Using both empirical potentials and first-principles total energy methods, we have examined the energetics and elastic properties of all possible graphitic tubules with radii less than 0.9 nm. We find that the strain energy per carbon relative to an unstrained graphite sheet goes as the inverse square of the tubule radius, R, and is insensitive to other aspects of the lattice structure, indicating that relationships derivable from continuum elastic theory persist well into the small radius limit. We also predict that this strain energy is much smaller than that in highly-symmetric fullerene clusters with similar radii, suggesting a possible thermodynamic preference for tubular structures rather than cage structures. The empirical potentials further predict that the elastic constants along the tubule axis generally soften with decreasing tubule radius, although with a distinct dependence on helical conformation.
OFFICE OF NAVAL RESEARCH

CONTRACT # N00014-92-WX-24183

R&T Code 4131062

Technical Report No. 5

Energetics of nanoscale graphitic tubules

by

D.H. Robertson, D.W. Brenner, and J.W. Mintmire

Accepted for publication in Physical Review B Rapid Communications

Code 6170, Chemistry Division
U.S. Naval Research Laboratory
Washington, DC 20375-5000

April 15, 1992

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.

92-11869
Energetics of Nanoscale Graphitic Tubules

D. H. Robertson, D. W. Brenner and J. W. Mintmire
Naval Research Laboratory
Washington, DC 20375-5000

Abstract

Using both empirical potentials and first-principles total energy methods, we have examined the energetics and elastic properties of all possible graphitic tubules with radii less than 9 Å. We find that the strain energy per carbon relative to an unstrained graphite sheet goes as $1/R^2$ (where R is the tubule radius) and is insensitive to other aspects of the lattice structure, indicating that relationships derivable from continuum elastic theory persist well into the small radius limit. We also predict that this strain energy is much smaller than that in highly-symmetric fullerene clusters with similar radii, suggesting a possible thermodynamic preference for tubular structures rather than cage structures. The empirical potentials further predict that the elastic constants along the tubule axis generally soften with decreasing tubule radius, although with a distinct dependence on helical conformation.

PACS #: 61.41.+e, 61.55.Dc, 62.20.Dc, 68.70.+w

accepted for publication in Physical Review B Rapid Communications
The discovery by Krätschmer and Huffman1 of a process for producing bulk quantities of fullerene clusters has opened up new opportunities for producing unique carbon-based materials. Among the possibilities are new materials based on carbon fibers that have radii similar to that of C\textsubscript{60}. For example, Iijima2 has reported evidence of needle-like tubes consisting of concentric carbon fibers with radii as small as 22 Å forming at the negative end of an electrode in an apparatus typically used to produce fullerene clusters. If the synthesis and processing of these fibers can be precisely controlled, they may yield new materials with important structural and electronic properties.

Theoretical studies of these small-radii graphitic tubules have focused primarily on their electronic properties. Local-density functional (LDF)3 and empirical tight-binding electronic structure calculations4−6 predict that these materials will show conducting properties varying from metals to moderate band gap semiconductors depending on their radii and helical arrangement of the carbon hexagons. In contrast to the electronic properties, relatively little has been reported regarding the lattice energetics and elastic properties of these structures. Such information may be helpful for optimizing the conditions necessary for producing sub-nanometer radii graphitic tubules with high strength-to-weight ratios.

We have examined the energetics of a set of tubules that can be constructed conceptually by rolling up a single sheet of graphite into a cylindrical tube with constant radius. We report herein calculations for the energy and force constant along the tubule axis for all such tubules with radii less than 9 Å using two related many-body empirical potentials. We find that the strain energy per carbon relative to an unstrained graphite sheet goes as $1/R^2$ (where R is the tubule radius) and is insensitive to other aspects of the lattice structure, indicating that relationships derivable from continuum elastic theory persist well into the small
radius limit. These results are further supported by first-principles LDF calculations on a series of selected tubules. We also predict that the strain energy associated with infinitely-extended tubules is much smaller than that for highly-symmetric icosahedral fullerene clusters with similar average radii. We find that the force constants associated with stretching along the tubule axis decrease (i.e., the tubules become softer with decreasing radius). Unlike the strain energy, however, this force constant is sensitive to the helical structure of the tubule with the dependence increasing at smaller tubule radii.

