172000.</td>
<td>163400.</td>
<td>154800.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>118171.</td>
<td>118171.</td>
<td>117516.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82720.</td>
<td>82720.</td>
<td>82720.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20680.</td>
<td>20680.</td>
<td>20680.</td>
</tr>
<tr>
<td>45.00</td>
<td>102.00</td>
<td>144400.</td>
<td>144400.</td>
<td>137180.</td>
<td>129960.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>118171.</td>
<td>115979.</td>
<td>117516.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82720.</td>
<td>82720.</td>
<td>82720.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20680.</td>
<td>20680.</td>
<td>20680.</td>
</tr>
<tr>
<td>50.00</td>
<td>99.50</td>
<td>124100.</td>
<td>124100.</td>
<td>117895.</td>
<td>111690.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>110898.</td>
<td>101835.</td>
<td>90565.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82720.</td>
<td>82720.</td>
<td>82720.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20680.</td>
<td>20680.</td>
<td>20680.</td>
</tr>
<tr>
<td>60.00</td>
<td>93.50</td>
<td>96200.</td>
<td>96200.</td>
<td>91390.</td>
<td>86580.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>88213.</td>
<td>81616.</td>
<td>73587.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72331.</td>
<td>68714.</td>
<td>65098.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20680.</td>
<td>20680.</td>
<td>20680.</td>
</tr>
<tr>
<td>70.00</td>
<td>86.00</td>
<td>78000.</td>
<td>78000.</td>
<td>71400.</td>
<td>70200.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72937.</td>
<td>67879.</td>
<td>61875.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>58647.</td>
<td>55714.</td>
<td>52782.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20680.</td>
<td>20680.</td>
<td>20680.</td>
</tr>
<tr>
<td>80.00</td>
<td>76.00</td>
<td>65200.</td>
<td>65200.</td>
<td>61940.</td>
<td>58680.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61981.</td>
<td>57976.</td>
<td>53356.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>49023.</td>
<td>46571.</td>
<td>44120.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20680.</td>
<td>20680.</td>
<td>20680.</td>
</tr>
<tr>
<td>90.00</td>
<td>62.50</td>
<td>55700.</td>
<td>55700.</td>
<td>52915.</td>
<td>50130.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53759.</td>
<td>50526.</td>
<td>46926.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41880.</td>
<td>39786.</td>
<td>37692.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20680.</td>
<td>20680.</td>
<td>20680.</td>
</tr>
<tr>
<td>100.00</td>
<td>41.00</td>
<td>46400.</td>
<td>46400.</td>
<td>44080.</td>
<td>41760.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45554.</td>
<td>43050.</td>
<td>40411.</td>
</tr>
</tbody>
</table>
SAE J1366 DYNAMIC LOAD RATING CHART FOR A EXAM4000 CRANE

CRANE SUPPORTING PLATFORM: C3 HULL

SIGNIFICANT WAVE HEIGHT	1.00 FT
AVERAGE WAVE PERIOD	2.40 SEC
AVERAGE WAVE LENGTH	20.00 FT
WAVE INSTRUMENT READING	0.26 FT/SEC

<table>
<thead>
<tr>
<th>ANGLE RADIUS (DEG)</th>
<th>(FT)</th>
<th>BOOM RATED LOAD (LB)</th>
<th>PERCENT VERTICAL STIFFNESS (LB/FT)</th>
<th>BOOM TIP VELOCITY (FT/MIN)</th>
<th>BOAT VELOCITY (FT/MIN)</th>
<th>BOAT ACCEL (FT/SSQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.73</td>
<td>30.00</td>
<td>82720.</td>
<td>30.</td>
<td>145912.</td>
<td>-0.09</td>
<td>78.54</td>
</tr>
<tr>
<td>72.78</td>
<td>35.00</td>
<td>82720.</td>
<td>30.</td>
<td>133772.</td>
<td>0.00</td>
<td>78.54</td>
</tr>
<tr>
<td>69.83</td>
<td>40.00</td>
<td>82720.</td>
<td>30.</td>
<td>121404.</td>
<td>0.11</td>
<td>78.54</td>
</tr>
<tr>
<td>66.79</td>
<td>45.00</td>
<td>82720.</td>
<td>30.</td>
<td>109083.</td>
<td>0.00</td>
<td>78.54</td>
</tr>
<tr>
<td>63.64</td>
<td>50.00</td>
<td>82720.</td>
<td>25.</td>
<td>97042.</td>
<td>0.14</td>
<td>78.54</td>
</tr>
<tr>
<td>57.03</td>
<td>60.00</td>
<td>72331.</td>
<td>24.</td>
<td>74968.</td>
<td>0.17</td>
<td>78.54</td>
</tr>
<tr>
<td>49.94</td>
<td>70.00</td>
<td>58647.</td>
<td>23.</td>
<td>56300.</td>
<td>-0.20</td>
<td>78.54</td>
</tr>
<tr>
<td>41.90</td>
<td>80.00</td>
<td>49023.</td>
<td>22.</td>
<td>40663.</td>
<td>0.23</td>
<td>78.54</td>
</tr>
<tr>
<td>32.33</td>
<td>90.00</td>
<td>41880.</td>
<td>22.</td>
<td>27704.</td>
<td>-0.26</td>
<td>78.54</td>
</tr>
<tr>
<td>18.77</td>
<td>100.00</td>
<td>34887.</td>
<td>23.</td>
<td>16104.</td>
<td>0.29</td>
<td>78.54</td>
</tr>
</tbody>
</table>

SINGLE AMPLITUDE CRANE PLATFORM MOTION STATISTICS

SIGNIFICANT HEAVE	0.00 FT
SIGNIFICANT PITCH	0.00 DEG
SIGNIFICANT ROLL	0.00 DEG

SIGNIFICANT WAVE HEIGHT | 0.94 FT
SAE J1366 DYNAMIC LOAD RATING CHART FOR A EXAM4000 CRANE

CRANE SUPPORTING PLATFORM: C3 HULL
SIGNIFICANT WAVE HEIGHT 2.90 FT
AVERAGE WAVE PERIOD 0.90 SEC
AVERAGE WAVE LENGTH 52.00 FT
WAVE INSTRUMENT READING 0.46 FT/SEC

<table>
<thead>
<tr>
<th>ANGLE (DEG)</th>
<th>RADIUS (FT)</th>
<th>BOOM RATED LOAD (LB)</th>
<th>PERCENT DERATE (LB/FT)</th>
<th>VERTICAL STIFFNESS (LT/FT)</th>
<th>BOOM TIP VELOCITY (FT/MIN)</th>
<th>BOAT VELOCITY (FT/MIN)</th>
<th>BOAT ACCEL (FT/SSQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.73</td>
<td>30.00</td>
<td>82720.</td>
<td>69903.</td>
<td>41.</td>
<td>146066.</td>
<td>-2.50</td>
<td>140.14</td>
</tr>
<tr>
<td>72.78</td>
<td>35.00</td>
<td>82720.</td>
<td>69903.</td>
<td>41.</td>
<td>133901.</td>
<td>-1.22</td>
<td>140.03</td>
</tr>
<tr>
<td>69.83</td>
<td>40.00</td>
<td>82720.</td>
<td>69903.</td>
<td>41.</td>
<td>121509.</td>
<td>0.36</td>
<td>140.16</td>
</tr>
<tr>
<td>66.79</td>
<td>45.00</td>
<td>82720.</td>
<td>69903.</td>
<td>40.</td>
<td>109167.</td>
<td>2.00</td>
<td>140.10</td>
</tr>
<tr>
<td>63.64</td>
<td>50.00</td>
<td>82720.</td>
<td>63175.</td>
<td>38.</td>
<td>97108.</td>
<td>2.89</td>
<td>140.16</td>
</tr>
<tr>
<td>57.03</td>
<td>60.00</td>
<td>68714.</td>
<td>51217.</td>
<td>37.</td>
<td>75006.</td>
<td>1.86</td>
<td>140.12</td>
</tr>
<tr>
<td>49.94</td>
<td>70.00</td>
<td>55714.</td>
<td>44019.</td>
<td>35.</td>
<td>56320.</td>
<td>-1.83</td>
<td>140.06</td>
</tr>
<tr>
<td>41.90</td>
<td>80.00</td>
<td>46571.</td>
<td>39062.</td>
<td>33.</td>
<td>40673.</td>
<td>-3.60</td>
<td>140.16</td>
</tr>
<tr>
<td>32.33</td>
<td>90.00</td>
<td>39786.</td>
<td>35380.</td>
<td>30.</td>
<td>27709.</td>
<td>-0.25</td>
<td>139.93</td>
</tr>
<tr>
<td>18.77</td>
<td>100.00</td>
<td>33143.</td>
<td>31811.</td>
<td>26.</td>
<td>16105.</td>
<td>4.01</td>
<td>140.03</td>
</tr>
</tbody>
</table>

SINGLE AMPLITUDE CRANE PLATFORM MOTION STATISTICS

SIGNIFICANT HEAVE 0.08 FT
SIGNIFICANT F:ITCH 0.05 DEG
SIGNIFICANT ROLL 0.09 DEG

SIGNIFICANT WAVE HEIGHT 2.87 FT
SAE J1366 DYNAMIC LOAD RATING CHART FOR A EXAM4000 CRANE

CRANE SUPPORTING PLATFORM: C3 HULL
SIGNIFICANT WAVE HEIGHT 6.90 FT
AVERAGE WAVE PERIOD 5.40 SEC
AVERAGE WAVE LENGTH 99.00 FT
WAVE INSTRUMENT READING 0.79 FT/SEC

<table>
<thead>
<tr>
<th>ANGEL (DEG)</th>
<th>BOOM RADIUS (FT)</th>
<th>RATED LOAD STATIC (LB)</th>
<th>RATED LOAD DYNAMIC (LB)</th>
<th>PER- VERTICAL DERATE (LB/FT)</th>
<th>VELOCITY VELOCITY ACCEL (FT/SSQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.73</td>
<td>30.00</td>
<td>82720.</td>
<td>52040.</td>
<td>56.</td>
<td>146505.</td>
</tr>
<tr>
<td>72.78</td>
<td>35.00</td>
<td>82720.</td>
<td>52040.</td>
<td>56.</td>
<td>134267.</td>
</tr>
<tr>
<td>69.83</td>
<td>40.00</td>
<td>82720.</td>
<td>52040.</td>
<td>56.</td>
<td>171808.</td>
</tr>
<tr>
<td>66.79</td>
<td>45.00</td>
<td>82720.</td>
<td>51122.</td>
<td>50.</td>
<td>109405.</td>
</tr>
<tr>
<td>63.64</td>
<td>50.00</td>
<td>82720.</td>
<td>45670.</td>
<td>50.</td>
<td>97294.</td>
</tr>
<tr>
<td>57.03</td>
<td>60.00</td>
<td>65098.</td>
<td>37083.</td>
<td>50.</td>
<td>75113.</td>
</tr>
<tr>
<td>49.94</td>
<td>70.00</td>
<td>52782.</td>
<td>30466.</td>
<td>51.</td>
<td>56378.</td>
</tr>
<tr>
<td>41.90</td>
<td>80.00</td>
<td>44120.</td>
<td>25939.</td>
<td>51.</td>
<td>40170.</td>
</tr>
<tr>
<td>32.33</td>
<td>90.00</td>
<td>37692.</td>
<td>23528.</td>
<td>50.</td>
<td>27720.</td>
</tr>
<tr>
<td>18.77</td>
<td>100.00</td>
<td>31398.</td>
<td>22378.</td>
<td>45.</td>
<td>16109.</td>
</tr>
</tbody>
</table>

SINGLE AMPLITUDE CRANE PLATFORM MOTION STATISTICS

SIGNIFICANT HEAVE 0.62 FT
SIGNIFICANT PITCH 0.53 DEG
SIGNIFICANT ROLL 0.79 DEG
SIGNIFICANT WAVE HEIGHT 6.74 FT
SAE J1366 DYNAMIC LOAD RATING CHART FOR A EXAM4000 CRANE

CRANE SUPPORTING PLATFORM: C3 HULL
SIGNIFICANT WAVE HEIGHT 13.00 FT
AVERAGE WAVE PERIOD 7.00 SEC
AVERAGE WAVE LENGTH 164.00 FT
WAVE INSTRUMENT READING 1.15 FT/SEC

<table>
<thead>
<tr>
<th>BOOM ANGLE (DEG)</th>
<th>RADIUS (FT)</th>
<th>STATIC LOAD (LB)</th>
<th>DYNAMIC LOAD (LB)</th>
<th>PERCENT STIFFNESS</th>
<th>VERTICAL VELOCITY (FT/SEC)</th>
<th>BOOM TIP VELOCITY (FT/SEC)</th>
<th>BOAT VELOCITY (FT/SEC)</th>
<th>BOAT ACCEL (FT/SSQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.73</td>
<td>30.00</td>
<td>82720.</td>
<td>32060.</td>
<td>73.00</td>
<td>147116.</td>
<td>59.27</td>
<td>342.60</td>
<td>-1.08</td>
</tr>
<tr>
<td>72.78</td>
<td>35.00</td>
<td>82720.</td>
<td>32060.</td>
<td>73.00</td>
<td>134775.</td>
<td>53.36</td>
<td>337.12</td>
<td>-1.41</td>
</tr>
<tr>
<td>69.83</td>
<td>40.00</td>
<td>82720.</td>
<td>30938.</td>
<td>70.00</td>
<td>122223.</td>
<td>44.45</td>
<td>330.18</td>
<td>-1.74</td>
</tr>
<tr>
<td>66.79</td>
<td>45.00</td>
<td>82720.</td>
<td>28347.</td>
<td>69.00</td>
<td>109736.</td>
<td>32.59</td>
<td>321.80</td>
<td>-2.06</td>
</tr>
<tr>
<td>63.64</td>
<td>50.00</td>
<td>79312.</td>
<td>27088.</td>
<td>66.00</td>
<td>97552.</td>
<td>8.89</td>
<td>321.38</td>
<td>-2.08</td>
</tr>
<tr>
<td>57.03</td>
<td>60.00</td>
<td>61481.</td>
<td>27088.</td>
<td>59.00</td>
<td>75261.</td>
<td>-40.57</td>
<td>311.05</td>
<td>-2.40</td>
</tr>
<tr>
<td>49.94</td>
<td>70.00</td>
<td>49850.</td>
<td>27088.</td>
<td>52.00</td>
<td>56458.</td>
<td>-117.82</td>
<td>319.65</td>
<td>-2.13</td>
</tr>
<tr>
<td>41.90</td>
<td>80.00</td>
<td>41669.</td>
<td>27088.</td>
<td>45.00</td>
<td>40741.</td>
<td>-203.35</td>
<td>347.88</td>
<td>-0.58</td>
</tr>
<tr>
<td>32.33</td>
<td>90.00</td>
<td>35598.</td>
<td>27088.</td>
<td>38.00</td>
<td>27737.</td>
<td>-157.00</td>
<td>305.46</td>
<td>2.56</td>
</tr>
<tr>
<td>18.77</td>
<td>100.00</td>
<td>29654.</td>
<td>23433.</td>
<td>38.00</td>
<td>16114.</td>
<td>-15.83</td>
<td>239.25</td>
<td>3.82</td>
</tr>
</tbody>
</table>

SINGLE AMPLITUDE CRANE PLATFORM MOTION STATISTICS

SIGNIFICANT HEAVE	1.82 FT
SIGNIFICANT PITCH	2.00 DEG
SIGNIFICANT ROLL	5.63 DEG

SIGNIFICANT WAVE HEIGHT 12.38 FT
SAE J1366 DYNAMIC LOAD RATING CHART FOR A EXAM4000 CRANE

CRANE SUPPORTING PLATFORM: C3 HULL
SIGNIFICANT WAVE HEIGHT 23.00 FT
AVERAGE WAVE PERIOD 8.70 SEC
AVERAGE WAVE LENGTH 258.00 FT
WAVE INSTRUMENT READING 1.64 FT/SEC

<table>
<thead>
<tr>
<th>BOOM ANGLE (DEG)</th>
<th>RADIUS (FT)</th>
<th>STATIC LOAD (LB)</th>
<th>DYNAMIC LOAD (LB)</th>
<th>PERCENT STIFFNESS (LB/FT)</th>
<th>VERTICAL VELOCITY (FT/MIN)</th>
<th>BOOM TIP VELOCITY (FT/MIN)</th>
<th>BOAT ACCEL (FT/SSQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.73</td>
<td>30.00</td>
<td>82720.00</td>
<td>16355.00</td>
<td>86.00</td>
<td>148344.00</td>
<td>179.82</td>
<td>485.43</td>
</tr>
<tr>
<td>72.78</td>
<td>35.00</td>
<td>82720.00</td>
<td>13558.00</td>
<td>87.00</td>
<td>135797.00</td>
<td>193.43</td>
<td>477.95</td>
</tr>
<tr>
<td>69.83</td>
<td>40.00</td>
<td>82720.00</td>
<td>11362.00</td>
<td>87.00</td>
<td>123055.00</td>
<td>205.00</td>
<td>468.82</td>
</tr>
<tr>
<td>66.79</td>
<td>45.00</td>
<td>82720.00</td>
<td>10018.00</td>
<td>87.00</td>
<td>110399.00</td>
<td>214.65</td>
<td>458.06</td>
</tr>
<tr>
<td>63.64</td>
<td>50.00</td>
<td>74647.00</td>
<td>9219.00</td>
<td>87.00</td>
<td>98068.00</td>
<td>222.04</td>
<td>445.70</td>
</tr>
<tr>
<td>57.03</td>
<td>60.00</td>
<td>57865.00</td>
<td>8630.00</td>
<td>87.00</td>
<td>75558.00</td>
<td>227.99</td>
<td>416.40</td>
</tr>
<tr>
<td>49.94</td>
<td>70.00</td>
<td>46917.00</td>
<td>8630.00</td>
<td>87.00</td>
<td>56617.00</td>
<td>241.74</td>
<td>360.42</td>
</tr>
<tr>
<td>41.90</td>
<td>80.00</td>
<td>39218.00</td>
<td>8630.00</td>
<td>87.00</td>
<td>40818.00</td>
<td>249.78</td>
<td>292.71</td>
</tr>
<tr>
<td>32.33</td>
<td>90.00</td>
<td>33504.00</td>
<td>8630.00</td>
<td>78.00</td>
<td>27770.00</td>
<td>251.20</td>
<td>215.46</td>
</tr>
<tr>
<td>18.77</td>
<td>100.00</td>
<td>27910.00</td>
<td>8630.00</td>
<td>78.00</td>
<td>16123.00</td>
<td>300.51</td>
<td>69.91</td>
</tr>
</tbody>
</table>

SINGLE AMPLITUDE CRANE PLATFORM MOTION STATISTICS

SIGNIFICANT HEAVE 4.60 FT
SIGNIFICANT PITCH 4.40 DEG
SIGNIFICANT ROLL 16.69 DEG

SIGNIFICANT WAVE HEIGHT 21.58 FT
SAE J1366 Crane Rating Chart for a Crane Mounted on a Floating Platform

Manufacturer: The ABC Crane Company
Crane Model: EXAM4000
Serial Number: 243093033
Boom Length: 100.00 ft

Crane Supporting Platform: C3 Hull
Distance from Platform Deck to Sea Level: 50.00 ft
Crane Location:
- Distance from Stern to Center of Rotation: 0.00 ft
- Distance from Port Side to Center of Rotation: 0.00 ft
- Distance from Platform Deck to Boom Foot: 8.71 ft

<table>
<thead>
<tr>
<th>Boom RADIUS (FT)</th>
<th>Boom ANGLE (DEG)</th>
<th>4-Part Main Hoist Line</th>
<th>1-Part Whip Hoist Line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(LB)</td>
<td>(LB)</td>
</tr>
<tr>
<td>30.0</td>
<td>75.7</td>
<td>82720.</td>
<td>20680.</td>
</tr>
<tr>
<td>35.0</td>
<td>72.8</td>
<td>82720.</td>
<td>20680.</td>
</tr>
<tr>
<td>40.0</td>
<td>69.8</td>
<td>82720.</td>
<td>20680.</td>
</tr>
<tr>
<td>45.0</td>
<td>66.8</td>
<td>82720.</td>
<td>20680.</td>
</tr>
<tr>
<td>50.0</td>
<td>63.6</td>
<td>82720.</td>
<td>20680.</td>
</tr>
<tr>
<td>60.0</td>
<td>57.0</td>
<td>72331.</td>
<td>34887.</td>
</tr>
<tr>
<td>70.0</td>
<td>49.9</td>
<td>58647.</td>
<td>34887.</td>
</tr>
<tr>
<td>80.0</td>
<td>41.9</td>
<td>49023.</td>
<td>34887.</td>
</tr>
<tr>
<td>90.0</td>
<td>32.3</td>
<td>41880.</td>
<td>34887.</td>
</tr>
<tr>
<td>100.0</td>
<td>18.8</td>
<td>34887.</td>
<td>34887.</td>
</tr>
</tbody>
</table>
APPENDIX C

