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Multidimensional Modulation and Coding
for Band-Limited Digital Channels

[-1() BIGIlt-RI, SENIOR MEMill:R, 1111, AND MI iELf" Fi.IA, SFNIOr M IMtIR, Il-1

Ah.stract -A class of multidimensional signals, based on what we call phabets is that thy exhibit a considerable degree of syn-
.,.erraited gioup alphabets, is introduced, and its basic properties are
denved. The combination of generalized group alphabets and coding is also
examined: two coding schemes are considered - Unget-boeck's scheme for Generalized group alphabets form a large class of codes;

combination with convolutional codes, and Ginzlurg's scheme for combi- to date, most of the good alphabets that have been pro-
nation with block codes. The performance of these schemes makes them posed for multidimensional signaling belong to this family.
attractive for transmission over band-limited digital channels. After a description of the main features of these alphabets,

we show how they can be used in conjunction with error-
1. INTRODUCTION control codes. For this purpose the alphabets must be

N DIGITAL RADIO communications both the avail- partitioned into a chain of subsets, where the minimum

able spectrum and the transmitter power are limited, distance between subsets increases with depth. The con-

Thus to cope with the ever-increasing demand for more cept of a fair partition is introduced, and it is shown how it

efficient transmission, new modulation techniques are can be obtained through the action of a group of orthogo-

needed. One way to increase the transmission efficiency, nal matrices on a set of vectors. The method of dividing a

suggested by Shannon's fundamental theorem itself, is to signal alphabet into subsets via the action of an orthogonal

increase the dimensionality of the signal space [1], [12]. For group is due to Ginzburg [8]. Finally, we provide some

this solution to have practical applications, however, the examples of actual designs that show how our techniques

system complexity should not increase prohibitively. Con- can be applied to generate codes. However, no attempt has

ventional systems, like quadrature amplitude modulation been made to discover optimum codes.

(QAM) and phase-shift keying (PSK), use two-diuihensional
signals obtained through the inphase and quadrature com- II. GENERALIZED GROUP ALPHABETS
ponents of a sinusoidal carrier. Four-dimensional signal
spaces can be realized in a similar way by simultaneously Consider a set of K n-dimensional vectors X =

using two channels, each with separately modulated in- { X..., X, ) called the initial set, and L orthogonal
phase and quadrature components. The two bandpass n X n matrices SI ,- , SL that form a finite group G under
channels can be two orthogonally polarized electromag- multiplication-
neti,. waves, or time-division or frequency-division multi- Definition 1: The set of vectors GX1, GX 2,. ., GX ob-
plexed signals transmitted on a common medium. Results tained from the action of G on the vectors of the initial set
on specific designs of four- and eight-dimensional signal is called a generalized group alphabet (GGA). G is called
sets can be found in [21-[6]. its generating group.

We consider a structured class of multidimensional al- Definition 2: A GGA is called separable if the vectors
phabets which we call "generalized group alphabets" that of the initial set are transformed by G into either disjoint
are based on a peak-energy constraint. They generalize the or coincident vector sets, i.e.,
"group codes" of Sleptan [71 that are based on an equal- (0, j # k
energy constraint The most striking feature of these al- GX n GX =GX, j k.

If 1II X1 denotes the Euclidean length of a vector X, the
.Mairiiucnpt rc oited I'chruar' P). 1997, revised July 3. 1987 Tai. %ork quantity 11 Xl[2 is proportional to the energy of the signal

wa, suppo tc.t in pat hv the tnited States Army through its European associated with X for transmission over a continuous
Re<.carch Office. and in part h; the Italian lepartment of l'Aju.ation
under a t, r a ,• nt - 1iio paper wa_s presented in part at the channel. Since an orthogonal ,natrx transforms a vector

IF I.E- International ', inpisium on iik,,t:r o' Theory. Brighton. En- into one with the same length, the signals associated with a
,lard. fune: 1, t J(,A have as miny energy levels as there are in the initial

-'. lih''ii war. w h the' [)iparImen to d. 1-.let ronica, Poli t",. no di

Tin, I)rini, lik Ie(t is now with the Dtparlmcnt of seJttocal set. The special case of a (_,GA witIi K - i, and hence only
I iv.iwerirnr,. 611 Pi-her Ilill. ()nivcrsitv of California. L.os Arzeles. one energy level, was extensively studied in [7).
(A 90)24 1lt) lefnition 3. A GGA is called regular if the n-mher of

NI/[ I'jia .', with ti- lip.tr rli -r i h ll -nc a tthecnico di tinro.
.,iI-l Abrii 24. 1- iW 012t lbin , Italy . . . . u l ic tK,] - does ot

IF1 Il1,,.. Numtir 5s22471 depend on j, i.e., each vector of the initial set is trans-

Jl X-944X/g8/T7O0-0O)35(l .0( .(i)l 98 I IEl+
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formed by G into the same number of distinct vectors. A
regular GGA is called strongly regular if each set G,65
contains exactly L distinct vectors. 6 2 0 o

The following result follows directly from the defini-
tions. ;0 1 14 9 13

0 1 0 0 0

Proposition I.- The number M of vectors in a regular I IP7 3 8 4

GGA is a multiple of K. If GGA is strongly regular, then 0 a 0
Al KIl... . -

IIM i S 2? __ '6

Next we exhibit four examples of these alphabets. Notice 0 0 0 016

that for K = I every GGA is regular, but not necessarily
strongly regular 171, [16].

Alphabet I (Asymmetric M-PSK: Two Dimensions, One

Energy Level): Choose an initial vector X = (cos 4,sin *), Fig. 2. Alphabt 3 and its fair pawition.

4 a given constant, an integer M = 2 ' , and consider the
group of 2X2 orthogonal matrices of the form R'T, is obtained from the initial set of vectors
i=0,1,--.,M-1, j=l,2, where

c c c 0

R [ cos(27r/M) sin(21r/M) -b c c 0

- -sin(27r/M) cos(2ir/M) c - b C 0
c c -b 0

and

T=[O 1] with c = 0.389 and b = 0.939. If we apply to this initial set
1 0 . the same matrix group which generates Alphabet 2, we get

a separable alphabet with 128 vectors (see Fig. 3). Among

It is seen that the effect of R on a two-dimencional vector hem, 32 have energy 3c 2, and 96 have energy b2 + 2c 2.
is to rotate it by an angle 21r/M, and the effect of T is to The average energy is 1.
exchange its components. This group has 2M elements and We consider now some distance properties of the ele-
gives rise to a separable alphabet of M or 2M vectors, ments of a GGA. Choose a partition of it into m subsets
according to the choice of the initial vector. Notice that the Z1, Z 2,- - -, Z,. For each subset Z,, we can define the

alphabet is strongly regular only when it has 2M elements intradistance set as the set of all the Euclidean distances
(asymmetric M-PSK [13], [141). among pairs of vectors in Z,. For any pair of distinct

Alphabet 2 (Four Dimensions, One Energy Level): Con- subsets Zi, Zj, we define their interdistance set as the set of
sider the group of matrices which act on a four-dimen- all the Euclidean distances between a vector in Z, and a
sioral initial vector by permuting its components and vector in Zj.
replacing them with their negatives. This group has 4!24 Definition 4: The partition of a separable GGA into m
elements. If the initial vector is X, = (a, a, a,0), a = I1/3, subsets Z,,- - -, Z,, is called fair if all the subsets are
the resulting (separable) alphabet has M = 32 distinct distinct, include the same number of vectors, and their
unit-energy vectors (see Fig. 1). intradistance sets are equal.

We shall now exhibit a constructive method to generate

fair partitions of a GGA. Consider the generating group G
A 8 C D of the GGA, one of its subgroups, say 1t, and the partition

a a a 0 a 0 a a 0 a a 0 a a a of G into leftcosetsof H. We have the following result.
0 -a a a -a a-a 0 a a 0 -a -a 0 -a a
a 0 -a 0 -a -a a -a a a 0 -a a 0 -a
a -Z 0 -.. - 0 a a 0 -a a -a a a -a 0 Theorem /: If the left cosets of the subgroup If are

--a a0 - -a 0- -a 0 -a-a 0 -a -a-ase a
0 a.- a -a a -a . . 0 -a - a a -0 a -a applied to the initial set of a strongly regular GGA, this

-a o a -a 0 a a -a 0 -a 0 a procedure results into a fair partition of the GGA. Under
-a a 0 a a 0 -a -a 0 a -a a -a 0 - a the same hypotheses, if 11 is a normal subgroup, then left

Fig I Alphabet 2 and its fair partition~ad right cosets give nse to the same fair partition.

Proof: Let S denote an element of G. not belonging

Alphabet 3 (Two Dimensions, Three Energy Levels): Our to 11, and SI, the corresponding left coset. If X,, X, are
third example is showr. in Fig. 2. Points 1, 2, 3, and 4 two (not necessarily distinct) vectors of the initial set, and

dciote t.- -ut vectors in the initial set. The matrices Sh, S, are two elements of It, the intradistance set associ-

generating the code are d.ose associated to nlane ritalins ated with the coset Si! Include

, , tii.. C;Uhig (Sto gly regular, sep-

arable) alphabet is the conventional 16-QAM. d, (S. S,, S, ) 1, - ss, X,'I11

Alphabet 4 (h.our DImervions, Two -nergy Leuels): "11t\

alphabet which has two energy levels, K = 4, nd M = 128. as S,, S, run through 11, and X,. X/ run through the initial
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A B C D E F G H

r C C 0 C C 0 C C 0 c C 0 C c C -C ( C 0 C C 0-C C 0-c c 0-c c C1I

-bccO cc0-b cO-bC 0-bcc bcc0 cOb c0bc Obcc

c-b C 0 -b c 0 c C 0 C-b 0 c-b c -c-b c 0 -b C 0-C C O-c-b O-c-b C

c c-b 0 c-b 0 c -b 0 c c 0 c c b -c c-b 0 c-b 0-c -b 0-c c 0-c c-b

-c-C-C 0 -c-C 0-c -C 0-C-C 0-C-C-C c-C-C 0 -C-C 0 C -C 0 ,-C 0 C-C-C

b-c-< 0 -c-c 0 b -c 0 b-c 0 b-c-c -b-c-c 0 -c-c 0-b -c 0-b-c 0-b-c-c

-c b-< 0 b-cO-c - c-c b 0-C b-c c b c 0 b-c 0 C -c 0 c b 0 c b-c

-c-c b 0 -c b O-c b O-c-c 0-c-c b c -c b 0 -c b 0 c b 0 c-c 0 c-c b

I J K L M N 0 P

c-c c 0 -C c 0 c c 0 C-c 0 c-c C c c-c 0 c-C 0 C -c 0 C C 0 C c-c

-b-c c 0 -c c 0-b c 0-b-c 0-b-c c -b c-c 0 c-c 0-b -c 0-b c 0-b c-c

C b C 0 b c 0 c C 0 C b 0 C b c c-b c 0 -b-c 0 c -c 0 c-b 0 c-b-C

c-c-b 0 -c-b 0 c -b 0 c-c 0 c-c-b c c b 0 c b O c b 0 cc 0 c c b

-C c-c 0 c-c 0-C -cO -c c 0-cC-c -C-cCa -CC0-c c-c-c 0-c-c C

b c-c 0 . c-c 0 b -c 0 b c 0 b c-c b-c c 0 -c c 0 b c 0 b-c 0 b-c c

-c-b-c 0 -b-c 0-c -c 0-c-b 0-c-b-c -c b c 0 b C 0-c c 0-c b 0-c b c

-c C b 0 C b 0-c b -c c 0-c c b -c-b-< 0 -c-b 0-c -b 0-c-c 0-c-c--b

Fig. 3. Alphabet 4 and its fair partition.

vector set. We have partitions obtained from right cosets may not be fair, as
shown by the following counterexample.

d,2 ( S, Sb, Sk ) =IXlI + II XII2  2XfS[STSSkXi Example 1: Let us consider the four-dimensional al-
X + 2 _2 phabet generated by the action of the natural matrix

j +k I, XSrepresentation of the permutation group S4 on the initial

where the superscript T denotes transpose. vector (- 3d/2, - d/2, d/2,3d/2), d a constant. Let us

As the fight side of the last equation does not depend on consider the partition induced by the subgroup H of the

S, we have shown that the intradistance set associated with matrices leaving invariant the fourth component of the

the left cosets of H are independent of the coset. More- initial vector. This subgroup is isomorphic to S3. The left

over, if !! is normal, then right cosets and left cosets give and right coset partitions associated with H are shown in

rise to the same fair partition: in fact, normality implies Table I. It can be seen that the partition associated with

that for every S right cosets is not fair because its intradistance sets are not
equal.

Stl = IIS. In some cases, we are interested in further partitioning

What makes Theorem 1 work is the fact that the or- every element Z, into the same number of subsets. We are

thogonal matrices form a group of isometries. Hence a led to the concept of a chain partition. This concept is also

more abstract formulation is possible, extending to non- found in the work of Ungerboeck [10] and Gmzburg 181.

finite groups. As pointed out by the editor, lattices and Definition 5: The chain partition of a separable GGA is

sublattices equipped with isometric transformations (trans- called fair if any two elements of the partition at the same

lations) fit this more general approach. However, for our level of the chain include the same number of vectors and

presentation we choose the framework that was fruitfully have equal intradistance sets.

used for the description of "group codes for the Gaussian For fair chain partizions we have the following theorem,

channel," and that was based on finite groups of orthoga- whose proof is straightforward and will be omitted.

nai matrices [71 (see also [8]). Theorem 2: Consider a strongly regular GGA and a
The condition of strong regularity of the GGA can be chain of subgroups of its generating group G, that is,

removed, but in this case it may happen that different
cosets generate the same element of the partition. lence !t C !! 2 C!1 3 C --- C I=G
some of the cosct. must be removed from consideration. Use 1I1 and its left cosets to generate a partition of
Moreover, iotice that if i is a normal subgroup of G. GGA. Then use I,-, and its left cosets in i, to further
then we do not need to distinguish between left or right partition all the sets of the previous partition Repeat the

coset partitions. On the contrary, if If is not normal, the procedure with I, and so on, until 11 and its left
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IAIILF I tively. The GGA is fairly parMitioed into tile two subal-
litI A.a.i 4UT , C.'osri PARUrtIoNs 01 ^ A ..... phabets (1,2,3,4,9,10,11.12) and 5.6,7,8,13,14,15.16).

Left Cosct Partition Right Cosei Partition Fig. I stiows a fair partitioAi of tie Alphabet 2 in four

3d/2. - d/2. d/2,3d/2 (- 3d/2, - d/2. d,1_,3d/2) ,ub-,'S ,of eight vectors each. This partition is obtained as
d1/2. -3d/2. d1/2,3d1/2) ( J12. - 3d/2. d/?.ld/2) follows: denote by a the orthogonal matrix whose effect(d/2. -,t/2. 3d/2. bd/2) (,t/2. -. d/2.- 3d/2.3d/2)
31d/2. d/2, 1/.3/2 ( - 33d/21/2, d/2,31/2) Oil a vector is to cyclically shift its components to the right
( *,/2. J/2, -- 3d/2.3d/2) (- d/2, d/2. - 3d/2.3d/2) by one position and to change sign to the second compo-

(1/2. - 3d/2. d/2,3d/2) (d/2, 3d/2, - a/2,3d/2) nent. Then the set

(U1/2. 3J/2, - d1/2.d/2) (3d/2, - d/2.,1/2, 31/2) I a {a
t

' a, a 3
, a4 a5 a 6, Y7 }

(3J/2 d1/2, -- 31/2, d/2) ( - ,3d,3d/,d12, -- 3d/2) .,
(3d/2.1/2. - d1/2. - 3d/2) (d/2, - d/2,3d12. - 31/2) is a cyclic normal subgroup of the group G generating the
(3d/2, - 3,1/2. d1/2. -- d/2) (3d/2. d/2, - d/2, - 3/2)
(3d/2, - d/2, d/2, - 3d/2) (- d/2, d/2,3d/2. - 3d/2) alphabet, and its cosets generate the fair partition.

