AD-A24
m'mmm'mmmmmfmrumm'

WL-TR-91-1102

Robert Kaplan and Phil Hanselman D TE C

Data & Signal Processing Croup 2
Systems Avionics Division FEB 0 4 1992£.

November 1991 D

Final Report for Period July 90 to July 91

Approved for public release; distribution is unlimited

AVIONICS DIRECTORATE

WRIGHT LABORATORY

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-6543

2-02545

06 \lII\\|\|\\|\\|\\|I‘\I\\ll\l\\\\|\||\|\l\\l|\

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related procurement,
the United States Government incurs no responsibility or any obligation whatsoever.
The fact that the government may have formulated or in any way supplied the said
drawings, specifications, or other data, is not to be regarded by implication, or
otherwise in any manner construed, as licensing the holder, or any other person or
corporation; or as conveying any rights or permission to manufacture, use, or seli any
patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS).
At NTIS, it will be availabie to the general public, inciuding foreign nations.

This technical report has been reviewed and is approved for publication.

Adek - figplaee Ehe [0 Bl athR!
ROBERT A. KAPLAN EDWARD L. GLIATTI, Chief
Data & Signal Processing Group Information Processing

Information Processing Technology Branch

Technology Branch Systems Avionics Division
Systems Avionics Division

FOR THE COMMANDER

W by Ao

CHARLES H. KRUEGER, Chief
Syste.1r Avionics Division
Avionics Directorate

I your address has changed, if you wish to be removed from our mailing list, or
it the addressee is no longer employed by your organization please notify WL/AAAT,
WPAFB, OH 45433-6543 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE | 7orm Approvea

OMg No. 0704-0188

SUTHIC reDQFIING DUIARNA 187 (A1 oF INtOf "

JAIMENAG NG MEUNIIMNG (NG GALS ang anae - .':;:“ ecuor ?" or < IM':::\:” ‘_n‘ b 'rocfa;mq !HI‘“‘.‘A‘I;“N NNt OF sAY thEP ::ﬂ‘:‘":::‘
< Q1 'NTQrMation, ror thny 10 9 ten Services, o 10 [} ane 1219 Jettenon
Javisrnarway, Suitd 1134 Arhmatcn. ¢4 112028302, ana 10 the Otice 3¢ Manaqement 4nG Budqer. A1DEAwEnt ReAUTON Proiect 10704-0188), Wawmagton, 0C 20%03.
S —
1. AGENCY USE ONLY (Ledve olanx) 2. REPORT DATE 3. REPORT YYPE AND DATES COVERED Final
November 1991 July 1990 - July 1991
4, TITLE AND SUBTITLE S. FUNDING NUMBEKS
Suitability of Ada for Real-Time Model Based Vision PE: 63109F
Applications PN: 2273
— TN: 01
6. AUTHOR(S) : WU: 04
Robert A, Kaplan and Phillip B. Hanselman
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

. REPORT NUMBER
Information Processing Technology Branch (WL/AAAT)

Lata & Signal Processing Group
Systems Avionics Divisieon

Wright-Patterson AFB OH 45433-6543

9. SPONSOQRING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSQRING / MONITORING
g NUMBER
Robert A. Kaplan (513) 255-%701 AGENCY REPORT NU

Avionics Directorate (WL/AAAT)
Air Force Systems Command

WL-TR-91-1102
Wright-Patterson AFB OH 45433-6543

11, SUPPLEMENTARY NOTES

The computer software contained herein is theoretical and/or references that in
no way reflect Air Force-owned or-developed computer software

BT T T T Y T T T T Y i Ty Ty ey
12a. OISTRIBUTION/ AVAILABILITY STATEMENT

Approved for public release;

L ——————— e —_
12b, DISTRIBUTION CODE L
distribution unlimited,

13. ABSTRACT (Maxtmum 400 woras)

The purpose of this study was to establish & baseiine for assessing the execytion efficlency of
Model Based Vision (MBV) algorithins coded in both the Ada and C programming languages. To
tacilitate this study a key algorithm used In The Analytic Science Corporation’s (TASC)
laboratory MBV system called Fast Pairwise Nearest Neighbor (FASTPNN) was recoded from its
orignal C form to Ada, and benchmarked on both a VAX 11/780 and MIPS MA.GNUM 3000
computer system. Comparisions of C execution efficiency versus Ada execution etfficiency as
well as MIPS MAGNUM 3000 execution efficlency versus VAX 11/780 execution efficlency
were made. The benchmark results indicate that when Ada run-time checks are suppressed, Ada
and C are roughly equivalent in terms of inherent execution efficiency. Ditferences between Ada
and C execution efficiency can be attributed to deviations in a particular compiler's maturity.
Ada run-time checks impose betwaen a 43% and 65% execution penalty when compared with
Ada executing with all run-time checks suppressed. Depending on whether C or Ada was the
language of interest, the MIPS MAGNUM 3000 demonsirated hetween a 9 (Ada) to 22 (C) times
throughput advantage over the VAX 11/780.

14. SUBJECT TERMS

15. NUMBER OF PAGES

; 143
Ada, C, Real-Time, Model-Based Vision, Fast Pairwise Nearest TR
Neighbor Algorithm, Benchmark .
|77 SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
QF REPORT QF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-5500

Stanoarg Form 298 (Rev. 2-89)
3 Srmacrineq Dy ANS Stg 239.'8
1

1. INTRODUCTION

2.

TABLE OF CONTENTS

DESCRIPTION OF PNN ALGORITHMvinvivnunnn ..
Full Search Implementation of PNN ceeeran

2.1
2.2

Fast Implementation of PNN,

SOFTVARE/BENCHMARK IMPLEMENTATION OF FASTPNN,

3.1
3.2
3.3

ADA

4.1

4.2

BENCHMARK DEVELOPMENT SYSTEMS ...vvevnicvrveinnnannvonss

C Implementation of FASTPNN.......cvecvvnn e

Ada Implementation of FASTPNN.....cvivevvavane

Benchmark Data Set

to C TRANSLATION STRATEGYvneevinnnranes

t
1.
1.
1

D
4.
4.
4

.

P
[Rrgyen
wmE W

.
O~ S

P O S O Y e
[(CNCH Ol R OO N R

ata Structuresoeoas

LR R N RS B RCR B D I I I I I

L I R O I I N L I I I R S B Y

Dynamic Arrays/Unconstrained Arrays

Pointer Types/Access TYypPeS «ieevveeresenes

Dynamic Array of Pointers
/Unconstrained Array of Access Types

Structures/Records ..

. LI I .o
. LRCEEIEY
LR SN) .

ooooooooo

“ e ..
L I BN
. DRI AR

ooooooooo

Structures Containing Unions/Variant Records

0 Ada Coding Dualities .iieeeeicnnnnennsns
Loop Statementsce.... Cetiee e

L N A AR)

Conditional StatementsS .vvviveesrovsosnnncanasnsse
Break"/"Exit" Statementceeeecsrrocononnsees

(&)

L

Subprograms
Pointer Operations
Dynamic Allocation
Memory Deallocation .seveeesevconnseensose

ogical Operators

5.1 MIPS Magnum 3000

5.2

5.1.

1

<3

L I IR I I A R A S A Ay

MIPS Magnum 3000 Development System cee
5.1.2 MIPS COmPilersS +veecosnvecnsssosnnoenonnsnsnnnns
5.1.2.1 MIPS Ada Compilervevvvevencennnnns

5.1.2.2 MIPS C Compiler

780 ciiiiienennnn

o0

LR AR

AX HAardWare «oveeuiiersosessnvronenasnnoannnonsss

VAX Compilers ...

L R I I I R A N R S IY

VAX Ada Compilerciiivvuinnnn..

VAX C Compiler

iii

LA A R]

10
10

15

TABLE OF CONTENTS (CONTINUED)

BENCHMARK RESULTS/DISCUSSION ...

LR I L R A N N N)

Ada VWithout Checks Versus Ada With Checks .
C Versus Ada

MIPS Versus VAX

MIPS Profiler Results

6.4.1 C Profiler SesultsS ..vvvievennnns
6.4.2 Ada Profiler Results ...

6.4.3 Ada Versus C Profiler Results

PROJECTED FASTPNN REAL TIME REQUIREMENTcoviveenn.s

FASTPNN/PNN IMPLEMENTATION CONSIDERATIONS

CONCLUSIONS

Ada Vith Checks Versus Ada Without Checks .
C Versus Ada ...

MIPS Magnum 3000 Versus VAX 11/780 .o e
FASTPNN/PNN Real Time Implementation Con51derations -

REFERENCES

L R A A R L I R R R R e N N RN

APPENDIX A: C CODED FASTPNN BENCHMARK SOURCE CODE .

APPENDIX B: ADA CODED FASTPNN BENCHMARK SOURCE CODE

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11,

Figure 12.

Block Diagram of Full Search PNNieviiivnennnenns
Block Diagram of FASTPNN Algorithm
FASTPNN Subprogram Calling Treevvv.ns
C Module Breakdown of FASTPNN Benchmark
Ada Module Breakdown of FASTPNN Benchmark
Ada Package Implementation of FASTPNN

Image Plot of FASTPNN Input Data Set .ceevvevrvnoenves

FIGURES

Effect of Ada Run Time Checks on

Execution Efficiency ...eevivevnnenens

FASTPNN Execution Time Comparison

FASTPNN Execution Time Comparison Based

Upon Ada Level 4 Optimization Projecticns

Relative Throughput of MIPS Magnum 3000

Hypothetical Efficiency Comparison of Data

Processor Versus Signal Processorc.e.

[e
Accesion For

Una g, 2
Justicopon

B R SHVEIES NP

By
b e e

}......... e '
Di'.\t

-

“e s s

—— et we v ee

NTIS CRAsl \B '
DTIC T8

Dt

11
12

13

26

28

29
30

40

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

TABLE

TABLES

MAPPING OF C TO ADA DATA STRUCTURES ..scievveesnnrsans

EXAMPLE OF T TO ADA DATA STRUCTURE MAPPING .

MISCELLANEOUS C TO ADA ISSUES

“es s e e

DESCRIPTION OF MOST SIGNIFICANT PNN SUBROUTINES

MIPS C PROFILER RESULTSc0iv00vnnn
MIPS ADA PROFILER RESULTSvv.tviiannenvenns

COMPARISON OF MIPS PROFILER RESULTS

vi

PAGE
15
16
18
32
33
35

36

1. INTRODUCTION. The purpose of this study was to establish a baseline

for assessing the execution efficiency of Model Based Vision (MBV)

algorithms coded in both the Ada and C programming languages. Model-

based vision systems compare predictions of target signature in sensed

data with information extracted from sensed data to achieve target T
recognition. To date, prediction of electromagnetic sig.ature for

Synthetic Aperture Radar (SAR) is the emphasized sensed data. Under

contract with Wright Laboratory, The Analytic Science Corporation .
(TASC) has extracted algorithms from their MBV system and delivered them '
to the Government. The algorithms delivered to the Government are to be

used as benchmarks for evalutating the performance of different

processors for MBV applications. All of the algorithms delivered are

coded in the C programming language.

To evaluate the suitability of Ada for MBV applications, an important MBV
algorithm from the TASC MBV system, called Fast Pairwvise Nearest Neighbor
(FASTPNN), was translated in its orignal C form to Ada and benchmarked on
both a VAX 11/780 and MIPS Magnum 3000 computer. While the FASTPNN
algorithm comprises only a small subset of the entire TASC MBV system, in
terms of the general types of processing requirements it imposes, it is
representative of a significant portion of the TASC MBV system.

2. DESCRIPTION OF PAIRWISE NEAREST NEIGHBOR ALGORITHM.

The Pairwise Nearest Neighbor (PNN; algorithm is a vector quantization
procedure used inside the information extraction portion of the TASC MBV
system. The PNN algorithm is used to represent the significant
characterists of a large number of image samples (or vectors) with a
smaller specified number of vectors such that the derived set of vectors
represent the original set of vectors as "best" as possible with respect
to coordinate position and weight (gray level). The PNN algorithm
derives a specified number of quantization vectors by progressively

merging together pairs of vectors with minimal weighted distance between
their centroids.

The TASC MBV system uses a vector quantizer which consists of the
FASTPNN vector quantizer cascaded with a Linde-Buzo-Gray (LBG) vector
quantizer. The LBG vector quantizer is an iterative algorithm that
produces a set of quantization vectors that minimize mean square
quantization error; however the algorithm tends to converge to local
minima unless good estimates for initial quantization vectors are
available, The PNN vector quantizer provides a near optimal set of

quantization vectors, that support the functional needs of the LBG
algorithm.

2.1 Full Search Implementation of PNN Algorithm

The key to quick execution of the PNN algorithm is quickly finding the
closest pairs of entries (vectors) among the distributed set. Figure 1
describes the sequence of operations in the full search implementation
of PNN. Figure 1 shows that the full search implementation of PNN is an
iterative procedure vhere on each iteration the pair of vectors which
generates the least error when merged (the closest pair) is merged. The
algorithm explicitly requires that, at each iteration, each vector’s
nearest neighbor be found. The calculation to determine the closest
vector pair is essentially a weighted distance calculation vhere the
distance between the two vectors are weighted by the gray level (or
veight) of each of the two vectors. The new vector is chosen to

minimize the error incurred by replacing the two original vectors into
one new vector.

In general, the number of distance calculations to find the two closest
vectors among a randomly distributed set is given by

DIST CALC = (N * (N-1)) / 2 (1)

vhere DIST_CALC is the number of permutations of distance calculations
required and N is the number of entries {(vectors). Thus, if one were
to intitiate a full search PNN with 1000 entries, then the first
iteration would require 499,500 distance calculations to find the
closest vector pair for merging. Once the f£irst iteration was
completed, the following iterations would require much fever distance
calculations to find the closest vector pairs since only the distances
from the "new" vector to each of the remaining entries would need to

be recalculated. The distance calculations among the remaining entries
would not need to be recalculated. Thus, in our example, only 999

NNd uoJess in4 jo weibeig »ooig *1 ainbig

aUOp ‘SIA

¢, SI0J0BA
uoneznuenb jo Jequinu passap ayi enba
Buiurewas SaLjUa Jo Jaquinu ay} s80Qg

pabiaw uaym 1019 ises|
ay} salesouab yoym Jied ayy abispy

pabiaw usym
10118 |SE3| aY) Satesauab yolym 19s
Blep Wolj $I0109A Jo Jred ay} m:_Ehﬁmo;

distance calculations would be required on the second iteration, and 998
iterations required on the third iteration. This procedure continues
iteratively until the desired number of quantization vectors are
reached. Thus, the total number of distance calculations is given by

TOT_DIST CALC = N*(N-1)/2 + N-1 + N-2 + ... P (2)

where TOT_DIST_CALC is the total number of distance calculations

required, N is the input data size, and P is the desired number of
quantization vectors.

The first term on the right hand side (RHS) of equation (2) dominates
the equation and it is obvious that the full search implementation of
PNN has computational requirement proportional to O(N**2),

2.2 Fast Implementation of PNN Algorithm

If the requirement to merge the absolute closest pair of vectors at
each step is relaxed, as long as vectors get merged eventually then a
fast implementation of the PNN algorithm can be derived (Reference 2).
This approximated PNN algorithm is called the "fast"™ PNN (FASTPNN)
algorithm. For most applications the error introduced by the FASTPNN
approximation of PNN is considered tolerable (reference). The "fast"
implementation of PNN was used in this study.

Figure 2 describes the sequence of operations in FASTPNN. The FASTPNN
algorithm initially constructs a set of entries from the input data,
then iteratively merges pairs of entries until a specified number of
quantization vectors are reached. At each iteration, the algorithm
proceeds by recursively splitting sets of entries, or buckets, into
pairs of buckets until the total number of entries in each bucket is
at or belov a prespecified number. From each bucket, a candidate pair
of entries is nominated that, if merged, provide the smallest increase
in quantization error of all pairs within the bucket. A specified
percentage of the pairs are selected and merged, with the individual
buckets merged into a single bucket to complete an iteration. The
sequence is repeated until the total number of entries is equal to the
specified number of quantization vectors. The value vectors in the
final set of entries define the derived quantization vectors.

The computational savings in FASTPNN is derived in the algorithm’s
ability ro "intelligently" split the global data set among a specified
number of localized regions or buckets. Merging of vectors are then

performed independently and with more efficiency within these localized
regions (buckets).

A key parameter in FASTPNN js BUCKETSIZE, the maximum number of vectors
per bucket. BUCKETSIZE plays a key role in determining the number of
distance calculations involved in finding the closest vector pair.
Since FASTPNN requires that the data be split evenly across all buckets
then the total number of buckets required for a particular iteration
equals the number of input vectors divided by BUCKETSIZE.

BUCKET _NUM = N/BUCKETSIZE (3)

wywoBly NNdLSV4 jo wesbeig sooig "2 ainbig

3UOp ‘'SOA _

¢ siopea uoneznuenb jo jequinu peiisep
ey} renbe Buiuiewes Seulue Jo Jequinu seoq

_

19%0nq ejfuts ciul soeq siexonq efisew Aeaisinoey

ﬂ

016 Semo] ol Yum sJred eyl Jo ebejuecsed |
e efsews pue Joue Aq saed 18x0Nq peysuept oS

_

pefiew usym Jouse jsee| ey} sereieusl youm
19Nnq yoee woyy seutue jo sed eyl suleleq

_

ssef JO setjue Jo Jequinu
pexy e Sey yoee Hun s1exonq ids Ajlsaisinoey

Jexong euo Buureyuod
een p-) & ojul (ss015eA) seduwes ejep ezivebio

where BUCKET NUM equals the total number of buckets for a data set of
size N, and bucket containing BUCKETSIZE entries. From equation (1), to
find the closest vector pair in each particular bucket requires that
{BUCKETSIZE * (BUCKETSIZE - 1)) / 2 weighted distance calculations be
performed. Thus, the total number of distance calculations for the
complete data set on tlie first iteration equals the number of distance
calculations per bucket times the number of buckets, or

DIST CALC = (BUCKETSIZE * (BUCKETSIZE - 1)/1) * N/BUCKETSIZE (4)

Equation (4) reduces to
DIST_CALC = N * (BUCKETSIZE - 1)/2 (3)

where DIST CALC is the total number of distance calculations required on
the first iteration of FASTPNN. Thus, it is readily seen from equation
5 that as BUCKETSIZE decreases the number of calculations goes
proportionally down. In the "worst-case" limiting case, if BUCKETSIZE
is equal to N (all of the entries are in one bucket) we get the same
result as obtained in equation (1) for the full search implementation.

As a simplified example of the magnitude by which FASTPNN reduces the
number of distance calculations, let’s suppcse as we did in the last
section that we begin PNN with 1000 entries. If we assume that
BUCKETSIZE is ten, then only 4,500 distance calculations are required on
the first iteration to find the closest vector pairs. This is
significantly lower than the 499,500 distance calculations required by
the full search implementation on the first iteration.

The number of vectors merged per iteratiorn is given by the term
KDMERGE * BUCKETNUM where KDMERGE is a fixed percentate of the top
vector pair candidate from each buckert.

Thus, on the second iteration, the anumber of distance calculations will
be reduced to (N - KDMERGE#N/BUCKETSIZE) * (BUCKETSIZE -1) /2

Although, the number of distance calculations in determining the
candidate vector pairs for merging are greatly reduced by using FASTPNN,
there are otner computational "overhead" factors associated with the
FASTPNN algorithm which are not present in the full search
implementation nf PNN. From Figure 2, these include initialization of
the K-d tree data structure and splitting and merging of buckets.
Despite these additional "overhead" factors, it has been shown that
FASTPNN has computational efficiency proportional to O(N log N).

3. SOFTWARE/BENCHMARK IMPLEMENTATION OF FASTPNN

As stated in the introduction, the FASTPNN algorithm was delivered to
the Government coded in the C programming language. Figure 3 shows a
subprogram calling tree of the FASTPNN algorithm. Note from Figure 3,
that the FASTPNN subprogram structure divides into 3 main parts. These
three parts include BuildKDtree, MergedownKDtree, and DestroyKDtree.

