Effects of Granulocyte-Macrophage Colony-Stimulating Factor in Burn Patients

MAJ William G. Cioffi, Jr, MC, USA; LTC David G. Burleson, PhD; Bryan S. Jordan, MS; LTC William K. Becker, MC, USA; COL William F. McManus, MC, USA; Arthur D. Mason, Jr, MD; COL Basil A. Pruitt, Jr, MC, USA

We studied the effects of granulocyte-macrophage colony-stimulating factor in burn patients. Serial measurements of granulocyte oxidative function were obtained in treated patients and in a group of controls matched for age and total burn size. The administration of granulocyte-macrophage colony-stimulating factor resulted in a 50% increase in mean leukocyte counts. Both groups showed significant baseline increases in granulocytic cytotoxic oxidative function. Treated patients showed normal stimulated cytotoxic oxidative function, which was significantly depressed compared with that of untreated patients. Myeloperoxidase activity was increased in treated patients during the first postburn week but then declined to normal levels. Untreated patients had a significant increase in myeloperoxidase activity for the first 3 weeks following injury. Untreated patients exhibited a significant decrease in superoxide activity during the second 3 weeks following injury. Treated patients demonstrated normal superoxide activity.

(Arch Surg. 1991;126:74-79)

Immunological improvements in fluid management, wound care, and nutritional support have markedly reduced early mortality from thermal injury, but significant late mortality persists. Burn-induced defects of the immune system appear to contribute to late mortality, which is primarily due to infection and sepsis. Although the specific cause of the immune dysfunction following thermal injury is unknown, both qualitative and quantitative defects have been noted in all limbs of the immune system. Defective migration, phagocytosis, and degranulation have been described as manifestations of granulocyte dysfunction. In addition, burn serum contains an inhibitor of complement conversion that may cause opsonization failure that further inhibits neutrophil function. Such granulocyte dysfunction may contribute significantly to the marked predisposition to infection.

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a lymphokine that was first described nearly 20 years ago. Not only does GM-CSF stimulate the proliferative potential of granulocyte and macrophage progenitor cells in the bone marrow, but it also stimulates various functional activities of mature cells. In the presence of GM-CSF, macrophages are stimulated to secrete plasminogen activating factor and also exhibit increased phagocytic and cytotoxic activity for bacteria, yeast, and malignant cell lines. Granulocytes increase RNA and protein synthesis and exhibit increased antibody-dependent cytotoxic killing of tumor cells and enhanced oxidative metabolism in the presence of GM-CSF in vitro. Recombinant GM-CSF stimulates mature neutrophils to augment cell surface antigenic expression as well as increase their phagocytic activity, synthesis of biologically active molecules, and expression of various cell surface markers.

In a group of patients with thermal injury, a comparison of the serum levels of hematopoietic colony-stimulating factors (CSFs) has revealed distinct differences between survivors and nonsurvivors. The nonsurviving patients demonstrated an inappropriate lag in the generation of CSF early in the course of burn injury and inappropriately low levels of the factor even in the presence of documented sepsis. This aberrant response was associated with a relative failure of granulopoiesis. Further studies have demonstrated that serum from patients with thermal injury inhibits the in vivo production of CSFs by mononuclear cells.

The multiple defects in granulocytic function and the decreased levels of CSFs following lethal thermal injury suggest that a beneficial effect on granulocyte count and function might result from the administration of CSFs. Our study was designed to determine the safety of the administration of human recombinant GM-CSF (hr-GM-CSF) in patients with thermal injury.

PATIENTS AND METHODS

Patient Population

Patients with burns over 20% to 70% of the total body surface area were eligible for enrollment in the study. Patients with inhalation injury diagnosed by xenon 183 lung scanning but with no broncho-
scopic evidence of upper airway injury were also eligible for enrollment. Bronchosscopic evidence of inhalation injury resulted in exclusion from the study. All eligible patients were admitted within 48 hours of injury and underwent uneventful resuscitation. Routine care was not altered. In all patients, sulfadiazine silver was applied once daily. Patients treated with other lymphotoxins, prophylactic antibiotics, or corticosteroids were excluded from the study. Data from patients with thermal injury admitted during the same period but not enrolled in the study and a group of healthy laboratory controls were obtained for comparison with the treated patients.

