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Multidimensional Modulation and Coding
for Band-Limited Digital Channels

EZ1O BIGLIERI, seNTOR MEMBER, 1ELE, AND MICHELE ELIA, SENIOR MEMBER, 1EEE

Abstract —A class of multidimensional signals, based on what we call
seneralized group alphabets, iv introduced, and its basic peoperties are
denved. The combination of generalized group alphabets and coding is also
examined: two coding schemes are considered — Ungerboeck’s scheme for
combination with convolutional codes, and Ginzburg's scheme for combi-
nation with block codes. The performance of these schemes makes them
attractive for transmission over band-limited digital channels.

[. INTRODUCTION

N DIGITAL RADIO communications both the avail-

able spectrum and the transmitter power are limited.
Thus to cope with the ever-increasing demand for more
efficient transmussion, new modulation techniques are
needed. One way to increasc the transmission efiiciency,
suggested by Shannon’s fundamental theorem itself, is to
increase the dimensionality of the signal space [1], {12]. For
this solution to have practical applications, however, the
system complexity should not increase prohibitively. Con-
ventional systems, like quadrature amplitude modulation
(QAM) and phase-shift keying (PSK), use two-diusiensional
signals obtained through the inphase and quadrature com-
ponents of a sinusoidal carrier. Four-dimensional signal
spaces can be realized in a similar way by simultaneously
using two channels, each with separately modulated in-
phase and quadrature components. The two bandpass
channels can be two orthogonally polarized electromag-
netic waves, or time-division or frequency-division multi-
plexed signals transmitted on a common medium. Results
on specific designs of four- and eight-dimensional signal
sets can be found in [21-{6].

We consider a structured class of multidimensional al-
phabets which we call “generalized group alphabets™ that
are based on a peak-energy constraint. They generalize the
“group codes” of Slepian [7] that are based on an equal-
energy constraint. The most striking feature of these al-

Manusenpt recerved Februarv 16, 1987, revised July 3. 1987, This work
was supported in part by the United States Army through its European
Rewcarch Office, and in part by the Ttalian Department of Education
under 2 ou-p o+ Cooant” This paper was presented in part at the
IEEE International Symposium on iafurnr vion Theory, Bnghton. En-
gland, June 1985

b Biglen was with the Dipartimento d. Elettronica, Polhitecnico &
Tonmno, Tonno, ftaly He s now with the Department of Elevtncal
Eapincenng, 6731 Bewlter Hall, University of Califormia, Los Arzeles,
CA N4 1600

M Flias with the Dipartimento di Elettronica Poliecnico di Tonno,
Corgo 1Yy deph Abrurzs 24, 100129 tonno, ftaly

TEEE T op Number 8522479

phabets is that they exhibit a considerable degree of sym-
metry.

Generalized group alphabets form a large class of codes;
to date, most of the good alphabets that have been pro-
posed for muludimensional signaling belong to this famuly.
After a description of the main features of these alphabets,
we show how they can be used in conjunction with error-
control codes. For this purpose the alphabets must be
partitioned into a chain of subsets, where the minimum
distance between subsets increases with depth. The con-
cept of a fair partition is introduced, and it is shown how it
can be obtained through the action of a group of orthogo-
nal matrices on a set of vectors. The method of dividing a
signal alphabet into subsets via the action of an orthogonal
group is due to Ginzburg [8]. Finally, we provide some
examples of actual designs that show how our techniques
can be applied to generate codes. However, no attempt has
been made to discover optimum codes.

II. GENERALIZED GROUP ALPHABETS

Consider a set of K n-dimensional vectors X =
{ Xy, -, Xx}, called the initial set, and L orthogonal
n X n matrices S},- - -, S, that form a finite group G under
multiplication.

Definition 1: The set of vectors GX,, GX,,---,GX, ob-
tained from the action of G on the vectors of the initial set
is called a generalized group alphabet (GGA). G is called
its generating group.

Definition 2: A GGA is called separable if the vectors
of the initial set are transformed by G nto either disjoint
or coincident vector sets, 1.e.,

j*k

0
(IX/nGXA=< /=/\

GX,,

If | X1 denotes the Euclidean length of a vector X, the
quantity || X}|? is proportional to the energy of the signal
associated with X for transmission over a continuous
channel. Since an orthogonal matrix transforms a vector
into one with the same length, the signals associated with a
5CA have as many encergy levels as there are in the imital
set. The special case of a GGA witii X - 1, and hence only
one energy level, was extensively studied i {7).

Definttion 3: A GGA 1s called regular if the nonmber of
Vicicre e cwch subaiphiabet (,'XI, J=1.--- A, docs not

depend on g, 1e, each vector of the imual set v trans-
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formed by G into the same number of distiact vectors. A
regular GGA is called strongly regular if each set GX,
contains exactly L distinct vectors.

The following result follows directly from the defini-
uons.

Proposition 1: The number M of vectors in a regular
GGA is a multiple of K. If GGA s strongly regular, then
M= KI.

Next we exhibit four examples of these alphabets. Notice
that for K =1 every GGA 1s regular, but not necessarily
strongly regular [7], [16].

Alphabet | (Asymmetric M-PSK: Two Dimensions, One
Energy Level): Choose an initial vector X = (cos 4,51 &),
& a given constant, an integer M =2*, and consider the
group of 2X2 orthogonal matrices of the form R'TY,
i=01,--,M-1, j=1,2, where

| cos(2m/M)  sin(2a/M)

| =sin(2e/M)  cos(2m/M)
and

_{o 1

T_[l 0]'

It is seen that the effect of R on a two-dimensional vector
is to rotate it by an angle 27/M, and the effect of T is to
exchange its components. This group has 2 M elements and
gives rise to a separable zlphabet of M or 2M vectors,
according to the choice of the initial vector. Notice that the
alphabet is strongly regular only when 1t has 2/ elements
(asymmetric M-PSK [13], [14]).

Alphabet 2 (Four Dimensions, One Energy Level): Con-
sider the group of matrices which act on a four-dimen-
storal initial vector by permuting its components -and
replacing them with their negatives. This group has 4!2¢
elements. If the initial vector is X, =(a,a,a,0), a= 1/V3,
the resulting (separable) alphabet has Af =32 distinct
unit-energy vectors (see Fig. 1).

A 8 o D
a 3 a o0 a a 0 a 2 0 a3 3 0 a a a
0-3a a a -2 a-a 0 a a 0 -2 -3 0 -a a
a 0 -2 a 0 -a-a a -a a a2 0 -3 a 0 -a
a-2 0 -a -a 0 a3 a 0 -a a-a a 2a-a 0
-3 -a -a 0 -2 -a 0 -a -a 0 -3 -3 0 -a -a -2
0 a -2 -a a-a a o0 -a-a 0 a a 0 a-a
-a 0 a-a 0 2 a-a a-2-2 0 2-2 0 a
-a a2 0 a a 0 -2 -a G a-2 a -2 -2 a O

Fig. 1 Alphabet 2 and its fair partition

Alphabet 3 (Two Dimensions, Three Energy levels). Our
third example is shown n Fig. 2. Ponts 1, 2, 3, and 4
denote tl. four vectors in the initial set. The matrices
generating the code are those associated to nlane rotatinns
w20 The resulung (strongly regular, sep-
arabhle) alphabet 1s the conventional 16-QAM.

Alphabet 4 (Four Dimersions, Two Energy Levels): This

alphabet which has two energy levels, K =4, ind M =128,

Ty muitipies of
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Fig. 2. Alphabet 3 and its {air pasiition.

1s obtained from the initial set of vectors

C ¢ 0
- b ¢ c O
c —b c 0
c c —b 0

with ¢ =0.389 and b = 0.939. If we apply to this initial set
the same matrix group which generates Alphabet 2, we get
a separable alphabet with 128 vectors (see Fig. 3). Among
them, 32 have energy 3c?, and 96 have energy b*+2c2
The average energy is 1. .

We consider now some distance properties of the ele-
ments of a GGA. Choose a partition of it into m subsets
Z,Z,,---,Z_. For each subset Z, we can define the
intradistance set as the set of all the Euclidean distances
among pairs of vectors in Z. For any pair of distinct
subsets Z, Z, we define their interdistance set as the set of
all the Euclidean distances between a vector in Z; and a
vector in Z,.

Definition 4: The partition of a separable GGA into m
subsets Z,,---,Z,_ is called fair if all the subsets are
distinct, include the same number of vectors, and their
intradistance sets are equal.

We shall now exhibit a constructive method to generate
fair partitions of a GGA. Consider the generating group &
of the GGA, one of its subgroups, say f, and the partition
of G into left cosets of H. We have the following result.

Theorem [: If the left cosets of the subgroup H are
applicd 1o the initial set of a strongly regular GGA, this
procedure results into a fair partition of the GGA. Under
the same hypotheses, if H is a normal subgroup, then left
and nght cosets give nse to the same fair partition.

Proof: Let S denote an element of G, not belonging
to H, and SH the corresponding left coset. If X,, X, are
two (not necessarily distinct) vectors of the initial set, and
S,. S, are two elements of H, the intradistance set associ-
ated with the coset SH include i Guantiics

d1(S.5,.85,) 2SS, X, - $S, X

as S,. 3, run through H, and X, X, run through the initial
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—
A B C 0] 13 F G H
ccco cc0c c0cc Qccc -cccd cc0-c ¢ 0-c ¢ 0-c ¢ ¢
-bccO ¢ ¢ 0-b c 0-0 ¢ 0-b ¢ ¢ beccd c0bd c0bc 0bcc
cbcd b 0c c0c-b 0c-bc -c-bc0 -6 ¢ 0-¢ ¢ 0-c-b 0-c-b ¢
cc-b0 b 0 ¢ -5 0cc Qcchd -c<-b @ c-b 0-c -6 0-c ¢ 0-¢ ¢-b
-¢~¢< 0 ~¢-¢ 0-¢ -c 0-¢c-¢ 0-c-c-c c-c-c 0 -<-c 0 ¢ -¢ 0 c-¢ 0 c-c-c
b-c< ¢ <-c0b -c 0 b-c 8 b-c-c -b-c-¢c 0 -c-c 0-b -¢ 0-b-c 0-b-c-¢
< b<c @ b~c 0-c -c 0-c b 0-c b-c chbco b-c 0 ¢ -c0cod 0 ¢ b-c
<-cb o0 -c b 0 b 0-c-c G-c-c » c< & @ < b0c b0 c-c 0c-cbd
| J K L M N o e
c-ccé -c¢c0c ¢ 0 c-c 0 ccc ccc0 c<cOc -c0cc 0 ¢ c-¢c
b-cc0  -cc0-b € 0-b-¢ 0-b-cc  -bcc® €-c0-b -cO0-bc 0-bcec
cbc@ bcOc c0cb 0chHc c-bco -b-c 0 ¢ < Q@ c-b 0 c-b-¢
c-¢-b 0 -c-b 0 ¢ ~b 0 ¢c-¢ 0 c-c-d cchHo cb0c¢ b0cc Gccd
-cc-c 0 c-c O0-¢ - 0-c ¢ 0-c c-c <<€ c?® - ¢ 0-¢ ¢ 0-c-¢ 0-c-c ¢
bc-c 0 c-c0b - 0bc 0bc-c b<cc@ -<cc0?d ¢ 0 b-c 0 b-c ¢
-¢-b-c 0 -b-c 0-c ~c 0-c-b 0-c-b-c -cbco b c 0-c c0-cod 0-c b c
-ccb o ¢ b ¢ ® 0-c ¢ 0<ccbd -c-bc 0 -c-b 0-¢ -6 0-c-¢ 0-c-c~d
Fig. 3. Alphabet 4 and its fair partition.

vector set. We have
d3(S,S,.8.) =X +1IX|? -2 XSiSTSS, X,
= “ X/"2 + H X.‘"z - 2X/TS:-SI( Xl

where the superscript T denotes transpose.

As the right side of the last equation does not depend on
S, we have shown that the intradistance set associated with
the left cosets of H are independent of the coset. More-
over, if H is normal, then right cosets and left cosets give
rise to the same fair partition: in fact, normality implies
that for every S

SH =HS.

What makes Theorem 1 work is the fact that the or-
thogonal matrices form a group of isometries. Hence a
more abstract formulation is possible, extending to non-
finite groups. As pointed out by the editor, lattices and
sublattices equipped with isometric transformations (trans-
lations) fit this more general approach. However, for our
presentation we choose the framework that was fruitfully
uscd for the description of “group codes for the Gaussian
channel,” and that was based on finite groups of orthogo-
nai matrices [7] {see also {8]).

The condition of strong regularity of the GGA can be
removed, but in this case it may happen that differeat
cosets gencrate the same element of the partition. Hence
some of the coscts must be removed from consideration.
Morcover, uolice that if H is a normal subgroup of G,
then we do not need to distinguish between left or nght
coset partitions. On the contrary, if H is not normal, the

partitions obtained from right cosets may not be fair, as
shown by the following counterexample.

Example 1: Let us consider the four-dimensional al-
phabet generated by the action of the natural matrix
representation of the permutation group S, on the initial
vector (—3d/2,-d/2,d/2,3d/2),d a constant. Let us
consider the partition induced by the subgroup H of the
matrices leaving invanant the fourth component of the
initial vector. This subgroup is isomorphic to S;. The left
and right coset partitions associated with H are shown in
Table I. It can be seen that the partition associated with
right cosets is not fair because its intradistance sets are not
equal.

In some cases, we are interested in further partitioning
every element Z, into the same number of subsets. We are
led to the concept of a chain partition. This concept is also
found in the work of Ungerboeck [10] and Ginzburg {8].

Definitior. 5: The chain partition of a scparable GGA is
called fair if any two elements of the partition at the same
level of the chain include the same number of vectors and
have equal intradistance sets.

For fair chain partiiions we have the followming theorem,
whose proof is straightforward and will be omutted.

Theorem 2: Consider a strongly regular GGA and a
chain of subgroups of its generating group G. that is,

HcH,CH,C --CH =G.

Use H__, and its left cosets to generate a partition of
GGA. Then use H,_, and us left cosets in H_ to further
partition all the sets of the previous partition. Repeat the
procedure with H,_, and so on, unul H, and 1ts left
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TABLE |

Lty ann RIGHT COSET PARTITIONS Ot A GGA

Right Coset Partition

(~3d/2.—d/2.d/23d /)
(-dy2 -3ds2,d/2,3d72)
(/2. ~d/2 -3d/2.5d/2)
(-3d/2.d/2, - d/23d/)
(- d/2.d/2 -3d/2.3d )
(/2 -3d/2 - d/2.3d/2)

(3472 -3d72, - d/2.dsYy
(d /2 - d /2, - 3d /2. dsN
(3d/2.d/2, -dy/2.-3d/2)
Gd /2. -3d/2.d/2 - ds)
Bd/2—d/2.d/2.-3d/Y

G /d2 340 4,

(=3d/2.3d/2, - d/2.d/2)
(—d/2.3d/2, -3d/2,d4/2)
(d/2.3d/2, - d/2,-3d/2)
(=34/2.3d/2,d/2, -~ 4/
(-d/2.3d/2,d/2. -3d/2)
(d/2.3d/2,-3d/2, - d/2)

(=3d/2.-d/2.3d/2,d/2)
(~d/2,-3d/23d/2,d/1)
(d/2. - d/2.3d/2, -34/2)
(=34/2,d/2.3d/2. - d/2)
(~d/2,d/2,3d/2.-3d/2)
(d/2.-3d/2,3d/2,~d /2)

(= 3/~ dj2.d,/7.3d/2)
(-ds2,-3d/2.d/7.3d,2)
(d/2, - d/? -3d/2.3d/2)
(-3d4/2,d/2,-d/2,3d/2)
(- d/2,d/2,-3d/2.3d/D)
(d/2, -3d/2, -d/23d/2)

Od/l - d/2.d72, -3d /)
(-d/2.3d/2.d/2. = 3d /1)
(d72.~d/2.3d/2, - 3d /)
(3d/2.d/2, -d /2 -3d/2)
(~d/2,d/2.3d/2,-3d/2)
(1723400, ~d 0, =3d /)

(-3d/23d/2.d/2,-d/2)
(-d/2,-3d/2,d/2,~d/2)
(d/2,3d/2,-3d/2, - d/2)
(-3d/2,d/2,3d/2,-d/2)
(3d/2,d/2,-3d/2, - d/2)
(d/2,-3d/2,3d/2, -d/2)

(-3d/2,-d/2,3d/2,d/2)
(~d/2,-3d/2.3d/2,4/2)
(3d/2,—d /2, ~3d/2,d/2)
(=3d/2,3d/2, - d/2,4/2)
(-d/2.3d/2,-3d/2.d4/2)
(3d/2,-3d/2, - d/2,d/2)

cosets in H, are used. The resulting chain partition of
GGA is fair.

A theorem concerning the interdistance sets sheds some
further light on the symmetry properties of GGA'’s.

Theorem 3: Let H be a normal subgroup of G. The
partition of a strongly regular GGA obtained by applying
the left cosets of H 1o the initial set X has the following
property. The interdistance set associated with any two
cosets, say S\ H and S,H, is a function only of the coset
S,H, where S5 = S5, and not of S,, S, separately.

Proof: Let S, and §, denote two coset leaders. If
X, X, are two (not necessarily distinct) vectors of the
mitial set X, and S,, S, are two elements of H, the
distances among elements of the cosets S\H and S,H
includes the quantities

d,, (80,8, 5,8 2U1S.8,.X, = $,8, X
as 5,.5; run through # and X,, X run through X. We
have
dS1 S S SO X+ X - 2XTS)STS, S, X,
SPXNP F X - 2XTS]S, S X,
Finally, as I1 15 a normal subgroup, we have
S HSH =550 =5H,
e, S H s another coset.

We now provide some examples of fair parutions of a
GGA. Consider first the rotation group which generates
Alphabet 3 (see Fig. 2) and its partition into the two cosets
assocuated with the rotations 0,7, and #/2, - w/2, respec-

HEE TRANSACTIONS ON INFORMATION THIORY, VOL 34, NO. 4, JULy 19K

tvely. The GGA s fairly partitioned into the two subal-
phabets {1,2,3,4,9,10,11,12} and {5.6,7,8,13,14,15.16).

Fig. T shows a fair partitioi of the Alphabet 2 in four
subsets of cight vectors each. This partition is obtained as
follows: denote by « the orthogonal matrnix whose effect
o a vector is to cyclically shift its components to the right
by one position and to change sign to the second compo-
acat. Then the set

; s 6 1
H = {a(),(x‘,a2,03.04.a‘,a’,a }

15 a cychic normal subgroup of the group G gencrating the
alphabet, and its cosets generate the fair partition.

A fair partition of Alphabet 4 into 16 subsets of eight
vectors each stems {rom the subgroup {1, — I}, where [ is
the 4x4 identity matix (see Fig. 3). A fair parution of
Alphabet 1 is obtained by considering the two cosets of the
subgroup { R, }M ;L.

Definition 6: Let R be a left coset of G in the fair
partition of a GGA and S, an element of G. We define the
distance profile (15] associated with R and S, as the
polynomual in the indeterminate w:

F(w,S,,R) 2 Y a(d?)w”
dZ

where a(d?) is the number of elements of RX that have
squared distance d? with respect to an element of the set
S, RX. Note that a given element of RX may be accounted
for more than once as it contributes with different squared
distances with respect to different elements of the set
S;RX. The sum of a(d?) equals the square of the cardinal-
ity of RX.

Example 2: Consider K =1, X, =(1,0)7, and the group
of plane rotations

5 - Cf)s(f'n/2) S|n(1.~r/2) ' i=0.1.2.3.
' ~sin(in/2) cos(im/2)

The subgroup { S;, S;} 1s normal. The distance profiles are
summarized in Tabic [1.

TABLE I
DISTANCE PROFILES FOR EXAMPLE 2

B R S, i F(w,S..R)
(S5} > 2w 4 20t
{S%.5;) S, 4wl
{(%.5;) S, 2w 42wt
(%%} S dw”
{(S,.5;} S 2w 4200
{S.5,) S 4w’
{Si. 5} S, 2u? 4 2wt
{S..%) ) 5 ) 4w’

Definition 7: A fair parution of a GGA is called homo-
geneous H the set { F(w, S, R)} . does not depend on R.
It is called strongh homogencous of F(w_ S, R) does not
depend on R for any §.

Theorem 4: 1{ G 1s a commutative group, all the part:
tnons generated by its subgroups are strongly homoge-
neous.
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Proof: Let H be a subgroup of G this is obwviously
normal so that the partition induced by I/ s fair. Let
X, X, be two elements of the initial set X, § an element
of G, §, an clement of H. Then for any S € G the
computation of F(w, S, SH) 1nvolves enumerating the
squared distances

1SS, X, = S,SS\HX ||? = (|85, X, - $S,.8,, X I’
=15, X, - SgSl //XIHI

which do not depend on § and hence on the element of
the fair partition.

Theorem 5: If H 1s a subgroup of G in a strongly
reguiar GGA, the partition generated by the left cosets of
H is homogeneous.

Proof: Let H be a subgroup o.f G. Then the partition
induced by the left cosets of H is fair. Let X, X, be two
elements of the initial set, S an element of G, S, and S,
two elements of H. Then for any S, € G the computation
of F(w, SR,SH) involves enumerating the squared dis-
tances

”SSII X'l - SgSSlHXjnz = ”SIIXl - STSXSSIHXJHZ
=Sy X, - SX’S”,X/.HZ

so that F(w,S,,SH)= F(w,S;,SH), and as S, runs
through G so does S;=S'S,S. Thus the assertion is
proved.

[1I. MULTIDIMENSIONAL CODED SIGNALS:
BLock CODES

We shall now see how the multidimensional alphabets
described in the previcus section can be used in conjunc-
tton with codes to further enhance their performance. In
this section, we shall focus our atténtion on block codes.
while the next section will be devoted to convolutional
(tretlis) codes.