We can visualize an infinite tubule as a conformal mapping of a two-dimensional honeycomb lattice (depicted in Fig. 1) to the surface of a cylinder that is subject to periodic boundaries both around the cylinder and along its axis. The proper boundary condition around the cylinder can only be satisfied if the circumference of the cylinder maps to one of the Bravais lattice vectors of the graphite sheet. Thus each real lattice vector of the two-dimensional hexagonal lattice (the Bravais lattice for the honeycomb) defines a different way of rolling up the sheet into a tubule. Each such lattice vector, \(\mathbf{R} \), can be defined in terms of the two primitive lattice vectors \(\mathbf{R}_1 \) and \(\mathbf{R}_2 \) and a pair of integer indices \([n_1, n_2] \), such that \(\mathbf{R} = n_1 \mathbf{R}_1 + n_2 \mathbf{R}_2 \). The point group symmetry of the honeycomb lattice will make many of these equivalent, however, so truly unique tubules are only generated using a one-twelfth irreducible wedge of the Bravais lattice. Within this wedge only a finite number of tubules can be constructed with a circumference below any given value such as that shown by the dashed line in Fig. 1.

The construction of the tubule from a conformal mapping of the graphite sheet allows us to make additional deductions about the tubule structure. Because the primitive reciprocal lattice vectors of the hexagonal lattice (the Bravais
lattice of the honeycomb lattice) are scalar multiples of real lattice vectors, the tubule can be shown to be translationally periodic down the tubule axis. This feature allows us to use standard supercell techniques with periodic boundary conditions for our analysis of the lattice energetics. Each tubule can have up to three inequivalent helical operations derived from the primitive lattice vectors of the graphite sheet. Thus while all tubules will exhibit a helical structure, tubules constructed by mapping directions equivalent to $\Theta = 0$ or 30° in Fig. 1 (which correspond to lattice translation indices of the form $[n,0]$ and $[n,n]$, respectively) to the circumference of the tubule will possess a reflection plane; one of the primitive lattice vectors of the graphite lattice will map to a rotation about the tubule axis. These high-symmetry tubules will therefore be achiral. For convenience, we will denote these high-symmetry structures based on the shapes made by the most direct continuous path of bonds around the circumference of the tubule. The $[n,0]$ type structures we will denote as sawtooth, and the $[n,n]$ type structures we will denote as serpentine structures. For other values of Θ, the tubules will be chiral and have three inequivalent helical operations. By varying Θ for tubules with similar radii, we can then ascertain which properties depend on the helical nature of the tubules.

We calculate the strain energy and stretching force constant of each tubule using two related many-body empirical potentials. For both potentials the binding energy is given as

$$E_{\text{bind}} = \sum_i \sum_{j>i}[V_R(r_{ij}) - B_{ij} \cdot V_A(r_{ij})],$$ \hspace{1cm} (1)

where r_{ij} is the scalar distance between atoms i and j, $V_R(r_{ij})$ and $V_A(r_{ij})$ represent a pair-additive core-core repulsion and an attraction due to valence electrons, respectively, and B_{ij} is a many-body empirical bond order that couples quantities such as bond angles and local coordination to the attractive potential. Tersoff
has shown that if Morse-like functions are used for the pair terms, a wide range of structural properties of solid-state carbon can be accurately modeled using this formalism. Furthermore, well-known trends relating bond length to total energy and stretching force constants are reproduced, suggesting that this approach provides a reasonable starting point for predicting trends such as those studied here.

The two potentials used are both based on Eq. (1), but vary slightly in the form of B_{ij} and the parameters used in the pair terms. The first empirical potential (hereafter referred to as EP1) was introduced by Tersoff, and was fit to the lattice constant and binding energy of a number of carbon lattices as well as the elastic constants and vacancy formation energies of graphite and diamond. This potential has recently been used by Hamada, et al. to generate tubule structures subsequently used in tight-binding electronic structure calculations. The second empirical potential (hereafter referred to as EP2) was developed in the context of a reactive hydrocarbon potential, and has been fit to similar properties as EP1. Specific details of the two potential functions are given elsewhere.