Bacterial Fermentation

hr-GM-CSF was obtained from the bacterial fermentation of a strain of Escherichia coli bearing a genetically engineered plasmid containing the human GM-CSF gene. The product is a highly purified, sterile, stable, water-soluble protein with a molecular weight of 14,677. The GM-CSF was shown to be biologically active in the KG-1 cell proliferation assay and a colony-stimulating assay that employed bone marrow cells.

Drug Administration

Patients were administered 3 or 10 µg/kg daily of hr-GM-CSF intravenously during a 4-hour period. Treatment began within 5 days of injury and continued for a minimum of 2 weeks or up to a grade 3 or 4 toxic reaction developed. All eligible patients were admitted within 48 hours of injury and underwent uneventful resuscitation. Routine care was not altered. In all patients, sulfadiazine silver was applied once daily. Patients treated with other lymphotoxins, prophylactic antibiotics, or corticosteroids were excluded from the study. Data from patients with thermal injury admitted during the same period but not enrolled in the study and a group of healthy laboratory controls were obtained for comparison with the treated patients.

In Vitro Testing

Blood count data were obtained daily from each patient. In vitro granulocyte function tests were performed twice weekly during treatment and for up to 3 weeks following cessation of lymphotoxin administration. Granulocytes were isolated from heparinized whole blood by Ficoll-Hypaque gradients. Cells passing through the gradient were recovered from the cell pellet. Contaminating red blood cells were removed by hypotonic lysis. The cell pellet from the Ficoll-Hypaque gradient was resuspended in 50 mL of Hank's balanced salt solution (HBSS), spun at 2000 rpm for 10 minutes, and 5 mL of distilled water and saline were added to each sample before the addition of 4 mL of distilled water and saline. Distilled water (20 mL) was added during agitation of the sample on vortex mixer. After 20 seconds, 20 mL of hypertonic (2 ×) HBSS was added, the cells were centrifuged at 2000 rpm for 10 minutes, and the supernatant was removed. The cells were suspended in 2 mL of HBSS and transferred to a 15-mL conical centrifuge tube. A second suspension of cells was obtained by the addition of 20 mL of distilled water and saline. After 20 seconds, after which 4 mL of 2 × hypertonic HBSS was added to restore isotonicity. The cells were suspended at a concentration of 1 × 10⁶ cells/mL in 1 mL of barbital buffer (pH 7.25). D, 7-Dichlorofluorescein diacetate (DCF-DA), at a final concentration of 5 µmol/L, was added to each sample and incubated for 20 minutes at 37°C to allow DCF-DA to enter the cells. Whereas DCF-DA easily penetrates the plasma membrane of unstimulated cells, the hydrolysis of DCF-DA to D, 7-dichlorofluorescein (DCF), the DCF is too polar to pass through the plasma membrane and is effectively trapped within the cell. When oxidized by peroxide, DCF becomes highly fluorescent and the measurement of this fluorescence serves as an index of cytosolic peroxidative activity. Cell fluorescence was measured by flow cytometry. The mean fluorescence intensity of 10 000 cells was calculated for each data point. After an initial fluorescent measurement, cells were incubated for 20 minutes with and without phorbol myristate acetate (PMA, 700 ng/mL) as stimulant. Measurements were recorded as log fluorescence and were compared with values obtained from granulocytes from healthy volunteers.

Additional studies of granulocyte oxidative metabolism were performed with the use of two chemiluminescent probes, luminol, and dimethyliodobenzene diimide (DBA). Heparinized whole blood was diluted 1:10 in HBSS (pH 7.2). Aliquots (20 µL) of diluted whole blood were added to 2 mL of barbital buffer solution in siliconized glass vials. The appropriate chemilumigenic probe was then added to each sample, and three prestimulation background measurements were performed. All measurements were made at 25°C in a liquid scintillation counter set for photon counting. Saline, PMA (550 nM), or zymosan (6.25 mg/L), preopsonified with guinea pig serum, was added to the vial, and luminescence was measured at 13-minute intervals for 2 hours. The total luminescence produced in each sample was calculated from the light-intensity measurements by trapezoidal approximation. The values obtained for luminol correspond to the total oxygenation events produced primarily by myeloperoxidase. The values obtained when DBA was used as a probe corresponded to the total oxygenation events produced by extracellular superoxide anion and other oxidative species.

Statistical Analysis

Differences between groups were analyzed with use of the t test and analysis of variance, with post hoc testing, when appropriate, with use of the BMDP statistical package.