BuildKDtree contains the subroutines which involve building and
initialization of the K-d tree data structure. The K-d tree is the
data structure which permits the partitioning of the global data set
into buckets (localized regions) from which nearest neighbor searches
can be performed independently. With reference to Figure 2, the

functionallity of BuildKDtree is described by block 1 of of the block
diagram.

MergeDownKDtree contains the routines which reduce the K-d tree built in
Buildkdtree to the specified number of centroids (vectors). With
reference to Figure 2, the functionallity of MergeDownKDtree is
described by blocks two through six of the block diagram.

DestroyKDtree contains the routines which permit the deallocation of memory
vhich was dynamically allocated in BuildKDtree and MergeDownKDtree. The
functionallity of DestroyKDtree is not described in Figure 2, as it is

not a necessary part of the FASTPNN algorithm. DestroyKDtree is merely

provided to implement the good software practice of deallocating objects
no longer in use.

3.1 C Implementation Structure of FASTPNN Benchmark

To permit timing of the C coded FASTPNN algorithm, FASTPNN vas
integrated with a timer to form a benchmark. The timer measured the
process CPU time utilized while running FASTPNN. The basic strategy in
timing the FASTPNN algorithm was to have a main (driver) program obtain
the initial time just before making a function call to FASTPNN, folloved
by another call to the timer just prior to executing FASTPNN. The
diiference betwveen these two times is the time of interest (elapsed
time). Because timers use system dependent resources, a separate timer
function was written for both the VAX 11/780 and the MIPS MAGNUM 3000.
Appendix A provides the C source code listing of the FASTPNN benchmark.

Figure 4 shows the module structure of the C coded FASTPNN benchmark.
The FASTPNN benchmark is composed of five modules. Two of the five
modules are header files. Header files are used in C to contain
definitions and declarations which are to be shared among different
files (modules). The arrows in Figure 4 are used to indicate the
dependency of particular modules on the header files. For instance, the
arrov from FASTPNN.c to FASTPNN.h indicates that FASTPNN.h is to be
"included" into FASTPNN.c. Header file Timer.h contains the interface to
the system routines which perform the timing of the benchmark. Header
file FASTPNN.h contains the data structure declarations which are used
in FASTPNN.c and, to a limited extent, in Main.c. The main program,

Main.c¢, is used to read the data, perform the timing of FASTPNN, and
output the results.

aa1] bBuljen weiboidgng NNJISYd ‘€ ainbi4

toanqgMAciiseQ

njongiseAoseeg —"""""euQNA0II000

Kijuegyhosnsceq

spougNAoaiseg

spougyoesde}jod epougyesdn)jod

1eonqgNAoiiseQ

A1juegyAhosiseg = IMINqQANINPEY
sindwogieyong ——— 1i08b essigxeeesdwod 0911ANUMOGeBIaN—"" NNdISsy — UIBN

JepIPpURTIEINESY,
ongitdg

ixdnqgyeines
epouQgHeIReID mangliidg

sisigioyongled
ensIgHiedue|eg

epougyesde|jod
epougNA0IIse]q = epougyesdesy|od

192nqQgH40liseg
KXPU| o | @Y INGIIOE
Anpuegiines.d 10NINGIvI JINe1D

19491G Q) 918010 aesiaNPING

s8I0 %N

Wewyouag NNJLSV4 J0 umopyeaig ainpo O ainbiy

9"NNJ1SV4 Jlaun)

o"ulepy

(a1 1opeBY)
yown}

(a1 18peay)
U'NNJ1SVd

3.2 Ada Implementation of FASTPNN Benchmark

Presented in this section is the organization structure from a

module (or compilation unit) level of the C to Ada translated FASTPNN
benchmark. The details of the actual coding from C to Ada are addressed
in section 4 of this report. Appendix B provides the source code
listing of the Ada coded FASTPNN benchmark.

The Ada coded FASTPNN algorithm was integrated with a timer to form
a benchmark. The timer measured the process CPU time utilized while
running FASTPNN. As with the case of the C benchmark, a separate timer
(body) was written for both the VAX 11/780 and the MIPS MAGNUM 3000.

Figure 5 shows the overall module structure of the Ada coded FASTPNN
benchmark. Five packages were used in the benchmark 1mp1ementation.
Data_Struct Pkg contains the declarations of all data types used in the
benchmark. Packages Build _Pkg, MergeDown Pkg, and Destroy Pkg contain
all of the FASTPNN subroutines presented in Figure 3. Package Timer Pkg
contains the sytem dependent routines which permit benchmark timing to
be performed. The arrows in Figure 5 are used to indicate the dependency
of the particular modules with each other. For instance, the arrovs
pointing from FASTPNN tc Build Pkg, MergeDown_Pkg, and Destroy Pkg
indicates that these three packages must be "withed into" Build_Pkg.

The main program is used to input the data, time FASTPNN, and output the
results.

Figure 6 shows the "package location" of each of the FASTPNN
subroutines. Build_Pkg contains all of the routines which are nested in
the Buildkdtree portion of Figure 3. MergeDown Pkg contains the

routines vhich are nested in the MergeDownKDtree portion of Figure 3.
Destroy Pkg contains the routines which are nested in the DestroyKdtree
portion of Figure 3. Listed in the Ada specification portion of each of
the above threa packages, are the routines which must be visible outside
of their local package usage. Note from Figure 3, that since FASTPNN
calls procedures BuildKDtree, MergeDownKDtree, and DestroyKDtree, these
three procedures are all included in the specification (as opposed to
body) portion of their respective packages. Procedure CreateKDbucket is
included in the specification portion of Build Pkg, since it called by a
routine (SplitBucket) outside of Build Pkg. Procedures DestroyKDnode,
DestroyKDbucket, and DestroyKDentry are included in the specification

portion of Destroy Pkg since they are called by routines outside of
Destroy_ Pkg.

3.3 Benchmark Data Set

TASC provided the Government with an input data set to be used for
executing the FASTPNN benchmark. The input data set consisted of a
single chip of SAR signature prediction data of a B52 aircraft. A chip
is a subregion of interst extracted from a larger image (i.e 1K x 1K).
Chips typically range in size fro. 64x64 to 128x128 pixels. An image
plot of the B52 aircraft chip is displayed in Figure 7. This data was

obtained by using a prediction tool developed at TASC for predicting SAR
returns from various targets.

iewyouag NNJLSV4 JO UMOpyesIg 3inpow BpY S inbid

Byd AonsaQ
(asnpsooud
B34 umogabiapy [eula)xa)
. NNJLSV4
byd pung
Byd Jown) urepy

Byg Jonug eleg

11

NNJLSY4 0 uopejuaudjdwi abeyoed epy "9 ainbi4

eengA0se]

o onglee 40180
1ononqQiifosiseq
Asjuegidosnseq
spouq)Aoiyeeg

AQOS8

Ajuagyhosysaqg
19%onqQgyAaiisag
?3Ji1gMAoJ38ag
apoug)Aolisaq

e g umogedion
s NeIId WO
janqQgeanpey

110g%2{00D
0vdwoHimong
sjepipuUenNssaEsY
smgaesusIeg
Wy ongds
apougieeels
)UIS1MINg 10D
epougyoede|jon

sanaMPiing
oe1)O)NTOID
ioongisiiieiveud
Aijuenyeiee.)
j;dngliog

xXPpU|

aonqadiessd

Agog

AQO8

uo.:ou__:!oowuua_&

NOLLYD!dID3dS

NCI1VIId4i103dS

1934ONQQCHisIeaId

IsaMpling

63 d—A0J4183Q

B6yd-umoqgebrap

NOIiVDidIO3dS

NOIL¥DId4id3dS

Byd-yonsis—eiea

Bxd-plng

12

Figure 7. Image Flot of FASTPNN Input Data Set

13

The input SAR data set (chip) contained 96x96 samples (vectors). Each
sample contained 3 components® an x coordinate position, a v coordinate
position, and a gray level (weight). Thresholding was used to reduce the
intial data set of 5184 vectors t> 1,675 vectors. The purpose of
thresholding is to reduce the data set by eliminating vectors with non

significant weight. The reduced set of 1,675 vectors was the actual
input to the FASTPNN algorithm,

14

4. ADA TO C TRANSLATION STRATEGY.

To establish a uniform framework for recoding the FASTPNN benchmark
from ¢ to Ada, a C to Ada translation strategy was adopted. Because the
goal is to compare the inherent cfficiency of Ada with C, no attempt was
made in the translation process to improve the execution efficiency of
the Ada source code beyond that of the C source code. Thus, a direct
"line by line" translation strategy was adopted.

4,1 Data Structures

The first step in the translation process was to "map" the individual C
data structures to "equivalent" Ada data structures. In general, the
mapping between C and Ada data stuctures is relatively straightforward.

Table 1 below highlights the main data structure mappings used in this
study.

TABLE 1. MAPPING OF C TO ADA DATA STRUCTURES

c Ada

Dynamic Array (%) Unconstrained Array

Pointer Type Access Type

Dynamic Array of Pointers (*¥) Unconstrained Array of Access Types
Struct Record

Union Record with Variant Part

Table 2 prevides an example of the data structure mapping techniques
presented in Table 1 by presenting two of the translated data structures
vhich vere extracted from the FASTPNN algorithm. The left hand side of Table
2 shows the original C coded data structure and the right hand side of Table
2 shows the Ada translated data stucture. These data structures can be found

in Fastpnn.h (Appendix A) and Data_Struct_Pkg (Appendix B) of the C and Ada
source code respectively.

The sections below provide a brief explanation of the data structure
mappings lisplayed in Table 1 and used as examples in Table 2.

4.1.1 Dynamic Arrays/Unconstrained Arrays

C Implementation. Structure componets *mean, *wmean, and *wsqmn of
struct kdentry in Table 2a all correspond to dynamic arrays containing
floating point numbers. The number of array components in each of the
above arrays is constrained at run time to equal the dimension of the
problem’s application (i.e. if the problem dimension is two, there would
be two components for each array). Thus, in the case of FASTPNN, the
use of dynamic arrays permits the flexiblity to use FASTPNN for a
generalized n dimensional application. At run-time, memory space is
dynamically allocated by making a call to the libray function calloc
with the dimension size passed as a parameter to the function calloc.

Ada Implementation. In Ada, one also could also dynamically allocate
the arrays *mean, *weight, and *wsqmn by using allocators. However, Ada

15

HedA}-1000nqpR)Wejo [: qiOU
:(edA-epoup)we|epy : Uu—qIou

tpiodel pue

‘oue0 pue .
Jeqonqpy : imong g
«< 9dA)-iONGPY USYM ‘giou |
‘spoupy : epou .
fL1eqonq 1eMSnqpy 190J1e
«s 0dA}"OpPOUP UIYM .
9] SINJONIITEIEP OVUD spou epoupx 3___.._._“_.5
HeSeu 1 eediy ted&3 Ju)

8] (9JNIONIIS"RINP) WS ed X jus|epy Jonne

vav)
. Q¢ oiqelL

‘paocel pue
‘(-wipg)edLy-Aviiw-usew : Awsn-uwiben
H{1-wip-g)edA;—Avsin-unem : ABLIBTUBOEA
1-wip-o)edii-Aviiw-unew Fe YP))] 1]
yeo)) * yliem
tie603u] ¢ 161111ds
:—-E.v..o-onEu»-:-u:narz_oux : Amiiw-jueu

16

p1003J q
a] AJjuapy 9d4) tumbea. 1L LT
11901} 0 («» oBuws Jebsju)) Lvise 8) edd1-Aniin-uvew edL} .:N..cn."“” w"M“"
tedAy~i1d-4Aijuepy jo fjybea 0
{0 eBumi iobxu|) Luise €| ed&3-Awisw-13d-Anueny edi) :—.o..__:__a- ! :.__u.
:£ijuepy sseoce s| edAy~itd-Asjuepy edL} SInaUes AJJuapy j00I3E
tK319pY 0CK} } Aajuepy jJonsts
vay Lo

ez 9jqel

ONIddVYWN
JHNLONYLS Vivad va@v Ol O 40 3TdWVX3 "¢ 318VL

permits an easier and more efficient method to derive most of the
flexibility of the dynamic array through use of the unconstrained array.
The unconstrained array enables one to treat arrays which

have the same characteristics but differ only in their size, as

equivalent types. Type mean array type in Table 2a is an example of an
unconstrained array type.

4.1.2 Pointer Types/Access Types

Pointer types in C map to access types in Ada.

4.1.3 Dynamic Array of Pointers/Unconstrained Array of Access Types

C Implementation. Dynamic arrays of pointers were used to maintain linked
Tist pointers in multiple dimensions. As explained in section 4.1.1,

the size of the arrays are dynamicaliy allocated to equal the dimension

of the application problem. In Table 2a, structure component **next
provides an example of a dynamic array of pointers.

Ada Implementation. Unconstrained arr.ys of access types were used to
maintain linked list pointers in multiple directions. In Table 2a,

record componet next_array provides an example of an unconstrained array
of access types.

4.1.4 Structures/Records

Structures in C map directly to records in Ada.

4.,1.5 Structures Containing Unions/Variant Records.

C Implementation. Unions, like structures, contain members whose
individual data types may differ from one another. However the members
that compose a union all share the same storage area vithin the
computer’s memory, whereas each member within a structure is assigned

its own unique storage area. Table 2b provides an example of a structure
containing a union.

ADA Implementation. Ada does not contain an equivalent data structure
directly mapable to the C union isolated (not contained inside another
data structure). However, the Ada variant record maps closely to the
case where a where a C union is contained within a C structure. In this
case, the "union" portion is represented by the variant part of the
record. Table 2b provides an example of a variant record.

17

4.2 C to Ada Coding Dualities

The final step in the C to Ada coding strategy was to highlight the
significant coding dualities between C and Ada. Table 3 below outlines
a non exhaustive list of coding dvualities between C and Ada.

TABLE 3. Miscellaneous C to Ada Issues
= hda
Loop Statements Loop Statements
- for - for
- while - while
Break Exit
Conditional Statements Conditional Statements
- if - if/end if
- ifr/else ~ if/else/end if

- ifrselse if/else if/.../else ~ if/elsif/elsif/.../else/end if

- switch ~ case

Functions Procedures or Functions

Pointer Type Operations Access Types
- *p - p-all
- p-?structure_componenti

_ &p - p’ADDRESS

Dynamic Allocation Dynamic Allocation
- calloc, malloc - new

Deallocation Deallocation
- Cfree - Unchecked Deallocation

Logical Operators Logical Operators

- && - and then
-~ | - or else

4.2.1 Loop Statements

Loop statements map very closely between C and Ada and only involve

straightforward syntax modifications to convert from one language to the
other

4.2,2 Conditional Statements

Conditional statements map very closely between C and Ada and only
involve straightforvard syntax modifications to convert from one
language to the other

4.2.3 "Break"/"Exit" Statement

The "break" statement in C and the "exit" statement in Ada permit the
innermost enclosing loop to be exited immediately without "testing" at
the bottom or top of the loop.

4.2.4 Subprograms

C Implementation. All subprograms in C are implemented as functions.
A C function retuins a single value as a result of a call.

. Ada Implementation. A subprogram in Ada can be implemented either as a
tunction or a procedure. The following guidelines were used to determire
whether a function or a procedure was used. A procedure was used vhenever
twvo or more parameters were to be modified through a subroutine call. 1If
one or less parameters was (o be modified then either a function or a .-
procedure was used. The decision to chonse either a function or a R
procedure was based upon the characteristics of the subprogram. The
folloving coding convention was used when deciding upon a function or a
procedure. It the state of the input argument was to be modified then a
procedure call vas made. Thus, if the sybprogram could be written as an
Ada "in-out" variable, then an Ada procedure was used. If just some
value was returned, then a function was used. Thus, if the variable that
needed to change, was characteristic of an Ada "out" parameter, then an
Ada function was used.

4.2.5 Pointer Operations

C Implementation. The unary operator * is called the indirection

operator. Vhen applied to a peinter, the indirection operator accesses

the object that the pointer points t¢. For example, if a pointer o
variable, p, points to an integer of value 2, then the staiement X = *p oA
assigns a value of 2 to the integer variable x. If we assume that the

pointer variable, p, points to a structure which contains two members

(structure components), say member 1 and member 2 respectively, then the

statement x = p -> member_ 1 assigns the value of structure component

member 1 to the variable x, and the statement y = p -> member_2 assigns

the value of structure component member 2 to variable y. The unary

operator &, when applied to a variable, gives the memory address of the

object. For example, the statement p = &x assigns the address of x to

the pointer variable p.

Ada Implementation. The word "all" is used to access objects pointed to
by an access type variable. For example, if an access variable type, p,
points to an integer of value 2, then the statement x := p.all assigns 8
» value of 2 to the integer variable x. If we assume that the access
variable, p, points to a record which contains two members, say member 1
and member 2 respectively, then the statement x := p.member 1 assigns
the value of record component member 1 to the variable x and the
statement y := p.member? assigns the value of record componet member 2 h
to the variable y. To obtain the memory address of a variable, the
attribute ‘Address from package system must be used.

4.2.6 Dynamic Allocation

C Implementation. The function calloc was used in conjunction with the
function sizeof to obtain blocks of memory dyunamically. As an example,

19

the statement
ip = calloc(n, sizeof(int))

allocates memory for an array having n elements, with each component
having a length equal to number of bytes used by the host machine in
representing an integer (usually 2). A pointer ip is returned to these
n*2 (assuming an integer is 2 bytes) bytes of uninitialized stcrage, or
NULL if the request cannot be satisfied.

Ada Implementation. Dynamic allocation is performed in conjunction with
the "new" statement. Below is the code to translate the same example as
presented in the C case above into Ada

type integer_array_type is array (1 .. n) of integer
ip := new integer array_type;

The first statement of the above code declares an array of integers of n
elements long of type integer array type. The second statement uses the
keyword "new" to create a designated object of type integer_array_type
and it stores the memory address of the newly created object in access
type ip.

4.2.7 Memory Deallocation

Deallocation is used to "free" memory which was previously dynamically
allocated but is no longer in use. The storage used by that variable
can then be reused to allocate a new variable.

C Impiementation. The function free deallocates space which was
previously dynamically allocated by a call to calloc or malloc. For
example, if we assume that memory was previously dynamically

allocated by the statement p = (int *) calloc(n, sizeof(int)) hen the
statement free(p) frees the space pointed to by p.

ADA Implementation. Unchecked Deallocation is one of the four
predefined generic units that are provided by every implementation of
the Ada language . In the Ada language, allocated variables are
deallocated by calling an instance of the generic procedure

Unchecked Deallocation. A call on an instance of Unchecked Deallocation
takes one variable, which is a variable of access type. The allocated
variable designated by the parameter is deallocated, and the parameter is
set to NULL. For example, assume that memory was previously dynamically
allocated by the statement p := new Integer_ Array Type; where

Integer Array Type is an array of integers. To deallocate the array of
integers, it is first necessary to instantiate the generic procedure
Unchecxed Deallocation by the statement "procedure FREE is new

Unchecked Deallocatlon (Integer, Integer _Array Ptr Type);" and then the
statement "FREE(Integer _Array Ptr)" is used deallocate the array. Note,
that there is no requirement to use the name "FREE" as any name (i.~
Deallocate Cell, Dispose, etc) could be used.

4.2.8 lLogical Operators.

C Implementation. Logical operators joined by the logical operators

20

&& and || are evaluated left-to-right, but only until the overall
true/false has been established. In the case of the && operator, if the
left-hand expression evaluates to false, the AND THEN operator returns
the value false immediately without evaluating the right-hand

expression. In the case of the || operator, if the left-hand expression
is true, the || operator returns a true value without checking the other
operand.

ADA Implementation. The Ada equivalents of && and || respectively

are AND THEN and OR ELSE repectively. These are called short-circuit
AND and short-circuit OR respectively. They produce the same results as
the plain AND and OR, but they force the computer to evaluate the
expression in left-to-right order.