2/2/. ,, (d/23d/2, - d/?. -d/) A fair partition of Alphabet 4 into 16 subsets of eight
(- 3d/2, 3d/2. - d1/2, d/2) (- 3d/2.3d/2. d/2, - d/2) vectors each stems from the subgroup ( I, - I ), where I is
(-d/23d/2, - 3d1/2, d/2) (- d/2, - 3d/2, d/2, - d/2) the 4x4 identity matiix (see Fig. 3). A fair partition of
(a/2,3d/2, - d1/2. - 3d/2) (d/2,3d/2. - 3d/2. - d/2)

3d/2,3d/2, d/2, - d/2) (- 3d/2, d/2, 3d/2. - d/2) Alphabet I is obtained by considering the two cosets of the
(- d/2.3d/2, d/2. - 3d/2) (3d/2, d1/2. - 3d/2. - d/2) subgroup { R, )" -.
(d/2.3d/2, -3d/2, - d/2) (d,,2, -3d/2,3d/2, - d/2) Definition 6: Let R be a left coset of G in the fair

(-3d/2, - d/2,3d/2, d1/2) (-3d/2, - d/2,3d/2, d/2) partition of a GGA and S an element of G. We define the
(-d/2, --3d/2,3d/2, d/2) (-d/2, -3d/2,3d/2,d/2) distance profile 1151 associated with R and S as the
(d/2. - d/2,3d/2, - 3d/2) (3d/2, - d1/2, - 3d/2, d1/2)
(- 3d/2, d/2,3d/2. - d/2) (- 3d/2.3d/2. - d1/2. d1/2) polynomial in the indeterminate w:
(- 1/2, d/2,3d/2. - 3d/2) (- d/2,3d/2, - 31/2, /2)
(d/2, - 3d/2,3d/2, - d1/2) (3d/2, -3d,/2, - d/2,1/2) F(w, S9 , R) .' Za(d 2 ) w d

d 
2

where a(d 2) is the number of elements of RX that have
cosets in H2 are used. The resulting chain partition of squared distance d2 with respect to an element of the set
GGA is fair. SRX. Note that a given element of RX may be accounted

A theorem concerning the interdistance sets sheds some for more than once as it contributes with different squared
further light on the symmetry properties of GGA's. distances with respect to different elements of the set

S RX. The sum of a(d 2 ) equals the square of the cardinal-
Theorem 3: Let be a normal subgroup of G. The RX.

partition of a strongly regular GGA obtained by applying Example 2: Consider K = 1, X, = (1,0)", and the group
the left cosets of H to the initial set X has the following of plane rotations
property. The interdistance set associated with any two
cosets, say Sill and S 2H, is a function only of the coset [ cos(iir/2) sin(i-r/2) ]
S 3H, where S3 = SS2, and not of S, S2 separately. [ -sin (i-,/2) cos (ir/2) i 10,1,2,3.

Proof. Let S, and S2 denote two coset leaders. If The subgroup [So, S2} is normal. The distance profiles are
X,, X, are two (not necessarily distinct) vectors of the summarized in Tabic 11.
initial set X, and S, , are two elements of H, the
distances among elements of the cosets Sill and S,11 TABLE 1t
includes the quantities DISTANCE PROFILES FOR EXAMPIE 2

d s(s S, I, Sx ) ,1S&& - S2S xIl R X1 -_ ._ , s_.___
{ .%, } &2. .° 4 2 -

as ,S.,, run through 11 and X,, xi run through X. We (S) S, 4 .-'
have s 2 ) s, 2. .' + 24'

have ) S, 4..2

d,>S,. sh, S ,, ) A' 1i2 + II k, I2 -2X S'srt1
2SA, X,,(SIA) 2K" + 2.'

"( St, & S, 4 .. 2

II,2 N g, l 2 --2 X/S 35 'sx, X, IS,,S,} S., 2-," 2,'
(S•.S ) . 4..2

FInallv. a'I, it is a normal subgroup, we have
SNiS'll = SS,11 Sll; Definition 7: A fair partition of a GGA is called homo-

geneous if the set { F( w, S, R)}) does not depend on R_

I.e., II Is mtlhcr coseL. It is called strong/ homogeneous if "(vN, S, R) does not

We now provide some examples of fair partitions of a depend on R for arty S.

((A. (ionider first the rotation group which generates Tlieoremi 4: If G is a commutative group, all the parti.
Alphabet 3 (see :ig. 2) and its partition into the two cosets lions generated by its subgroups are strongly hornoge-
associated A Ib the rotations 0, -r, and Tr/2, - rr/2, respec- neous
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Proof: Let 11 be a subgroup of G: this is obvicmsl l1, N, into the vector
normal so that the partition induced by 11 is fair. Let X
X,, X he two elements of the Initial! set X, S anl clement xf ,, , . I=I.
Of G' S,, an element of 11. Then for any ' c- G the chosen from a set A of M =MI.- M, elements. This
computation of F(w, S 511) involves enumerating thle miapping is obtained as follows. In the set A we define a

squared distances system of L partitions such that each class of thie Ith
JJSSA S S, IX 17 JSS, , -SS ,, A1 '1 2 partition includes M, classes of the (I - I )th partition so

flS,,A,.SSSIII [[SX,- S~IA 1  that it will consist of MMt = A11M2 ... l, sign als. By'

S= X S."X 1 numbering the classes of the (I - 1)thi level occurring in a
class of the Ith level we can obtain a one-to-one mnapping

which do not depend onl S and hence on the element of of thc set of classes of the (I1- I)th partition onto the set ofv
the fair partition. integers (O, - .- , - 1). Therefore, if qjare chosen in the

T~heoremn 5: If 1/ is a subgroup of G in a strongly set (0,-.,A, - 1), 1 , ,Lany L-tuple (q11,--- ,q1,)

regular GGA, the partition generated by the left cosets of defines a unique value of the jth elementary signal x,=
11 is hiomo-geneous. f (q1 ,,--- 'qj,) (see Fig. 5).

Proof:- Let 1f be a subgroup of G. Then the partition
induced by the left cosets of H is fair- Let X,, K,, be two

elements of the initial set, S an element of G, S,, and S,, +2

two elemients of 11. Then for any S. c G the computation /

of F(wv, S'g, Sf1) involves enumerating the squared dis- =.0 1
tances /

SS5~, A', - ~'SiiA1'jI12 = j[S,,X, - SS9SS"X111x 2 ++ =

so that F(w,S,SH)=F(w,S1,SII), and as S. runs /0

through G so does 5 = STS 9S. 'Thus the assertion is++ ++

vroved. ( D (

Ill. MULTIDIMENSIONAL CODED SIGNALS: Fig S. Example of Ginzburg construction.

BLOCK CODES

We shall now see how the multidimensional alphabets Ginzburg proved that the alphabet obtained 2in this way

d escr-ibed in the previvous section can be used in conjunc- has a minimum squared Euclidean distance D2 that satis-

tion with codes to further mbiance their performance. In fies 2> (,
this section, we shall focus our attention on block codes. D2  min (d,)
while the next section will be devoted to convolutional 1 I5 I.5

(trellis) codes. where dl,-- dL are the minimum Hamming distances of

1-limai and Hirakawa [18] and Ginzburg [8] have de- the L block codes C,---,CL, and S,' is the minimum

scribed constructions which make it possible to design squared Euclidean distance between the symbols in each

alphabets with an arbitrary signal distance and with .1 subalphabet of the ith partition.

regular structure by employing algebraic properties of blockp Consider now Ginzburg's constructions based on gener-

codles. Fig. 4 shows Ginzburg's construction. The L. blockP alized group alphabets. By associating with eachi level the

encoders CI I C, C, accept source symbols, and Oultpuj: elements of a fair partition (the concept of a fair chain canl
1. blocks (q,,, 7, -, q,,), i 1, -- , 1., of N symbhols eacl, he used 'he re), all the subalphabets a( a given level have thle

Thew moduilator f mnaps each L-tuple (q,,, q,, samne minimum distance. From the fair partition of Al-
phiabet 2 described before, we have 62 2/3, and 62 2.
Thus using the (N, k,3) Hamming code on (;F(4) 19, p.

(q q193, 1 941 and the trivial (N, N, 1) code (oi C F(S), with

_F f'__1 qIIII N -(4"- -1)/3, k =N -in, iniL, wve have >)22. The

(q resuilting alphabet has a rate
% 2 f R 15(4- - 1) - 6rn]/14(4"-l1

((1(17 .... N

- loi example, choosing in =- 2 we get a rate R 1.05 and
2) log, Al -- 8.4- with in we get R 1.18 mnd

II,4 ( ,,nihui, (o,1,truIi,,n D)2 log, MA> 9.4-
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Using Alphabet 4 and the partition described, we have 1241 (see also [25, pp. 561-5641). The generating function
81 = 2c 2, and 82 Sc2. The (18,15,4) extended Hamming technique consists of enumerating all possible distances
code [19, p. 36] on (!F(16) and the trivial (18,18, 1) code between sequences of symbols associated with paths in the
on GF(S) can be employed, providing a squared minimum trellis. In general [ill, the generating function can be
distance )2> .211 iis alphabet yields R = 1.583 and obtained as the transf-r function of a state d;agram re-

l)L log2 M _ 7.67. garded as a signal flow graph. The state diagram is defined
over an expancied set of N 2 = 22" states. For tie special
case of a trellis based upon a linear binary convolutionalIV. NIt I. ItII)IMi. N~S~INAL ( .'O ) SIGNALS: lRi -l JS c lode and a strongly homogeneous partition of a GG A, the( I.1 NG Il IOI CK) (?olrlS.-
minimum distance can be computed from a generating

We shall now see how an Ungerboeck code [10] can be function obtained as the transfer function of a state di-
designed using a multidimensional alphabet generated as agram including only N = 2' states. (See [15, theorem 3]).
described in Section 1I. Such codes can be specified as in We shall describe two examples of four-dimensional
[17]. Each coded symbol depends on k + v source bits, Ungerboeck codes. The first example originates from Al-
namely, the block T (al, -, a) of k bits generated by phabet 2. It has minimum distance 2a2 = 0.66. The fair
the source, plus v bits preceding this block. The v bits partition described before gives four subsets of eight vec-
determine one of the N = 2' states of the encoder, say tors each, with minimum intradistance 6a 2 = 2. By choos-
o = (ak 1'* * , ), a, = 0,1. The encoder state for the ing a four-state trellis code with the structure described ill
next coded symbol is obtained by shifting the a, k places Fig. 6, we get a squared free distance 6a 2 = 2. If this figure
to the right, dropping the ight-most k bits and inserting is compared to the minimum distance achieved by using
on the left the most recent source bits. The encoded two independent 4-PSK signals, which transmit the same
symbol x depends on r and o; we write amount of information over the same number of dimen-

X = f(, o) (4.1) sions, we see that an energy saving of 3 dB is obtained.
Consider now Alphabet 4. It has a minimum square

where x is an element of a GGA. This encoding procedure distance 0.3. The fair partition described gives 16 subal-
can be described using a trellis (Fig. 6 shows a section of phabets of eight vectors each, with minimum intradistance
such a trellis, obtained for = 2). 1.2. By using the four-state Ungerboeck code described in

Fig. 7, the squared free distance obtained is d,2 = 1.2. By
A comparing this to the minimum distance obtained by using

two independent 8/4-PSK signals, we see that an energy
saving of about 4.3 dB is obtained.

A

Al

A 0 G1

00

C B
Fig 6 f our-state trellis code for Alphabet 2. P

We conjecture that a good code should show a good deal
of symmetry to be reflected by the structure of the func-
tion f in (4.1), or. equivalently, by the assignment of
symbols to the ranches connecting any pair of nodes ill N 0

the code trellis (for further details see, e.g., [10], [11]). Tiis
cal le obtaie d IMi our framework by assigning to the
braiches associatcd with each node the set of symbols [ig 7 [lour-stle trellis code for Alph.,'i 4

olbtained from a fair partition of a G(iA. This is equivalent
to the procedure ,u.gested in [101 and called -'mapping by V. ('ONNI (I tONS WV H l RI I At I) WVORK

,,ct partliti'(10 :it/hus our procedure can be viewed a> a
svsternat c was' to achieve set partitioning Recently, Calderhank arid Sloane 1221 have desciibed a

I 'h rl o ,ot sidol used single parameter that specifies lit method of constructing lultidlmension.ll Irclhi> codes
perfoirmancine of thece codes o(n the additive white Gaussian where the alphabet is- a finite subset of a lattice I. s"ltli an
noise channel is the free luchdean ditance. This can be equal number of poi nts from each coset of a sulatticC At
computed using either a generating function approach or a of I. As pointed out by the editor, the svnlilntrv and
modified hidirectional search algorithm [20, [21], or proce- homogeneity properties of these alphabets are alnmut iden-
dures ba.dt onl Viterbi aivorithm and described in [23. tical to those of ((IA's Snubal, abet edge effts are ie
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reason why thie correspondence is not quite exact. To se 71) Sepian. *(iroup codes for the (aussian channel,*' Bell ' s
how he wo mthos ae reate, cnsidr I.e artiionof ech~ J., vol 47, pp 575-602, Apr 1968hthe tomtice s ar r~elated bysie (10) ar(01into of v. V. (iinzburg, "Mnogomeiritye signaly dlya neprer-yvn-ogo

tieinteger ltieL=Z'gnrtdb(10)ad0,)ito kanala." Probi. Peredach. Inform., no. 1. pp. 28-46, Jan.-Mar.
eight cosets of thle sublattice Af generated by (2,2) and 1984 (in Russian). F-nglish tran~ation: "Multidimensional signals

(2, -2). The sublattice MI consists of all vectors wihnon for a continuous channel," Probi Inform Transmiission, pp 20 -34.
1984

divisible by 8. Let 7' h. e thle tr-anslation given by 7' 1 91 F 1. MacWilliams and N. J1 A Sloane. The Theorly of kError-Cor-

. ) (x+ it, v' 4 b). Let X ( (0, 1)), and let G recung (C~ds. Amsterdam. The Netherlands: Norlh-liolland.