In addition to the empirical potential calculations, we have also calculated the electronic structure of a set of tubule structures using a first-principles, all-electron self-consistent LDF approach originally developed to treat chain polymers and recently adapted for helical symmetry. This method calculates the total energy and electronic structure using local Gaussian-type orbitals within a one-dimensional band structure approach. The one-electron states are Bloch functions generated by repeated application of a screw operation, and belong to the irreducible representations of the screw symmetry group with a dimensionless analog of the wave vector k. Herein we used twenty-four evenly spaced points in
the one-dimensional Brillouin zone ($-\pi < k \leq \pi$) and a carbon 7s3p Gaussian basis set.

We have examined all of the 169 tubules that can be constructed for radii less than 9 Å, assuming a carbon-carbon bond distance of 1.44 Å. We first generate an initial tubule structure with periodic boundary conditions matching the minimum translational periodicity along the tubule axis using the above-mentioned conformal mapping of the graphite sheet. Once these tubules are generated we relax the constraint of conformal mapping, and minimize the energy with respect to their configuration and periodic boundary along the tube axis for both these empirical potentials. Using this optimized structure we next calculate a numerical second derivative of the total energy with respect to strain along the tubule axis.

Fig. 2 depicts the strain energy per atom (relative to that of the graphite sheet) for these tubules using optimized structures as a function of radius for both empirical potentials. As expected, for both potentials the strain energy decreases with larger radius, with the energy per atom approaching the limiting graphite value shown as dashed lines in Fig. 2. The results using EP1, however, show a larger dependence of the strain energy on tubule radii compared to the results using EP2. Although the results depicted in Fig. 2 are for tubules with Θ values ranging from 0 to 30 degrees, the strain energy appears to depend only on the radius and thus is independent of the chirality of the tubule.

We also calculated total energies for a series of high-symmetry tubules with Θ = 30° using first-principles LDF methods. These tubules all correspond to serpentine structures of the form [n,n]. The LDF electronic structure of the [5,5] structure has been presented elsewhere. We have since found the minimum energy structure of this tubule by direct minimization of the total energy. The
minimum energy structure is found to have a radius of 3.47 Å with both types of carbon-carbon bonds being essentially equal with lengths of 1.44 Å. Using unoptimized tubule structures generated from a conformal mapping of a graphite sheet with 1.44 Å carbon-carbon bond distance, we have calculated the total energies of the [3,3], [4,4], [5,5], [6,6], [7,7], and [9,9] serpentine tubules. These values are plotted as open squares in Fig. 2. The strain energy is slightly larger than that predicted from either of the empirical potentials but shows a similar monotonically decreasing trend with increasing radius. This increased strain energy in the LDF results compared to the empirical potential results may arise from the explicit treatment of \(\pi \)-bonding energy in the LDF approach that is not incorporated in the empirical potentials.

Based on a continuum elastic model, Tibbetts\(^{11}\) derived a strain energy for a thin graphitic tubule of the general form:

\[
\sigma = \frac{\pi E L a^3}{12 R} \tag{2}
\]

where \(E \) is the elastic modulus, \(R \) is the radius of curvature, \(L \) is the length of the cylinder, and \(a \) is a representative thickness of the order of the graphite interplanar spacing (3.35 Å). Assuming that the total number of carbons is given by \(N = 2\pi R L / \Omega \), where \(\Omega \) is the area per carbon, we find that the strain energy per carbon is expected to be

\[
\frac{\sigma}{N} = \frac{E a^3 \Omega}{24 R^2} \tag{3}
\]

The inset of Fig. 2 presents a log-log plot of the same tubule data presented in linear scale in the main portion of the figure. A linear regression using the natural logarithms of the data yields a slope of \(-2.0 \pm 0.06\) for both empirical potentials and the LDF results, with a high correlation coefficient. Using the results of this fit, we have drawn solid lines in the main portion of Fig. 2 showing how well
the $1/R^2$ behavior fits the results for the empirical potentials. Thus we find that
the $1/R^2$ dependence derived from continuum elastic theory11,12 persists to very
small radius tubules.