21

5. BENCHMARK DEVELOPMENT SYSTEMS

This section provides a description of the two development systems used
in this study to perform the benchmarking.

_\“‘!i';i,‘ - . _ K v, -

5.1 MIPS MAGNUM 3000.

5.1.1 MIPS MAGNUM 3000 Development System. Below is a description in

outline form of the MIP5 Magnum 3000 workstation used in this
benchmarking study

- R3000 Central Processing Unit (CPU) running at 25 MHZ
- R3010 Floating-Point Coprocessor (FPC), running at 25 MHZ

-~ 32 Kbytes of instruction cache (I-cache) and 32 Kbytes of data

cache (D-cache), using 20 ns static RAM (SRAM) with fixed 8-word
block-refill size

-~ ASIC Read/VWrite Buffer with 8-word buffering

- 16 Mbytes of 100 ns DRAM which supports block-mode transfers with

peak data rates of 50 Mbytes per second on writes and 100 Mbytes
per second on reads

The R3000 CPU provides 32 general purpose 32-bit registers, a 32-bit
Program Counter, and two 32-bit registers that hold the results of
integer divide and multiply operations. The R3010 FPC is tightly —
coupled to the R3000 CPU and can execute instructions in parallel with i
the CPU. The R3010 contains sixteen, 64-bit registers that can be used
to hold single-precision or double-precision values. The MIPS R3000 has
74 instructions vhile the MIPS R3010 has 20 instructions. However,
since eight of the R3000 instructions are common to R3010 instructionmns,
there are a combined total of 86 MIPS instructions. The R3000 can
access memory only through simple load/store operations. All MIPS
instructions are 32 bits long. Although there is ounly a single
addressing mode (base register plus 16-bit signed displacement), there
are numerous individual load and store instructions that can load or

store integer data in sizes 8, 16, and 32 bits with signed and unsigned
extension.

5.1.2 MIPS Compilers. MIPS compilers support six programming languages
including C and Ada. The compiler system has a separate front-end to
translate each language and a common back-end to generate optimized o
machine code. Run-time libraries provide language-dependent functions .
for each language. The front-ends translate the semantics of each

language into an intermediate representation, called U-code. U-code is

used by several of the common back-end components.

MIPS uses a common global optimizer, called uopt, for all of their
compilers. HIPS categorizes there compiler optimizations into four

different levels. Below is a summary of the different optimization
levels:

Level 1 - includes peephole and local optimizations

22

Level 2 - includes level one optimizations, plus the following global
optimizations: loop-invariant code motion, strength reduction, common
subexpression elimination, and register allocation

Level 3 - includes level two cptimizations plus interprocedure
register allocation

Level 4 - includes level 3 optimizations, plus procedure inlining

5.1.2.1 MIPS Ada Compiler.

The MIPS Ada compiler provides two global optimizers, namely uopt "
(discussed in section 5.1.2) and OPTIM3.

OPTIM3 is a high lersel global optimizer that performs many classical
code optimizations and several that are specific to Ada. These include

redundant range check elimination and range propagation for elimination
of constraint checking.

Version 3.0 of the MIPS Ada compiler was used in this benchmarking
study. MIPS Ada 3.0 is intended to support the level Z optimizations
presented in section 5.1.2. However, although the Ada code compiled
properly using level 2 optimizations, the run-time execution terminated
due to a "segmentation error". Thus, it was necessary to only use level
1 optimizations in compiling the Ada source code.

5.1.2.2 MIPS C Compiler.

The MIFS C compiler used was the 2.11 release. The 2.11 release supports o
all of the ievel 4 optimizations presented in section 5.1.2. 1In this 1‘5.f
study, the MIPS C code was compiled and executed using level 4 '
optimizations.

5.2 VAX 11/780. LT
5.2.1 VAX Hardware.

Below is a description in outline form which summarizes the main .§3'3
features of the VAX 11/780 computer. E

- contains a VAX 11/780 processor
- Floating Point Accelerator is optional (used in this study)
- contains an 8 Kbyte cache which hold both data and instructions

- contains as addresss translation buffer (cache) vhich can hold up to
128 virtual-to-physical page-address translations

- contains an 8 byte instruction buffer

23

The VAX is the classical example of a Complex Instruction Set Computer
(CISC) architecture, There are over 200 different instructions and 7
basic addressing modes. The instruction set operates on integer,
floating-point, character-strings and packed-decimal strings, and bit
fields. The processor provides 64-bit, 32-bit, 16-bit, and 8-bit
arithmetic; instruction prefetch; and an address translation buffer.
The CPU includes 16 32-bit general purpose registers for data
manipulatuion and the Processor Status Longword for controllinag the
execution states of the CPU. The V4X used in this study contained an
opticnal high performance floating point accelerator (FPA). The FPA is
an independent processor that executes in parallel with the base CPU.
The FPA takes advantage of the CPU’s instruction buffer to access main
memory. Once the CPU has the required data, the FPA overrides the
normal execution flow of the standard floating-point microcode and
torces use of its own code. While the FPA is executing the CPU can be
performing other operations in paraliel.

5.2.2. VAX COMPILERS. This section describes both the VAX Ada compile and
also the VAX C compiler.

5.2.2.1 VAX ADA COMPILER.

Version 1.5 of the VAX ada compiler was used. The compiler was run with
full optimization with regard to time. This optimization includes both
local and global optimizations similar to those which are performed by
the MIPS compilers discussed in section 5.1.2.

5.2.2.2 VAX C Compiler

The VAX C compiler compiler can perform global and local optimization
by, for example, doing global flow analysis, assigning automatic
variables to register temporaries, and removing invariant computations
from loop, to mention a few. The compiler also does peephole
optimizations on the generated machine code.

Version 2.3 of the VAX C compiler was used in this study and run with
full optimization with regard to time (as opposed to space).

24

6. BENCHMARK RESULTS/DISCUSSION,

This section presents the benchmark results obtained by running both the Ada
and C coded FASTPNN benchmark discussed in section 3 using the coding rules
discussed in section 4 on the development systems discussed in section 5.

It is important to reiterate from sections 5.1.2.1 and 5.1.2.2, that the
MIPS C code was compiled and executed using level 4 compiler optimizations
while the MIPS Ada code was compiled with level 1 optimizations. Recall,
that this is due to the fact that MIPS level 3 and 4 compiler optimizations
wvere not supported in the Ada compiler used (Version 3.0). Further, when
the Ada code was executed using level 2 optimizations a fatal segmentation
error resulted. Thus, only level 1 optimizations could be used for the Ada.

In an attempt to circumvent the discrepancies between the MIPS C compiler
optimizations and the MIPS Ada optimizations, in section 6.2, projections of
Ada execution time are made based upon level 4 compiler assumptions. The
motivation for such a discussion is that eventually level 4 optimizations
will be incorporated in Ada. The level 4 Ada execution time projections are
based upon using the scaling factor associated wvith the C execution
improvement when going from level 1 to level 4 optimizations. Thus, the
level 4 Ada execution time projections are obtained by multiplying the Ada
level 1 execution time by the C level 4 execution time, and then dividing
this result by the C level 1 execution time.

6.1 Ada Vithout Checks Versus Ada With Checks

To support the use of exceptions, Ada performs run time checks to determine
vhether an exception should be raised. In practice, a clever compiler can
determine that many of the checks can be safely omitted. Nevertheless, a
compiler may continue to generate checks that a programmer knows are
unnecessary, and these checks may make a critical difference in the
execution time of a program. The different run time checks include access

checks, discriminant checks, index checks, length checks, range checks,
division checks, and overflow checks.

To investigate the execution time overhead in performing checks, the FASTPNN
Ada code was executed for both the case where Ada checks were performed and
also the case where all Ada checks were suppressed (no checks).

Figure 8 contrasts the execution efficiency of the Ada code run for the case
vhere Ada run-time checking was performed versus the case where run-time
checking was suppressed. Figure 8 indicates that Ada run-time checks
imposes a significant penalty on the execution efficiency of the Ada for
both the VAX and the MIPS. On the VAX, the PNN execution time goes from
approximately 25 seconds with checks off to approximately 36 seconds with
checks on. This corresponds to a 43Y% increase in time for performing checks
on the VAX. On the MIPS, the execution time goes from approximately 2.4
seconds with checks suppressed to 4 seconds with checks preformed. This
corresponds to a 65% increase in time for performing checks on the MIPS.

Thus, the relative penalty for performing Ada run-time checks is moderately
higher for the MIPS than for the VAX.

25

(s308y2) BPY B2 (8408Yd ou) epY gl

08L/LL XVA

-0}

- 02

- 0¢

(spuooag)| - 0¥

N

ON3I01443 NOILLNOIX3
NO SMO3HO ANIL NNH vav JO 103443 '8 3dNSid

26

6.2 C Versus Ada

Figure 9 contrasts the execution efficiency of the C code with the Ada
code. The relative efficiency of C versus Ada depends on which machine
the code is executed on. If the code is executed on the VAX, than the
Ada executes more efficiently than the C. For the case of the VAX, the
Ada executes approximately 39.5% quicker than the C when Ada checks are
suppressed and 13.3% quicker than the C when Ada checks are performed.
On the other hand, if the code is executed on the MIPS the C code runs
quicker than the Ada code. For the MIPS, the C code runs approximately
40% quicker than the Ada code when Ada checks are suppressed and 114%
quicker than the Ada code when Ada checks are incorporated.

Figure 10 contrasts the execution efficiency of Ada versus C for the
case where level 4 Ada compiler optimizations are projected using the
scaling technique discussed in section 6. Note from Figure 10 that the
aAda execution time for the case where Ada checks are not incorporated is
nearly identicgl to the C execution time.

Based on Figures 9 and 10 it is concluded that there is little or no
difference betveen the inherit execution efficiency of Ada (without checks)
and that of C. The actual execution cfficiency of Ada versus C is driven by
the maturity of the compilers used in the comparison. With regard to the
MIPS, the fact that the C code runs quicker than the Ada is attributed to
the fact that the present MIPS Ada compiler is not as mature as the MIPS C
compiler. This is because the MIPS Ada compiler was run with level 1
compiler optimizations while the MIPS C compiler was run using level 4
compiler optimizations. Figure 10 indicates that eventually when the MIPS
Ada compiler matures to the level of the C compiler, the Ada code will
execute in nearly identical efficiency (time) as the C code.

The fact that the Ada code on the VAX executes more efficiently than the

C ode on the VAX is attributed to the hypothesis (this was not proven
this study) that the VAX is less efficient than the MIPS in

1 orming dynamic allocation. Thus, in the case of Ada, where the

v istraired array was used in replacement to performing dynamic array

al.uvcation using access types, the resulting Ada code was more efficient

than the C code where dynamic allocation had to be performed. On the

MIPS, “wowever, where dynamic allocation is performed more efficiently

this .fference between Ada and C was nullified.

6.3 HMIPS Versus VAX

t
By far the most common method used to gauge the performance of a particular
machine is to measure its performance relative to the VAX 11/780. A ratio,
expressed in terms of VAX MIPS, is obtained by dividing the time required to
execute a given benchmark on the VAX versus the time to execute that same
benchmark on a different computer. This ratio is used to express the
machine’s performance relative to the VAX; the higher the ratio, the batter
the machine’s performance. Figure 11 contrasts the execution efficiency of
the MIPS MAGNUM 3000 with the VAX 11/780. Note from Figure 11 that the
ratio of MIPS execution time versus VAX execution time is highly dependent
on vhether Ada or C is used. If C is the language, then the ratio is
approximately 22.2 VAX MIPS. If Ada is the language the MIPS ratio

27

($%03Yy2) BOY [T (SRO@Yo ou) epY 2= O Bl

Q8L/LL XVA 0002 WNNODVYAN SdIN
T — e —- 0

53 81
-0}

suoljezIWIIdo | 13437 pasn

BpPY SdIN ‘suoieziuido ﬁ
¥ |9A37] pasn D SJIN ©ICN 0¢
- 0E
e

96 Gt -0V
(spuodag) | .~ 0§

NOSIHVJINOD FNIL NOILNDIXI NNdLISY4d ‘6 ainbid

28

(832942 WiIm) BpY [} (S3%8Ud ou) epv 222 O Il

Zywndo ¢ 19497 Ziwndo | {9A97

\
W

\
NN
N
\\

\\ RN
AN
\\\\\\\ NN

pajosloid

(spuodoag)| - S

e —— —————————

SNOILOAMOHd NOILVZIWILKO ¥ T3ATT YAV NOdN
a3sva NOSIHVdWOO FNIL NOILNOIXT NNdLSVd 0L 3HNDI4

29

(Syo8Yo Ou) BPY

(sn0ayo yum) epy

|
o [
0 g

30

|

G o E -}

Se Sc

(SdIN XVA OL Q3ZINVWHON)
000€ WNNSDVI SdIN 40 LNdHONOYHHL 3AILYI3H "L J4HNSDi4

drops off dramatically and is dependent, to a small degree, on whether
Ada is run with run-time checks or without run-time checks. If Ada is
run without checks than the ratio is approximately 10.3 VAY MIPS. 1In
the case where Ada is run using run-time checks, the ratio reduces to
approximately 9.0 VAX MIPS.

The above results indicate that the MIPS MAGNUM 3000 is somewhere

betveen 9 to 22.2 times faster than the VAX 11/780, with the variance in
ratio attributed to the compiler. Since C compilers are more mature

than Ada compilers, it is concluded that the C run time results are a better
indicater of inherit machine performance than the Ada run time results.
Thus, it is concluded that the actual speedup of the MIPS over the VAX is
reflected most accurately by the € VAX ratio of 22.2 VAX MIPS.

6.4 MIPS Profiler Results

The purpose in profiling is to help identify the areas of code where most of
the execution time .s spent. In the typical program, execution time is
disproportionally spent in relatively few sections of code. Having
identified these critical sections of code, it is profitable to improve
coding efficiency in those sections.

The results presented in this section were obtained by using the MIPS UNIX
profiler. In both the C and Ada case, the profiler output statistics assume
100% cache hits. For each subroutine in PNN, the profiler outputs the
following statistics: the total number of cycles used by that routine
(CYCLES), the percentage of cycles the routine uses with respect to the
total number of program cycles (XCYCLES), the cumulative percentage of
cycles (CUMX), the total number of times each routine is called, and the
number of cycles used by the routine per call (CYCLES/CALL). Note that
there is a direct relation between cycles used and execution time; simply

divide the cycles used by the clock freqency (25 MHz) to get the actual
time.

Since the profiler results presented in this section are categorized by
subroutine, a brief description of the seven most time consuming subroutines
contained in FASTPNN are presented in Table 4. Table 4 can be used to gain

insight into the time breakdown of the FASTPNN routines in terms of
computational functionallity.

6.4.1 C Profiler Results

In this section the profiler was run on the FASTPNN C code using level 2
compiler optimizations. Table 5 summarizes the profiler results for the
seven most time consuming subroutines in FASTPNN, Table 5 lists the seven
routines in descending order corresponding to their overall contribution
wvith reogard to cycles used in the execution of FASTPNN. Note from Table 5
that the seven routines account for approximately 89% of the total cycles
used in the entire FASTPNN algorithm. The routine which accounts for the
greatest percentage of cycles (time) is GetBucketStats. From Table 4 one
can see that GetBucketStats is concentrated on basic floating point
mathematics in performing mean and variance calculations. The first four of
the routines listed in Table 5 account for over 80% of the total cycles
used. Also note from Table 5 that routine Indxx is by far the most time-

31

Su|youwiq [BUOI}IPUOD
Bujjje2 8A)eiN08I
uone|ndiuew isi) pejut|

uopyejndjusw 318} pejul)
onewyjtie julod Buneoj}

Bu(youwiq |RUO|}I{PUCD
Bujjjes eAisindal

Bujyouwiq jeuc)iipuod
Buixepul Avliie

{esiaAel) 18)] PAUl)
uone|ndijusw Azise
aj1ewyitie jujod Bupeoy)

Buj|j®2 @A{BINDBS
Sujyouriq jeuol}ipuod
uojivindjueuw 18|| peyul|

[ess0AE] 18]) POYU))
Bujyouwviq |RUOIIIPUOD
apewyjyse jujod Bupeo)y

se(sjue Ausu se

JIvy OuiABY €183ING OM)
ojuj 19yonq ees} p-) © ijds
0} pesSN QUIlr0J GAISIND2)

Kijue e|Buis ® oOjul
s8yJjue jo Jied v eBiow

BbujBisw 20}
194onq YyovY Wolj Ba|IUe
jo sijed @ayepipued }i108

£0)8U|P100D uoj}|sad
10j20A uC jjosdvey

1e32nq Y2898 Ji0) UOHIBIND)BD
SIUR|JBA pUR URIW

j1eyanq ejBuis » o1y|
204) p) € ul selijue esdejjod
0} pPeSN QU(IN0J GA[EINJAGI

sepJjue 1&ong jo sJed jje
Buoww uoj}10I8Ip eujwieleq

i;jongilids

1qongQeonpsey

1108D

X Xpu|

818151940ng16D

epoug)esde)joD

e}upIpUB)ESEARY

@31S3.1 SNOILONNA

NOILdIHOS3d
INILAOHENS

IANVN
ANILNOHENS

S3INILNOYENS
NNd LNVDIJINDIS 1SOW 40 NOILdIHOS3d v 379Vl

095

vie
ove'2.l6

evee
68S¢

Sevi

530) 4

A1

86vv
4

gvee
L12¢

1199

L12%

11vD/8310A0 STV

cv'e68
L YAFA:
v0'S8
S508
0€e'.9
0Ly

9.'G¢C

————

BAND

9l¢
A4
cyy
G2El
0961
v6°L¢
9l'6¢

S370A0%

1 L0'SE6 1942NqaMavnpay

¥3£'296 }iosb
6.9'v¥6’L XXpui
pEL'GEL'S SIBPIPUR)SSISSY
92n'e8y's apouQg)esde|jo)
905°'66¥'6 12jonginds
680'LG1LL SIBISINNONGISH

S370A0 INILNCHENS

S11NS34 H3TI40Hd O SdIN G J149Vl

33

consuming routine with regard to the number of cycles raquired on a per call
basis, requiring over 970,000 cycles per call. But because Indxx is only

called twice, it accounts for just approximately 4.5% of the total cycles
used.

6.4.2 Ada Profiler Results

In this section the profiler was run on the Ada code using level 1

compiler optimizations and suppressing all Ada run time checks. Table 6
summarizes the profiler results for the seven most significant

subroutines in FASTPNN. Table 6 lists the seven routines in descending
order corresponding to their overall contribution with regard to cycles

used in the execution of FASTPNN. Note from Table 6 that the seven routines
account for approximately 94% of the total cycles used in the entire PNN
algorithm. The routine which accounts for the greatest percentage of .
cycles (time) is SplitBucket. From Table 4 one can see that SplitBucket R
is computationally intensive in the areas of recursive calling, linkad ;'
list manipulation, and conditional branching. The first four of the .
routines listed in Table 6 accounts for over 84% of the totzl cycles .
used in FASTPNN. Also note from Table 6 that routine Indxx is by far ' !;
the most time consuming routine on a per call basis requiriang
approximately 1.3 million cycles per call.

6.4.3 Ada Versus C Profiler Results

Table 7 contrasts the performance of the Ada profiler results with the C

profiler results for each of the main routines listed in the previous

tvo sections. The seven routines are preseinited in alphabetical order in

Table 7. Table 7 displays the amount of cycles used by each routine,

the relative percentage of cycles that the routine contributes to the

entire FASTPNN cycle count, and a ranking of each routine corresponding

to its relative contribution of cycles used. With the exception of

routine Assesscandidate, the results displayed in Table 7 are consistent

from the standpoint that the Ada routines use more cycles than the C

routines. In the case of AssessCandidate, the C requires more cycles

than the Ada. With the exception of routines SplitBucket and

GetBucketStats, the relative ranking of the individual routines for C

versus Ada is also consistent. 1In the case of routine SplitBucket,

SplitBucket is the most time consuming routine (rank 1) in the case of

Ada wvhile, in the case of C, SplitBucket is the second most time

consuming routine (rank 2). In the case of routine GetBucketStats,

GetBucketStats is the second most time consuming routine (rank 2) in the W |
case of Ada, while GetBucketStats is the most time consumirg rcutine B
(rank 1) in the case of C.