T7 T, be the group of all translations. Define a chain 17
-) 1 1101 G, tngertxeck. "Channel coding with multilevel/phase signals."of Subgroups H, H, IIIGb 1 -Ti 7. )16, b II (J, I~ ~) 11 IEEE Trans Inform. Theory. vol IT-28, pp, 55 -67. Jan 1982

K 1  1 , 7- CJ. 7- ) This chain of subgroups [ill 1: Eiglien. "Iligh-levcl modulation and coding for nonlinear sated.
2, - 2t l. in channels." IEEE Tram. Commun , vol COM-32. pp 616. 620.corresponds ttieeight-wkay partihion oL.May 1994

1121 1 Jaccobs. "Companson of M-ary modulation system." Bell Sysi.
Tech. J., vol. 46, pp. 843-86-4. May-June 1967

V1. CONCLUSION [131 1). Divsalar and J. H. Yuen, "Asymmetric Mt'SK for trells code-S"
in Proe. GLOB ECOM '84, Atlanta, GA, November 26 29, 1994,

Giis~hur 18 desribe a etho of iviing sigal. 20.6.1-206.8.
Ginzurg19] escibeda mtho of iviing sinal1141 ia. Divsalar and M. K. Simon, "Combined trellis coding with

alphabet into a chain of subsets via the action of a group asymmetric modulations,- in Proc GLOBECOM '86, New Orleans.

of orthogonal matrices. We generalize this approach by LA, Dec. 2-5. 1985, pp. 21.2-1-21L2.7.
1151 I-. Zchavi and 3. K. Wolf, "On the performance evaluation of trellis

introducing generalized group alphabets, and we consider codes," IEEE Trans. Inform. Theory, vol. IT-33, no. 2, pp. 196-202,
the combination of these alphabets with block or trellis Mar. 1987.

codes. Some actual designs show that consideration of 116) E Biglieri and NE Elia, "On the existence of group codes for the
GGA' ma lea totranmision ystms poviing ood Gausaian channel," IEEE Trams. Inform. Theory, vol. IT-18, pp
GGA' ma led t trnsmssio %ytem prvidng ood 399-402, May 1972.

performanice with band-limited chaninels at the price of a 1171 R.. Calderiaank and J_ E_ Mazo, "A new description of trellis

relatively modest complexity. codes," IEEE Trans. Inform. Theory, vol. tT-30, pp 784-791, Nov
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Anlyss cmiad Compensationm of'Noni inearitics in

Digital Transmission Systems

I ""I) ll(I IlKTl. "I '.Iow KIFNi K, 1 1i ,l SR(Gl( IARitLR.L. ANI M'\URI/I() CATEFNA

lb'A-1, \1% -o ,'v Ilo oii , f ekialo-t lI,,Ilinv'riliie vmrfied .,CC, for eXalliIle.I 1201) that, as thle numbeII)r (If

ofI,1 ... I '...1 , ... ii ' ,f III- A discrete sNl',il sith mcm1 cllcrgy levels Ii thc: signald constellation increases, tile

.111411.10 1l~~l~li 11h 4 ~sll~iItes aleTe lWTi wIorkInt poinit should lbe backed off moore to cornl-

Pl.4 t ll o 'iomIIIC.Ii Itl. oip to a goii rCII r. '1liis IIesqil is ooct penf~isalte for the nonllinlear bhlavior of the aniplifif-r. In this

llo~C ' 1t.. 1 fIeII, hlincI and11 oI il i (tll'Ir IIC/Iti-III'lI' situation, it May occur thAt the :beneficial effecct of the in-

II ~"A''crecase in linea rity is offset hy the corresponding decrease
o. 11111iIIIC. t,sr dc~iC~l is bIjsed lit a11 moIdICI~~il~ldel or of amplifier's output power. As a re-sult. PSK (which has

Ow ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~ol one ener-N levellC1151 l~~lC~iI~ SCIIs~II11. Ild(f) miay perforni better than QA NI

'Ii l.,'l, I SllI5Iil SCeIcaI e\AIII 1tC5 sh11 tfie per'- (whiclh has more) 201. 'This is wihy more sophisticated
I, KlI~lAIN.I1~.solutions arc called tor.

From tile above d scusslon, it appe'A , ather natural to

invest i atc two-d iminus onal si gnat constellations that
1 M( I~ N. . IVAt ION 11t-1 I11, \VO<K

I fi I or i- pecrum ncrase, h-h-ottperform PSK, andi yet (1o not suffer excessive degra-

A >1 ieme fr R' seetunlinceass, Ih dations due to channel nonlinearities. This paper is de-

X pc ,! dilt t1:iUIs.-,lITI over radio ehanels is likely voted to this problem, thog an approach that comlbinles
it 't r I> lf ''-Tof' high -capacity modulation tile choice of thie rnodu lati on forniat and thfe eornipnsation

'1'' t, I i-.IITIvCI qILladrature amplitude tniodu- of' channel nonilinearities.

"1n ~ IlkM Pitppl cation has b)een slowed down The channel model onl w~hich our analysis will be based

b. tl- pi-n'' 'II t imn tfide (AM IAMN) and phase (At\! is time-discrete. We assume fur simplicity that the mod-

V I nl P1 rI W pNX t il Ifi) rqeny(b power ulated sig(nal is sent through a nonlinear systemn wit'll

1111, 'lII"T mI: near saturation for better efli- nmemfory before beingY aff'ected by additive white Gaussian

cwn r A II N " l Ii near distoirtions Introd!uced by noise at its output. In other words, tihe discrete charnel

If ' 11111-hir ['IIft T thc suit dard channel model, il.., consists of two separate parts: a noiseless determ instic

hi,_ (X 1mIIim rw Ts : Tnise channel, fa r from real- paIrt, and a noise adder. Traditionally, there axe two phi-
'.1 u s C'11!ji e5 ased oniT t ar from op- losophilles intended to Cope With tile prODtll of channel

11 nonliflearitiCs. ()TTC cons-sts of acceptinc ile cha;.nel as

wIII( Th ')'s <TlL .LT loisc ehlafillel, it is v i , withlout tryiliInll til anytHIIIgII to mo1dify its behavior,
TI , I) 1 TI i;s ' ! rectatliollar conlstilfatinf nd to nsi the receiver so as, to1 Tin li mze thiejone-

hcI() ''r.Ar I BLR) ptiTilce thUTI, fects of intersymlhol iricerricc. nonlinlelrities, and

"hifli o ''I' , PS IT iTT x'(equal ilulle oIf fll T. noi se. 'le c p1o StI eliccti I T io in c; Ir sig-,nal p )roces singl

ill *'L ' oe he reversed' wheilno1101- Icluiique hascd on thims approalchT Is mamnL:XTlITTI likelic'ld

'Ii 'II ' C" It liTe cll;ITliIcI. To Cope VkeI~h selp]CicCectlTTTT(M/l. I( he pertllrilled by the VI-

II .' Tolcl is IT h~hk offtrom erhi litllT 112]., 11 117, elI. 10)]. UTlolunatelv.

* .111 p' 'r'' flTiIcaa~ri~c.Il' till, teehillue eClITe Il'51 cIITI~lxit\ which

I' ':, p'sl''' fluoTIItiatol, to 11501kc .1 IiTA IIdKe It klIl'.IIIt'Ahke tot r~ lil'TtII T a veis ig
V . ''T'Tc A' 5 ieI IlII hItl'A FoTrN iIltill" eINTI Ni1h,)[lliliITI Te1cer SellIC"w

itII ,1 1 1 , 111I t. , I li o1. 11'. 1 111' 1, 1 t Cll' '

IIIII1 toc ll III III. 11 .IT I I

os Il o Nlld III, I1III.IfIII oi" 1111t~.

I 11.1 III. 12' I I' I' II'. 1 Ih l ~ I lk ' I'.



fcicd ltN irtrse hce. an\ *iienrlpi if) Comripenrsaie lot (ie ririlirtear he Assumite fiti that hie channecl Ila,, no 111cur
Chixincl xfIItolliittiho 1M5iittdIiciil 2d i tt "olo Inlese di1- oly (I.e., noi handwoidtlt-IInui(ng Compijonents exist) anid
toition'i wvill eillimine t]ie noinse. For thIsI, reaston, it ;lp consider thie effect of ia predistorter [)faced jus1t helrx: tile
jte. lol"Ical to llrvestre~ite solution" hasted il file Corm- nonlinear Channi. ,I this -situation, which loe ,hall refer
pcnx"'rtion of flic rronlin.'-alrtv befil noise, additioni This (oit,- as em ,ii'le(i, )-idA)Irm the comtpcnsatitr acts byv
p)iocetLIHr ShOUld in1,IkC ilie 1imrincel look ats sliirlar as pos- skewing (lie siinal Conustellationr Ill SuCh a Way that, w.hcnl
sibic to a ,alrssimrn Channlc passed tdru gh the nonlinear dev ce, it will resume thie

tI)n appkiacli is chosenII here arc several factors and oiginal shape (e., a rectangular 106 QA M sriceure) - Ini
conttrai(nt that shonlil he kept Ili rn:;d. ()ne ott iliciri is, other words, tlie Coruftenlsator task Is to invert tile discrete
of comrse, thet liinliite p-iloii ace that the nonlinlearity tri.rsinissitt Channel. This operation dtoes ntot motdify thle
c'0IIIrreNs.Itiiiii s Nl i ca achieive. 'ie Second 'i-x IS tile Spectrum, and( hence flte hardwidith occupancy, of thle
eAMe ot deCSIlon, ii'rriliictcto compillexi~ ty t idte tansitteld signal, hut ott course Its effectivenleSs is criti-
coxIt I lie third IN Ilite 1c tonipenlsatoi itself ;,ayI expand call)' dependent onl thie as~sumption that tire channel has no
(te ic Na Itlndwki Ill ii pire of tire tact thlat outi-of-band iiir
ejijIrixxiki lriit he kept ictr coiiiol [71. Ini fact, whijle a
prt'tlioiIC! reicxotit- h'Ind eliimsioli after tile arpli- 11i. ltiIjwtilijmt nvit/i Memor-Y. 1Pie J)(/-Order Iniverse
herl, 1t 11a.1 inreris it hotirc rte amlplifier. '[his canl he a Consider instead, thle more realistic assumption of' at
piohier, il eairliplc itn i tellite systemn with tline pre- echannel with memtory. [In this situation, tirc compensator
distorter loatckl In [the Lcrid statroit to Compensate for is faced with aI tar miore difficult task, thre inversion of a.
tite on hoofr itilI, Iia t rr ll i certainl Cases pro() nonlinear systett with memory. Now, not all nonlinear
%visionl mustt ike ireiei o0r tlI; , ''tjn'e Colntpelnsatloll: ill fact. systerms polNs ant inverse. Also, matny systemns canl be
wilen a coirtclLat1)I ii sili ai Ltiree nuirher of- points IS Used inverted only Ifor a restricted range of- input amplitudes
1)" tire- rakkul,itkkr Ccci " irtfIllols ttr atriplifier chara ider 123, p. 123 H-.1. [how.ever, it is always possible to define

istr cal ci t~irkcattrcchanges, (Ic power saria i r p/u-ordler inverse,. for which thie in'put anmpl itude range
titrix, andl xtrrporiciui awing, car degrade rthe systen p r- is, not restricted 123, chi. 7).
forirancc ii. Birth mrirlog ailxi digital predistorters canl Inl Our use of' [the pth-order inverse theory will be based
prinrcifile lxx' ettr-rcd. lik\ ever, besides being more onl a Volte rca -series model of the discrete nonlinear chan-
corrplex aiif expensive,, arid lex5s flexible, the analog pre- ire (see 1171 and thle references therein). This model pro-
dist irters seerin tor pert ir in x1 ise thanl their digital cour- vides anl exceedingly general characterization of nonlinear
terpirts, [S], 101. 1 fence . ci111triiset wvith our assumiptionl systemns wvith memory based on the so-called Volterra ker-
otf a discrete channecl inn dcl. xsi shall consider digital pre- nels, a set of parameters wvhich can be thoug-ht of as thre

di~stirt ou .extensiotn of the noril ittear case of the concept of impulse
Inl tills pmpcr se ciriller digital lredistoritn of' a chai- response of at linear channel. Given a nonlinear systemn H.

iel, i.e. . tlire tl-ics i rrof a kife ic ttr he inser-ted at thle trans- its j~th-order inverse is one that, when cascaded to H1, re-
irrtcr fri tnied it tire trarxiNsiirt svsten arnd whose aurr stilts Ii a svstent lin which thre first-ortier Volterra kert-1

is to torlpr-cr f lor tIre ix. irted effects of- the itortlinear is a unit imrpuilse. and thle second through tire Inh-order
i-ir1tirrrcl [Iri h ifesinn %rillt)" ' ased tin tire corncepit of prItl- Volteira kerntels are zero [231. Ini other words, if the tlr-
tutu" rivn> tI aldlI rtitnN is stern. The thecory, of' /)ir- ordfer nonlineanr inverse channel is synthesized at the

inkder isenc-- hNKkkx~kk r Scieizein (see 123. cii transriritier's f'rort end, the comtpensated transmission
ij) i;t~ I"' a li' cnit. !o hrri andpass svsteirrx. cliarriel will exhiibit tio linear distortiloi and nit nonlinear

oSinec tlic hirf Ikl -crIll pw !'o; th'si.2tt IS riodelnl (tc tl"oltrrri ip to order 1) Obviously, (i efriic f

ritnilrrici(r1.1 ii', hCN weikiiaye t'fe i of- doing2 tills ill thle ,rrin-trdei eoiill' 1x'~ Chirauel wvill (depend onl rite et-

t 1.i I1-ir 1ric'ctii f1r!e 1-th in -, 1h 1!1if urn- n V l C o C

MCI. '1'-n- 1 i 'c I )esir 11 i err c linter it Is. xitii5''1iiiit tin sift ti'[lixc iixINtn fir A i w I I' c. and
._I(W -j Ikfl 111 i - c 1' iirrr i i Ill Stir-en, ; loios'nft mi I liftttr ir 1 i tto ilicx' k Is Ii C ofpe t it i ' lIxttttr

I I i I 1' I'k irti c - I~i ~ lkk i 1, I ll l l'tlir 1011 cfrari''iii' (it' Nxomrr ' rI N it)I
;d Il t' W Ii .1 i i rk I xN\ iii li /t 'I i i it i''t ' I I N

, it IlI it ' I Ipies trillIcIrm I I It tlix'xc illdIttttk 1 xM IltitiN
C I C ~!i i \k C t I 1,J' A Itk'\\ NW'ii x1ci NC I ix rHilW [tie xliriix'I rarrl

I * I'ti-1k /k ii. t Iw 1 11, 1 kt ' i.t I lii C( I i x'c iip 'ii it 0r . e tn
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Consider then a pircdlistotr wih memii~nory, Its operation Consider now two haiidpass nonlinear systems. Let thle
consists of transf'orming thle source symbols a., into chan- first (thle compensator) be characterized by Volterra ker-
nel symbols 1). whose Values depend not only onl a, but nelsf, the second (tilc channel) by Volterra kernels g. and
also on 1. previous syntbols. hu.denote by )i thle kernels of thle systemn resulting from thle

(.) cascade of the two, The first-, third-, and fifthi-order h-~
1,,, 1' a,, a,,. - , ,, -) . (2. kernels are explicitly given by

If we defi ne thle state of the comnpenisator at timne ri and / I

we denote it by o,, (3.5

0, (11 ,,.~ (2.2)

'Ican also write (1~ of~t*36)

6, b 'a,,a, (2.3) and

which shows explcitly thle dependence of thie channel /z
symbols b, on the state of thle compensator. This '"sliding-
block" representation of the compensator operation shows-
that the compensator itself is equivalent to a trellis en- (,I f~)(3

coder. (This equivalence was first proved by Calderhank g,, . ;Sf

and Mazo (241.) Ini conclusion, we can think of thle design + (1) MilJt fi*
of a predistorter with mlemnory as of the choice of a trelis al ~
code, made 'in order to compensate for the channel non- + 9b f. (.1

linearity.
+ ,1) .:. ftlMf~O*f( 37
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IN VEiRSION It can be observed that (3.5) expresses a relationship

We start our discussion by considering the cascade of between first-order kernels which is nothing but the dis-

two nonlinear systems (for motivation's sake, the reader crete convolution of impulse responses of linear systems.

can view one of the two systems as the compensator, and B, Volterra Coefficients of pr/i-Order Compensator
the other one as the channel to be compensated). We shall Consider now ptb-order compensation. Under the as-
base our treatment of thle subject on Volterra series rep- suripltion that the linear part of system f, i.e., the linear
resentations of bandpass systems f 17, ch. 10], and we functional determined by the first-order kerniel off, is in-
shall use, for notational simplicity, tensor notations, as vertible, it is possible to find a system g such that its cas-
suggested in [22]. These notations imply that any sub-

scrpt ccurin twce n te sme ermis o b sumed cade with f gives a system with no linear distortion. i.e.,

over the appropriate range! of discrete time. Thus, for ex- R f t  
aw lt g0

ample. we write x, v, in stead of x, yl + x, y2 +

A. Cascading Bandpjass Vonlinear SYstents 0 I lehee (3.8

Subject to certain reglarity conditions, a bandpass
nonlinear systemi can be described by the input-output re- This choice provides thle first-order compensator. Equa-

lami ship tion (3.9) expresses nothing- but( the Nyquist criterion for
the absence of' intersymibol interference in the o\ erall

+ channel. lin appearance,. this sounds like at rather ple-asantl
result, as it shows that even when dealing, with a noc.I inear
channel the IneaIC;r part mlust be designed (at leas: . t the

h: ptlt-ordcr criterion"' is accepted) to be Nyquist 's . Ini thle

lollowvine, wre shall see how thle concept of 'ln~rpall
Z. of a chiannel'' must be correctly interpreted.