Himai and Hirakawa [18] and Ginzburg [8] have de-
scribed constructions which make it possible to design
alphabets with an arbitrary signal distance and with 2
regular structure by employing algebraic properties of block
codes. Fig. 4 shows Ginzburg's construction. The L block
encoders ), C,,-- -, C, accept source symbols, and outpu:
[.blocks (q,,. ¢y, qu). i =1, I of Nsymbois eack
The modulator f maps each L-tuple (g0, q,). /=

0

0
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1,-- -, N,into ihe vector

X/zf(‘l/l"""I,L)‘ J=1--

chosen from a set 4 of M= M,,---, M, elements. This
mapping is obtained as follows. In the set 4 we define a
system of L partitions such that each class of the [th
partition includes M, classes of the (/ —1)th partition so
that 1t will consist of M({)=MM,--- M, signals. By
numbering the classes of the (/ —1)th level occurring 1n a
class of the /th level we can obtain a one-to-one mapping
of the set of classes of the (/ —1)th partition onto the set of
integers {0,- - -, M, —1}. Therefore, if g;; are chosen in the
set {0,--+, M, —1}, I=1,---, L, any L-tuple (q,,,- -, q,,)
defines a unique value of the jth elementary signal x, =
f(q,1- -, q,.) (see Fig. 5).

N

EBN

/N YN

ONOONO

Fiy. 5. Example of Ginzburg construction.

Ginzburg proved that the alphabet obtained in this way
has a minimum squared Euclidean distance D? that satis-
fies

D*> min (87d,)
I<i<sL
where d|,-- -, d, are the minimum Hamming distances of
the L block codes C,,---,C;, and 8} is the minimum
squared Euclidean distance between the symbols in each
subalphabet of the ith partition.

Consider now Ginzburg’s constructions based on gener-
alized group alphabets. By associating with cach level the
elements of a fair partition (the concept of a fair chain cun
be used here), all the subalphabets at a given level have the
same minimum distance. From the fair partition of Al-
phabet 2 described before, we have 87 =2/3, and 6; = 2.
Thus using the (N, k,3) Hamming code on GF(4) (9, p.
193, 194] and the trivial (N, N,1) code on GF(8), with
N=(4"-1)/3, k=N-m, m=z1, we have D?>2 The
resulting alphabet has a rate

R =[5(4m - 1) ~6m]/la(a" - 1)]
and
D'og, M =10-12m /(4™ 1).
For example, choosing m = 2 we get a rate R =1.05 and

DYlog, M > 84; with pet =118 and
DMlog, M > 94

m=3 we
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Using Alphabet 4 and the parution described, we have
81 =2¢? and 8} = 8c2 The (18,15,4) extended Hamming
code [19, p. 36] on GE(16) and the tnvial (18,18,1) code
on GF(R) can be employed, providing a squared minimum
distance 27 1.211. This alphabet yields R =1.583 and
D%log, M >767.

[V, MutiioieNstoNar Conep SIGNALS: TRELLIS
(UNGERBOECK) CODES

We shall now see how an Ungerboeck code [10] can be
designed using a multidimensional alphabet generated as
described in Section If. Such codes can be specified as in
(17]. Each coded symbol depends on k + » source bits,
namely, the block 7= (a,,---, a,) of k bits generated by
the source, plus » bits preceding this block. The » bits
determine one of the N =2" states of the encoder, say
o=(a,,, ,u,,,) a,=01 The encoder state for the
next coded symbol 15 obtained by shifting the a, k places
to the right, dropping the right-most k bits and inserting
on the left the most recent source bits. The encoded
symbol x depends on 7 and a; we write

x=f(r,0) (4.1)

where x 1s an element of a GGA. This encoding procedure
can be described using a trellis (Fig. 6 shows a section of
such a trellis, obtained for » = 2).

Fig 6 Four-state trellis code for Alphabet 2.

We conjecture that a good code should show a good deal
of symmetry to be reflected by the structure of the func-
ton [ an (4.1), or. equivalently, by the assignment of
symbols to the hrunches connecting any pair of nodes
the code trellis (for further details see, e.g., [10], [11]). This
can be ohtained wm oour framework by assigning to the
branches associated with each node the set of symbols
obtained from a fair partition of & GGA. This is equivalent
to the procedure suggested in [10] and called * mapping by
set partitonmg”: thus our procedure can be viewed as 4
systemate wav to achieve set partitioning,

The most widels used single parameter that specifies the
performance of these codes on the additive white Gaussian
nowse channel is the free Euclidean distance. This can be
computed using erther a generatung function approach or a
modified bidirectiona] search algorithm [20), {217, or proce-
dures based on Vitertr algorithm and described 1n [23].

[EEE TRANSACTIONS ON INFORMATION THEORY, VOI. 34, NO. 4, sUiLY 1988

{24] (sce also [25, pp. 561-564]). The generating function
technique consists of enumerating all possible distances
between sequences of symbols associated with paths in the
trellis. In general {11], the generating function can be
obtained as the transfer function of a state diagram re-
earded as a signal flow graph. The state diagram 1s defined
over an expanded set of N?=2% states. For the special
case of a trellis based upon a lincar binary convolutional
code and a strongly homogencous partition of a GGA, the
minimum distance can be computed from a generating
function obtained as the transfer function of a state di-
agram including only N = 2" states. (See [15, theorem 3}).

We shall descnibe two examples of four-dimensional
Ungerboeck codes. The first example onginates from Al-
phabet 2. It has minimum distance 2a?=0.66. The fair
partition described before gives four subsets of eight vec-
tors each, with minimum intradistance 64 = 2. By choos-
ing a four-state trellis code with the structure described in
Fig. 6, we get a squared free distance 6a® = 2. If this figure
i1s compared to the minimum distance achieved by using
two independent 4-PSK signals, which transmit the same
amount of information over the same number of dimen-
sions, we see that an energy saving of 3 dB 1s obtained.

Consider now Alphabet 4. It has a minimum square
distance 0.3. The fair partition descnibed gives 16 subal-
phabets of eight vectors each, with minimum intradistance
1.2. By using the four-state Ungerboeck code described in
Fig. 7, the squared free distance obtained is d2__ =1.2. By
comparing this to the minimum distance obtainzd by using
two independent 8/4-PSK signals, we see that an energy
saving of about 4.3 dB is obtained.

Fig 7 Four-state trellis code for Alphabet 4

V. CoNNtCTIONS WiTH RELATED WORK

Recently, Calderbank and Sloance [22] have descabed a
method  of constructing muludimensional trelhs codes
where the alphabet s a fimite subset of a lattice 1 with an
equal number of pomnts from each coset of a sublatice M
of L. As pointed out by the editor, the symmetry and
homogeneity properuies of these alphabets are almost iden-
tical to those of GGA’s, Subalr. abet edge effects are the
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reason why the correspondence s not quite exact. To see
how the two methods are related, consider t.¢ partition of
the integer lattice L = Z 1 generated by (1,0) and (0,1) into
cight cosets of the sublattice M generated by (2,2) and
2, - 2). The sublattice M consists of all vectors with norm
divistble by 8. Let T, , be the translation given by T,
(v, y) »(x+a,py+b) Let X={01)}, and let G =
(T, . T, 4) be the group of all translations. Define a chain
of subgroups Hy, H, H,.G, by H = (T T, ), H,=
(0 T2y, H = (T, ,. T, ;). This chamn of subgroups

corresponds to the eight-way partition of L.

VI. ConcCrLusioN

Ginzburg [8] descnibed a method of dividing a signal
alphabet into a chain of subsets via the action of a group
of orthogonal matrices. We generalize this approach by
introducing generalized group alphabets, and we consider
the combination of these alphabets with block or trellis
codes. Some actual designs show that consideration of
GGA’s may lead to transmisston systems providing good
perforn:ance with band-limited channels at the pnce of a
relatively modest complexity.
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Anaiysis and Compensation of Nonlincarities 1n
Digital Transmission Systems

FA10 BIGEIERD, st NIOR MEMBER . 1HET

Uhitracf S consider the compensation of chiannel nonlincaritios
i dintat fadi contmonication systomss A diserete system with mem-
ary mected between the sonece and the modulator, i designed with
the win ol prosiding an cquavalent channel with a distartionless lincar
part and no nonlmearitios op toa given order. This design is based on
a Volteroa secios moded of the channed, and on the theory of pthoorder
PSSy sTeny
Since the compes ator desipn is based on g mathematical model of
e ctonned, the poebboar of maodo Wentification is considered. A mod-
el tectimgue is dosceibed, based on computer simalation and appli-
Catien ol ortharonal Velterra series. Several examples show the per-
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focmats . such s mulnlevel quadrature amplitude modu-
tation (AN Thewr upplhication has been slowed down
hy the presence of amolitude (AM/AM) and phase (Ant/
PMy eonhinearitics present in redio-frequency (RF) power
amphitiers driven wt or near saturation for better effi-
clency. Actually, the nontinear distortions introduced by
thewe amplifiers mzke the standard channel model, 1.¢.,
the wdditive white Gaussian noise channel, far from real-
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verified 1see, for example, {20]) that, as the number of
enerpy levels in the signal constellation increases, the
TWT working point should be backed ofl more to com-
pensate for the nonlinear behavior of the amplifier. In this
situation, it may oceur that the beneficial effect of the in-
crease in lincarity is offset by the corresponding decrease
of amplificr’s output power. As a rzsult, PSK (which has
only one energy fevel) may perform better than QAM
(which has more) [20]. This is why more sophisticated
solutions are called for,

From the above discussion, it appea. » rather natural to
investigate two-dimensional signal constellations  that
outperform PSK, and yet do not suffer excessive degra-
dations duc to channel nonlinearities. This paper is de-
voted to this problem, through an approach that combines
the choice of the modulation format and the compensation
of channel nonlincarities.

The channel model on which our analysis will be based
is time-discrete. We assume for simplicity that the mod-
uluted signal is sent through a nonlincar system with
memory before being affected by additive white Gaussian
noise at its output. In other words, the discrete channel
consists of two separate parts: a noiscless determinstc
part, and a noise adder. Traditionally, there aie two phi-
losophies intended to cope with the proolem of channel
nonlincaritics. One consists of accepting the chainel as
is, without trying to do anything to modify its behavior,
and to design the receiver so as to minimize the joint ef-
fects of intersymbol inierference. nonlincarities, and
noise. The most effective nonlincar signal processing
technique bascd on this approach is maximum likeliheod
sequence estimation (MLSE). to be performed by the Vi-
terh alegorithmy (124, [14]0 (17, ch. 10] Untortunately.
this technique requires o processing complexity which
may make 1t unsuitable for implementation at very high
data mates. For this reason, suboptimum receiver schemes
are attective: amonye them we can recall nonbinear cqudl
czanon schemes 131 11, wonhinear cancellors {1 {210 op-
tmum hinear cquahizens [0S and optimum hear reven -
e Glters {161 Tr most be bepr e nind L however, that o
Crnebamental Tt 1o the pertonmance o any o (hese e
coervers {and, concelvible e

more concrallv s ot any

Corver. erher Dreeear o nonbmeas) depends on the e
mum Fuchdean detanee benweon the snals obnenved
the ontpot ol the norcleno e detenmmnste) peit ot th
Channel [IST Sored mowords thes intaton s due o the

; .
b by the peceiver s
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fected by noise hence, any attempt o compensate for the
channel distortion by inttoducing a sort of “iverse dis
tortion” will enhance the noise. For this reason, it ap-
pears logical to mvestigate solutions based on the com-
pensation of the nonlicanty before noise addition, This
procedure should make the channel ook dis similar as pos-
sible to a Gaussian channocl

I thas approach s chosen, there are several factors and
constramts that should be keptm mind, One ol them s,
of course, the ultmate pertormance that the nontinearity
compensation systent can achieve. The second cie s the
case of design, the anplementaton complexity, and the
cost. The third s that the compensator tsel! imay expand
the sienal bandwadth e spite of the fact that out-of-band
crnssion mast be kept under control [7]. In fact, while a
predistoster reduces out-of-band emission after the ampli-
fier, 1t may increase 1t betore the amphifier, This can be a
problem, tor cxample. i o satelhite system with the pre-
distorter located in the cround station to compensate for
the on-board nonlineanty . Froally o certain cases pro-
viston must be nde tor wdaprive compensation: in tact,
when g constellation with a targe number of points is used
by the modulator, even varnations in amplifier character-
stics cauwsed by temperature changes, de power varia-
tions, and component ariy can degrade the system per-
formance (9], Both analog and digital predistorters can in
principle be considered. however, besides being more
complex and expensive, und less flexible, the analog pre-
distorters seem to perform worse than their digital coun-
terparts (510 (6], Henceo consistent with our assumption
of a dnerete channel model, we shall consider digital pre-
distortion.

In this paper we consuder digatal predistortion of a chan-
nel, e the desien of @ device to be inserted at the trans-
muter front-end of the transmission system and whose aim
15 to compensate for the unwanted ctfects of the nonlinear
channel This desin will be based on the concept of pth-
order mverse ot o nontmear svstem. The theory of pth-
order inversen was developed by Schetzen (see {23, ¢h
Thoand eoapplied here fo diserete, bandpass svstems.
Sinee the st step o predesanes desizn s modeling the
noahneariy s we areue that the best way of doing this i~
o base it on commprrer edentiiication of the simulated syae

teme Theoantere gon betscen computer simulation and

anabvaca T pros et oecwont i orthoeonal Volterr serre s
vodel s e e e aed tondesien the compen
Lt
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nonhineanties. Assume first that ihe channel has no mem-
ory (r.c., no bandwidth-limting components existy and
conswder the effiect ot a predistorter placed just before the
nonlmear channei. fa ths situation, which we shall refer
to as memorvless predistortion, the compensator acts by
skewing the signal constellation in such a way that, when
passed through the nonlinear device. 1t will resume the
origimal shape (¢ g, o rectangular 16 QAM structure). In
other words, the compensitor task s to vert the discrete
transnussion channel. This operation does not modify the
spectrum, and hence the bandwidth occupancy, of the
transmitted signal, but ot course its effectiveness s criti-
cally dependent on the assumpuon that the channel has no
memory.

B. Predistortion with Memaory. The pth-Order Inverse

Conswder instead, the more realistic assumption of a
channe! with memory. In this situation, the compensator
1s faced with a far more dificult sk, the inversion of a
nonlincar system with memory. Now, not all nonlincar
Systems possess an iverse. Also, many systems can be
imverted only for a restricted range of input amplitudes
123, p. 123 1], However, it is always possible to define
a prhi-order inverse, for which the input amplitude range
15 not restricted |23, ¢h. 7).

Our use of the pth-order inverse theory will be based
on a Volterra-series model of the discrete nonlinear chan-
nel (sce [17] and the references therein). This model pro-
vides an exceedingly general characterization of nonlinear
systems with memory based on the so-called Volterra ker-
nels, a set of parameters which can be thought of as the
extension of the nonlinear case of the concept of impulse
response of a linear channel. Given a nonlinear system H,
1ts pth-order verse is one that, when cascaded to #, re-
sults tn a svstem 1 which the first-order Volterra kerral
15 a unit impulse, and the second through the pth-order
Volterra kernels are zero (23], 1n other words, if the pth-
order nonlinear inverse channel is synthesized at the
transmitter’s front end. the compensated transmission
channel will exhibit no linear distortion, and no nonlincar
distortion up to order po Obviously, the performance of
the pth-order comp aseted channel will depend on the ef-
fect of the restdual distortions.

O Alemarviess Predistortion Versus Predistoriion with

Mooy

Betore procecdme turther with ananabvocal descniption
of the compensation based on pth order channel s erson,
it1s convenient to stop the discusston for o white, and
provide annterpretation of the two types of predistorters
descobed mothe previous subsection Memaorvless predis
tortion s the aperatton of chaneme the csourcey svimbols
e, it the tohanneD svinbols by st o where o Y as

A oauable compley functons 1 these madined sombaols

are o vicwed as o new stenal set entenme the chanoel Goad
nuatched o) we may thimk of e compensator as beiny
tcorporated i the maodafator I conclusion . the desten
ol a predeaonter tor o channel wathout memony s cqun

bt to the desaen ot o new medalation scheme




44 N

Consider then a predistonter with memory. Hs operation
consists of transtforming the source symbols g, into chan-
ncl symbols b, whose values depend not only on a, but
also on [ previous symbols. Thus,

b, = I'(a

n

(2.1)

If we define the state of the compensator at time n, and
we denote it by o,

a TR

ary g -1

g, = (”u- | R au~l.) (22)

"
we can also write

b, = I'(a,. a,) (2.3)

which shows cexplicitly the dependence of the channel
symbols b, on the state of the compensator. This *'sliding
block™ representation of the compensator operation shows
that the compensator itself 15 equivalent to a trellis en-
coder. (This equivalence was first proved by Calderbank
and Mazo [24].) In conclusion, we can think of the design
of a predistorter with memory as of the choice of a trellis
code, made - in order to compensate for the channel non-
linearnity.

II. ComrensaTion BaseDd oN pTH-ORDER CHANNEL
INVERSION

We start our discussion by considering the cascade of
two nonlinear systems (for motivation's sake, the reader
can view onc of the two systems as the compensator, and
the other one as the channel to be compensated). We shall
base our treatment of the subject on Volterra senes rep-
resentations of bandpass systems {17, ch. 10], and we
shall use, for notational simplicity, tensor notations, as
suggested in [2Z2]. These notations imply that any sub-
script occurring twice in the same term is to be summed
over the appropriate range of discrete time. Thus, for ex-
ample, we write x, v, instead of xy y + x50, +

A. Cascading Bandpass Nonlinear Systems

Subject o certain regulanty conditions, a bandpass
nonlinear system can be described by the input-output re-
lationship

> o o oo
N o N \ -
v, RUTE A U k)
3 o b @ ¢ ox - on
,,( i) *
[P SR WA VR

p S * }
L T I FTRLY L DI SV O
o o3y *
L U A SR T
I ] * L e «
LTS TR U OO VI U B (34

From 03 5 0 ween that the systenas characterized b
. | 1 . '
the Uolterrag kernel e, de) 0 0+ Notice that oni

adit ordes polvnomaals appear: this s due 1o the bandpaes
natinre o the ponhimeanty
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Consider now two bandpass nonlinear systems. Let the
first (the compensator) be characterized by Volterra ker-
nels f, the second (the channel) by Volterra kernels g. and
denote by I the kernels of the system resulting from the
cascade of the two. The first-| third-, and fifth-order h-
kemels are exphcutly given by

R 2 A (3.5)
R ALY
eSS 3e)
and
hil?;.h.r.d,(
= [,’f,.',)- 5'?1)1_:')_‘,11.(
+ !”i’:‘l". n.:ftvf; LIL f-‘r):;r

(3 (1) 3 (1 *
+ S’u,,-,.,:f,-.u w‘h_r.df:_(

_*_gk_?, (3) (1) p(lix

neow.cd mabed widl e

5 (V) 1) A1) £ % A1) %

+ gn,rv,u.;\'_u r.a w;hf:;rfy;d u;z .

It can be observed that (3.5) expresses a relationship
between first-order kemnels which is nothing but the dis-
crete convolution of impulse responses of lincar systems.

(3.7)

B. Volierra Coefficients of pth-Order Compensator

Coasider now pth-order compensation. Under the as-
sumption that the linear part of system f, i.e., the linear
functional determined by the first-order kernel of £, is in-
vertible, it is possible to find a system g such that its cas-
cade with fgives a system with no linear distortion. t.c.,

() )y et} ()
En e tu _fn:r\ .a
=1 n=a
= bnu (3.8)

0 elsewhere.

I

This choice provides the first-order compensator. Equa-
tion (3.8) expresses nothing but the Nyquist criterion for
the absence of intersymbol interference in the overall
channel. In appearance, this sounds like a rather pleasant
result, as it shows that even when dealing with a noslinear
chanael the hincar part must be designed (at least. f the
“pth-arder criterton’ 15 accepted) to be Nyquist's. In the
following, we shall see how the concept of ““hnear pant
of a channe!l™ must be correctly interpreted.

The third-arder compensator 1s obtained by choosing

1 [ .
e o as o have 1Y = 00 by taking the discreie con-
: 1 o !
volution of hath sides of (3.6) with ¢ e e aad re-
calling (3 8), we oct
) Yy ,H) thy tlyw 1O
.X."n aho L \_/\,u_t_.' L. (I‘L-‘l l-‘(\':_u . !‘))

I . N

e fiith-order compensator is obtained by choosing '

N .

soas o have 170 00 by taking the diserete convolution
: . D0

of both sides of (3 Ty wath ¢l et ! Pret* and re

R . s
calling £3 8y, we pet the required ¢




Before gomyg turther, let us consider o special situation
{which s admettedly rather simphistic, but gives nise to
considerations that nught be interesting). Assume that the
channe! nonlineanty s the cascade of a Lincar system L
and a memoryless device 1. The pth-order compensator
for this channc! can be casily computed, providing a re-
sult which matches intuition. In fact, it 1s the cascade of
a lincar filter, the inverse of 1 (say, LY, preceded by

a nonlinear memoryless deviee, the pth-order inverse of

D. Notice that the cascade L7 and £ gives rise to a Ny-
quist filter. This result shows that one way to compensate
for the channel nonlinearity n this case consists of re-
moving the channel memory and compensating for the re-
sulting memoryless nonlincarity by memoryless predis-
tortion.