RESULTS

Patient Population

Ten patients with a mean age of 28.6 years and a mean burn size of 37% were enrolled in the study. Individual patient data, including the dose of hr-GM-CSF, and the duration of treatment, are outlined in Table 1. Two patients, both with inhalation injury, died, for a mortality rate of 20%. Fourteen patients with thermal injury with a mean age of 30.5 years and mean burn size of 36%, admitted during the same period, were used as nonrandomized controls for comparison of oxidative metabolism data. There was no statistical difference between the two groups of patients with respect to age, burn size, and mortality rate, although a greater proportion of untreated patients had inhalation injury (Table 2). Grades 1 and 2 adverse effects were common. Seven patients complained of pruritus, four exhibited pyrexia during administration of hr-GM-CSF, two complained of back pain, and one experienced pleuritic chest pain. Acute parotitis and a subcutaneous abscess occurred in one patient, each requiring incision and drainage.

Blood Count Data

Patients receiving GM-CSF demonstrated a significant increase in total white blood cell count during the second postburn week compared with the first, third, fourth, fifth, sixth, and seventh postburn weeks (Fig 1). One patient, who received 10 µg/kg of GM-CSF, had a white blood cell count greater than 50.0 x 10⁹/L, and treatment was then resumed at a dosage not more than 50% of the original dose.

More than 90% of patients received GM-CSF during the second postburn week despite continued administration of GM-CSF. Compared with the untreated burn patients, the patients receiving GM-CSF exhibited a significant elevation in their white blood cell counts during the third postburn week despite continued administration of GM-CSF. The percentage of granulocytes was not different between treated and untreated burn patients during the first 3 weeks. However, on cessation of GM-CSF administration, a significant decrease in the percentage of granulocytes was noted in the treated patients compared with the untreated burn patients (63.5% vs 80.9%) (Fig 2). The percentage of polymorphonuclear cells was not different during treatment but decreased significantly during the fourth postburn week compared with untreated patients (43.3% vs 71.2%), accounting for the difference in the granulocyte percentages (Fig 2). No statistically significant differences between treated and untreated patients were noted in the percentage of mono-
Table 1.—Patient Demographics*

<table>
<thead>
<tr>
<th>Patient/Age, y/Sex</th>
<th>% Total Burn Surface Area</th>
<th>% Full Thickness</th>
<th>Granulocyte-Macrophage Colony-Stimulating Factor Dose, μg/kg</th>
<th>Duration of Treatment, d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/24/M</td>
<td>36</td>
<td>32</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>2/45/M</td>
<td>39</td>
<td>5</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>3/24/M</td>
<td>24</td>
<td>18</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>4/27/M</td>
<td>20</td>
<td>17</td>
<td>10.5-10</td>
<td>12</td>
</tr>
<tr>
<td>5/24/M</td>
<td>35</td>
<td>0</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>6/35/F</td>
<td>23</td>
<td>23</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>7/23/M</td>
<td>45</td>
<td>42</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>8/22/M</td>
<td>54</td>
<td>44</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>9/21/F</td>
<td>42</td>
<td>8</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>10/41/M</td>
<td>52</td>
<td>10</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

*Factor administration was stopped on days 5 and 2 in patients 8 and 10, respectively, because of worsening pulmonary status. Both patients had abnormal xenon 133 bone scans but normal bronchoscopic findings. The degradation in pulmonary function was not temporally related to the administration of factor.

cytos, lymphocytes, myelocytes, or band forms either during or after treatment, although patients receiving the cytokine tended to have an increased percentage of band forms and myelocytes during treatment.

Fig.1.—White blood cell counts during the first 7 postburn weeks, as shown for the treated (solid line) and untreated (broken line) patients. The only significant difference was detected during the second postburn week (asterisk equals \(P<.05\)). Vertical bars indicate SDs.

Fig.2.—The percentages of granulocytes for treated (solid line) and untreated (broken line) patients are displayed for the first 7 postburn weeks. No differences between groups were evident, except during postburn week 4 when treated patients had significantly fewer granulocytes than untreated patients. Asterisk equals \(P<.05\). The percentage of lymphocytes increased in treated patients, but the difference between groups was not significant. Vertical bars indicate SDs.