The last rov of Table 7 shows the total cycles frem the seven routines
combined and the cumulative percentage of cycles this sum comprises of
the overall cycles used in the FASTPNN execution. Note, that the total
cycles used by the Ada exeeds the total cycles used by the C code. This

result is consistent with the execution results previously displayed in
Figure 9.

34 -

169

714>

129}

g6vy

£v2'012°L ¢

g8vi
veid
LYEY

g8c¢

LYEE
182¢€
182€

8c99

TIVO/S3T0AD STV

eEV'Y6
91°26
Ic’68
l2°v8
6Sv.
LT'LS

9¥'6¢

%NNO

1272
86°¢
v6v
896
8ELL
[J AP XA

9¥°6¢

S3710A0%

6L6'Y9L’} 134oNqQMadNpad

28L.'819°) 140gy3INYD
eg8v'orse XXpuj
0G0'L.l6'Y SIEpIpUBNSSISSY
6.5°9¢c6'8 apougyesdej|o)
gLv'6Se Vi sjeiSiNonglay)

0ZL'EPL'SE 1oxongitds

S$370A0 INIiLNOHENS

S11NS3H H3404Hd vav SdIN "9 318Vl

35

2he8 65¥'£0L'8E ey ¥6 8pE0VS '8P wviol

2 p6'1c 905'S6¥'6 I ay'6¢ 02L'evt'Sl ongids
L 912 1£0°GEB L Lee 616'PSi'l 19onagysonpay
9 A ¥GE'296 9 g6 282°815°L HOSHOIND
S 6v'v 69'v¥6'} S ¥6'Y S8h'0pS‘e XXpU|
_ 9/°62 680°ISLLL | € Gl'L2 €1y'65S vl SIEISINONGIRD
€ 096t 920'c8Y'8 € 8E Lt 6.5'9£6'8 spougyesdejjod
v GZEl vEL'SEL'S ¥ 89'6 050'2/6'Y 9JepIpuB)SS8SSY
MNVY STT0AD% S310A0 MNWH S310A0% S3T0AD JINILNOYHENS

9 vav
(D SNSHIA Yav)

S17NS3d 43 1140Hd SdIN 40 NOSIHVYdAWNOD "2 318V1

36

7.0 PROJECTED FASTPNN REAL-TIME REQUIREMENT

The goal of this section is to motivate a FASTPNN real time requirement. The

basic strategy used in motivating the FASTPNN real time requirement derived in
this section is outlined below:

A. First, determine the MBV real time requirement/goal (how many
targets need to be recognized in how many seconds?)

B. Next, determine what percentage of time an MBV system will be
spend on FASTPNN

C. Last, multiply the percentage of time spent on FASTPNN (B above) by
the overall MBV real-time requirement (A above). FASTPNN must then be able
to complete its execution in this derived interval of time

There is currently a program sponsered by the Air Force called Automatic
Radar Air-to-Ground Acquisition Program (ARAGTAP) which is focused on
establishing a real-time MBV capability. The ARAGTAP goal is to
identify 20 to 40 objects (targets) from a high resoltion SAR image in
approximately 7 seconds. If we conservatively assume a 20 to 30% alarm
rate, this requirement translates to identifying approximately 50 chips
(of which 20 to 40 may be actual targets) that range in size from 64 x
64 pixels to 128 x 128 pixels in 7 seconds.

Step B in our strategy to determine a FASTPNN real-time requirement is to
determine the relative percentage of the time that the MBV algorithm
will spend on FASTPNN. A heuristic reasoning process was used to estimate
that FASTPNN should account for approximately 1.86% of the total MBV

processing time. The heuristic reasoning process included the following
assumptions:

- 10% of MBV shouild be spent on prescreening/detection and the
other 90% should be spent on recognition

- of the remaining 90% of the time spent on recognition, 25% of
the processing time should be spent on information extraction algorithms
and 75% should be spent on classification/matching algorithms

- of the 25% of the time spent on information extraction,
8.25% of this time should be spent on the FASTPNN algorithm.

Mathematically combining all of the above assumptions (by multiplying),
it is found that the FASTPNN algorithm accounts for approximately 1.86% of
the total MBV execution time.

Since we are assuming that 50 chips must be processed in 7 seconds, it is
determined that the FASTPNN algovrithm must be able to process a single chip
(as was done in this study) in .0026 seconds.

In section 6 the best case FASTPNN execution time was 1.87 seconds; this is

nearly 3 orders of magnitude slower than the FASTPNN real-time requirement
previously derived in this section.

37

8.0 FASTPNN/PNN IMPLEMENTATION CONSIDERATIONS

Based upon the discussion in section 7, it is evident that FASTPNN execution

efficiency must be greatly increased if it is to function within real-time
MBV constraints.

In section 2.1 it was shown that FASTPNN had compuational requirements
that are O(NLOGN) while the full search PNN had computational
requirements Q(N#*2). The fact that the full search algorithm is
O(N**2) and that FASTPNN is O(NLOGN) does not necessarily imply that
FASTPNN will execute more quickly than full search PNN over all input
data sets. In fact, for up to relatively large data set sizes, N, it is
highly conceivable that the full search implementation PNN will execute
more efficiently than FASTPNN. This is attributed to the fact that
there are initializations and other overhead associated with the FASTPNN
algorithm. However, as N gets very large, the volume of calculations
associated with the full search implementation will dominate all
overhead associated with FASTPNN, and the full search implemetation will
run slower than FASTPNN. A logical question to ask is: "for a given
data set size which implementation of PNN should one use"? For the sake
of convenience we will designate the parameter BREAK EVEN N to refer to
the data set size, N, where the execution time of FASTPNN and full
search PNN would be equal. It will be understood that for N £
BREAK_EVEN N, the full search implementation will run quicker than
FASTPNN, and for N greater than BREAK EVEN N, the full search
implementation will run slower than FASTFNN.

— It is important tec emphasize that BREAK EVEN N does not indicate the o
R data set size where both implementations of PNN are equally as good. B
Given equal execution time for both implementations of PNN, the full
search implementation of PNN is superior to FASTPNN since the resulting
quantization vectors are optimum. In fact, it is logical to assume that
significant computational savings must be obtained to warrant the use cf
FASTPNN over the full search implementation.

One strong disadvantage of the full search PNN is the large memory
requirement which would be required if a large input data set size is
used. For example, it was shown by example in section 2.1 that if the
input data set contains 1000 entries, then 499,500 distance calculations
would be required to be computed in the first iteration. If each
distance calculated were to be stored in one word, then this requirement
translates to nearly two megabytes of memory.

Intuitively, the parameter BREAK EVEN N is dependent on the actual
architecture used in executing thc PNN algorithm. In this study, where
benchmarking was performed on general purpose data processors it was
assumed (but not demonstrated) that, for the given input data set,
FASTPNN was more time efficent than full search PNN. However, if one
were to consider executing the PNN algorithm on a signal processor (as
opposed to a data processor), the choice between choosing the full search
implementation of PNN versus FASTPNN could certainly be altered. A
signal processor will be defined, in the context of this section, as a
processor specifically designed to perform sequences of

B computations/operations unaffected by actual data values. Since a signal .
' processor is more suited to do the brute force, less decision intensive, .

38

calculations required by the full search PNN compared to the more data
dependent calculations of FASTPNN, than it is logical to conclude that
the full search PNN will exhibit higher execution efficiency over a
larger range of input data size.

Figure 12 is used to illustrate the points made in the above paragraphs.
Figure 12 shows four hypothetical curves which are used to contrast the
execution efficiency of FASTPNN versus full Search PNN for both a data
and signal processor as a function of input data set size, N. The four
curves include : (1) the execution time of FASTPNN on a signal processor
as a function of N; (2) the execution time of FASTPNN on a data
processor ¢s a function of N; (3) the execution of FASTPNN on a signal
proccessor as a function of N, and (4) the execution of full search PNN
ca a signal proczssor as a function of N. Figure 10 shows that for
small values of N, for beoth the signal and data processor
implementation, the full search implementation of PNN is more efficient
than FASTPNN. But, for both the data and signal processor alike, as N
gets large, FASTPNN eventually exhibits higher execution efficiency than
the full search implementation of PNN. Note from Figure 12 that

BREAK EVEN N for the data processor occurs for a much smaller inmput data
size, than it does for the signal processor. Also note from Figure 12,
that the data processor displays slightly better execution efficiency
than the signal processor for all values of N in executing FASTPNN. But
in executing the full search implementation of PNN, the signal processor
significantly outperforms the data processor for all values of N.

(NNd HOHV3S TINd) dS & (NNd HOHV3S TINd) 0 —x—
(NNdLSVH) dS —— (NNd1SVd)dd ——
(N) 321S 13s vivd
960Y 8+02 201 cls gct 9 8 0
! 1 _ L _ L L §0-3000'}
HOSS3J0Hd V.Lva=dd - ¥0-3000°}
HOSS3O0Hd TYNDIS=dS £0-3000° |
(NNdLSVH) dS
| 100
{Hodv3s Tvdlds .
~ 10

(NNdLSYd) da 1

N N3A3 v3ud

(HOHV3S TINS) &0 IVIOILLIHLIOdAH 40 501

oL
INIL ZO_._.DwawW 00t
000!}

HOSS3O0Hd TVYNDIS SNSHIA HOSS3IO0Hd V1va
4O NOSIHVJNOD AONIIOI443 TVOILIHLOdAH "¢t 3dN9ild

40

9. CONCLUSIONS
9.1 Ada With Checks Versus Ada Without Checks

Ada run-time checks impose a significant penalty on Ada execution
efficiency for both the MIPS and the VAX. On the VAX there was a 437
relative time "penalty" (increase in time) associated with performing
run-time checks, while on the MIPS, there was a 65% time penalty
associated with performing run-time checks.

9.2 C Versus Ada

There is no inherit execution efficiency advantage of C over Ada or vice
versa. The comparison of C versus Ada depends on the relative maturity
of the compilers used. For instance, on the MIPS Magnum 3000, the C
code executes more efficiently than the Ada code. While on the VAX, the
Ada code executes more efficiently than the C code. Thus, the resulting
conclusion is that for the MIPS Magnum 3000, the C compiler is more
mature than the Ada compiler, while for the VAX 11/780 the Ada compiler
is more mature than the C compiler.

9.3 MIPS Magnum 3000 Versus VAX 11/780

Depending on the language used in the comparison, the MIPS Magnum 3000

executed between 9 and 22 times more efficiently (2 to 22 times less —
time) than the VAX 11/780. Vhen Ada was the language compared on both I
machines, the MIPS executed 9 times faster than the VAX. When C vas the

language, the MIPS executes 22 times faster than the VAX. The

descrepancy between C and Ada indicate that the relative efficiency of

MIPS C over VAX C is larger than the efficiency of MIPS Ada over VAX
Ada,

9.4 FASTPNN/ + Real-Time Implementation Considerations

The best case FASTPNN execution time obtained from executing the C coded

algorithm on the MIPS Magnum 3000 is estimated to be approximately 3

orders of magnitude too slow for real time use. Specialized signal

processor hardvare will be required to boost the execution efficiency O
of FASTPNN to real time performance levels. When using specialized . v
signal processor hardware, it may be advantageous to implement the full b
search PNN algorithm. The brute force, less decision intensive

calculations required by the full search PNN algorithm make it more

suitable for si7tnal -essov hardware application than the FASTPNN

algorithm. ~ .ice ' ..oice of algorithm implementation is dependent on

the input data set size, a study should be performed to determine which

implementation is best for a given input data set size. Given equal

execution times for both the full search PNN implementation and the FASTPNN
implementation, the full search implementation is preferred since it

provides the more accu " results.

41

REFERENCES

1. Cohen, Norman. Ada as a Second Lanaguage. McGraw-Hill Book
Company, 1986.

2. Equitz, W.H. "A Nev Vector Quantization Clustering Algorithm," IEEE
Transactions on Acoustics, Speech, and Signal Processing, Volume 37,
number 10, October 1989.

3. KRernighan, Brian W. and Ritchie, Dennis M. The C Programming
Language. Prentice Hall Software Series, 1988.

42

APPENDIX A

C CODED FASTPNN BENCHMARK SOURCE CODE

TABLE OF CONTENTS

ROUTINE PAGE
MAIN Ceesetiaan et e it terrrreetecanans . A-2
FASTPNN HEADER FILE....... caviseenans treseceetvean N A-4
FASTPNNiievrinernncannenes T oo A-6
VAX TIMER HEADER FILE.....ccvivennianicnnens erateeee ... A-35
VAX TIMER feviae e ererreceasserer e iieerenes. A-36
MIPS TIMER HEADER FILE....... Ceeensaas ceesit e eon A-37
MIPS TIMER.....ccviivevnneansn Ceererenae e vt .. A-38
SAMPLE OF DATA INPUT FILEc.0vevecneaans ceverrareens .+ A-39

A-1

#include "timer.h"
#include "fastpnn.h"
finclude <stdio.h)

float *FastPNN (float *means, float *weights, int count,
int dim, int ncntrds);

Main(int arge, char *argv[})
/%

*

Function name:
main

Purpose:

Function Main is the driver routine for the Fast Pairwise
Nearest Neighbor Clustering Algorithm (FASTPNN). This routine
calls routines to perform the timing of the FASTPNN algorithm.
This routine uses command line arguments to pass parameters to
itself wvhen it begins executing. At the command line, the user
enters the program name followed by the following parameters:

the input file name, the output file name, and the number of
input vectors.

* Ok O F ¥ H Ok H F A F

*
~

float *results;
float *positions;
float *weights;
float a,b,c;

int count;

int dim;

int ncntrds, i, j, k;

int loop count = 1;

int initial _dummy_time, dummy arg, dummy_elapsed time;
int init fastpnn _time, fastpnn elapsed_time;

float faqtpnn iteration _time;

int vector_count;

int welght_count,

int position count;

FILE *fpt_in;
FILE *fpt out;

0;
0

we e

fpt_in = fopen(argv{l], "r");
fpt_out = fopen(argvi{2], "w");
vector_count = atoi(argv[3], "r");
position_count = 2 * vector_count;
nentrds = 4;

positions = (float *)calloc(position_count, sizeof(float});
weights = (float *)calloc(vector count, sizeof(float));

vhile (feof(fpt_in) == 0) {

A-2

}

positions[i++]
positions[i++]
weights[j++] =

fscanf (fpt_in, "Xf %f Xf", &a, &b, &c);

o

N 0o

count = vectovr_count;
dim = position_count/vector _count;
printf("enter fasipnn\n");

initial dummy time = init _timer();
pr1ntt("got initial dummy time\n");
for (i=0; i<loop_count; i++)
{

dummy arg = identity(dummy“arg);
)

dummy_elapsed_time = elapsed_time(initial_dummy time);
prlntf("dummy elapsed time = %d", dummy _ elapsed time);

init_fastpnn_time = init timer();

for (i=0; 1<1oop count; i++)

{
results = FastPNN(positions, weights, count, dim, ncntrds);
dummy arg = identity(dummy arg);

}

fastpnn_elapsed _time = elapsed_time(init_fastpnn_time);

fastpnn_iteration_time = (fastpnn_elapsed time - dummy elapsed_time) /
loop_count;

fprintf(fpt _out, "Fastpnn executed in %f", fastpnn iteration time);
fprintf{fpt_out, "microseconds\n"); - -
fprintf(fpt_out, "Returned results\n");

printarray(results, dim, necntrds);

fclose(fpt out);

int printarray(float *array, int dim, int count)

{

int i) j| k;

for (i=0, k=0; i != count; i++) {
printf(" (");
for (j=0; j !'= dim; j++, k++) {
printf("Xf", arraylk}]);
if (j !'= dim - 1)
printf(" ");
else
printf(")\n");

/* This is the header file, "Fastpnn.h", which contains the
* data structure definitions, function prototype definitions, and
* symbolic name definitions for the FastPNN C program */

#ifndef _FastPNN_
#define FastPNN_

#ifndef TRUE
#define TRUE -1
#endif

#ifndef FALSE
#define FALSE O
#endif

#define KDNODE 0
#define KDBUCKET 1

#define KDMEMERR "KD tree memory allocation error\n"

#define BUCKETSIZE 8 /* Number of entries per bucket */
#define KDMERGE 0.5 /* Fraction of buckets merged */
#define APTR (char *)

struct kdentry {

struct kdentry **pext; /* k dimensional linked list pointers */
int splitleft; /* flag used for bucket splitting */
float veight; /* Weight assigned to this entry */
float *mean; /* k dimensional sample point data */
float *wmean; /* k dimensional weighted sample data */
float *wsqmn; /* k dim. weighted square sample data */
};
struct kdnode {
int dindx; /* Dimension index */
struct kdelem *lower; /* Pointer to kdelems below thresh */
struct kdelem *upper; /* Pointer to kdelems above thresh */
)s
struct kdbucket
int couni; /* Cardinality of bucket entries */
struct kdentry *%lists; /* Pointers to sorted data linked list */
struct kdentry *entrya; /* First element of candidate pair */
struct kdentry *eatryb; /* Second element of candidate pair */
float distort; /* Distortion induced by merging pair */
}i
struct kdelem {
int type; /* value of KDNODE or KDBUCKET */
union { /* node or bucket union */

struct kdnode node;
struct kdbucket buckert;
} norb;

};

struct kdtree {

int dimg
struct kdelem *root;
int nbuckets;
int nentries;
}s
#endif

/%
/*
/*
/*

Dimension of tree entries
Pointer to first kd tree element
Number of terminal nodes

Total number of sample points

void fatal message(char string(]);

A-5

*/
*/
*/
*/

#include "fastpnn.h"

float *FastPNN (means,weights,count,dim,ncntrds)

float *means, *weights;
int count, dim, necntrds;

/%

* Function name:

* FastPNN

*

* Purpose:

* Main routine for the Pairwvise Nearest Neighbor clustering algorithm
*

* Input arguments:

* means - sample point array

* veights - sample weight array

* count - number of samples

* dim - dimensionality of the sample data
* ncntrds -~ target number of clusters to form from the data
*

* Qutput arguments:

* None

*

* Returns:

* STACK ~ array of clusters

*/

{

struct kdentry *entry;

struct kdtree +*tree, *BuildKDtree();
float *centroids:

void MergeDownKDtree(), DestroyKDtree();
/* char *calloc(); */
int i, 3, k;

if (!(centroids = (float *)calloc((unsigned)ncntrds*dim,sizeof(ficat))))
fatal message(KDMEMERR);

tree = BuildKDtree(means,weights,count,dim);
MergeDownKDtree(tree,ncntrds);
entry = tree->root->norb.bucket.lists[0];
for (i=0,k=0; i!=nentrds; i++,entry=entry->next[0])
for (3=0; jl=dim; Jj++,k++)
centroids{k} = entry->mean(j};

DestroyKDtree(tree);

return(centroids);

#include "fastpnn.h"

struct kdtree *BuildKDtree(means,veights,count,dim)

float *means, *weights;

int count, dim;

/%

- * Function name:
* BuildKDtree
*

* * Purpose:
* Constructs an initial kD tree from the sample data
*
* Input arguments:
* means - sample point array
* weights - sample weight array
* count - number of samples
* dim -~ dimensionality of the sample data
*
* OQutput arguments:
* None
*
* Returns:
* STACK ~ pointer to a kD tree
*/

struct kdtree *tree, *CreateKDtree();
struct kdelem *CreateFirstBucket();

tree

CreateKDtree(dim);

tree->root CreateFirstBucket(means,veights,count,dim);
tree->nbuckets 1;

tree->nentries = count;

return(tree);

#include "fastpnn.h"
struct kdtree *CreateKDtree(dim) C A
int dim;
Function name:
CreateKDtree .