PROGRAM J1366 LISTING

PROGRAM J1366

C DYNAMIC RATING OF MARINE CRANES SAE J1366 VERSION 4.0

C

CHARACTER * 40 NODEID(50), MEMBID(50)*19, CRANE*20, NAMSHIP,
$ MANFAC, SERIAL*10, SHIPFL*20
CHARACTER ITYPE*1, EXT*4, LEDOFF*3
INTEGER XRST(50), YRST(50), ZRST(50), BTNODE
REAL IZ, KN, LINSPO
DIMENSION X(50), Y(50), BRAD(20), BPELV(20), PMAX(20,5)
DIMENSION DD(101), VD(101), AD(101), WD(20), ICOR(50), WCOS(101)
DIMENSION JJ(50), JK(50), AR(50), IZ(50), E(50), W(150), D(150),
$ XBASE(50), YBASE(50), JMER(50), KMER(50), OFFLED(6)
DIMENSION H13A(5), TBARA(5), WAVLNA(5), WINSTR(5), DYNLDM(20,5),
$ DYNLDS(20,5), BANGD(20), STATLD(20,5), SPRTLD(20,5),
$ PLAND(20,5), SLAND(20), SIDLED(6)
COMMON DZ(80), PHI(80), THE(80), AZ(80), APHI(80), ATHE(80),
$ WN(80), KN(80)
COMMON /OUTPUT/ SIGHEV, SIGPCH, SIGROL, SIGWAV
DATA W / 150*0.0/, ZRST /50*1/, WD /20*1.0E7/
DATA H13A / 1.0, 2.9, 6.9, 13.0, 23.0 /,
$ TBARA / 2.4, 3.9, 5.4, 7.0, 8.7 /,
$ WAVLNA / 20.0, 52.0, 99.0, 164.0, 258.0 /,
$ OFFLED / 0.0, 6.0, 8.0, 12.0, 16.0, 22.0 /,
$ SIDLED / 2.7, 3.0, 4.0, 6.0, 8.0, 11.0 /

C OPEN DATA FILES
C IRED1 IS THE DISK DRIVE FOR THE CRANE DATA FILE
C IRED2 IS THE DISK DRIVE FOR THE SHIP RAO FILE
C IRED3 IS THE KEYBOARD
C IWRT1 IS THE CRANE OUTPUT FILE OR LINE PRINTER
C IWRT3 IS THE DISPLAY
C
IRED1 = 7
IRED2 = 8
IRED3 = 1
IWR11 = 6
IWRT3 = 2
OPEN(IRED3, FILE = 'CON')
OPEN(IWRT3, FILE = 'CON')
WRITE(IWRT3, '(''' <NAME OF CRANE DATA FILE> ''')')
READ(IRED3,'(A20)') CRANE
WRITE(IWRT3,'(''<TYPE OF RATING, FIXED OR MOVING PLATFORM'> '''))
READ(IRED3,'(A)') ITYPE
NCHR = INDEX(CRANE,' ') - 1
OPEN(IRED1, FILE=CRANE(1:NCHR)//'.DAT',STATUS='OLD')
EXT = 'ERR'
IF(ITYPE.EQ. 'M' .OR. ITYPE.EQ. 'm') EXT = 'MOV'
IF(ITYPE.EQ. 'F' .OR. ITYPE.EQ. 'f') EXT = 'FIX'
OPEN(IWRT1, FILE=CRANE(1:NCHR)//'.//EXT',STATUS='UNKNOWN')
IF(ITYPE.EQ. 'M' .OR. ITYPE.EQ. 'm') THEN
WRITE(IWRT3,'(''<NAME OF SHIP RAO DATA FILE> '''))
READ(IRED3,'(A20)') SHIPFL
NCHR2 = INDEX(SHIPFL, ' ') - 1
OPEN(IRED2, FILE=SHIPFL(1:NCHR2)//'.RAO', STATUS='UNKNOWN')
END IF
G = 32.2
NUMSIM = 101
NUMSEA = 5
WRITE(IWRT1,532) CRANE(1:10)
532 FORMAT('1SAE J1366 VERSION 4.0 RATINGS FOR A ', A10, ' CRANE'/)
C
READ(IRED1,527) MANFAC, CRANE, SERIAL, BETA, DEPTH, ALPHA,
$ LINSPD
527 FORMAT(A40, A10, A10/, 4F10.0)
SV = 1.28
WRITE(IWRT1,502) MANFAC, CRANE, SERIAL, BETA, DEPTH, ALPHA,
$ LINSPD, SV
502 FORMAT(' MANUFACTURER: ',A40,/
$ ' CRANE: ', A10, ' SERIAL NUMBER: ', A10 /,
$ ' WAVE DIRECTION ANGLE - ZERO TO STERN, CCW ', F10.2, ' DEG'/
$ ' WATER DEPTH ', 6X, F10.2, ' FT'/
$ ' SWING ANGLE - ZERO OVER STERN, CCW ', 7X, F10.2, ' DEG'/
$ ' LOAD HOIST VELOCITY, POSITIVE UP ', 6X, F10.2, ' FT/MIN'/
$ ' STANDARDIZED VARIABLE FOR VELOCITY ', 6X, F10.2)
READ(IRED1,540) DKELV, BL, CRBF, DKBF, CRX, CRY, AROPE, EROPE,
$ BRKSTR, NUMPRT
540 FORMAT(8F10.O/F1O.0,I10, F1O.0)
WRITE(IWRT1,650) DKELV, BL, CRBF, DKBF, CRX, CRY, AROPE, EROPE,
$ BRKSTR, NUMPRT
650 FORMAT(' DECK ELEVATION ABOVE WATER SURFACE ', F10.2, ' FT'/
$ ' BOOM LENGTH ', F10.2, ' FT'/
$ ' CENTER OF ROTATION TO BOOM FOOT ', F10.2, ' FT'/
$ ' DECK TO BOOM FOOT ', F10.2, ' FT'/
$ ' X LOCATION OF CENTER OF ROTATION ', F10.2, ' FT'/
$ ' Y LOCATION OF CENTER OF ROTATION ', F10.2, ' FT'/
$ ' AREA OF LOAD HOIST ROPE ', F10.2, ' IN**2'/
$ ' MODULUS OF ELASTICITY OF LOAD HOIST ROPE ', F10.0, ' PSI'/
$ ' LOAD HOIST ROPE BREAKING STRENGTH ', F10.0, ' LB'/
$ ' LOAD HOIST NUMBER OF PARTS OF LINE ', I10)
C
READ CRANE GEOMETRY
READ(IREDI,526) NM, NJ, NUMRAD, LEDOFF
526 FORMAT(3I10, 7X, A)
WRITE(IWRT1,506) NM, NJ, NUMRAD, LEDOFF
506 FORMAT(' NUMBER OF MEMBERS IN CRANE MODEL ', 10X, I5 /
$ ' NUMBER OF JOINTS IN CRANE MODEL ', 10X, I5 /
$ ' NUMBER OF BOOM ANGLES IN RATING CHART ', 8X, I5 /
' LAND RATING INCLUDES OFF LEAD ', 11X, A)
WRITE(IWRT1,503)
503 FORMAT(/' CRANE MODEL IN THE PLANE OF THE BOOM, ORIGIN AT',
$ ' THE BOOM FOOT' //
$ 2X, 'NODE', 4X, 'LOCATION', 16X, 'COORDINATES (FT)',
$ 5X, 'RESTRAINTS', 4X, 'RAISE/LOWER'/
$ 3X, 'WITH BOOM'/)
C
C NODES, NODE RESTRAINTS, BOOM NODE ROTATION, AND NODE
C IDENTIFICATION

NB1 = 0
NB2 = 0
IBLOCK = 0
DO 10 I = 1, NJ
READ(IREDI,500) X(I),Y(I),XRST(I),YRST(I),ZRST(I),ICOR(I),
$ NODEID(I)
500 FORMAT(2F10.0, 4110, A20)
WRITE(IWRT1,501) I, NODEID(I), X(I), Y(I), XRST(I), YRST(I),
$ ZRST(I), ICOR(I)
501 FORMAT(I5, 5X, A20, 2F10.2, 3I5, 5X, I5)
X(I) = X(I) * 12.0
Y(I) = Y(I) * 12.0
IF(ICOR(I) .EQ. 3) THEN
NB1 = I
IBLOCK = 1
END IF
IF(ICOR(I) .EQ. 2) NB2 = I
10 CONTINUE
C
C DETERMINE THE BOOM ANGLE AND LOWER THE BOOM TO ZERO DEGREES
C THE AXIS ORIGIN IS ASSUMED AT THE BOOM FOOT.
C ICOR = 1 SIGNIFIES THE COORDINATE WILL ROTATE WITH THE BOOM.
C ICOR = 2 SIGNIFIES THE COORDINATE OF THE GANTRY TOP
C ICOR = 3 SIGNIFIES THE FLOATING HARNESS COORDINATE
C THE BOOM TIP IS THE LAST (NJ) NODE.
C
C IBLOCK = 1 SIGNIFIES THE CRANE HAS A FLOATING HARNESS

BANG = ATAN(Y(NJ)/X(NJ))
DO 12 I = 1, NJ
XBASE(I) = X(I)
YBASE(I) = Y(I)
IF(ICOR(I) .EQ. 1) THEN
XBASE(I) = X(I) * COS(-BANG) - Y(I) * SIN(-BANG)
YBASE(I) = X(I) * SIN(-BANG) + Y(I) * COS(-BANG)
END IF

12 CONTINUE
IF(IBLOCK .EQ. 1) THEN
PLEN = SQRT((X(NJ) - X(NB1))**2 + (Y(NJ) - Y(NB1))**2)
GTLEN = SQRT((XBASE(NJ) - XBASE(NB2))**2 +
(YBASE(NJ) - YBASE(NB2))**2)
BHLEN = GTLEN - PLEN
XBASE(NB1) = (XBASE(NJ) - XBASE(NB2)) * BHLEN / GTLEN +
XBASE(NB2)
YBASE(NB1) = (YBASE(NJ) - YBASE(NB2)) * BHLEN / GTLEN +
YBASE(NB2)
IF(BHLEN .LE. 0.0) WRITE(IWRT3,
'(10X, ''<FLOATING HARNESS HAS HIT GANTRY TOP>''))
END IF
BTNODE = NJ
WRITE(IWRT1,513) BTNODE
513 FORMAT(/ 3X, 'BOOM TIP NODE NUMBER IS NODE ', I5, //
$ 4X, 'MEMBER', 17X, 'END', 5X, 'ROTATION',
$ 7X, 'AREA', 5X, 'MOMENT OF', 2X, 'MODULUS OF', /
$ 26X, 'NODIS', 3X, 'END RELEASE', 4X, '(IN**2)',
$ 4X, 'INERTIA', 3X, 'ELASTICITY', /
$ 25X, 'I', 4X, 'J', 6X, 'I', 4X, 'J', 17X, '(IN**4)', 5X,
$ '(PSI)' //)

CRANE MEMBERS AND MEMBER PROPERTIES
DO 15 I = 1, NM
READ(IRED1,504) JJ(I), JK(I), JMER(I), KMER(I), AR(I), IZ(I),
$ E(I), MEMBID(I)
504 FORMAT(4I10, 2F10.2, E10.0, 1X, A10)
WRITE(IWRT1,514) I, MEMBID(I), JJ(I), JK(I), JMER(I), KMER(I),
$ AR(I), IZ(I), E(I)
514 FORMAT(2X, 12, IX, A19, 12, 3X, 12, 5X, 12, 4X,
$ F9.2, 1X, F11.1, F11.0)
15 CONTINUE
IDOF = 3 * NJ - 1
W(IDOF) = - 10000.0

READ LAND RATING CHART
WRITE(IWRT1,516) CRANE(1:10)
516 FORMAT('1SAE J1366 LAND RATING CHART FOR A ', A10, 'CRANE'//
$ 1X, 'OPERATING', 2X, 'BOOM POINT', 10X, 'STATIC RATED LOAD',
$ '(LB)', /
$ 2X, 'RADIUS', 4X, 'ELEVATION', 27X, 'SIDELEAD (%)')
WRITE(IWRT1,517) (SIDLED(J), J = 1, 6), (OFFLED(J), J = 1, 6)
517 FORMAT(5X,'(FT)',6X,'(FT)', 6F10.1 /, 48X, 'OFFLEAD (%)',/}
$ 19X, 6F10.1/)
PART = FLOAT(NUMPRT)
LINSPD = LINSPD / (60.0 * PART)
PROPE = PART * BRKSTR / 3.5
C CRANE LAND RATING CHART MODIFIED FOR OUT OF PLANE LOADS FOR EACH
C SEASTATE SIDELEAD AND FURTHER MODIFIED FOR OFFLEAD IN EACH SEA
C STATE.
C
DO 20 I = 1, NUMRAD
READ(IRED1,528) BRAD(I), BPELV(I), SLAND(I), (PLAND(I,J), J = 1,
$
528 FORMAT(8F10.0)
RAD = BRAD(I) - CRBF
HIGHT = BPELV(I) - DKBF
BANG = ATAN(HIGHT/RAD)
DO 19 J = 1, NUMSEA
AOFF = ATAN(OFFLED(J+1)/100.0)
IF(LEDOFF .NE. 'YES') THEN
POFF = PLAND(I,J) * COS(BANG) / COS(BANG-AOFF)
ELSE
POFF = 1.0E20
END IF
PMAX(I,J) = AMIN1(PLAND(I,J), POFF, PART * BRKSTR / 3.5)
STATLD(I,J) = AMIN1(PLAND(I,J)/1.33, PART*BRKSTR/5.0)
SPRTLD(I,J) = AMIN1(PLAND(I,J)/1.33, BRKSTR/5.0)
19 CONTINUE
WRITE(IWRT1,522) BRAD(I), BPELV(I), SLAND(I),
$
522 FORMAT(Fl0.2, F10.2, 6F10.0/,
$ 20X, 'PMAX ', 5F10.0/,
$ 19X, I2, ' -PART WS ', 5F10.0/,
$ 20X, '1- PART WS ', 5F10.0/)
20 CONTINUE
IF(ITYPE .EQ. 'M' .OR. ITYPE .EQ. 'm') THEN
C C READ SHIP MOTION RESPONSE AMPLITUDE OPERATORS
C
READ(IRED2,509) FRQMIN, FRQMAX, NUMFRQ, NAMSHIP
509 FORMAT(2F10.0, I10, 10X, A40)
DO 21 N = 1, NUMFRQ
READ(IRED2,510) DZ(N), PHI(N), THE(N), AZ(N), APHI(N), ATHE(N)
510 FORMAT(6F10.0)
21 CONTINUE
CLOSE(IRED2)
ELSE
FRQMIN = 0.1050
FRQMAX = 4.0
NUMFRQ = 80
NAMSHIP = 'FIXED PLATFORM'
DO 700 I = 1, NUMFRQ
DZ(I) = 0.0
PHI(I) = 0.0
THE(I) = 0.0
AZ(I) = 0.0
APHI(I) = 0.0
700 CONTINUE
ATHE(I) = 0.0
700 CONTINUE
END IF
CALL FREQ(DEPTH, FRQMIN, FRQMAX, WN, KN, NUMFRQ, IWRT1)

