SEROLOGICAL EVIDENCE OF DENGUE FEVER AMONG REFUGEES, HARGEYSA, SOMALIA

BY

U.S. NAVAL MEDICAL RESEARCH UNIT NO. 3
(CAIRO, ARAB REPUBLIC OF EGYPT)
Serological Evidence of Dengue Fever Among Refugees, Hargeysa, Somalia

Virology Division, U.S. Naval Medical Research Unit No. 3, Cairo, Egypt (B.A.M.B., D.M.W., A.K.S., A.W.S., M.I.M.); Refugee Health Unit, Ministry of Health, Mogadishu, Somalia (H.M., C.D., M.F.)

Epidemics of a malaria-like illness affected several thousand residents of the Dam Camp, a refugee camp near Hargeysa in Somalia, during 1985, 1986, and 1987. The disease was characterized by fever, chills, sweats, headache, back and joint pains for as long as 10 days in some patients. Blood smears from acutely ill patients were negative for malaria. Of 28 acute and 10 convalescent sera tested by the indirect fluorescent antibody (IFA) and by the hemagglutination inhibition (HI) tests, none were negative for antibody to Rift Valley fever, Crimean-Congo hemorrhagic fever, Sindbis, Chikungunya, yellow fever, and Zika viruses. However, antibody reactive to dengue 2 virus was detected by the IFA test in 39% (15/38), and 11 of 29 (38%) of the same sera were antibody positive by the HI test. Also, IgG antibody reactive to dengue 2 was demonstrated in 60% (17/28) of the same sera by the enzyme immunoassay (EIA), and 14% (4/28) were positive for IgM antibody. Of ten patients for which acute and convalescent sera were available, two developed four fold or greater rises in antibody titer evidencing infection. These data suggested that dengue virus may have been the cause of the epidemic among the Dam Camp refugees.

KEY WORDS: Dengue, ELISA, IgM antibody

INTRODUCTION

The first documented isolation of dengue virus in Africa occurred between 1964 and 1968 in Nigeria [Carey et al., 1971], and thereafter in 1972–1975, dengue 1 (DEN-1) and dengue 2 (DEN-2) viruses were frequently isolated from humans [Fagbami and Fabiyi, 1976]. Of 32 strains of dengue virus isolated from patients in Nigeria, 18 were identified as DEN-1 and 14 as DEN-2 [Carey et al., 1971]. In Upper Volta, six strains of DEN-2 virus were isolated from 80 patients in 1982, and 30% of these patients had IgM antibody to DEN-2 virus [Gonzales et al., 1985]. In Kenya, seven strains of DEN-2 virus were isolated in 1982, and a similar strain was isolated from a Canadian tourist [Johnson et al., 1982]. In Port Sudan, 17 strains of DEN-2 virus were isolated during 1984, as well as one strain of DEN-1 [Saleh et al., 1985]. In 1983, three expatriates in Somalia had serologic evidence of flavivirus infection with a rise in IgM antibody titer to DEN-2 virus [Saleh et al., 1985]. However, in 1984 a limited follow-up survey showed no evidence of endemic dengue virus transmission [Saleh et al., 1985] in this area.

HISTORY OF THE DISEASE IN THE DAM CAMP

In 1985, an epidemic of malaria-like illness occurred in Dam Camp, a refugee camp near Hargeysa (Fig. 1), Somalia. It affected several thousand residents, but no deaths were reported. In 1986, another outbreak occurred in the same camp. It lasted about 2 months, and no deaths were reported. The disease manifestations were fever, as high as 39°C, chills, sweats, headache, back pain, and joint pain. The disease was recognized by the camp inhabitants as the "bone breaking sickness" "JeJebiy." No rash, no hepatomegaly or splenomegaly, or signs of meningism were recorded. The disease lasted for about 10 days with gradual reduction in severity. The disease spread throughout the camp affecting both sexes but adults more than children. A similar outbreak occurred in the same camp during late 1987 but was less extensive. In addition, during
TABLE I. Serologic Evidence of Arboviral Infections Among Refugees of Dam Camp in Hargeysa, Somalia*

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Acute (No. pos./No. tested)</th>
<th>Convalescent (No. pos./No. tested)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IFAa HIb</td>
<td>IFAb HIb</td>
</tr>
<tr>
<td>Sindbis</td>
<td>ND 0/28</td>
<td>ND 0/10</td>
</tr>
<tr>
<td>Chikungunya</td>
<td>ND 0/28</td>
<td>ND 0/10</td>
</tr>
<tr>
<td>Dengue 2</td>
<td>12/28 8/21</td>
<td>3/10 3/8</td>
</tr>
<tr>
<td>West Nile</td>
<td>1/28 ND</td>
<td>0/10 ND</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>0/28 ND</td>
<td>0/10 ND</td>
</tr>
<tr>
<td>Rift Valley fever</td>
<td>ND 0/28</td>
<td>ND 0/10</td>
</tr>
<tr>
<td>Zika</td>
<td>0/28 ND</td>
<td>0/10 ND</td>
</tr>
<tr>
<td>Crimean-Congo</td>
<td>0/28 ND</td>
<td>0/10 ND</td>
</tr>
</tbody>
</table>

*ND = not done.
IFA = indirect fluorescent antibody.
HI = hemagglutination inhibition.

The same year, a similar illness reached epidemic proportions in the town of Hargeysa (Fig. 1).

During 1987 outbreak, blood samples were collected by the Refugees Health Unit physician from some of the patients and were referred by the Ministry of Health in Somalia to the U.S. Naval Medical Research Unit No. 3 (NAMRU-3), Cairo, Egypt, through the World Health Organization representatives in Mogadishu and Eastern Mediterranean Regional Office, Alexandria, Egypt, for diagnostic testing.