Table 2.—Comparison of Treated and Untreated Groups*

<table>
<thead>
<tr>
<th></th>
<th>Treated</th>
<th>Untreated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>28.6±2.7</td>
<td>30.6±3.0</td>
</tr>
<tr>
<td>% total burn surface area</td>
<td>37.1±3.8</td>
<td>36.2±3.0</td>
</tr>
<tr>
<td>Inhalation injury</td>
<td>2/10 (20)</td>
<td>6/14 (43)</td>
</tr>
<tr>
<td>Mortality</td>
<td>2/10 (20)</td>
<td>0/14 (0)</td>
</tr>
</tbody>
</table>

*Values are mean±SD or number affected/total number (percent). No difference in age or percent total burn surface area was noted between the two patient groups, but the untreated patients had a higher incidence of inhalation injury.

Chemiluminescence

During the first 7 days following injury, both treated and untreated burn patients exhibited a significant increase in luminol chemiluminescence compared with healthy controls. This increase was independent of the type of stimulation employed to activate the granulocytes, as the response to opsonified zymosan and PMA were essentially identical (Table 3). After 1 week, luminescence values for the treated patients but remained elevated for the untreated patients. During the third postburn week (the last week of therapy with GM-CSF), luminol chemiluminescence remained unchanged in the untreated patients and increased significantly in the treated patients in response to PMA but not opsonified zymosan administration. After 21 days, luminal chemiluminescence began to decrease in untreated patients but remained significantly elevated in treated patients in response to PMA administration. The oxidation of DBA, an indicator of extracellular superoxide production, normally declines as time after injury progresses. In this group of untreated burn patients, the mean luminescence value was 87% of the control patients' mean value during the first 3 weeks and 61% of the control value \((P<.01)\) during the second 3-week period following injury (Table 5). Patients treated with GM-CSF failed to show a decrement in oxidation of DBA, with luminescence values similar to those for controls during the first 2 weeks following injury and 137% of those for controls during the third and final week of treatment. The DBA chemiluminescence remained significantly elevated at 117% of control values when administration of GM-CSF was discontinued.
COMMENT

Adequate numbers of properly functioning granulocytes may be one of the most important factors in a patient's defense against infection. Thermal injury induces a variety of abnormalities in granulocyte production and function. Peterson et al26 have reported decreased numbers of circulating granulocyte stem cells in nonsurviving patients with large burns, which was thought to reflect a reduction of the bone marrow progenitor cell pool. This decrease in circulating colony-forming units was associated with a higher incidence of fatal septicemia. Defects in chemotaxis, random migration, phagocytosis, bactericidal capacity, superoxide production, and in vitro oxygen consumption have all been described, but a relationship between these defects and the propensity for infection has not been shown.

Granulocyte-macrophage CSF is a cytokine produced by activated T cells and macrophages as well as by certain fibroblasts and endothelial cells.27 It is a potent stimulus of bone marrow progenitor cell production of neutrophils, monocytes, and eosinophils. Significant increases in numbers of circulating granulocytes have been documented in both healthy primates and humans following parenteral administration of GM-CSF.28-30 Clinical trials in patients with leukopenia secondary to aplastic anemia,31 acquired immunodeficiency syndrome,3233 chronic idiopathic neutropenia,34 and chemotherapy-induced neutropenia35,36 have all shown the ability of GM-CSF to increase circulating levels of mature granulocytes. Parenteral administration of GM-CSF to our cohort of patients with thermal injuries resulted in a similar response. After a lag time of approximately 1 week, white blood cell counts increased significantly compared with untreated burn patients. After cessation of GM-CSF administration, counts quickly decreased to expected normal levels. Eosinophilia, commonly seen in primate studies following the parenteral administration of GM-CSF, was not observed in our treated patients.

The in vitro effect of GM-CSF on white blood cells isolated from healthy volunteers has been well documented. Although GM-CSF has little effect on white blood cell function alone, it appears to "prime" the cell for increased oxidative function when activated in vitro by physiologic chemoattractants, such as PMA, FMLP (F Met-Leu-Phe), C5a, leukotriene B4, and opsonified zymosan.37 Chemotaxis, cytotoxic and phagocytic activity, superoxide production, and degranulation are all increased by prior incubation with GM-CSF.38

Few data exist concerning the effect of parenteral GM-CSF on various white blood cell functions in patients with documented functional defects. Defects in granulocyte phagocytosis and bactericidal capacity in two patients with acquired immunodeficiency syndrome were resolved with the parenteral administration of GM-CSF.39 Reductions in phagocytic capacity, nitroblue tetrazolium reduction, and migration were restored to normal by the administration of GM-CSF in one patient with chronic idiopathic neutropenia.40