Purpose:
Allocates storage for a kD tree data structure '

*
*
*
*
*
*
* Input arguments:

* dim -~ dimensionality of the tree data
*

*

*

*

*

*

*

Output arguments: ;
None o

Returns: -
STACK ~ pointer to a kD tree s

struct kdtree *tree;

1f (1(tree = (struct kdtree *)calloc{{unsigned)i,sizeof(struct kdtree)))) ==
fatal message(KDMEMERR);

tree->dim = dim;

return(tree);

#include "fastpnn.h"
void DestroyKDtree(tree)

Struct kdtree *tree;

~
* *

Function name:
DestroyKDtree

Purpese:
Destroy a kD tree

Input arguments:
tree - pointer to the kD tree

Output arguments:
None

Returns:
Nothing

* %k % % R % ok % k% % %

*
~

{
void DestroyLastBucket();

if (*ree->root)

DestroyLastBucket(tree-)root);
cfree((char *)tree);

)

#include "fastpnn.h"

struct kdelem *CreateFirstBucket (means, weights, count, dim) B

float *means, *weights;
int count, dim;

/*

* Function name:

* CreateFirstBucket

*

* Purpose: ‘
* Create and initialize the first bucket in a kD tree
*

* Input arguments:

* means - sample point array

* veights - sample weight array

* count - number of samples

* dim - dimensionality of the sample data

*

* Qutput arguments:

* None

*

* Returns:

* STACK - Initialized bucket

*/

~—

struct kdelem *bucket, *CreateKDbucket();

struct kdentry *kdptr, *lptr, *CreateKDentry();
void SortBucket();
int i, j, k;

bucket = CreateKDbucket(dim);
bucket->norb.bucket.count = count;

for (i=0,k=0; il!=count; i++) { .
kdptr = CreateKDentry(dim); . ‘
kdptr->veight = weights[i}];
for (j=0; jl=diry; j++,k++) |

kdptr->mean|j} meansfk];
kdptr->wmean[j] = kdptr->mean[j] * kdptr->weight;

W

kdptr->wsqmn[j] = kdptr->mean[j] * kdptr->wmean[j]; ’

}

if (1) ¢)
bucket->norb.bucket.lists[0] = kdptr;
1pty = kdptr;

}

else {
lptr->next[0] = kdptr;
1ptr = kdptr;

}

]
. SortBucket (bucketr,dim);

A-10

ret. n(bucket);

}

A-11

¢include "fastpnn.h"
struct kdelem *CreateKDbucket(dim)

int dim;

~
*

Function name:
CreateKDBucket

Purpose:
Create a bucket for a kD tree

Input arguments:
dim - dimensionality of the sample data

Output arguments:
None

Returns:
STACK - Newly created bucket

¥ ¥ % ¥ ¥ A N * ¥ N X F *

o
~

{
struct kdelem *bucket;
—— /% chat *calloe(); */

if (!(bucket = (struct kdelem *)calloc((unsigned)l,sizeof(:truct kdelem))))
fatal message(KDMEMERR);

if (1(bucket->norb.bucket.lists = (struct kdentry **)
calloc((unsigned)dim,sizeof(struct kdentry *))))

fatal message(KDMEMERR); K
bucket->type = KDBUCKET; !

return{bucket);

A-12

#include "fastpnn.h"
void DestroyLastBucket (bucket)

struct kdelem *bucket;

/%
* Function name:
’ * DestroyLastBucket
*
R * Purpose:
* Destroy the last bucket in a tree
*
* Input arguments:
* bucket - bucket to be destroyed
*
* Qutput arguments:
* None
*
* Returns:
* Nothing
*/
{

void DestroyKDbucket(), DestroyKDentry();
struct kdentry *entry, *next;

entry = bucket->norb.bucket.lists{0];
vhile (entry) (
next = entry->next{0];
DestroyKDen*ry(entry);
entry = next;

)
DestroyKDbucket(bucket);

#include "fastpnn.h"
void DestroyKDbucket (bucket)

struct kdelem *bucket;

/%

* Function name:

* DestroyKDBucket

*

* Purpose:

* Destroy a kD tree bucket
*

* Input arguments:

* bucket - bucket to be destroyed
*

* Qutput arguments:

* None

*

* Returns:

* Nothing

*/

{

cfree((char *)bucket->norb.bucket.lists);

cfree((char *)bucket);
}

A-14

#include "fastpnn.h"
struct kdentry *CreateKDentry (dim)
int dim;

/*
Function name:
CreateKDentry

Purpose:
Create a kD tree bucket entry for holding a sample point

*
*
*
*
*
*
* Input arguments:

* dim - dimensionality of the sample data
*

*

*

*

*

*

*

Output arguments:
None

Returns:

STACK - pointer to a bucket entry
/

{
struct kdentry *entry;
r *cal

L - Y A Y .2
/% oc(); %/

t
- 1
5 wiiad &

ca

if (!(entry = (struct kdentry *)calloc((unsigned)l,sizeof(struct kdentry))))
fatal_message(KDMEMERR);
if (!(entry->next = (struct kdentry *%*)
calloc((unsigned)dim,sizeof(siruct kdentry #*))))
fatal message(KDMEMERR);

if (!(entry->mean = (float *)calloc((unsigned)dim,sizeof(float))))
fatal message(KDMEMERR);

if (!(entry->wmean = {float *)calloc((unsigned)dim,sizeof(float))))
fatal message(KDMEMERR);

if (!(entry->vsqmn = (float *)calloc((unsigned)dim,sizecf{float))))
fatal_message(KDMEMERR);

return(entry);

A-15

#include "fastpnn.h"
void DestroyKDentry (entry)
struct kdentry *entry;
Function name:
DestroyKDentry

Purpose:
Destroy a kD tree bucket entry

Input arguments:
entry - pointer to the entry to be destroyed

Output arguments:
None

Returns:
Nothing

if (entry) {
cfree((char *)entrv->next);
cfree((char *)entry->mean);
cfree({char *)entry-»wmean);
ctree((char *)entry->wsqmn);
cfree({(char *)entry);

#include "fastpnn.h"
struct kdelem *CreateKDnode()

/*
Function name:
CreateKDnode

Purpose:
Create a kD tree node

Nothing

Output arguments:
None

%*

*

*

*

*

*

* Input arguments:
*

x

*

*

*

* Returns:

* STACK - pointer to the newly created kD tree node

*/

struct kdelem *node;
/* char *calloc(}; */

4 &
41 :

{!{fiode = {struci kdelem *)calloc((unsigned)l,sizeot(struct kdelem))))
tatal message(KDMEMERR);

node->type = KDNODE;

return(node);

#include "fastpnn.h"
void DestroyKDnode(node)
struct kdelem #*node;
Function name:
DestroyKDnode)

Purpose:
Destroy a kD tree node

Input arguments:
node - pointer to the entry to be destroyed

Output arguments:
None

* % A Gk % O o % A % % X ¥ ¥ *

Returns: .‘f'
Nothing

*
~

{
if (node)
cfree((char *)node);

A-18

#include "fastpnn.h" 1

void SortBucket (elem,dim)

}

struct kdelem *elem;
int dim;

Function name:
SortBucket

Purpose:
Sort the entries in a kD tree bucket across each dimension separately

Input arguments:

*
*
*
*
*
*
*
* elem - pointer to the bucket containing the entries to be sorted
* dim - dimensionality of the sample data

*

*

*

*

*

*

Output arguments:
None

Returns:
Nothing
*/

struct kdentry *entry, **epbffr;
void indxx();
/* char *calloc(j); */

int i, j, count;

count = elem->norb.bucket.count;

if (!(epbffr = (struct kdentry **)calloc((unsigned)count,

sizeof(struct kdentry *))))
fatal message(KDMEMERR);

for (i=0; il=dim; i++) { \
for (j=0,entry=elem->norb.bucket.lists[0]; j!=count; j++) {
epbffr[j] = entry;
entry = entry->next[0];

}
indxx{epbffr,&i);
elem->norb.bucket.lists{i] = epbffr{0];
for (j=1; j<count; j++)
epbffr(j-1]->next[i] = epbffr[j];
epbffr{[count - 1]J]->next[i] = (struct kdentry *)0;
}

cfree{(char 7 ,bffr);

A-19

#include "fastpnn.h"
void indxx{kdentry **epbfrr,int *i)

/% .
Function name: v
indxx

Purpose:

Sort an array of indices indx based on the data arrin using an indexed
version of a heap sort. Modified from Numerical Recipes indexx.

arrin - array of data used for sorting
n ~ number of entries in arrin

*

*

*

*

*

¥*

*

* Input arguments:
*

*

*

* Qutput arguments:
*
*
*
*

indx - Indices specifiying the order of data in arrin
Returns:
Nothing
*/
- { _
int 1,j,ir,indxt,i; -~
float q;

for (j=0;j<n;j++)
indx[j] = 33

1
ir

n>> 1;
n - 1;

vhile (TRUE) {
if (1 > 0)
¢ = arrin{{indxt=indx[--1]}];
else {
q = arrin[(indxt=indx[ir}])];
jindx[ir]=indx{0];
if (--ir == 0) {
indx{0]=indx¢;
return;

O i=1;
. = ((1+ 1)< 1) = 1;

vhile (j <= ir) {
if (3 < ir && arrin[indx[J]} < arrin{indx{j+1}])
jees
if (q < arrinlindx[j]]) {
indx[i}=indx[j];
} j + = ((i:j) + 1);

A-20

)

}

else j=ir+l;
}

indx[i]=indxt;

A-21

#include "fastpnn.h"
void MergeDownKDtree(tree,ncntrds)

struct kdtree *tree;
int ncntrds;

Function name:
MergeDownKDtree

Purpose:

Reduce a kD tree to a single bucket having ncntrds entries using the PNN
algorithm

*
*
*
*
*
%*
*
* Input arguments: BN
* tree - pointer to a kD tree _ ?J
* ncntrds - desired number of entries after merging

*

*

*

*

*

*

Output arguments:
None

Returns:
Nothing

void CompressKDiree(), BalanceKDtree();
struct kdelem *CollapseKDnode();

int nmerge, ntile, maxbkts;

struct kdelem **bcktarray;

/* char *calloc(); */

maxbkts = tree->nentries / (BUCKETSIZE / 2);

if (!(bcktarray = (struct kdelem **)calloc((unsigned)maxbkts,

sizeof(struct kdelem *))))
fatal _message(KDMEMERR);

while (tree->nentries > necntrds)
BalanceKDtree(tree,bcktarray);
ntile (KDMERGE * tree->nbuckets > 1) ? KDYERGE * tree->nbuckets : 1;
nmerge ((tree->nentries - necntrds) < ntile) ?

(tree->nentries - ncntrds) : ntile;
CompresskDtree(tree,nmerge,bcktarray);

}
if (tree->root->type == KDNODE)

tree->root = CollapseKDnode(tree->root, tree->dim,&tree->nbuckets);

cfree{(char *)bcktarray);

A-22

#include "fastpnn.h"
void BalanceKDtree(tree,bcktarray)

struct kdtree *tree;
struct kdelem **bcktarray;

Function name:
RalanceKDtree

Purpose:

Redistribute the entries in a kD tree so that each bucket has
approximately the same number of entries

Input arguments:
tree - pointer to a kD tree

Output arguments:
bektarray -~ array used to retain a pointer to each bucket after balancing

Returns:
Nothing

* oA ¥ Gk b % % ok % % % O % % O ¥

/

o~

struct kdelem *CollapseKDnode(), *SplitBucket(), **bptr; ?fﬂ_'
float *mean, *wvar; '
/* char *calloc(); */

if (!(mean = (float *)calloc((unsigned)tree->dim,sizeof(float))))
fatal message(KDHEMERR);

if (!(wvar = (float *)calloc({unsigned)tree->dim,sizeof(float))))
fatal message(KDMEMERR);

if (tree->root->type == KDNODE)
tree->root = CollapseKDnode(tree->root,tree->dim,&tree->nbuckets);

bcktarray[0] = tree->root;
bptr = &Gbcktarray[lj;

tree->root =
SplitBucket(tree->root, tree->dim, &tree->nbuckets, &bptr,mean,wvar);

cfree((char *)mean);
cfree((char *)wvar);

A-23

#include "fastpnn.h"
struct kdelem *CollapseKDnode(elem,dim,bctr)

struct kdelem *elem;
int dim, *bectr;

J*

* Function name:

* CollapseKDnode

*

* Purpose:

* Recursive function used to collapse the entries in a kD tree into a
* single bucket

*

* Input arguments:

* elem -~ pointer to a kD tree node to be collapsed

* dim -~ dimension of the data within the tree

*

* Qutput arguments:

* betr - pointer to a counter used to keep track of the total number
* of buckets in the tree

*

* Returns:

* STACK - pointer to the bucket resulting from the collapse

*/

struct kdentry **entptr, *lentry, *rentry;
struct kdelem *bucket;

void DestroyKDnode(), DestroyKDbucket();
int i;

if (elem->norb.node.lower->type != KDBUCKET)

elem->norb.node.lower = CollapseKDnode(elem->norb.node.lower,dim,betr);
if (elem->norb.node.upper->type != KDBUCKET)

elem->norb.node.upper = CollapseKDnode(elem->norb.node.upper,dim,betrj;

bucket = elem->norb.node.lover;

for (i=03; il=dim; i++) {

entptr = &(elem->norb.node.lower->norb.bucket.lists{i}]);
lentry = elem->norb.node.lower->norb.bucket.listsfi];
rentry = elem->norb.node.upper->norb.bucket.lists[i];

wvhile (lentry && rentry) (
if (lentry->mean[i] < rentry->mean[i]) {

*entptr = lentry;
entptr = &(lentry->next[i]);
lentry = lentry->next{i];
)
else |
*entptr = rentry;
entptr = &(rentry->nextfi}]);
rentry = rentry->next[i];
)

A-24

}
if {(lentry) {
while (lentry) {
*entptr = lentry;
entptr = &(lentry->next{i}]);
lentry lentry->next[i];

i

[

}

}

if (rentry) {
while (rentry) {

*entptr = rentry;
entptr = &(rentry->next{i]);
rentry = rentry->next[i];
}

1
}
bucket->norb.bucket.count = elem->norb.node.lower->norb.bucket.count +
elem->norb.node.upper->nerb.bucket.count;
DestroyKDbucket(elem->norb.node.upper);
DestroyKDnode (elem);
(*bctr) --;
return(bucket);

A-25

#include "fastpnn.h"
struct kdelem *SplitBucket(oldbucket,dim,bectr,bptr,mean,wvar)
struct kdelem *oldbucket, ***bptr;

int dim, *betr;
float *mean, *wvar;

Function name:
SplitBucket

Purpose:
Recursive function used to split a kD tree bucket into two smaller
buckets having half as many entries

Input arguments:
oldbucket - pointer to kD tree bucket to be split

dim - dimension of the data within the tree
mean - scratch array used for calculating bucket means
wvar - scratch array used for calculating bucket weighted variances

Output arguments:
betr - pointer to a counter used to keep track of the total number
of buckets in the tree

bptr - pointer to an array of pointers to buckets in the tree

Returns:
STACK - pointer to the node resulting from the split, or the original
bucket if the number of entries in the bucket is small enough

struct kdelem *newnode, *newbucket, *CreateKDbucket();
struct kdentry **oldptr, **newptr, *entry;

int i, j, becount, medindx;

void GetBucketStats();

if (oldbucket->norb.bucket.count > BUCKETSIZE) {
GetBucketStats(oldbucket,dim,mean,wvar);
for (i=1,j=0; iddim; i++)
if (wvarf{i] > wvarfj})
jo=1i;

bcount = oldbucket->norb.bucket.count;
medindx = (bcount + 1) / 2; /* Uneven splits go left */

nevnode
newnode->norb.node.dindx

CreateKDnode();
33

nevbucket = CreateKDbucket(dim);

newnode->nerb.node.lover = oldbucket;

A-26

newnéde-)norb.node.upper = newbucket;

. (*betr) ++;
L (**bptr) = newbucket;
: (*bptr) ++;

for (i=0, entry-oldbucket->norb.bucket.lists[j]}; i<medindx; i++) {
entrv->splitleft = TRUE;

. entry = entry->next[j];

}

for (i=-medindx; i<bcount; i++) {
entry->splitleft FALSE;

L '}

entry entry->next[jl;
}
oldbucket~>norb.bucket.count = medindx; -
newbucket->norb.bucket.count = beount - medindx;

for (i=0; i'=dim; i++) {

oldptr = &oldbucket->norb.bucket.lists[i];

newptr = &newvbucket-->norb.bucket.lists[i];

entry = oldbucket->norb.bucket.lists[i];

while (entry) (

if (entry->splitleft) {
*pldptr = entry;
. oldptr = (struct kdentry **)(&entry->next{il):
— } -
‘- else { o
*newptr entry;
newptr = (struct kdentry **)(&entry->next{i]);

non

}

entry
}
*0ldptr = (struct kdentry *)0;
*newptr = (struct kdentry *)0;

entry->next([i};

}

newnode->norb.node. lover =

SplitBucket(newnode->norb.node.lover,dim,bcty,bptr,mean,vvar);
newnode->norb.node.upper =

SplitBucket(newnode->norb.node.upper,dim,bctr,bptr,mean,wvar);

return(nevnode);
}

. else
return(oldbucket);

A-27

$include "fastpnn.h"
void GetBucketStats (elem,dim,mean,wvar)
struct kdelem *elem;

int dim;
float *mean, *wvar;

/* .

* Function name: “

* GetBucketStats

*

* Purpose:

* Calculate the k dimensional means and weighted variances for a bucket .