This report describes studies conducted to determine the etiology of the disease observed among the refugees of the Dam Camp in Somalia.

MATERIALS AND METHODS

Materials

A total of 28 sera were collected from patients who reportedly had acute illnesses. Additional sera were obtained from ten of these 28 patients 10 days later. Of the 28 acute sera, four were from patients that were febrile at the time of blood collection.

Methods

Sera were initially screened by the indirect fluorescent antibody (IFA) and hemagglutination inhibition (HI) assays for antibody to Crimean-Congo hemorrhagic fever (CCHF), Rift Valley fever (RVF), dengue type-2 (DEN-2), Chikungunya (CHIK), Sindbis (SIN), West Nile (WN), yellow fever (YF), and Zika (ZIKA) viruses. Further testing of sera for evidence of dengue viral infection was done by the enzyme immunoassay (EIA).

The IFA test [Wulff and Lang, 1975] was performed using composite spot antigen slides provided by the United States Army Medical Research Institute of Infectious Diseases (Fort Detrick, Frederick, Maryland). The HI test [Clarke and Casals, 1958] was performed using Beta-propiolactone (BPL) -inactivated sucrose acetone-extracted mouse brain antigens and cell culture antigens. The EIA was performed for IgG virus-specific antibody as well as for IgM-specific antibody by an IgM capture assay [Burke et al., 1982] using sucrose-acetone-extracted antigens and affinity-purified goat antihuman horseradish peroxidase conjugate (Kirkegaard and Perry, Gaithersburg, Maryland).

Sera were diluted twofold, starting with a 1:10 dilution, and those reacting at \geq1:40 dilution by the IFA and HI tests were considered positive. Sera were tested by EIA at a 1:200 dilution, and those having an OD \geq greater than or equal to the mean of ten known negative sera plus 3 standard deviations were considered positive. Pooled human plasma from dengue vaccinees was used as positive control. Sera from children residing in nonendemic dengue area were used as negative control.

Sera obtained from four febrile patients were inoculated onto mammalian cell cultures, VERO clone E-6 and BHK-21, and intracerebrally into 1–3 day old Swiss mice for virus isolation attempts. Cell cultures and mice were observed for 10 days for cytopathic effect (CPE) and signs of illness, respectively. A blind passage was performed in the same assay systems if CPE was not observed in cells or if mice did not exhibit signs of illness following primary inoculation with sera.

RESULTS

Antibodies to SIN, CHIK, YF, RVF, ZIKA, and CCHF viruses were not detected in any of the sera.
Dengue in Somalia

TABLE II. Summary of IFA, HI, EIA IgG, and EIA IgM Dengue 2 Antibody Detected Among Dam Camp Refugees in Somalia

<table>
<thead>
<tr>
<th>Assay</th>
<th>Acute sera No. positive/ No. tested (%)</th>
<th>Convalescent sera No. positive/ No. tested (%)</th>
<th>Total No. positive/ No. tested (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFA*</td>
<td>12/28 (43)</td>
<td>3/10 (30)</td>
<td>15/38 (39)</td>
</tr>
<tr>
<td>HI*</td>
<td>8/21 (38)</td>
<td>3/8 (37)</td>
<td>11/29 (38)</td>
</tr>
<tr>
<td>EIA IgGb</td>
<td>14/19 (74)</td>
<td>3/9 (33)</td>
<td>17/28 (60)</td>
</tr>
<tr>
<td>EIA IgMb</td>
<td>3/19 (16)</td>
<td>1/9 (11)</td>
<td>4/28 (14)</td>
</tr>
</tbody>
</table>

*Titers ≥40 were considered positive.

The limited volume of sera precluded the use of neutralization tests required to determine the serotype of dengue virus. While the possibility that results for dengue reflects other flaviviral infections could not be entirely excluded, serological evidence of infections by WN and YF were not demonstrated except in one of the 28 patients studied (Table I). Thus, the clinical description of the illness and the serological results strongly suggest that dengue virus was the most likely cause of the disease outbreak among the Dam Camp refugees.

ACKNOWLEDGMENTS

The authors acknowledge with respect Dr. M. Barzaghar, WHO representative in Mogadishu, Somalia and Dr. M. Wahdan, Director, Disease Prevention and Control, WHO, EMRO, Cairo, Egypt for their assistance and concern in publishing this report.

REFERENCES

Serological Evidence of Dengue Fever Among Refugees, Hargeysa, Somalia. (UNCLASSIFIED).

Epidemics of a malaria-like illness affected several thousand residents of the Dam Camp, a refugee camp near Hargeysa in Somalia, during 1985, 1986, and 1987. The disease was characterized by fever, chills, sweats, headache, back and joint pains for as long as 10 days in some patients. Blood smears from acutely ill patients were negative for malaria. Of 28 acute and 10 convalescent sera tested by the indirect fluorescent antibody (IFA) and by the hemagglutination inhibition (HI) tests, all were negative for antibody to Rift Valley fever, Crimean-Congo hemorrhagic fever, Sindbis, Chikungunya, yellow fever, and Zika viruses. However, antibody reactive to dengue 2 virus was detected by the IFA test in 39% (15/38), and 11 of 29 (38%) of the same sera were antibody positive by the HI test. Also, IgM antibody reactive to dengue 2 was demonstrated in 60% (17/28) of the same sera by the enzyme immunoassay (EIA), and 14% (4/28) were positive for IgM antibody. Of ten patients for which acute and convalescent sera were available, two developed four-fold or greater rises in antibody titer evidencing infection. These data suggested that dengue virus may...
19. have been the cause of the epidemic among the Dam Camp refugees.