The liird orde r cot itpe tsal or i.% obi a i ed by c hooa s ins

,,AA,~I, . g so as, to have h, 0; by taking thle (liscrete: Coil-

voltittin ot bath stdcN at (3.6) with Q t: Lt t I ilad le-
6 i a, ,,callings (3 8). We 11et

1ra a a * ii 'i tli h system , is n c c i r t iie l i. Ill) x t" tau a c aIlllhvelct Jts ltl ti e ll byc~ cataa n ol,, l

Nap~l W Id lt ia tile t im ai. la iNttt ha.' It \I. I byn taiap a

ld~~~~, 11w .tilhlmi, 8) !,(Ad reit -cII



Belowe goaili.g furth1l et u." consider a special situation (2nfl). A fact that unlghrt hle uitexI)cted a priori is ritat
(whichi Is ad itt itedl v raither s inplistic, but gives rise to thle nonlinear terms of (lhe compensator mray be irrele vant
Coiisidcrat ion., [fhat nmiglit hle lite rc inrg). Assume that thle it) shaping thc spectruni. Consider, as an example. thc
channel non nilea ntv is thle Cascade of aI linea r system 1. compensator output a. + Ila Ba, a By di -
and a urcrnlor' less device 1). The j'th-order compensator redi calculation, it can be seen that 00 1 + A 2 1 4

for this channel can be easily computed, providing a re- and 0- 13f = A. while 13, 0 for I i 2. Hecnce, the
suilt which nmatches Intuition. IIt fact, it is the cascade of tlrird-ordcr nonlinecarity has, for A 2 >> B2 (as is thre case
a lintear filter, thy' in verse of 1. ( sy, U' ) , preceded by whren relatively nmild nonlimeait ies must be eoitpeii-
a nonin rear iriewioryless device, tire jnii-order inverse of' sated), vet)' little effeci.
1). Notice that rite cascade L1. artd L gives rise to a Ny -
qirist filter. This result shows that one way to comtpensate 1). Computing thec Linear Part of the Compensator
for thie chtantnel irort if ica rit v iini is case consists of re- The computation of tlie limear part of the compensator,
mlov ing tite channtel Inemlorv and cornpensatimt for thle re- ie., of lekres htsle(38,dsre some

sLit ) iitemrt Ics., nonlirtearity hy memtoryless lpredis. further attention. B~y rewriting explicitly (3.8), we have
tori ion.

A motire cal ixtic miodel. suitable as an ap~proximation to n~2~ (3. 13)
at nunmber of si ntie-chianriel ig-ital satellit onuia

tion systents, assurris that the linear part of the channel where 8 denotes the Kronccker symbol. Since we are in-
has already been compensated by a suitable combin-ation terested in a finite-comlplexity compensator, we consider
of chtannel filtering arid linC.Ir Cquaiization at thle rcceiv- a (peirhaps appioxiriiaic) soltaiuii of (313) which inludes
er's front enid. It this situation some simplifications arise, just a finite nunmber of terms in thre summation. Thus, our
In particular we get. for tite first- and third-order compen- problem is equivalent to the design of a zero-forcing
sators .equalizer of finite length. Two technical assumptions are

3; necessary here, namely, that there exists only a finite
6,"number of nonzero ft I -kernels, and that the polynomial

g2,>. -f
2

.h.. (310) whose coefficients are these kernels has no root with unit
magnitude. Under these conditions, a solution exists for

C. F/ic Effect of Comrpenisatioi on Power Spectrum the kernels gt 
I) with values that decrease in magnitude

We consider now thle effect of a pth-order compensator away from a "'center kernel.'' The procedure for com-

onl the signal power density spectrum. The continuous- puting these kernels, which requires finding the roo .ts of

time signal at the modulator output can be given thle form a polynomial and the solution of a set of linear equations,
can be found in [271.

X(t) = Z b,,s(t - nT) (3.1) IV. THEt ROLEi OF CHANNEL MODELING--ORTHOGONAL

- VOLTERRA SERIES

where (b,) is [the sequence of charrnel symbols, T is the From our preceding discussion it is seen that the comi-
symbol period (equivalentlyv. T_ is thle baud rate), and pensator design is based on a Volterra-series model for
Sft) is the bscwaveforml Used by tite modulator. The the nonlinear transmission channel. Thus, the availability
power density spectrumn of signal (3.11) is given by (see of such a model is crucial. As, apart from some very suni-
117, p. 33]) plc cases, analytical evaluation of Volterra coefficients is

-~ not feasible. computational techniques should be used.
G;f IS. ( t) /3,, e xp j2qTfiT) ~ Basically, two ap~proaches are available, which we shall

1 ( n - 9 refer to as '"block modeling" and '"global identifica-

(3. 1 l2 ion.
Cortsider first block mtodeling. It is based on a miodel

\" here j,3, ix tire autoco)irClatronl of' thle synibo I sequence at of thle channelitas at cascade of li near, imle-invariant filters
the Coinpe-rixM(Itr output and S( -f ) is tire Fourier trait"Orm and baitdpass nonlinear devices whose input-output rela-
of w)) It I, caill recoenised that the brackets on the- tionsitsti) are given it the fonni of a Taylor series. In this
MI1S of (3. 1 2) cowrni ittie d iscretc Fouricr transform oit case, tite Volterra kernels are evaluated by comtbini ng tire
tire cqiuenc ( o. ), i c., (tie power derity\ spectruml of the Input -output relationships of' rte buildling blocks that fomi
'0lcirre aIt the( c0in1Irens.irof olutput . Tis is a1 periodiic tlie channel (see, for examtple, 119]). Although thii' ap-
11Miner it If %k xti pc nod I ",I proach is apparently simtple aitd straight forward, paiicuen-

F-romt (3 1 Li. %k c --c thatl Htie ,Ipcctriim shapingi, eflect )t Lally when tie channel itself is Comrposed of a reduced
the tii.'rii can1 he ana1;lsred lbv evaltiatin lit Ire at'- Ilitirbr of blocks, iii it', application sorte care nitut be

tirilirii e'leie H, )i-in exaiile a linecar cotrpen execise, d b'' akn two i ripor taut points into coriside ra-
r(-,p()11d1 ~~l'~a 11 1' .l hinto c(1wle ll. Irr[xt of all. Ill irtaity case' tire trunldrr of nu'iiteCIO

I- ,, "k .ith the. cc(nr ( o" 4hAe,, A .~ a real Volterra coiteficieritl s "oi large tha t (lie Tirter of comt-
\ill iii a xtctr x/1pir'( +~ 2.1 ~- ptnitiuirs Intviilved Ill eva11llin icther order cuteflicrerits



rIlli ,ic '['hc~l ie second one is miore subtile. Per- (I.: ). M1ore I)reciselIy, the expc~tiat In o n ' Q I is
haps thle most Irirporiant fact to he kept in mind whden con- equal to zero it' I -- J, or It' I= j b)1t (thc arguments of
siderino the identihication of the channel is that nonlinear 01' an ' ~arc not a perrmmtation of eaj,! other. If it is
systems behave differently for different input signals. To assumned that thie sequence (x. ) is a stationary sequence
understand thle consequences of- this Statementw, consider a of' Indepenident, identically distributed random variables,
simple example. Assumre we are dealing with a channel thre construictionl of the~se orthogonal polynomials is a rcl-
responding to thle input 'sequence x,~ with thle sequence Y,, atively straight forward task. InI fact, thie resulting poly-

a ex, +- v ,, and assume that x,, canl take only thle valutes nornials turn out to he a generalization of miultidimlen-
I or -I . U rider these conditions, as x,, =x ' , thle systemn sional [-fermite Polynomials, as defined by Grad 1251.

behaves as linrear, with input-output relationship )v,, = (ai They canl be constructed, by using an observation of Za-
± f3 ) v,, . Onl t he other band, if thle input sequence canl take dtell 1261, accord inrg to thle followving rule:
valueis -3. - 1 .1, aind 3, the syswmri really behaves as l)-I,,(i 42

Qi A 1 1,2 1,(,I)---1, x 4 2
nonlinear. Hence, we realize that in a Volterra-series
model each one of' thle nonlinear terms affects thle tranls- where it,, ir, denote the number of indexes of thle
initted sequence differerrtly if different modulation for- arguments of Q"' equal to k,.- ki, respectively, and

mats are used. As air example, the third-order Volterra P,( are polynomials in a single indetermninate orthog-
kernel 14-22 has at different behavior on PSK and QAM sig,- onal with respect to the ranrdonm variable x,, I.e.,
nals. In fact, this kernel multiplies a ternl E([ Pi (x,, ) F, (x,,) 0 for i # j

where El ] denotes expectation with respect to r,. I-or

For -S I, = I b,, constant, and hence thle
kerniel contributes to lincar distortion only. As a condoL- Q13 1(r, t-1 -1') I' (20r) PI (X3
sion, the Volterra Kernels should be rearranged, after Consider then the problem of constructing the polyno-
computation. to account for effects like this. Besides OP- mials P( -). They can be found using a procedure based
crating by inspection, a general way to reduce the Vol- on the selection of a sequence of linearly independent
terra coefficients in order to account for the modulation monomials in the variable x,, say /0. fl, .Explicit

fornmat at hand is based onl an orthogonal Volterra series, formulas are (see also 122, p. 608ff])
We shall con: der this point further on. (.

Consider then global identification. This is entirely P x,
based on computer Simulation, and consists of identifying fk f - Ir fo

the Volterra kernels of the transminssion system (already Ef lE ~ f~.5
in their reduced version) through a gradient algorithm dt-
(see. { [7. ch. 101 for further details about the identifica-...

tion algorithmi). Using global identification, thle reduction E J kI E Lf*fkr-I I- j ,'
problem nmentiorned above canl be solved at once by usinrg
what we call an orthiogonal Volterra series, a type of ex- B. Applicat ion to Digital Radio Modulation Svsteors
pansiori that depends onl thle channel input characteristics In our situation, we earn start from the sequence of
and does not need any furthler reduction. rnonornials

The Volte rra e spans ion (3.4) has the structure of a 1 v . . :
for se -ries. - rnd as such shares, wkith thle Taylor series some ''i eunems erdcdb ai-it con
mrI2I(t IVC heat U r s. For e sarple . it might be inadequate to Ii euereiiut erdcdbytkiciinoacin
rersnZ, eiynn rers tes r ~Uivlrt o t he particular type ofrnodu latiori scherme irrvoilved,. which
rrese t s\,Im.N n ith ars otuts Moreoqve t , -ol nirht\ render so(inie1 oh the rirenoriils linearly dependent.

modl d eve chnnl ny iothi iripove b :idiie For exarrple, withr unt-nr SIK we have Ji,, I'
inlne erii~iitheseteN Fialy. vcr wen ~n clanire aid cOirise(IlreitlC Ire (liurh t-I1 (Ire ciglr1tlr and tire nlinth

IMIt e)tf ale liide~nerdenr. t raridnirri variables, tire 1nroriials, above rrunst lie deleted hrorni tire lisi . Fitier-
terni~ ir ii evn iricrreate. Nw, arr irore, frir toirr-plrase I1SK we rave k~ t'. which

calrses tire sevrilth arid thre tenith nrnorioriiial to be deleted.

rrirrrt' urhi 1r l , nurrrnr;rl ('\)nmwriirrrs 'Ihliese tn:(ll )n I. ) III- le 6 tpolinri irs 0 " a" Sorciatedh % (i lkt-r p-

risrii an Ii it it~nt~ rel~tintisin~i II tl tir l l nodk[rloll schlre ie Cr11 lie corlIlricitd J,, tollow\.

I., ~ r I~:~ ,, ) 1 ,. ~. r se , itirs rle (1 2), then dchec the prl~rrn rls, whIieh

erOrnesporrr to the( corrprrilrt oh tile Channel ourtputn hail
Inr~ orrid' iteo tire hrrirwrhrlr oh interes"t (see 1171. pp1. 5412

whine lu V Inht ~Ividyrnnnnrr oh rhen'ree n that I" r- Ilor tinil dhcarls). III )JlnrIth. r11lnrs Icepids to

lire ~ ~ ~ ~ f( III( xql n pe (orh ) Ce 4)1 rIrrnon rrjle .- 01et 11eon \ tire WIr nII o! Ire r (\Ik %e 1 k k * I k % I 1



etc, !")I exall J'kL [lie Q-polyiioitials for unit-energy IPSI

are, up to order three I I NFIA PAR I

X, * I'1 A I/ 1 * j 0.646

Similarly, for tinit-energy 1 6 QAMN we have f .063 j 0.001

A, XX.t I xj, 1 i 1  f -0.0?4 j . 0.014

t, 1 -%, 1 .3 1 .0 36. j 0.031

V . So P 1 1 LAPO 1.t: 1 A Ii( Ai I IN 3RD -OIM k NUNL INE ARi I 

We shall flow consider some exanmples of applicat ions ft (3 0.039 - 0. 0??

of' the concepts outlined in preCv is sect ionls. lExamna~- W12

tion of at few simple sittuationis will allow us to show tllC 30

apph cabil uy of this theory, and will hopefully enhance its f -3 0.035 -j 0.035

comprehe nsijoln. 0

We deal with a nonlinear channel modeled using a 003 -. 0 - 000

bandpass orthogonal Volterra series whose coefficients for - 0.1

PSK signaling are given in 117, p). 5661. This channel re- 310

suits front thle cascade of a rectangular shaping filter, a
fourth-order Butterworth filter with 3 dB bandwidth 1 .7 /7' N 50SINLARIN11(

(7' is the signaling period ), a typical TWT amplifier ex- P5  .3 .?

libiting both AM/AM and AM/PM conversion, and a f000110.3 002

second-order Butterxvor-th filter with 3 dB bandwidth-
I. / T. The amplifier is driven at saturation when the se- Fig. 1. A set of Votierrd kcrnets for a PSK channel

quence at the input of the discrete channel has magnitude
(See 117, ch . 10], for more details about this channel.) 1.60 _____________________

N/e proceed to compensate for this channel by inserting
it, front of" it a nonlinear device with memory obtained as

an approximation of the channel inverse. In particular, we
denote by ( r1 , rl, r,,) the compensator obtained by
retaining! in it only r, first-order Volterra coeflicients, rl
third-order coelficients. etc. Thus, for example, (3, 1
Indicate,,: third-order compensator with three first-order
and one third-order coefficients. Thle coefficients are cho-
sen who, ~eIndexes arc the samne as the Volterra coetfi-
cients of the channel having thie largest magnitudes. Our
com 1putatianal ex periencee has shown thnis choice to be thle
nilos) effetive, although rio formal prool of its optinialiv
has beenI obtained yet.