* .
* * Input arguments: B

* elem - pointer to the kD tree bucket for which the statistics are

* to be calculated

* dim - dimension of the data within the tree

*

* Qutput arguments:

* mean ~ array used for calculating bucket means

* wvar ~ array used for calculating bucket weighted variances

*

* Returns: -

* Nothing

*/

(LAY

struct kdentry *entry;
float wgtsum;
int i;

vgtsum = 0.0;

for (i=0; il=dimj i++) { I
mean[i] = 0.0; R
wvar[i] = 0.0; B

} T

entry = elem->norb.bucket.lists[0];

vhile (entry) ({
wgtsum += entry->veight; ‘
for (1=0; il=dim; i++) {

mean[i] += entry->vmean[i];
wvar(i] += entry->vsqmn[i];
}
entry = entry->next{0];

}

for (i=0; il=dim; i++) {
mean[i] /= wgtsum;
wvar{i] = (wvar[i] / wgtsum) - (mean[i] * mean[i]);

)

#include "fastpnn.h"
static int BucketCompare(one, two)

struct kdelem **one, **two;

/%
* Function name:
* BucketCompare
*
* Purpose:
* Function used by the UNIX qsort routine to compare merge distortions of
* twvo buckets
*
* Input arguments:
* one - pointer to a pointer to the first kD tree bucket used in
* the comparison
* two - pointer to a pointer to the second kD tree bucket used in
* the comparison
*
* Qutput arguments:
* None
*
* Returns:
* STACK - the value 1 if distortion(one) > distortion(two)}
® the value 0 if distortion(one) = distortion(two)
* the value -1 if distortion(one) < distortion(two)}
*/
{
if ((*one)->norb.bucket.distort < (*two)->norb.bucket.distort)
return(-1);
else it ((*one)->norb.bucket.distort == (*two)->norb.bucket.distort)
return(0);
else

return(1);

A-29

#include "fastpnn.h"
void CompresskDtree (tree, nmerge, bcktarray)

struct kdtree *tree;
int nmerge;
struct kdelem **bcktarray;

Function name:
CompressKDtree

Purpose:

Function used to merge bucket entry pairs into single bucket entries for
a fixed fraction of the total number of buckets

Input arguments:
tree - pointer to the kD tree undergoing the merge
nmerge - number of bucket pairs to merge
bcktarray - array of pointers to all buckets in the tree

Qutput arguments:
None

Returns:
Neothing

********1—*****1—‘-}***

void AssessCandidate(), ReduceKDbucket();
int i, ncount, BucketCompare();

for (i=0,ncount=0; i!=tree->nbuckets; i++)
AssessCandidate(bcktarray(i}], tree->din,bcktarray,&ncount);

/* Handle end game situations */

if (nmerge > ncount)
nmerge = ncount;

if (ncount > 1)
gsort((char *)bcktarray,ncount,sizeof(struct kdelem *),BucketCompare); ‘

for (i=0; i!=nmerge; i++) R
ReduceKDbucket(bcktarray{i], tree->dim); .

tree->nentries -= nmerge;

A-30

#include "fastpnn.h"
void AssessCandidate(elem,dim,barray,ncount)

struct kdelem *elem, **barray;
int dim, *ncount;

/x
: * Function name:
* AssessCandidate
*
) * Purpose:
* Determine the minimal distortion than can be produced by merging a pair
* of bucket entries
*
* Input arguments:
* elem - pointer to the kD tree bucket under evaluation
* dim - dimension of the data within the entries
*
* Qutput arguments:
* barray - array of pointers to all buckets that can be merged
* ncount - pointer to counter used to keep track of the total number
* of buckets that can be merged
*
* Returns:
* Nothing
*
*/

struct kdentry *ientry, *jentry;
float reduction, dotprd, diff;
int i, j, k, firsttime;

firsttime = TRUE;
if (elem->norb.bucket.count > 1) {
ientry = elem->norb.bucket.lists{0];
for (i=0; i<elem->norb.bucket.count-1; i++,ientry=ientry->next{0]) {
jentry = ientry->next[0];
for (J=1+1; j<elem->norb.bucket.count; j++,jentrys=jentry->next{0}) {
for (k=0,dotprd=0.0; k<dim; k++) {
diff = ientry->mean|k] - jentry->mean[k];
’ dotprd += diff * diff;
}

reduc%tion = dotprd * ientry->weight * jentry->weight /
(ientry->weight + jentry->weight);

if ((reduction < elem->norb.bucket.distort) || firsttime) ({
elem->norb.bucket.distort = reduction;
elem->norb.bucket.entrya = ientry;
elem->norb.bucket.entryb jentry;
firsttime FALSE;

}

}
}

barrayl (*ncount)++] = elem;

A-31

#include "fastpnn.h"
void ReduceKDbucket(elem,dim)

struct kdelem *elem;
int dim;

/%
Function name:
ReducekKDbucket

Purpose:
Merges a pair of bucket entries inte a single entry

Input arguments:

elem - pointer to the kD tree bucket whose entries are to be merged
dim - dimension of the data within the entries

Qutput arguments:
None

Returns:
Nothing

T T T T A

/

struct kdentry *ientry, *jentry, **leptr;
float newveight;
inv i, rment;

ientry
jentry

glem->norb.bucket.entrya;
elem->norb.bucket.entryb;

/* Remove ientry, jentry from the list */

for (i=0; il=dim; i++) {
for (leptr = &(elem->norb.bucket.licts{i]),rment=0; rmentla2;) {
if ((*leptr==jentry) || (*leptr==ientry)) {
*leptr = (*leptr)->next[il];
rment++;
}
else
leper = &((*leptr)->next[i]);
)
}

aevveight = ientry->weight + jentry-»>weight;
for (1=0; it=dim; i++) {
ientry->mean[i] = (ientry->mean[i] * ientry->weight +
jentry->mean[i] * jentry->weight) / newwveight;
ientry->wmean{i] = ientry->uean[i] * newweight;
ientry->wsqmn[i} = ientry->mean{i] * lentry->wmeanii);

}

ientry->weight = newweiglit;

A-33

/* Reinsert ientry into the list in the proper order */

for (i=0; il=dim; i++) {
for (leptr = &(elem->norb.bucket.lists[i]);
(*leptr && ((*leptr)->mean{i] < ientry->mean[i]));
leptr = &((*leptr)->next(i]));

ientry->next[i] = *leptr;

*leptr = ientry;
} -
elem->norb.bucket.count--; /* Decrement the total entry count */ “
DestroyKDentry(jentry); /* Free up jentry memory */

void fatal message(char string[])
{

printf("Xs\n",string);

ra

return;

HIe s

A-34

/* This is the header file,"timer.h", which contains the declarations

* (or function prototypes) for the VAX/VMS timing routines
*

*/
int init_timer(void);

int elapsed time(int starting_time); s

int identity (int arg);

#include "timer.h"
#include <time.h>
#include <stdio.h>

/*
*
*
*
*

*/

This file contains the VAX/VMS timing routines. Note that the
functions init_timer and elapsed_time make use of a predefined

C function called "times". Function times returns the accumulated
CPU time in a predefined time structure called tbuffer t.

tbuffer t *init_time ptr, *final time ptr;
tbuffer t buffer, init _time, final _time;

int init_timer (void)

{
int current_time;
init_time ptr = &init_time;
t1mes(1n1t time ptr),
current_tlme = (1n1t_time_ptr -> proc_user_time) * 10000;
return current_time;
}

int elapsed_time(int start_time)

{
int time_elapsed;
tinal time ptr = &final time;
t1mes(f1nal time_ptr);
time elapsed ((final time_ptr->proc_user_time) * 10000) - start_time;
return time elapsed;
}
int identity (int arg)
{
int some_value = 0;
some_value = some _value + arg;
return some value;
}

e

*/

This is the header file, "timer.h", which contains the declarations
(or function prototypes) for the MIPS/UNIX timing routines.

long int init_timer(void);
long int elapsed time(void);

int identity (int arg);

4=

e

#include "timer.h" o
#include <time.h> .
#include <stdia.h> &

/* This file contains the MIPS/UNIX timing routines. Note that the
* functions init_timer and elapsed_time make use of the predefined
* C function called "clock". Function clock returns the amount of

* CPU time used since the first call to clock.
*

*/ .

long int init_timer (void) . f.
{ N
long int current_time; :
current time = clock();
return Eurrent_time;

}

long int elapsed_time(void)

{ .
. long int time_elapsed; N,
. time_elapsed = clock();
return time elapsed;
}

int identity (int arg)
{

int some_value = O;
some_value = some_value + arg;
return some_value;

. 000000
.000000
.000000
.000000
.000000
. 000000
.000000
.Q00000
.000000
.000000
. 000000
. 000000
.000000
.000000
.000000
.000000
. 000000
.000000
.QC0000
.000000
.000000
.000000
.000000
. 000000
.000000
.000000
000000
.000600
.000000
.000000
. 000000
.0N0000
. 000000
. 000000
.000000
. 000000
.000000
.000000
. 000000
.000000
.000C00
3.0006000
. 000000
.000000
. 000000
.000000
9.000000
.G00000
1.000000
.000000
. 000000
. 000000
. 000000
.000000
.000000

19.000000
19.000000
19,000000
20.000000
20.000000
20.000000
20.000000
20.000000
21.000000
21.000000
21.0092000
21.000000
21.000000
22.000000
22.000600
22.000000
22.000600
22.00C000
22.000000
23.000000
23.000006
22.000000
23.000000
23,000000
23.000000
23.000000
24.000000
24.000000
24.000000
24.000000
24.000000
24.000000
24.000000
25.000000
25.000600
25.000300
25.000000
25.000000
25.000000
25.000000
25.000000
25.000000
26.000000
26, 000000
26.000000
26.000000
26,000000
26.000000
26.000000
26.0G0000
26.000000
27.000000
27.090000
27.0600000
27.000006

62.
74.
70.
76

000000
000000
000000
. 000000
90.000000
91.000000
78.u09000
52.000000
75.000000
96.000000
101.000000
91.000000
67.000000
75.000000
100.000000
108.000000
104.000000
92.000000
72.000000
84.000000
135.000000
159.000000
165.000000
155.000000
124.000000
61.000000
135.000000
164.000000
190.000000
196.000000
185.000000
151.000000
74.000000
59.000000
109.000000
173.000000
200.000000
206.000C00
194.000000
160.000000
81.000000
58. 000000
52.000003
105.000000
165.0000C0
191.000000
197.000000
185.000000
152.000000
80.000000
58.000000
60.000000
73,000000
85.000000
94.000000

APPE!)IX B

ADA CODED FASTPNN BENCHMARK SQURCE CODE

TABLE OF CONTENTS

NAME

MATN Cereeenes e teeeaaen cenes
FASTPNN .cvicveerecrvvacsonnan caa
Data_Struct Pkg veeean cereens

BUILD PKG ROUTINES
BUILD_PKG SPECIFICATIONecvvvvvnennnns.
BUILD PKG BODY ...cviivvevnrnvennenncnonnanas

- BuildKDtree Ctertsaesaneesaneen
- CreateFirstBucket ... veieiinnernnesons
- CreateKDbucket ..i.cvvvvnnnen.
- CreateKDentrycieu0.. Ceerressenen
- CreateKDtreevevevvevtncnncana

- Indxx «.eiianens trsecesann
- SortBucketc.0.. ve

MERGEDOWN_PKG ROUTINES
MERGEDOWN PKG SPECIFICATIONcoveven.
MERGEDOWN PKG BODYc0vvueenan .

- AssessCandidate Cesciseneinsans
- BalanceKDtreevissssvesaconcescanans
~ BUCKetCOMPALE +evrrinirtoerncencnsacsssos
- CollapseKDnodevvcaveses
- CompressKDtree et tseerieriacnnnes
- CreateKDnode ...vevevenassoonnsse
— GetBUCKRLSTALS titiivinennaceeerrennens .
- MergeDownKDtree ...cciieinieenennnennnnn
- QUIickSOrt ..vvievnnrnnes
-~ ReduceKDbucket
- SplitBucket00v.n.

vesessse sy

DESTRUY_PKG
DESTROY PKG SPECIFICATIONceveinnenanns
DESTROY PKG BODY ... vuicrinvnennscnnganannen

- DestroyKDbucket
- DestroyKdentry ceens
- DestroyLastBucket
- DestroyKDnodecievieveenn
~ DestroyKDtree

T tsaserser e,

Pe s st eseercInee

VAX/VMS TIMER SPECIFICATION

VAX/VMS TIMER BODY ..reveevnnensonsonsonsonsnes
MIPS TIMER SPECIFICATION¢cvnvvevennconns .
MIPS TIMER BODY ceraans N Ceecacannans
READ DATA ...ovninnnnnnnsnnnss ceseeees cireeveens
Sample of Data Input Fllec...v.n.. “os

vith timer;

with FASTPNN;

vith READ DATa;

vith text io; use text io;

vith Data_Struct_Pkg; use Data_Struct_Pkg;
procedure main is

-- Procedure Name: Main

-- Purpose : This is the main vroutine for the FASTPNN algorithm.

- The user is prompted to input the name of the input

- file, the name of the output file, and the number of
- input vector data values. External procedure

- READ DATA is called by Main to read in the values

- from the ipput data file. Main performs the timing

- of the FastPNN algorithm (by calling timing

- routines contained within Timer_ Pkg) and outputs the
- results.

e -

LENGTHIN : INTEGER;
LENGTHOUT : INTEGER;
POSITIONS LAST : INTEGER;
RESULTS LAST : INTEGER;
WEIGHTS LAST : INTEGER;
count : integer;

dim : inveger;

nentrds : integer;

INNAME : STRING(1 .. 80);
OUTNAME : STRING(1 .. 80);
VECTOR_NUM : INTEGER;

loop count : constant := 1;
fastpnn_elapsed : integer;
fastpnn_timer : timer.microsec_timer;

dummy timer : timer.microsec_timer;
dummy_elapsed_time : integer;
dummy arg : integer;

INFILE : FILE_TYPE;
OUTFILE : FILE TYPE;

package float_io is nev text_io.float_io(float);
package int_io is newv text jo.integer_io(integer);

procedure printarray (OUTFILE : in out FILE TYPE;
arrayy : in means_array_type;
dim : in integer; count : in integer) is

k : integer;
package float_is is uev text_io.float_io(float);

begin
k := 0;

B-2

for 1 in O .. count - 1 loop
put(OUTFILE, " M);
for j in 0 .. dim - 1 loop
float_io.put(OUTFILE, arrayy{k));
k := k + 1;
if (3 /= dim-1) then
Put(OQUTFILE, " ");
else
put_line(OUTFILE, ")");
end if;
end loop;
end loop;
end printarray;

begin -~ MAIN

PUT LINE("Enter Name of Input File. ");

GET LINE(INNAME, LENGTHIN);

PUT_LINE("Enter Name of Output File ");

GET LINE(OUTNAME, LENGTHOUT) ;

PUT LINE("Enter the number of input vectors ");
INT I0.GET(VECTOR NUM);

OPEN(INFILE, IN FILE, INNAME(1 .. LENGTHIN));
CREATE(OUTFILE, OUT_FILE, OUTNAME(1 .. LENGTHOUT));

POSITIONS LAST := 2 * VECTOR NUM - 1;
RESULTS_LAST := 2 * VECTOR NIM _ 1,
VEIGHTS_LAST := VECTOR_NUM - 1;

DECLARE

positions : means_array_type(0 .. POSITIONS LAST);
results : means_array_type(0 .. RESULTS LAST);

veights : weights_array_type(0 .. WEIGHTS_LAST);

begin

count := weights’/length;
dim := positions’length/count;

READ DATA (INFILE, positions, weights);

ncntrds t= 4; -- number of desired output vectors

~- first time the dummy loop

timer.init_timer(dummy timer);
for i ir 1 .. loop_count loop

dummy arg := timer.identity(dummy_arg);
end loop;

if timer.alwvays true then

dummy_elapsad_time := timer.elapsed time(dummy timer);
end if; -

B-3

.-

-~ nov time the routine of interest

timer.init_timer(fastpnn timer),

for i in 1 .. loop count loop
L FastPNN(positions, welighis, count, ¢is, ncntrds, resuits):
dumay arg := timer.identity(dumm, azg':
end loop:
i{ timer.alivays true then . _
fastpnn_clapsea e tiBe: . ¢id;sed Iime lasigan tlme:); -
end 1t

ar!

Ni - LINE(OUTF:LE);:

-- Now Sublralt the dulm; (VVeITeAs) .J0F 4M (€012 "He fes..ls

FUT(UUTFI_E, "Fast?NM cxecutes 10t “3):
B FLOAT _IO.FUT(OUTFILE. tloaz((fastpan e.spses
dumay elapsea tim:)) - fioa:i(loep_count));

text_io.pu(_line (OUTFILE, ™ wmicroscconds.®);
PUT_LINE(OUTFILE, "Returned results");
printarray (QUTFILE, results, dim, ncntiuds);
CLOSE(OUTFILE);

end;

end main;

with Data_Struct_Pkg; use Data_Struct Pkg;
vith Build_Pkg;

vith MergeDown Pkg;

vith Destroy_ Pkg;

procedure FastPNN (means : in out means_array_ type;
veights : in out weights_array_type,
count : in integer;
dim : in integer;
ncntrds : in integer;
centroids : out means_array type) is

-- Procedure name: FastPNN

-~ Purpose: Qutermost routine for the Pairwise Nearest Neighbor
-- Clustering algorithm

-- Input arguments:

-~ means - sample point array

- veights - sample weight array

-- count - number of samples

-- dim - dimensionality of the sample data

-- ncntrds - target number of clusters to form the data

-~ Gutput arguments
-— centroids - cluster vector results from FASTPNN algorithm

entryy : kdentry_pir_type;
tree : kdtree ptr_type;
k : integer;

begin

Build Pkg.BuildKDtree(means, weights, count, dim, tree);
MergeDown Pkg.MergeDownKDtree(tree,ncntrds);

entryy := tree.root.bucket.lists_array(90);
k := O;
for 1 in O .. nentrds - 1 loop
for j in 0 .. dim - 1 loop
centroids(k) := entryy.mean_array(j);

k := k +1;
end loop;
entryy := entryy.next _array(0);
end loop;

Destroy Pkg.lestroyKDtree(tree);

end FastPNN;

-- This package specification contains the declarations of
-~ data types used by all modules in the FASTPNN routine

TRUEE : constant := -1;

FALSEE : constant := O;

KDNODEE : constant := 0

KDBUCKETT : constant := 1; .
RUCKETSIZE : constant := 8;

KDMERGE : constant := 0.5;

dim : constant := 2;
-- Data Structures defined in the main program
type means_array_type is array (integer range <>) of floart;

type weights array type is array (integer range <>) of float;

—-- data structure used in CollapseKDaode
type integer_ptr_type ic access integer;

—- data structures needed in indxx
type float_array_type is array (integer range <>) of float;

type integer_array tiype is array (integer range <>) of integer;

type Kdentry;
type Kdentry ptr_type is access Kdentry;
type Kdentry ptr array type is array (integer range <)

of Kdentry ptr_type;
type mean_array type is array (integer range <>) of float;
type wmean array_type is array (integer range <>) of float;
type wsqmn_array_type is array (integer range <>) of float;
type wvar_array type is array (integer range <>) of float;

type Kdentry is

record
next_array : Kdentry ptr arrvay type(O .., dim - 1);
splitleft : integer;
weight : float;
mean_array : mean_array_type{O .. dim - 1); *
wmean _array : wmean_array type(0 .. dim - 1);
wsqmn_array : wsqmn_array type(0 .. dim - 1);

end record;

type data_structure_type is (kdnode_type, kdbucket type); T%*
type kdelem(data structure : data structure _type);
type kdelem ptr_type is access kdelenm;

e B
\

-- Data structure kdelem_ptr_array type used in BalanceKDtree
type kdelem ptr array type is array (integer range <>)

B-6

of kdelem ptr_type;

type kdnode is

record
dindx : integer;
lower : kdelem_ptr_type;
upper : kdelem ptr type;
end record;

type kdbucket is

record
count : integer;
lists_array : Kdentry ptr_array type{0 .. dim - 1);
entrya : Kdentry ptr type;
entryb : Kdentry ptr_type;
distort : float;

end record;
type kdbucket ptr_type is access kdbucket;

type kdelem (data_structure : data_structure_type) is
record
typee s integer;
case data_structure is
vhen kdnode_type =>

node ¢+ kdnode;
when kdbucket type =>
bucket : kdbucket;
end case;

end record;
norb n : kdelem(kdnode_type);
norb b : kdelem(kdbucket_type);

type kdtree is

record
dim : integer;
rcot : kdelem ptr_ type;
nbuckets : integer;
nentries : integer;

end record;

type kdtree ptr_type is access kdtree;

end Data_Struct_Pkg;

B-7

with Data_Struct_Pkg; use Data Struct_Pkg;
nackage RBuild_Pkg is

-- all subprograms which are available for building and
-~ initialization of the K-d data structure.

procedure BuildKDtre« (means : in out means_array type;

veights : in out weights array type;
count : in integer; - -

dim : in integer;

tree : out Kdtree ptr_type);

function CreateKDbucket (dim : integer) return kdelem ptr_type;

end Build Fkg;

package body Build_Pkg is

function CreateKDbucket (dim : integer) return kdelem_ptr_type
ls separate;

precedure Indxx (arrin : in float_array type; .
indx : out integer_array_type; RC
n : in integer) is separate; '

procedure SortBucket (elew : in kdelem ptr_type;
dim : in integer) is separate;

function CreateKDentry (dim : in integer) return kdentry ptr_type
is separate;

procedure CreateFirstBucket (means : in out means_array_type;
veights : in out weights array_ type;
count : in integer;
dim : in integer;
bucket : out kdelem_ptr_ type)
is separa” =}

function CreatekDtree (dim : integer) return kdtree_ptr_type
is separate;

procedure BuildKDtree (means : in out means_array_type;
weights : in out weights_array_type;
count @ in integer; '
dim : in integer;
tree : out Kdtree_ptr_type) is separate;

end Build_Pkg;

separate (Build Pkg)
procedure BuildKDtree (means : in out means_array_type;

veights : in out weights array type;
count : in integer; - B

dim : in integer;

tree : out Kdtree ptr_type) is

-~ Procedure name: Buildkdtree

-~ Purpose: Constructs an initial KD tree from the sample data

-- Input arguments:

— means - sample point array

— weights - sample veight array

- count - number of samples

- dim - dimensionality of the sample data

-— Output arguments:
- pointer to a kdtree

temp_tree : kdtree_ptr_type;
bucket : kdelem_ptr_type;

begin -- BuildKDtree

temp_tree := CreateKDtree (dim);
CreateFirstBucket (means, weights, count, dim, bucket);
temp_tree.root := bucket;
temp_tree.nbuckets := 1;
temp_tree.rentries := count;
tree := temp_tree;
end BuildKDtree;

B-10

separate (Build Pkg)

procedure CreateFirstBucket (means : in out means array type;
weights : in out weights_array_type;
count : in integer;
dim : in integer;
bucket : out kdelem ptr_type) is

~-- Procedure nanue:
- CreateFirstBucket

~- Purpoese:
- Create and initialize the first bucket in a KD tree

-- Input arguments:

- means - sample point array

-- veights - sample weight array

- count - number of samples

- dim - dimensionality of the sample data

-~ Qutput arguments:
. bucket - pointer to first bucket in the Kdtree

0 T e - o e - . A B .t R s D P = P T Sy e T . S et i ke Sl T P W s - ——

mean, wvar : mean_array type(0 .. dim -1);
kdptr, lptr : kdentry_ptr_type;

KDPTRO, KDPTR1 : KDENTRY PTR_TYPE;

k : integer:

tempbucket : Kdelem ptr type;

begin -- CreateFirstBucket

tempbucket := CreateKDbucket(dim);
tempbucket.bucket.count := count;

k := 0;
for 1 in 0 .. (count - 1) loocp
kdptr := CreateKDentry(dim);
kdptr.veight := weights(i);
for j in 0 .. (dim - 1) loop
kdptr.mean_array(j) := means(k);
kdptr.vmean_array(j) := kdptr.mean_array(j) * kdptr.weight;
kdptr.vsqmn_array(j) := kdptr.mean array(j) *

kdptr.wmean_array{j);
k:-k+1;

2nd loop;

if (i=0) then
tempbucket.bucket.lists_array(0) := kdptr;
lptr := kdptr;

else
lptr.next_array(0) := kdptr;
lptr := kdptr;

end if;

end loop;

SortBucket (tempbucket, dim);

B-11

bucket := tempBucket;
end CreateFirstBucket;

B-12

vith Data_Struct_Pkg; use Data_Struct Fkg;
separate (Build Pkg)

function CreateKDbucket (dim : integer) return kdelem ptr_type is S

___ N
-- Function name:
_ CreatekDbucket

-- Purpose: SR
- Create a bucket for a KD tree

-- Input arguments '
. — dim - dimensionality of the sample data .