A more realistic model, suitgble as an approximation to
a number of single-channel digital satellite communica-
tion systems, assumes that the linear part of the channel
has already been compensated by a suitable combination
of channel filtering and lincar cquaiization at the receiv-
er's front end. In this situation some simplifications arise.
In particular we get, for the first- and third-order compen-
sators

ti(l) = A

Sna T On.u
(3 - hH
gn,u.hr - ﬁf‘n.u,b,[- (310)

C. The Effect of Compensation on Power Spectrum

We consider now the effect of a pth-order compensator
on the signal power density spectrum. The continuous-
ume signal at the modulator output can be given the form

o

x(t) = 2

n= -

b,s(t — nT) (3.11)

where (b,) is the sequence of channel symbols, T is the
symbol period (equivalently, T~' is the baud rate), and
s(r) is the basic waveform used by the modulator. The
power density spectrum of signal (3.11) is given by (see
{17, p. 33D

G(f) =

x

!S( f)gZ g Z: B, exp { —j277fnT)z
(3.1

where 4,18 the autocorrelation of the symbol sequence at
the compensator output and S¢ £) s the Fourier transform
of sty Toas casily recoenized that the brackets on the
RHS of (3.12) contuin the discrete Fourter transform of
the sequence 67,0}, 1.e. . the power density spectrum of the
sequence at the compensator output, This 1s a periodic
tunction of fwath period 1/ 7

From (3121 we see that the specteum shaping effect ot
the compensator can be anabvzed by evaluating the auto-
correlation sequence (41,1 Forexample, a linear compen:
sitor respondine o the sonrce symbol sequence (a0
Fia, | bowath the co )
constnt, wath cane aspectral shapinpe (1 4 A7)

A a reul
P24 o

sequence {(a, 4 Aa,

(2= fT). A fact that might be unexpected a priori is tat
the nonlinear teams of the compensator may be irrelevant
i shaping the spectrum. Consider, as an example, the
compensator output a, + Aa, -y + Ba,a, _,ay_,. By di-
rect caleulation, it can be scen that By = (1 + A% 4+ BY)
and 8., =3, = A, while 8, = Ofor i} = 2. Hence, the
third-order nonhinearity has, for Al >> B (as is the case
when relatively mild nonlinearities must be compen-
sated), very hittle effect.

D. Computing the Linear Part of the Compensator

The computation of the lincar part of the compensator,
i.c., of the kernels ¢**) that solve (3.8). deserves some
further attention. By rewriting explicitly (3.8), we have

S L
= o

~fi-nbn
a

(3.13)

where 6 denotes the Kronecker symbol. Since we are in-
terested in a finite-complexity compensator, we consider
a (pechaps approxiinaic) solution of (3.13) which inciudes
just a finite number of terms in the summation. Thus, our
problem is cquivalent to the design of a zero-forcing
equalizer of finite length. Two technical assumptions are
necessary here, namely, that there exists only a finite
number of nonzero f‘"’-kemels, and that the polynomial
whose cocflicients are these kernels has no root with unit
magnitude. Under these conditions, a solution exists for
the kernels g‘" with values that decrease in magnitude
away from a ‘‘center kemel.”” The procedure for com-
puting these kernels, which requires finding the roots of
a polynomial and the solution of a set of lincar equations,
can be found in [27}.

IV. Tie RoLE oF CHANNEL MODELING-—ORTHOGONAL
VOLTERRA SERIES

From our preceding discussion it is seen that the com-
pensator design 1s based on a Volterra-scries model for
the nonlinear transmission channel. Thus, the availability
of such a model is crucial. As, apart from some very sim-
ple cases, analytical evaluation of Volterra coeflicients is
not feasible, computational techniques should be used.
Basically, two approaches are available, which we shall
refer to as ““block modehing™ and “‘global identifica-
tion.”’

Consider first block modeling. It 1s based on a model
of the channel as a cascade of linear, time-invarniant filters
and bandpass nonlinear devices whose input-output rela-
tionships are given in the form of a Tavlor series. In this
case, the Volterra kernels are evaluated by combining the
iput-output relationships of the building blocks that form
the channel (sce, for example, {19]). Although tus ap-
proach is apparently simple and stramghtforward, particu-
larly when the chaancel tself s composed of a reduced
number of blocks, 1 its application some care must be
excraised by taking two important poits into considera-
ton. First of all, i many cases the number of nonzero
Volterra coctlicients 1s so large that the number of com-
putations involved o evaluating tugher order coethicients
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may be Lo, cactical. The second ore is mare subtle. Per-
haps the most important fact to be keptin mind when con-
stdering the identification of the channel (s that nonlincar
systems behave differeatly for different input signals. To
understand the consequences of this statement, consider a
simple example. Assume we are dealing with a channel
responding to the input sequence x, with the sequence v,
= ax, + Bt} and assumc that x,, can take only the values
+ 1 or — 1. Under these conditions, as x,, = x;‘,, the system
behaves as linear, with input-output relationship v, = («
+ ) x,. On the other hand, if the input sequence can take
values =3, — 1, 1, and 3, the sysicm really behaves as
nonlincar. Hence, we realize that in a Volterra-series
model each one of the nonlincar terms affects the trans-
mitted sequence differently if different modutation for-
mats arc used. As an example, the third-order Volterra
kernel 2i§}) has a different behavior on PSK and QAM sig-
nals. In fact, this kernel muluplies a term

*
hubu AIl)n ~1-

For PSK b, ,b}_, = |b,_,|* = constant, and hence the
kernel contributes to linear distortion only. As a conclu-
sion, the Volterra kernels should be rearranged, after
computation. to account for eftects like this. Besides op-
erating by inspection. a general way to reduce the Vol-
terra coeflicients in order to account for the modulation
format at hand is based on an orthogonal Volterra series.
We shall con:ider this point further on.

Consider then global identification. This is entirely
based on computer simulation, and consists of identifying
the Volterra kernels of the transmission system (already
in their reduced version) through a gradient algorithm
(see. {17. ch. 10] for further details about the identifica-
tion algorithm). Using global identification, the reduction
problem mentioned above can be solved at once by using
what we call an orthogonal Volterra serics, a type of cx-
pansion that depends on the channel input characteristics
and does not need any further reduction.

A Underlving Theory

The Volterra expansion (3.4) has the structure of a Tayv-
lor senies, and as such shares with the Taylor series some
negative features. For example, it might be madequate to
represent highly nonlinear systems, or, cquivalently. non-
lincar systems with large outputs. Morcover, the Volterra
model o @ orven channel may not be improved by adding
more terns 1o the series. Finally, even when the channel
inpat segnence are ndependent random variables, the
terms i (308 are not even uncorrclated. Now | many of
the drawbacb s of the Volterra senes can be fixed up by
tsine orthoconal polvnonial expansions. These consist ot

usiny an mput ouatpat relationship of the tvpe

o Uiy et (7)‘”(\‘,. Vo)

(41

where 07 denotes o polvnonmual of degeee ¢ that s or

thoconal wirh respect to the sequence ot random vanable .

(v.). More precisely, the expectation E1QY Q%)) is
cqual to zero if ¢ i, or it i = j but the arguments of
Q" and Q' are not a permutation of cach other. 11 it is
assumed that the sequence (x,) 1s a stationary sequence
of independent, dentically distributed random vanables,
the construction of these orthogonal polynomials is a rel-
atively straightforward task. In fact, the resulting poly-
nomials turn out to be a generalization of multidimen-
stonal Hermite polynomials, as defined by Grad [25].
They can be constructed, by using an observation of Za-
deh 1206], according to the following rule:
Q" xe, ca) = Paleg) o Pu()  (4.2)
where ny, - -+, n, denote the number of indexes of the
arguments of Q! equal to ky, - - -, k;, respectively, and
P, (-) arc polynomials in a single indeterminate orthog-
onal with respect to the random vanable x,, i.c.,
E[P(x,) P (x,)] =0

where E1 -] denotes expectation with respect to x,. For
example,

for 1 #j

Qm(-*‘lv xe, x3) = Pylag) P(as).

Consider then the probiem of constructing the polyno-
mials P(-). They can be found using a procedure based
on the selection of a sequence of linearly independent

monomials in the variable x,, say f,, f,, - - - . Explicit
formulas are (see also [22, p. 608ff])
PL (-xn)

fL fk—l fo
EUrEaf) ELAT] - ELFE A

= det

CEUEAY EUSA-) e ElAT]

B. Application 10 Digital Radio Modulation Systems

—

In our situation, we can start from the sequence of
monomials

v, X v

vy vt

l.x,. o |\' lz. S S

I R

3%

; .
I.\',,".\',,, RO S e

This sequence must be reduced by taking into account
the particular type of modulation scheme involved, which
may render sonic of the menonnals linearly dependent.
For example, with anit-enerey PSK we have |x, |7 = 1.
and conscquenty the fourth, the cighth, und the ninth
mononials above must be deleted trom the hist. Further-
more, for four-phase PSK we have v} — 440

” "o

which
causes the seventh and the tenth monomial o be deleted,
(RIS

Finally . the polynomials 0" associated with the par
tucubar modulation scheme can be constructed as tollows,
Use first rule (42)0 then delete the polynonuals which
correspond to the components of the channel outpat Gall-
g ontside of the bandwidith of interest (see (17, pp. 542
] for tmnher detnds) . In practice. this carresponds e

keepge only the terms of the type vovie vovv s,
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cte. Vo examplc, the Q-polynomials for unit-cnergy PSK
are, up to order three

R
I

S * .
R PN R P P B

Similarly, for unit-cncrpy 16 QAM we have
h

R B uE !

FIRE TRV U S W ,H,l,l - I].l/,

|.r, lz.ll — 1.32x,.

V. Some EXAMPLES OF APPLICATION

We shall now consider some examples of applications
of the concepts outlined in previous sections. Examina-
ton of a few simple situations will allow us 1o show the
appticability of this theory, and will hopefully enhance its
comprchension.

We deal with a nonlincar channel modeled using a
bandpass orthogonal Volterra series whose coeflicients for
PSK signaling are given in [ 17, p. 566]. This channel re-
sults from the cascade of a rectangular shaping filter, a
fourth-order Butterworth filter with 3 dB bandwidth 1.7 /T
(T 15 the signaling period), a typical TWT amplifier ex-
hibiting both AM/AM and AM/PM conversion, and a
second-order Butterworth filter with 3 dB bandwidth
1.1/T. The amplifier is driven at saturation when the se-
quence at the input of the discrete channel has magnitude
*.(See [17, ch. 10}, for more details about this channel.)
V/e proceed to compensate for this channel by inserting
ir. front of it a nonlinear device with memory obtained as
an approxunation of the channel inverse. In particular, we
denote by (ry, ry, . I,) the compensator obtained by
retaining in it only ry first-order Volterra cocflicients, ry
third-order cocflicients, etc. Thus, for example, (3, 1)
indicates a third-order compensator with three first-order
and one third-order cocllicients. The coetficients are cho-
sen whose indexes are the same as the Volterra coethi-
cients of the channel having the largest magnitudes. Our
computational cxperience has shown this choice to be the
most effecuve, although no formal proot of its optimality
has been obtained yet.

Constder first transmitting an 8 PSK symbol sequence
driving the amplifier at saturation. The reduced Volterra
kernels wre histed 1 Figo b The symbols are exp (0,
exp (g '), L exp (j77 /4). Without any compen-
sation, the samples ot the received signal form the con-

<ellation shownon Fre 2,

where only the first quadrant
i~ showa tor sake of clanty. It a (1, 1) compensator 1
used, the corresponding constellation looks like Fig. 3.
The reduction in the constellation spread 1s apparent. No-
tree also the phase rotation introduced, which compen.
sates forthe rotation caused by the amplifier’s AM/PM
A CH b compensator vives the result shown i e 4
while the
[RTAR

For 16 QAN wonals wath the highest energy fevel don

cffect of a G S) compensator as depreted in

e the amphifier at sataration. the channel quality wathoot
compensanon s even fess satistactory . Frao 6 shows the

recerved constelation i the fist quadrant it s seen thae

LINEAR PART

1Y 1.0/ + 3 0.686
12” © 0.063 - 0.001
(g” 2 .0.026 - 0,014
1()” 0.0% ¢« 3 0.031

JRD-0RDLK NUKUINEARITIES

'((uj,z) < 0.039 - 0.022
f(]i(’) © 0.018 - 5 0.018
r(‘,é{ < 0.035 - j 0.035
f(()é% - .0.08 - 0.009

(3) .
fllg = -0-01 -5 o0.017

STH-ORDER NONLINLARITIES

(s) . ;
fog011” 0-039 - i 0.022

L

Fig. 1. A set of Volterra kemels for a PSK channel

1.60
.
R .
0 00 L — —
0 on oy [
Frgo 20 Signad constellation at the output of the channel of 52 1 when 8

PSK s used

two clusters averlap. The effect of a (10 1) compensator
is shownan el 7, while Fig. 8 depicts the effect ot a (4,
1) compensator. Sinmlar results have been obtained tor 1o
10 (1,
UG T compensator], and Fry.
12 1¢4, ) compensator].

PSK: see g 9 (uncompensated channel), Fige
1) compensator], Frg.

For all these sttuithions . the eflect of the compensator
on the power density spectrum was evaluated ., and found
to be pracucally rrretevant: actually . the ddicrence be-
tween the power spectra of uncompensated and compen-
sated signals never exceeded o fraction of o deaibel.

Conxtder then the case ot a channet whose Tiacar pant
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Fig. 4. Same as in Fig. 2 with a (4, 1) compensator.

a6

645

by

T Samne s by

\

wath €30 5) compensator

-1.00

"v- .
S U
-1.00 00 RE 2.00

QAM s used.

Signal constcllation at the output of the channcl of Fig. 1 when 16

2.00
‘ .
>
z I
00
~1.00
~1.090 co RE 2.00
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Fig. 9. Signal consteltation ot the output of the channel of Fig. 1 when 16
PSK 15 used.
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Fig. 12. Same as in Fig. 9, with a (4. ) compensator.

has been designed to satisfy the Nyquist criterion for no
intersymbol interference. Specifically, assume the trans-
mitter and recciver filters to have the common shape of a
square-root raised cosine, with a rolloff factor 0.5. The
channel between them is modeled through a nonlinear am-
plifier exhibiting AM/AM and AM/PM conversion ef-
fects, driven at saturation, and whose input-output char-
acteristics arc described using a model due to Saleh (see
[28, eqgs. (1)-(5)]) with parameters

o, = 1.9638 o, = 2.5293

B, = 0.9945 B, = 2.8168.

Block identification of this channel turns out to provide
rather disappointing results. For example. we get a center
linear kernel whose value is 21"’ = 1.97 + j0.08, which
fails to account for the rotation (about 40°) introduced by
the amplifier at its saturation point. We need to reduce the
Volterra expansion obtained by block identification, or,
even better, to use global identification and orthogonal
polynomials. This operation provides the cocflicients for
the orthogonal Volterra series. The largest among them
are listed. up to order three, in Fig. 13. It can be seen that
the central lincar coefhicient reflects the phase rotation
caused by the nonlincar amplifier. Figs. 14 and 15 pro-
vide a comparison among the scattering diagrams of § PSK
and 16 PSK. respectivelv. at the output of & channel with
(1. 0) compensation (1.c., compensated only for the vo-
ttion and the amplitude scaling) and (3. 6) compensa-
tion. Inspection of these scattering diagrams shows that

Il

I
1l

the citect of the third-order compensator, although evi-
dent, s less dramatic than for the cases considered pre-
viously,

VI Coxarosions

We hive considered the desien of digital compensators
tor nonlinear chuannels Our desten s based on the theory
of pth-order mvernse of nonhneanties. and ona compulter-
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Fig. 13. A sct of onthogonal Volterra-series coeflicients.
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Fig. 14. Signal consicllations at the output of the channel modeled by the
coeflicicats of Fig. 13 for 8 PSK. (a) With (1. 0) compensation. (b} With
(3. 6) compensation

(b

()

Fig. 15, Signal constellations at the output of the channcel modeled by the
coethcients of Far 13 for 16 PSK (u) With (1, 0) compensation. (b)
With (3, 6) compensation

atded analysis of the system to be compensated. A num-
ber of examples was worked out to show the applicability
of this approach. In principle, it is possible to compensate
a yiven channel o any desired degree of accuracy. How-
cver, obvious complexity limitations make the approash
presented  here more usetul when the uncompensated
channelis strongly nonlinear, Infact, iConly a third-order
compensator 1y alowed, our results show that it will work
better with a channel with a few strong low-order nonlin-
cartics than with o channel wiich has small nontiacar
Volterra cocthewents, but many of them are of a higher

HIURNAGL
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order. In the latter case, a certain amount of power back-
off may prove more benelicial than a nonlincar compen-
sation. (Notice that the backofl can be included in our
model by simply multiplying the right-hand side of (3.13)
by a factor smaller than onc.)
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GROUP CODES AND SIGNAL DESIGN
FOR DIGITAL TRANSMISSION

by

Michele Elia

Dipartimento di Elettronica - POLITECNICO DI TORINO - ITALY

I - INTRODUCTION

Symmetry seems to be a feature intrinsic to every life process. It
should be a very stimulating undertaking to discuss the fundamental
role played by symmetry in art, music, chemistry, biology, physics,
computer science and more generally in every mathematical science. A
fascinating sample of this subject was provided by H. Weyl [53] in his
last book dedicated to a synthetic view of symmetry. Nevertheless in
this paper we limit our considerations to the key role of symmetry in
communication theory. In this field symmetry plays an indispensable
part in reducing the compleiity of every data transmission scheme.

The algebraic notion of group underiies both the geometrical descrip-
tion of digital signals proposed by Shannon, [43], and the geometrical
methods of error control codes developed shortly after Shannon's work.
However the introduction and systematic use of methodology, machinery
and language of group theory in both coding theory and signal design
must be ascribed to Slepian {2,3].

In some way Slepian's approach parallels Klein's Erlagen program on the
foundation of geometry: all geometric objects and concepts can be

formulated starting from the abstract notion of group which provides

This work has been sponsored in part by the United States Army through
its European Research Office grant N. DAJA45-86-C-0044, and in part by
Consiglio Nazionale delle Ricerche through grant N. 86.02428.07.




the appropriate tool for every useful and applied mathematical theory.
In Klein's words “a geometry is defined by a group of transformations,
and investigates everything that is invariant under the transformations
of the given group"”. In our context the main object left invariant by
the group is a code, as will be defined later.

The Shannon theory of any communication process shows that the informa-
tion is inherently discrete and also that the quantity of information
that can be processed by every practical system is finite.

Signals for sending information over physical channels are essentially
time- and frequency-limited; as a consequence the dimension of the
signal space is finite. The signal energy, defined as the integral of
the signal square over its finite time interval, induces an euclidean
metric in this signal space. Therefore, by using an orthonormal basis,
we associate to each signal a point (or vector) in an euclidean finite
dimensional space. In this way a finite set of signals corresponds to a
finite constellation of points that we call a code.

Early in the fifties Slepian introduced the concept of group code in
the design of signal sets for the Gaussian channel. A group code is a
set of M unit vectors spanning an n-dimensional real space, on which
the matrices of 2 finite group representation operate transitively.

A  straightforward generalization of Slepian's group codes is obtained
by considering a set of initial vectors instead of just one vector. The
resulting set of vectors is called generalized groun alphabet.

The present awakening of interest in group codes is due to their in-
creasing use in transmission schemes of combined modulation with either
convolutional or block codes, an approach initiated by Ungerboeck.

A  fundamental problem for Slepian's group codes is the choice of the
initial vector that maximizes the minimum distance. A second basic
problem concerns the existence of group codes for every pair of inte-
gers with M greater than n. The classification of all configurations of
given dimension is constructively important. As far as we know, only
the classification in dimension three is complete. The same problems,

formulated for generalized group alphabets, seem even more difficult.




However  the  tield is wide and deserves investigations cither from a
purely theoretical point of view or for practical applications.

We are aware of the fact that the theory of group codes is still
incomplete,  but the open problems really challenge the human thinking

and stimulate the rescarch work of engincers and mathematicians alike.

11 - SIGNAL SETS: THE GEOMETRICAIL MODEL

Signals for sending information are essentially limited both in time
and frequency. According to a point of view accepted in the past, the
simultaneous concentration attainable in both domains is limited by an
uncertainty  principle, so named after the analogous relations in
quantum mechanics. Moreover energy constraints are imposed for practi-
cal purposes.
Finite  bandwidth W and finite time duration T together imply that the
dimension of the Hilbert space of the signals is essentially finite.
It we require strictly finite duration and simultaneously maximum
concentration of signal energy in a given bandwidth, we have a problem
whose natural mathematical setting is the calculus of variations. This
problem has boen thorougly discussed, [30,5,40,41), even if its conse-
quences have not received much attention from the signal designers yet.
Lot Vobe a Hilbert space with support the interval {0,T], and let the
~oalar product be detined as

T - — -

Co,u) = [ o(t) o) dr o(t), v(t)eV

0
wherre overbar denotes complex conjupat ion.
The  norm square [[Lf|7,  defined as |lo||’= (0,0) represents the energy of
the signal  w(t)eV. TIn the set of linear operators acting in V and

having a discrete spectrum, the operators associated to linear filters




Aate ot particulag interest. Let HOE) denote the filter transfer
tunction. Theretore the Fourier transtforms ¢(1) and ¥(f), respectively

o tilter input and output signal, are rvelated by
YO = H(f) (1)

The problem now is to seek the ionput function o(t), of unit energy, for
wirtch  the  energy  of the corresponding output functions ¢(t), in the
bandwidth [-W,W], is as large as possible. That is, we want to maximize
the tollowing integral

W F——
f HOE) H(E) o(f) &(f) df
W

i

w R
1= [ o) ¥(s)
nndder the constraint
oo ————
I, = j o(f) o(f) df = 1 ;
- OQ
Bv  means ot Lagrange's multipliers the solution is found to be the
e1 enfunction associated to the largest eigenvalue of the integral
Cguation

T
(1) ( K(t-s) o(s) ds = A o(t) te(0,T)
(4]

where the positive definite kernel is defined by the Fourier transform

W
E(t-s) = j HOEH(E) expl2nj(t-s)f] df.
-W
The positive eigenvalues A, ordered in decreasing order, exhibit the
tvpical trend shown in Fig.l, which demonstrates that the dimension of
the  signal  space of functions limited boch ir time and frequency is
crveontially finite and can be taken to be approximately 2WT, [5). (1f
Jwol,  this statement is true within an energy dispersion of some few

per cent and irrespective of H(f) ).
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Fig.l - Typical behavior of the eigenvalues of equation (1)

A natural orthogonal basis B = {¢;(t)}{.), n<2WT, for the space of the
signals  limited both in time and frequency is provided by the set of
normalized eigenfunctions associated to the set of eigenvalues of
greatest value. By means of the basis B, we can uniquely associate to a

given set A of M signals

n
m:(t) =2 x:: ¢.(t) i=1, ... ,M
(6 =k x5
a et € of M ovectors
Xi:(xil' «aa Xin) izl, PR ,M

that we call code. The square of the Euclidean length of a vector X is
cgral to the energy of the signal m(t).
We can now describe the operation of a quite general model of transmis-
sion wcheme at the level of signal manipulation.

transmitter associates to every scurce symbol, in a one-to-one way, a
signal chosen in the set A and sends this signal through the channel.
The  channel  operates by adding to the transmitted waveform m(t) a
sample of a4 zero-mean random process v(t) with known spectral density.
The received signal is thus

r(t) = mg(t) + v te[0,T]

where /) is a random variabie taking values in the set {1,...,M}.
If we confine ourselves to coherent detection, from the observation of
r‘t) over the interval [0,T], the receiver makes an estimate of the

value taken bv ¢, that is, an estimation of the symbol emitted by the

[¥s)




source.  Let  us  suppose that all the information relevant to every

detection criterion lies in the signal space, therefore any decision
can be taken by referring to the vector

ey,
whoere

T ———
ri=J r(t) ¢;(t) dt
g
This is cquivalent to considering a discrete-time continuous-amplitude
additive channel that produces
r=X +N
where: N is a random vector with known probability density f£(.);

Xr is a transmitted code vector from the code C.