DO 800 NSEA = 1, NUMSEA
 H13 = H13A(NSEA);
 TBAR = TBARA(NSEA)
 WAVLEN = WAVLNA(NSEA)
 WINSTR(NSEA) = 0.62 * H13 / TBAR

C FOR EACH BOOM RADIUS, PMAX, CALCULATE WD
C
WRITE(IWRT1,530) CRANE(1:10), NAMSHP, H13, TBAR, WAVLEN, $ WINSTR(NSEA)
C RAISE THE BOOM FOR EACH BOOM ANGLE
C
DO 35 I = 1, NUMRAD
 RAD = BRAD(I) - CRBF
 HIGHT = BPELV(I) - DKBF
 BANG = ATAN(HIGHT/RAD)
 BANGD(I) = BANG * 180.0 / 3.14159
C COMPUTE THE COORDINATES RAISED WITH THE BOOM
C
DO 23 J = 1, NJ
 X(J) = XBASE(J)
 Y(J) = YBASE(J)
 IF(ICOR(J) .EQ. 1) THEN
 TEMX = XBASE(J) * COS(BANG) - YBASE(J) * SIN(BANG)
 Y(J) = XBASE(J) * SIN(BANG) + YBASE(J) * COS(BANG)
 X(J) = TEMX
 END IF
 IF(IBLOCK .EQ. 1) THEN
 GTLEN = SQRT((X(NJ) - X(NB2))**2 + (Y(NJ) - Y(NB2))**2)
 BHLEN = GTLEN - PLEN
 X(NB1) = (X(NJ) - X(NB2)) * BHLEN / GTLEN + X(NB2)
 Y(NB1) = (Y(NJ) - Y(NB2)) * BHLEN / GTLEN + Y(NB2)
 IF(BHLEN .LE. 0.0) WRITE(IWRT3,
$ ' (10X, ''<FLOATING HARNESS HAS HIT GANTRY TOP>'') END IF 23 CONTINUE C C LOCATE THE POINT OF INTEREST UNDER THE BOOM POINT C RX = BRAD(I) * COS(ALPHR) + CRX RY = BRAD(I) * SIN(ALPHR) + CRY R = SQRT(RX*RX + RY*RY) ALPH2 = 180.0 - (ATAN2(RY,RX) * 180.0 / 3.14159) C C CALCULATE THE WORK BOAT VELOCITY AND ACCELERATION C CALL BOAT(TBAR,H13,BETA,R,ALPH2,WAVLEN,DD,VD,AD,WCOS,NUMSIM) C C CALCULATE THE VERTICAL STIFFNESS C AOFF = ATAN(OFFLED(NSEA+I)/100.0) DHOOK = 12.0 * W(IDOF) * (BPELV(I) + DKELV)) / (PART**2 * AROPE * EROPE) CALL FRAME(NM,NJ,X,Y,XRST,YRST,ZRST,JMER,KMER,JJ,JK,AR,IZ,E,W,D) DTOTAL = D(IDOF) + DHOOK * COS(AOFF) S = W(IDOF) / DTOTAL * 12.0 C C CALCULATE THE BOOM POINT VELOCITY C CRBT = CRBF + BL * COS(BANG) PIX = CRX + CRBT * COS(ALPHR) PIY = CRY + CRBT * SIN(ALPHR) CALL BPVEL(PIX,PIY,H13,TBAR,DEPTH,BETA,SV,BPV,NUMFRQ) C C CALCULATE THE DYNAMIC RATED LOAD, WD C WD(I) = 1.0E38 KEY = NUMSIM DO 30 J = 1, NUMSIM C C CALCULATE THE VELOCITY OF THE HOOK C VH = BPV * WCOS(J) + LINSPEED C C SOLVE THE QUADRATIC EQUATION FOR WD C A = PMAX(I,NSEA) ** 2 B = - 2.0 * PMAX(I,NSEA) - S * (VD(J) + VH) ** 2 / G C = 1.0 - (AD(J) / G) ** 2 DISCRM = B ** 2 - 4.0 * A * C TWOA = 2.0 * A IF(DISCRM) 25, 27, 26 25 BR = - B / TWOA BI = 1.0 / TWOA GO TO 30 26 SQROOT = SQRT(DISCRM)
\[
\begin{align*}
WD1 &= \frac{-B + \sqrt{B^2 - 4AC}}{2A} \\
WD2 &= \frac{-B - \sqrt{B^2 - 4AC}}{2A} \\
WD1 &= \frac{1}{WD1} \\
WD2 &= \frac{1}{WD2} \\
WD1 &= \text{AMIN1}(WD1, WD2) \\
\text{GO TO 29} \\
WD1 &= \frac{-B}{2A} \\
WD1 &= \frac{1}{WD1} \\
WD2 &= WD1 \\
\text{IF}(WD1 < \text{WD}(I)) \text{ THEN} \\
WD(I) &= WD1 \\
\text{KEY} &= J \\
\text{END IF} \\
\text{CONTINUE} \\
\end{align*}
\]

```
27 WD1 = -B / TWOA
28 WD1 = 1.0 / WD1
29 IF(WD1 < WD(I)) THEN
29a WD(I) = WD1
29b KEY = J
29c END IF
30 CONTINUE

C PREPARE SINGLE AND MULTI PART RATINGS
C
DYNLDM(I,NSEA) = AMIN1(WD(I), STATLD(I,NSEA))
DYNLDS(I,NSEA) = AMIN1(WD(I), SPRTLD(I,NSEA))
IF(I.GT.1) THEN
DYNLDM(I,NSEA) = AMIN1(DYNLDM(I,NSEA), DYNLDM(I-1,NSEA))
DYNLDS(I,NSEA) = AMIN1(DYNLDS(I,NSEA), DYNLDS(I-1,NSEA))
ELSE
END IF
RAT1 = DYNLDM(I,NSEA) / PMAX(I,NSEA) * 100.0
RAT2 = 103.0 - RAT1
BPVSIM = BPV * WCOS(KEY) * 60.0
VDSIM = VD(KEY) * 60.0
WRITE(IWRT1,524) BANGD(I), BRAD(I), STATLD(I,NSEA),
$ DYNLDM(I,NSEA), RAT2, S, BPVSIM, VDSIM, AD(KEY)
524 FORMAT(2F8.2,2F10.0,F6.0,F10.0,3F9.2)
35 CONTINUE
C SUMMARIZE CRANE SUPPORTING PLATFORM MOTION
C
WRITE(IWRT1,600) SIGHEV, SIGPCH, SIGROL, SIGWAV
600 FORMAT(/' SINGLE AMPLITUDE CRANE PLATFORM MOTION STATISTICS',/
$ 5X, 'SIGNIFICANT HEAVE', 'F10.2, 'FT', /
$ 5X, 'SIGNIFICANT PITCH', 'F10.2, 'DEG', /
$ 5X, 'SIGNIFICANT ROLL', 'F10.2, 'DEG', /
$ 'SIGNIFICANT WAVE HEIGHT', '5X, 'F10.2, 'FT'/)
800 CONTINUE
C PREPARE FINAL RATING CHART IN STANDARD FORMAT
C
WRITE(IWRT1,805) 'SAE J-1366 CRANE RATING CHART FOR A CRANE MOUNTED ON',
$ 'A FLOATING PLATFORM'//)
WRITE(IWRT1,810) MANFAC, CRANE(1:10), SERIAL, BL, NAMSHP, DKELV,
$ CRX, CRY, DKB
810 FORMAT( 5X, 'MANUFACTURER: ', A40, /,
```
5X, 'DISTANCE FROM PLATFORM DECK TO SEA LEVEL', 19X, F10.2, ' FT'/
5X, 'CRANE LOCATION: DISTANCE FROM Stern TO CENTER OF ',
' ROTATION ', 4X, F7.2, ' FT'/,
21X, 'DISTANCE FROM PORT SIDE TO CENTER OF ROTATION ', F7.2,
' FT'/, 21X, 'DISTANCE FROM PLATFORM DECK TO BOOM FOOT ',
5X, F7.2, ' FT'//)
WRITE(IWRT1,830) (WINSTR(J), J = 1, NUMSEA)
830 FORMAT(10X, 'BOOM BOOM STATIC DYNAMIC RATINGS (LB) AT ',
'THE FOLLOWING', / 9X, 'RADIUS ANGLE RATING WAVE ',
'INSTRUMENT READINGS, HBAR/TBAR (FT/SEC)/',
10X, '(FT) (DEG) (LB)', 5F8.2 //)
WRITE(IWRT1, 835) NUMPRT
835 FORMAT(27X, I2, '-PART MAIN HOIST LINE'/)
DO 850 I = 1, NUMRAD
STATIC = AMIN1(SLAND(I)/1.33, PART*BRKSTR/5.0)
WRITE(IWRT1,840) BRAD(I), BANGD(I), STATIC, (DYNLDM(I,J),
J = 1, NUMSEA)
840 FORMAT(7X, 2F8.1, 6F8.0)
850 CONTINUE
WRITE(IWRT1, 855)
855 FORMAT(//27X, ' 1-PART WHIP HOIST LINE' //)
DO 860 I = 1, NUMRAD
STATIC = AMIN1(SLAND(I)/1.33, BRKSTR/5.0)
WRITE(IWRT1,840) BRAD(I), BANGD(I), STATIC, (DYNLDS(I,J),
J = 1, NUMSEA)
860 CONTINUE
IF(ITYPE .EQ. 'F' .OR. ITYPE .EQ. 'f') WRITE(IWRT1,845)
845 FORMAT(//// **** THESE RATINGS DO NOT CONSIDER MOTION ',
'OF THE CRANE SUPPORTING PLATFORM')
CLOSE(IREDI)
CLOSE(IWRT1)
STOP
END
SUBROUTINE BOAT(TBAR,H13,BETA,R,ALPHA,WAVLEN,DD,VD,AD,W COS,NUMSIM)
C
C COMPUTE THE MOTION OF A WORK BOAT ASSUMING PERIODIC
C FATION, ALSO COMPUTE THE PERIODIC MOTION FOR THE
C CRANE PLATFORM

DIMENSION DD(101),VD(101),AD(101),WCOS(101)

TWOPI = 2.0 * 3.141597
OMEGA = TWOPI / TBAR
THETA = (BETA - ALPHA) * 3.14159 / 180.0
PHI = TWOPI * R * COS(THETA) / WAVLEN
A13 = H13 / 2.0
DO 10 I = 1, NUMSIM
T = FLOAT(I-1) / FLOAT(NUMSIM - 1) * TBAR
DD(I) = A13 * SIN(OMEGA * T + PHI)
VD(I) = OMEGA * A13 * COS(OMEGA * T + PHI)
AD(I) = - OMEGA**2 * A13 * SIN(OMEGA * T + PHI)
WCOS(I) = COS(OMEGA * T)
10 CONTINUE
RETURN
END

SUBROUTINE BPVEL(RX,RY,H13,TBAR,DEPTH,BETA,STNVAF,BPVVEL,NFREQ)
C
C COMPUTE THE BOOM POINT VERTICAL VELOCITY
C
COMMON Z(80), PHI(80), THE(80), AZ(80), APHI(80), ATHE(80),
$ W(80),K(80)
COMMON /OUTPUT/ SIGMA, SIGCH, SIGROL, SIGWAV
DIMENSION ZR(80), ZI(80), THE(80), PHIR(80),
$ PHII(80), PR(80), PI(80), VVRAO(80), PSR(80),
$ PI2(80), PERIOD(80), WAVEI(80),
$ WAVPSD(80), VPVPSD(80), HVPSD(80), PCHPSD(80), ROLPSD(80)
REAL K
DOUBLE PRECISION EXPON
TWOPI = 2.0 * 3.14159
RADDEG = 180.0 / 3.14159
G = 32.2
BTA = BETA * 3.14159 / 180.0
DO 35 N = 1, NFREQ
C
C COMPUTE THE RESPECTIVE DISPLACEMENT AUTO SPECTRA WITH
C RESPECT TO THE POINT OF INTEREST.
C
PERIOD(N) = TWOPI / W(N)
WAVEI(N) = TWOPI / K(N)
ZR(N) = Z(N) * COS(AZ(N))
ZI(N) = Z(N) * SIN(AZ(N))
THEI(N) = THE(N) * COS(ATHE(N))
THE(N) = THE(N) * SIN(ATHE(N))
PHIR(N) = PHI(N) * COS(APHI(N))
PHII(N) = PHI(N) * SIN(APHI(N))
transform motion to boom tip from center of gravity

\[
PR(N) = ZR(N) - RX * THER(N) + RY * PHIR(N) \\
PI(N) = ZI(N) - RX * THEI(N) + RY * PHII(N)
\]

compute the vertical velocity auto spectra given the
dispacement auto spectra

\[
VVR = + W(N) * PI(N) \\
VVI = - W(N) * PR(N) \\
VVRAO(N) = \sqrt{VVR * VVR + VVI * VVI}
\]

from the bretschneider wave auto spectra modified for
shallow water

\[
A = 263.0 * H13**2 / \text{TBAR}**4 \\
B = 1052.0 / \text{TBAR}**4 \\
\text{EXPON} = - B / W(N) ** 4 \\
\text{COEF} = A / W(N) ** 5 \\
\text{IF} (\text{EXPON} \lt 100.0 \ \text{AND} \ \text{EXPON} \gt -600.0) \ \text{THEN} \\
\quad \text{WAVPSD}(N) = \text{COEF} * \text{DEXP} (\text{EXPON}) \\
\quad \text{ELSE} \\
\quad \text{WAVPSD}(N) = 0.0 \\
\quad \text{ENDIF}
\]

\[
\text{DK} = \text{DEPTH} * \text{K}(N) \\
\text{SW} = 1.0 \\
\text{IF} (\text{DK} \lt 20.0) \\
\quad \text{SW} = 2.0 * \text{COSH}(\text{DK})**2 / (2.0 * \text{DK} + \text{SINH}(2.0 * \text{DK})) \\
\quad \text{WAVPSD}(N) = \text{SW} * \text{WAVPSD}(N)
\]

compute the boom point vertical velocity, heave, pitch, and
roll auto spectra for a desired sea state

\[
\text{VVPSD}(N) = \text{VVRAO}(N)**2 * \text{WAVPSD}(N) \\
\text{HEVPSD}(N) = Z(N)**2 * \text{WAVPSD}(N) \\
\text{PCHPSD}(N) = \text{THE}(N)**2 * \text{WAVPSD}(N) \\
\text{ROLPSD}(N) = \text{PHI}(N)**2 * \text{WAVPSD}(N)
\]

35 continue

compute significant values for vertical velocity, heave, pitch,
and roll by solving for the area under the spectra and
applying appropriate statistical factors

\[
\text{NI} = \text{NFREQ} - 1 \\
\text{VARNCE} = 0.0 \\
\text{VARHEV} = 0.0 \\
\text{VARPCH} = 0.0 \\
\text{VARROL} = 0.0 \\
\text{VARWAV} = 0.0
\]
DO 45 N = 1, N1
VARNCE = VARNCE + (W(N+1) - W(N)) * (VVPSD(N+1) + VVPSD(N))/2.0
VARHEV = VARHEV + (W(N+1) - W(N)) * (HEVPSD(N+1)+HEVPSD(N))/2.0
VARPCH = VARPCH + (W(N+1) - W(N)) * (PCHPSD(N+1)+PCHPSD(N))/2.0
VARROL = VARROL + (W(N+1) - W(N)) * (ROLPSD(N+1)+ROLPSD(N))/2.0
VARWAV = VARWAV + (W(N+1) - W(N)) * (WAVPSD(N+1)+WAVPSD(N))/2.0
CONTINUE
SIGMA = SQRT(VARNCE)
SIGHEV = SQRT(VARHEV) * 2.0
SIGPCH = SQRT(VARPCH) * 2.0 * RADDEG
SIGROL = SQRT(VARROL) * 2.0 * RADDEG
SIGWAV = SQRT(VARWAV) * 4.0
BPVVEL = STNVAR * SIGMA
RETURN
END

SUBROUTINE FREQ(H,FRQMIN,FRQMAX,OMEGA,K,NUMFRQ,IWRT1)
REAL K(80), OMEGA(80)
C
FREQ GENERATES ANGULAR FREQUENCIES AND WAVE NUMBERS THAT
WILL BE USED TO COMPUTE THE FREQUENCY DEPENDENT-TERMS IN THE
EQUATIONS OF MOTION.
C
C CALCULATE THE VALUE FOR EACH OMEGA BETWEEN THE MAXIMUM
AND MINIMUM FREQUENCY.
C
DELFRQ = (FRQMAX-FRQMIN)/FLOAT(NUMFRQ-1)
DO 25 N = 1, NumFRQ
OMEGA(N) = FRQMIN + FLOAT(N-1) * DELFRQ
25 CONTINUE

C THE FOLLOWING LOOPS CONTAIN AN INTERACTIVE SCHEME TO SOLVE
THE TRANSCENDENTAL FUNCTION
OMEGA**2 / G = K * TANH(K * H)
TO DETERMINE THE WAVE NUMBER K FOR A GIVEN FREQUENCY OMEGA (G IS
THE GRAVITATIONAL CONSTANT 32.2 FT / SEC**2 AND H IS THE DEPTH
OF WATER). THE WAVE NUMBER K IS THE MAGNITUDE OF THE WAVE VECTOR.
THE X AND Y COMPONENTS OF THE WAVE VECTOR, WNXX AND WNYY, ARE ALSO
COMPUTED.
C
G = 32.2
DO 100 N=1,NumFRQ
U = OMEGA(N)**2/G
X0 = U
DO 90 L = 1, 200
T = TANH(X0*H)
X1 = X0 + (((U -X0 * T) / H) / (X0 - U * T + T / H)
IF(ABS(X1-X0).LT.1.E-6*ABS(X0))GO TO 99
X0 = X1
90 CONTINUE
WRITE(IWRT1,602) N
99 K(N) = XI
100 CONTINUE
RETURN
602 FORMAT('O*** WARNING *** K(', I2, ' DID NOT CONVERGE BEFORE',
$ ' 200 ITERATIONS ')
END

SUBROUTINE FRAME(NM,NJ,X,Y,XRST,YRST,ZRST,JRER,KRER,JJ,JK,AX,IZ, $ E,A,D)
C
C FRAME IS A GENERALIZED FRAME ANALYSIS PROGRAM AS DISCUSSED IN
C ANALYSIS OF FRAMED STRUCTURES BY JM GERE AND W WEAVER, 1965,
C VAN NOSTRAND REINHOLD COMPANY. THE ALGORITHM HAS BEEN MODIFIED
C TO ALLOW SUPPORT SETTLEMENT AND MEMBER END RELEASES.
C
SAVE
DOUBLE PRECISION S, AC
REAL IZ,L,MS
INTEGER XRST,YRST,ZRST
COMMON /STIFF/ S(150,150), AC(150)
DIMENSION X(50),Y(50),AX(50),IZ(50),L(50),CX(50),CY(50), $ 1IJ(50),JK(50),XRST(50),YRST(50),ZRST(50),XSETT(50),YSETT(50), $ 2ZSETT(50),MS(6,6),NH(6),NV(6),A(150),AML(50,6), $ 3AE(150),D(150),AM1(50),AM2(50),AM3(50),AM4(50),AM5(50), $ 4AM6(50),R(150),XREAC(50),YREAC(50),ZREAC(50),HEA(12), E(50), $ 5 JRER(50), KRER(50)
C
DATA XSETT, YSETT, ZSETT /50*0.0, 50*0.0, 50*0.0/,
$ AML /300*0.0/, AE /150*0.0/
C
C
NLJ = 0
NLM = 0
C
MEMBER LENGTH AND DIRECTION COSINES
C
DO 20 I=1,NM
JKI=JK(I)
JJI=JJ(I)
XCL=X(JKI)-X(JJI)
YCL=Y(JKI)-Y(JJI)
L(I)=SQRT(YCL**2 + XCL**2)
CX(I)=XCL/L(I)
CY(I)=YCL/L(I)
20 CONTINUE
C
FORM MEMBER STIFFNESS AND GLOBAL STIFFNESS MATRICES
C
NJ3=3*NJ
CONTINUE
DO 450 I=1,NJ3
DO 450 J=1,NJ3
450 S(I,J)=0.0
DO 500 I=1,NM
SCM1=(E(I)*AX(I))/L(I)
SCM2=(4.0*E(I)*IZ(I))/L(I)
SCM3=(1.5*SCM2)/L(I)
SCM4=(2.0*SCM3)/L(I)
IF(JRER(I).EQ.1.OR.KRER(I).EQ.1) THEN
 SCM2=3.0*SCM2/4.0
 SCM3=SCM3/2.0
 SCM4=SCM4/4.0
ELSE
END IF
MS(1,1)=SCM1*(CX(I))*2+SCM4*(CY(I))*2
MS(4,4)=MS(1,1)
MS(1,4)=-MS(1,1)
MS(4,1)=MS(1,4)
MS(1,2)=(SCM1-SCM4)*CX(I)*CY(I)
MS(2,1)=MS(1,2)
MS(4,5)=MS(1,2)
MS(5,4)=MS(1,2)
MS(1,5)=-MS(1,2)
MS(5,1)=-MS(1,2)
MS(2,4)=-MS(1,2)
MS(4,2)=-MS(1,2)
MS(1,3)=-SCM3*CY(I)
MS(3,1)=-SCM3*CY(I)
MS(1,6)=-SCM3*CY(I)
MS(6,1)=-SCM3*CY(I)
MS(3,4)=-MS(1,3)
MS(4,3)=-MS(1,3)
MS(4,6)=-MS(1,3)
MS(6,4)=-MS(1,3)
MS(2,2)=SCM1*(CY(I))*2+SCM4*(CX(I))*2
MS(5,5)=MS(2,2)
MS(2,5)=-MS(2,2)
MS(5,2)=-MS(2,2)
MS(2,3)=SCM3*CX(I)
MS(3,2)=SCM3*CX(I)
MS(2,6)=SCM3*CX(I)
MS(6,2)=SCM3*CX(I)
MS(3,5)=-MS(2,3)
MS(5,3)=-MS(2,3)
MS(5,6)=-MS(2,3)
MS(6,5)=-MS(2,3)
MS(3,3)=SCM2
MS(6,6)=SCM2
MS(3,6)=SCM2/2.0
MS(6,3)=SCM2/2.0
IF(JRER(I) .EQ. 1) THEN
 MS(2,3) = 0.0
 MS(3,2) = 0.0
 MS(3,3) = 0.0
 MS(3,5) = 0.0
 MS(3,6) = 0.0
 MS(5,3) = 0.0
 MS(6,3) = 0.0
ELSE
 END IF
ELSE
 END IF
NH(1)=3*JJ(I)-2
NH(2)=3*JJ(I)-1
NH(3)=3*JJ(I)
NH(4)=3*JK(I)-2
NH(5)=3*JK(I)-1
NH(6)=3*JK(I)
DO 501 KS=1,6
501 NV(KS)=NH(KS)
DO 502 J=1,6
 DO 503 K=1,6
 K3=NV(J)
 L3=NH(K)
 503 S(K3,L3)=S(K3,L3) + MS(J,K)
 502 CONTINUE
500 CONTINUE
 DO 700 K=1,NJ
 J1=3*K-2
 J2=3*K-1
 J3=3*K
 IF(XRST(K) .EQ. 0) GO TO 710
 S(J1,J1)=10.**25
 710 IF(YRST(K) .EQ. 0) GO TO 715
 S(J2,J2)=10.**25
 715 IF(ZRST(K) .EQ. 0) GO TO 700
 S(J3,J3)=10.**25
 700 CONTINUE
 DO 750 I=2,NJ3
 MK=NJ3-I+1
 NC=0
 DO 752 J=1,MK
 II=I+NC
 S(I,J)=S(I,II)
 752 NC=NC+1
750 CONTINUE
 DO 760 I=2,NJ3
 MN=NJ3-I+2
 DO 761 J=MN,NJ3
 761 S(I,J)=0.0
 760 CONTINUE

C FORM THE NODAL LOAD VECTOR, BEGIN BY FORMING THE EQUIVALENT
C JOINT LOAD VECTOR (AE) FROM THE MEMBER LOAD VECTOR (AML).
C FORM THE COMBINED LOAD VECTOR (AC) BY ADDING THE EQUIVALENT
C LOAD VECTOR TO THE NODAL LOAD VECTOR (A).

C DO 81 I=1,NM
 JA=3*JJ(I)-2
 JB=3*JJ(I)-1
 JC=3*JJ(I)
 JX=3*JK(I)-2
 JY=3*JK(I)-1
 JZ=3*JK(I)
 AE(JA)=AE(JA)-AML(I,1)*CX(I)+AML(I,2)*CY(I)
 AE(JB)=AE(JB)-AML(I,1)*CY(I)-AML(I,2)*CX(I)
 AE(JC)=AE(JC)-AML(I,3)
 AE(JX)=AE(JX)-AML(I,4)*CX(I)+AML(I,5)*CY(I)
 AE(JY)=AE(JY)-AML(I,4)*CY(I)-AML(I,5)*CX(I)
 AE(JZ)=AE(JZ)-AML(I,6)
 81 CONTINUE
 DO 82 K=1,NJ3
 82 AC(K)=A(K)+AE(K)
 DO 85 J=1,NJ
 J5=3*J-2
 J6=3*J-1
 J7=3*J
 IF(IXRST(J).EQ.0) GO TO 83
 AC(J5)=XSETT(J)*10.**25
 83 IF(IYRST(J).EQ.0) GO TO 84
 AC(J6)=YSETT(J)*10.**25
 84 IF(IZRST(J).EQ.0) GO TO 85
 AC(J7)=ZSETT(J)*10.**25
 85 CONTINUE

C CALL SOLVE(NJ3,NJ3,0)

C FILL THE FINAL DISPLACEMENT VECTOR WITH THE SOLUTION RESULTS.