Table 3.—Cytosolic Peroxidase Activity for Postburn Days 0 Through 21*

| | PTUR mean±SD | PTSR mean±SD
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated</td>
<td>0.246±0.01</td>
<td>0.920±0.06</td>
</tr>
<tr>
<td>Untreated</td>
<td>0.243±0.01</td>
<td>1.150±0.05</td>
</tr>
</tbody>
</table>

*Values are mean±SD. PTSR indicates the ratio of the mean log fluorescence for unstimulated patients' cells to stimulated control subjects' cells (normal, 1.0) (both patient groups were significantly different from controls [P<.05]; PTSR for the ratio of the mean log fluorescence for stimulated patients' cells to stimulated control subjects' cells (normal, 1.0) (unpaired patients were significantly different from treated patients and controls [P<.05]).

Table 4.—Cytosolic Peroxidase Activity for Postburn Days 22 Through 42*

| | PTUR mean±SD | PTSR mean±SD
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated</td>
<td>0.223±0.02</td>
<td>0.972±0.05</td>
</tr>
<tr>
<td>Untreated</td>
<td>0.227±0.01</td>
<td>1.140±0.04</td>
</tr>
</tbody>
</table>

*Values are mean±SD and are for the 3 weeks after cessation of factor administration. See Table 3 for an explanation of PTUR and PTSR. The PTUR for both patient groups remained significantly elevated compared with controls (P<.05); PTSR for untreated patients remained significantly different from treated patients and controls (P<.05).

Table 5.—Chemiluminescence Data*

<table>
<thead>
<tr>
<th></th>
<th>LOZ mean±SD</th>
<th>PBD 0-7 mean±SD</th>
<th>LPMA mean±SD</th>
<th>DPMA mean±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2344±179</td>
<td>2482±158</td>
<td>1437±944</td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>4060±666</td>
<td>6635±784</td>
<td>11076±1803</td>
<td></td>
</tr>
<tr>
<td>Treated</td>
<td>6355±3047†</td>
<td>7523±4513†</td>
<td>10932±4956</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>2344±179</td>
<td>2482±158</td>
<td>1437±944</td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>4298±912†</td>
<td>5330±761‡</td>
<td>12036±1670</td>
<td></td>
</tr>
<tr>
<td>Treated</td>
<td>2302±750</td>
<td>2989±861</td>
<td>14246±4934</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>2344±179</td>
<td>2482±158</td>
<td>1437±944</td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>4779±987†</td>
<td>4919±678‡</td>
<td>13110±2170</td>
<td></td>
</tr>
<tr>
<td>Treated</td>
<td>3649±593</td>
<td>3943±632§</td>
<td>19312±4904</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>2344±179</td>
<td>2482±158</td>
<td>1437±944</td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>3120±319</td>
<td>4009±897</td>
<td>8781±961‡‡</td>
<td></td>
</tr>
<tr>
<td>Treated</td>
<td>3217±469</td>
<td>5141±1166§</td>
<td>16791±2422</td>
<td></td>
</tr>
</tbody>
</table>

*Values are mean±SD chemiluminescence data. LOZ indicates opsonified zymosan-stimulated luminol chemiluminescence; LPMA, phorbin myristate acetate (PMA)-stimulated luminol chemiluminescence; DPMA, PMA-stimulated dimethyl biacridinium dipnate chemiluminescence; and PBD, postburn day.
†Significant difference compared with controls (P<.01).
‡Significant difference compared with treated patients (P<.01).
§Significant difference compared with controls (P<.05).
The parenteral administration of GM-CSF to our group of patients with thermal injury did not affect the baseline (non-stimulated) increase in intracellular cytotoxic oxidative activity previously described. When the oxidation of DCF is expressed as a percentage of the mean fluorescence of stimulated white blood cells from healthy control subjects, untreated cells from healthy controls demonstrate approximately 16% activity. Both the treated and untreated burned patients' cells had significantly higher baseline activity compared with normal controls (24.9% and 24.3%, respectively). This increase in unstimulated oxidative capacity persisted even after discontinuation of the GM-CSF. Patients receiving GM-CSF had normal stimulated DCF oxidation values (92.9%) that were significantly lower than the 115% activity seen in white blood cells from untreated patients. Thus, it appears that GM-CSF decreases the capacity of granulocytes to oxidize DCF, presumably due to the lower production of intracellular hydrogen peroxide.