Consider first tranismitting an 8 PSK symnbol sequence
dfrivinig (lhe amplifier at satturation . The reduced Volterra 1)00 _ ___________ ____

kernels ire listed in Fig. 1 . Thfe symbhols are exp (joll 0
1 

01Ii.icvcli,,.itciiru 1h ~ilc 3I ~~i
cxlp ,- /4). .cx)) ( j77-,/4). Withiont an1y C0otin11 I('l.t'K 1,kw
,satmon th.e oflpls0 the received signal form the Con-
sellition ,hiowni In l:1,, 2. where only (the first quadranit

sl ,io%%in tot sa;ke of clarity. If a ( I, I ) coimplensator I-, two clsters overlap. Thle ellect of aI ( I . I ) conipcilsator
iis' i, c h ortesponltim, constecllation looks like i.3. is shtownt in Fi.7, while Fio. 8 depicts thre effect of' a (4,
Tlie rwdhi.:Iin (Iii t coiistellatiui spread is apparent. No- I ) compernsao. Similar resuilts have beens obtained for 10
ie itd-. li phixis rimtlti iiitrodiice(. which compen. P51K: see 1-ig 1) IuncoInulliers;ited Chiarnnel), FHe II) I( 1,

hir 11iC W1.111im co hd the atiplifier's AM/),% I ) coIIIfmIcv;Isi~u. 1ig 1 1 It(4. 1 ) compensatoll. miid Fg
A t. .ooeii-oor ives (hcersl shown III lie 4 12 II'4.) I oiiipcilsitoij.

%liilc Ili ) c'( )I a1 I1. S ) coiiileirsainr is, deictewd in F-or all uluese situaituionis the effect of tlie comipCIIS'lt
IeI, on thec powerl denisity sflectntiti Was1 evaluated. jiii fotund

).,,)r -16 iu)Al ki Ill th ih s re i cm'l-e df ic to Inc iiiact cull y i nCit'vaii Iact il jlv. tile (filC renuce beC-
liw ihoxipluluci .1 suItiliatnon. tlc h cinil quality11 with''ii twe'Cul thle poiwci Npicira ofl 1iiicominpeiis~iie( and otII~pcIt.

0oiitii...I1nu is C1 1ven less J I sitiluc y 1-1! 0i liiw li sated -,ituls iicvei exceeded J fiAitioii (If ;I (IC Iel.
rcecivil - miutllaion inI Inlst hiiiiilriiit It is, seenI 0l.i1 outsider ihucur th case of a cluiiuicl whos linar palt
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Fig. 3. Saie as in Fig 2. with a ( I ) compensator. Fig. 6. Signal constelation at the output of the channel of Fig. I when 16
QAM is used.
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Fig. 4. Same as in Fig 2 ith a 4, )compensator. Fig.7. Sate as tn Fig. 6, wilha(l. )compensator.
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1~ 60 -- --

0 0 ____

6 0 0.0 Aiou6

Fi-9.Sgnlco~t!1ito a he output ofihe channel ot Fig. I when Ih Fig. 12 . Saine as in Fig. 9. with a (4. 5) com pensator.
PSK is; used.

1 20 -has been designed to satisfy the Nyquist criterion for no
intcrsymbol interference. Specifically, assume the trans-
mitter and receiver filters to have thle common shape of a
square-root raised cosine, with a rolloff factor 0.5. The
channel between them is modeled through a nonlinear am-
plifier exhibiting AM/AM and AM/PM conversion ef-
fects, driven at saturation, and whose input-output char-
acteristics arc described usingy a model due to Saich (see
[28. eqs. (l)-(5)j) with parameters

=1.9638 a~=2.5293

00 Blck =0.9945 =2.8168.

Bokidentification of this channel turns out to provide
rather disappointing results. For example. we get a center
linear kernel whose value is ho") = 1.97 + A0.0, wvhich

-0,40 _______________________fails to account for the rotation (about 40' ) introduced by
~ the amplifier at its saturation point. We need to reduce the

Fig. lo Sa&ne a, in Fig, 9, %kih a (I I coenfsator. Volterra expansion obtained by block identification, or,
even better, to use global identification and orthoconal

20 polynomials. This operation provides the coefficients for
the orthogonal Volterra series. The larmest amone, them
are listed. Up to order three. in Fitt. 13. It canl be seen that
thie central linear coefficient reflects thle phase rotation
caused by the nonlinear amplifier. Figs. 14 and 15 pro-
vidle a complarison amiong thle scatteringp diag rams of 8 PSK
and If) PSK. respectively, at thle out(put of a Channel With

( ,0) cotmpensat ion (i.e.. compensated only for thle to-
tItiln aind thle atnfI)lItIC scaling,) and ( 3. 6) cotulpenlsa-
tion. Inspection of- these scattering diacLrants shows that
tile eflct of tile tltil-older coiltpellsatoI. althtough evi-

denit, Is less (itantatic thanl hin tile cases considered pre-

We, ltats conitICrcfd thOw st of cotttpcitsatols
I fill nlouitlcmea 11fitimels ()itI deIC N ) I.,bse ottile t11C tlorN

Ie Y I Oh I'e .rI- Ii H ' of pth- omlttdc s i' nitlitcaitts. im Jit al ctComputer-



LINEAR PART order. Ii thie klter case, aI certa in amiount of powcr back-
_______oil may prove miore beneficial titan a nonlinear conin-

0() -001 sation. (Notice that (lie backolf can be included in our-2 miodel by simply mlultiplying (lie right-hand side of (3. 13)
t-I 00 j00 by aI factor smaller thtan onc.)

f~) 0.13 * j 0.51
0
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GROUP CODES AND SIGNAL I)ESIGN

FOR DIGITAL TRANSMISSION

by

Michele Elia

Dipartimento di Elettronica - POIA.TECNICO DI TORINO - ITALY

I - INTRODUCTION

Symmetry seems to be a feature intrinsic to every life process. It

should be a very stimulating undertaking to discuss the fundamental

role played by symmetry in art, music, chemistry, biology, physics,

computer science and more generally in every mathematical science. A

fascinating sample of this subject was provided by H. Weyl [531 in his

last book dedicated to a synthetic view of symmetry. Nevertheless in

this paper we limit our considerations to the key role of symmetry in

communication theory. In this field symmetry plays an indispensable

part in reducing the compleity of every data transmission scheme.

The algebraic notion of group underlies both the geometrical descrip-

tion of digital signals proposed by Shannon, [43], and the geometrical

methods of error control codes developed shortly after Shannon's work.

However the introduction and systematic use of methodology, machinery

and language of group theory in both coding theory and signal design

must be ascribed to Slepian [2,3].

rn some way Slepian's approach parallels Klein's Erlagen program on the

foundation of geometry: all geometric objects and concepts can be

formulated starting from the abstract notion of group which provides

This work has been sponsored in part by the United States Army through

its European Research Office grant N. DAJA45-86-C-0044, and in part by

Consiglio Nazionale delle Ricerche through grant N. 86.02428.07.



tli ;ppropriate tool for every useful and applied mathematical theory.

In Klein's words "a geometry is defined by a group of transformations,

and investigates everything that is invariant under the transformations

of the given group". In our context the main object left invariant by

the group is a code, as will be defined later.

The Shannon theory of any communication process shows that the informa-

t ion is inherently discrete an(d also that the quantity of information

that can be processed by every practical system is finite.

Signals for sending information over physical channels are essentially

time- and frequency-limited; as a consequence the dimension of the

signal space is finite. The signal energy, defined as the integral of

the signal square over its finite time interval, induces an euclidean

metric in this signal space. Therefore, by using an orthonormal basis,

we associate to each signal a point (or vector) in an euclidean finite

dimensional space. In this way a finite set of signals corresponds to a

finite constellation of points that we call a code.

Early in the fifties Slepian introduced the concept of group code in

the design of signal sets for the Gaussian channel. A group code is a

set of M unit vectors spanning an n-dimensional real space, on which

the matrices of Ia finite group representation operate transitively.

A straightforward generalization of Slepian's group codes is obtained

by considering a set of initial vectors instead of just one vector. The

renulting set of vectors is called generalized group alphabet.

The present awakening of interest in group codes is due to their in-

creasing use in transmission schemes of combined modulation with either

convolutional or block codes, an approach initiated by Ungerboeck.

A fundamental problem for Slepian's group codes is the choice of the

initial vector that maximizes the minimum distance. A second basic

problem concerns the existence of group codes for every pair of inte-

gers with M greater than n. The classification of all configurations of

given dimension is constructively important. As far as we know, only

the classification in dimension three is complete. The same problems,

formulated for generalized group alphabets, seem even more difficult.
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lwwever the i Id is wide and deserves invest is;it ions e ither from a

purely theoretical point of view or for practical applications.

We are aware of + the fact that the t.heory of group codes is still

incomplete, but the open problems really challenge the human thinking

.tand st imulae the research work of engineers and malhematicians alike.

I1 - SIGNAL SETS: THE GEOMETRICAL MODEL

Signals for sending information are essentially limited both in time

and frequency. According to a point of view accepted in the past, the

:;imultaneous concentration attainable in both domains is limited by an

unce rtainty principle, so named after the analogous relations in

qutantum mechanics. Moreover energy constraints are imposed for practi-

ca purposes.

Finit bandwidth W and finite time duration T together imply that the

dinrission of the HilberLt space of the signals is essentially finite.

It we require strictly finite duration and simultaneously maximum

concentration of signal energy in a given bandwidth, we have a problem

wheo;e natural mathematical setting is the calculus of variations. This

pro)ir em has bon thorougly discussed, [30,5,40,411, even if its conse-

qonc,'s have not rece ived much attent ion from the signal designers yet.

t V he a Hilbert space with support the interval [0,T], and let the

- itrit-duct he dcl i n'd as

Tt~o, ) ' o <(t.) 4.tt i t, q(0), W( )cV

h.e. ,o rh.-ir ernto!, complex conju.gat ion.

Ihe norm .;,i,,rv -, I, defined as -I' (w,w) represents the energy of

the signal ,D(t ) iV. In the set of linear operators acting in V and

havi g a di scr,,to spectrum, the operators associated to linear filters



tt I li i t eveA Lo et 11(t i ) ie ot t Ie I I t er t ranl"'; fe r

tIII tIort. lTerel-, ore thef( Fout r eti t ransf ortm; ( f ar1(1Td 'It f -te pc i v

t1 1 I t ot i if 1) 1t1 :ind out put s i gria I , are relI at oI by

It t b!>)l) I (1)w is to seek the i nput fundc ion ( .),of tiit energy, f or

'JI t) t heo energy o 1 thie corresponding ou~jtpu fUnt ionlS )(Lt) , inl the

lirrtvj I ii-W,W , is as large as possible. That is, we want- to maximize

t ,I ol owinig integral

fr =J'T(f) T1(f) df = f 11(f) f ((f ) ()0 (if

f2 = (1f ) d f I

Lv means of Lagrange's multipliers the solution is found to be the

(11 eontunction associated to the largest eigenvalue of the integral

(1) fTK(t-s) Q(s) ds =A (P(t) tc[O,T]

i.'ro the pos itive definite kernel is defined by the Fourier transform

i- ( t f { Hf)Hl(f) e-XP[2rrj(t-S)f] (if.

Ctl) po!; it iv'e e igenvalue'; A, ordered in decreas;i ng order, exhibit the

t v iA rend shiown in Fig. 1, which demonstrates that the dimension of

t i; s i gna I space of functions limited bo~h ip time and frequency is

*-"'r";i1ml l finite andi can be taken to be approximately 2WT, [5]. (If

10J, this statement, is trute within an energy dispersion of some few

p0on? anrd irrespective of 1l( M
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Fig.l - Typical behavior of the eigenvalues of equation (1)

A natural orthogonal basis B = {i(t)}Q1 , nS2WT, for the space of the

signals limited both in time and frequency is provided by the set of

normalized eigenfunctions associated to the set of eigenvalues of

gratest value. By means of the basis B, we can uniquely associate to a

given set A of M signals

mi(t) = x xij Yjt) i0l, .. M

,I s;et C of M vectors

Xi=(×il . .. Xin) i , . . ,M

th:it ye call code. The square of the Euclidean length of a vector X is

uqyal to the energy of the signal m(L).

V, can now describe the operation of a quite general model of transmis-

.inn ,;chomp at the level of signal manipulation.

A transmit Lr associates to every source symbol, in a one-to-one way, a

s ignal chosen in the set A and sends this signal through the channel.

Tho channel operates by adding to the transmitted waveform m(t) a

sample ot a zero-mean random process v(t) with known spectral density.

'he repr e i w signal is thus

r(t) = m(t) + W) tc[O,T]

wh.r, & is a random variable taking values in the set {1,...,M}.

If we confine ourselves to coherent detection, from the observation of

r~t) ovor the interval 1O,T], the receiver makes an estimate of the

value taken by ',, that is, an estimation of the symbol emitted by the

5



0out1 . I., 11is suppose that. all the intormation relevant to every

det ect ion criterion lies in the signal space, therefore any decision

can h taken by referring to the vector

r (r I r. . . . . r )

who re T

ri= f r(t) 4,i(t) (t-
0

This is equivalent to considezing a discrete-time continuous-amplitude

additi\ye channel that produces

r= X +N

where: N is a random vector with known probability density f(.);

Xc is a transmitted code vector from the code C.

At the receiver end, the decision taker may be described by an exhau-

stive partition of the n-dimensional space into M' disjoint regions Ri,

i=l,...,M', if the received vector r falls in region Rj then the de-

tected symbol will correspond to the integer j. We say that the demodu-

lator takes a "hard" decision or a "soft" decision depending on whether

M'=M or M'>M respectively. In conclusion the channel is modelled by a

discrete memoryless channel with M input symbols and M' output symbols.

Ill - MEASURES OF PERFORMANCE

The performance evaluations of group codes on communication channels

rule the development of the entire theory of group codes. Hereafter we

briefly review some important performance indices used in digital

communication systems. In order to avoid discussions depending on

transmission protocols, here and in the following we will deal only

with transmission schemes based on hard decisions. In this context the

most typical index is error probability, i.e. the probability that the

receiver takes a wrong decision about the symbol emitted by the infor-

6



isa t ion Soulrce. Assuming in particular equienergetic codes, white Gaus-

sian noise channel and maximum likelihood decision criterion at the

receiver's end, then the regions R i , i=l,...,M, will be connected

hypeor-ones hounded by hyperplanes with the vertices in the origin.

Therefore the error probability is given by a sum of n-dimensional

integrals; letting R i denote the complementary region of R i in Rn and

let P Xi} be the probability of sending message i, we have

M

p(e) = Jf(X-Xi) dX p{Xi
i=l 1

A second important index is the configuration matrix C=(cij) defined as

the Gram matrix of the set of vectors, i.e.

cij =xT Xj

This matrix C occupies a central position in the theory of group codes.

It conveys all the information relevant to evaluate code performances

on the white Gaussian channel and is also useful to compute other

performance indices.

A third relevant index is the minimum distance defined as the minimum

distance between any pair of distinct vectors of the code, that is

Ki n = min I Xi - XjO 2

i#j

The evaluation of each performance index is usually very hard, so that

frequently the knowledge of upper and/or lower bounds is of sufficient

interest. As an example we derive an upper bound for the error probabi-

lity, that applies to symmetric point configurations.

,,t us assume that the code has a symmetry such that the error probabi-

lit ies conditioned on a given code vector do not depend on this vector,

i,. p{e} = P{eX i  i=l, ... ,M

!et tho region Ri, i=l,...,M, be bounded by the set of s hyperplanes of

oplations flX-Xil' = Ilx-xjQl

7



where j be longs to a convenient subset, of { 1 .. 1. M; the expl icit

equation of each hyperplane turns out to be XT(xi-x ) = .