C DO 90 KA=1,NJ3
 D(KA)=AC(KA)
 IF(3S(D(KA)).LT.1.0E-15) D(KA)=0.0
 90 CONTINUE
RETURN
END
SUBROUTINE SOLVE (II, JB, LETHAL)

C
C SOLVE A SET OF LINEAR EQUATIONS USING THE CHOLESKY METHOD.
C A IS THE SYMMETRIC UPPER TRIANGULAR STIFFNESS MATRIX, F IS
C THE LOAD VECTOR AND THE SOLUTION DISPLACEMENT VECTOR.
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /STIFF/ A(150,150), F(150)
DO 20 IC = 1, II
IF (A(IC,1) .GT. 1.0E-6) GO TO 20
LETHAL = 1
GO TO 4000
20 CONTINUE
A(1,1) = DSQRT(A(1,1))
DO 100 J=2, JB
100 A(1,J) = A(1,J)/A(1,1)
JMONE = JB - 1
DO 105 I=2, II
IPBW = I + JMONE
DO 105 J=I, IPBW
SUM = 0.0
IC = I
JC = J - I + 1
IF (J .NE. I) GO TO 103
DO 101 L=1,JMONE
LP = I - L
LJC = J - LP + 1
NCK1 = L - LP
IF (NCK1 .GT. JMONE) GO TO 102
IF (LP .LT. 1) GO TO 102
101 SUM = SUM + A(LP,LJC)**2
102 Q1 = A(IC,JC) - SUM
A(IC,1) = DSQRT(Q1)
GO TO 105
103 SS= 0.0
DO 104 L=1, JB
LP=I-L
LJC = J-LP+1
LIC = I-LP+1
NCK2= I-LP
NCK3 = J-LP
IF (NCK2 .GT. JMONE) GO TO 1050
IF (NCK3 .GT. JMONE) GO TO 1050
IF (LP .LT. 1) GO TO 1050
104 SS = SS + A(LP,LJC)*A(LP,LJC)
1050 A(IC,JC) = (A(IC,JC) - SS)/A(I,1)
105 CONTINUE
F(1) = F(1) / A(1,1)
DO 1060 I=2, II
SK=0.0
DO 106 MT=1, JMONE
 M = I-MT
 IC = I-M+1
 NCK4= I-M
 IF (NCK4 .GT. JMONE) GO TO 1060
 IF (M .LT. 1) GO TO 1060
 106 SK = SK + A(M,IC)*F(M)
1060 F(I) = (F(I)-SK)/A(I,1)
 F(II) = F(II)/A(II,1)
 IMONE = II-1
 DO 109 I = 1,IMONE
 SX = 0.0
 K = II-I
 LS = K+1
 DO 108 L=LS,II
 LC = L-K+1
 NCK5 = L-K
 IF (NCK5 .GT. JMONE) GO TO 109
 SX = SX+A(K,LC)*F(L)
108 SX = SX+F(K)-SX)/A(K,1)
109 F(K) = (F(K) - SX)/A(K,1)
4000 RETURN
END
SECTION III
RELATED DOCUMENTATION

The Naval Civil Engineering Laboratory has three internal documents that are relevant to the crane issue. They are included here as appendixes to further disseminate the information.

In 1976, Frank R. Johnson, prepared "Procedures for determining load ratings for truck cranes supported on a floating platform moored in the open ocean." Dynamic load ratings that relate load radius to maximum allowable load were calculated. The expected operating life and maintenance and inspection requirements were established with respect to prolonged service periods. See Appendix D for this material.

Also in 1976, Carley C. Ward prepared "Dynamic vertical forces on a crane loading (unloading) a floating platform." The objective of this study was to find the dynamic forces on a marine crane caused by lifting a load from, or setting a load on, a moving deck. First the response caused by the application of the load weight was determined. The effects of deck and hoist relative velocity were also included. Then using vector addition the combined dynamic force was computed. Finally, the results were related to wave characteristics so that derating charts could be developed. See Appendix E for this material.

In 1978, Carley C. Ward and Frank R. Johnson prepared "Dynamic loads on a shipboard crane boom due to ship motion." Nonlinear equations for determining dynamic loads on a shipboard crane boom due to ship motion were developed using vector analysis and rotating coordinate frames. Once computed, the load functions were incorporated into the flexible boom matrix equation of motion. The elastic response of the boom to these time varying inertial loads could now be computed. See Appendix F for this material.
Appendix D

PROCEDURES FOR DETERMINING LOAD RATINGS FOR TRUCK CRANES SUPPORTED ON A FLOATING PLATFORM MOORED IN THE OPEN SEA

by

Frank R. Johnson, Jr.

February 1976
LOAD RATINGS FOR TRUCK CRANES SUPPORTED ON A
FLOATING PLATFORM MOORED IN THE OPEN SEA

INTRODUCTION

The amphibious operations of the United States Armed Forces require
containerized cargo to be unloaded from container ships in areas where
developed container handling ports are not available. Plans are being
developed requiring container ship unloading in the open sea. These
plans consider using mobile cranes on floating platforms (i.e., barges
or ships) in the open sea. Manufacturers of mobile cranes provide maximum
load ratings to promote safe crane operation. However, the published max-
imum load ratings "... make no allowances for such factors as the
effect of freely suspended loads, wind, ground conditions, inflation
of rubber tires, and operating speeds."1

Objective

The study will evaluate the performance of mobile cranes when they
are supported on floating platforms moored in the open sea. Dynamic
load ratings that relate load radius to maximum allowable load will be
calculated. The expected operating life and maintenance and inspection
requirements will be established with respect to prolonged service
periods.

Scope

The scope of the work will be based upon two concept scenarios and
the crane service conditions associated with these concepts. The temporary
crane discharge facility (TCDF), the first scenario, requires the crane
to operate from a floating barge or a small ship. The containership is
along one side of the crane supporting platform and the lighterage is
along the other side. Therefore, the crane operating sector is a 180°
arc.

The crane on deck concept (COD) requires the crane to move down the
deck of the container ship as it unloads the cargo so the ship can be
unloaded symmetrically in order to maintain trim. Deck reinforcement and
bridging between hatches will be required to support the crane. With the
lighterage alongside the container ship, the crane operating sector
will therefore also be a 180° arc.

1 Harnischfeger, P&H Construction Equipment sales literature for
the P&H 6250-TC crane.
The containership must be able to start its return voyage a few days from its arrival at the operational area. Table 1 presents the environmental and physical conditions associated with the unloading operation. The offloading scenario, developed to meet the mandatory rapid turnaround requirement is presented in Table 2.

There are a significant number of parameters associated with the crane analysis. Structural parameters include geometric dimensions, cross section properties, and material properties. Environment parameters include wind conditions, wave direction, and sea states. Physical parameters relate to the platform description and platform types. With regard to endurance, the crane operating sectors, load radii, duty cycle, average crane cycle, average hook load duration and the gross weight mix are also important parameters. These parameters are addressed in Tables 1 and 2. One of the initial project objectives will be establishing the parameters that govern the performance of the crane so the number of cases studied may be reduced.

The most difficult parameters are associated with the motion simulation. The motions requiring simulation include platform motion, restrained pendulum motion, booming motion, rotating motion, and lifting motion. These motions are all interrelated which further complicates the simulation. However, one of the initial efforts will be directed toward the development of equations of motion that will simulate the complex motion experienced in an offloading operation. The work summarized within this Technical Memorandum covers that from start of the project through Dec 31, 1976.

Approach

The expense of a failure in a tactical situation far exceeds the value of the crane. Therefore, the steps to be taken to accomplish the objectives of this project will have checks and balances to insure that proper conclusions are drawn. Alternate solution methods will be employed to validate the data produced in this study.

Results from destructive static tests and failure criteria obtained from literature and crane manufacturers will be used to gain insight to potential failure areas. The structural model should be refined so it will capture the proper failure modes. The model will be developed based on known failure modes obtained through static destructive testing.1,2 Evaluation of the results obtained from loading the analytical model should be based upon established criteria. The Column Research Council is actively engaged in establishing failure criteria for beam-columns. Furthermore, the American Institute of Steel Construction is also engaged in column failure criteria development. However, some crane manufacturers have established proprietary design criteria. Therefore, the results of the dynamic structural analysis should be evaluated with failure criteria similar to that used by each manufacturer. The failure modes discovered in this study will be primarily induced by ship motion since the static loads are much less critical.

The ship motion simulation will be adapted to the needs of the structural analysis and aimed at identification of the failure modes. The required simulated information is limited to the deflections and rotations at the center of gravity of the platform. Accelerations at the center of gravity of the ship are also required. Studies involving the displacement and acceleration at the center of gravity of the ship will be conducted to establish conditions appropriate for the structural analysis. Appropriate transformations will also be derived to transform the reference point from the center of gravity of the platform to appropriate points on the boom.

The equations of motion will be written using two approaches. Newtonian mechanics will be used to derive the equations of motion from the force point of view. A second approach for verification will employ Lagrange’s equations which use energy principles to derive the equations of motion. As mentioned in the previous section contributions due to platform motion, restrained pendulum motion, booming motion, rotation motion, and lifting motion will be considered.

The equations of motion will be solved at discrete points throughout the structure. The three-dimensional boom and pendant structure will be modeled and appropriate static and dynamic loads will be included, such as the loads induced by wind, tag lines restraining pendulum motion, and the lifted weight. Investigations will be made with regard to linear and nonlinear analytic models. The results of the analysis will include stress and deflection in the structural members. These results will be evaluated based on the established failure criteria.

Many of the crane manufacturers utilize static analysis techniques to analyze the crane structures. A simplified dynamic model will be used to develop equivalent static loads so the manufacturers can conduct an equivalent static analysis as a means of correlating the results obtained from the full dynamic approach.

The initial results of the analysis will be used to set up instrumentation for a non-destructive test of a crane in the operating environment. The cranes utilized in this test will be instrumented so the analytical results may be compared with actual conditions.

The expected life of the crane under prolonged service conditions and the maintenance and inspection requirements will be established after satisfactory results have been obtained from the structural analysis.

Background

The Civil Engineering Laboratory began the investigations outlined above during 1973. The initial analysis contract was awarded to Harnischfeger Corporation, the manufacturer of P&H construction machines. Harnischfeger in turn consulted with Dr. William Saul of the University of Wisconsin at Madison. Dr. Saul had a three-dimensional frame analysis program used to analyze buildings subjected to dynamic wind and earthquake loads. However, to solve the problem of the crane mounted on a floating platform, Dr. Saul required information regarding the motion of the supporting platform.
The Civil Engineering Laboratory developed a computer program to calculate the relative motion of one vessel with respect to another. This program, RELMO, was developed from state-of-the-art procedures and modified for use in shallow waters. The Laboratory provided this program to the University of Wisconsin, Madison, and Dr. Saul incorporated the relative motion simulation into the structural analysis program. Later, under separate contract, the original program was enhanced and made available to this Laboratory.

The remainder of this report will summarize the results of the contracts with P&H and the University of Wisconsin. The summary will be directed toward (1) the RELMO program interface with Wisconsin program, (2) the Wisconsin program, and (3) the P&H crane boom analysis results.

SHIP MOTION SIMULATION

The motion of the supporting platform is calculated using strip theory: Grim's method, shallow water coefficients, and the Pierson-Moskowitz fully developed spectrum. The objective is to calculate the displacement and rotation of the platform at the center of gravity. The velocity and acceleration of the platform motion can be obtained by differentiating with respect to time. The theory employed in the ship motion simulation follows.

The equations of motion derived from Newtonian mechanics form the basic of the ship motion calculations. The force components due to: (1) the inertia force of the body and fluid, (2) the damping force, (3) the hydrostatic restoring force, and (4) the mooring force are summed and equated to the wave exciting force. The force components include the translational and rotational components or six degrees of freedom at the platform center of gravity.

The assumptions employed in the formulation of the six equations of motion are discussed elsewhere. However, a few of these assumptions impact the approach taken in the structural analysis phase of the crane boom study. These assumptions are: (1) ship is considered a rigid body, (2) linear equations of motion are used through limiting the motions to small displacements and rotations, (3) the motion in an irregular or random sea is based on the Pierson-Moskowitz spectrum for fully developed wind-driven seas, (4) the added or hydrodynamic mass coefficients used in the calculation of force components are independent of water depth, that is the same value is used for deep and shallow water, (5) the deep water potential used to calculate the wave exciting force is modified for shallow water, and (6) a shallow water coefficient derived by Burnside was used to modify the Pierson-Moskowitz spectrum. With these primary assumptions the equations of motion are developed and solved.

The six equations of motion have a complex harmonic solution. The real and imaginary components of the solution represent the amplitude and phase of the platform motion. These values are represented at the center of gravity of the platform and are dependent on frequency and phase of the incident wave. The amplitudes of the platform motion are for a unit incident wave, because the wave exciting force was calculated from the potential energy of a unit wave. Therefore, the motion amplitudes are commonly called response amplitude operators.

A stationary Gaussian random process is used to transform the response amplitude operators which are harmonic into a stochastic representation of a wind-generated sea state. The Pierson-Moskowitz fully developed spectrum for wind generated waves and modified for shallow water is used to simulate the irregular wave motion in the time domain as the summation of cosine waves each with a different frequency and with a random phase angle uniformly distributed between [0, 2π]. The elements of the ship motion vector are given by

\[X_{ci}(t) = \sum_{n=1}^{N} [2\Delta \omega S_i(\omega_n)]^{1/2} \cos(\varepsilon_n + \phi_n - \omega_n t) \]

where

\[X_{ci}(t) \] is one of the six (represented by i) components of the platform motion at the center of gravity;

\[\Delta \omega \] is the interval chosen in the frequency domain;

\[S_i(\omega_n) = [\text{RAO}(\omega_n)]^2 S_s(\omega_n) \]

where

\[\text{RAO}(\omega_n) \] is the complex harmonic response amplitude operator,

\[S_s(\omega_n) \] is the modified Pierson-Moskowitz spectrum given by

\[S_s(\omega_n) = \left[\frac{\text{Cosh}^2 \left(\frac{2\pi h}{L_s} \right)}{\frac{4\pi h}{L_s} + \text{Sinh} \left(\frac{4\pi h}{L_s} \right)} \right] \cdot \frac{-33.56}{\frac{0.0081 g^2}{\omega_n^5} e^{\frac{4}{\omega_n} H_{1/3}^2}} \]

where the quantity in the bracket is the shallow water coefficient and

\[h \] is the depth of water,

\[L_s \] is the shallow water wave length,

\[g \] is the acceleration due to gravity,

\[H_{1/3} \] is the significant wave height representing the mean of 1/3 of the highest waves in a wave height population.
The idealized model shown in the figure has three reference systems. The inertial reference system is denoted as \(X_i, Y_i, Z_i \) where \(O_i \) is the origin. The floating platform and structure reference systems are similarly denoted. However, the subscripts p and s are respectively employed for identification purposes. The origin of the floating platform reference system, \(O_p \), is taken at the center of gravity of the platform. The structure system origin, \(O_s \), is located at the base of the truck crane boom. The center of rotation of the crane upper works and the location of the boom base are not necessarily at the same point.

The floating platform, crane truck carriage, and revolving superstructures are assumed to be rigid. This assumption requires the crane supporting outriggers to be fully extended, the crane truck carriage to be lashed securely to the platform deck, and it assumes mechanical tolerances in the swing and other mechanisms are insignificant.

The boom has been modeled as two beam elements. A beam element considers in plane and out of plane bending moments, shear forces, torsion moments, and axial force. Essentially, the actual structure is modeled as a beam-column with truss supports. The nonprismatic three-dimensional lattice structure is treated as a prismatic beam-column. Calculation of the equivalent section properties will be discussed later in this report.

The boom-supporting rope structure and the load-handling rope structure have also been simplified. The running boom hoist rope, floating harness and pendants have been modeled as two truss elements. The main hoist line has also been considered as a truss element. Truss elements consider only axial forces. Since bending does not occur in a rope structure, the truss elements are reasonable. However, since the rope structure can only support tensile force, they will collapse under a compressive load. The truss elements are considered to have a preload due to the static condition so if compressive forces are formed in the dynamic condition the net result is a reduced tensile force in the rope. If this assumption were not made the problem could not be linearly solved due to the sudden change in stiffness of a slack rope.

The mass of the structure has been lumped or concentrated at six points. The concentration points are located at the boom base, pendant supports, midsection (denoted as \(m_3 \) in Figure 2) and tip of the equivalent beam-column model (denoted as \(m_2 \) in Figure 2). The masses of the hoist rope, load, hook, block, sling, and rigging are concentrated at the hook end of the main hoist rope (denoted as \(m_1 \) in Figure 2). The lumped mass at the boom midsection, boom tip and lift hook is considered in the analysis. However, the lumped mass at the boom base and at the two pendant supports is not considered since these points are not free.

Nine degrees of freedom have been chosen for this model. Node number 1, located at the lift hook, has three degrees of freedom: (1) horizontal in the plane of the boom, (2) horizontal and normal to the plane of the boom, and (3) vertical in the plane of the boom. Node number 2, located at the boom tip also has three degrees of freedom with the same orientation, and node number 3 has similar freedom. Figure 2 shows the identification numbers associated with each degree of freedom. It is pointed
out and emphasized that node number 1 is completely free to pendulate. In practice, however, the operator and/or taglines would limit the pendulum motion.

External conditions that affect the structural response of the boom and pendant structure include: specified displacements and rotation due to wave motion and occurring at the center of gravity of the floating platform; gravity loadings due to the dead weight of the boom and pendant structure; the dead weight of the hook, block, sling and rigging, and the gross weight of the container; wind loading due to the wind velocity associated with the sea conditions; and the pendulum restraint load imposed by tagline devices. Internal resisting conditions include elastic forces, inertial forces, and damping forces. The damping forces are intended to account for air resistance, friction movement, and other energy losses.

In the Wisconsin program the gravity loads, wind loading, and pendulum resistance load are not included in the dynamic analysis. Therefore, the dynamic analysis results should be combined with appropriate static analysis results in order to determine the total structural behavior. The equivalent static analysis should use a model consistent with the model used to obtain the total structural behavior.

A static load that neglects the weight of the boom pendant structure, wind pressure, and tagline loads is used as the reference condition for calculating the dynamic load factors. That is, the weight of the container load is applied at degree of freedom number 2 and a percentage of that load is applied at degrees of freedom 1 and 3, in order to account for side load due to the pendulum. The percentage is chosen based on the designer's assessment of the maximum side load condition considering an experienced operator and/or taglines that are used to limit pendulum motion. For example, Professor Saul has used 5% of the lifted load in degree of freedom number 1 and 2.5% in degree of freedom number 3. The designer who uses the dynamic load factors should use extreme care in selecting an equivalent static model so that, after the dynamic load factors have been applied, his loading condition is consistent with the dynamic loads imposed on the structure.

Equivalent Beam-Column

The calculations to reduce the three-dimensional non-prismatic lattice structure to the equivalent two-dimensional prismatic beam-column model discussed above are described below. The objective is to calculate quantities for the cross section properties (area, moment of inertia, and torsion constant) for an equivalent beam that will possess deflection properties compatible with the actual structure. The modulus of elasticity and shear modulus are assumed equal in the actual and equivalent structures.

The equivalent beam-column consists of two beam elements. One beam element extends from the boom foot to the boom midsection while the other starts at the midsection and extends to the boom tip. Depending upon the insert arrangement the beam elements are made up of full and partial boom inserts. The dimensions of the inserts, including the intersections of chords and lacings, as well as the junctions between boom sections are required. In addition, the section properties of the chords and lacings are required.
Two beam-column problems will be solved; one for the top half equivalent structure and one for the bottom half. Since the process is the same for both, only one will be discussed. The entire boom from the midsection to the tip, for example, should be modeled for a static three-dimensional frame analysis procedure. Twelve unit loading conditions will be applied to the structure to produce the deflection shapes that are used to calculate stiffness properties. With the deflections known, the equivalent section properties may be calculated directly from the appropriate stiffness terms since the material and length of the actual beam and the equivalent beam are the same. The equivalent section properties can then be used with the Wisconsin program.

