Extended Orthogonally Fused Conducting Oligomers for Molecular Electronic Devices

by

James M. Tour, Ruilian Wu, and Jeffry S. Schumm
Department of Chemistry and Biochemistry
University of South Carolina
Columbia, SC 29208

Accepted for Publication in
Journal of the American Chemical Society

April 25, 1992

Reproduction in whole, or in part, is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.
Extended Orthogonally Fused Conducting Oligomers for Molecular Electronic Devices

James M. Tour, Ruiian Wu, and Jeffry S. Schumm

Department of Chemistry and Biochemistry
University of South Carolina
Columbia, SC 29208

Department of the Navy
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Published in J. Am. Chem. Soc.

Described is an approach to orthogonally fused conjugated organic compounds that may act as molecular switching devices. Four thiophene trimers are added in a single operation to spiro-fused cores to afford the target molecules. A spiro-fused thiophene-based monomer system is converted to a spiro-fused heptamer that is 25 Å long. The synthesis of a mixed phenylene-thiophene system is described that provides a spiro-fused octamer that is 30 Å long. In each case, alkyl substituents on the thiophenes afford soluble materials. Trimethylsilyl end groups flank each orthogonally fused system. Organopalladium- and organonickel-catalyzed procedures are used extensively for the synthesis of the orthogonally fused compounds.
Extended Orthogonally Fused Conducting Oligomers for Molecular Electronic Devices¹

James M. Tour,*,2 Ruilian Wu, and Jeffry S. Schumm
Department of Chemistry
University of South Carolina
Columbia, South Carolina 29208

Abstract

Described is an approach to orthogonally fused conjugated organic compounds that may act as molecular switching devices. Four thiophene trimers are added in a single operation to spiro-fused cores to afford the target molecules. A spiro-fused thiophene-based monomer system is converted to a spiro-fused heptamer that is 25 Å long. The synthesis of a mixed phenylene-thiophene system is described that provides a spiro-fused octamer that is 30 Å long. In each case, alkyl substituents on the thiophenes afford soluble materials. Trimethylsilyl end groups flank each orthogonally fused system. Organopalladium- and organonickel-catalyzed procedures are used extensively for the synthesis of the orthogonally fused compounds.
Since the time of the first room-filling computers, there has been a tremendous drive to compress the size of computing instruments. In order to bring this desire to its extreme, it was conceived that one may be able to construct single molecules that could each function as a self-contained electronic device. Here we outline the convergent and flexible synthesis of two different macromolecules that approach the size necessary for molecular switch testing. Hence, the feasibility of molecular electronic devices, whether the architectures be of single molecule or ensemble arrangements, may soon be experimentally addressed.

Recently, Aviram of the IBM Corporation suggested that molecules ~50 Å long that contain a pro-conducting (non-doped or non-oxidized system, hence insulating) chain that is fixed at a 90° angle via a non-conjugated sigma bonded network to a conducting (doped or oxidized system) chain should exhibit properties that would make them suitable for interconnection into future molecular electronic devices. These devices may be useful for the memory, logic, and amplification computing systems. In doped form, is an example of a pro-conducting/σ/conducting molecule. To date, all experimental studies on orthogonal systems have dealt only with the spiro core of related molecules and no synthetic approach demonstrated incorporation of the oligomeric chains.

We recently described a facile approach to the core of two molecules which fit the general class of systems necessary for this electronic model. The thiophene-based core (2) was synthesized in two steps from the tetra-alkyne (3) by treatment...
with Cp2Zr(n-Bu)2 and S2Cl2 followed by bromodesilylation with Br2. The phenylene-based core (4) was prepared in a four step sequence from 2-aminobiphenyl.7,8 In a single operation, we hoped to introduce the four branches onto the core units. In order to keep the final products soluble, it was necessary to use 3-alkylthiophenes as the branching units. Alkylated phenylenes have inferior conductivities due to the severe out of plane distortions of the consecutive aryl units.9-11

Functionalized and alkylated thiophene trimers were synthesized as shown in scheme I (yields listed for R = CH3).12-14

Scheme I

When the silylated thiophene unit in 3 had a 3-methyl substituent, desilylation was rapid upon silica gel chromatography (even with amine-washed silica gel). Carbocationic character was sufficiently stabilized in the trimer (not the monomer.
or dimer) by both the β-silicon and α-methyl to allow for this rapid protodesilylation. Thus we chose to keep the terminal thiophene unit free of an alkyl substituent. These trimers possesses several of the desired properties, namely (1) a terminal tributylstannyl substituent for attachment to the cores (2) alkyl groups for maintaining the solubility, and (3) a terminal trimethylsilyl group for future chemoselective modification of the final orthogonal oligomers to permit adhesion to nanolithographic probes.15

Treatment of the core 2 with excess 8 in the presence of 8 mol % of Pd(PPh3)4 afforded the target orthogonal thiophene system 10 in 86 % yield.16,17 Similarly, the core 4 was treated with 9 and 8 mol % of Pd(PPh3)4 to give the mixed phenylene-thiophene spiro fused octamer 11 in 60 % yield.18 Compounds 10 and 11 are approximately 25 Å and 30 Å in length (excluding the trimethylsilyl substituents), respectively, as determined by MMX with extended π Hückel parameters.19 Both 10 and 11 are soluble in many organic solvents which will allow simple processing; however, without the alkyl substituents, these materials are intractable. Interestingly, while most fast atom bombardment mass spectra (FAB/MS) resemble chemical ionization spectra in providing primarily even-electron cations or anions...
(i.e. M+H), both 10 and 11 readily showed M+ data in 3-nitrobenzyl alcohol (NBA) and o-nitrophenyloctylether (ONPOE) matrices, respectively. This is an indication of the ease of oxidation of these oligomers which was confirmed in cyclic voltammetry studies on 10 that showed two reversible waves with anodic peak potentials (Epa) at 0.68 and 1.05 V.