At  the receiver end, the decision taker may be described by an exhau-
stive partition of the n-dimensional space into M' disjoint regions Ry,
i=1,...,M', if the received vector r falls in region Rj then the de-
tected symbol will correspond to the integer j. We say that the demodu-
lator takes a "hard" decision or a "soft" decision depending on whether
M'=M or M'>M respectively. In conclusion the channel is modelled by a

discrete memoryless channel with M input symbols and M' output symbols.

IIT - MEASURES OF PERFORMANCE

The performance evaluations of group codes on communication channels
rule the development of the entire theory of group codes. Hereafter we
briefly review some important performance indices wused in digital
communication systems. In order to avoid discussions depending on
transmission protocols, here and in the following we will deal only
with transmission schemes based on hard decisions. 1In this context the
most typical index is error probability, i.e. the probability that the

receiver takes a wrong decision about the symbol emitted by the infor-
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mation source. Assuming in particular equienergetic codes, white Gaus-

sian naoise channel and maximum likelihood decision criterion at the

receiver's  eand, then the regions R;, i=l,...,M, will be connected
hypercones  bounded by hyperplanes with the vertices in the origin.
Therefore the error probability is given by a sum of n-dimensional

integrals; letting R

; denote the complementary region of R; in R and

let p{X;} be the probability of sending message i, we have

M
ple) = & [ £0X-X;) dX p{X;)

i=1 Ri

A sccond important index is the configuration matrix C=(cij) defined as
the Gram matrix of the set of vectors, 1i.e.

cjj =XI Xj
This matrix C occupies a central position in the theory of group codes.
It conveys all the information relevant to evaluate code performances
on the white Gaussian channel and is also useful to compute other
performance indices.

A thivd relevant index is the minimum distance defined as the minimum

distance between any pair of distinct vectors of the code, that is

d2in = min || X; - Xj“2
if]

The evaluation of each performance index is usually very hard, so that
frequently the knowledge of upper and/or lower bounds is of sufficient
interest. As an example we derive an upper bound for the error probabi-
lity, that applies to symmetric point configurations.
.ot us assume that the code has a symmetry such that the error probabi-
lities conditioned on a given code vector do not depend on this vector,
i.e. ple} = p{e'Xi} i=1l,...,M
Let the region Ry, i=1,...,M, be bounded by the set of s hyperplanes of
equat ions Ix-x;417 = "X-XJ-"2




where  j belongs to a convenient subset of {1l,...,M}; the explicit
equation of each hyperplane turns out to be XT(Xi—Xj) = 0.

Applying the union bound, we get a general upper bound for the error

probability

S

ple) = plelx;) = [ £X-Xp) dX < 1 | £(X-X;) ax
Ri j=1 4
sf £(X-X,) dX
0

o

In

A
o

vhere Qj is the halfspace defined by the inequality XT(Xi—Xj)

Q, is the halfspace defined by the inequality XT(XI-XO)

IA
)

and X, is a code vectst at the minimum distance from X,.

More detailed comments on performance indices will be provided after

the description of the main features of group codes.

Iv - GROUP CODES

Symmetry seems to be an unavoidable occurrence for reducing the comple-
xity of every high-dimensional set of signals as required by Shannon's
channel theorem to guarantee high coding performance. For instance, we
can take advantage of symmetry in designing good decoding algorithms
for error control codes. Symmetry makes feasible the new digital modu-
lation schemes which combine error control codes and modulations.

As we observed in the introduction, symmetry cannot be separated from
the notion of group which discloses symmetry's real nature and con-
stitutes its formal counterpart. It was early in the fifties that
Slepian introduced the group codes for Gaussian channels; his ideas

found a definitive formulation in a stimulating paper [3], in 1965.




Now let us formally detine the main object of this paper.

Definition 1.

Consider a finite set S(G) = {D(g): gcG} of real orthogonal matri-
ces  that form a faithful representation of a finite group G and consi-
der an n-dimensional unit vector X,. The set S(G)X, = {Xg:D(g)X, : geG)
of M vectors generated by the action of S(G) on X, is called group code
and denocted by [M,n}, if it spans the n-dimensional space; otherwise i.

is called planar group code.

In the present theory, group representations by matrices having real
entries are a fundamental mathematical tool.

The theory of group representations originated in the middle of the
nineteenth century from the works of many mathematicians. Equipped with
the theory of group characters, (the character of geG is the trace of
the matrix D(g)), the theory of matrix groups assumed a central role in
the development of modern algebra. We do not try to survey this sub-
ject. To coding theorists we recommend the book by Blake and Mullin
[12), while for a thorough development of the topic we refer to the
books by Curtis and Reiner {24], Burrow [17] and van der Waerden ([48].
0ld fashioned but very rich and suggestive is the book by Burnside,
{le].

For easy reference and later use we recall some results concerning

group representations.

1 - A group representation is either irreducible or completely
reducible, i.e. it can be written as direct sum of irreduci-
ble components.

2 - A representation with real entries may be either real redu-
cible, or real irreducible. In this second case it may still
be complex reducible or not.

3 - 1he number of distinct irreducible components is equal to

the number of group classes.
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4 - Given two representations of groups G and G, we obtain a
representation of  their direct product by means of the
direct matrix sum

D(g g')= D(g) = b(g") geG and g'eG,

The  concept  of direct matrix sum is very important in describing the

structure of group codes. The general observation fits a paradigmatic

principle: in manv inctanres to eplit 3 problem ncaus tu solve it.

Let |G| denote the cardinality of the group G. The cardinality M of the

code may be less than or equal to |[G|. In case it is less there exists

a subgroup H of G such that the initial vector is left invariant, i.e.
HX =X,

where with HX, we denote the set {X: X=D(h)X, , heH}.

The proof of the following theorem is straightforward and follows from

definition 1 and elementary properties of the groups.

Theorem 1.
i) |G|2M and |G| | M!
ii) if |G} > M then M | |G|

where d|b means that d is a divisor of b.

The following theorem concerning the subgroup H. bas an important
consequence on the existence conditions for group codes. It 1is also
useful to clarify the relations between the group and the code.

Theorem 2.

The subgroup H cannot be normal.

See [7, 12, 35] for a proof.

Theorem 3.

I[f G is abelian then |G} = M.

10




Besides  the abstract properties of the group G, also conditions con-
cerning  the skeleton of its representations are important for distin-
guishing between planar and nor planar codes.

In order that an initial vector exists such that the gencrated set of
vectors spans the n-dimensional space, the representations of the group

G must satisfy the condition expressed in the following theorem.

Theorem 4.

Given an n-dimensional representation D(g) of a group G, a vector
X,eE" exists such that the set [D(g)Xl, ch} of vectors spans E" if
and only if every irreducible representation contained in D(g) appears
with a multiplicity less than or equal to its dimension.

¥or a proof see Blake and Mullin [12].

Definition 2.

A representation is said full homogeneous if every irreducible compo-

nent has a multiplicity equal to its dimension.

The symmetry of a group code is exploited by the configuration matrix.

According to the previous definition, it is an M by M matrix of rank n
the entries of which are the scalar products cyj = XE Xj i,j=1,...,M.

[t 1is also of interest to define an extended configuration matrix C®
whenever IG')M. Let Xg=D(g)X1 be the vector produced by the action of
the element geG. We define the extended configuration matrix as the [G]
by |G| Gram matrix whose entries are

Copt = Xg Xg' g,8'e G
Since H#{e}, the vectors of the set S(G)X, are not all distinct; in
fact the same vector appears with multiplicity [H].

The following theorem illustrates the shape and structure of configura-

tion matrices which rely in depth on the associated group.

11




Theorem 5.

The rows of any configuration matrix of a group code are permuta-
tions of the first one.
This applies to both extended and not extended configuration matrices.

For a proof see [3] and [10].

It is not hard to verify i{hat the extended C¢ configuraticn matrix is
the ¥ronecke: product of C by a matrix J, (possibly with a re-ordering
of rows and columns):
Ce=C o J

where J is a convenient matrix of which all entries are ls.

The importance of the configuration matrix C of a group codes, was
enhanced by Slepian's proof, [3], that it is possible to recover the
vectors of the code from C. Let Py(g), geG, denote the permutation
matrices of the right permutation representation of G induced by its
subgroup H; let AG(H) be the group algebra of G generated by these
permutation matrices, and let AZ(H) be the centralizing algebra of

AG(H). We have the following theorems.

Theorem 6.
The extended configuration matrix of a group code can be written as
the sum
ce= £, c(g) L(g)
where L(g), geG, are the permutation matrices of the left regular

permutation representation of G.

Theorem 7.(Slepian)

The extended configuration matrix commutes with all the permutation
matrices of the right regular permutation representation of G, i.e. C®
belongs to the centraling algebra of the group algebra of the right

regular permutation matrices.

The configuration matrices of different group codes generated by diffe-
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rent irreducible representations of the same group G may originate an
orthogonal basis in the regular group algebra iG({e}), as stated in the

following theorem due to Blake.

Theorem 8.
Let D(g) and D'(g) be recal irreducible representations of the finite
group G of dimensions n; and ;- respectively, and C; and Cj the
configuration matrices of the group codes {D(g)X;, geG} and {D'(g)Xj,
geGl, respectively. Then

i) if D(g) and D'(g) are not equivalent, then C; C; = 0 for any

Xi and Xj;

ii) if D(g) = D'(g) and X; = Xj’ then (Ci)2=(G/"i) "Xi"2 Cy-
For a proof see Blake and Mullin [12].

Furthermore special structures of the configuration matrix may uniquely

characterize the group code.

Theorem 9.(Blake)
Let us consider the configuration matrix C of an [M,n] code in which
all entries of the first row are distinct.
Then C is the configuration matrix of a group code if and only if:

i} its rows are permutations of the first one;

ii) M is a power of 2, i.e. M=2%;
1ii) in the decomposition

C=1 c; Py

the matrices P; are permutation matrices of order two and
commute with each other.
Moreover n2s and the group generating the code is commutative of type

(1,1,...,1).
Now we <can devise a gencral theorem concerning the conditions for a

given Gram matrix to be the configuration matrix of a group code.

However the formulation of such general conditions may be quite unsati-
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stactory, because they lack either classical mathematical fascination

or practical utility. 1t is a challenging question to find more pleas-

ant and possibly useful conditions.

Theorem 10.
A Gram matrix C is the configuration matrix of a group code if and only
it
i) rows of C are permutations of the first one;
ii) a matrix J, all cantries of which are 1s and the order of
which is not greater than (M-1)!, exists such that the
matrix C'=C ® J commutes with all matrices of a right
r ‘gular representation of a group G.

See {10] for a proof.

We stop here the presentation of Slepian's group codes. In the next
section we shall consider an extension that will include multilevel

codes which share, of course, the same underlying property of symmetry.

V - GENERALIZED GROUP ALPHABETS

The class of multidimensional alphabets is introduced. Special instan-
ces of these codes have been widely used for designing multidimensional
signals in combined modulation and coding. Their structure is very rich
in symmetries and, as far as we know, most of the signal constellations

in actual use, either equienergetic or not, belong to this family.

Definition 3.

Consider a set of K n-vectors X = {Xl,...,XK}, called the initial
set, and L. orthogonal n x n matrices Sy,..., S; that form a represen-
tation S(G) of the group G. The set of vectors S(G)X;, ... , S(G)Xg
obtained from the action of S(G) on the vectors of the initial set 1is

called a Generalized Group Alphabet, and from now on shortened to GGA.
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Detinition 4.

A GGA is called separable it the vectors of the initial set are tran-
sformed by S(G) into either disjoint or coincident vector sets, i.e

® j Fk

S(G)X5 0 S(G)Xy =
S(G)X; j =k

Since an orthogonal matrix transforms a vector into one with the same
length, the signals associated with a GGA have as many energy levels as

there are in the initial set.

Definition 5.

A GGA is called regular if the number of vectors in each subalphabet
S(G)Xj, j=1,...,K, does not depend on j, 1i.e., each vector of the
initial set is transformed by S(G) into the same number of distinct
vectors. A regular GGA is called strongly regular if each set S(G)Xj
contains exactly L distinct vectors.

The following result stems directly from the definitions.

Theorem 11.
The number M of vectors in a regular GGA is a multiple of K. If GGA is
strongly regular, then M=KL.

We consider now some distance properties of the elements of a GGA.

Choose a partition of a GGA into m subsets 2;, Zj,..., 2 For each

Zm-

subset Z;, we can define the intradistance set as the set of all the

Fuclidean distances among pairs of vectors in Zj. For any pair of

distinct subsets Zi’ Zj’
of all the Euclidean distances between a vector in Z; and a vector in

we define their interdistance set as the set

7
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Detinition 6.
The  partition of a separable GGA into m subsets Zy,...,2. is called

fair 1f all the subsets are distinct, include the same number of vec-

tors and their intradistance sets are equal.

We  shall now present a constructive method to generate fair partitions
of a GGA. Consider the generating group S(G) of the GGA, one of its
subgroups, say S(H), and the partition of S(G) into left cosets of

S(H). We have the following result.

Theorem 12.

If the left cosets of the subgroup S(H) are applied to the initial set
of a strongly regular GGA, this procedure results in a fair partition
of the GGA. Under the same hypotheses, if S(H) is a normal subgroup,
then left and right cosets give rise to the same fair partition.

For a proof see {11].

The condition of strong regularity of the GGA can be removed: but in
this case it may happen that different cosets generate the same element
of the partition. Hence, some of the cosets must be removed from consi-
deration. Moreover, notice that if S{H) is a normal subgroup of S(G),
then we do not need to distinguish between left or right coset parti-
tions. On the contrary, if S(H) is not normal, the partitions obtained
from right cosets may not be fair, as it can be shown by a counterexam-
ple. In some cases, we are interested in further partitioning every
element Z; in the same number of subsets. This leads to the concept of
a chain partition, that is the GGA is partitioned in subsets which in
turn are partitioned in the same number of sub-subsets, and so on. We

call level of a subset in the chain partition the number of inclusions

beetwen the given subset and the whole group code.
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Detinition 7.
The  chain partitior  of  a separable GGA is called tair 1t any two
clements  of the partition at the same level of the chain  include the

same number of vectors and  have equal intradistance sets.
For  fair chain partitions we have the lollowing  theorem.

Consider a strongly regular GGA, and a chain of subgroups of its
generat ing group S(G), that is

S(Hy) < S(Hp) © S(Hy) < ...c S(Hg) = S(G)
Use ”s-l and its left cosets to generate a partition of GGA. Then, use
Ho_y and its left cosets in Hg to further partition all the sets of the
previous partition. Repeat the procedure with Hg_ 9, and so on, until

Hy and its left cosets in Hy are used. The resulting chain partition of

GGA is fair.

A theorem concerning the interdistance sets sheds some further light on

the symmetry properties of GGA's.

Theorem 14.

L.t H be a normal subgroup of G. The partition of a strongly regular
GGA obtained by applying the left cosets of H to the initial set X has
the following property: the interdistance set associated with any two
cosets, say Sy and SoH, is a function only of the coset S3H, where

59 0= STSQ, and not of Si» S2 separately.

For a proot see [11].

We  conclude  this section by showing how GGAs, in particular group
codes, can  be used in conjunction with error control codes to exploit
the channel capacity further. We shall illustrate first the joint use
of multidimensional alphabets and block codes, thus we will describe

how the signal alphabets are paired to convolutional (trellis) codes.




Imat and Hirakawa [33] and recently Ginzburg [31] have described  con-
structions  which make it possible to design set of signals with a
regular structure and with  an arbitrary minimum distance as insured by
the algebraic properties of block codes. Ginzburg's construction consi-
ders Lo biock encoders Cp,0p,...,C which accept scurce symbols, and

output [, blocks (qli'QZi"“'qu)’ i=1l,...,L, of N symbols cach. The

modulator t raps ecach w-tuplo (qjl""’qjh)' j=l,....N, into the vector
X] :f(qj],...,(]jl‘), J: 1, e N

chosen  from a GGA of M=M;...M; elements. This mapping is obtained as

follows In GGA we define a system of L partitions such that each

class of the g-th partition includes My «classes of the (2-1)-th
partition. Each class will consist of M(2)=M|My...M, signals. By
numbering the classes of the (2-1)-th level occurring in a class of the
¢-th level we can obtain a one-to-one mapping of the set of classes of
the (e-1)-th partition onto the set of integers {0,...,M2-1}. There-
fore, i1f qij are chosen in the set {O,...,Mg-l}, £=1,...,L, any L-tuple
(qjl""’q)L) deiines a wunique value of the j-th elementary signal

‘\}‘:f(qjl,. .. ,(]j[l).

We shall now see how an Ungerboeck code can be designed using GGA. The
procedure suggested in [47] and called "mapping by set partitioning",
can  be achieved by the notion of fair partition, which represents a
systematic generalization of that concept.

kach  coded symbol  depends on k+v source bits, namely the block
14(31,...,ak) of k bits generated by the source, plus v bits preceding
this block. The v bits determine one of the N=2VY states of the encoder,
say g = (“k+1’ e, ak+v)’ a,=0,1. The encoder state for the next
coded  symbol is obtained by shifting the a,'s k places to the right,
dropping the right-most k bits and inserting on the left the most
vrecent k source bits. The encoded symbol Xj’ which is an element of a

GGA, depends on t and o and, in this framework, the encoding procedure
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can be  described using a trellis and by assigning to  the  branches
outgoing trom ecach node the set of symbols obtained from a fair parti-

tion of a GGA.

Vi - THE INITIAL VECTOR PROBLEM

The minimum distance is a relevant factor to define the code performan-
ce on noisy channels because it is a fact that distani signals are hard
to confuse as an effect of the noise. Moreover monotone decreasing
functions of the minimum distance constitute an upper bound to the
error probability. It follows that codes with large minimum distances
are desirable, and in particular the choice of Slepian's group codes
with the greatest minimum distance leads to the initial vector problem

which is also interesting from a geometrical point of view.

The initial vector problem for group codes can be stated as follows:
given a finite group S(G) of orthogonal matrices that generates a group
code [M,n| by operating on an initial unit vector X, among all such
vectors X find out the vector X, for which the minimum distance is the
greates. possible. We have to find the maximum of the minimum of the
distances, i.e. to determine a kind of saddle point with respect to the
continuous variable X and discrete variable g:

max [ min d(D(g"')X,D(g)X)]

X g#g'
where  the maximum is taken over all the vectors of R™ with the con-
straints |[X||=1 and S(H)X=X. S(H) is a subgroup of S(G}, possibly H={e}.
At the present time no general solution is known. The problem has been
solved for many classes of group codes and for codes generated by
special representations. Djokovic and Blake, [25], settled the case of
full homogeneous component; Downey and Karlof found all the optimal

group codes in three dimensions ([28]; Biglieri and Elia identified the




optimal  initial vector for Variant I permutation codes, [9], and
showed  that. for cyclic codes [8] as well as for abelian codes the
optimal initial vector is obtained by solving a linear programming
problem. Nevertheless, the evidence so far is that the problem cannot
have, in general, a closed form solution.
We do not  digress on the meaning of "solution™, but we adopt the
pragmatic view that for practical purposes any kind of numerical solu-
tions should be regarded as a valid onec.
For computational approaches the initial vector problem can be stated,
in general, as a mathematical problem with a quadratic objective sub-
jected to quadratic constraints, [37].
Let d2 be the minimum square distance. The optimal initial vector X, is
the solution to:
d2 = Max Min d?(D(g)X,,X,)
wherc the maximum is taken over all unit vectors and the minimum is on
all elements geG different from the identiuy.
For any unit vector X and unitary matrix D(g), we have
d2(D(g)X,X)=2-2(D(g)X,X).
Thus maximizing the minimum distance is equivalent to minimizing the
maximum inner product. We may assume the maximum inner product positive
and equal to r?. Let Y=(1/r)X,. Then, for all non identity elements of
G, (D{g)Y,Y)<l and (Y,Y)=1/r?2. Hence Y is a solution to:
Find Max (Y,Y)

subject to (D(g)Y,Y)<1 whenever g is not the identity in G.

The problem of the initial set of vectors for GGA is more complicated,
of course, than for group codes because more than one vector is to be
found and different objectives may motivate the choice. In this case
one formulation of the initial set vector problem is the following:

Given S(G) find a set {X;,...,Xg} of K n-dimensional

vectors with average square norm equal to E, such that

the generated GGA is regular and such that the minimum

distance is as large as possible.
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Here  we do not treat the subject further, as the discussion would be
very long. For example GGA used in conjuction with error control codes
hopefully must have the maximum possible minimum intradistance associa-
ted to a given fair partition.

In this context the open problems are countless; the few known solu-
t.ions either are heuristic or obtained by hand manipulations. Much work

must stiil pe done.