Applying the union bound, we get a general tipper bound for the error

probabi [ ty

s

p(e) p{oeXi} ff(X-Xi) dX < E f f(X-Xi) dX

j=l Q
-s f f(X-X 1 ) dX

where Q2- is the halfspace defined by the inequality XT(xi-xj) < 0.

Qo is the halfspace defined by the inequality XT(X1 -X0 ) S 0.

and Xo is a code vectcw at the minimum distance from X1.

More detailed comments on performance indices will be provided after

the dc-cription of the main features of group codes.

IV - GROUP CODES

Symmetry seems to be an unavoidable occurrence for reducing the comple-

xity of every high-dimensional set of signals as required by Shannon's

channel theorem to guarantee high coding performance. For instance, we

can take advantage of symmetry in designing good decoding algorithms

for error control codes. Symmetry makes feasible the new digital modu-

lation schemes which combine error control codes and modulations.

As we observed in the introduction, symmetry cannot be separated from

the notion of group which discloses symmetry's real nature and con-

stitutes its formal counterpart. It was early in the fifties that

Slepian introduced the group codes for Gaussian channels; his ideas

found a definitive formulation in a stimulating paper [3], in 1965.

8



Now let us formally dot in ( he main object of t his paper.

lef init ion 1.

Consider a finite set- S(G) = 11)(g): gcGl of real orthogonal matri-

C(eS that form a faithful representation of a finite group G and consi-

der an u-dimensional unit vector X1 . The set S(G)X 1 = {Xg=D(g)X 1 :gG

of M vectors generated by the action of S(G) on X, is called group code

, u oed ny IM,n), if it spans tfhe n-dimensional space; otherwise i,

is called planar group code.

In the present theory, group representations by matrices having real

entries are a fundamental mathematical tool.

The theory of group representations originated in the middle of the

nineteenth century from the works of many mathematicians. Equipped with

the theory of group characters, (the character of gcG is the trace of

the matrix D(g)), the theory of matrix groups assumed a central role in

the development of modern algebra. We do not try to survey this sub-

ject. To coding theorists we recommend the book by Blake and Mullin

[12], while for a thorough development of the topic we refer to the

books by Curtis and Reiner f241, Burrow [171 and van der Waerden [48).

Old fashioned but very rich and suggestive is the book by Burnside,

[161.

For easy reference and later use we recall some results concerning

group representations.

- A group representation is either irreducible or completely

reducible, i.e. it can be written as direct sum of irreduci-

ble components.

2 - A representation with real entries may be either real redu-

cible, or real irreducible. In this second case it may still

be complex reducible or not.

3 - 'ie number of distinct irreducible components is equal to

the number of group classes.

9



G - iven two representations of groups G and G, we obtain a

representat ion of their direct product by means of the

direct matrix sum

D(g g')= D(g) - )(g') g(; and g'cg l

The concept of direct matrix sum is very important in describing the

structure of group codes. The general observation fits a paradigmatic

pr:~p! n: -i -m, -i- nr-s to -plit ? prolemr rI-As tu it.

Let IG! denote the cardinality of the group G. The cardinality M of the

code may be less than or equal to IJG. In case it is less there exists

a subgroup H of G such that the initial vector is left invariant, i.e.

iX I =X 1

where with HX I we denote the set {X: X=D(h)X, , hcH}.

The proof of the following theorem is straightforward and follows from

definition I and elementary properties of the groups.

Theorem 1.

i) IGl M and IGl M!

ii) if IGI > M then M I  IcI

where dib means that d is a divisor of b.

The following theorem concerning the subgroup Ht. has an important

consequence on the existence conditions for group codes. It is also

useful to clarify the relations between the group and the code.

Theorem 2.

The subgroup H cannot be normal.

See [7, 12, 35] for a proof.

Theorem 3.

If G is abelian then IGI = M.

10



Bes i des the abstract propert-ies of the group G, also conditions con -

cerning the skeleton of its representations are important for distin-

guishing betweeni planar and no. planar codes.

In order that an initial vector exists such that the generated set of

vectors spans the n-dimensional space, the representations of the group

G; most satisfy the condition expressed in the following theorem.

Theorem 4.

Given an n-dimensional representation D(g) of a group G, a vector

X1 cEn exists such that the set [D(g)XI, gcGj of vectors spans En if

and only if every irreducible representation contained in D(g) appears

with a multiplicity less than or equal to its dimension.

For a proof see Blake and Mullin [121.

Definition 2.

A representation is said full homogeneous if every irreducible compo-

nent has a multiplicity equal to its dimension.

The symmetry of a group code is exploited by the configuration matrix.

According to the previous definition, it is an M by M matrix of rank n

the entries of which are the scalar products cij = XT Xj i,j=l,...,M.

It is also of interest to define an extended configuration matrix Ce

whenever IGI>M. Let Xg=D(g)X, be the vector produced by the action of

the element gcG. We define the extended configuration matrix as the IGI

by IGI Gtam matrix whose entries are

C = XT X g,g'c G
gg,= g

Since H#{e}, the vectors of the set S(G)X1 are not all distinct; in

fact the same vector appears with multiplicity IHI.

The following theorem illustrates the shape and structure of configura-

tion mat-rices which rely in depth on the associated group.

I1



The)rem 5.

The rows of any configuration matrix of a group code are permuta-

tions of the first one.

This applies to both extended and not extended configuration matrices.

For a proof see [31 and [10].

It is not hard to verify Lhat the extended C' configuratien matrix is

the Kroneck-> product of C by a matrix J, (possibly with a re-ordering

of rows and columns):

ce= c j

where J is a convenient matrix of which all entries are Is.

The importance of the configuration matrix C of a group codes, was

enhanced by Slepian's proof, [31, that it is possible to recover the

vectors of the code from C. Let PH(g), gcG, denote the permutation

matrices of the right permutation representation of G induced by its

subgroup H; let AG(H) be the group algebra of G generated by these

permutation matrices, and let AZ(H) be the centralizing algebra of

AG(H). We have the following theorems.

Theorem 6.

The extended configuration matrix of a group code can be written as

the sum

Ce = Ec(g) L(g)

where L(g), geG, are the permutation matrices of the left regular

permutation representation of G.

Theorem 7.(Slepian)

The extended configuration matrix commutes with all the permutation

matrices of the right regular permutation representation of G, i.e. Ce

belongs to the centraling algebra of the group algebra of the right

regular permutation matrices.

The configuration matrices of different group codes generated by diffe-

12



rent ir-reducible representaLtions of the same group G may originate an

orthogonal bas is in the regular group algebra AG({e}), as stated in the

following theorem due to Blake.

Theorem 8.

Let )(g) and D'(g) he real irreducible representations of the finite

group G of dimensions n i azd r. respectively, and C i and Cj the

configuration matrices of the group codes {D(g)Xi, gcG) and {D'(g)Xj,

gi:(G, respectively. Then

i) if D(g) and D'(g) are not equivalent, then C i Cj " 0 for any

X i and Xj ;

ii) if D(g) = D'(g) and X i = Xj, then (Ci) 2=(G/ni) OX l2 Ci.
For a proof see Blake and Mullin 1121.

Furthermore special structures of the configuration matrix may uniquely

characterize the group code.

Theorem 9.(Blake)

Let us consider the configuration matrix C of an [M,n] code in which

all entries of the first row are distinct.

Then C is the configuration matrix of a group code if and only if:

i) its rows are permutations of the first one;

ii) M is a power of 2, i.e. M=2s;

iii) in the decomposition

C= E ci Pi

the matrices Pi are permutation matrices of order two and

connute with each other.

Moreover ns and the group generating the code is commutative of type

O ,t ... , ).

Now we can devise a general theorem concerning the conditions for a

given Gram matrix to be the configuration matrix of a group code.

However the formulation of such general conditions may be quite unsati-

13



sfactry, because they lack either- classical mathematical fascination

or practical utility. It is a challenging question to find more pLeas-

ant and possibly useful conditions.

Theorem 10.

A (;ram matrix C is the configuration matrix of a group code if and only

it

i) rows of C are permutat ions of the first one;

ii) a matrix J, all entries of which are Is and the order of

which is not greater than (M-I)!, exists such that the

matrix C'=C e J commutes with all matrices of a right

r gular representation of a group G.

See [101 for a proof.

We stop here the presentation of Slepian's group codes. In the next

section we shall consider an extension that will include multilevel

codes which share, of course, the same underlying property of symmetry.

V - GENERALIZED GROUP ALPHABETS

The class of multidimensional alphabets is introduced. Special instan-

ces of these codes have been widely used for designing multidimensional

signals in combined modulation and coding. Their structure is very rich

in symmetries and, as far as we know, most of the signal constellations

in actual use, either equienergetic or not, belong to this family.

Definition 3.

Consider a set of K n-vectors X {X, .. ,XKI, called the initial

set, and I orthogonal n x n matrices l,... , L that form a represen-

tation S(G) of the group G. The set of vectors S(G)X 1 , ... , S(G)X K

obtained from the action of S(G) on the vectors of the initial set is

called a Generalized Group Alphabet, and from now on shortened to GGA.

1/4
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A GGA is called separable it the vectors of the initial set are tran-

sformed by S(G) into either disjoint or coincident vector sets, i.e.,

S(c;)x- n S(G)Xk = kSS(G)X j

Since an orthogonal matrix t.ransforms a vector into one with the same

length, the signals associated with a GGA have as many energy levels as

there are in the initial set.

Definition 5.

A GGA is called regular if the number of vectors in each subalphabet

S(G)Xj, j=l,...,K, does not depend on j, i.e., each vector of the

initial set is transformed by S(G) into the same number of distinct

vectors. A regular GGA is called strongly regular if each set S(G)Xj

contains exactly L distinct vectors.

The following result stems directly from the definitions.

Theorem 11.

The number M of vectors in a regular GGA is a multiple of K. If GGA is

strongly regular, then M=KL.

We consider now some distance properties of the elements of a GGA.

Choose a partition of a GGA into m subsets Z1 , - 2 ,'--, Zm. For each

subset Zi, we can define the intradistance set as the set of all the

Euclidean distances among pairs of vectors in Zi" For any pair of

distinct subsets Zi, Z-, we define their interdistance set as the set

of all the Euclidean distances between a vector in Zi and a vector in

15



tDot init ion b.

The partition of a separable G(;A into m subsets ,1  Z, is cailled

!air if all the subsets are dist inct, include the same number of vec-

totrs and their int radistance sets ae equail.

We shall now present a constructive me1thod t.o generate fair partitions

of a GGA. Consider the generating group S(G) o the GGA, one of its

subgroups, say S(HI), and the partition of S(G) into left cosets of

S(Ft). We have the following result.

Theorem 12.

If the left cosets of the subgroup S(H) are applied to the initial set

of a strongly regular GGA, this procedure results in a fair partition

of the GGA. Under the same hypotheses, if S(H) is a normal subgroup,

then left and right cosets give rise to the same fair partition.

For a proof see [111.

The con.dition of strong regularity of the GGA can be removed: but in

this case it may happen that different cosets generate the same element

of the partition. Hence, some of the cosets must be removed from consi-

deration. Moreover, notice that if S(H) is a normal subgroup of S(G),

then we do not need to distinguish between left or right coset parti-

tions. On the contrary, if S(H) is not normal, the partitions obtained

from right cosets may not be fair, as it can be shown by a counterexam-

pie. In some cases, we are interested in further partitioning every

element Z i in the same number of subsets. This leads to the concept of

a chain partition, that is the GGA is partitioned in subsets which in

turn are partitioned in the same number of sub-subsets, and so on. We

call level of a subset in the chain partition the number of inclusions

beetwen the given subset and the whole group code.

16



I)ef init ion 1.

The chain part it io; of a separable GGA is called fair iI any two

e lements of the part it ion at the siame Ievel of the chain include the

5. tmne nurmbe r of vecot'sr and have eq nal i trad isLtance sets.

or lair chtain part, it ions we have the following theorem.

lheorem 1 3.

Consider a strongly regular (;GA, and a chain of subgroups of its

generating group S(G), that is

S(Ht) - S(H 2 ) c S(H 3 ) C ... c S(Hls) = S(G)

Use His_ and its left cosets to generate a partition of GGA. Then, use

f-i and its left cosets in Hs to further partition all the sets of the

previous partition. Repeat the procedure with '1s-2, and so on, until

H, and its lef" cosets in H2 are used. The resulting chain partition of

GGA is fair.

A theorem concerning the interdistance sets sheds some further light on

the symmetry properties of GGA's.

Theorem 14.

Let H be a normal subgroup of G. The partition of a strongly regular

(;&A obtained by applying the left cosets of H to the initial set X has

the following property: the interdi;tance set associated with any two

cosets, say SlIH and S2H, is a function only of the coset S3H, where

.S3  SS-, and not of S1, S2  separately.

For a proot see I I I .

Wo conclutde this section by showing how GGAs, in particular group

roleN, can be used in conjunction with error control codes to exploit

the channel capacity further. We shall illustrate first the joint use

of multidimensional alphabets and block codes, thus we will describe

hbo the signaL alphabet-s are paired to convolutional (trellis) codes.

17



I m~i .ed 11i r Akaw.i [ I I I and recent ly (G inzburg [ 31 1 have descr i bed con -

0 rucLi'ins 'hich make it possible to design set of signals with a

rogular st ructure and with an arbitrary minimum dis.tance as insutred by

th, algebraic properties of block codes. Ginzburg's construction consi-

d,, rs 1. ) 1ock evcoders C I C 2 , .  . , A wh ich accept source symbols, and

out put . blocks (qli,q 2 i,..,q N!), i=l.. L, of N symbols each. The

mo,d lator f raps each i.-tupl_ (qjl . qjL ) , j=,. N, into the vector

X i = f(qjl .... ,qjIL) ,  j= 1, . ... N

chosen from a GGA of M=M1 .. .ML elements. This mapping is obtained as

follows In GOA we define a system of L partitions such that each

class of the -th partition includes My classes of the (-l)-th

partition. Each class will consist of M(t)=M1 M2. . .My signals. By

numbering the classes of the (-l)-th level occurring in a class of the

I-th level we can obtain a one-to-one mapping of the set of classes of

the ( -1)-th partition onto the set of integers {0,...,M-I}. There-

fore, if qij are chosen in the set {0O....MQ-l}, W ,.. L, any L-tuple

Qj I , --- ,qj E) delines a unique value of the j-th elementary signal

X F f(qj 1, - ••,qjL, ) -

We shall now see how an Ungerboeck code can be designed using GGA. The

procedure suggested in 1471 and called "mapping by set partitioning",

can be achieved by the notion of fair partition, which represents a

s ,';tematic generalization of that concept.

Each coded :;vmbo I depends on k+v source bits, namely the block

1 .... a k ) of k bits gene-ated by the source, plus v bits preceding

this block. The v bits determine one of the N=2v states of the encoder,

say 1 = (ak+l, ... I ak+), an=O,l. The encoder state for the next

coded svmhol is obtained by shifting the an's k places to the right,

dtroppin.g the right-most k bits and inserting on the left the most

recent k source hits. The encoded symbol Xj, which is an element of a

Q(;A, depends on i and o and, in this framework, the encoding procedure

18



can he ( .ct i bed us ing a t re I I iS and by as; i gti Ei" to t he branches

out go ing I romn each node t he set of symbols obt a i ned from a fair part i -

tion of a (;(;A.