Myeloperoxidase activity, as indexed by luminol chemiluminescence following stimulation by c5-sonified zymosan and PMA, was markedly elevated in untreated patients for the first 3 weeks after injury. Treated patients showed a significant increase in luminol chemiluminescence during the first few days of treatment, which subsequently declined to normal control values during the second week of treatment. During the third week of treatment and on discontinuation of GM-CSF administration, opsonified zymosan-stimulated chemiluminescence remained normal. In contrast, PMA-stimulated luminol chemiluminescence rose to supranormal levels during the first postburn week, normal during the second postburn week, and supranormal during the third week of drug administration. After discontinuation of GM-CSF administration, DBA chemiluminescence remained normal and did not decrease in contrast to that in the untreated patients. The maintenance of DBA chemiluminescence following cessation of GM-CSF administration indicates that the effect of the cytokine is not direct, because the half-life of circulating neutrophils is substantially less than 1 day.

The administration of parenteral GM-CSF to patients with thermal injury but without inhalation injury appears to be safe and resulted in the expected increase in circulating numbers of granulocytes. Whether this compound can be safely administered to patients with inhalation injury cannot be answered from our study. Although both patients with inhalation injury who received GM-CSF died, deterioration in the patients' status was not temporally related to its administration. A more complex question concerns whether the effect of parenteral administration of GM-CSF on white blood cell function is beneficial. Restoration of superoxide production by stimulated cells has the potential for both beneficial and adverse effects. An increase in extracellular superoxide may lead to an increase in capillary permeability due to endothelial injury from adherent white blood cells. The reduction in myeloperoxidase activity might also be viewed as detrimental to the patient, as this enzyme plays an important role in the bactericidal capabilities of the phagocyte. The effect of these changes on morbidity and mortality cannot be determined from our nonrandomized trial of GM-CSF administration in patients with limited thermal injury. Our results caution against the extrapolation of data obtained through the in vitro cultivation of normal cells with GM-CSF. Future studies concerning the effect of parenteral administration of GM-CSF on white blood cell function in healthy subjects as well as its effect on pulmonary function in lung injury in animal models will be important to define the in vivo effects and the potential beneficial or detrimental effects when administered to injured patients.

The hr-GM-CSF used in this study was kindly supplied through a joint effort between Schering-Plough Corp and Sandoz Corp.

References

Granulocyte-Macrophage Colony-Stimulating Factor — Cioffi et al

Arch Surg—Vol 126, January 1991

Discussion

CORA K. OGLE, MD, Cincinnati, Ohio: The total burn surface area of the study patients ranged from 20% to 40%, and the patients with larger burns developed complications. What will be the increased of superoxide release with GM-CSF? What is the result of improvement of release from a defective cell or was the improvement the result of new cells released from the bone marrow?

D. V. MAIER, MD, Seattle, Wash: If administration of GM-CSF stimulates the release of very immature cells, are the changes seen in the bone marrow, so we may just be looking at younger cells released from the bone marrow?

DAVID H. LIVINGSTON, MD, Newark, NJ: How was the dosage of GM-CSF derived and by what route was it delivered?

JONATHAN MEAKINS, MD, Montreal, Quebec: Was there any clinical effect as a result of the administration of GM-CSF?

RONALD V. MAIER, MD, Seattle, Wash: If administration of GM-CSF stimulates the release of very immature cells, are the changes that are monitored basically the functional changes of an aging neutrophil?

H. DAVID REINES, MD, Richmond, Va: What about the maturity of the cells and the differential cell counts? Do a large number of band cells appear in the treated patients?

Dr. Cioffi: Originally, patients with burns of 20% to 40% were enrolled into the study and then the population of patients was expanded to those with burns of 40% to 70% after it was established that marked adverse effects were not seen in the small burns. Normal granulocytes have been incubated in vitro with GM-CSF and have shown a progression of priming of the neutrophil, but this has not been done for neutrophils of burn patients. The intravenous doses of 3 to 10 µg/kg were derived from primate studies with the thought that they would double the white blood cell counts. In regard to the clinical effects of the compound, two of the treated patients developed abscesses. The GM-CSF shortens the time that the white blood cell spends in the bone marrow, so we may just be looking at younger cells that have more myeloperoxidase activity. However, a lot of younger cell types were not seen in the peripheral blood. The only alteration was that the patients developed a relative granulocytopenia after the cessation of GM-CSF administration for approximately 1 week, which subsequently returned to normal.