-- Qutput arguments

- None

- - Returns: L

- returns pointer to nev created bucket .
bucket : kdelem pir type; e

begin
bucket := nev kdelem(kdbucket_ _type); T
bucket.typee := KDBUCKETT; :
return bucket;

end CreateKDbucket;

il

B-13

separate (Build Pkg)
function CreateKDentry (dim : in integer) return kdentry ptr_type is

e

-- Function name:
- CrzateKDentry

-- Purpose:
- Create a KD tree bucket entry for holding a sample point

-- Input arguments:
- éim - dimensionality of the sample data

-- Qutput arguments:
-- None

-- Returns: '
-— pninter to a bucket entry

entryy : kdentry ptr_type;
begin

entryy := nev Kdentry;
return entryy;

end CreateKDentry:

¥

B-14

separate (Build Pkg)
function CreatekDtree (dim : integer) return kdtree_ptr_type is

-- Function name:
- CreateKDtree

-- Purposze:
- dynamically allocates storage space for a KD tree data structure

—- Input Arguments:
-- dim - dimensionality of the tree data

- Qutput arguments
- None

-- Returns:
- pointer to a KDtree !

tree : kdtree_ptr_type;
begin

tree := nev kdtree;

tree.dim := dim;

return tree;

end CreatelDtree;

B-15

separate (Build Pkg)
procedure Indxx (arrin : in float_array_type;

begin

indx : out integer_array_type;
n : in integer) is

e e - . — T T " - ———— s S S S T T M - g = — — o —

Procedure name: Indxx

Purpose: Sort an array of indeces indx based on the data arrin

using an indexed version of a heap sort. Modified from
Numerical Recipes indexx

Input Arguments:

arrin - array of data used for sorting
n - number of entries in arrin

Qutput arguments: .
indx - Indices specifiying the order of data in arrin

3, i, 1, ir, indxt : integer;
: float;
indxtemp : integer array type(0..n-1);

indx_j, indx_j plus_1 : integer;
arrin_j, arrin_j_plus_1 : float;

for k in 0 .. n - 1 loop
indxtemp(k) := k;
end loop;

1l := n/2;
t=n - 1;

vhile TRUE loop

if 1 > 0 then
1l := 1- 1;
indxt := indxtemp(l);
q := arrin(indxt);
else
indxt := indxtemp(ir);
q := arrin(indxt);
indxtemp(ir) := indxtemp(0);
ir := ir - 1;
if ir = 0 then
indxtemp(0) :x indxt;
exit; -- exit
end if;
end if;

i:-l;
joi= 2% (1 + 1) - 1;

B-16

vhile (j <= ir) loop
if (j < ir and then arrin(indxtemp(j)) <

arrin(indxtemp(j + 1))) then
o= j o+ 1
end if;
if (q < arrin(indxtemp(j))) then
indxtemp(i) :« indxtemp(j);

i = j;
j!-j-'—i*fl;
else
J o:m ir + 1;
end if;
end loop;

indxtemp(i) := indxt;
end loop;
indx := indxtemp;

end Indxx;

B-17

separate (Build Pkg)
procedure SortBucket (elem : in kdelem ptr_type;
dim : in integer) is

-— Procedure name: Sortbucket

-- Purpose: Soirt the entries in a KD tree bucket across
- each dimension separately

-— Input arguments:

- elem - pointer to the bucket containing the entries
- to be sorted

- dim - dimensionality of the sample data

~-- Output arguments: None

—— . e D . Y G e T e 0 T T A T > W W WS e WP T S —— Y W Ay e —— -

entryy : kdentry ptr_type;
epbffr : kdentry ptr_array type(0 .. elem.bucket.count-1);
mnbffr : float_array_type(O .. elem.bucket.count-1);

inb{fr : integer_array type(0 .. elem.bucket.count-1);
count : integer;

begin

count := elem.bucket.count;
for i in 0 .. dim - 1 loop
entryy := elem.bucket.lists_array(0);
for j in 0 .. count-1 1loop
mnbffr(j) := entryy.mean array(i);
epbffr(i) := entryy; -
entryy := entryy.next_array(0);
end loop;

Indxx(mnbffr, inbffr, count);
elem.bucket.lists_array(i) := epbffr(inbffr(0));

for j in 1 .. count - 1 loop
epbffr(inbffr(j - 1)).next_array(i) :«

epbffr{inbffr(j));
end loop;
epbffr(inbffr(count - i)).next array(i) := null;
end loop;

end SortBucket;

with Pata_Struct_Pkg; use Data_Struct_Pkg;
package MergeDown_Pkg is

-- Package specification Build Pkg contains the declarations

-~ of all subprograms which are available for reducing the K-d
-~ tree built in module BuildKDtree to the the specified number
-~ of output centroids

+ procedure MergeDownKDtree (tree : in kdtree ptr_type;
nentrds ¢ in integer);

. end MergeDown_pkg;

B-19

wvith Destroy Pkg; use Destroy_ Pkg;
vith Build Pkg; use Build_Pkg;
package body MergeDown Pkg is

procedure CollapseKDnode (elem
dim
betr

in out kdelem ptr_type;
in integer;
in out integer) is separate;

procedure GetBucketStats (elem : in kdelem ptr_type;

dim : in integer; .
mean : in out mean_array_ type;
wvar : in out wvar_array_type) is

separate; .

function CreateKDnode return kdelem ptr_type is separate;

procedure SplitBucket (oldbucket : in out kdelem ptr_ type;

dim : in integer;

betr : in out integer:

bektarray : in out kdelem ptr_array_type;

bptr : in out integer;

mean : in out mean_array_type;

wvar : in out wvar_array_type) is
separate;

procedure BalanceKDtree (tree : in kdtree ptr_type;
bcktarray : in out

kdelem ptr_array type) is separate;

procedure AssessCandidate (elem : in kdelem ptr_type;
dim : in integer;
barray : in out kdelem ptr_array_type;
ncount : in out integer) is separate;

function BucketCompare (one : Kdelem_ptr_type;
tvo : Kdelem ptr_type)
return boolean is separate;

procedure Quicksort (bcktarray : in out Kdelem ptr_array_type)
is separate;

procedure ReduceKDbucket (elem : in kdelem ptr type;
dim : in integer) is separate;

procedure CompressKDtree (tree : in kdtree ptr type;
nmerge : in integer;
bektarray ¢ in out
kdelem ptr array type) is separate;

procedure MergeDownKDtree (tree : in kdtree ptr_type;
ncntrds @ in integer) is separate;

end MergeDown Pkg;

separate (MergeDown Fkg)
procedure AssessCandidate (elem : in kdelem ptr type; dim : in integer;

barray : in out kdelem ptr_azcay_type;
ncount : in out integer) is

— -

-~ Procedure name: Assesscandidate

-- Purpose: Determine the pair of bucket entries which produces
- the minimal mean distortion when mecged

-~ Input arguments:

- elem - pointer to the KD tree bucket under evaluation
- barray - array of pointer to all buckets in the KD tree
- ncount - counter initialized to zero

~- Output arguments:
- barray - array of pointers to all buckets that can be merged

- ncount - counter used to keep track of the the total number
- of buckets that can be merged

ientry, jentry : kdentry ptr_type;
reduction, dotprd, diff : float;
firsttime : integer;

begin
firsttime := TRUEE;

if (elem.bucket.count > 1) then
ientry := elem.bucket.lists_array(0);
for { in 0 .. elem.bucket.count - 1 loop
jentry := ientry.next_array(0);
for j in i + 1 .. elem.bucket.count - 1 loop
dotprd := 0.0;
for k in 0 .. dim - 1 loop
diff := ientry.mean_array(k) - jentry.mean_array(k);
dotprd := dotprd + diff * diff; -
end loop;
reduction := (dotprd * jentry.weight * jentry.weight) /
(ientry.weight + jentry.weight);

if ((reduction < elem.bucket.distort) or
(firsttime = TRUEE)) then
elem.bucket.distort := reduction;
eilem.bucket.entrya := ientry;

elem.bucket.entryb := jentry;
firsttime := FALSEE;
end if;
jentry := jentry.next_array(0); .
end loop; -- end j loop)
ientry := ientry.next array(0); o
end loop; -- end i Toop '
barray(ncount) := elem; 3

ncount := necount + 1;

B-21

end if;

end AssessCandidate;

B-22

separate (MergeDown_Pkg)
procedure BalanceKDtree (tree : in kdtree ptr_type;
bektarray : in out kdelem ptr_array_type) is

———— - — . g oy P S T = = o

-— FProcedure name: BalanceKDtree

~- Purpose: Redistribute the entries in a KD tree so that each bucket
- has approximately the same number of entries

-— Input arguments:
- tree - pointer to a KD tree

-- Output arguments:

- bcktarray - array used to retain a pointer to each bucket after
_— balancing

: integer;
mean : mean_array_type(0 .. dim - 1) := (others => 0.0)
: wvar_array_type(0 .. dim - 1) := (others => 0.0)

if (tree.root.typee = KDNODEE) then

CollapseKDnode(tree.root, tree.dim, tree.nbuckets);
end if;

bcktarray(0) := tree.root;
bptr := 1;

SplitBucket(tree.roct, tree.dim, tree.nbuckets, bcktarray,
bptr, mean, wvar);

end BalanceKDtree;

B-23

separate (MergeDown_Pkg)
function BucketCompare (one : Kdelem ptr_type; two : kdelem ptr type)
return boolean is

begin
if cne.bucket.distort < two.bucket.distort then
e return FALSE;
. else
: return TRUE;
end if;
end BucketCompare; .

B-24

separate (MergeDown Pkg)

procedure CollapseKDnode (elem : in out kdelem_ptr_type;
dim : in integer;
betr : in out integer) is

FIRSTIME : BOOLEAN := TRUE;
ptr,entptr, lentry, rentry, testentry: kdentry ptr_type;
bucket : kdelem ptr_type;

begin

if elem.node.lover.typee /= KDBUCKETIT then
CollapseKDnode (elem.ncde.lower, dim, betr);
end if;

if elem.node.upper.typee /= KDBUCKETT then
CollapseKDnode (elem.node.upper, dim, bectr);
end if;

bucket := elem.node.lower;

for 1 in 0 .. dim - 1 loop
entptr := elem.node.lower.bucket.lists_array(i);
lentry := elem.nnde.lowver.bucket.lists array(i);
rentry := e¢lem.node.upper.bucket.lists_array(i);

testentry := elem.node.upper.bucket.lists_array(l);

while (lentry /= null) and (rentry /= null) loop
if lentry.mean_array(i) < rentry.mean_array(i) then

if (FIRSTIME = TRUE) then
elem.node.lower.bucket.lists array(i) := lentry;
entptr := lentry; -
FIRSTIME := FALSE;

else -— FIRSTIME = FALSE
entptr.next_array(i) := lentry;
entptr := lentry;

end if;

lentry := lentry.next_array(i);

else -- case where lentry.mean_array(i) >=
rentry.zean_ array{(i)

if (FIRSTIME = TRUE) then
elem.node.lover.bucket.lists_array(i) := rentry;
entptr := rentry;
FIRSTIME := FALSE;

else
entptr.next array(i) := rentry;
entptr := rentry;

end if;

rentry := rentry.next_array(i);

end if;

B-25

end loop;

if (lentry /= null) then
vhile (lentry /= null) loop
entptr.next_arrsy(i) :«~ lentry;
entptr := lentry;
lentry := lentry.next_array(i);
end loop;
end if;

if (rentry /= null) then
vhile (rentry /= null) loop
entptr.next array(i) := rentry;
entptr := rentry;
rentry := rentry.next_array(i);

end loop;
end if;
FIRSTIME := TRUE;
end loop;

bucket.bucket.count := elem.node.lower.bucket.count +
elem.node.upper.bucket.count;

DestroyKDbucket (elem.node.upper);
DestroyKDnode (elem);

betr :=

elem

bect 1:
bue

r -
ket

end CollapseKDnode;

B-26

separate (MergeDown Pkg)
procedyre CompresskDtree (tree : in kdtree ptr type; nmerge : in integer;

bektarray : in out kdelem_ptr_array type) is

-~ Procedure name: CompressKDtree

—- Purpose: Procedure used to merge bucket entry pairs into single bucket
- entries for a fixed fractivn of the total number of buckets

~- Input arguments:

- tree - pointer to a KD tree undergoing the merge
- nmerge - number of bucket pairs to merge
- becktarray - array of pointers to all buckets in the tree

—-- Output arguments:
-- none

ptr : kdentry_ptr_type;

ncount : integer;

TEST_PTR : kdentry_ptr_type;
nmerge_temp : integer := nmerge;

begin
ncount := O

-- for each bucket, one at a time, find the candidate pair,
-~ ENTRYA and ENTRYB, which has the least weighted square
-- error (DISTORT) -- between them

for i in 0 .. tree.nbuckets - 1 loop

AssessCandidate(bcktarray(i), tree.dim, bcktarray, ncount);
end loop;

if (nmerge > ncount) then
nmuerge_temp := ncount;
end if:;

if (ncount > 1) then

Quicksort(bcktarray(0 .. ncount-1));
end if;

for 1 in 0 .. nmerge _temp - 1 loop
ReduceKDbucket(bcktarray(i}, tree.dim);
end loop;

tree.ncntries := tree.nentries - nmerge temp;

end CompresskDtree;

B-27

separate (MergeDown_FPkg)
function CreateKDnode return kdelem ptr_ type is

-~ Function name: CreateKDnode
-- Purpose: Create a KD tree node

~-- Input arguments:
- none

-- Returns:
-— pointer to the newly created KD tree node

Y e o = i e o Rt P T T - " = R i . . T = WD e WP > T —

node : kdelem ptr_type;

begin
node := nev kdelem(kdnode_type);
node.typee := KDNODEE;
return node;

end CreateKDnode;

B-28 -

separate (Mergedown Pkg)

procedure GetBuckeiStats (elem : in kdelem ptr_type;
dim : in integer;
mean : in out mean_array_type;
wvar : in out wvar_array type) is

entryy : kdentry ptr_type;
wgtsum : float;

begin
vgtsum := 0.0;

for i in 0 .. dim - 1 loop
mean(i) := 0.0;
wvar(i) := 0.0;

end loop;

entryy := elem.bucket.lists_array(0);
vhile (entryy /= null) loop
vgtsum = wgtsum + entryy.weight;
for i in 0 .. dim - 1 loop
mean(i) := mean(i) + entryy.wmean array(i);
wvar(i) :« wvar(i) + entryy.wsqmn array(i);
end lcop; B

entryy := entryy.next_array(0);
end loop;

for 1 in 0 .. dim -1 loop

mean{i) := mean(i) / wgtsum;

wvar(i) := (wvar(i) / wgtsum) - (mean(i) * mean(i));
end loop;

end GetBucketStats;

B-29

separate (Mergedown_Pkg)
procedure MergeDownKDtree (tree : in kdtree_ptr_type;
ncntrds ¢ in integer) is

e e —— T e = o . T o e ST . T - - — S = - S - ot S oy S = T P e S e o =

~- Procedure name: HergeDuwnKDtree

-~ Purpose: Reduce a KD tree to a single bucket having ncntrds
- entries using the PNN algorithm

-~ Input arguments:
- tree - pointer to a KD tree
- nentrds - desired number of entries after merging

-- Qutput arguments:
- None

-- Returns:
- Nothing

e e o > T . T . T . ——. i T =t o 0 P . - —— e 4 . T W S o e S s — -

ptr : kdentry ptr_type;

nmerge, ntile : integer;

maxbkts : integer := tree.nentries /(BUCKETSIZE / 2);
bektarray : kdelem ptr_array_type(O .. maxbkts);

begin
while (tree.nentries > nentrds) loop

BalanceKDtree (tree, bcktarray);

if KDMERGE * float(tree.nbuckets} > 1.0 then
-- truncate by the integer conversion by subtracting .5

ntile := integer((KDMERGE * float(trec.nbuckets)) - 0.5);

else
ntile := 1;
end if;

if (tree.nentries - ncntrds) < ntile then
nmerge := tree.nentries - ncntrds;

else
nmerge := ntile;
end if;
CompresskDtree (tree, nmerge, bcktarray);
end loop;

if tree.root.typee = KDNODEE then
CollapseKDnode (tree.root, tree.dim, tree.nbuckets);
end if;

end MergeDownKDiree;

B-30

separate (Mergedown Pkg)
procedure Quicksort (bcktarray : in out kdelem ptr_array_type) is

SIZE : INTEGER := bcktarray’length;
FIRST : INTEGER := bcktarray’FIRST;
LAST : INTEGER := bcktarray’LAST;

P : INTEGER;

procedure SWAP(A, B : in out KDELEM PTR_TYPE) is
TEMP : KDELEM PTR TYPE;
begin

TEMP := A;

A ;= B;

B := TEMP;
end SWAP;

procedure PARTITION(bcktarray : in out KDELEM_PTR_ARRAY TYPE;
NEVPIVOT : out INTEGER) is

P1VOTVALUE : KDELEM PTR _TYFPE;

FIRST : INTEGER := bcktarray’FIRST;
LAST : INTEGER := bcktarray’LAST;
LOVER : INTEGER;

UPPER : INTEGER;

LASTOPEN : INTEGER;

begin

LOVER := FIRST;

UPPER := LAST;

PIVOTVALUE := bcktarray(FIRST);
LASTOPEN := FIRST;

vhile LOWER < UPPER loop
while UPPER > LOVER and then

BucketCompare(bcktarray(upper), PIVOTVALUE) loop

UPPER := UPPER - 1;
end loop;

bektarray(LASTOPEN) := bcktarray(UPPER);
LASTOPEN := UPPER;

while LOVER < UPPER and then
BucketCompare(PIVOTVALUE, bcktarray(lowver)) loop

LOVER := LOWER + 1;

end loop;

bcktarray (LASTOPEN) := bcktarray(LOWER);
LASTOPEN := LOVER;