V1 - TIlE INITIAL VECTOR PROBLI'21

The minimum distance is a relevant factor to define the code performan-

ce on noisy channels because it is a fact that distant signals are hard

to confuse as an effect of the noise. Moreover monotone decreasing

functions of the minimum distance constitute an upper bound to the

error probability. It follows that codes with large minimum distances

are desirable, and in particular the choice of Slepian's group codes

with the greatest minimum distance leads to the initial vector problem

which is also interesting from a geometrical point of view.

The initial vector problem for group codes can be stated as follows:

given a finite group S(G) of orthogonal matrices that generates a group

code [M,nl by operating on an initial unit vector X, among all such

vectors X find out the vector Xo for which the minimum distance is the

greatest possible. We have to find the maximum of the minimum of the

distances, i.e. to determine a kind of saddle point with respect to the

cont inuous variable X and discrete variable g:

max [ min d(D(g')X,D(g)X)]

X g#g'

where the maximum is taken over all the vectors of Rn with the con-

straints IIXjI=1 and S()X=X. SO) is a subgroup of S(G), possibly H={e}.

At the present time no general solution is known. The problem has been

solved for many classes of group codes and for codes generated by

special representations. Djokovic and Blake, [251, settled the case of

full homogeneous component; Downey and Karlof found all the optimal

group codes in three dimensions [281; Biglieri and Elia identified the

19



opt i M I ii i.'l vector tor Variant I permuta ion codes, 191, and

showed that. fot cyclic codes [8] as well as for abelian codes the

opt imal initial vector is obtained by solving a linear programming

problem. Nevertheless, the evidence so far is that the problem cannot

have, in general, a closed form solution.

We (11) not digress on the meaning of "solution", buL we adopt the

pragmatic view that for practical purposes any kind of numerical solu-

t ion; should be regarded as a valid one.

For computational approaches the initial vector problem can be stated,

in general, as a mathematical problem with a quadratic objective nuo-

jected to quadratic constraints, [37]-

Let d2 be the minimum square distance. The optimal initial vector X, is0

the solution to:

d o = Max Min d
2(D(g)X1 ,X 1 )

where the maximum is taken over all unit vectors and the minimum is on

all elements gcG different from the identity.

For any unit vector X and unitary matrix D(g), we have

d 2 (D(g)X,X)=2-2(D(g)X,X).

Thus maximizing the minimum distance is equivalent to minimizing the

maximum inner product. We may assume the maximum inner product positive

and equal to r2 . Let Y=(I/r)X t . Then, for all non identity elements of

G, (D(g)Y,Y)<1 and (Y,Y)=I/r 2 . Hence Y is a solution to:

Find Max (Y,Y)

subject to (D(g)Y,Y)-I whenever g is not the identity in G.

The problem of the initial set of vectors for GGA is more complicated,

of course, than for group codes because more than one vector is to be

found and different objectives may motivate the choice. In this case

one formulation of the initial set vector problem is the following:

Give S(G) find a set {X1 ... ,XK} of K n-dimensional

vectors with average square norm equal to E, such that

the generated GGA is regular and sunh that the minimum

distance is as large as possible.

20



ie re we do not treat the subject further, as the discussion would be

very long. For example GGA used in conjuction with error control codes

hopefully must have the maximum possible minimum intradistance associa-

ted to a given fair partition.

In this context the open problems are countless; the few known solu-

t.ions either are heuristic or obtained by hand manipulations. Much work

mu-st st 1ii ino (one.

VrI - THE CONSTRUCTIVE VIEW

One important intent of the group code theory is to produce good point

constellations for the design of digital signals to be used in data

transmission, vector quantization, pattern recognition or in many other

fields. A second and ambitious objective of this theory is the systema-

tic classification and construction of all regular point constellations

in n-dimensional spaces. Before discussing the capabilities of the

constructive methods of group coding theory, we present three intere-

sting point constellations that have large minimum distances and provi-

de a good instance of this matter.

The first example is given by the [8,31 group code which is the classi-

cal constellation shown in Fig.2, (edges connect points at minimum

distance), that has a minimum distance slightly greater than the cube.

It is generated by the action of the representation of the cyclic group

The group is generated by:

cos(uh/4) sin(rh/4)

D(g)= (- 1 )h -

-sin(uh/4) cos(mh/4)

The initial vector is (J( 1/(2/2 + 1)), J( 242/(22 + 1)), 0)

The minimum distance is di n = 4/(2 + l/Ji) > 4/3

21



Fig.2

The second example is a not regular and not equienergetic GCA having 14

points in 3 dimensions. The configuration shown in Fig.3, is generated

by the action of a representation of the group of the cube

C2 x C2 x C2 X S 3

The initial set is {(u, 0, 0), (v, v, v)}, where

v = J7 (7 - 2 f2-)/123 u = J7 (13 + 8 12)/123

The minimum distance is din = 28 (7 - 2 /2)/123 = 0.9496 and it is

significantly greater than 0.93386, the minimum distance of the best

known spherical 14 point configuration.

Fig.3
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F i na 1 1, t he t hi rd and last examp I e is t.he [ 16, 4 1 group code gene rated

by the action of a representation of the abelian group C, x C,. The

configuration is shown in Fig.4. The representation is generated by

cos(rrh/4) sin(nh/4) k=l,2

(-sin(irh/4) cos(Tih/4) h=1... 

The initial vector is (r2(,/- 1)/L), J((J/2- 1)/2), (2 - 4r), 0)

The minimum distance isdmin = 2 (2 - = 1.1716

Note that one of the most used point constellations, the two dimensio-

nal 16-QAM has minimum square distance 2/5= 0.4.

I

Fig.4

The ingredients involved in the constructive aspect of group codes are

groups, matrices ana imagination. Four remarkable achievements are par-

ticularly important:

I) an old theorem by Jordan stating that the number of finite

groups with trivial maximal normal abelian subgroup, which

have an irreducible representation of dimension n, is finite

and upper bounded by b(n)= n! 6TI(n) (n-l)+2, where u(n)

counts the number of primes less than n;

2) the recent: classification of all finite simple groups;

3) the fact that the number of finite groups of given order is

fin i te;

23



/4) the complete classification of all commutative groups as

well as their representations.

Finite simple groups, Galois' fundamental discovery, are instrumental

in building tip all other groups and their representations. Abelian

groups together with finite group having trivial center can be used to

classify all groups which have a representation in n-dimensional

spaces. In this context it is useful to recall the outstanding theorem

of the classitication of finite groups, completed in 1981. This theorem

resulted from the global efforts of several hundred mathematicians from

all-over the world over a period of 100 years. It is remarkable by

itself and relevant to the classification of group codes.

Theorem 15. [201

Th2 finite simple groups are to be found among:

i) the cyclic groups Cp of prime order p.

ii) the alternating groups An of degree n at least 5.

iii) the Chevalley groups

iv) the Tits group

v) the 26 sporadic simple groups.

The Mathieu group, usually denoted by M2, played a central role in the

discovery of all 26 sporadic groups. M2 4 is also important in the

theory of error-correcting codes, because it is the automorphism group

o f the Golay code (24,12,8), the only binary perfect multiple error

correcting code; see [39,49,21].

Even if it is not necessary to resort to the above definitive theorem,

simple groups play a basic role in group codes.

Theorem 16.

Let us consider a [M,n] group code generated by a group G through

its representation D(g). If M is a prime number then the group code is

generated by a cyclic subgroup CM of G.
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Trh(orem 17.

No [M,n) group codes exists if M is an odd prime and n is odd.

Theorem 18.

A [M,n] group code can be constructed using representations of a

cyclic group provided that either

i) n is even and M>2

ii) n is odd and M is even.

Theorem 19.

The number of [M,n) group codes, generated by irreducible repre-

sentations of groups with trivial maximal normal abelian subgroup is

finite and bounded by a function of n alone.

Concluding this section we remark that the problem of the existence of

group codes for every M and n is very interesting as it concerns the

existence of regular configurations of points on n-dimensional spheres,

and generalizes the vertex configurations of regular polytopes.

We can summarize the results as follows:

a) n even M~n+l at least one group code generated by a

cyclic group of order M exists

b) n odd, M evenn+l at least one group code generated by a

cyclic group of order M exists

c) n even M odd prime only one group code generated by the

cyclic group of order M exists

d) n odd, M odd prime no group code exists

e) n = 3, any M all group codes have been classified by

Downey and Karlof. No group codes with M

odd exist.
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The def init ive C lassif icat ion of all group codes is far from comp lete,

so that many open problems and conjectures still deserve attention.

Most of these problems are appealing and may produce beautiful results.

We recall, by way of sample, two interesting problems that are still

open:

- One group code in dimension 5 with M=15 is known to exist, [261.

It is conjectured that it is the only group code in five dimensio-

nal space with an odd number of points.

- Brauer [151 and his school have reached the classification of all

groups having an irreducible representation in dimension 4 and 5.

It would be interesting to find out all group codes in dimension 4

(the useful dimension for today's applications).

The determination of all group codes [M,51 would also be intere-

sting as well as the clas-ification of [M,71. The latter is possi-

ble due to the complete list of groups with irreducible represen-

tation in dimension 7 obtained by Wales [50, 51, 52].

VIII. CONCLUSIONS

The impact of ancient and modern mathematical concepts on manipulation,

transmission and storing of information has made a science of fine,

intelligent but scattered techniques.

In this paper we reported on group code theory as an application of

general results originated from the ancient geometry. The geometric

view provides the appropriate framework for dealing with digital signal

processing, signal design, vector quantization and in general communi-

cation systems. To enhance the importance of this concept in communica-

tion we also considered the combination of these alphabets with block

or trellis codes. We have not described the interesting connection of

lattices, group codes and combined modulation and coding, this beauti-

ful subject is thoroughly developed in the fundamental book 121] by
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(onw;y and S loane.

In this paper no essentially new results were proposed. However we hope

that the presentation of a topic which is earning a prominent position

with increasing applications in the new global communication system

will be of some interest, especially to young researchers who are

looking for fruitful areas of research with high scientific content and

useful applicat ions.

We think that group code theory, which may be credited of a long

history dated back to ancient regular polyhedra, is a good example of

Feller's conception of mathematics 1561. In fact we wish to conclude

with Feller's words:

"The manner in which mathematical theories are applied does

not depend on preconceived ideas: it is a purposeful techni-

que depending on, and changing with experience".
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A Note on Addition Chains and some Related
Conjectures *

M. Elia and F. Neri
Dipartimento di Elettronica - Politecnico di Torino

I - 10129 Torino - Italy

Abstract

Addition chains are finite increasing sequences of positive integers, useful
for the efficient evaluation of powers over rings. Many features of addition
chains are considered, and some results related to the still open Scholz-
Brauer conjecture are presented.

1 Introduction

In many fields, such as number theory, cryptography, computer science, or nu-

merical analysis, an efficient computation of

,n-- xx...X (1)

is often required, where n is a positive integer (n E Z) and z can belong to any set

; (usually a ring) in which an associative multiplication with identity is defined.

It was at once observed that the computation of (1) can be obtained through a

sequence

X, z 2 , a . , a . , n

where each element z 0 is the product of two previous ones. It turns out that the

nth-power of z can be associated to the sequence of integers

I = no < a, < a2 < .. < r = n (2)

with the property that, for every 9, a couple (j, k) can be found, such that

a, = a -+- ak, > j > k.

'This work was financially supported in part by the United States Army through its European
R,search Olfl:e, under grant n. DAJA45-86-C-0044.
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The sequence (2) is called addition chain for n. Without loss of generality, the

a,'s are assumed to be sorted in ascending order, and with no duplications.

The problems typical of the evaluation of powers have been thoroughly dis-
cussed by Knuth ill and by Borodin and Munro 12]. In particular ill reports on

many problems that are still open and that deserve attention both as research

problems and for their importance in many applications.
Let us now recall some examples where the evaluation of powers is a crucial

point.

" First of all, the present day widely discussed public key cryptographic
scheme proposed by Rivest, Shamir and Adleman [31, requires the search
for two large (several hundreds digits) prime numbers p and q, and the
evaluation -f powers in Z,, the ring of the residues modulo pq.

" As a second example let us consider the computation of inverses in finite
field GF(q); it is well known [4] that the inverse of every non-zero element

is given by

and in many applications the size of q makes this computation as heavy as
those required in the previous example.

" As a third example, let us consider the computation of roots in finite fields.
Given a E GF(q), let k be the root index; we want to compute the expression

I
b =a

whenever it exists. A sufficient condition for the existence is that k has an
inverse into the ring Zq-i, i.e. there exists an integer f(k) such that

kf(k) = 1 mod q - 1.

Under this condition we have

b = a M .

If k has not an inverse in Zq-i then more tests on a are needed to know
whether its k-th root exists.

" As a final example, the generation of pseudo-random sequences
z 0, z,... ,z,,. .. by the purely multiplicative congruential method, using
the itcrative relation

-.+ 1 = ax, mod TO,

requires multipliers a that are primitive elements in Zm in order to generate

sequence. with maximum period. The test for a number to be primitive



may consists in raising the number being tested to quantities related to the
factors of v(m) '.

In many interesting cases these exponents have the same order of magnitude
of in, hence they are rather sizable for non trivial periods. Moreover all
the operations must be done fully exploiting the finite size registers of the
underlying machine if long periodicity is desired (see [5]), so that even the
simple multiplication can be fairly costly.

2 Power Evaluations

In this section we discuss the direct and simplest approaches to power evaluations,
since they give insight to more tricky theoretical problems.

Several schemes have been proposed and compared, in order to minimize the
efforts (i.e. number of multiplications) for evaluating (1), but it seems that none
can be definitively preferable in the general case. The choice of a method instead
of the other is affected by a number of constraints, aims or available resources,
namely:

* the order of magnitude of the exponent n;

* the availability of storage for precomputed tables;

" whether the situation calls for

1. independent evaluations of the power (1);

2. evaluations of several powers of the same base z;

3. evaluations of several powers to the same exponent n.

In this paper we do not pursuit a complete comparison of all these different
situations, but we will be interested mainly on the minimum number of products
necessary to evaluate (1). In other words we will restrict our attention to the
study of the function !(n), defined as

minimum number of products for evaluating the (3)
n-th power in an associative ring.

At a first sight a very economical evaluation of (1) is obtained by the binary
decomposition of the exponent n, which leads to a number of multiplications
upper bounded by 2[log2 n]. The same decomposition implies the simple but
tight lower bound [log2 n]. Most considerations about the evaluation of powers
concern the estimation of tighter upper bounds.

' is the Euler totient function.
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2.1 The right to left binary method

If we write

n= b,2', bE {O, 1}, (4)
i=0

where t = [log 2 nJ, the power (1) can be computed as

n JJ (2') (5)
i=0

Given that the bi's can be only 0 or 1, raising to bi is straightforward. We shall
call this approach right to left binary method.

In (5) t multiplications are required to evaluate the powers

-
2 ; ,  i= 1,2,...,t (6)

and one more multiplication is needed for every non zero bi, i < t, leading to a
total of

tlog2 nJ + v(n) - I

multiplications, where v(n) is the number of l's in the binary representation of
n. The storage required by an implementation of the binary method (5) can be
reduced to three memory cells: one to hold the successive powers (6), another to
hold n during its decomposition, and an accumulator for the result.

The right to left binary method can be generalized to an m-ary method in
the following way 161. Let

t = tlog" nj (7)

and consider the m-ary decomposition of the exponent n

n = d ,mi, d, E (0, 1,. .. ; m - 1). (8)
s=O

This decomposition can be rewritten as

n= Em'+2Em'+' + (m-1) E M', (9)
iEJ, iEJ2  iEJ-

where Jj denotes the set of indices such that the coefficients di in (8) are equal
to j.



The right to left m-ary method can be described by the following procedure.