Acknowledgements

This research was funded by the Department of the Navy, Office of the Chief of Naval Research, Young Investigator Program (N00014-89-J-3062), and the National Science Foundation (RII-8922165). Drs. Arthur Diaz and Jean Guay of the IBM Almaden Research Center kindly provided the electrochemical data.
References

(1) Presented at the 201st National Meeting of the American Chemical Society, Atlanta, GA, April 1991; Division of Polymeric Materials: Science and Engineering.

(2) Recipient of an Office of Naval Research, Young Investigator Award (1989-92) and National Science Foundation Presidential Young Investigator Award (1991-96).


(12) All new compounds were characterized spectroscopically. All reported yields pertain to isolated homogeneous materials.


(17) Spectral data for 10. UV (CHCl₃) λmax 456 nm, εmax 2.94 x 10⁴, tailing edge 545 nm. IR (KBr) 2950, 1132, 991, 839 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.19 (1/2 ABq, J = 2.5 Hz, 4 H), 7.15 (1/2 ABq, J = 2.5 Hz, 4 H), 6.99 (s, 4 H), 6.93 (s, 4 H), 2.40 (s, 12 H), 2.37 (s, 12 H), 2.33 (s, 8 H), 0.31 (s, 36 H). ¹³C NMR (125 MHz, CDCl₃) δ 141.94, 141.22, 140.61, 134.82, 134.80, 134.60, 134.58, 134.25, 131.34, 130.78, 129.60, 128.64, 128.44, 126.77, 17.08, 16.12, 16.00, 0.31. FAB/MS (NBA) calc'd relative isotopic intensities for C₈₀H₄₈S₄Si₅ (M⁺): 1632 (64%), 1633 (80%), 1634 (100%), 1635 (83%), 1636 (83%), 1637 (40%), 1638
(18) Spectral data for 11. UV (CHCl₃) \( \lambda_{max} \) 418 nm, \( \varepsilon_{max} \) 2.9 \( \times \) 10⁵, tailing edge 495 nm. IR (thin film) 2955, 2927, 1458, 1250, 990 cm\(^{-1}\). \(^1\)H NMR (500 MHz, CDCl₃) \( \delta \) 7.86 (d, \( J = 7.9 \) Hz, 4 H), 7.65 (dd, \( J = 8.1, 1.6 \) Hz, 4 H), 7.14 (1/2 ABq, \( J = 3.4 \) Hz, 4 H), 7.13 (1/2 ABq, \( J = 3.4 \) Hz, 4 H), 6.98 (s, 4 H), 6.95 (d, \( J = 1.4 \) Hz, 4 H), 6.89 (s, 4 H), 2.71 (t, \( J = 7.7 \) Hz, 8 H), 2.67 (t, \( J = 8.1 \) Hz, 8 H), 1.65 - 1.52 (m, 16 H), 1.36 (sext, \( J = 7.7 \) Hz, 16 H), 0.91 (t, \( J = 7.5 \) Hz, 12 H), 0.87 (t, \( J = 7.4 \) Hz, 12 H), 0.31 (s, 36 H). \(^{13}\)C NMR (125 MHz, CDCl₃) \( \delta \) 149.9, 141.8, 141.6, 141.2, 140.8, 140.0, 134.8, 134.47, 134.45, 131.0, 130.7, 128.8, 127.3, 126.9, 126.2, 121.4, 121.1, 66.4, 33.2, 33.1, 29.8, 29.5, 23.2, 23.1, 14.39, 14.38, 0.4. FAB/MS in (ONPOE) calc'd relative isotopic intensities for \( \text{C}_{117}\text{H}_{136}\text{S}_{12}\text{Si}_{4} \) (M⁺): 2037 (51%), 2038 (83%), 2039 (100%), 2040 (89%), 2041 (67%), 2042 (43%), 2043 (25%), 2044 (13%), 2045 (6%). Found: 2037 (61%), 2038 (88%), 2039 (100%), 2040 (93%), 2041 (72%), 2042 (50%), 2043 (34%), 2044 (21%), 2045 (11%). Anal. calc'd for \( \text{C}_{117}\text{H}_{136}\text{S}_{12}\text{Si}_{4} \): C, 68.96; H, 6.68. Found: C, 68.14; H, 6.86.

(19) P.C. Model version 4.1 from Serena Software (Box 3076, Bloomington, IN 47402-3076) using MMX mode with extended \( \pi \)-Hückel calculations.


(21) Recorded with a 1 mm Pt disc working electrode and SCE double junction reference electrode at a scan rate of 50 mV/s at \( 10^{-4} \) M in CH₂Cl₂ using 0.1 M tetrabutylammonium tetrafluoroborate as the electrolyte.

(22) An orthogonally fused thiophene trimer (see ref 7) exhibited only one reversible wave with \( E_{pa} = 1.07 \) V. Thus the heptamer is considerably easier to oxidize.