The effective area of the wire rope is obtained from an effective stiffness approach. The values of EA and a nominal E are obtained from the wire rope manufacturer and the effective area is calculated by

$$A_{eff} = \frac{EA}{E_{nominal}}$$

The quantities required for this calculation can be obtained from the manufacturers or from a cable handbook.

Modal Analysis

Attention will now be directed to the procedure used to obtain the desired dynamic load factors and equivalent static loads. The procedure is only outlined here and any recent text dealing with structural dynamics may be used to supplement this discussion.

Equilibrium requires that the summation of the inertia and other resistive forces equals the applied forces on a structure. Thus

$$\sum M \ddot{X}_T + [C] \dot{X}_T + [K] X = \{P(t)\}$$

where $\sum M$ is the lumped mass matrix of the system,

$[C]$ is the damping matrix, which in this case represents contributions from all forms of damping,

$[K]$ is the structure stiffness matrix,

$\{X\}$ is the elastic displacements vector, i.e., relative to X_s, Y_s, Z_s

$\{\dot{X}_T\}$ is the total velocity vector, i.e., relative to X_1, Y_1, Z_1

$\{\ddot{X}_T\}$ is the total acceleration vector, and

$\{P(t)\}$ is the vector of applied loads which include wind pressure, gravity hook, gravity structure, and tagline loads.

Also it is noted that in structural coordinates

\[(X_T) = (X_R) + (X) \] \hspace{1cm} (2) \]

where \((X_T) \) is the total displacement, \((X_R) \) is the rigid body displacement, and \((X) \) is the elastic displacement.

Equation (1) can now be written as

\[
[M - \omega^2][\ddot{X}_T] + [C][\dot{X}_T] + [K][X_T] = [K][X_R] + \{P(t)\} \] \hspace{1cm} (3) \]

However, \(\{P(t)\} \) which includes the applied loads has been omitted from the analysis. This has been purposely done so the calculation results reflect only the dynamic effects due to the base motion.

The rigid body displacements \((X_R) \) are with respect to the structural coordinate system. However, the displacements at the centroid of the platform as calculated in the ship motion simulation are with respect to inertial coordinates. A linear transformation \([T] \) is required to transform the displacement coordinate from the inertial coordinate system to the structural coordinate system, as follows

\[(X_R) = [T] \{X_c\} \]

where \((X_R) \) represents the rigid body displacement in structural coordinates, and \((X_c) \) represents the rigid body displacements of the centroid of the ship in inertial coordinates.

Equation (3) can now be expressed as

\[
[M - \omega^2][\ddot{X}_T] + [C][\dot{X}_T] + [K][X_T] = [K][T][X_c] \] \hspace{1cm} (4) \]

The solution to the differential equation might be obtained by direct integration, but modal analysis or modal superposition is used instead.

Modal analysis requires two steps: (1) determining the natural frequencies and associated mode shapes for the free vibration system and (2) using the mode shapes to uncouple Equation (4) (i.e., form an independent single-degree-of-freedom equation for each degree of freedom). The power method is the numerical procedure employed to extract the eigenvalues and eigenvectors. Equation (4) can be uncoupled by appropriate substitutions that diagonalize the damping and stiffness matrices. The resulting equation is

\[
[Z] + [-2\xi\omega - \omega^2][Z] = [a]^T[K][T][X_c] \] \hspace{1cm} (5) \]

where \(\xi \) is the coefficient of critical damping and \(\omega \) represents the natural frequencies for the mode shapes being considered.
\([a]^T \) is the transpose of the matrix of eigenvectors,
\([K]\) is the structural stiffness matrix,
\([T]\) is the coordinate transformation matrix,
\(\{X_c\}\) is the platform displacement vector, and
\(\{Z\}\) are the modal participation factors such that

\[
\{X_t\} = [a] \{Z\}
\]

(6)

where \([\cdot]\) is the matrix of eigenvectors; that is, each column of \([a]\) is a mode shape. Equation (5) is solved by direct integration and Equation (6) is evaluated for each time step. Thus, in essence we have a matrix \([X_t]\) that has 9 rows, one for each degree of freedom, and \(N\) columns, one for each time step, and it represents the dynamic total displacement history for the time domain at each degree of freedom. The total displacement for each time step can be transformed to dynamic elastic displacement by

\[
\{X\} = \{X_t\} - [T] \{X_c\}
\]

since

\[
\{X_t\} = \{X_e\} + \{X\}
\] and

\[
\{X_e\} = [T] \{X_c\}
\]

where the symbols employed have been previously defined. Of course, it is implied that this transformation is performed for each time step in order to obtain the dynamic elastic displacement history.

The elastic dynamic displacement history is searched to find the maximum and minimum displacement vector. These vectors are identified by computing the norm of each displacement vector at each time step and selecting the maximum and minimum value. Furthermore, the mean and standard deviation of the dynamic elastic displacements are also estimated for the population, assuming Gaussian distribution. However, these quantities are not immediately applicable for determining dynamic load ratings.

Dynamic load ratings require evaluation of the structural behavior relative to some established stress or deflection criteria. Crane designers are comfortable with static design techniques. Two types of information are presented to the designer so he can determine the dynamic load ratings. First, a statistical dynamic load factor is calculated for each degree of freedom. The dynamic load factor (DLF) is defined at each degree of freedom as

\[
DLF = \frac{\text{dynamic elastic displacement}}{\text{static elastic displacement}}
\]

where the ratio is evaluated for the maximum and minimum displacement vector and for the dynamic elastic displacement statistics vectors. The static elastic displacement used in the denominator is obtained from the solution of
\[\{X_s\} = [K]^{-1} \{P_s\} \]

where

- \([K]\) is the structure stiffness matrix
- \(\{P_s\}\) is the static load vector obtained from the static reference condition described on page 8
- \(\{X_s\}\) represents the static elastic displacements at each degree of freedom.

From the dynamic load factor statistics, a most probable load factor can be selected for each degree of freedom and used in subsequent static analysis.

The second type of information available for static analysis is a set of probable equivalent static loads for each degree of freedom causing the dynamic response. These equivalent static loads can be applied to the boom structure instead of the dynamic load factors to obtain the dynamic load ratings. The equivalent static loads for each time step are calculated by

\[\{P_d\} = [K] \{X\} \]

where

- \(\{P_d\}\) represents the equivalent static load at each degree of freedom due to dynamic base motion for a single time step
- \([K]\) is the structural stiffness matrix and
- \(\{X\}\) represents the dynamic elastic displacements at each degree of freedom for each time step.

As before, the maximum, minimum, estimated mean and estimated standard deviation values are determined at each degree of freedom from the results for each time step.

Dynamic Load Rating

The Wisconsin program calculations can be used in conjunction with a static crane boom analysis program to determine the loads that can be safely handled at sea. Table 3 shows typical output from the program. The program permits variable boom angles (THETA), main lifting rope lengths (VRPL), significant wave heights \((H_{1/3})\), incident wave direction (LHEAD), suspended weight, and structure rotation angles. The response statistics matrix (STM) of dynamic deflections, the dynamic load factors (DLF), and the dynamic loads matrix (PD) for each degree of freedom are printed. The estimated mean, estimated standard deviation, and the mean plus and minus one standard deviation are calculated at each of nine degrees of freedom for the population of results obtained from each time step. The maximum and minimum vectors are selected by the respective values of the norm for each vector calculated at each time step are also displayed in the table. These tables can be used to develop loading conditions for a static analysis of the crane booms conducted by the crane manufacturer. There are two ways the tables might be used.
The first way employs the dynamic load factors. Although dynamic load factors are commonly used in a single degree system, their usefulness in a multidegree system is questionable. However, assuming one desires to use this approach, the recommended procedure is outlined below:

1. Use the dynamic load factors for degrees of freedom 1, 2, and 3 only, thus being consistent with the static reference model used in the definition of the dynamic load factor,

2. Add one to the dynamic load factor such that

\[P_{ei} = P_{si} (1 + DLF_i) \]

where

- \(P_{ei} \) is the equivalent static load for degrees of freedom \(i \)
- \(P_{si} \) is the static load for degrees of freedom \(i \) used in the static reference condition, and as well as the ensuing static analysis.
- \(DLF_i \) is the probable dynamic load factor for degree of freedom \(i \).

Note that this method does not include the boom pendant structure weight wind load, and tagline forces because the static reference condition did not include these loads. Appropriate modifications can be made to include these missing loads.

The second and possibly the preferred method of using the results utilizes the equivalent static load \(P_{di} \) statistics shown in Table 3 instead of the dynamic load factors. As before, the value selected from the table only includes the dynamic load due to the base motion. Therefore the load used in the final static analysis should be

\[P_{ei} = P_{si} + P_{di} \]

where

- \(P_{ei} \) is the total equivalent static load, for degree of freedom \(i \)
- \(P_{si} \) is the static load applied to the structure, for degree of freedom \(i \) assuming no base motion
- \(P_{di} \) is the probable equivalent static load for degree of freedom \(i \) based upon the motion induced at the base of the structure by the sea conditions.

Note that this method does not require the reference static condition so it is more directly applicable.

Proper use of the statistics calculated is imperative to obtain meaningful results. The following applies to both methods explained above. The printed results include for each degree of freedom the estimated standard deviation and the value associated with the critical dynamic deflected shape as determined by the maximum norm. A normal distribution at each degree of freedom is assumed. A reasonable or probable design value must be selected for each degree of freedom. The value selected must be proportional to the values presented for the critical
deflected shape in order to maintain the desired shape after the design values have been selected. The procedure for selecting reasonable design values at each degree of freedom is outlined:

1. Choose a probability of not exceeding the design value or of exceeding the design value,

2. Enter a table of the normal probability function and select the normalized value of standard deviation associated with the desired probability,

3. Calculate the design value by

\[X = \mu \sigma_X + m \]

where \(X \) represents the probable or design value,
\(\mu \) is the value selected from the normal probability function,
\(\sigma_X \) is the estimated standard deviation of the population,
\(m \) is the estimated mean of the population.

When all of the design values have been selected at each degree of freedom, the values are compared to the values of the critical deflected shape. If there is a lack of correspondence, the process should be repeated. It may be necessary to vary the design probability for each degree of freedom to effect correspondence with the critical shape.

EQUIVALENT STATIC ANALYSIS

The Harnischfeger Corporation conducted a structural analysis of a standard production model P&H 6250TC equipped with a container tip and supported by a 1179 class LST. The 6250TC that was analyzed is further described in Table 4. The load rating curve which relates the hook load to the boom angle and load radius for fixed base conditions is illustrated in Figure 3.

The structural analysis was performed by Harnischfeger using their program F07404. The University of Wisconsin Crane Analysis Program was used to calculate the dynamic load factors that were applied to the static loads. The boom cross sections experiencing failure conditions and the conditions causing the failure are shown in Table 5. The results of the stress analysis are summarized in Table 6, which presents the maximum ratios of the actual stress divided by the allowable stress expressed in percent. The deflection of the tip normal to the plane of the boom is also presented.

It has been found from the results of the analysis that the P&H 6250 can be used in sea state 2 conditions where the incident waves are

bow or quartering seas. The crane may also be used in sea state 3 conditions where the waves are bow seas. The boom will fail, as shown in Table 6, in sea state 2 beam seas and sea state 3 quartering and beam seas. One should also note that the maximum load used in this analysis was 20 long tons, thus this analysis supports handling of the 8 x 8 x 20 containers. However, it may be inadvisable to service fully loaded 20 LT containers because the weight of the hook, block, slings, and rigging is not considered in the analysis live load. The 8 x 8 x 40 containers should not be serviced.

There is reason to question the results of this analysis. First the maximum values of the dynamic load factors were used. With a normal distribution, the possibility of an event not exceeding one standard deviation is 84.13% while with two standard deviations the possibility is 97.72%. The maximum dynamic load factor values are usually near two standard deviations. It is believed the analyst should have assumed a more reasonable probability and calculated the appropriate dynamic load factors.

Second, the effects of the dynamic load factor normal to the boom are quite severe but the contribution of the pendulum has not been resolved. Since the model allows free pendulation, the out-of-plane dynamic load factors may be too large. Furthermore, the side load factor (2.50%) was applied to all of the out-of-plane degree of freedom dynamic load factors which may lead to improper results. Moreover, applications of out-of-plane degree of freedom dynamic load factors is at least controversial.

Third, the Harnischfeger report states the boom was failing due to side load caused by lifting load pendulation. This conclusion does not completely agree with the results they provided, because the boom also failed due to the vertical load as shown in the last six entries of Table 6. However, the hook load has exceeded the 136,500 pound rating set for a static or ground supported operations at 75° boom angle (refer to Figure 3). One can easily see that the 10 LT load (22,400 pounds) has been increased through the platform motion to an unacceptable 235,900 pounds. This increase appears unreasonable.

Fourth, the dynamic analysis did not include the wind loading on the structure. The theory employed for the ship motion simulation is based on wind driven waves. Therefore, there is a relationship between the sea state and wind velocity. The pressure on the structure resulting from the wind velocity should be included in the calculations.

CONCLUSIONS

The following can be concluded from the project work completed prior to December 31, 1975:

a. The ship motion simulation did not include the shallow water modification for the deep water spectrum.

b. The ship motion random number generator considered the open interval \([0, 1)\) instead of the desired closed interval \([0, 1]\).
c. Wind, gravity, and tagline loading have been omitted in the calculation of the dynamic load factor and equivalent static loads.
d. The structural model does not include continuous simulation of rotating, booming, and lowering motions.
e. Pendulum motion has not been restrained
f. The dynamic results must be superimposed with static results to get the complete structural behavior
g. The dynamic load factors are not definitive in their application to a static analysis
h. The equivalent static load may be a more realistic approach to the equivalent static analysis, than the dynamic load factor approach
i. The effort required to determine equivalent beam-column structural properties is greater than that required to set up the problem for a full three-dimensional analysis.
j. The P&H static analysis results are inconclusive as to their meaning.

RECOMMENDATIONS

Based upon the preceding conclusions, the following recommendations are made:

a. Conduct ship motion studies to determine the maximum or most probable base motions conditions.
b. Identify modes of crane boom failure from reports of controlled destructive testing.
c. Develop the equations of motion that consider rotation, booming, lifting, and restrained pendulum motions in addition to the base motion.
d. Conduct a full three-dimensional dynamic analysis.
e. Conduct another equivalent static load analysis for correlation purposes.
f. Conduct a non-destructive structural test for correlation purposes.
g. Determine the expected life of the crane critical components after the dynamic analysis has been completed.
h. Finally, develop the maintenance and inspection requirements for the crane.
ACKNOWLEDGMENTS

The author expresses his appreciation to his colleagues Dr. Carley C. Ward, Mr. Michael G. Katona, and Dr. Theodore A. Shugar for their assistance in preparing this report. Appreciation is also expressed to Mr. George S. Allin, Director of Engineering, Construction Equipment Division, Harnischfeger Corporation and his staff for the efforts expended in performing the crane boom analysis. Finally, gratitude is also expressed to Dr. William E. Saul and his associates at the University of Wisconsin at Madison for their assistance and role in this study. This study was performed as part of a research project being coordinated by Mr. James Traffalis, entitled 'Container Offloading and Transfer System.'
Figure 1. A typical truck crane in operation position.
(After Harnischfeger P&H 6250-TC Maritime Crane Specification sales literature.)
Figure 2. An idealized model of the truck crane supported on a floating platform.
Figure 3. A Static Load Rating Curve for the P&H 6250-TC.
Table 1. Physical and Environmental Conditions
For the TCDF and COD Concepts

<table>
<thead>
<tr>
<th>Condition</th>
<th>TCDF</th>
<th>COD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>FDL-B</td>
<td>C4</td>
</tr>
<tr>
<td></td>
<td>FDL-A</td>
<td></td>
</tr>
<tr>
<td>Sea State</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Wave direction</td>
<td>Quartering</td>
<td></td>
</tr>
<tr>
<td>Wind conditions</td>
<td>$7.34 \sqrt{H_{1/3}}$ knots</td>
<td></td>
</tr>
<tr>
<td>Operating sector</td>
<td>180°</td>
<td></td>
</tr>
<tr>
<td>Operating radius</td>
<td>$150'$ preferred</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$110'$ acceptable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$50'$</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Crane Off-loading Conditions

<table>
<thead>
<tr>
<th>Container off loading rate</th>
<th>250 containers/20 hr day/crane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average duty cycle</td>
<td>13 lifts/hour</td>
</tr>
<tr>
<td>Average crane cycle</td>
<td>4.8 minutes/lift</td>
</tr>
<tr>
<td>Average hook load duration</td>
<td>2.5 minutes/lift</td>
</tr>
<tr>
<td>Prolonged service periods</td>
<td>6 months and 12 months</td>
</tr>
</tbody>
</table>

Component weights

<table>
<thead>
<tr>
<th>Component</th>
<th>Component Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average (LT)</td>
</tr>
<tr>
<td>8 x 8 x 20 ISO container</td>
<td>15</td>
</tr>
<tr>
<td>8 x 8 x 40 ISO container</td>
<td>21</td>
</tr>
<tr>
<td>Load handling accessories¹</td>
<td>5</td>
</tr>
</tbody>
</table>

Probable weight of lift

<table>
<thead>
<tr>
<th>Probability (%)</th>
<th>Weight of lift</th>
<th>Number of Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range (LT)</td>
<td>Average (´ t)</td>
</tr>
<tr>
<td></td>
<td>20' Container</td>
<td>40' Container</td>
</tr>
<tr>
<td>10</td>
<td>18-25</td>
<td>27-35</td>
</tr>
<tr>
<td>15</td>
<td>14-18</td>
<td>21-27</td>
</tr>
<tr>
<td>10</td>
<td>12-14</td>
<td>18-21</td>
</tr>
<tr>
<td>65</td>
<td>5-12</td>
<td>5-18</td>
</tr>
</tbody>
</table>

Special Ammunition Shipments

<table>
<thead>
<tr>
<th>Probability (%)</th>
<th>Weight of lift</th>
<th>Number of Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>25</td>
<td>NA</td>
</tr>
</tbody>
</table>

¹ Hook block, slings, and all other handling accessories.
Table 3. Example Output From the Wisconsin Crane Boom Analysis Program

SIMULATION OF 1179 CLASS LST FOR LHEAD=2 AND H13=2.5 FT.