B-31

end loop;

bcktarray(LASTOPEN) :~ PIVOTVALUE;
NEWPIVOT := LASTOPEN;
end PARTITION;

begin -~ QUICKSORT

if SIZE <= 1 then
null;

else
PARTITICN(bcktarray,P);
QUICKSORT(bcktarray(FIRST .. P - 1));
QUICYSORT(bcktarray(P + 1 .. LAST));

end if;

end Quicksort;

vith Data_Struct _Pkg; use Data_Struct_Pkg;

separate (MergeDown_Pkg)

procedure ReduceKDbucket (elem : in kdelem_ptr_type;
dim : in integer) is

-— Procedure name: ReduceKDbucket

-- Purpose: Merges a pair of bucket entries into a single entry

-- Input arguments:

- elem - pointer to the XD tree bucket whose entries are to
- be merged

- dim -~ dimension of the data within the entries

-~ QOutput arguments:
- None

last_entry, ientry, jentry, leptr, oldptr : kdentry ptr_type;
newweight : float;

rment @ integer;

REMOVE_FIRST _ENTRY : BOOLEAN := TRUu;
FIRST_ENTRY : BOOLEAN := TRUE;

ptr, TEST_PTR : kdentry ptr_t, pe;

begin

ientry := elem.bucxet.entrya;
jentry := elem.bucket.entryb;

-- remove ientry and jentry from the list
for i in 0 .. dim -~ 1 loop
leptr := elem.bucket.lists _array(i);
rment = 03
while rment < 2 loop
if ((leptr /= ientry) and (leptr /= jentry)) then
last_entry := leptr;
leptr := leptr.next_array(i);
REMOVE_FIRST ENTRY := PALSE;
else
if REMOVE_FIRST ENTRY = TRUE then
elem.bucket.lists_array{i) := leptr.next_array(i);

else
last_entry.next_array(i) := leptr.next array(i);
end if; -
leptr := leptr.next array(i);
rment := rment + 1;
end if;
end loop;
REMOVE_FIRST_ENTRY := TRUE;
end loop;

newweight := ientry.weight + jentry.weight;

B-33

for i in 0 .. dim - 1 loop
ientry.mean_array(i) := (ientry.mean_array(i) *

ientry.weight + jentry.mean_array(i)
* jentry.wveight) / newweight;

ientry.wmean array(i) := ientry.mean_array(i) * newweight;

ientry.wsqmn_array(i) := ientry.mean_array(i) *

ientry.wmean array(i);
end loop;

ientry.weight := newweight;
-- Reinsert ientry into the list in the proper order

for i in 0 .. dim -~ 1 loop
leptr := elem.bucket.lists_array(i);
—— traverse entries that will remain unchanged in
-— original list
while (leptr /= null) and then
(leptr.mean_array(i) < ientry.mean_array(i)) loop

oldptr := leptr;
leptr := leptr.next_array(i);
FIRST_ENTRY := FALSE;

end loop;

-~ insert ientry

if (FIRST ENTRY = TRUE) then
elem.bucket.lists array(i) := ientry;

else N
oldptr.next_array(i) := ientry;

end if;

ientry.next_array(i) := leptr;
FIRST_ENTRY := TRUE;
end loop;

elem.bucket.count := elem.bucket.count - 1;

DestroyKDentry(jentry);

end ReduceKDbucket;

with Build Pkg; use Build_Pkg; -- to "see" CreateKDbucket
separate (MergeDown_ Pkg)
procedure SplitBucket (oldbucket : in out kdelem_ptr_type;
dim : in integer;
betr : in out integer;
bektarray : in out kdelem_ptr_array_type;
bptr : in out integer;
mean : in out mean_array_type;
wvar : in out wvar_array type) is

—-- Procedure name: Splitbucket

-~ Purpose: Recursive procedure used to split a bucket into two
- smaller buckets having half as many entries

j, bcount, medindx : integer;
newnode : kdelem ptr_type;
nevbucket : kdelem ptr_type;

dummy : kdelem ptr type;

oldptr, newptr : kdentry ptr_type;
entryy : kdentry ptr type;
FIRSTIME_LEFT : BOOLEAN := TRUE;
FIRSTIME_RIGHT : BOOLEAN := TRUE;

begin
if (oldbucket.bucket.count > BUCKETSIZE) then
GetBucketStats (oldbucket, dim, mean, wvar);
3— figd dimenson with largest variance
= U

for i in 1 .. dim - 1 loop
if (wvar(i) > wvar(j)) then

j 1= 1; -~ j is dimenson with largest variance
end if;
end loop;
becount := oldbucket.bucket.count; -~ bcount is BUCKETCOUNT
medindx := (bcount + 1) / 2; -- median index

newvnode := CreateKDnode;
. newnode.node.dindx := j; -- dimension to be split
newvbucket := CreateKDbucket(dim);
newnode.node.lower := cldbucket;

newvnode.node.upper := newbucket;

betr := betr + 1; -- increment number of buckets in tree

bcktarray(bptr) := newbucket;

bptr := bptr + 1; -~ increment array index of bcktairay

-- traverse the entries below the median value in the -
~- } dimension (the dimension with the largest variance) SR
-~ and set entryy.splitleft = TRUE '

entryy := oldbucket.bucket.lists_array(j);
for i in 0 .. medindx - 1 loop
entryy.splitleft := TRUEE;
entryy := entryy.next_array{j);
end loop;

-- traverse the entries above the median value in the
—— j dimension (the dimension with the largest variance)
-- and set entryy.splitleft = FALSE

for i in medindx .. bcount - 1 loop
entryy.spiitleft := FALSEE; S
entryy := entryy.next array(j); B
end loop; ;

oldbucket.bucket.count := medindx;
newbucket.bucket.count := bcount - medindx;

for 1 in 0 .. dim - 1 loop
oldptr = oldbuckei.bucket.lists_array{ij;
newptr := newbucket.bucket.lists array(i);
entryy := oldbucket.bucket.lists_a?ray(i);

while (entryy /= null) loop
if (entryy.splitleft = TRUEE and
FIRSTIME LEFT = TRUE) then
oldbucket.bucket.lists array(i) := entryy;
oldptr := entryy;
FIRSTIME LEFT := FALSE;

elsif (entryy.splitleft = TRUEE and
FIRSTIME LEFT = FALSE) then
oldptr.next_array(i) := entryy;
oldptr := entryy;

elsif (entryy.splitleft=FALSEE and .
FIRSTIME RIGHT=TRUE) then
newbucket.bucket.lists_array(i) := entryy;
newptr := entryy;
FIRSTIME RIGHT := FALSE;

elsif (entryy.splitleft=FALSEE and
FIRSTIME RIGHT=FALSE) then
newptr.next_array(i) := entryy;
newptr := entryy;
end if;

B-36

entryy := entryy.next array(i);

end loop;

FIRSTIME LEFT := TRUE;
FIRSTIME RIGHT := TRUE;

oldptr.next array(i) := null;

newptr.next_array(i) := null;
end loop;

SplitBucket(newnode.node, lover, dim, bctr,
bcktarray, bptr, mean, wvar);

SplitBucket(newnode.node.upper, dim, betr,
bektarray, bptr, mean, wvar);

oldbucket := newnode;
end if;

end SplitBucket;

B-37

with Data_Struct_Pkg; use Data_Struct_Pkg;
with UNCHECKED DEALLOCATION;
package Destroy Pkg is

—— -———

-- This package specification contains the dynamic deallocation s
—- routines which are visible are to be visible

procedure DestroyKDnode (node : in out Kdelem ptr type);

procedure DestroyKDtree (tree : in out Kdtree_ptr_type);
procedure DestroyKDbucket (bucket : in out kdelem ptr_type);

procedure DestroyKDentry (entryy : in out kdentry ptr_type);

end Destroy_Pkg;

B-38

package body Destroy_ Pkg is

-~ This package body contains the routines for deallocated
-- memory which was previously dynamically allocated.

procedure DestroyKDnode (node : in out kdelem ptr_type) is
separate;

procedure DestroyKDentry (entryy : in out kdentry ptr_type) is
separate;

procedure DestroyKDbucket (bucket : in out kdelem ptr_type) is
separate;

procedure DestroylLastBucket (bucket : in out kdelem ptr type) is
separate;

procedure DestroyKDtree (tree : in out kdtree_ptr type) is
separate;

end Destroy_ Pkg;

B-39

separate (Destroy_Pkg)
procedure DestroyKDbucket (bucket : in out Kdelem ptr_type) is

-~ Procedure name: DestroyKDbucket
—— Purpose: Destroy a Kd tree bucket

~- Input arguments:
- bucket - bucket to be destroyed

-- Output arguments:
- bucket - bucket is null upon successful execution
- of FREE(bucket)

procedure FREE is new UNCHECKED DEALLOCATION(kdelem,
kdelem ptr_type);

begin
FREE(bucket);

end DestroyKDbucket;

B-40

separate (Destroy Pkg)
procedure DestroyKDentry (entryy : in out Kdentry ptr_type) is

o ——— . S e T . T I = S S S N T A e 3 T e S . . S T - T e e e e 4 e = o e

~-- Procedure name: DestroyKDentry
-~ Purpose: Destroy a KD tree bucket entryy

-- Input arguments:
- entryy - pointer to the entryy to be destroyed

-- Output arguments:
~ entryy - points to null upon successful execution of
-= FREE(entryy)

procedure FREE is new UNCHECKED DEALLOCATION (Kdentry,
Kdentry ptr_type);

begin
FREE(entryy);

end DestroyKDentry;

separate (Destroy_ Pkg)
procedure DestroyLastBucket (bucket : in out Kdelem ptr_type) is

-~ Procedure name : DestroylastBucket
-- Purpose : Destroy the last bucket in a tree

-- Input arguments:
- bucket - bucket to be destroyed

-~ Output arguments:
- None

o et . - - TP B o e o e e o T . — - - S U G . - = - - . - .-

entryy, next : kdentry ptr_type;
begin

entryy := bucket.bucket.lists_array(O);
vhile entryy /= null loop
next i= entryy.next_array(0);
DestroyKDentry (entryy);
entryy := next;
eind loop;

DestroyKDbucket{bucket);

end DestroyLastBucket;

B-42

separate (Destroy Pkg)
procedure DestroyKDnode (node : in out Kdelem_ptr_type) is

T e - — A S -V - - - - 4 - -

-~ Procedure name: DestroyKDnode

-- Purpose:
- Deallocate a KD tree node

~- Input argumsnts:
- node - pointer to the entry to be destroyed

-- Qutput arguments:
-— node - point to null upon successful execution of FREE(node)

——

procedure FREE is newv UNCHECKED DEALLOCATION(kdelem,
kdelem ptr_type);

begin
FREE(node";

end Dest-oyKDnode;

B-43

separate {(lestroy Pkg)
procedure DestroyKDtree (tree : in out kdtree_ptr_type) is

~- Procedure name: DestroyKDtree
-~ Purpose: Deallocate a KD tree structure

-- Input arguments:
- tree - pointer to the KD tree

-- QOutput arguments:

- tree - pointer to null upon successful completion of
- FREE(tree)

procedure FREE is nev UNCHECKED DEALLOCATION(kdtree,
kdtree ptr_type);

begin

if tree.root /= null then
DestroyLastBucket(tree.root);
end if;

FREE(tree);

end DestroyKDtree;

B-44

package timer is

type microsec_timer is private;

procedure init_timer(obj : out microsec_timer);

function elapsed_time(obj : in microsec_timer) return integer;
function identity(arg : integer) return integer;

function alvays_true return boolean;

private
type microsec_timer is new integer;

end timer;
-- Calling sequence: Call the subprograms in this order:

- loop_count : constant integer := 100; -- say...
- dummy_timer : timer.microsec_timer;

- dummy _elapsed_time : integer;

- dummy_arg : integer'

- my_ timer : timer.microsec umer,

- my elapsed time : integer;

- begln

.
.

- nov loop through dummy loop to determine the length
- of time it takes to run through the loop itself.
- Ve will subtract this out later.

- timer.init_timer(dummy_timer);
- for i1 in 17 .loop _count

- loop

- dummy arg := timer.identity(dummy arg);

- end loop;

-- if timer.always true

- then -

-~ dummy_elapsed_time := timer. elapsed time(dummy timer);
- end if;

- -- nov run through the same loop and add the actual code that
- ~=- you want to time.

- timer.ipit_timer(my_ timer);

-- for i in 1..loop count

- loop

- -- do something here that needs timing...
- timer.identity(dummy arg);

end loop;
if timer.always_true
then

my elapsed_time := timer.elapsed_time(my_timer);
end if;

-~ now subtract off the dummy loop time and divide by the
-- number of times that the loop occurs. This equals one
-- iteration of the interesting code.

time_for one_iteration :=
(my_elapsed_time - dummy_elapsed_time) / loop_count);

note that the value of my timer is not changed by a call to
timer.elapsed_time. You can have as many timers as you wish.

B-46

with system ; use system ;

vith condition_handling ; use condition_handling ;
with starlet ; use starlet ;

package body timer is

-- Package: timer

- —-—————

-~ Description: This package provides two subprograms which are called
-- to time operations in the vms environment.

-~ References: Please see the VAX/VMS System Services Reference Manual
-- under the $GETJPI system service description.

-- Package dependencies: This package interfaces with the VMS system
-- service SGETJPI to get the cpu time.

function cpu_time clock return integer is
cputim : integer ;
pragma volatile { cputim) ;
jpi_status : cond_value_type ;
jpi_item list : constant item_list_type :=
((4, jpi_cputim , cputim’address , address_zero) ,
(0, 0, address_zero , address_zero)) ;

begin

-~ call getjpi to set cputim to total accumulated cpu time
-~ (in millisecond tics)

getjpi (status => jpi_status , itmlst => jpi_item_list) ;
return (cputim * 10);

end cpu_time_clock ;

procedure init_timer(obj : out microsec_timer) is
begin

obj := microsec_timer(cpu time_clock);
end init_timer;

function elapsed_time(obj : in microsec_timer) return integer is
begin

return cpu_time clock - integer(obj);
end elapsed time;

function identity(arg : integer) return integer is
some_value : integer := O;

begin
some _value := some_value + arg;
return some_value;

B-47

end identity;

function always true return boolean is
bool _value : boolean := true;

begin
return bool_vaiue;

end always_true;

begin
null;
end timer;

A B-48

package timer is

See bottom for comments on how to use the timer

type microsec_timer is private;

procedure init_timer(obj : out microsec timer);

function elapsed time(obj : in microsec_timer) return integer;
function identity(arg : integer) return integer;

function alvays_true return boolean;

private

type microsec_timer is new integer;

end timer;

Package: timer

Description: This package provides two subprograms which are called
to time operations.

Calling sequence: Call the subprograms in this order:

loop_count : constant integer := 100; -- say...
dummy timer : timer.microsec_timer;

dummy elapsed_time : integer;

dummy arg : integer;

my_timer : timer.micresec_timer;

my elapsed_time : integer;

begin

now loop through dummy loop to determine the length of time
it takes to run through the loop itself. We will subtract
this out later.

timer.init_timer(dummy timer);
for i in 1..loop_count loop

dummy arg := timer.identity(dummy arg);
end lcop;

if timer.always true then

dummy elapsed_time := timer,elapsed time(dummy timer);
end if; -

now run through the same loop and add the actual code that
you want to time.

timer.init_timer(my_timer);

B-49

for i in 1..loop_count loop
do something here that needs timing...
timer.identity(dummy arg);

end loop;

if timer.alvays true then

my_elapsed time := timer.elapsed time(my timer);
end if;

nov subtract off the dummy loop time and divide by the
number of times that the loop occurs. This equals one
iteration of the interesting code.

time for one_iteration :=
(my_elapsed_time - dummy elapsed_time) / loop_ccunt);

note that the value of my_ timer is not changed by a call to
timer.elapsed time. You can have as many timers as you wish.
Revision history: S. French 25-Jan-198¢9

package body timer is

-- Description: This package provides two subprograms which are called
-- to time functions in the unix environment. This timer was used to
-- perform timing on the MIPS Magnum 3000 computer system.

—- References: Please see the man page clock for information about how
-- the unix time is obtained.

-- Revision history: §S. French 25-Jan-1989

-- Package dependencies: This package interfaces with the UNIX system
-- call "clock".

function unix_clock return integer;
pragma INTERFACE(C, unix _clock);
pragma INTERFACE_NAME(unix_clock,"clock");

procedure init timer(obj : out microsec_timer) is
begin

obj := microsec_timer(unix_clock);
end init_timer;

function elapsed_time(obj : in microsec_timer) return integer is
begin

return unix _clock - integer(obj);
end elapsed time;

function identity(arg : integer) return integer is
some_value : integer := 0;

begin
some _value := some_value + arg;
return some value;

end identity;

function always_true return boolean is
bool_value : boolean := true;

begin
return bool value;

end alvays_true;

begin

null;
end timer;

B-51

with text _io; use text _io;
vith data_struct_pkg; use data_struct_pkg;
procedure READ DATA (INFILE : IN OUT FILE TYPE;
positions : out meang_array_type;
wveights : out weights array type) is

~- Procedure Name: READ DATA

-- Purpose: Procedure READ DATA is called by Procedure Main
- to read in the input data file.

i : integer := O;
j : integer := 0;
package FLOAT IO is new TEXT_IO0.FLOAT_IO(FLOAT);

begin

while not END OF FILE(INFILE) loop
FLOAT_IO.GET(INFILE, positions(i));
i =i+ 1
FLOAT _I0.GET(INFILE, positions(i));
i:=1+ 13
FLOAT_I0.GET(INFILE, weights(j));
j = j + 1;
SKIP_LINE(INFILE);

end loop;

CLOSE(INFILE);

end READ DATA;

B-52

58.000000
59.000000
60.000000
57.000000
58.000000
59.0000G0
60.000000
61.000000
56.000000
57.000000
58.000000
59.000000
60.000000
56.000000
57.000000
58.000000
59.000000
60.000000
61.000000
56 .000000
57.000000
58.000000
59.000000
60.000000
61.000000
62.000000
56.000000
57.000000
58.000000
59.000000
€0.000000
61.000000
62.000000
55.000000
56.000000
57.000000
58.000000
59.000000
60.000000
61.000000
62,000000
63.000000
36.000000
56.000000
57.000000
58.000000
59.000000
60.000000
61.000000
62.000000
63.000000
36.000000
37.000000
40.000000

19.000000
19.000000
19.000000
20.000000
20.000000
20.000000
20.000000
20.000000
21.000000
21.000000
21.000000
21.000000
21.000000
22.000000
22.000000
22.000000
22.000000
22.000000
22.000000
23.000000
23.000000
23.000000
23.000000
23.000000
23.000000
23.000000
24.000000
24, 000000
24.000000
24.000000
24.000000
24.000000
24.000000
25.000000
25.000000
25.000000
25.000600
25.000000
25.000C00
25.000000
25.000000
25.000000
26.000000
26.000000
26.000000
26.000000
26.000000
26.000000
26.000000
26.000000
26.000000
27.000000
27.000000
27.000000

62 .000000
74.,000000
70.000000
76.000000
90.000000
91.000000
78.000000
52.000000
75.000000
96.000000
101.000000
91.000000
67.000000
75.000000
100.000000
108.000000
104.,000000
92.000000
72.0060000
84.000000
135.000000
159.000000
165.000000
155.000000
124.000000
61.000000
105.000000
164 ,000000
190.000000
196 .000000
185.000000
151.000000
74,000000
39.000000
109.000000
173.000000
200.000000
206.000000
194.000000
160.000000
81.000000
58.000000
52.000000
105.000000
165.000000
191.000000
197.000000
185.000000
152.000000
80.000000
58.000000
60.000000
73,000000
85.000000

B-53

+U.S Government Printing Office:1992—648-127/62108