Also shown in Fig. 2 are the energies per atom with respect to graphite for the
icosahedral fullerene clusters C_{60}, C_{180} and C_{240} calculated using the respective
empirical potentials. These clusters represent highly-symmetric structures which
have the strain energy well distributed around the cluster.13 For both potentials
the strain energy associated with these clusters is much larger than the infinite
tubules with comparable radii, but should reduce to the graphite limit as the
radius increases. This larger strain energy for the fullerenes reflects that while in
tubules the curvature is restricted to one dimension perpendicular to the tubule
axis, in fullerenes this curvature is present in two dimensions with respect to
the flat graphite sheet. The formation of fullerene clusters rather than tubules
during condensation may therefore be controlled by growth kinetics rather than energetics.

We have also examined the energetics of stretching and compressing a tubule.
Fig. 3 depicts total energy results versus strain along the tubule axis for the [5,5]
serpentine tubule, in which we compare results of fully-optimized structures for a
fixed repeat length along the tubule axis using both the empirical potentials and
the LDF method. We see that both empirical methods are in good agreement
with both each other, and with the first-principles LDF results.

After this check on the reliability of the empirical potentials on calculating
this effective elastic modulus of the tubule, we have extended our empirical potential
calculations on the same set of 169 tubules used above for strain energies to
the numerical second derivatives of the total energy with respect to strain along
the tubule axis. These results (in terms of strain energy per carbon) are depicted
in Fig. 4. Again, as the radii increase these values approach a limiting value. In the limit of infinite radius, we can correlate these results with elastic constants of graphite if we neglect interactions between layers. In this case our results for the second derivative of the total energy per carbon with respect to linear strain should just equal the product of the graphite c_{11} elastic constant and the specific volume per carbon, V_\circ. Using experimentally determined lattice constants $a_\circ = 2.462 \text{ Å}$ and $c_\circ = 6.707 \text{ Å}$, and the elastic constant $c_{11} = 1.06 \text{ TPa}^{14,15}$ we find $V_\circ \approx 8.80 \text{ Å}^3$ and $V_\circ c_{11} \approx 58.2 \text{ eV/atom}$. This close agreement of EP2 with experiment and excess stiffness using the EP1 potential has been noted in other calculations on graphitic systems.$^7,^{16}$

For both potentials, the tubules tend to get softer with smaller radii, with EP1 showing almost an order of magnitude greater dependence of the stiffness of the tubule as a function of radius than EP2. Unlike the energy, however, the stiffness of the tubules is dependent on Θ as well as tubule radius and this dependence is maximized for the smaller, more strained tubules. We find that tubules with smaller Θ are softer than those with a similar radius and larger value of Θ. Thus the two achiral sawtooth ($\Theta = 0^\circ$) and serpentine ($\Theta = 30^\circ$) tubules yield the lower and upper limits of the stiffness along the tubular axis, respectively, for a given radius.

We have calculated the energies of optimized structures for all possible graphitic tubules with radii less than 9 Å using two different empirical potentials. We find a strain energy dependence on tubule radius of $1/R^2$ derived from continuum elastic theory even down to tubule radii of $\sim 3.5 \text{ Å}$, that typical of buckminsterfullerene (C_{60}). LDF calculations for a series of serpentine tubules substantiate the former trend, but yield a somewhat larger strain energy. We also predict that this strain energy is much smaller than that in highly-symmetric
fullerene clusters with similar radii. The empirical potentials predict that as the radii of these tubules decrease the elastic constants along the tubule axis also decrease (i.e. the tubules become softer as their local curvature increases). Unlike the minimized energy, this elastic property shows a distinct dependence on Θ with the largest variations with respect to Θ occurring for small radii tubules. For similar radii, the lower and upper bounds of the stiffness are given by the achiral sawtooth and serpentine tubules, respectively.

Acknowledgements

This work was supported in part by the U. S. Office of Naval Research. Computational support for this project was provided in part by a grant of computer resources from the Naval Research Laboratory. DHR acknowledges an NRC-NRL Postdoctoral Research Associateship. We thank C. T. White and B. I. Dunlap for many helpful discussions.

References

Captions

Figure 1. Irreducible wedge of the graphite lattice. Primitive lattice vectors \mathbf{R}_1 and \mathbf{R}_2 are depicted in inset. Θ defines the angle that the circumference vector makes with the primitive lattice vector. Dashed line depicts 9 Å cutoff for tubule structures.