<table>
<thead>
<tr>
<th>THETA</th>
<th>VRPL</th>
<th>H(1/3)</th>
<th>LHEAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.0</td>
<td>80.0</td>
<td>5.0</td>
<td>3</td>
</tr>
</tbody>
</table>

- THE SUSPENDED WEIGHT W 50.00 (KIPS)
- THE STRUCTURE ROTATION ANGLE BETA 0.0

THE RESPONSE STATISTICS MATRIX (STM)

<table>
<thead>
<tr>
<th></th>
<th>XMIN</th>
<th>XM-SD</th>
<th>XMEAN</th>
<th>STD DEV</th>
<th>XM+SD</th>
<th>XMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-.32</td>
<td>-.14</td>
<td>-.00</td>
<td>.13</td>
<td>.13</td>
<td>.32</td>
</tr>
<tr>
<td>2</td>
<td>-2.05</td>
<td>-.78</td>
<td>.00</td>
<td>.78</td>
<td>.78</td>
<td>1.83</td>
</tr>
<tr>
<td>3</td>
<td>-11.08</td>
<td>-4.81</td>
<td>.05</td>
<td>4.87</td>
<td>4.92</td>
<td>10.85</td>
</tr>
<tr>
<td>4</td>
<td>-1.30</td>
<td>-.51</td>
<td>-.00</td>
<td>.50</td>
<td>.50</td>
<td>1.21</td>
</tr>
<tr>
<td>5</td>
<td>-2.52</td>
<td>-.98</td>
<td>-.00</td>
<td>.98</td>
<td>.98</td>
<td>2.44</td>
</tr>
<tr>
<td>6</td>
<td>-7.94</td>
<td>-7.79</td>
<td>.17</td>
<td>7.96</td>
<td>8.13</td>
<td>9.09</td>
</tr>
<tr>
<td>7</td>
<td>-.77</td>
<td>-1.86</td>
<td>-.00</td>
<td>1.85</td>
<td>1.85</td>
<td>.83</td>
</tr>
<tr>
<td>8</td>
<td>-1.89</td>
<td>-1.50</td>
<td>-.01</td>
<td>1.49</td>
<td>1.48</td>
<td>1.89</td>
</tr>
<tr>
<td>9</td>
<td>-5.11</td>
<td>-4.93</td>
<td>.10</td>
<td>5.04</td>
<td>5.14</td>
<td>5.00</td>
</tr>
</tbody>
</table>

N .85 .29D+01 .60D+01 .31D+01 .91D+01 14.52

THE DYNAMIC LOAD FACTORS MATRIX (DLF)

<table>
<thead>
<tr>
<th></th>
<th>DMIN</th>
<th>DM-SD</th>
<th>DMEAN</th>
<th>STD DEV</th>
<th>DM+SD</th>
<th>DMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.06</td>
<td>.03</td>
<td>.00</td>
<td>.03</td>
<td>.03</td>
<td>.06</td>
</tr>
<tr>
<td>2</td>
<td>2.01</td>
<td>.76</td>
<td>.00</td>
<td>.76</td>
<td>.76</td>
<td>1.79</td>
</tr>
<tr>
<td>3</td>
<td>5.39</td>
<td>2.34</td>
<td>.03</td>
<td>2.37</td>
<td>2.39</td>
<td>5.28</td>
</tr>
<tr>
<td>4</td>
<td>.99</td>
<td>.39</td>
<td>.00</td>
<td>.38</td>
<td>.38</td>
<td>.92</td>
</tr>
<tr>
<td>5</td>
<td>2.55</td>
<td>1.00</td>
<td>.00</td>
<td>1.00</td>
<td>.99</td>
<td>2.47</td>
</tr>
<tr>
<td>6</td>
<td>142.58</td>
<td>139.89</td>
<td>3.10</td>
<td>142.99</td>
<td>146.09</td>
<td>163.25</td>
</tr>
<tr>
<td>7</td>
<td>1.18</td>
<td>2.83</td>
<td>.00</td>
<td>2.83</td>
<td>2.82</td>
<td>1.27</td>
</tr>
<tr>
<td>8</td>
<td>3.83</td>
<td>3.04</td>
<td>.02</td>
<td>3.01</td>
<td>2.99</td>
<td>3.83</td>
</tr>
<tr>
<td>9</td>
<td>299.06</td>
<td>288.73</td>
<td>6.06</td>
<td>294.59</td>
<td>300.65</td>
<td>292.64</td>
</tr>
</tbody>
</table>

N .97D+02 .13D+04 .45D+04 .32D+04 .77D+04 .12D+05

THE DYNAMIC LOADS MATRIX (PD)

<table>
<thead>
<tr>
<th></th>
<th>PDMIN</th>
<th>PM-SD</th>
<th>PDMEAN</th>
<th>STD DEV</th>
<th>PM+SD</th>
<th>PDMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-.67</td>
<td>-.27</td>
<td>.00</td>
<td>.27</td>
<td>.27</td>
<td>.75</td>
</tr>
<tr>
<td>2</td>
<td>-948.41</td>
<td>-425.89</td>
<td>2.30</td>
<td>428.19</td>
<td>430.50</td>
<td>881.28</td>
</tr>
<tr>
<td>3</td>
<td>-5.80</td>
<td>-2.04</td>
<td>.01</td>
<td>2.04</td>
<td>2.05</td>
<td>8.68</td>
</tr>
<tr>
<td>4</td>
<td>-1237.90</td>
<td>-578.02</td>
<td>1.92</td>
<td>576.10</td>
<td>574.17</td>
<td>1327.01</td>
</tr>
<tr>
<td>5</td>
<td>-2222.31</td>
<td>-1057.55</td>
<td>-4.35</td>
<td>1053.20</td>
<td>1048.85</td>
<td>2402.71</td>
</tr>
<tr>
<td>6</td>
<td>-450.47</td>
<td>-495.34</td>
<td>-8.65</td>
<td>486.69</td>
<td>478.03</td>
<td>497.79</td>
</tr>
<tr>
<td>7</td>
<td>-6522.72</td>
<td>-4872.76</td>
<td>-34.94</td>
<td>4837.82</td>
<td>4802.88</td>
<td>6901.55</td>
</tr>
<tr>
<td>8</td>
<td>-9363.48</td>
<td>-10366.27</td>
<td>-77.90</td>
<td>10288.37</td>
<td>10210.47</td>
<td>9887.99</td>
</tr>
<tr>
<td>9</td>
<td>-2164.40</td>
<td>-2099.15</td>
<td>40.93</td>
<td>2140.08</td>
<td>2181.01</td>
<td>2040.98</td>
</tr>
</tbody>
</table>

N .97D+02 .13D+04 .45D+04 .32D+04 .77D+04 .12D+05
Table 4. Characteristics of the Analyzed Machine

Model: P&H 6250 TC
Boom: 94 x 94 Basic 70 ft with 30' container tip
 Insert 30 ft
 Insert 50 ft
 Total 150 ft
Counter weight: 92,560 lb
Rating: Over the side and rear
Outriggers: Fully extended

Table 5. Location of Failure Points in the Boom

<table>
<thead>
<tr>
<th>P&H 6250 94 x 94 Boom</th>
<th>Failure Condition Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale: 1 in. = 30 ft</td>
<td>H_{1/3} (ft)</td>
</tr>
<tr>
<td>40 Ft Base</td>
<td>30 Ft Insert</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* B = Bow, Q = Quartering.
Table 6. Equivalent Static Load Analysis, Maximum Results

<table>
<thead>
<tr>
<th>Significant Wave Height (ft)</th>
<th>Vertical Rope Length (ft)</th>
<th>Sea Direction</th>
<th>Hook Load (kips)</th>
<th>Crane Rotation Angle (deg)</th>
<th>Side Load (kips)</th>
<th>Chord Stress (%)</th>
<th>Side Lacing Stress (%)</th>
<th>Top and Bottom Lacing Stress (%)</th>
<th>Out of Plane Tip Deflection (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>80.3</td>
<td>bow</td>
<td>20.8</td>
<td>0</td>
<td>0.6</td>
<td>0.6</td>
<td>20</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>1.2</td>
<td>1.1</td>
<td>20</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>1.2</td>
<td>1.0</td>
<td>20</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>2.5</td>
<td>80.3</td>
<td>quarter</td>
<td>34.0</td>
<td>0</td>
<td>3.3</td>
<td>-</td>
<td>40</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>1.2</td>
<td>-</td>
<td>30</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>1.4</td>
<td>-</td>
<td>30</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>2.5</td>
<td>80.3</td>
<td>beam</td>
<td>49.7</td>
<td>0</td>
<td>92.7</td>
<td>-</td>
<td>340</td>
<td>9</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>6.1</td>
<td>-</td>
<td>50</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>1.7</td>
<td>-</td>
<td>40</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>2.5</td>
<td>190.0</td>
<td>quarter</td>
<td>29.1</td>
<td>0</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>-</td>
<td>1.7</td>
<td>-</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>-</td>
<td>1.8</td>
<td>-</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>2.5</td>
<td>190.0</td>
<td>beam</td>
<td>52.4</td>
<td>0</td>
<td>-</td>
<td>92.0</td>
<td>-</td>
<td>330</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>-</td>
<td>5.6</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>-</td>
<td>2.2</td>
<td>-</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>5.0</td>
<td>190.0</td>
<td>bow</td>
<td>67.0</td>
<td>0</td>
<td>0.7</td>
<td>0.9</td>
<td>50</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>2.2</td>
<td>5.6</td>
<td>60</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>2.1</td>
<td>5.3</td>
<td>60</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>5.0</td>
<td>190.0</td>
<td>quarter</td>
<td>143.0</td>
<td>0</td>
<td>60.3</td>
<td>10.3</td>
<td>330</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>2.4</td>
<td>14.2</td>
<td>100</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>3.6</td>
<td>110.7</td>
<td>100</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>5.0</td>
<td>190.0</td>
<td>beam</td>
<td>235.9</td>
<td>0</td>
<td>184.2</td>
<td>183.4</td>
<td>1,020</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>11.5</td>
<td>2.5</td>
<td>240</td>
<td>87</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>3.6</td>
<td>12.2</td>
<td>920</td>
<td>970</td>
<td>1,375</td>
</tr>
</tbody>
</table>

Page 115
Appendix E

DYNAMIC VERTICAL FORCES ON A CRANE LOADING (UNLOADING) A FLOATING PLATFORM

by

Carley C. Ward

September 1976
PREFACE

Operational Requirement (OR-YSLO3) for the Container Off-Loading and Transfer System (COTS) addresses the need for an integrated cargo handling system for discharging non-self-sustaining container-capable ships and other ships and barges at open beach sites and identifies the Navy's responsibility for developing certain elements of the required overall cargo handling system. DOD policy is documented in the DOD Project Master Plan for Surface Container Supported Distribution and the DOD system definition paper "Over-the-Shore Discharge of Containerships (OSDOC) System."

The Navy's version of the container distribution elements constitute the Container Off-Loading and Transfer System (COTS). The COTS advanced development program includes (a) the ship unloading subsystem, (b) the ship-to-shore subsystem, and (c) system level elements. The ship unloading subsystem includes: (a) ship/barge candidates, (b) cranes, (c) crane integration with ships/barges and (d) moorings. This report addresses the progress and accomplishments associated with the crane element of the ship unloading subsystem.
CONTENTS

INTRODUCTION .. 1

ANALYSIS ... 1

Derivation of Separation Conditions 3
Solution of the Equation of Motion 5
Calculation of Dynamic Forces 8
Special Cases ... 9
Case 1. Setting the Load on the Deck 9
Case 2. Harmonic Wave Motion 11
Case 3. Random Wave Motion 11

CONCLUSIONS ... 11

REFERENCES ... 12

LIST OF SYMBOLS 13

LIST OF ILLUSTRATIONS

Figure 1. Dynamic system 2
Figure 2. Load separating from the deck at t = 0 4
Figure 3. Step force due to transferring the weight, W, from the deck to the crane, f(w) 6
Figure 4. Phase relationship between oscillating components of F 10
INTRODUCTION

Marine cranes operate in the demanding and ever changing dynamic environment imposed by the sea. Some of the most severe loads occur when the crane is ship mounted and is on/off loading an adjacent barge or ship. The wave induced relative motion between the crane and the load, as the load leaves the barge platform, can produce severe dynamic stresses in the crane boom. The lifting line can become slack and then suddenly taut. But even with a continuous load in the hoist line, just the transfer of load from the moving platform to the crane will produce oscillations in the load. It is these oscillations which are treated in this paper.

The dynamic forces on marine cranes have been computed in Ref (1,2). In these references, forces produced by the initial relative velocity between the hook and the load are computed, but the force due to the weight of the load is assumed to be static or constant. Using this assumption the static and dynamic loads were added to find the derating factor. Unfortunately the load is not static. In operation the load is transferred from the deck to the crane and the force on the crane due to the weight of the load varies with time.

In the following analysis the response caused by the application of the load weight is determined. The effects of deck and hoist relative velocity are also included. Then using vector addition the combined dynamic force is computed. Finally, the results are related to wave characteristics so that derating charts can be developed similar to those in Reference (1).

ANALYSIS

The objective of this study is to find the dynamic forces on a marine crane caused by lifting a load from, or setting a load on, a moving deck.

Although the crane support and load platform are rotating in inertial space the effect of rotation will be neglected in order to simplify the equations. The concept being presented is difficult to grasp and needs to be presented in its simplest form. The rotational effect can and should be added eventually by rewriting the equations in three dimensions and using transformation matrices to convert to the crane coordinate system. However in this preliminary study, the crane and platform are assumed to be moving the load only in the vertical direction (refer to Figure 1).
Figure 1. Dynamic system.
The other simplifying assumptions are the following: (a) stiffness of the combined structural system (crane boom, suspension lines and hoisting line) is represented by a single vertical spring stiffness. The mass of the lines and boom are neglected using this assumption. (b) This structural stiffness does not change in the short time interval being studied. (c) The vertical motion of the platform follows the wave. (d) Damping is neglected. (e) The system is linear.

The solution separates into three parts: (1) The determination of the conditions when the load leaves the deck, (2) The solution of the dynamic equation of motion, and (3) the calculation of dynamic forces. The Laplace transform method is used to solve the differential equation of motion.

Derivation of Separation Conditions

Before the crane hook contacts the load, the weight of the load and the inertia force due to deck acceleration are reacted only by the deck or load platform. Refer to Figure 2. If the load is being accelerated up by the wave action the equation for the deck force F_D is

$$F_D = W$$

where A_D is the acceleration of the deck. When the crane hook is attached to the weight but before the load leaves the deck the equation becomes

$$F_D = -W - MA_D + F_C$$

These conditions are shown in Figure 2. The load supported by the crane is equal to the elastic deformation of the structure, u, multiplied by its stiffness K

$$F_C = - Ku$$

(for a positive F_C, u is negative according to the sign convention in Figure 2),

Rewriting Equation 2

$$F_D = -W - MA_D - Ku$$

When $F_D = 0$

$$Ku = -W - MA_D$$

the load lifts off the deck. Note that at lift off the load in the crane line is NOT equal to W but equal to W plus another quantity which is a function of sea state. The force in the cable would only be equal to W if the load were stationary. The force necessary to lift the weight off the deck is analogous to picking an object in
Figure 2. Load separating from the deck at $t = 0$.
an accelerating elevation. If the elevator is accelerating in the up-
ward direction the object feels heavier. When the elevator is acceler-
atting down the reverse is true; the object is lighter. However, the
crane motion is independent of the load acceleration and as the load
clears the deck the load on the crane hook becomes \(W \). Thus, a step
change in force occurs as the load separates from the deck. The magnitude
of the step being \(MA_D \), the sign is defined by the direction of deck
acceleration, \(A_D \). The equation for the force at the hook is as follows:

\[
f(w)_o = +W + MA_D \quad \text{at } t = 0
\]

\[
f(w)_\Delta = W \quad \text{at } t = \Delta t
\]

Figure 3 shows step forces for several possible situations. Based on
Equation 6 the worst condition would occur when the deck dropped out
from under the load at an acceleration equal to the acceleration of
gravity, \(g \) (i.e., \(A_D = -g \)). The resulting step force on the crane would
go from 0 to \(W \) at lift off. Actually the deck could not drop with an
acceleration equal to \(g \). This is a ‘‘worst-case’’ condition, and is
representative of what would occur if the load slipped laterally off
the ship deck before the hoist line elongated.

Solution of the Equation of Motion

At \(t = 0 \) the load lifts off the deck and a single differential
equation can be used to describe the motion of the load.

\[
M \ddot{x}_L + K(x_L - x_H) = -f(w)
\]

(7)

\(x_L \) and \(\dot{x}_L \) the load displacement and acceleration are measured relative
to inertial space. \(x_L - x_H \) is the elastic displacement of system after
time \(t = 0 \). \(f(w) \) is the forcing function due to the weight. The displace-
ment component due to line and crane motion, \(x_H \), shown in Figure 1, is
obtained by integrating

\[
\dot{x}_H = \int_0^t \ddot{x}_H \, dt
\]

(8)

If \(\ddot{x}_H \) is not a constant it can be computed from \(\dddot{x}_H \).

\[
\ddot{x}_H = \int_0^t \dddot{x}_H \, dt + \dot{x}_{Ho}
\]

(9)
Figure 3. Step force at the crane hook due to transferring the weight, W, from the deck to the crane, $f(W)$.
The initial displacements are

\[x_0 = x_L = u \quad x_H = 0 \quad \text{at} \ t = 0 \]

Rewriting Equation 7 so that the known forces are on the right side

\[Mx_L + Kx_L = +Kx_H - f(w) \quad (10) \]

To simplify the solution a new reference \(x \) is used for the load displacement.

\[x = x_L - u \quad (11) \]

By subtracting Equation 5 from Equation 10 the static force is subtracted out of the differential equation of motion.

\[Mx_L + K(x_L - u) = Kx_H - f(w) + W + MA_D \quad (12) \]

Because \(-W - MA_D = f(w)_o\) (the step value at \(t < 0 \)), and \(x_L \) is independent of the coordinate reference change, Equation 12 can be written in terms of the new coordinate \(x \) as

\[Mx + Kx = Kx_H - f(w) + f(w)_o \quad (13) \]

using Equation 6

\[+f(w) + f(w)_o = +MA_D \quad \text{step function} \quad (14) \]

the sign convention for \(A_D \) is

+ deck accelerating up
- deck accelerating down

The Laplace Transform of Equation 13 is

\[M[S^2X(S) - SX(0) - X'(0)] + KX(S) = \bar{F}_1(s) + \bar{F}_2(s) \quad (15) \]

where \(X(0) = x_0 = 0 \)
\(X'(0) = x_L = V_{D_O} \) the deck velocity at \(t = 0 \)
\(\bar{F}_1(s) = \text{Laplace transform of } K \int x_H \, dt \)
\(\bar{F}_2(s) = \text{Laplace transform of } step + MA_D \)

The support velocity \(\dot{x}_H \) depends on the main hoist line speed and the motion of the crane support. To simplify the solution the support velocity is assumed constant. That is, the crane support is not accelerating as the load is lifted from the deck. For this case
\[F_1(s) = KV_H t = KV_H /s^2 \]
\[F_2(s) = (+MA_D) = +MA_D /s \]

Rewriting Equation 15

\[(MS^2 + K)X(s) = MV_D - \frac{KV_H}{s^2} + \frac{MA_D}{s} \]

Dividing Equation 15 by \(MS^2 + K \)

\[x(s) = \frac{MV_D}{MS^2 + K} - \frac{KV_H}{S^2(MS^2 + K)} + \frac{MA_D}{S(MS^2 + K)} \]

Taking the inverse Laplace transform to find the displacement \(x \) and substituting \(\beta \) for \(\sqrt{K/M} \)

\[x = \frac{V_D \sin \beta t}{\beta} + \frac{V_H}{\beta} (\beta t - \sin \beta t) + \frac{A_D}{\beta^2} (1 - \cos \beta t) \]

Calculation of Dynamic Forces

The force on the crane is the elastic deformation, \(x_L - x_H \), multiplied by the stiffness. The crane force as a function of the variable \(x \) from equation (11) is

\[F_C = Kx - Kx_H + Ku \]

Substituting Equation 5 and 19 into Equation 20 yields

\[F_C = \frac{K}{\beta} \left[V_D \sin \beta t - V_H \sin \beta t + \frac{A_D}{\beta} (1 - \cos \beta t) \right] - W - MA_D \]

Simplifying Equation 21

\[F_C = \frac{K}{\beta} (V_D - V_H) \sin \beta t - MA_D \cos \beta t - W \]

If the deck is accelerating downward \(A_D \) is negative changing the sign of the \(\cos \) term, and Equation 21a becomes

\[F_C = \frac{K}{\beta} (V_D - V_H) \sin \beta t + M|A_D| \cos \beta t - W \]
dividing by \(W \), Equation 21a becomes

\[
\frac{F_C}{W} = \frac{K}{W} \left(\frac{V_D - V_H}{\beta} \right) \sin \beta t - \frac{A_D}{g} \cos \beta t - 1 \tag{22}
\]

If separation occurs as the deck is moving down with a velocity \(- V_D\) as in Reference 1, Equations 22a become

\[
\frac{F_C}{W} = \frac{K}{W} \left(\frac{V_D + V_H}{\beta} \right) \sin \beta t - \frac{A_D}{g} \cos \beta t - 1 \tag{23}
\]

If the \(A_D \) term were neglected the equation would be the same as that in References (1 and 2) except for a difference in sign convention. Vector addition can be used to combine the sin and cos terms and it can be shown that the maximum dynamic force is independent of the direction of the deck acceleration \(A_D \). The deck acceleration only establishes a phase relationship (Refer to Figure 4). The load on the crane is obtained directly from Equation 23 by substituting in the values for \(V_D \) and \(A_D \) at \(t = 0 \), and the value for the hoist velocity, \(V_H \). The maximum force on the crane is

\[
F_{C_{\text{max}}} = -\frac{1}{2} \left[\frac{K}{W} (V_D + V_H)^2 + \frac{A_D^2}{g^2} \right]^{1/2} - W \tag{24}
\]

The terms within the square root parentheses are the dynamic force terms. In the first dynamic force term the quantity \(K/W \) appears. This term is directly related to the stiffness and if the crane were strengthened this term would increase. Actually

\[K/W = 1/\text{static displacement} \]

As the static deflection approaches 0 the dynamic loads become more severe. The second dynamic force term has the quantity \(A_D/g \). The magnitude of this term may be easily established by comparing deck accelerations to the acceleration of gravity.