VII - THE CONSTRUCTIVE VIEW

One important intent of the group code theory is to produce good point
constellations for the design of digital signals to be used in data
transmission, vector quantization, pattern recognition or in many other
fields. A second and ambitious objective of this theory is the systema-
tic classification and construction of all regular point constellations
in n-dimensional spaces. Before discussing the capabilities of the
constructive methods of group coding theory, we present three intere-
sting point constellations that have large minimum distances and provi-
de a good instance of this matter.
The first example is given by the [8,3] group code which is the classi-
cal constellation shown in Fig.2, (edges connect points at minimum
distance), that has a minimum distance slightly greater than the cube.
It is generated by the action of the representation of the cyclic group
C,-
The group is generated by:

cos(mh/4) sin(wh/4)

D(g)= (-1 o
-sin(wh/4) cos(wh/4)

The initial vector is (J? 1/(242 + 1)), J( 2J2/(242 + 1)), 0)

The minimum distance is déin = 4/(2 + 1/J2) > 4/3
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Fig.2

The second example is a not regular and not equienergetic GGA having 14
points in 3 dimensions. The configuration shown in Fig.3, is generated
by the action of a representation of the group of the cube

C; x Cy x €y x Sy

The initial set is {(u, 0, 0), (v, v, v)}, where

v =47 (7 -2 J2)/123 u =47 (13 + 8 y2)/123

The minimum distance is d2;, = 28 (7 - 2 J2)/123 = 0.9496 and it is
significantly greater than 0.93386, the minimum distance of the best

known spherical 14 point configuration.
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Finally, the third and last example is the [16,4] group code generated
by the action of a representation of the abelian group C, x C4. The
configuration is shown in Fig.4. The representation is generated by
cos{uh/4) sin{wh/4) k=1,2
D(g)= (_])k @ (_1)h+k ®
-sin{wh/4) cos(uh/4) h=1,...,8
The initial vector is (J((J2 - 1)/2), JQ(J_ - 1)/2), J(E_tmj§3, 0)

The minimum distance is déin =2(2-42) =1.1716

Note that one of the most used point constellations, the two dimensio-

nal 16-QAM has minimum square distance 2/5= 0.4.

The ingredients involved in the constructive aspect of group codes are
groups, matrices ana imagination. Four remarkable achievements are par-
ticularly important:
1) an old theorem by Jordan stating that the number of finite
groups with trivial maximal normal abelian subgroup, which
have an irreducible representation of dimension n, is finite
and upper bounded by b(n)= n! 6m(n) (“_1)+2, where w(n)
counts the number of primes less than n;
2) the recent classification of all finite simple groups;
3) the fact that the number of finite groups of given order is

finite;
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4) the complete classification of all commutative groups as

well as their representations.

Finite simple groups, Galois' fundamental discovery, are instrumental
in building up all other groups and their representations. Abelian
groups together with finite group having trivial center can be used to
classify all groups which have a representation in n-dimensional
spaces. In this context it is useful to recall the outstanding theorem
of the classitication of finite groups, completed in 1981. This theorem
resulted from the global efforts of several hundred mathematicians from
all-over the world over a period of 100 years. It is remarkable by

itself and relevant to the classification of group codes.

Theorem 15. {20}
Th2 finite simple groups are to be found among:
i) the cyclic groups Cp of prime order p.
ii) the alternating groups A, of degree n at least 5.
iii) the Chevalley groups
iv) the Tits group

v) the 26 sporadic simple groups.

The Mathieu group, usually denoted by M,,, played a central role in the
discovery of all 26 sporadic grcups. M,, is also important 1in the )
theory of error-correcting codes, because it is the automorphism group
of the Golay code (24,12,8), the only binary perfect multiple error
correcting code; sece [39,49,21).

Even if it is not necessary to resort to the above definitive theorem,

simple groups play a basic role in group codes.

Theorem 106.
Let us consider a {M,n] group code generated by a group G through
its representation D{(g). If M is a prime number then the group code is

generated by a cyclic subgroup Cy of G.
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Theorem 17.

No {M,n]) group codes exists if M is an odd prime and n is odd.
Theorem 18.

A [M,n] group code can be constructed using vepresentations of a
cyclic group provided that either

i) n is even and M>2
or

ii) n is odd and M is even.

Theorem 19.
The number of [M,n] group codes, generated by irreducible repre-
sentations of groups with trivial maximal normal abelian subgroup is

finite and bounded by a function of n alone.

Concluding this section we remark that the problem of the existence of
group codes for every M and n is very interesting as it concerns the
existence of regular configurations of points on n-dimensional spheres,
and generalizes the vertex configurations of regular polytopes.

We can summarize the results as follows:

a) n even M2n+l at least one group code generated by a

cyclic group of order M exists

b) n odd, M evenzntl at least one group code generated by a

cyclic group of order M exists

c) n even M odd prime only one group code generated by the

cyclic group of order M exists

d) n odd, M odd prime no group code exists

e)

=3
1
(%]

any M all group codes have been classified by
Downey and Karlof. No group codes with M

odd exist.
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The definitive classification of all group codes is far from complete,
so that many open problems and conjectures still deserve attention.
Most of these problems are appealing and may produce beautiful results.
We recall, by way of sample, two interesting problems that are still
open:

- One group code in dimension 5 with M=15 is known to exist, [26].
It is conjectured that it is the only group code in five dimensio-
nal space with an odd number of points.

- Brauer [15] and his school have reached the classification of all
groups having an irreducible representation in dimension 4 and 5.
It would be interesting to find out all group codes in dimension &4
(the useful dimension for today's applications).

The determination of all group codes [M,5] would also be intere-
sting as well as the classification of [M,7]. The latter is possi-
ble due to the complete list of groups with irreducible represen-

tation in dimension 7 obtained by Wales [50, 51, 52].

VIII. CONCLUSIONS

The impact of ancient and modern mathematical concepts on manipulation,
transmission and storing of informatign has made a science of fine,
intelligent but scattered techniques.

In this paper we reported on group code theory as an application of
general results originated from the ancient geometry. The geometric
view provides the appropriate framework for dealing with digital signal
processing, signal design, vector quantization and in general communi-
cation systems. To enhance the importance of this concept in communica-
tion we also considered the combination of these alphabets with block
or trellis codes. We have not described the interesting connection of
lattices, group codes and combined modulation and coding, this beauti-

ful subject is thoroughly developed in the fundamental book [21] by
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Conway and Sloane.
In this paper no essentially new results were proposed. However we hope
that the presentation of a topic which is earning a prominent position
with increasing applications in the new global communication system
will be of some interest, especially to young vesecarchers who are
looking for fruitful areas of research with high scientific content and
useful applications.
We think that group code theory, which may be credited of a 1long
history dated back to ancient regular polyhedra, 1is a good example of
Feller's conception of mathematics [56]. In fact we wish to conclude
with Feller's words:

"The manner in which mathematical theories are applied does

not depend on preconceived ideas: it is a purposeful techni-

que depending on, and changing with experience".

27




(1]

(2]

(3]

(4]

(5]

{6}

(8]

{91}

(10]

(11]

(12]

(13]

{14]

{15]

REFERENCES

).Sleptian, "Bounds on Communication", Bell System Technical

Journal, vol.42, May 1963, pp.681-707.

D. Slepian, "A Class of Binary Signaling Alphabets', BSTJ,
n.35, pp.203-234, January 1956.

D.Slepian, "Group codes for the Gaussian channel", Bell
System Technical Journal, vol.47, April 1968, pp.575-
602.

D.Slepian, "On neighbor Distances and Symmetry in Group

Codes", TIEEE Trans. on Information Theory, vol.IT-17,
September 1971, pp.630-632.

D. Slepian, “Permutation Modulation", Proc. of the IEEE,
March 1965.

D. Slepian, "Some comments on Fourier Analysis, Uncertainty
and Modelling", SIAM Rew., vol.25, n.3, July 1983.

€3]

.Biglieri amd M.Elia, 'On the existence of group codes for
the Gaussian channel", IEEE Trans. on Inform. Theory,
vol.IT-18, May 1972, pp.399-402.

.Biglieri, and M.Elia, “"Cyclic-group codes for the Gaussian
channel", IEEE Trans. on Inform. Theory, vol.IT-22,n.5,
September 1976, pp.624-629.

X3

m

.Biglieri and M.Elia, '"Optimum Permutation Modulation Codes
and Their Asymptotic Performance",IEEE Trans. on Infor-
mation Th., vol.IT-22, n.6, November 1976, pp.751-753.

E.Biglieri and M.Elia, “Configuration matrices of Group
Codes for the Gaussian Channel', Int. Symp. on Inform.
Theory, Cornell, USA, November 1977.

E.Biglieri and M.Elia, 'Multidimensional Modulation and
Coding for Bandlimited Channels",1EEE Trans. on Inform.
Theory, to be published.

I.F.Blake and R.C.Mullin, "“The Mathematical Theory of
Coding", Academic Press, New York, 1975.

I1.F.Blake, "Distance properties of Group Codes for the
Gaussian Channel", SIAM Journal of Applied Math.,
vol.23, No.3, 1972.

I.F.Blake, "Configuration matrices of group codes", IEEE
Trans. on Inform. Theory, vol.IT-20, n.l, January 1974,
pp.95-100.

R. Brauer, "Uber endliche lineare Gruppen von Primzahlgrad",
Mathematical Annalen, 169, 1967, pp.73-96.

28




161

[17]

(18]

[19]

(21])

[22]

(23]

(24]

(26]

(27])

(28]

(29]

{30]

(3t}

H.

<

Burnside,  "“Theory of groups of Finite Order" Dover, Now
4 b4 ’

York, 1955.

.Burrow, "Representation Theory of Finite Groups', Academic

Press, New York, 1965.

.R.Calderbank and J.E.Mazo, "A new description of trellis

codes', IEEE Trans. on Inform. Theory, vol.IT-30, No-
vember 1984, pp.784-791.

.R.Calderbank, and N.J.A.Sloane, "Four-Dimensional Modula-

tion with an Eight-State Trellis Code", AT&T Tech.
Journal, Vol.64, No.5, May-June 1985, pp.1005-1018.

sy

.Conway, R.T.Curtis, S.P.Norton, R.A.Parker, R.A.Wilson,
"ATLAS of finite groups", Clarendon Press, Oxford, 1985

joe]

.Conway and N.J.A. Sloane, "Sphere-packing, Lattices and
Groups", Springer Verlag, Jew York, 1987, to appear.

M.S. Coxeter, "“Regular Polytopes", Dover, New York, 1973.

.M.S. Coxeter, "Regular Complex Polytopes", Cambridge Uni-

versity press, London, 1974.

.W.Curtis and I.Reiner, '"Representations Theory of Finite

Groups and Associative Algebras", Wiley, New York,
1966.

.Djokovic and I.Blake, "An Optimization problem for Unitary

and orthogonal Representations of Finite Group', Trans.
of the American Math. Soc. 164, 1972.

.P. Downey and J.K. Karlof, "On the Existence of [M,n]

Group Codes for the Gaussian Channel with M and n 0dd",
YEEE Trans. Inform. Theory, vol.IT-23, no.4, July 1977,
pp-500-503.

.P. Downey and J.K. Karlof, "0dd Group Codes for the Gaus-

sian Channel", SIAM J. Appl. Math., vol.34, no.4, June
1978 pp.715-720.

.P. Downey and J.K. Karlof, "Computational Methods for

Optimal [M,3} Group Codes for the Gaussian Channel",
Utilitas Mathematica, vol. 18, March 1980, pp.51-70.

.P. Downey and J.K. Karlof, "Group Codes for the Gaussian

Broadcast Channel with two receivers'", IEEE Trans.
Inform. Theory, vol.IT-26, no.4, July 1980, pp.406-411.

..E. Franks, "Signal Theory", Prentice Hall, 1969.

.Ginzburg, "Mnogomerniye signaly dlya nepreryvnogo kanala"
Problemy Peredaci Informacii, n.l, 1984, pp.28-46, (in
Russian).

29




1321

373

[34]

{35])

[36]

(37)

[44]

[45])

[46])

{47]

{

MHavgittai, "Symmetry: Unifying Human Understanding',

Pergamon, 1986.

-Imai, S.Hirakawa, "A new multilevel coding method using

error-correcting codes", IEEE Trans. on Inform.
Theory, vol.IT-23, 1977, pp.3/1-377.

Ingemarsson, "Commutative group codes for the gaussian

channel", 1EEE Trans. on Inform. Theory, vol. IT-19,
pp.215-219.

[. Ingemarsson, "On the structure of group codes for the
Gaussian channel", Report LiTH-ISY-1-0782, Linkoping
University, Sweden, 1986.

1.Jacobs, “Comparison of M-ary modulation systems", Bell
System Technical Journal, vol.46, May-June 1967,
pp-843-864

J.K. Karlof, '"Permutation Codes for the Gaussian Channel",
Report of Dpt. Math. Sciences, University of North
Carolina, Wilmington, 1987.

R. McEliece, "The Theory of Information and Coding", Addison

3

Wesley, 1977.

.J.MacWilliams and N.J.A.Sloane, '"The Theory of Error-Cor-

recting Codes'", Amsterdam: North-Holland, 1977.

A. Papoulis, "The Fourier Integral and its Applications",
McGraw-Hill, 1962.

A. Papoulis, '"Signal Analysis", New York, McGraw-Hill, 1977.

W.W. Peterson and E.J. Weldon, "Error-Correcting Codes', MIT
Press, Cambrdge, 1981.

C.E. Shannon, "A Mathematical Theory of Communications',
BSTJ, vol.27, 1948, pt.I pp.379-423, pt.II pp.623-656.

C.E. Shannon, "Probability of Error for Optimal Codes in a
Gaussian channel", BSTJ, vol.38, May 1959, pp.611-656.

Shu Lin and D.J. Costello, "Error Control Coding: Fundamen-

tals and Applications", Prentice-Hall, Englewood
Cliffs, New Jersey, 1983.

N.J.A.Sloane, "Tables of Sphere Packing and Sperical Codes",

IEEE Trans. on Inform. Th., vol.IT-27, n.3, May 1981,
pp.327-338.

G.Ungerboeck,"Channel coding with multilevel/phase signals"

IEEE Trans. on Inform. Theory, vol.IT-28, January 1982,
pp.55-67.

30



{48

[49)

{501

(511

[92]

{53}

(54]

56]

lovan der Waerden,  "Medern Algebra',  vol.1/2, Ungar, New

York, 1953.

H.ovan Lint, "Introduction to Coding Theory', New York,
Springer Verlag, 1982.

.B.Wales, "Finite Linear Groups of prime degree', Canadian
Journal of Mathematics, 21, 1969, pp.1025-104l.

.B.Wales, "Finite Linear Groups of degree seven, I'", Cana-
dian Journal of Mathematics, 21, 1969, pp.1042-1066.

.B.Wales, "Finite Linear Groups of degree seven, II",
Pacific Journal of Mathematics, wvol.34, N.1, 1970,
pp.207-235.

Weyl, “Symmetry', Princeton University Press, Princeton,
1952.

.Wozencraft and I.Jacobs, '"Principles of Communication
Engineering', Wiley, New York, 1965.

.Zehavi and J.K.Wolf, "On the performance evaluation of
trellis codes'", IEEE Trans. on Information Theory,

vol.IT-33, n.2, March 1987,pp.196-202.

.Feller, "An Introduction to Probability Theory and its
Applications", vol. I, Wiley, New York, 1968.

31




Appendix D



Reprinted trom

Renato M. Capocelli

tditor

Sequences

Combinatorics,

Compression, Security,

and Transmission

© 1990 Springer-Verlag New York Berlin Heidelbery.

Printed in the United States of America.

1,

,\ (if
'

9.
g

[Re
e~

Springer-Verlag

New York  Berhin

Fondon  Paris

Tokyo

Herdelberg

Hong Kong




A Note on Addition Chains and some Related
Conjectures *

M. Elia and F. Neri
Dipartimento di Elettronica ~ Politecnico di Torino
I- 10129 Torino - ltaly

Abstract

Addition chains are finite increasing sequences of positive integers, useful
for the efficient evaluation of powers over rings. Many features of addition
chains are considered, and some results related to the still open Scholz-
Brauer conjecture are presented.

1 Introduction

In many fields, such as number theory, cryptography, computer science, or nu-
merical analysis, an efficient computation of

“=zr...2 (1)

is often required, where n is a positive integer (n € Z) and z can belong to any set
R (usually a ring) in which an associative multiplication with identity is defined.
It was at once observed that the computation of (1) can be obtained through a
sequence

2
z,z8,2%,...,2%,.. ., "

where each element z% is the product of two previous ones. It turns out that the
nth-power of z can be associated to the sequence of integers
l=agp<ag; <a<...<a, =n (2)

with the property that, for every i, a couple (3, k) can be found, such that

a; = a; + ag, 1> 3>k
“This work was financially supported in part by the United States Army through its European
Hesearch Office, under grant n. DAJA45-86-C-0044.
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The sequence (2) is called addition chain for n. Without loss of generality, the
a;’s are assumed to be sorted in ascending order, and with no duplications.

The problems typical of the evaluation of powers have been thoroughly dis-
cussed by Knuth {1} and by Borodin and Munro [2]. In particular {1 reports on
many problems that are still open and that deserve attention both as research
problems and for their importance in many applications.

Let us now recall some examples where the evaluation of powers is a crucial
point.

o First of all, the present day widely discussed public key cryptographic
scheme proposed by Rivest, Shamir and Adleman [3], requires the search
for two large {several hundreds digits) prime numbers p and ¢, and the
evaluation ~f powers in Zpq, the ring of the residues modulo pg.

« As a second example let us consider the computation of inverses in finite
field GF(q); it is well known [4] that the inverse of every non-zero element
is given by

and in many applications the size of ¢ makes this computation as heavy as
those required in the previous example.

e As a third example, let us consider the computation of roots in finite fields.
Given a € GF(q), let k be the root index; we want to compute the expression

1
b=at

whenever it exists. A sufficient condition for the existence is that k has an
inverse into the ring Z,-1, i.e. there exists an integer f(k) such that

kf(k}) =1mod ¢-1.
Under this condition we have
b=allk),

If k has not an inverse in Z,_; then more tests on a are needed to know
whether its k-th root exists.

e As a final example, the generation of pscudo-random sequences

Z9,%1,...,Zn,... by the purely multiplicative congruential method, using
the iterative relation

Tn+1 = aZ, mod m,

requires multiplicrs a that are primitive elements in Zp, in order to generate
sequences with maximum period. The test for a number to be primitive
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may consists in raising the number being tested to quantities related to the
factors of p{m) 1.

In many interesting cases these exponents have the same order of magnitude
of m, hence they are rather sizable for non trivial periods. Moreover all
the operations must be done fully expioiting the finite size registers of the
underlying machine if long periodicity is desired (see {5]), so that even the
simple multiplication can be fairly costly.

2 Power Evaluations

In this section we discuss the direct and simplest approaches to power evaluations,
since they give insight to more tricky theoretical problems.

Several schemes have been proposed and compared, in order to minimize the
efforts (i.e. number of multiplications) for evaluating (1), but it seems that none
can be definitively preferable in the general case. The choice of a method instead

of the other is affected by a number of constraints, aims or available resources,
namely:

¢ the order of magnitude of the exponent n;
o the availability of storage for precomputed tables:
+ whether the situation calls for

1. independent evaluations of the power (1);
2. evaluations of several powers of the same base z;

3. evaluations of several powers to the same exponent n.

In this paper we do not pursuit a complete comparison of all these different
situations, but we will be interested mainly on the minimum number of products
necessary to evaluate {1). In other words we will restrict our attention to the
study of the function {(n), defined as

minimum number of products for evaluating the (3)
n-th power in an associative ring.

At a first sight a very economical evaluation of (1) is obtained by the binary
decomposition of the exponent n, which leads to a number of muitiplications
upper bounded by 2|{log,n|. The same decomposition implies the simple but
tight lower bound [log, n]. Most considerations about the evaluation of powers
concern the estimation of tighter upper bounds.

' is the Fuler totient function.
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2.1 The right to left binary method

If we write .
n=7 b2, b; € {0,1}, (4)
1=0

where t = |log, |, the power (1) can be computed as
Y
" = H (:z:2 ) . ()
=0
Given that the b;’s can be only O or 1, raising to b, is straightforward. We shall
call this approach right to left binary method.

In (5) t multiplications are required to evaluate the powers

=¥ i=1,2,...,t (6)

and one more multiplication is needed for every non zero &;, i < t, leading to a
total of

{logzn] +v(n) -1
multiplications, where v(n) is the number of 1’s in the binary representation of
n. The storage required by an implementation of the binary method (5) can be
reduced to three memory cells: one to hold the successive powers (6), another to
hold n during its decomposition, and an accumulator for the result.

The right to left binary method can be generalized to an m-ary method in
the following way {6]. Let

t = |log, n| (M

and consider the m-ary decomposition of the exponent n
n=y dim, d;€{0,1,...,m~-1}. (8)

This decomposition can be rewritten as

n:Zm‘+2Zm‘+...+(m—l) > o, (9)

i€J, i€J; t€Jm—y

where J; denotes the set of indices such that the coefficients d; in (8) are equal
to J.
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The right to left m-ary method can be described by the following procedure.

Step 1. COMPUTE AND STORE (10)
™, ™ ™ ™
b 1 LR | )
Step 2. FOR EVERY j€1...m -1
- IYies ™
COMPUTE Z; = z z:'ﬁl,

Step 3. COMPUTE (1) AS
M7 2

Step 1 of procedure (10) requires at most t{(m) multiplications, if [(m) is the
minimum number of multiplications for raising a number to its m-th power:
actually, in the average, not all the terms in Step 1 will be necessary. Raising to
J in Step 2 requires I(j) multiplications, while the remaining operations in Steps
2 and 3 can be carried out with no more than ¢t — 1 multiplications. The total
number of multiplications is bounded by

m-1

tim)+t -1+ Y (). (11)

=2
2.2 The left to right binary method

Another way of computing (1) is to rewrite the exponent n from (4) by Horner’s
rule for evaluating polynomials

n=bo+ 2(by +2(b2 + 2(bs + 2(... + 2b¢) .. .))).

