The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

Approved for public release; distribution unlimited.

Studies carried out at the University of California, Berkeley, over a period of four years were concerned with fluid mechanical properties of turbulent pulsed jet plumes - systems that are of particular relevance to the initiation and control of combustion in engines. The eventual purpose of this program was to provide a rational background for a fundamental refinement of stratified charge diesel engines - the development of a combustion system where the formation of pollutants is minimized, fuel economy is maximized, while fuel tolerance is optimized. The results demonstrated that this goal is attainable by means of appropriate Pulsed Jet Combustion (PJC) generators. The exothermic process of combustion is executed thereby in the form of a fireball taking place in a stratified charge generated by turbulent plumes of a PJC system.

Controlled combustion strategy for engines
Refined stratified charge diesel engines
Combustion in turbulent pulsed jet plumes
ADVANCED CONCEPTS FOR CONTROLLED COMBUSTION IN ENGINES

Final Report

on

Contract DAAL03-87-K-0123

by

A. K. Oppenheim

Professor of Engineering

University of California

Berkeley, California 94720

December 1991
ABSTRACT

Studies carried out at the University of California, Berkeley, over a period of four years were concerned with fluid mechanical properties of turbulent pulsed jet plumes - systems that are of particular relevance to the initiation and control of combustion in engines. The eventual purpose of this program was to provide a rational background for a fundamental refinement of stratified charge diesel engines - the development of a combustion system where the formation of pollutants is minimized, fuel economy is maximized, while fuel tolerance is optimized. The results demonstrated that this goal is attainable by means of appropriate Pulsed Jet Combustion (PJC) generators. The exothermic process of combustion is executed thereby in the form of a fireball taking place in a stratified charge generated by turbulent plumes of a PJC system.
STATEMENT OF THE PROBLEM

The essential purpose of the research program was to provide a rational background for a fundamental refinement of diesel engines: the development of combustion systems operating in cylinders fitted with reciprocating pistons, where the formation of pollutants is minimized, fuel economy is maximized, while fuel tolerance is optimized. The methodology to be applied for this purpose involves the execution of control over the exothermic process of combustion. This goal is attainable by the use of turbulent plumes generated by pulsed jets. The mode of the process realized in this manner is referred to as Pulsed Jet Combustion (PJC).

In particular, it is the determination of the fluid mechanical properties of PJC that formed the principal objective of the studies carried out in this connection. The implementation included the use of liquid diesel fuels as well as gaseous fuel-air mixtures.

In any case, the use of a PJC system in engines should provide a significant refinement of the stratified charge concept, in that it would affect not only the composition of the combustible mixture, as is usually the case, but also the scale and intensity of turbulence, and, above all, the entrainment produced by the large scale vortex structures of turbulent jet plumes. This process is associated with beneficial effects upon mixing of the reacting substance and, concomitantly, the management of the exothermic process of combustion.

Technological implementation of such systems is associated with the development of electronically controlled, solenoid activated, air-blast or air-assisted atomizers, whose design and performance formed one of the integral tasks of the study. This effort was culminated with three U.S. Patents.
SUMMARY OF THE MOST IMPORTANT RESULTS

Major accomplishments of the project were as follows:

1. Identification of the principal feature of controlled combustion engines: management of the exothermic process of combustion attained by means of Pulsed Jet Combustion (PJC) operating under the governance of a microprocessor system (1)*.

2. Demonstration of the operational superiority of PJC over the standard technique of executing combustion in engines (2).

3. Establishment of three fundamental stages in the operation of a PJC system: 1) efflux of an intrinsically non-reacting jet, with concomitant formation of an intense shear layer at its boundaries; 2) generation of a turbulent plume made out of large scale vortex structures whose cores provide the sites for the initiation of the exothermic process of combustion - the essential action of a PJC system associated with a significant effect of entrainment; 3) a gradual decay of the active process of PJC into a puff - a cloud of the products of combustion surrounded by a turbulent flame front whereby the influence of entrainment is subsiding (3,5).

4. Experimental investigation of the performance of advanced, electronically controlled, conventionally operating, liquid fueled, diesel injectors in the hectobar, as well as kilobar, pressure ranges, performed by the use of a high pressure shock tube built especially for this purpose (4,5).

5. Theoretical study of mixing and deformation of a fuel droplet in a spray at high temperatures and pressures (6).

6. Development of a methodology for keeping the products of combustion away from the walls of the enclosure by executing the exothermic process in the

* numbers in parentheses refer to publications cited in the next section.
form of a fireball - a task attainable by the use of a multiple stream PJC system (8).

7. Reproduction of the salient features of turbulent combustion, deduced from numerical analysis of exothermic flow fields involving shear layers giving rise to large scale vortex structures with concomitant effects of entrainment (9).

8. Clarification of hitherto unexplored thermodynamic properties of combustion in an enclosure, such as an engine cylinder (10).

9. Introduction of basic refinement in the operation of a PJC system: a two-step process consisting of (i) injection forming a turbulent plume followed, upon the elapse of an appropriate time delay, with (ii) ignition by the jet of products of incomplete combustion executed in the cavity of the generator (11).

10. Experimental evaluation of energy losses from combustion in an enclosure caused by heat transfer to the walls (12).

11. Direct measurement of the evolution of density in the course of combustion in an enclosure by means of a Rayleigh scattering laser probe (13).

Thus the stage was set for a systematic study of the chemistry and fluid mechanics of turbulent combustion in engines, including, in particular, its management by a microprocessor controlled PJC system, to provide the necessary background for the design and development of an industrially viable instruments. Unfortunately, funding of this project was at this moment terminated.
LIST OF PUBLICATIONS

LIST OF PARTICIPATING PERSONNEL

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. K. Oppenheim</td>
<td>Professor of Mechanical Engineering</td>
</tr>
<tr>
<td>A. C. Fernandez-Pello</td>
<td>Professor of Mechanical Engineering</td>
</tr>
<tr>
<td>R. F. Sawyer</td>
<td>Professor of Mechanical Engineering</td>
</tr>
<tr>
<td>H. E. Stewart</td>
<td>Design Engineer</td>
</tr>
<tr>
<td>K. Horn</td>
<td>Electronics Technician</td>
</tr>
<tr>
<td>J. Beltramo</td>
<td>Graduate Student, Research Assistant</td>
</tr>
<tr>
<td>D. W. Faris</td>
<td>Graduate Student, Research Assistant</td>
</tr>
<tr>
<td>J. A. Maxson</td>
<td>Graduate Student, Research Assistant</td>
</tr>
<tr>
<td>D. M. Hensinger</td>
<td>Graduate Student, Research Assistant</td>
</tr>
</tbody>
</table>
REPORT OF INVENTIONS