Special Cases

Case 1. Setting the Load on the Deck. If the load is being set on the deck, and due to wave action the deck drops out from under the load before the load is off the crane, the force computations are the same as above. Equation 7 holds whether the load is moving up or down. The load is transferred to the crane as in Equation 5 when \(F_D = 0 \).
Figure 4. Phase relationship between oscillating components of F.
Case 2. Harmonic Wave Motion. Harmonic motion could be assumed as in Reference (1) to characterize a sea state. However in harmonic motion A_D is usually low and such an analysis would not be conservative. Using the quantities H and T, where H is peak to through amplitude and T is the period of the wave, the following relationships exist

$$V_D = \frac{nH}{T} \sin\left(\frac{2\pi}{T} t + \phi\right)$$

$$A_D = \frac{2n^2H}{T^2} \cos\left(\frac{2\pi}{T} t + \phi\right)$$

to clear the wave $V_h = \frac{2}{3} \frac{H}{T}$

The above quantities can be substituted into Equation 24 to compute the force on the crane, F_C.

Case 3. Random Wave Motion. A better approach would be to substitute into Equation 24, measured accelerations and velocities. Some worst possible conditions should be selected. The vertical deck acceleration and velocity components obtained from the angular acceleration and velocity of the ship need to be included. A probability approach, that of selecting deck accelerations and velocities which would include a large percentage of situations, could also be used.

CONCLUSIONS

A systematic set of equations have been developed for on/off loading forces on a marine crane. The equations though simple in appearance can be easily expanded to include hoist accelerations and rotational effects. They can be combined with structural system equations to complete the crane dynamic analysis.

Dynamic forces develop because the load oscillates. These oscillations are caused by: (1) the initial relative velocity between the hook and the load and (2) the transfer of the load from the deck to the crane. The latter oscillations, those due to load transfer, have been overlooked in previous analysis (references 1 and 2).

The equations show that deck velocity and deck acceleration at load lift off influence the dynamic forces on the crane. Raising the crane stiffness factor by making it stronger would increase the dynamic load. Wave action such as sea chop which increases instantaneous deck accelerations can critically affect the dynamic forces.

A precise description of the acceleration and velocity of the deck is needed. Then using representative hoisting velocities, reliable estimates of the dynamic loads can be obtained. Eventually the dynamic characteristics of the boom and suspension line need to be simulated in three dimensions, so that out of plane loads can be investigated.
REFERENCES

LIST OF SYMBOLS

A_D Acceleration of the deck at time t = 0
F(s) Laplace transform of forcing functions
F_D Force on the deck
F_C Force on crane
f(w) Step forcing function due to the transfer of the load
g Acceleration of gravity
H Wave height peak to trough
K Structural stiffness
L Laplace transform
M Mass of load
S Laplace operator
T Wave period
t Time
u Elastic deformation of structure
V_H Constant hoist velocity
V_D Velocity of deck at t = 0
W Weight of the load
X Laplace variable
X'(0) Initial position and velocity in Laplace Equation
X_L Position of load in inertial space
X L - u
X_H Support position
\(\ddot{x}_L \) Acceleration of load in inertial space

\(\dot{x}_H \) Support velocity

\(\ddot{x}_H \) Support acceleration

\(\beta \) \(\sqrt{K/M} \)

\(\theta \) Phase angle

\(\phi \) Wave phase angle

SUBSCRIPTS

\(o \) initial condition

\(\Delta \) Condition at \(\Delta t \)
Appendix F

DYNAMIC LOADS ON A SHIPBOARD CRANE BOOM
DUE TO SHIP MOTION

by

Carley C. Ward and Frank R. Johnson, Jr.

March 1978
PREFACE

Operational Requirement (OR-YSL03) for the Container Off-Loading and Transfer System (COTS) addresses the need for an integrated cargo handling system for discharging non-self-sustaining container-capable ships and other ships and barges at open beach sites and identifies the Navy's responsibility for developing certain elements of the required overall cargo handling system. DOD policy is documented in the DOD Project Master Plan for Surface Container Supported Distribution and the DOD system definition paper "Over-the-Shore Discharge of Container-ships (OSDOC) System."

The Navy's version of the container distribution elements constitute the Container Off-Loading and Transfer System (COTS). The COTS advanced development program includes (a) the ship unloading subsystem, (b) the ship-to-shore subsystem, and (c) system level elements. The ship unloading subsystem includes: (a) ship/barge candidates, (b) cranes, (c) crane integration with ships/barges and (d) moorings. This report addresses the progress and accomplishments associated with the crane element of the ship unloading subsystem.
ABSTRACT

Motion of the ship produces dynamic loads in a ship-mounted crane boom. Nonlinear equations for determining these loads are developed using vector analysis and rotating coordinate frames. Once computed, the load functions are incorporated into the flexible boom matrix equation of motion. The elastic response of the boom to these time varying inertial loads can then be computed.

INTRODUCTION

Ship-mounted cranes operate in a demanding dynamic environment: the angle between the boom centerline and direction of gravity is ever changing, and the lifted load and boom are subjected to time-varying accelerations and velocities. The additional motion-induced stresses in the boom could produce a structural failure, if they were not considered in float-rating the crane. This stress state is also aggravated by the overlapping frequency range of the ship motion and boom vibration modes. The dynamic stresses would be amplified should the long flexible boom response couple with the oscillating ship motion. A structural analysis of the crane boom is required to determine the magnitude of these ship-motion-induced stresses and to investigate possible coupling. Anticipated critical operating conditions need to be simulated, and the stresses along the boom computed as a function of time.

A method is presented herein for determining these dynamic stresses in the boom. The procedure follows the displacement

*This method has been previously employed in head injury research to simulate the motion of the head and compute stresses in the brain (Ref 1).

References and illustrations at end of paper.
formulation used in linear structural analyses, with the basic difference being additional terms on the right side of the equation of motion. These terms, called inertial loads, are functions of the boom acceleration and velocity in inertial space. This paper focuses primarily on the derivation of these ship motion functions. General vector equations applicable to any structure in rotating coordinates are employed. A specific case is considered to demonstrate the technique. Because the general form of the equation of motion is unchanged, existing structural analysis computer programs can be easily modified to include these terms.

The dynamic stresses produced by the crane operator swinging the load can be included with these equations, but the forces produced by load pendulation (swing of the load relative to the boom) can not. The equations become nonlinear when pendulation is included, thereby requiring a nonlinear computer program. To maintain linearity, pendulation is not included, and the mass of the lifted loads is concentrated at the tip of the boom. However, pendulation should be included in a subsequent nonlinear analysis where procedures for controlling the motion of the lifted load can also be investigated.

SOLUTION PROCEDURE

A solution procedure was developed for computing the response of the rotating/translating crane boom (Figs. 1 and 2). Following this procedure, equations were generated that could be solved using general purpose structural analysis programs. Other procedures could be followed, but they would require special programming and additional data handling.

The unique aspect of the procedure relates to the calculation and inclusion of ship-induced inertial accelerations. The procedure is completely general; the crane can be located anywhere on the ship and
the boom can be oriented at any angle or be in motion. The angles or rotations of the boom can be large relative to inertial space. Small angle restrictions are unnecessary, because the nonlinear quantities involving the angles are known. Linearity is preserved by including these known terms on the right side of the equation of motion. Only displacement of the boom nodes relative to the instantaneous axis of the boom is assumed to be small.

The customary assumptions (those associated with beam theory and linear elasticity) are made in developing the structural model. In addition, it is assumed that support lines for the boom never become slack. The boom structure may be modeled, member by member, using finite elements, or with equivalent beam elements along the boom centerline.

EQUATION DERIVATION

Equation of Motion Using Newton's Law. The boom is first discretized into a system of finite elements or equivalent beams with lumped masses located at the nodes. The linear matrix equation of motion for the structural system can be derived from the equilibrium equations for each node using Newton's second law of motion. The resulting matrix equation can be written:

\[M \ddot{U} + KU = F \]

where \(\ddot{U} \) and \(\dddot{U} \) are the nodal displacements and nodal accelerations relative to inertial space. \(F \) is the matrix of generalized loads or forces acting on the boom. \(M \) and \(K \) are the diagonal lumped mass matrix and the stiffness matrix, respectively, generated by the structural analysis program. Because the boom may experience large rotations and displacements relative to inertial space, Eq. 1 is converted to boom-fixed coordinates to preserve accuracy. This is accomplished by separating the terms in \(U \) and \(\dddot{U} \) so that
\[U = X + Q \] \[\text{[2]} \]

and \[\ddot{U} = \ddot{X} + \ddot{Q} \] \[\text{[3]} \]

where \(X \) and \(\dot{X} \) are the displacements and accelerations relative to the boom-fixed axis, and \(Q \) and \(\dot{Q} \) are the displacements and accelerations of the boom relative to inertial space. Substituting Eqs. 2 and 3 into Eq. 1 provides

\[M\ddot{Q} + KQ + M\ddot{X} + KX = F \] \[\text{[4]} \]

Since there is no strain in rigid-body displacements,

\[KQ = 0 \] \[\text{[5]} \]

and Eq. 4 can be rewritten

\[M\ddot{X} + KX = F - M\ddot{Q} \] \[\text{[6]} \]

It is important to note that the form of Eq. 6 is the same as that of equations commonly used in structural analysis, except for the additional matrix \(M\ddot{Q} \). Fortunately, in this analysis, \(\ddot{Q} \) is independent of \(X \) when second-order terms are neglected. Once \(\ddot{Q} \) is computed, \(M\ddot{Q} \) can be combined with \(F \) and treated as a time-varying applied load. Eq. 6 can then be solved using standard structural analysis techniques and existing computer programs.

Computation of Inertial Loads \((M\ddot{Q}) \). The position vectors of each node are differentiated twice with respect to inertial space to compute \(\ddot{U} \). Then \(\ddot{Q} \) is obtained from the relationship

\[\ddot{Q} = \ddot{U} - \dddot{X} \] \[\text{[7]} \]

Refer to Eq. 3.

(a) Form of \(\dddot{U} \) Matrix. \(U \) is written in terms of position vectors
where the position vectors are defined in terms of their end points: \(P_1 \) through \(P_n \) are node points 1 through \(n \) in the boom, and 0 is the origin of the inertial frame, as shown in Figs. 1 and 3.

\[
U = \begin{pmatrix}
OP_1 \\
OP_2 \\
\vdots \\
OP_n
\end{pmatrix}
\text{ in boom coordinates}
\]

where \(N \) denotes the inertial frame, and \(\frac{d^2 N}{dt^2} \) denotes the time derivative in the \(N \) frame.

(b) Derivation of Individual Terms in \(\ddot{U} \) Matrix Using Vector Analyses. Because the position vectors are independently differentiated, the procedure can be demonstrated by treating an arbitrary point \(P \) with position vector \(OP \). In the differentiation process, \(OP \) must be rewritten in terms of known quantities, with the vectors fixed in the ship, crane, and boom. \(OP \) is expanded in terms of reference frame position vectors as shown in Fig. 3.

\[
OP = OG + GL + LT + TP
\]
where O, G, L, T, and P denote the vector end points, and the vectors are defined as follows:

OG = position vector of the ship relative to inertial space
GL = position vector of the crane relative to the ship's center of gravity
LT = position vector of the boom origin relative to the crane
TP = position vector of the node P relative to the boom origin.

The reference frames for the above vectors are denoted by N, R, S, and B as shown in Fig. 1:

N = stationary inertial frame located at O
S = ship frame located at the ship's center of gravity, G
R = crane frame with its origin L on the crane's vertical axis of rotation
B = boom frame, with origin at boom's rotation point (the center point of the boom foot) and one axis along the boom centerline

The R, S, and B frames rotate, while N is fixed in space. The base vectors are defined in each frame as shown in Figs. 1 through 3, and are listed in Table 1. These base vector sets are interrelated by direction cosine matrices, C_{ij}, where the two subscripts define the frames (refer to Appendix).

When the expanded form of OP is differentiated, Eq. 10 provides
\[
\frac{N_d}{dt} \left(\frac{N_d}{dt} \mathbf{OP} \right) = \frac{N_d}{dt} \left[\frac{N_d}{dt} \mathbf{OG} + \frac{N_d}{dt} \mathbf{GL} + \frac{N_d}{dt} \mathbf{LT} + \frac{N_d}{dt} \mathbf{TP} \right]
\] [11]

In vector differentiation, GL, LT, and TP are transformed using the following relationship

\[
\frac{I_d}{dt} (\text{vector}) = \frac{J_d}{dt} (\text{vector}) + \omega_{JI} \times (\text{vector})
\] [12]

where I and J define the reference frames, \(\times \) denotes vector cross product, and \(\omega \) is a rotational velocity vector (\(\omega_{JI} \) is the rotational velocity of frame J relative to frame I, and \(\frac{I_d}{dt} \) is differentiation in the I frame.) Refer to the Appendix for additional information regarding this transformation.

Using Eq. 12 to differentiate GL, LT, and TP

\[
\frac{N_d}{dt} \mathbf{GL} = \frac{S_d}{dt} \mathbf{GL} + \omega_{SN} \times \mathbf{GL}
\] [13]

\[
\frac{N_d}{dt} \mathbf{LT} = \frac{R_d}{dt} \mathbf{LT} + \omega_{RN} \times \mathbf{LT}
\] [14]

\[
\frac{N_d}{dt} \mathbf{TP} = \frac{B_d}{dt} \mathbf{TP} + \omega_{BN} \times \mathbf{TP}
\] [15]

In order to simplify the terminology, \(a \) and \(V \) are used to represent acceleration and velocity. For arbitrary vector \(yz \),
where the first superscript on \(V \) and \(a \) defines the point at which the velocity or acceleration is occurring, and the second subscript denotes the reference frame, i.e., \(V^Z_I \) is the velocity of point \(z \) relative to the \(I \) frame.

Rewriting Eqs. 13, 14, and 15 in terms of the definitions in Eqs. 16 and 17 provides

\[
\begin{align*}
\frac{d}{dt}(yz) &= v^{zI} \ldots \ldots \ldots \ldots \ldots \ldots [16] \\
\frac{d}{dt} \left[\frac{d}{dt} (yz) \right] &= \frac{d}{dt} v^{zI} = a^{zI} \ldots \ldots \ldots [17]
\end{align*}
\]

In Eqs. 18 and 19

\[
\begin{align*}
v^{LN} &= v^{LS} + w^{SN} \times GL \ldots \ldots \ldots [18] \\
v^{TN} &= v^{TR} + w^{RN} \times LT \ldots \ldots \ldots [19] \\
v^{PN} &= v^{PB} + w^{BN} \times TP \ldots \ldots \ldots [20]
\end{align*}
\]

In Eqs. 18 and 19

\[
v^{LS} = 0 \quad \text{and} \quad v^{TR} = 0 \ldots \ldots \ldots [21]
\]

because \(L \) is fixed in \(S \) (the crane support axis is not moving relative to the ship), and \(T \) is fixed in \(R \) (the crane boom support is fixed on the crane body).

Substituting Eqs. 18, 19, 20, and 21 into Eq. 11 and using the \(V \) and \(a \) notation provides
\[
\mathbf{a}_{PN} = \frac{N_d}{dt} \left[\mathbf{v}^{GN} + \mathbf{v}^{PB} + \omega^{SN} \times \mathbf{GL} \right. \\
+ \mathbf{w}^{RN} \times \mathbf{LT} + \mathbf{w}^{BN} \times \mathbf{TP} \left. \right] \ldots \ldots \ldots [22]
\]

The second differentiation is performed in the same manner as the first. All the terms except \(\mathbf{v}^{GN} \) are transformed as they are differentiated using Eq. 12.

The angular acceleration vector \(\alpha \) is used in the final series of differentiations to denote the time derivative of the angular velocity vector,

\[
\alpha^{JI} = \frac{I_d}{dt} \omega^{JI} \ldots \ldots \ldots \ldots \ldots \ldots \ldots [23]
\]

where \(I \) and \(J \) are arbitrary reference frames. Differentiating the first term in Eq. 22 yields

\[
\frac{N_d}{dt} \mathbf{v}^{GN} = a^{GN} \ldots \ldots \ldots \ldots \ldots \ldots [24]
\]

Differentiating the second term in Eq. 22 using Eq. 12 yields

\[
\frac{N_d}{dt} \mathbf{v}^{PB} = \frac{B_d}{dt} \mathbf{v}^{PB} + \omega^{BN} \times \mathbf{v}^{PB} \ldots \ldots \ldots [25]
\]

where \(\frac{B_d}{dt} \mathbf{v}^{PB} = a^{PB} \). The third term in Eq. 22 is differentiated by parts first to obtain

\[
\frac{N_d}{dt} (\omega^{SN} \times \mathbf{GL}) = \frac{N_d}{dt} \omega^{SN} \times \mathbf{GL} + \omega^{SN} \times \frac{N_d}{dt} \mathbf{GL} \ldots \ldots \ldots \ldots \ldots \ldots [26]
\]
Then substituting from Eqs. 13, 18, 21, and 23, Eq. 26 can be written as

\[
\frac{N_d}{dt} (w^{SN} x GL) = \alpha^{SN} x GL + w^{SN} x (w^{SN} x GL)
\]

............. [27]

In a similar manner the fourth and fifth terms in Eq. 22 are differentiated to obtain

\[
\frac{N_d}{dt} (w^{RN} x LT) = \alpha^{RN} x LT + w^{RN} x (w^{RN} x LT)
\]

............. [28]

\[
\frac{N_d}{dt} (w^{BN} x TP) = \alpha^{BN} x TP + w^{BN} x V^{PB}
+ w^{BN} x (w^{BN} x TP)
\]

............. [29]

Substituting Eqs. 24, 25, 27, 28, and 29 into Eq. 22 yields

\[
a^{PN} = a^{GN} + a^{PB} + 2w^{BN} x V^{PB} + \alpha^{SN} x GL
+ w^{SN} x (w^{SN} x GL) + \alpha^{RN} x LT
+ w^{RN} x (w^{RN} x LT) + \alpha^{BN} x TP
+ w^{BN} x (w^{BN} x TP)
\]

............. [30]

Eq. 30 defines the inertial acceleration of boom point P in terms of known quantities and the boom relative velocity and acceleration. The boom coordinate components of \(a^{PN}\) are terms in the \(\ddot{U}\) matrix. The other terms in \(\ddot{U}\) are obtained by substituting the position vectors \((TP_i)\) for points \(P_i\) into Eq. 30.
(c) **Individual Terms in the \(\bar{Q} \) Matrix.** The \(\bar{Q} \) matrix terms are determined directly from Eq. 30, thereby making the assembly of \(\bar{U} \) unnecessary. Lower case letters \(\bar{x}, \bar{x}, \bar{q}, u, \) and \(\bar{u} \) are used to denote the vectors forming the \(\bar{X}, \bar{X}, \bar{Q}, U, \) and \(\bar{U} \) matrices. Subscripts identify the node point. The quantities in Eq. 30 are related to \(\bar{U} \) and \(\bar{X} \) as follows:

From Eqs. 8 and 17, \(a_{PN}^{i} \) for node \(i = \bar{u}_{i} \) and by definition

\[
P_{iB}^{a} = \bar{x}_{i} \quad \text{and} \quad P_{iB}^{v} = \bar{x}_{i} \ldots \ldots \ldots [31]
\]

The relationship between \(\bar{q}, \bar{u}, \) and \(\bar{x} \) is obtained from Eq. 7

\[
\bar{q}_{i} = \bar{u}_{i} - \bar{x}_{i} \ldots \ldots \ldots \ldots \ldots \ldots [32]
\]

Rewriting Eq. 30 in terms of \(\bar{x}, \bar{x}, u, \) and \(\bar{u} \) for an arbitrary point \(i \) (substituting Eq. 31 into Eq. 30) and then substituting the revised Eq. 30 into Eq. 32 yields:

\[
\ddot{q}_{i} = a^{GN} + 2w^{BN} \times \dot{x}_{i} + a^{SN} \times GL + \omega^{SN} \times (w^{SN} \times GL) + a^{RN} \times LT + \omega^{RN} \times (w^{RN} \times LT) + a^{BN} \times TP_{i} + \omega^{BN} \times (w^{BN} \times TP_{i}) \ldots \ldots \ldots [33]
\]

The terms containing length vectors (LT, GL, and \(TP_{i} \)) predominate in Eq. 33. The time derivative of the boom deformation \((\dot{x}_{i}) \) measured relative to the boom axis is very small, making the components of \((w^{BN} \times \dot{x}_{i}) \) second-order terms. Neglecting \((w^{BN} \times \dot{x}_{i}) \), the vectors in Eq. 33 can be separated into two groups. One group contains the crane support acceleration and is independent of the node point. The vectors in this
group are identical for each node. The other group contains the tangential and centripetal acceleration of the boom and is a function of the node coordinate \(\mathbf{T}_{bi} \) measured relative to the boom reference frame. The vector matrix equation for \(\dot{\mathbf{q}} \) in terms of these groups can be written

\[
\dot{\mathbf{q}} = e \mathbf{b} + f \mathbf{T}_{bi} \] \[34\]

where \(e \) and \(f \) are scalar components multiplying vectors in the boom reference frame (\(\mathbf{b} \) denotes the unit base vectors in \(\mathbf{B} \), and \(\mathbf{T}_{bi} \) denotes the vector coordinates of node \(i \) directed along the base vectors \(\mathbf{b} \)).