We shall refer to this approach as left to right binary method, since a left to right
scanning of n’s binary representation is required.

The left to right binary method, extended to an m-ary method, is described
by the following procedure, based upon the decomposition (8).

Step 1. COMPUTE AND STORE (12)

m~1.

2 .3
z,z°,2%,... 1 ;

Step 2. LET 1 = ¢;
START WITH z%:
Step 3. REPEAT
LET { =1~ 1;
RAISE TO THE m-TH POWER;
IF d; IS NOT O
MULTIPLY BY z%;
UNTIL ¢ = 0;

1'i0




Table 1: Upper bounds to the number of multiplications in computing (1).

base

3

right to left
procedure (10)

left to right
procedure (12)

00 =1 O W e W N

2|logan] — 1
3|logs n)
3|logyn) +2
4|loggn] +4
4{loggn] + 7
5|logy n) + 10
4|loggn] + 14

2|logy n]
3|loggn] +1
3|logyn] +2
4|logsn) +3
4|loggn] + 4
5|logyn} +5
4|loggn] +6

Note that a certain amount of storage is necessary for the quantities computed
in the first step of the above procedure; moreover the representation base m of
n must be available in a left to right order.

Step 1 of procedure (12) requires at most m — 2 multiplications; actually the
z% do not need to be computed for those values of d; not present in the decom-
position (8). Each iteration of Step 3 requires at most {{m) + 1 multiplications,
the +1 is present only if the i-th d; is not 0. The total number of multiplications
is bounded by

m—2+t(l(m)+1). (13)
2.3 Bounds for 1(n)

A lot of work concerns the search of tight bounds for {(n). By comparing the
bounds (11) and (13), Table 1 can be built, where ¢ is expressed as in (7). The
order of magnitude of the exponent n can be seen to affect the choice of the
base m; the optimal m increases with n. As an example, the base 4 should be
preferred to the base 2 whenever n > 128. Moreover, those bases that are powers
of 2 appear somehow optimal, since they lead to comparatively small coefficients
for {log,, n] in Table 1.

Even if the left to right m-ary method seems to behave better for large bases
m, a careful inspection of the bounds (11) and (13) shows that the bound (11) is
weaker, since Steps 1 and 2 of procedure {10) are open to several optimizations
both in the case of few and the case of many terms in the decomposition (8).

When p(> 1) powers of the same base z are to be evaluated, the right to
left method becomes advantageous. In this case, in fact, the precomputations in

171




Step | of both procedures (10) and (12) can be exccuted only once, so that the
bounds

i=2

m-1
tl(m)+p(t——l+ Z:(j)) (14)

for the right to left method, and
m—2+pt{l(m)+1) (15)
for the left to right method, can be derived. The bound (14) is tighter than (15),

since the coefficient of p is smaller.
It is known that the bounds presented above are asymptotically (for large
n’s) equivalent. Considering the left to right binary method, we can write
{log, n] € {(n) < |logyn| + v(n) - 1. (16)
Since v(n) < [log, n], and

{logy n] + [logyn] < 2|log,n] + 1,

the bounds (16) can be rewritten as

[logz n] < I(n) < 2|logz n|. (17)

Considering the m-ary methods, and substituting t = [log,, n] in (11), the
number /(n) of multiplications for raising to n, is bounded by the number of
multiplications required by the m-ary method which, for m = 2*, takes the form

I(n) < (1 + %) llogy n] + 2°. (18)

If we let 5 = log, logy n — 21ug, log, log, n, (18) becomes

1 logy n
{ < R B —_— . 19
(n) < (1 + log, log, n) °gzn+ o (log2 log, n) (19)

This result is due to Brauer {7] and reported by Knuth {1, page 451, Theorem
D]. It is as tight as possible because of a probabilistic asymptotic upper bound
to {(n), due to Erdos {8], which asserts that the probability that

logy n
l(ﬂ) S logzn-{—(l —6) (ﬂﬁg:;) (20)

is definitively less than 1 for any € > 0, or, equivalently, that there always are n’s
for which the inequality (20) is reversed.

Also the lower bound [logan] can be stressed: in fact Schonhage [9] has shown
that the following lower bound holds for every n

{(n) > logan + logy v(n) — 2.13 {v(r) > 4).
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3 Addition Chains

Addition chains are the tool for solving the prublem of computing (1) for a given
n with the minimum number of multiplications. Note that this problem is only
a particular case of problem (1), in the sense that nothing is said about the
cost of deriving I(n); and this cost can exceed by far the cost of computing (1)
by anyone of the previously quoted methods. Nevertheless addition chains are
useful to the evaluation of powers both from the theoretical standpoint and when
several quantities need to be raised to a same fixed exponent.

Addition chains have been formally defined in the introduction as sequences
of integers

l=qgy3<a1<a;<...<a,=n

with the property that, for every 1, a couple (7,k) can be found, such that
a; = a; + ay, 1>732k (21)

It turns out that if r is the minimum number for which there exists an addition
chain of length r for n, then this addition chain is a solution to the problem stated
at the beginning, and I(n) =r,

It is convenient to define two special classes of addition chains. A star chain
is defined as in (21) with the stronger constraint J=1—1. An % chain is an
addition chain with some marked elements; the condition is that in (21) aj is the
largest marked element less that a;. It can be shown that

I(n) < P(n) < I"(n), (22)

where (°(n) and {*(n) are defined in a way similar to I(n), respectively for [S-chains
and star chains.

A lot has been written about addition chains (see {1] for a presentation of the

rain results), but the problem of finding {(n) is not completely settled, in the
sense that /(n) is not known for all n’s.

Bounds for the function {(n) were shown in the previous Section.

3.1 Functions Related To Addition Chains

Many interesting functions are related to {{n); here we consider two such functions
which are defined as follows.

¢(r) = minimum integer n that I(n) = r (23)

d(r) = number of solutions in n to the equation l(n)=r (24)

For a generic n, for which I(n) = r, the following bounds hold

27/ < e(r) < 27 (25)




the upper bound is straightforward from the definition (23) of ¢(r), while the
lower bound comes from the upper bound in (17). Using the results shown in
Table 1, the lower bound can be tightened to the form 2F("), with F(r) = ar +b;
as an example, exploiting the decomposition to the base 3, we obtain a = 0.53
and b = 0, which is always tighter than 27/2.

Moreover, the same lower bound can be significantly improved using (19); in
{act, after some algebraic manipulations, we can obtain the asymptotic bounds

2”“ﬁﬂ”0#7)5c0)52t (26)

From this and the pre:icus relations the asymptotic behavior of the function ¢(r)
will be

c(r) =27 +o(27).

From (25), and from the definition of d(r), the following inequality can be
stated

dir} <2 —c(r)+1;
hence
dr)+e(r)<2"+ 1L

It is likely to conjecture that d(r) behaves asymptotically as an r-th power of 2:

d(r) = 0 (2%},

where d, is a constant close to 1.

The known values of ¢(r) and d(r) for small values of r, taken from Knuth {1],
are shown in Table 2 where, for sake of comparison, some of the bounds derived
in this Section are also reported.

4 The Scholz-Brauer Conjecture

A famous problem concerning addition chains is the Scholz-Brauer conjecture [10].
This conjecture refers to the chains for 2" — 1, which are of special interest, since
they are the worst case for the binary method (their binary representation is a
string of 1's). Let us call a number n satisfying the inequality

(2" -1) <n—-1+1n), (27)

where {(n) is defined in (3), 3 SB-number.
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Table 2: ¢(r), d(r) and related bounds.

r T2 [2FTTd) | or) | vl ] 2 ]
1 1.41 2 1 2 1 2

2 2 2.83 2 3 2 4

3 2.82 4 3 5 2 8

4 4 5.66 S 7 3 16

5 5.66 8 9 i1 3 32

6 8 11.31 15 19 3 64

7 | 11.31 16 26 29 4 128
8 16 22.63 | 44 47 5 256
9 | 22.63 32 78 71 4 512
10 32 45.25 { 136 127 1 1024
11 { 45.25 64 246 191 7 2048
12 64 101.6 | 432 397 5 4096
13| 90.5 | 161.3 | 772 607 7 8192
14| 128 256 | 1382 | 1087 7 16384
15 | 181.0 | 406.4 | 2481 | 1903 9 32768
16 | 256 | 645.1 3583 11 32768
17 | 362.0 | 1024 6271 9 32768
18| 512 1625 11231 11 32768

The longstanding Scholz-Brauer conjecture states that

all positive integers are SB-numbers.

In the following, it will be shown that (27) holds for infinitely many n’s. Let
us recall some of the properties of I(n), reported from [1}; they will be useful in
the sequel.

I(nm} < (n)+!(m); (28)
129 = o (29)
2° +2%) = a+1 ifa>b>0; (30)
(2°+2°42) = a+2 ifa>b>c>0 (31)
(this 1s Theorem B in [1}]);
a+2<l(2®+2°+2°+29) <a+3 fa>b>c>d>0,

where n = 2%+ 2° 4+ 2° + 2¢ is said to be special (sce [1, p.449]) if the lower bound
holds with equality (this is called Theorem C in {1]};

002" - 1) < n -1+ 1%n); (32)




this implies that the Scholz-Brauer conjecture holds for {%-chains (the result, due
to Hansen, is called Theorem G in {1]).

Lemma 1 [f{{n) = I*(n) then n is a SB-number.

Proof - Straightforward from (22) and (32).
O

Lemnma 2 For every integers a and k, the following inequality holds

28— 1
1(2,: o) <k -kt (33)

Proof - It is direct to verify (33) for a = 0. Now let us suppose (33) is satisfied
for a — I; thus, using (28) and (29), we have

(52 - () )

IA

k2e=1 -
< 1<2T.1_1>+1(2“2 Y1) <
< k2% ' k+a-1+k227041<
< k2°—-k+a.

The validity of (33) for every a follows from the induction principle.
a

Note that the recursive argument used in the proof above also defines, in case
of k=1, an addition chain which contains numbers of the form

202" - 1) 0<t<? 1<h<a-1 (34)
For later use, we state this point as a Corollary.

Corollary 1 There ezists an addition chain for 2% — 1 of length 2° — 1 4+ a, such
that it contains the numbers (34). This addition chain has the form

Lt et -y, @R o),
Note that

N LA S I LR |




Theorem 1 For every positive integer n the inequality
{(2" - 1) <n-2+4v(n)+ |logyn] (35)
holds.

Proof - By decomposing n into its binary representation as in (4}, we can write

t—1 ‘ ¢~ o -
2" o 1= 2Xo b (e gy 4 92lino b b L)y 4 (2b 1) =

‘i RlobT (b 1), (36)

Applying Corollary 1 it can be seen that all the v(n) terms in the summation
but the first are in the chain for (2% — 1), whose length, according to Lemma 2,
1s bounded by 2* — 1+ ¢. Since the first factor in the first term can be expressed
as 2% it accounts for at most n — 2! multiplications. Combining these two
contributions with the »(n) — 1 additional multiplications required by the v(n)
not zero terms in the decomposition (36), the Theorem is proved.

0

Corollary 2 Ifl{n) = |logyn] + v(n) — 1 then n is ¢ SB-number.
Theorem 2 Every n such that v{n) is not greater than 4 is a SB-number.

Proof - The proof of Theorem 2 is given separately for the four cases v(n) =
,... .4

Case v(n) =1 - Proved in Lemma 2 with k = 1.

Case 2 - It must be shown that, for every integer a and & such that

)

v(n) =
a > b > 0, the following iaequality holds
1(22“4'2‘

~1) <22+ 2% 4 q.
We can write
. 1} ~d aa b
A R A A R L

From Corollary 1 we know that 22" — 1 belongs to the addition chain ending
in 2°° — 1, so that, using Lemma 2 we have

a

H2F — ) <2 -~ 1) -4 1<2° 420 4 a




Case v(n; = 3 - It must Le shown that, for every a, b and ¢ such that ¢ > b >
¢ > 0, the following inequality holds

WP ) <2 4 D 42 bat L

In a way similar to the case v{n) = 2, using Corollary 1 and Lemma 2, the
proof stems from the equality

22¢+25+2z 1= 226+2c(22a B 1) N ch(zzb B 1) + 03¢ L

Case v(n) = 4 - Two subcases must be considered: {(n) = a+ 3 and I(n) =
a + 2. In the first case the proof follows from Theorem 1. In the second

case 1t follows from Exercise 13 (n [1, p. 463] — showing that n has a star
chain so that Lemma 1 applies — and (32).
™

4.1 Generalizing the Scholz-Brauer Conjecture

‘The numbers n with all 1's in their binary representation behave much better
than bound (19). In fact for numbers of the form 2" ~ 1, since log; n > v(n) — 1,
the inequality (35) can be rewritten as

2" ~1)<n-1+clogn, (37)

where ¢ is a convenient constant 1 < ¢ < 2. The second term at the right hand
side of (20), in this case, has the form

log,(2" - 1) n

~

log, log, (2 - 1) - logz n

and, for large n’s, the inequality

clog,n <

ogyn
holds

Improvements on the upper bound for I[(n) are shown by numbers which have
some regular patterns in their binary representazion. As an example we consider
thie following Theorem

Theorem 3 For cvery positive integer M of the form

t-1 -t
M= 37204205 b, 2 = (2 - 1)+ 2°M, (3¢)
1:-0

[§1}

the follov-ng upper bound holds

M) <s-24 0(M) + o(t) + |logy t (39)




Proof - The proof, applying Theorem 1, is straightforward.
L
Along the same lines, if we consider numbers of the form
M =1+25 2% 4. ol k
then for t = 24, Lemma 2 shows that
M) < kt—k+1(1)

znd the following Theorem 4 shows that this inequality also holds for cvery ¢ such
that v(t) < 3.

Theorem 4 For every integers k and t, such that v(t) is not greater than 3, the
following tnequelity holds

2k — 1
=) <kt-k+ A t). 40
2k_1)~ + A+ (10)
Proof - The proof is given separately for the three cases v(t) = 1,2,3.

Case v(t) =1 - Proved in Lemma 2.

Case v(t) =2 - Lett=2%+28 with A > B > 0. We can write

ok(244+25) _ { _ ok2? 4+ ox2° ok2® _ 1 pk2t _
2 _ k26
1< )~1<_ZT-——+2 ok —). (41)

2k -1 -1 -1
Due to (28) and (29), and to Lemma 2,

1(2“.7 2kt
L

\

IA
-
—~~
[
s
3
[~]
—
+
-
TN
[3%]
(3] »
] e
>
!
—1
| =
N’
|

< k2P s kA i k4oa

- . . qkat TSI
Since the addition chain for ‘7:1—1 contains :—;Trl, due to Corollary 1, and
only one more product is needed for the two terms inside the right hand

wide of (41), we can write

IZH‘ZA"I,W 1
: BRI B A I R R

N
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Cage v(t) =3 - Lett= 24 4+ 28 4+ 20, with A > B > C > 0. We can write

u ak2¢
| (?ﬁ;_‘) o (y(z“n")l‘f_:i MDY ok Al S e ‘) .

2k — 2k — 1 2F -1

In a way similar to t ie case v(t) = 2, using (28) and (30), and Lemma 2,
we can obtain

ok(24+28429) _
’<“——51'—1—“— <k 428 +2%) - k+ a4 2

(J

We can now propose a generalization of the Scholz-Brauer conjecture in the
form

for every k and for every n the following inequality
2‘:" — 1 R
I(?‘T—I—) < kn — k+l(n)
holds.

Note that, for k = 1, it reduces to the original conjecture.

5 Conclusions

Knuth reports that 1 < n < 18 and sporadic 20, 24 and 32 are SB-numbers with
equality satisfied; moreover he has shown by computer search that {{n) = {*(n)
for all integers less than 12509. As a consequence of Lemma 1, 12509 can be
assumed to be the first non SB-number.

An infinity of SB-numbers exists but it is an open question to prove the
Scholz-Brauer conjecture either in the generalized form or not.

Finally, as a consequence of the results presented in this paper, an even more
interesting open question seems to be find the smallest value of ¢ such that (37}
kolds for every n.

References

1 D.E. Kuuth, The Art of Computer Programming, vol. I, Addison-Wesley,
Reading Massachussetts, 1981, pp. $41-466.

2 A. Borodin, I. Munro, The Computational Complezity of Algebraic and
Numerie Problemns, American Elsevier Pub., New York, 1975.

=0




R. Rivest, A. Shamir, L. Adleman, A Mecthod for Obtaining Digital
Signatures and Public-Key Cryptosystems, Comm. of ACM, vol. 21, leb.
1978, pp. 120-126.

' R. J. McEliece, Finste Fields for Computer Scientists and Engineers,

Kluwer Academic Pub., Boston, 1987.

M. Elia, F. Neri, Generation of Pseudorandom Independent Sequences,
Praceedings of the IASTED International Symposium MIC 86, Innsbruck
(Austria), Feb. 18-21, 1986, M. H. Hanza ed., Acta Press, pp. 25-28.

A. Chi-Chih Yao, On the Evaluation of Powers, SIAM J. Comput., Vol. §,
No. 1, Mar. 1976, pp. 100-103.

A. Brauer, Bull. Amer. Math. Soc., 45 (1939), pp. 736-739.

| P. Erdos, Remarks on Number Theory, lII: On Addition Chains, Acta

Arithm., 6 (1960}, pp. 77-81.
A. Schonhage, Theoretica’ Comp. Sci., 1 (1975), pp. 1-12.

A. Scholz, Jahresbericht der Deutschen Mathematiker- Vereinigung, (i),
47 (1937), pp. 41-42.




Appendix E




A Note on the Complete Decoding of Kerdock
Codes *!

M. Elia, C. Losana and F. Neri
Dipartimento di Elettronica
Politecnico di Torino — Italy

Abstract

A representation of the Kerdock code K(m) is given that allows in-
stantaneous encoding and the use of different complete decoding strate-
gies. Applications to error correction and to vector quantisation are
described. The particularly interesting code K(4) is thoroughly ana-
lysed and the associated bit error rate on the binary symmetric channel
is found in closed form.

1 Introduction

Kerdock codes K(m) are nonlinear codes having many interesting proper-
ties, such as high error correcting capabilities, high symmetry and beautiful
descriptions. They may be viewed in some way as dual codes of Preparata
codes P(m), another noteworthy class of nonlinear codes. The code K(4) is
very interesting because besides the relatively high rate 1/2, it coincides with
the Preparata coc . P(4), so that it looks like a sort of self-dual nonlinear
code.

The most obvious application of Kerdock codes is their use as chan-
nel codes in communication systems. K(4) may also be viewed as the
Nordstrom-Robinson code Nje, and used as a vector quantizer for encoding
random waveforms such as in the case of speech Linear Predictive Coding
(LPC) at the rate of 1/2 bit per sample {3]. In a similar way Kerdock codes

tThis paper was presented at IEEE International Symposium on Information Theory,
Kobe, JAPAN, June 1988.

“This work was financially supported in part by the United States Army through its
European Research Office, under grant n. DAJA45-86-C-0044.




' Ai
0 1
gm-1 _ gm/2-1 2m(2m-—1 - 1)
2m—l 2m+l -2
om-1 om/f2-1 2m(2m—l _ 1)
2m 1

Table 1: Weight distribution for K(m).

allow the decoding from data produced by soft demodulation. In both vector
quantization and soft data decoding the problem is to minimize an objective
function, which most frequently is taken to be the squared-error distortion.

In Section 2 a systematic representation of K(m) is given that allows
instantaneous encoding and the application of different strategies for a com-
plete decoding, as it will be described in Section 3. The application of K(4)
to vector quantization will also be described in Section 3. A short analy-
sis of the computational complexity pertaining to the above applications of
K (m) will be given in Appendix A. Finally, Section 4 reports some results
on the performance evaluation of K(4) used as a channel code on the Binary
Symmetric Channel (BSC).

2 A representation for K(m)

In this Section we briefly recall the formal definition of Kerdock codes in
order to introduce a systematic encoding scheme. We also collect some of
its general properties for easy reference.

The Kerdock code K(m), m even, is a nonlinear code consisting of the
Reed-Muller code of parameters (2™,m + 1,2™/2) and 2™~ — 1 cosets of
R(1,m) in R(2,m). K(m) is also denoted by [2™,23™,2m~1 — 2m/2-1]
Important features of any code are the weight and the distance distributions.
The weight distribution of a [n, M,d] code is the set {A;}%,, where A;
denotes the number of codewords of weight ¢, while the distance distribution
is the set { B;}",, where M B; is the number of ordered pairs of codewords
such that the distance between them is ¢. Linear codes have B; = A; and
the same property is shown by Kerdock codes. The weight and distance
distribution of K(m), taken from (1}, is given in Table 1.

Let c¢g be a vector of R(1,m). For later use it is convenient to interpret




cg according to the following decomposition

x=( =z | z | 2z ) (1)

— m+1— “— m-1— «— 2™ - 2m —

Let w; be a coset leader that performs a translation of R(1,m) to generate
a codeword ¢ of K(m), i.e.
c=w;+cp;

the code K(m) is the union of disjoint cosets of R(1,m), written as follows
K(m) =[w1+ R(1,m)]u w2 + R(1,m)]U...U[ws= + R(1,m)]. (2)

The definition of K(m) strongly lies on the choice of the w;’s, i =

.,2™~ ! which may be obtained by means of primitive idempotents for
length 2™~ ! — 1, or by using simplectic forms to define a convenient set of
boolean functions. A very simple construction of K(4) is given in [2] were
the cosets leaders are defined through simplectic forms, very easy to obtain,
on four variables.

For easy reference, it is convenient to introduce a binary matrix W(m),
built with the coset leaders w; written by rows, an example of which will be
given in (5).

We use a systematic R(1,m) code and its translates, given by coset
leaders w; of a special form, to generate K(m). The followmg two Lemmas
are the formal support to this representation.

Lemma 1 In every coset of a systematic linear (n,k,d) code there exists
ezactly one word with k consecutive zeros in snformation positions.