Figure 2. Minimized strain energy relative to graphite (eV per carbon atom) as a function of tubule radius for potentials EP1 and EP2. Zero energy corresponds to the equilibrium graphite energies of -7.3995 and -7.3756 eV per atom for EP1 and EP2, respectively. The solid lines are the $1/R^2$ approximation resulting from best linear fit to log-log data given in inset. Open squares give LDF strain energies for unoptimized serpentine structures relative to extrapolated limit. Isolated symbols give corresponding strain energies per carbon atom using EP1 (circles) and EP2 (diamonds) for fullerene cage structures C_{60}, C_{180}, and C_{240} at the radii indicated.

Figure 3. Strain energy (eV per carbon atom) versus uniform tensile strain in the tubule axis direction for [5,5] serpentine tubule using empirical potentials EP1 (open circles), EP2 (open diamonds) and LDF method (solid squares). Solid lines for empirical potentials are used as a guide to the eye.

Figure 4. Numerical second derivatives of energy per carbon with respect to uniform strain along the tubule axis direction for the potentials EP1 and EP2.
Figure 1.
Figure 2.

Tubule Radius (Å)

Strain Energy (eV/atom)
Figure 3.

- LDF
- EP1
- EP2

Strain Energy (eV/atom) vs. strain (ε)
Figure 4.
NRL Code 6170

Office of Naval Research
Chemistry Division, Code 1113
800 North Quincy Street
Arlington, VA 22217-5000

Dr. James S. Murday
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, DC 20375-5000

Dr. Robert Green, Director
Chemistry Division, Code 385
Naval Air Weapons Center
Weapons Division
China Lake, CA 93555-6001

Dr. Elek Lindner
Naval Command, Control and Ocean Surveillance Center
RDT&E Division
San Diego, CA 92152-5000

Dr. Bernard E. Douda
Crane Division
Naval Surface Warfare Center
Crane, IN 47522-5000

Dr. Richard W. Drisko
Naval Civil Engineering Laboratory
Code L52
Port Hueneme, CA 93043

Dr. Harold H. Singerman
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Dr. Eugene C. Fischer
Code 2840
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314
3STRACT DISTRIBUTION LIST

Professor Rodney J. Bartlett
Chemistry and Physics Department
University of Florida
362 Williamson Hall
Gainesville, FL 32611-2085

Professor Max Berkowitz
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Professor Elliott R. Bernstein
Department of Chemistry
Colorado State University
Fort Collins, Colorado 80523

Doctor David Chandler
Department of Chemistry
University of California, Berkeley
Berkeley CA 94720

Professor Mostafa El-Sayed
Department of Chemistry
University of California, Los Angeles
Los Angeles, California 90024

Professor Jonathan G. Harris
Department of Chemical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

Professor Purusottam Jena
Physics Department
Virginia Commonwealth University
Richmond, VA 23284-2000

Professor Jurgen Kreuzer
Department of Physics
Dalhousie University
Halifax, Nova Scotia B3H 3J5
Canada

Dr. Mark Maroncelli
Department of Chemistry
The Pennsylvania State University
152 Davey Laboratory
University Park, PA 16802

Professor Craig C. Martens
Department of Chemistry
University of California, Irvine
Irvine, CA 92717
Dr. T. Pavlopoulous
Naval Ocean Systems Center
Code 521
San Diego, California 92152-5000

Professor Laura Philips
Department of Chemistry
Cornell University
Ithaca, New York 14853

Professor Geraldine Richmond
Department of Chemistry
University of Oregon
Eugene, Oregon 97403

Professor Deanne Snavely
Department of Chemistry
Bowling Green State University
Bowling Green, Ohio 43402

Dr. David L. Venezky
Surface Chemistry Branch
Chemistry Division
Naval Research Laboratory
Washington DC 20375-5000

Professor Gregory A. Voth
University of Pennsylvania
Department of Chemistry
Philadelphia PA 19104-6323

Professor S. E. Webber
Department of Chemistry
The University of Texas at Austin
Austin, Texas 78712-1167

Professor Michael Zerner
Department of Chemistry
The University of Florida
Gainesville, FL 32611