The vectors in Eq. 33 are written in terms of the boom axis as shown in Eq. 34, because eventually they must be incorporated into the equation of motion. Values for \(e \) and \(f \) can be obtained from the following vector dot product

\[
e = \left[a_{GN} + \alpha^{SN} \times \mathbf{GL} + w^{SN} \times (w^{SN} \times \mathbf{GL}) + a^{RN} \times \mathbf{LT} + w^{RN} \times (w^{RN} \times \mathbf{LT}) \right] \cdot \mathbf{b} \] \[35a\]

\[
f = \frac{[\alpha^{BN} \times \mathbf{T}_{pi} + w^{BN} \times (w^{BN} \times \mathbf{T}_{pi})] \cdot \mathbf{b}}{\mathbf{T}_{pi} \cdot \mathbf{b}} \] \[35b\]

However, it is usually easier to perform the vector operations (Eq. 35) in the ship's coordinate system and then convert to the \(\mathbf{b} \) basis using direction cosine matrices. This procedure will be demonstrated in the next section. In all, twelve functions need to be computed, three for \(e \) and a \(3 \times 3 \) matrix of functions for \(f \). The vector operations can be coded, and the calculations performed in a separate program. The resulting functions (\(e \) and \(f \)) are then input to the structural analysis program along with the description of the structure. The modifications to the structural analysis program relate to the appropriate inclusion of \(e \)
and f in the node equations of motion. (The node coordinates TP_i are automatically included as part of the structural input.) The positioning of e and f can be shown using the expanded form for \ddot{Q}. When the \ddot{q}_i terms for each node from Eq. 34 are combined, the \ddot{Q} matrix is generated:

$$
\ddot{Q} = \begin{pmatrix}
e \\
e \\
e
\end{pmatrix} +
\begin{pmatrix}
f \\
f \\
f
\end{pmatrix}
\begin{pmatrix}
TP_1 \\
TP_2 \\
TP_3 \\
\vdots \\
TP_n
\end{pmatrix} \ldots \ldots [36]
$$

The base vectors b in Eq. 34 are not included because \ddot{Q} is not a vector. However, \ddot{Q} must always be written in terms of boom coordinate quantities, because it is used in Eq. 6.

The inertial loads are obtained by multiplying \ddot{Q} by M. Then, as shown in Eq. 6, the matrix product ($-MQ$) is positioned on the right side of the equation of motion. This matrix in effect, applies inertial forces at each boom node. The relative displacements at each node (X_i) are obtained by solving Eq. 6. Finally, using these displacements, the stresses in the boom are computed from element strain displacement relationships.

Computation of the e and f Matrices. The e and f matrices are calculated using the vector operations shown in Eq. 33. To perform the cross product, the vectors are written in terms of a common base vector set (refer to Table 1 for list of base vectors). Then, because the equation of motion is in boom-fixed coordinates, all vector quantities are transformed to the boom coordinate system using direction cosine matrices (see Appendix).
In order to compute e and f, the following quantities are required:

1. Position vectors shown in Figure 2.

\[
GL = L_x s_x + L_y s_y + L_z s_z \ldots [37]
\]

\[
LT = T_x r_x + T_y r_y \ldots [38]
\]

\[
TP_i = P_{xi} b_x + P_{yi} b_y + P_{zi} b_z \ldots [39]
\]

where s, r, and b represent the ship, crane, and boom base vectors, and the L and T are measured dimensions locating the boom on the ship. \(P_{xi} \), \(P_{yi} \), and \(P_{zi} \) are the coordinates of node i.

2. Rotational velocity and rotational acceleration of the ship relative to inertial space.

\[
\omega_{SN} = \omega_x s_x + \omega_y s_y + \omega_z s_z \ldots [40]
\]

\[
\alpha_{SN} = \alpha_x s_x + \alpha_y s_y + \alpha_z s_z \ldots [41]
\]

3. Translational acceleration of the ship relative to inertial space.

\[
a_{GN} = a_x s_x + a_y s_y + a_z s_z \ldots [42]
\]

4. Rotational velocity and rotational acceleration of the crane cab relative to the ship.

\[
\omega_{RS} = \dot{\phi} r_y = \dot{\phi} s_y \ldots [43]
\]

\[
\alpha_{RS} = \ddot{\phi} r_y = \ddot{\phi} s_y \ldots [44]
\]
where $\dot{\theta}$ and $\ddot{\theta}$ are the magnitudes of swing angular velocity and acceleration.

5. The rotational velocity and rotational acceleration of the boom relative to the cab.

$$\omega^{BR} = \dot{\beta}b_z = \dot{\beta}r_z = \dot{\beta} \sin \theta \ s_x + \dot{\beta} \cos \theta \ s_z \ldots \ [45]$$

$$\alpha^{BR} = \ddot{\beta}b_z = \ddot{\beta}r_z = \ddot{\beta} \sin \theta \ s_x + \ddot{\beta} \cos \theta \ s_z \ldots \ [46]$$

where $\dot{\beta}$ and $\ddot{\beta}$ represent the magnitudes of boom angular velocity and acceleration.

The vectors GL, LT, TP_i, w^{SN}, α^{SN}, and α^{GN} used in the calculation of e and f (Eq. 35) are obtained directly from Eqs. 37, 38, 39, 40, 41, and 42, respectively. The remaining vectors, α^{RN}, α^{BN}, ω^{RN}, and ω^{BN}, are functions of the vectors defined in Eqs. 40 through 46. For example, using the angular velocity vector chain rule (refer to the Appendix), ω^{RN} can be written

$$\omega^{RN} = \omega^{SN} + \omega^{RS} \ldots \ldots \ldots \ldots \ldots \ [47]$$

and ω^{BN} as

$$\omega^{BN} = \omega^{SN} + \omega^{RS} + \omega^{BR} \ldots \ldots \ldots \ldots \ldots \ [48]$$

The angular velocity vectors α^{RN} and α^{BN} are obtained by differentiating the expanded velocity vectors in Eqs. 47 and 48. The equation for α^{RN} is

$$\alpha^{RN} = \frac{d}{dt} \omega^{RN} = \frac{d}{dt} \left(\omega^{SN} + \omega^{RS} \right) \ldots \ldots \ldots \ldots \ldots \ [49]$$
and for α_{BN} it is

$$\alpha_{BN} = \frac{N_d}{dt} (\omega_{SN} + \omega_{RS} + \omega_{BR}) \ldots \ldots \ldots [50]$$

Using Eq. 12 to differentiate, Eq. 49 becomes

$$\alpha_{RN} = \alpha_{SN} + \alpha_{RS} + \omega_{SN} \times \omega_{RS} \ldots \ldots \ldots [51]$$

and Eq. 50 is written

$$\alpha_{BN} = \alpha_{SN} + \alpha_{RS} + \omega_{SN} \times \omega_{RS}$$

$$+ (\omega_{SN} + \omega_{RS}) \times \omega_{BR} \ldots \ldots \ldots [52]$$

These angular acceleration vectors can be expressed in the s basis. Using Eqs. 40, 41, 43, and 44, Eq. 51 can be written

$$\alpha_{RN} = (\alpha_x - \omega_z \dot{\theta})s_x + (\alpha_y + \ddot{\theta})s_y$$

$$+ (\alpha_z + \omega_x \dot{\theta})s_z \ldots \ldots \ldots \ldots [53]$$

and using Eqs. 40, 41, 43, 44, 45, and 46, Eq. 52 can be written

$$\alpha_{BN} = [\alpha_x - \omega_z \dot{\theta} + \beta \sin \theta$$

$$+ (\dot{\theta} + \omega_y)\beta \cos \theta]s_x + [\alpha_y + \ddot{\theta}$$

$$+ \omega_z \beta \sin \theta - \omega_y \beta \cos \theta]s_y$$

$$+ [\alpha_z + \omega_x \dot{\theta} + \beta \cos \theta$$

$$- (\omega_y + \dot{\theta})\beta \sin \theta]s_z \ldots \ldots \ldots [54]$$
All the vectors required in the calculation of e and f are defined in Eqs. 37 through 54. To compute the e column matrix, the vector operations and additions are done in the s basis and the results transformed to the b basis using C_{SB} from the Appendix. The terms of f are computed by transforming α^{BN} and ω^{BN} to the b basis and performing the vector cross product in the b frame. The terms of e and f would be computed using matrix multiplication on the digital computer so that the rather cumbersome equations for the e and f terms are never required. However, for checking purposes, the equations for the terms can be obtained from the authors.

SUMMARY

A procedure is presented for computing the dynamic loads produced on a crane boom by ship and boom motion (pendulation of the load is not included). With this procedure, any combination of rotational and translational motion can be simulated. Although the procedure requires a minor modification to the structural analysis program, it greatly extends the possible applications for the program.

The equations of motion are derived in their simplest form, minimizing computation and program modifications. Only twelve time functions are required to generate the translational and rotational inertial loads. Although the equations are linear, nonlinear large angle rotations are included to maintain accuracy.

Once the structural analysis program is modified, the dynamic stresses in the boom that are induced by the shipboard environment can be easily and efficiently computed.
NOMENCLATURE

a acceleration
B boom reference frame
b boom unit vectors
C direction cosine matrix
e inertial load functions, independent of nodal coordinates
\(\mathbf{e} \) arbitrary unit vectors
F generalized loads matrix
f inertial load functions multiplying nodal coordinates
G point defined by ship's center of gravity
I, J arbitrary reference frames
K structural stiffness matrix
L point on crane cab rotation axis
\(\ell \) vector length
M lumped mass matrix
N inertial reference frame
O origin of inertial frame
P node point on boom
Q, Q displacement and acceleration matrices
q, \(\dot{q} \) terms in the Q and \(\dot{Q} \) matrices
R crane cab reference frame
r crane cab unit vectors
S ship reference frame
s ship unit vectors
T point on boom support axis (origin of boom coordinate system)
U, \(\dot{U} \) nodal displacement and acceleration matrices relative to inertial space
u, \(\dot{u} \) terms in U and \(\dot{U} \) matrices
V velocity vector
X,\(\dot{X}, \ddot{X} \) nodal displacement, velocity, and acceleration matrices relative to the boom axis
\(\dot{x}, \ddot{x} \) terms in the X and \(\dot{X} \) matrices
yz arbitrary vector
z arbitrary point
\(\alpha \) angular acceleration
w angular velocity
\(\Theta, \beta \) boom angles refer to Figure 2

d/dt and (') denote differentiation with respect to time.
REFERENCES

APPENDIX

Direction Cosine Matrices. The base vectors are interrelated by direction cosine matrices, \(C_{ij} \), where the subscripts define the reference frames (T..le 1). For example:

\[
\begin{bmatrix}
S_x \\
S_y \\
S_z
\end{bmatrix} = \left[C_{SB} \right] \begin{bmatrix}
b_x \\
b_y \\
b_z
\end{bmatrix} \ldots \ldots \ldots \ldots [A-1]
\]

where

\[
C_{SB} = \begin{bmatrix}
\cos \theta \cos \beta & -\cos \theta \sin \beta & \sin \theta \\
\sin \beta & \cos \beta & 0 \\
-\sin \theta \cos \beta & \sin \beta \sin \theta & \cos \theta
\end{bmatrix} \ldots [A-2]
\]

Chain Rule for Angular Velocity Vectors. Angular velocity vectors can be expressed using intermediate reference frames (Ref. 2),

\[
\omega_{IJ} = \omega_{IK} + \omega_{KJ} \ldots \ldots \ldots \ldots [A-3]
\]

where K is the intermediate reference frame. For the boom,
\[w_{BN} = w_{BR} + w_{RS} + w_{SN} \quad \ldots \quad [A-4] \]

Vector Differentiation/Transformation. The following equation is used to differentiate and transform vectors.

\[\frac{d}{dt}(yz) + JI \times yz = \omega JI \times yz \quad \ldots \quad [A-5] \]

The proof follows:

Let the arbitrary vector \(yz \) be written in terms of its magnitude \(\ell \) and an appropriate unit vector \(e \) so that

\[yz = \ell \overline{e} \quad \ldots \quad [A-6] \]

Application of the product rule of differentiation yields

\[\frac{d}{dt}(yz) = \dot{\ell} \overline{e} + \ell \frac{d}{dt} \overline{e} \quad \ldots \quad [A-7] \]

\[\frac{J}{dt}(yz) = \dot{\ell} \overline{e} + \ell \frac{J}{dt} \overline{e} \quad \ldots \quad [A-8] \]

Let \(C \) be a reference frame in which \(\overline{e} \) is fixed. Then from the definition of angular velocity,

\[\frac{d}{dt} \overline{e} = \omega CI \times \overline{e} \quad \ldots \quad [A-9] \]

and

\[\frac{J}{dt} \overline{e} = \omega CJ \times \overline{e} \quad \ldots \quad [A-10] \]
Substituting Eqs. A-9 and A-10 into the difference of Eqs. A-7 and A-8 yields

\[
\frac{I_d yz}{dt} - \frac{J_d yz}{dt} = \lambda \left[w^C_l - w^C_J \right] \times \vec{e} \quad \ldots [A-11]
\]

Using Eq. A-6' and the relationship \(-w^C_J = w^C_J\), Eq. A-11 can be simplified to

\[
\frac{I_d yz}{dt} = \frac{J_d yz}{dt} + \left[w^C_l + w^C_J \right] \times yz \quad \ldots [A-12]
\]

Finally, the chain rule for angular velocities (Eq. A-3) permits the substitution of \(w^J_I \) in the brackets, which proves Eq. A-5.
Table 1. Reference Frame Definition

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Base Vectors</th>
<th>Origin Point</th>
<th>Origin Location</th>
<th>Angles Between Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inertial</td>
<td>N</td>
<td>n_x, n_y, n_z</td>
<td>O</td>
<td>Unspecified</td>
<td>$-$</td>
</tr>
<tr>
<td>Ship</td>
<td>S</td>
<td>s_x, s_y, s_z</td>
<td>G</td>
<td>Ship CG</td>
<td>θs_y</td>
</tr>
<tr>
<td>Crane</td>
<td>R</td>
<td>r_x, r_y, r_z</td>
<td>L</td>
<td>Vertical rotation axis of cab</td>
<td>βr_z</td>
</tr>
<tr>
<td>Boom</td>
<td>B</td>
<td>b_x, b_y, b_z</td>
<td>T</td>
<td>Crane boom center of rotation</td>
<td>$-$</td>
</tr>
</tbody>
</table>

Figure 1. Coordinate system.
Figure 2. Crane orientation.

Figure 3. Position vectors.
INSTRUCTIONS

The Naval Civil Engineering Laboratory has revised its primary distribution lists. To help us verify our records and update our data base, please do the following:

- Add - circle number on list
- Remove my name from all your lists - check box on list.
- Change my address - add telephone number
- Number of copies should be entered after the title of the subject categories you select.
- Are we sending you the correct type of document? If not, circle the type(s) of document(s) you want to receive listed on the back of this card.

Fold on line, staple, and drop in mail.

DEPARTMENT OF THE NAVY
Naval Civil Engineering Laboratory
Port Hueneme, CA 93043-5003

Official Business
Penalty for Private Use, $300

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 12503 WASH D.C.

POSTAGE WILL BE PAID BY ADDRESSEE

CODE L34 (J LEDEER)
COMMANDING OFFICER
NAVAL CIVIL ENGINEERING LABORATORY
PORT HUENEME CA 93043-5003
DISTRIBUTION QUESTIONNAIRE
The Naval Civil Engineering Laboratory is revising its primary distribution lists.

SUBJECT CATEGORIES

1 SHORE FACILITIES
1A Construction methods and materials (including corrosion control, coatings)
1B Waterfront structures (maintenance/deterioration control)
1C Utilities (including power conditioning)
1D Explosives safety
1E Aviation Engineering Test Facilities
1F Fire prevention and control
1G Antenna technology
1H Structural analysis and design (including numerical and computer techniques)
1J Protective construction (including hardened shelters, shock and vibration studies)
1K Soil/rock mechanics
1L Airfields and pavements
1M Physical security

2 ADVANCED BASE AND AMPHIBIOUS FACILITIES
2A Base facilities (including shelters, power generation, water supplies)
2B Expedient roads/airfields/bridges
2C Over-the-beach operations (including breakwaters, wave forces)
2D POL storage, transfer, and distribution
2E Polar engineering

3 ENERGY/POWER GENERATION
3A Thermal conservation (thermal engineering of buildings, HVAC systems, energy loss measurement, power generation)
3B Controls and electrical conservation (electrical systems, energy monitoring and control systems)
3C Fuel flexibility (liquid fuels, coal utilization, energy from solid waste)
3D Alternate energy source (geothermal power, photovoltaic power systems, solar systems, wind systems, energy storage systems)
3E Site data and systems integration (energy resource data, integrating energy systems)
3F EMCS design

4 ENVIRONMENTAL PROTECTION
4A Solid waste management
4B Hazardous/toxic materials management
4C Waterwaste management and sanitary engineering
4D Oil pollution removal and recovery
4E Air pollution
4F Noise abatement

5 OCEAN ENGINEERING
5A Seafloor soils and foundations
5B Seafloor construction systems and operations (including diver and manipulator tools)
5C Undersea structures and materials
5D Anchors and moorings
5E Undersea power systems, electromechanical cables, and connectors
5F Pressure vessel facilities
5G Physical environment (including site surveying)
5H Ocean-based concrete structures
5J Hyperbaric chambers
5K Undersea cable dynamics

ARMY FEAP
BDG Shore Facilities
NRG Energy
ENV Environmental/Natural Responses
MGT Management
PGR Pavements/Railroads

TYPES OF DOCUMENTS

D - Techdata Sheets, R - Technical Reports and Technical Notes, G - NCEL Guides and Abstracts, I - Index to TDS, U - User Guides; ☐ None - remove my name

Old Address: __
__
__
__
 __
Telephone No.: ______________________________________

New Address: __
__
__
__
 __
Telephone No.: ______________________________________
NCEL DOCUMENT EVALUATION
You are number one with us; how do we rate with you?

We at NCEL want to provide you our customer the best possible reports but we need your help. Therefore, I ask you to please take the time from your busy schedule to fill out this questionnaire. Your response will assist us in providing the best reports possible for our users. I wish to thank you in advance for your assistance. I assure you that the information you provide will help us to be more responsive to your future needs.

R. N. STORER, Ph.D, P.E.
Technical Director

DOCUMENT NO. _________ TITLE OF DOCUMENT: _____________________________

Date: ___________ Respondent Organization: ________________________________

Name: _______________________________ Activity Code: ______________________
Phone: ______________________________ Grade/Rank: ________________________

Category (please check):
- Sponsor ___ User ___ Proponent ___ Other (Specify) _______________________

Please answer on your behalf only; not on your organization’s. Please check (use an X) only the block that most closely describes your attitude or feeling toward that statement:

SA Strongly Agree A Agree O Neutral D Disagree SD Strongly Disagree

1. The technical quality of the report is comparable to most of my other sources of technical information. () () () ()
2. The report will make significant improvements in the cost and or performance of my operation. () () () ()
3. The report acknowledges related work accomplished by others. () () () ()
4. The report is well formatted. () () () ()
5. The report is clearly written. () () () ()
6. The conclusions and recommendations are clear and directly supported by the contents of the report. () () () ()
7. The graphics, tables, and photographs are well done. () () () ()

Do you wish to continue getting NCEL reports? [] YES [] NO

Please add any comments (e.g., in what ways can we improve the quality of our reports?) on the back of this form.