Proof - Let (¢ | a) denote a codeword of a systematic (n, k,d) code, where
§ is the subvector of information bits. This subvector ranges over the whole
set of possible 2 bit patterns. Given a coset leader (z | y), there exists one
and only one code vector (z | z) such that

zl2)+(=zlv)=(o]2+y)

is the unique coset’s element with k zeros in information positions.
O




Now let & = ( i | 12 ) be a vector of 2m information bits.

— m+1— —m-1—

Lemma 2 In the matriz W(™) there exists a submatriz made of m — 1
columns whose rows are the 2™ different binary sequences of m — 1 bits.

Proof - It is known [9] that Kerdock codes can be viewed as systematic
codes. This means that all the different patterns of 2m bits must appear in
the 2m information positions of the 2™ codewords. As already mentioned,
these codewords can be viewed as translations of R(1,m) due to the 2™~1
coset, leaders w;. These leaders, by Lemma 1, can be chosen to have m + 1
zeros in the m + 1 information positions of R(1,m):

wi = (o] z: | i),
and the codewords of R(1,m) can be taken in systematic form:

cg = (51| 21] 22).
Therefore every codeword of K(m) will be of the form

(1] 21tz |22+ y)

According to the observation above, all the subvectors (i1 | 21 + z;) must
be different for different pairs ¢, and ¢. In particular

(81| 21 + z) # (1] 22 + 25)

for every ¢ # j. That is z; # z; for every ¢ # j or, in other words, all the
subvectors z; in the 2™~ ! vectors w;’s are distinct and range over all the
different binary sequences of m — 1 bits.

9]

As a consequence of Lemmas 1 and 2, w; may be taken of the form
w;=(o|iz]y),
so that the codewords will result of the form

c=( ] | 2z +¢2 | z2+ty )- (3)
— m+1— —m-1— — 2™ -2m —
As noted in (9] the Kerdock code could also be viewed as a surictly

systematic code at the cost of loosing the orderly representation reported
above.




1| L
0} 1
1 16
21120
37112
4 7

Table 2: Weight distribution of ML correctable error patterns for K(4).

2.1 Application to K(4)

The above results applied to K (4) let the generating matrix of the underlying
R(1,4) code be written in the form

10000 111 01101001
01000 110 11010101

Gz =(G1|G2|Gs)=| 00100 101 10110011 |, (4)
00010 011 10001111
00001 000 01111111

and correspondently the matrix of coset leaders in the form

/ 00000 000 00000000
00000 001 11100101
00000 010 10111001
00000 100 11001011 | 5)
00000 011 01010011
00000 101 00011101
00000 110 00100111
\ 00000 111 11111110 /

w4 =

A very interesting feature is the fact that suitable translations of K(4)
cover the whole vector space GF(2)'® without overlapping. In fact 256
correctable error patterns £; have been found by computer search such that
the translates & + K(4) do not overlap and cover the whole space GF(2)'€.
The weight distribution {L;}?_, of the correctable error patterns is reported
in Table 2, where L; denotes the number of error patterns of weight 1. This
property shows that Standard Array decoding is possible for K(4), as it will
be described in the Section 3.

From Table 2 the fact that K(4) is not quasi-perfect can also be observed.




The property reported above for K{(4), can be conjectured to hold for all
Kerdock codes K(m):

suitable translations of K (m) cover the vector space GF(2)*"
without overlapping.

2.2 Encoding

The representation (3) shows that instantaneous encoding is possible. In
fact the first m+ 1 bits can be transmitted while they enter the encoder. At
the (m + 1)-th bit the remaining parity check bits for the R(1,m) code, i.e.
the vectors z; and 22, can be computed. As the remaining m— 1 information
bits enter the encoder, they are summed with the entries of vector z; and
transmitted. At that point the coset leader w; (hence the vector y) is known,
such that the remaining parity check bits can be computed as z; + y and
transmitted.

3 Decoding and Quantization

In this Section some procedures for decoding Kerdock codes and for per-
forming the vector quantization based on Kerdock codes are described. As
a consequence of the representation introduced in Section 2, the problem of
decoding Kerdock codes may be formulated as follows:

given a received word r, find the pair [ib;, ép/ made of a coset
leader and a Reed-Muller codeword, such that the decoded
codeword & = W, 4+ ¢z satisfies the chosen decoding criterion.

Several decision rules may be considered, their main difference lying in
the manner adopted to resolve ties whenever more than |431] errors are
detected, since these codes are not perfect. In particular two strategies
deserve special interest: the Maximum Likelihood (ML) and the Minimum
Correction (MC) rules. They are defined as follows.

Maximum Likelihood rule: r is decoded as the codeword & that max-
imizes the conditional probability p{e | r}. On BSC this rule coincides
with the minimum distance decoding, i.e. r is decoded as the codeword é
corresponding to the minimum distance.

Minimum Correction rule: r is decoded as the codeword at the min-
imum distance if the distance is less or equal to ["—;lj; otherwise the in-
formation bits are extracted from the received word without any correction
attempt.




Four algorithms for decoding Kerdock codes are described in the fol-
lowing, based on the arithmetic in GF(2). They show increasing memory
requirements and decreasing computational complexity. Let us remind that
the Hamming weight wt(z) of a vector z is the number of its nonzero com-
ponents and let us introduce the vector r, decomposed as in (1)

r=(r1|r2|rs3),

that will be referred to as the received vector.

Algorithm 1 (Minimum distance decoding) - The codewords ¢; are
stored in a table. For every received vector r, the 22™ Hamming dis-
tances y; = wt(r—¢;), ¢ = 1,...,22™, are computed and the minimum
y; is found. Ties are resolved by random equiprobable choices. The
decoded bits § are recovered from the corresponding codeword &;.

Algorithm 2 (Syndrome decoding: ML rule) - Hp, the parity check
matrix of R(1,m), the vectors z; = Hpw;, ¢ = 1,...,2™ 1 and the
vectors u; = Hpl;, j = 1,...,22'_1, are stored. For every r the
syndrome 8 = Hgr is computed. The pair [ii;,2;] that sums to s is
then found and ; is recovered from ;. The received vector r is finally
decoded as & = r + £; and the information bits § are recovered from &.

This algorithm must be restricted to K(4), as it takes advantage from
the fact that Standard Array decoding is possible (see Section 2.1). -
As already mentioned, we conjecture that it may also be applied to
decode K{m), for every m even.

Algorithm 3 (Syndrome decoding: MC rule) - This is the previous
scheme adapted to the MC decoding rule.

Hpg, parity check matrix of R{i,m), a table T of the syndrome vec-
tors Hpe associated to error patterns e of weight not greater than
lz—'—/:—;l—_—IJ, and Gp, generating matrix of R(1,m), are stored. For
every r the syndrome & = Hpyr is computed. The error pattern é
is searched in T, using the entry s. If it is found, r is decoded as
¢ = r + & and the information bits § are recovered from & Otherwise
the first m + 1 information bits ;'1 = r; are taken unmodified, the
vector @ = GT i is computed and the remaining m — 1 information
bits are obtained as ;'2 =ry + 4.




Algorithm 4 (Tabular decoding) - A table T; of the indices j’s asso-
ciated to the error patterns £;’s for every r € GF(2)?" and a table
Tz of the error patterns £;’s, j = 1,...,2™"! are stored. For every r
the index j is obtained using Table T;. The error pattern ¢; is read
in Table T; using 7, in order to compute ¢ = r + £;. The information
bits ¢ are finally recovered from &

Vector quantization is a field where K(4) has found a valuable applica-
tion. Let us formally recall the vector quantization problem with minimum
squared-error distortion. Let z = (z4,...,z,) € R" be the input to the vec-
tor quantizer and let {¢;}\; be the set of codewords. The problem may oe
formulated as follows:

find the codeword ¢; among the N possible ones which min-
imizes the squared error

Tz - 22T¢; + ey, (6)

2z~ =2
where if ¢T¢c; is independent of § then the minimum distance
18 achieved by the codeword ¢; yielding the largest scalar prod-
. — pT q.
uct y; = z" ¢;.

The most efficient algorithms known today for performing the vector
quantization using K (4) are based on the Hadamard Transform (HT), whose
definition, for easy reference, will now be recalled.

Let H, denote an Hadamard matrix in Sylvester form, whichisan x n
matrix of +1’s and —1’s with the property that the scalar product of any
two distinct rows is 0. Thus H, must satisfy the relation

H HT = nI,

where I is the n x n identity matrix.
An n-dimensional column vector y is called the HT of the vector z if it
is obtained multiplying the vector z by an Hadamard matrix, i.e.

y= H,z.

In this context we shall consider the i-th binary codeword of K(m) as a
vector of +1’s and —1’s, with +1’s replacing 0’s and —1’s replacing 1’s. It
is easy to see that this will replace the usual vector sum over GF(2) with
the dot component-wise product of integer vectors, hereafter denoted ®.




The scalar and dot products are compatible in the sense that the following
property holds

2 (yoz) = (z0y)7= (7)
Vector quantization using K (m) requires , by direct application of (6), the
computation of 22™ scalar products

Y = zTci’ $ = 17’ . ’22m’ (8)

and 2™ — | comparisons to search the minimum gj;.
Applying the property (7), y; may be computed as

Y= zT(ijc;g) = (ZO w,')TCR. (9)

As noted in [1,2,3], the 2™*! codewords of R(1,m) can be grouped to {rm
a Hadamard matrix Hz= and its negative —Ham. Therefore the y;’s can be
computed as 2™-dimensional HT’s of the 2™~1 vectors (z ® w;). Moreover
only 22™~1 comparisons are necessary to find the maximum scalar product;
the search can be limited to the absolute values | zT¢; | and the proper
codeword can then be chosen according to the sign of zT¢;.

The above observations can be also applied to the minimum distance
decoding of soft data. The computation of Algorithm 1 may be performed
by executing the HT’s of the received vector r and the companion vectors
roO wj,j=2,...,2™ 1 In the following, two algorithms that implement
the decoding along these lines are described.

Algorithm 5 (HT decoding: ML rule) - The matrix W (™ of the
coset leaders and the Hadamard matrix Ham in Sylvester form are
stored. For every r, the 22™ scalar products y; = rT¢;, = 1,...,22™,
are computed by performing the 2™ HT’s Ham(r ® w;) and —Hzm (r©
w;), s = 1,...,2m. The maximum g; is then found, resolving ties by
random equiprobable choices. The received vector r is finally decoded
as the codeword ¢;, from which the information bits § are recovered.

Algorithm 6 (HT decoding: MC rule) - The matrices W™, Hjm
and Gpg, generating matrix of of R(1,m), are stored. For every re-
ceived vector r, the 22™ scalar products y; = rT¢;, ¢ = 1,...,22™, are
computed by performing the 2™ HT’s, Ham(rOw;) and — Ha=(rOw;},
t = 1,...,2m. The maximum ¢ is then searched. If there are no ties,
r is decoded as the codeword é;, from which the information bits i are
recovered. Otherwise the first m+ 1 information bits are taken unmod-
ified (;'1 = 1), the vector 8 = G] $) is computed and the remaining
m — 1 information bits are taken as ;'2 =r; + a.




Direct application | Direct FHT Proposed scheme
m 23m—I — 22m-1 m22m—l 2m[3 + (m _ 2)2m—l}
4 1,920 512 304
6 129,024 122,88 8,384
| 8 8,355,840 262,144 | 197,376

Table 3: Complexity figures for vector quantization with K(m).

An efficient method for computing the HT's required by the above Algo-
rithms is reported in Appendix A, together with computational complexity
remarks. The resulting complexity figures are summarized in Table 3.

4 Bit and Word Error Probabilities for K(4)

In general it is very hard to compute either bit error rate or word error
rate for nonlinear codes. For K(4), however, such a computation is feasible
because its structure is very similar to that of linear codes. In fact, as
previously observed, the decoding can be oiganized as a Standard Array,
since the translates of K(4) by the correctable error patterns do not overlap
and cover the whole vector space of dimension 16 over GF(2). In this case
(see [1,6]) the bit error probability p, and word error probability p,, after
complete decoding on the BSC can be expressed as a polynomial in the raw
bit error rate p of the BSC:

1 16 ]
g Z E; p‘a
=0

where the coefficients F; are reported in Table 4. They have been computed
from the Standard Array according to a counting scheme proposed in [1].
Interesting are the asymptotic expressions p, < 1_42;5_4},3 and p, = l-%zgps
for the ML and MC decoding respectively, as p tends to zero. From these
relations it follows that, at least asymptotically, the MC rule is superior to
the ML rule as far as the bit error rate is concerned. On the other hand,
as expected, the word error probability, whose asymptotic expressions are
Pw < 448p® and p,, < 504p3, shows a better asymptotic expression in the
ML case.
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1 E,' - bit E.‘ - word
ML MC ML MC

0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 1464 1329 3584 4032
4 —12635 | —10856 —32088 -37912
5 52116 40497 140448 175000
6 || —130242 ] -—81309 | —388080 | —512288
7 211196 65510 744480 1047104
8 || —218250 | 110310 || —1036728 | 1565760
9 117176 | —409012 1069376 | 1753808
10 22836 | 675936 | —820512 | —1485792
11 —99288 | —704544 463680 950880
12 88496 | 496376 | —187880 | -—454104
13 | —43680 | —233184 51744 157528
14 12480 66912 —8688 —37696
15 —~1664 —8960 672 5600
16 0 0 0 —392

Table 4: Coefficients for bit and word error rate computation of K(4).




5 Conclusions

In this paper we have dealt with many different properties of Kerdock codes.
A description of Kerdock codes that allows instantaneous encoding was
given. This approach leads to the application of two different decoding
strategies, i.e. the well known Maximum Likelihood criterion and another
one that we have called Minimum Correction rule. Referring to K(4) it
has been shown that a Standard Array can be built by translating the set
of codewords without overlapping. From the inspection of this Standard
Array it turns out that K(4) is not quasi-perfect (see also Table 2). The
same Standard Array allows the computation of the bit error rate for K(4)
on the binary symmetric channel, with respect to both ML and MC decoding
strategies: in this particular case MC is asymptotically superior.

Finally it has been analized a scheme suitable both for decoding and
for vector quantization based on K(m). Based upon Hadamard Transforms,
it shows very low computational complexity figures. Table 3 compares the
number of sums required by the proposed scheme with the standard FHT
and the direct application of Algorithm 1 above.
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A Complexity of soft data decoding and vector
quantization based upon K(m)

Every dissertation on decoding complexity suffers the lacking of suitable
measures of complexity. However for most practical applications the number
of arithmetical operations (in any field), the number of logical operations
and the amount of storage required can be taken as meaningful figures. In
the following we estimate the complexity, in terms of number of arithmetic
sums, for decoding and vector quantizing based upon K(m).

In (3], by referring to a definition of K(4) as Nje, it is shown that in the
vector quantization problem, the nearest neighbor codeword can be found
with 30" additions and 128 comparisons. By using similar arguments, based
on a variant of the Fast Hadamard Transform (FHT), and using our rep-
resentation of Kerdock codes, we will introduce a generalization to K(m),
that shows the same complexity figure in the case m = 4.

It v as already shown in Section 3 that the vector quantization problem
can be solved with the computation of 2™~1 Hadamard transforms of di-
mension 2™. Tle camplexity of this computation stems from the following
observations, motivated in [1,2,3].

1. The HT of dimension 2™ may be computed by evaluating HT’s of
smalicr dimension. In fact the matrix Ha= may always be written as

. Hzm—-l Hzm—l )
HZ"‘ - (Hz.a-l —Hzm—l )

This means that a HT of dimension 2™ may be computed by perform-
ing two HT’s of dimension 2™~! and operating 2-2™~! sums, and every
HT of dimension 2™~! may by obtained fcem two HT'’s of dimension
2™~? and 2- 2™ ? sums, and so on.

This observaticn allows a decomposition of the Sylvester-type matrix
Ha~ in terms of Hy submat. .ces, where the matrix Hy has the structure

1 1 1 1
1 -1 1 -1
He=17 1 -1
1 -1 -1 1
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As an example

Hy Hy Hy H,
H, —H, H4 —~Hy
Hy Hq-H{-H,
Hy -H, —H4 H,

Hyg =

. The vectors z and w; can be partitioned into subvectors of dimension 4
z= (11 I z2 [ I 22-—2)
and
w; = (wu | W | | w,..-z,-),

and their dot product may be performed independently in each single
part
zOw; = (21 QWi |Z3Q w3 | ... | 24 Qwy).

Note that the action of w,; on z; is to change the sign of some entry.

. The HT’s of (a1, a3, as, as) and (a3, az,as, —a;) require 12 sums

(a1+a2) + (as+aq)
(a1 +a2) + (as—ay)
(ar+a2) — (as+a4)
(01 +az) - (as - 04)
(a1 —a2) + (as+a4)
(a1 —a2) + (as — a4)
(a1 —az) — (az+ay)
(a1 —a2) — (as—ay).
. Given a7 = (a;,a3,4as,44), the HT of a vector derived from a by an

even number of the sign changes can be obtained from the HT of a by
simple permutations and sign changes. If we call 7 = (51, b2, b3, by)
ihe HT of a, we have

(01, az, as, a4) (b, by, bs, by)
(—a1,~az,~a3,—ay) = (=by, bz, —bs, —by)
(—01, az, a3, a;) < (—bs,~by, —by,—b3)

(01, az, —as —04) — (ba, b, by, bz)

15




(—bz2, by, —by, —b3)
(b2, b1, by, bs)
(—bq, —bs, —b2,-b1)
( by, bs, b2, by).

(-ai1, az,—as, ay) ©
( ap, —az, 03,—04) -
(-ai1, a2, a3, —ay) «
(01,—02,—03, 04) —

5. Due to the form of the matrix W (™), for each block of 4 columns the
computation of at least a couple of HT’s as in Point 3 above must
be done. No other transforms are required due to the observation in
Point 4. The total number of sums is therefore

m
122——:3-2"‘.
4

6. Due to Point 1 above, the combination of subtransforms to produce
Ham (z © w;) requires the following number of sums

2.2 1422 2m 2™ (2 =4) = (m—2)2™

7. The number of 4-dimensional HT’s to be computed is 2™~ 2, so that
the total number of sums is

3-2m+ 2™ I (m—-2)2™ =2™ 3+ (m - 2)2™}].

The final expression 2™ {3 + (m — 2)2™~!] gives the number of sums that are
sufficient for decoding and vector quantizing based upon R(m).
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Multiplication in Galois Fields GF(2™) *

Michele Elia and Daniele Vellata
Dipartimento di Elettronica - Politecnico di Torino
I - 10129 Torino ~ Italy

Abstract

Many data encrypting and data encoding techniques operate in
Galois fields and require that the basic arithmetical operations of sum
and product be performed as quickly as possible. Here we propose
three schemes for computing products in GF(2™), to be considered
alongside the known ones.

1 Introduction

The decoding of multiple error-correcting cyclic codes, [1,2,7], and the en-
crypting of streams of digital data [4,5] usually operate in appropriate Galois
fields. The efficiency of the basic field operations of sum and product is cru-
cial to enable the execution of these processes without affecting the overall
system performance. In particular the product of field elements seems to be
the most critical operation.

Recently hardware implementations, [8,9], of finite field multipliers have
been proposed, which are based on known algorithms [10,11,12]. All these
algorithms use, to a different extent, linear -eedback shift registers, [6).

Here we introduce some alternative schemes for computing products in
GF(2™) which we believe to be new and that in several cases outperform
the known algorithms. In particular:

e Algorithm { is the direct interpretation of the product definition; at

the cost of some storage it works fast and with no limitations as to
the field definition or order.

*This work was financially supported in part by the United States Army through its
European Research Office, under grany n. DAJA45-86-C-0044.




e Algorithm I is reminescent of the Fast FourserTransform speeding
up principle, needs less memory than the previous one, but requires a
more complex implementation.

e Algorithm III is based on a special form of the primitive polyno-
mial defining the basis element for G F(2™), performs very well but is
limited to special values of m.

One of the main concerns in this kind of problems is the balance among
different resources or performance requirements. These problems will be
shortly debated in the final section. While in the next section we will recall,
for sake of easy reference, some useful notations and we will introduce the
necessary definitions.

2 Field element representation

An element a of GF(2™) can be represented either as a power of a primitive

element 1), that is
a= qL,,(a]

where L,(a) denotes an integer number called logarithm of a to base g, or
as a polynomial in 8 of degree m — 1, where f§ is root of a polynomial g(z)
irreducible over G F(2) of degree m, that is

m-—1
a= z «f o; € GF(2)
=0

For later use we define the polynomial a(z) associated to a:
m-1 .
afz) = Z oz,
vt

Note that a = a(f).

It is commonly believed that exponential representations are better for
computing products while polynomial representations are better for com-
puting sums in GF(2™), (2]. Really, the matter is slightly different, because
multiplication of numbers in the exponential representation requires the ex-
ecution of sums of integers modulo 2™ — | with the waste of time due to carry
propagation. Moreover, in many applications the polynomial representation
is unavoidable.




Now let us recall how the product of two numbers a and 7 in G F(2™) may
be computed when polynomial representation is used. Writing

m—1 .
§=ay= ) 1fu

=0
we see that § is computed by summing up 8* whenever oy = 1. The
addend 48' can be obtained as the content of a linear feedback shift register,
having characteristic polynomial g(z), starting with initial content <, and
performing s steps. Along the same line of the well known algorithm used
to evaluate the product of integers, we may represent the products 75,
$ = 0,...,n— 1 as an array of dots with the convention that each dot
corresponds to a product 47 §*. With abuse of language we say that dots on
the same column must be added modulo 2 and finally the stream of dots of
length 2n — 2 must be reduced to a stream of the n rightmost positions. See
fig.1.

Equivalently these operations may be described using the polynomial

representation so that the product avy can be computed by first executing
the product a(z)v(z) and then reducing the result modulo ¢g(z)

2m-—-2
a(z)y(z) = ) @z’ = §(z) + g(2)p(=), (1)
=0
hence setting z = 8 to get
m—1
ay=6=) ap

+=0

where a = a(B), v = v(B) and § = 6(f).
Observe that, for later use, the product a(z)y(z) can be written as:

a(z)v(z) = o(z) -- z™b(z). (2)
where — .
a(z) = Z a;z ; b(z) = Z GipmT'.

3 Algorithms

In this section we describe the algorithms in an abstract form so that the
presentation is not influenced by present-day technology. Comparisons with
recent implementations will be given in the final section.




Algorithm I. Using equation (1) and substituting z = 8, we get

2m—2 ) 2m-2 . m-1 .
ay = Z oz lz:ﬁ: Z a8 + Z af. (3)
=0 ft=m +=0

In this expressior only the sum from m to 2m — 2 must be processed. The
reduction process can be very fast if we have previously stored the following
m — 1 powers of 8

m—1
ﬁj'—‘zc.'jﬂi m<j<2m-2 C",'GGF(2)
1=0

which allows us to compute 6 in a straightforward way

m—1 Im-2 m—1

B LS S
i=m =0

© =0

Algorithm II. To describe this algorithm, which requires less svored
data but is slower than Algorithm I, let us consider the first sum in equation
(2) and let us suppose that the following power of 8 is known

m-1 .
= bf (4)
=0
where n = m — 1+ | ™|, Noting that
m-—1
prti = Z b,
1=0

the (n+j)-th power can be obtained by shifting j times to the left the se-
quence (bm—1,bm-2, ..., b0) m-—1- [ﬂ‘flj >3>0.

The powers of § whose exponent is between n and 2m — 2, do not need
to be stored. In fact using equation (3) and the above observations, the
first sum in equation (1) can be reduced to the sum having the maximum
power of f less or equal to n — 1. The next steps consist in repeating these
operations successively on the powers of 8 of exponent m — 1 + ["‘T‘zj,
m—1+ 3252, ..., m—-1+|1/2]..1/2|(m — 2)/2|...|, the number of
iterations being |logam — 2].




Algorithm III. This algorithm is based on specia! forms of the generat-
ing polynomial g(z). Here we consider fields that have elements associated
to irreducible trinomials of the form g;(z) = z™+z¢+1, where 2 < £ < |5
The cases g1{z) = 2™ + z + 1 and g2(z) = z™ + z? + 1 will be considered
separately both to start and to explain the procedure. In case of g;(z), we
can recast equation (2) as follows

a(z)v(z) = a(z) + (1 + z)b(z) + (z™ + z + 1)b(z)
so that substituting z = 8, we get § as
6 = a(B) + (1 + B)b(B)

which is computed in two steps with no storage.
Also go(z) presents the same behaviour; in fact we have

a(z)y(z) = a(z)+b(z) + 2*[b(z) + bn-22™ 3] + bpm_a(z? + 1) +
+ bmo2(z™+ 2% + 1) + (z™ + 2% + 1)b(z) (5)
so that substituting z = 8, we get § as
§ = a(B) + B(B) + BUB(B) + bnof™ Y +bma(F2 1)  (6)

which is computed it two steps with no storage.
In general we have

a(z)y(z) = a(z) + (1 + z9b(z) + (z™ + z* + 1)b(x).

This equation can be conveniently rewritten as

a(z) + b(z) + (z™ + z¢ + 1)b(z) + "f bzttt =
=0

Il

a(z)v(z)

m-1-¢
a(z) + b(z) + (z™ + 2L+ 1)b(z) + D bzt +
=0

i

-2 -2
+ (=™ + t + 1) Z b,‘+m_¢x’ + (zt + l) Ebj+m_¢1:j (7)
=0 J=0

so that substituting z = f, we get § as

m—-1-¢

-2
§=a(f)+b(A)+ 3 bET (B +1)Y biymih (8)

1=0 J=0

which is computed in two steps with no storage.




Alg. 1 | Alg. Il | Alg. Il | Alg. SR | Alg. STP

m PSINS||PS|NS|PSINS| PS|NS|PS| NS
GF(2™)

4 12| 3| 4| 3| of 2| of 6| o 4

8 s6| 31 16( 4| ol 2 o] 14]] o 8

16 240| 3| 48] 5 o| 2| o| 30| of 16

Table 1: Algorithm comparissons

PS indicates the required storage measured in bits;

NS indicates the number of steps between input and output;

SR stays for Shift Register;

STP stays for Scott- Tavares-Peppard.

4 Conclusions

This paper presents three schemes for computing products in G F(2™). The
algorithms are not strictly comparable as far as they make use of different
resources. As a matter of fact special algorithms for performing products
in finite fields have been proposed in the scientific literature. In particular
the Massey and Omura multiplier utilizes the normal basis representation
of the field elements, while the Berlekamp multiplier uses both the stan-
dard and dual bases representations: for both algorithms it is difficult to
change the polynomial which generates the field. The algorithm proposed
by Scott, Tavares and Peppard, which has been hardware implemented, does
not present the previous limits and can be compared with the ones proposed
here.

For sake of comparison Table 1 shows for the mentioned algorithms the
amount of required storage and the number of steps between input and
output.

The facts emerging from this table were confirmed by both software pro-




gramming and hardware implementations. From both programming sem-
plicity and execution time points of view, Algorithm III is undisputably
preferable. Its limits stem from the fact that neither primitive irreducible
trinomials are available for every m, nor it is known whether an infinite
number of such primitive trinomials does exist.
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On the Concatenation of Binary Linear Codes
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Abstract

Many recent applications of error-correcting codes, especially in
the case of transmission over very noisy channels, have been based
on concatenation to achieve high performances. This paper considers
concatenation of linear block and convolutional codes, presenting some
considerations on the bit error rate computation after complete decod-
ing. The fact that code concatenation is not a commutative operation
is discussed.

1 Introduction

The use of error-control codes is steadily increasing in a variety of digital
systems like digital recording [2], satellite links [4,5,6] and HF mobile radio
transmissions. In many of these applications coding is unavoidable to achieve
high performances and often simply to allow the system to work.

In most situations the symbol error probability and the transmission rate
are conflicting targets, and the application of efficient and flexible codes
1s necessary. In these cases the choice of the code is conditioned by two
constraints, namely the complexity of the receiving devices and the decoding
delay. Code concatenation seems to offer a good compromise in terms of the
constraints above.

Furthermore, several applications require uneven protection of the infor-
mation symbols. This is the case, for example, of packetized information
transmissions, where the protocol information carried by packets often re-
quires better protection than the information part. Unequal error protection
is a target easily pursued with code concatenation.

*This work was financially supported by the United States Army through its European
Research Office, under grant n. DAJA45-86-C-0044.
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Figure 1: Channel model with code concatenation

It must be observed that the concatenation of codes does not give optimal
performances as promised by Shannon’s bounds: in general concatenated
codes are not as powerful as the best single-stage code with the same rate.
However multistage decoding presents a reduced complexity. Moreover in
some interesting practical cases, concatenation yields performances that are
not improved by any known single code.

This paper presents some features that are peculiar to code concate-
nation. It is structured as follows. Section 2 describes the model of code
concatenation assumed in the pape:. Section 3 recalls some relevant results
on the computation of symbol error probabilities, while Section 4 presents
error probability results for the case of code concatenation. Finally, some
applications of concatenated codes are described in Section 5.

2 Channel model for code concatenation

Let’s consider the transmission chain resulting from the concatenation of
two codes. The model of the system is shown in Fig. 1, where two main
parts can be identified: the inner and the outer channel. The tnner channel
is a discrete channel resulting either from a chain of modulator -+ physical
channel + demodulator or from another embedded coding section. The inner
channel is supposed to be a memoryless binary symmetric channel (BSC),
characterized by an error probability p. The code directly facing the inner
channel is called tnner code.

The outer channel is the discrete channel resulting by the chain inner
coder + inner channel + inner decoder, considered as a unit.




The inner code may be either a convolutional or a hlock code, sometimes
jointly used with moduiation, providing either a hard or a soft output. Let
(nrn, kin, din) denote the parameters of the inner code, where dyy is the
minimum distance in the case of block codes and the free distance in the
case of convolutional codes. Let R;y = kyn/nyy be the inner code raic.

The outer code usually is a block code. Let (nout. korrr. dour) be the
parameters of the outer code, with the same conventions as for inner codes.
Let Rour = kour/nour be the outer code rate.

Code concatenation reduces the net information rate; the overall rate
resuits in

R = Riy Rour-

The decoding delay D is an important parameter used to evaluate the per-
formance of codes. It is defined as the numbe: of symbols nassed between
the instant that an information symbol enters ihe encoder and the instant
that the same symbol comes out from the decoder. Concatenation usually
increases this figure, but other processing operations, like interleaving or
signal propagation, affect delay even more. Here we consider only the net
delay introduced by the co-decoding operations. It is direct to verify that
D = mn {hny| hnn>nour}

h integer

3 Error Probability I — Basic results

In this section we recall definitions as well as results concerning the compu-
tation of the symbol error probability. Let’s consider [n, M, d] block codes,
n heing the dimension, M = 2% the number of code vectors, and d the
minimum distance.

For every binary block code, linear or nonlinear, the bit error rate Pyymp
is defined as [9]

k M
1 R
Pympb = M ;;Prob{z; # zj, | ®; was sent} (1)
where the code.vectors z; = (z;,Zj,...,2;,) are equally likely, z =
(£1,22+- .-, 2k) is the decoded vector, and k is the number of information bits

per codeword. In the case of linear codes on a BSC with error probability
p, Equation (1) can be written in the form

Pyymb = %Z f(e) th(e)(l _ p)n—wt(e) (2)
e




where f(e) is the number of incorrect information bits after decoding with
the assumption that the all zero code vector was transmitted, and the sum-
mation is extended over all the 2™ binary n-tuples. wt(o) is the Hamming
weight function: wt(z) is the number of nonzero bits in . For computa-
tional purposes equation (2) can be rewritten in the form

Puymb =) Bip'(1-p)" =) Eip' (3)
1=0 1=0
where |
Bi=7 Y fle) (4)
wt(e)=i

and 3 wt(e)=; sums f(e) for all error patterns e of Hamming weight .

Now let B(X,Y ) denote the generating polynomial of the B;’s, i.e.

B(X,Y)=>Y_ B; X'y

=0

thus we can write
Psymb = B(P) 1- P)- (5)

Moreover let W(X,Y) denote the weight enumerator polynomial, i.e.

W(X,¥)=> A X'v™*
1=0

where A; is the number of code vectors whose Hamming weight is i. It
can be shown that B(X,Y) can be mechanically derived from W(X,Y),
by means of a linear operator, which admits an explicit representation as
antisymmetric homogeneous differential operator in the algebra Z[[X, Y]],
see [14].

The closed expression of symbol error rates for many interesting block
codes are now known and reported in the literature. Unfortunately this is
not true for convolutional codes, although the bit error rate (BER) asymp-
totic expressions are known for many interesting codes of both kinds.

BER curves. The curves of the bit error rate (BER) versus the error
probability of the BSC p show a threshold phenomenon for most commonly
used codes: there is a fast transition between the region where the code
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Figure 2: BER versus raw bit error probability for (23,12,7) Golay code

reduces the channel noise and the region where the code is useless. Fig. 2
depicts such a phenomenor in the case of the Golay (23,12,7) code.

It must be noted that the symbol error rate on the BSC, even if derived
under the assumption of a stationary behavior of the BSC characteristics,
gives useful indications on the behavior in a time varying environment: if
the dynamic in the time varying environment is limited within a given range,
the performance is described by the image of this range, see Fig. 3.

Asymptotic expressions for BER. In the case of binary block codes
the asymiptotic expressions for the BER take the form

Py < B pl 5+ (6)

where d is the minimum distance of the code and B is a suitable constant.

Table 1 shows the asymptotic BER expressions for some interesting block
codes.

In the case of convolutional codes, it has been shown [10] that the bit
error probability can be written in the form

P,,m.,:C[p(l—p)l“f/’+o(pi‘*%) (7)
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Figure 3: Bit error performances for time varying channels. The case of
pon (13,5,1) code.

| code [ (n,k,d) | BERasymp | per on BSC |

1 (7,4,3) 9 p* 0.2115
2 (15,7,5) 115 p° 0.2444
3 | (155,7) | 469 p? 0.3233
4 |(23,12,7)| 2695 p* 0.1522
5 | (24,12,8)| 1771 p* 0.1905

Table 1: Values of asymptotic BER and p. for some binary block codes




[L Tdf BER| p | C]
3 10-° [ 4.010°3 ] 0.988
4 6 10-% | 7.010°3 | 2.915
g (10105 1.510°7 | 1317.

Table 2: Estimations of the constant C by simulation. Legenda:

L = constraint length of the rate 1/2 convolutional code
dy = free distance
r = BSC raw error probability
Py, = C pY'2. (8)

where dy is the free distance of the particular code and C is a constant that
is normally difficult to evaluate. Values of C estimated by simulation for
some codes are reported in Table 2.

Critical error probabilities. The critical error probability, another in-
teresting feature of binary codes, is defined as follows.

Definition 1 - The critical error probability p., for a binary code ts defined
as the minimum error probability of a binary symmetric channei (BSC) for
which the bit error probability after complete decoding is not greater than the
~w error probabulity of the channel.

It is immediately apparent that it is not convenient to use the code whenever
the error probability on the BSC is greater than the eritical error probability:
in *uch a rase, in fact, the uss ~f the code leads to worse error performances
than no coding at all. Table 1 shows the critical error probabilities for some
interesting linear codes.

It might be useful, in order to select ainong alternative codes over a BSC,
to define the relative critical error probability as follows.

Definition 2 - The relative critical error probability p.. for a pair of
binary codes is defined as the mintimum error probability of a binary sym-
metric channel at which the bit error probabilities after complete decoding
for the two codes are equal.

Note that the critical error probability may be alsc considered for con-
catenated codes: in fact one of the advantages deriving from “good” concate-
nations is the increase of the resulting critical error probability, maintaining
at the sain> time gond code performances for p below such limit.
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Figure 4: Asymmetry of code concatenation

4 Error Probability II — Concatenated codes

Recalling the code concatenation model given in Section 2, the inner code
may be viewed as a mechanism that transforms the error probability p;
of the inner channel to p, = fi(p;), the bit error probability of the outer
channel. The outer code performs a similar operation by transforming p, to
the error probability of the concatenated system p, = f,(p,). The resulting
transformation is

pe = fol filpi))-

Due to the non-linearity of the f;(c) and f,(o) functions, this is in general
different from

P, = fil fo(pi))-
Therefore the optimal concatenation of two codes, under the only constraint
of achieving the minimum symbol errer probability at a given rate, depends
in general on the order in which the two codes operate.

A sketch of how the concatenation of two codes depends on the order is
shown in Fig. 4. In the figure, for a given value of the inner channel error
probability — p; = p = 0.13 — and two particular codes with similar rates
— code 1 iz the Golay code (23,12,7) and code 2 is the Hamming (7.4,3)
code —, it is shown that two different values of the overall error probability
p, can be obtained. In particular, when code 1 is chosen as the inner code,




Po = p1 = 0.112 and p, = p;» = 0.0806, while, when code 2 is the inner
code, p. = p; = 0.103 and p, = pz; = 0.0657.

It should be remembered that often the need for the high error correcting
capabilities of concatenated codes arises at high channel error probability
(1 +51072), where the asymptotic expressions do not hold.

In many applications, codes are used in the presence of sufficiently small
channel error probabilities, so that the polypomial expressions introduced
in the previous section can he substituted with their asymptotic form for
p tending to zero: this means that we can consider only the term of the
polynomials where p has the smallest exponent.

Under the assumption that p is small enough for the asymptotic expres-
sions to hold, we may develop some considerations that allow the compar-
ison, in terms of the symbol error probability, of the two possible concate-
nation orders for a couple of codes.

Let py = A;p™ and p, = A,;p™® be respsactively the bit asymptotic error
probabilities of codes C; and C,. If the concatenation shows C, as the outer
and C, as the inner code, we obtain the asymptotic BER

ny ng

piz = A1 A3 p
while C; onter and Cy inner gives
p21 = Ap AT* p™t ™.

In the particular case ny = n, = n, it is straightforward to see that the
hest asyvmptotic performances are obtained when the inner code has a lower
asymptotic error probability, i.e. when it has a lower value for the coefficient
4.

Table 3 shows the asymptotic expressions of the bit error rate for the

two possible concatenation orders for some couples of codes (taken from
Table 1).

5 Applications

In this section we consider some widely used code concatenations and we
evaluatz their performances.




Order of | Order of
concatenation concatenation
1-2 119025 p® 83835 p® 2-1
1-3 1979649 p° 3077109 p° 3-1
2 6.39 1017 p1Z [ 3.10 1011 pIZ 5-2

3-5 4.58 1015 p1® ]/ 8.57 1013 p18 35

Table 3: Comparison of code concatenation orders

5.1 Rate 1/2 convolutional and Reed-Solomon code chain

One of the first proposed code’s chain, see [1], consists of a convolutional
code of rate 1/2 and constraint length 7 with Viterbi decoding as the inner
code and a Reed-Solomon (RS) code over GF(28) as the outer code.

The maximum free distance for noncatastrophic convolutional codes with
rate 1/2 and constraint length 7 is 10, see [21, page 251]. The asymptotic
BER for this convolutional code is, from (8), C p°. The constant C has been
estimated by simulation, using the TOPSIM III simulator [20].

5.2 Uneven error protection - the LPC case

Several applications require uneven protection of the information to be trans-
mitted. This is the case, for example, of packetized data transmissions,
where the protocol information carried by packets requires better protection
than the information part. A typical situation is the transmission of voice
digitized according to the Linear Predictive Coding (LPC) [22) approach.

The LPC-10 is a US Government standard that allows the transmission
of digitized voice at 2.4 Kbit/s. The speech signal is segmented in contiguous
talkspurts of 22.5 ms, called frames. Each frame is coded into a 54 bit
packet. Frames can be of .#0 kinds: voiced and unvoiced. Voiced frames
are reconstructed at the receiver by filtering a basic waveform with a filter
whose coeflicients are estimated by the transmitter by means of the LPC
covariance analysis algorithm. These coeflicient are transmitted inside the
54 bit packets. Unvoiced frames carry little information content, so that
they are rebuilt as filtered noise, with a lower order filter whose parameters
require less bits in the 54 bits packets; the remaining bits are used for error
protection of the bit stream. One bit is used to discriminate between voiced
and unvoiced packets.

It should be clear that LPC packets contain various kinds of information
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(filter coefficients, other LPC parameters, voiced/unvoiced flag, error pro-
tection, etc.) whose need for error protection varies: it is very important,
for example, not to spoil the content of the voiced/unvoiced flag, while an
error in a low order bit of a filter coefficient is much less significant. In
this case it is desirable to have a hetter error protection on some bits of the
packets: this target is easily pursued with code concatenation. The inner
code could be applied only to those parts requiring more protection, while
the outer code could protect the whole bit stream.

5.3 The Compact Disc audio system

In the Compact Disc audio system error protection is achieved by the use
of two chained Reed-Solomon (RS) codes [2]. A (32,28,5) RS code is used
as the inner code and a (28,24,5) RS code is the outer code, hoth are over
GF(28); detected errors in the inner codes are erasures for the outer code.
Th~ concatenation order has heen chosen out of several constraints, but it
can he shown to be not optimal.

The two RS codes show the same minimum distance, hence the same
exponent for p in (6). The coefficient B in the same equation is greater for
the (32,28) than for the (28,24) code, since the former offers similar error
correcting capabilities on a larger number of information symbols. But in
Section 4 it has been shown that, under these conditions, the inner code
should be the one with the smaller coefficient B: this implies that the reverse
concatenation order would lead to better symbol error performances.

5.4 Comparison of code concatenation with single stage
codes

As final example let us compare an instance of concatenated codes with
several single codes with comparable rate. It seems that concatenated cades
outperforms any known single code even at the relatively small rate of 0.38.
The codes are listed below and the results are summarized in Table 4.

1. Concatenation of inner Hamming (15,11,3) code and outer Golay
(23,12,7) code

2. Concatenation of outer Hamming (15,11,3) code and inner Golay
(23,12,7) rode

3. Single BCH (33,13, 10) code




Codes Rate | Dec. Asymptotic | p,,
inner  outer delay BER

1](15,11,3) (23,12,7) | 0.383 | 30 [ 839,548,980 p® | 0.137
2 1(23,12,7) (15,11,3) [ 0.383 | 23 | 171,588,966 p° | 0.124
3 (33,13,10) 0.394 | 33 35,960 p® | 0.290
4 (39,15,10) 0.385 [ 39 73,815 p° | 0.311
5 (55,21,15) 0.382 | 55 | 178,181,640 p° | 0.279

Table 4: Comparisons among error-control schemes

4. Single BCH (39,15,10) code
5. Single BCH (55,21,15) code

The asymptotic BER was derived according to the approach described
in [14].

The decoding complexity may he hard to define, due to the fact that
an efficient decoding algorithm is not always available. Referring to the
decoding schemes available today, the codes used in the concatenations 1.
and 2. can be decoded with the very efficient error trapping procedure
devised by Kasami [16], while for the other single stage codes the known,
[24] and [23], complete decoding procedure, is direct computation of the
minimum distance. It turns out that the latter codes are incomparably
more difficult to decode.

6 Conclusions

The use of error-control codes calls for a compromise hetween efficiency
and complexity. The original scheme proposed by Forney [1] of concatenat-
ing two or more codes and modulation provides the proper answer to the
problem: it is now well accepted that concatenation van be advantageously
applied to manage many interesting situations, and sometimes it can be the
only solution with affordable complexity.

The decreasing cost of digital circuits allows to foresee that cost-effective
applications of codes will be even more widespread in the near future. Code
concatenation yields cheaper implementations together with high perfor-
mances. Many authors support the opinion that code concatenation is not
only a trick, due to our limited knowledge of codes’ structure, to achieve
good performances; rather it is an effective way to obtain high performance
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with limited complexity. This opinion is upheld by the proof, see [25], that
the general decoding problem, also for linear codes, is NV P-complete.
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