Step 1. COMPUTE AND STORE (10)
Xrn Im

2 
Ima . . . , Zr

Step 2. FOR EVERY j E 1... m- 1

COMPUTE .ij = x Ji M

Step 3. COMPUTE (1) AS

Step 1 of procedure (10) requires at most tl(m) multiplications, if l(m) is the
minimum number of multiplications for raising a number to its m-th power:
actually, in the average, not all the terms in Step 1 will be necessary. Raising to
j in Step 2 requires 1(j) multiplications, while the remaining operations in Steps
2 and 3 can be carried out with no more than t - 1 multiplications. The total
number of multiplications is bounded by

rn--i

t(m) + t - 1 + (j) (11)
j==2

2.2 The left to right binary method

Another way of computing (1) is to rewrite the exponent n from (4) by Horner's
rule for evaluating polynomials

n = bo + 2(bi + 2(b2 + 2(b, + 2(... + 2bt)...

We shall refer to this approach as left to right binary method, since a left to right
scanning of n's binary representation is required.

The left to right binary method, extended to an rn-ary method, is described
by the following procedure, based upon the decomposition (8).

Step 1. COMPUTE AND STORE (12)

X, 2 X1 .. I M-1.

Step 2. LET i = ti

START WITH zd,.

Step 3. REPEAT

LET i =i - 1;
RAISE TO THE rn-TH POWER;
IF d4 IS NOT 0

MULTIPLY BY xd;

UNTIL i : 0;

IiO



Table 1: Upper bounds to the number of multiplications in computing (1).

base right to left left to right
m procedure (10) procedure (12)

2 2log12 nj - 1 2[log2 nj

3 3tlog3 nj 311og 3 nj + 1

4 3[1og 4 n] +2 3 1og4 nJ +2

5 4[Iog6 nj + 4 4[log5 nj + 3

6 4log6 nJ+ 7  4[log nj+4

7 5[log 7 nJ -+ 10 5flog 7 nj +5

8 4[1og 8 nj + 14 41log8 nj +6

Note that a certain amount of storage is necessary for the quantities computed
in the first step of the above procedure; moreover the representation base m of
n must be available in a left to right order.

Step I of procedure (12) requires at most m - 2 multiplications; actually the
*d- do not need to be computed for those values of di not present in the decom-
position (8). Each iteration of Step 3 requires at most 1(m) + I multiplications,
the + 1 is present only if the i-th d is not 0. The total number of multiplications
is bounded by

m- 2 + t('(m) + 1). (13)

2.3 Bounds for 1(n)

A lot of work concerns the search of tight bounds for 1(n). By comparing the
bounds (11) and (13), Table 1 can be built, where t is expressed as in (7). The
order of magnitude of the exponent n can be seen to affect the choice of the
base m; the optimal m increases with n. As an example, the base 4 should be
preferred to the base 2 whenever n > 128. Moreover, those bases that are powers
of 2 appear somehow optimal, since they lead to comparatively small coefficients
for !log, nj in Table 1.

Even if the left to right m-ary method seems to behave better for large bases
m, a careful inspection of the bounds (11) and (13) shows that the bound (11) is
weaker, since Steps 1 and 2 of procedure (10) are open to several optimizations
both in the case of few and the case of many terms in the decomposition (8).

When p(> 1) powers of the same base z are to be evaluated, the right to
left method becomes advantageous. In this case, in fact, the precomputations in
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Step 1 of both procedures (10) and (12) can be executed only once, so that the

bounds

t(m)+P t-I+ 1+ !() (14)

for the right to left method, and

rm - 2 + pt((m) + 1) (15)

for the left to right method, can be derived. The bound (14) is tighter than (15),

since the coefficient of p is smaller.

It is known that the bounds presented above are asymptotically (for large

n's) equivalent. Considering the left to right binary method, we can write

flog, n] < 1(n) <_ [log 2 nj + v(n) - 1. (16)

Since v(n) < [log 2 n1, and

[log 2 nJ + rlog2 _ < 2[log2 nj + 1,

the bounds (16) can be rewritten as

[log 2 n] s 1(n) _ 2Llog 2 n]. (17)

Considering the m-ary methods, and substituting t = Llog. nj in (11), the

number I(n) of multiplications for raising to n, is bounded by the number of

multiplications required by the m-axy method which, for m = 2', takes the form

I(n) : (1+ [log 2 J + 2 " . (18)

If we let s = log 2 log 2 n - 2 1202 log2 log 2 n, (18) becomes

1(n) 1 + l log 2 n + log 2 n (19)
109 log2 n )1 2 lg 2 n (

This result is due to Brauer [7] and reported by Knuth [1, page 451, Theorem

D]. It is as tight as possible because of a probabilistic asymptotic upper bound
to 1(n). due to Erdos [8], which asserts that the probability that

1(n) < log 2 n + (1 - ) ( log 2 n (20)
log 2 log 2 n/

is definitively less than 1 for any c > 0, or, equivalently, that there always are n's

for which the inequality (20) is reversed.

Also the lower bound [log2n] can be stressed; in fact Schonhage [9] has shown
that the following lower bound holds for every t

1(n) ? log2 ,n + log, v(n) - 2.13 (v(n) > 4).
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3 Addition Chains

Addition chains are the tool for solving the problem of computing (1) for a given
n with the minimum number of multiplications. Note that this problem is only
a particular case of problem (1), in the sense that nothing is said about the
cost of deriving 1(n); and this cost can exceed by far the cost of computing (1)
by anyone of the previously quoted methods. Nevertheless addition chains are
useful to the evaluation of powers both from the theoretical standpoint and when
several quantities need to be raised to a same fixed exponent.

Addition chains have been formally defined in the introduction as sequences
of integers

1 = a < a1 < a 2 < ... < a, = n
with the property that, for every i, a couple (j, k) can be found, such that

ai = a + ak, i > j ? k. (21)

It turns out that if r is the minimum number for which there exists an addition
chain of length r for n, then this addition chain is a solution to the problem stated
at the beginning, and 1(n) = r.

It is convenient to define two special classes of addition chains. A star chain
is defined as in (21) with the stronger constraint j = i - 1. An to-chain is an
addition chain with some marked elements; the condition is that in (21) a5 is the
largest marked element less that aj. It can be shown that

1(n) 10(n) 1*(n), (22)

where /(n) and V (n) are defined in a way similar to 1(n), respectively for 1-chains
and star chains.

A lot has been written about addition chains (see [1] for a presentation of the
main results), but the problem of finding I(n) is not completely settled, in the
sense that I(n) is not known for all n's.

Bounds for the function I(n) were shown in the previous Section.

3.1 Functions Related To Addition Chains

Many interesting functions are related to I(n);-here we consider two such functions
which are defined as follows.

e(r) minimum integer n that 1(n) = r (23)

d(r) number of solutions in n to the equation 1(n) = r (24)

For a generic n, for which 1(n) = r, the following bounds hold

2'/2 < c(r) 2"; (25)
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the upper bound is straightforward from the definition (23) of c(r), while the

lower bound comes from the upper bound in (17). Using the results shown in
Table 1, the lower bound can be tightened to the form 2F( ' ), with F(r) = ar + b;
as an example, exploiting the decomposition to the base 3, we obtain a = 0.53
and 6 = 0, which is always tighter than 2r/2.

Moreover, the same lower bound can be significantly improved using (19); in
fact, after some algebraic manipulations, we can obtain the asymptotic bounds

2 <')  c(r) _< 2'. (26)

From this and the pre-' .zus relations the asymptotic behavior of the function c(r)
will be

c(r) = 2' + o(2').

From (25), and from the definition of d(r), the following inequality can be
stated

d(r) < 2' - c(r) + 1;

hence
d(r) + c(r) < 2r + 1.

It is likely to conjecture that d(r) behaves asymptotically as an r-th power of 2:

d(r) = 0 (2 d r

where dr is a constant close to 1.
The known values of c(r) and d(r) for small values of r, taken from Knuth I1],

are shown in Table 2 where, for sake of comparison, some of the bounds derived
in this Section are also reported.

4 The Scholz-Brauer Conjecture

A famous problem concerning addition chains is the Scholz-Brauer conjecture [101.
This conjecture refers to the chains for 2' - 1, which are of special interest, since
they are the worst case for the binary method (their binary representation is a
string of l's). Let us call a number n satisfying the inequality

1(2' - 1) _< n - 1 + 1(n), (27)

where 1(n) is defined in (3), a SB-number.
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Table 2: c(r), d(r) and related bounds.

r 2r 2 2  d(r) c(r) (c(r)) 2 _

1 1.41 2 1 2 1 2
2 2 2.83 2 3 2 4

3 2.82 4 3 5 2 8
4 4 5.66 5 7 3 16

5 5.66 8 9 11 3 32
6 8 11.31 15 19 3 64
7 11.31 16 26 29 4 128
8 16 22.63 44 47 5 256

9 22.63 32 78 71 4 512
10 32 45.25 136 127 7 1024
11 45.25 64 246 191 7 2048
12 64 101.6 432 397 5 4096
13 90.5 161.3 772 607 7 8192
14 128 256 1382 1087 7 16384

15 181.0 406.4 2481 1903 9 32768
16 256 645.1 3583 11 32768
17 362.0 1024 6271 9 32768
18 512 1625 11231 11 32768

The longstanding Scholz-Brauer conjecture states that

all positive Integers are SB-numbers.

In the following, it will be shown that (27) holds for infinitely many n's. Let
us recall some of the properties of (n), reported from [11; they will be useful in
the sequel.

I(nm) < 1(n) + 1(m); (28)

1(2') = a; (29)

1(2a + 2 b) = a+I ifa>b>0; (30)

1(2a +26+2c) = a+2 ifa>b>c>0 (31)

(this is Theorem B in [1J);

a-2 < 1(2a + 2b + 2c + 2d) < a+3 ifa> bf > c > d>0,

where n 2' + 26 + 2c + 2d is said to be special (see [1, p.4491) if the lower bound
holds with equality (this is called Theorem C in [11);

- ) < n - 1 + 1°(n); (32)
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this implies that the Scholz-Brauer conjecture holds for to-chains (the result, due

to Hansen, is called Theorem G in 11]).

Leziuna 1 If l(n) = L'(n) then n is a SB-number.

Proof - Straightforward from (22) and (32).

Lemima 2 For every integers a and k, the following inequality holds

I ( 2 k2 1) < k2a - k + a. (33)

Proof - It is direct to verify (33) for a - 0. Now let us suppose (33) is satisfied
for a - 1; thus, using (28) and (29), we have

I (2k2-1) = )2 ( 2k2- + <2k I2-1-,) ( I-
2k'- -, -I +l1A2- +0 _

( k2a - 1 - k+a - 1+k2a- l+I 1_
< k2a - k + a.

The validity of (33) for every a follows from the induction principle.

Note that the recursive argument used in the proof above also defines, in case
of k=I, an addition chain which contains numbers of the form

2t (2 " - 1) O< < 2'; 1< a .(4

For later use, we state this point as a Corollary.

Corollary 1 There exists an addition chain for 22' - 1 of length 2' - I + a, such

that it contains the numbers (34 ). This addition chain has the form

..., (2 - 1), 2 (22" - 1)... ,2" (2"h 1), (2+ - 1),...

Vote that

2^'(2- 1) + (2" - 1) 2 2 '+1 - 22h +22 - 1 22' 1.
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Theorem I For every positive integer n the inequality

1(2n - 1) < n - 2 + L,(n) + [log2 r (35)

holds.

Proof - By decomposing n into its binary representation as in (4), we can write2 t 'b ' o, '  2 *'  21-  1 ) .+ ( ° - )
2" -1=2 -o (2' 1) + 2-=o - (2 1) + + (260 - 1)

t 2Ej-o ,2 (26)2, - 1). (36)
i=O

Applying Corollary 1 it can be seen that all the L,(n) terms in the summation
but the first are in the chain for (22' - 1), whose length, according to Lemma 2,
is bounded by 2' - 1 + t. Since the first factor in the first term can be expressed
as 2'-2', it accounts for at most n - 2t multiplications. Combining these two
contributions with the v(n) - 1 additional multiplications required by the v(n)
not zero terms in the decomposition (36), the Theorem is proved.
11

Corollary 2 Ifl(n)= [log 2 nj + v(n) - I then n is a SB-number.

Theorem 2 Every n such that v(n) is not greater than 4 is a SB-number.

Proof - The proof of Theorem 2 is given separately for the four cases v(n) =
1,...,4.

Case v(n) = 1 - Proved in Lemma 2 withk= 1.

Case v(n) = 2 - It must be shown that, for every integer a and b such that
a > b > 0, the following inequality holds

/(2?°+ 2- 1) < 24 + 2b + a.

Ve can write
22±26* - 1 ", (22" - 1) + 22b - 1.

Frorm Corollary 1 we know that 22" - 1 belongs to the addition chain ending
in 2 - 1, so that, using Lemma 2 we have

1(22"+2b 1) < l(22" -- 1) - 2' 1 < 2a + 2' + a.
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Case v(nj) = 3 - it must be shown that, for every a, 6 and c such that a > b >
r .0, the following inequality holds

1(22*+2'±2 - 1) < 24 + 2 ' + 2c + a + i

In a way similar to the case vlj.) = 2, using Corollary 1 and Lemma 2, the
proof sterms from the equality

22+76+2' -- 1 = 2 24+2'(2 2 - 1) +i- 2"(2" - 1) + 2" -- 1

Case ri(n) = 4 - Two subcases must be considered: 1(n) -- a + 3 and 1(n)=
a +2. In the first case the proof follows fromn Theorem 1. In the second
case it follows from Exercise 13 In [1, p. 463] - showing that n has a star
chain so that Lemma I applies - and (32).
E,

4. 1 Generalizing the Scholz-Brauer Conjecture

T1he numbers n with all I's in their binary representation behave much better
than bound (19). In fact for numbers of the form 2' - 1, since log, n ! V~n) - 1,
the inequality (35) can be rewritten as

1(2' - 1) 5 n - 1I+ clog2 n, (37)

where c is a convenient constant 1 < c < 2. The second term at the right hand
side of (20), in this case, has the form

log, (2- - 1) n

log2 log,(2n - 1) log02 rl

and], for large n's, the inequality

c log2 n <
log, F1

lInprovemrents on the upper bound for l(n) a, e shown by numbers which have
orui rgular patterns in their binary representa-ion. As an example we consider

the following Thmeoremr

Theoretz 3 For every positive integer Al of the fofrnt

Ml >2' + 2r>b,,, 2 ' (2'O 1) ,2'M 1f,

the folio u-ng upper bound holds

I(MAf) < s -2 -4 L1( M I) L'(,) 10 lo 2 t



Proof - The proof, applying Theorem 1, is straightforward.
L -

Along the same lines, if we consider numbers of the form

M=1+2 + + .... --2( -- )k

then for t = 2 A , Lemma 2 shows that

I(M) 5 kt - k + I(t)

and the following Theorem 4 shows that this Inequality also holds for c every t such

Theorem 4 For every integers k and t, such that ix(t) is not greater than 3, the
following inequality holds

( 2-
t I )]< kt-k +A+I(t), (40)

Proof - The proof is given separately for the three cases I'(t) - 1,2,3.

Case i(t) = I - Proved in Lemma 2.

Case v(t) =2 Let t = 2A+2B, with A > B >0. We can write

(2A +2D)- 1-2 " + 2k2 0  
2 k2

-
1 2kA k . A

( _ - 2 +2k1 + 2 k 2 k " (41)

Due to (28) and (29), and to Lemma 2,

S 2 k2A < 1 ( 2 k2A 1 )<

< k2 3 +k2a k A

Since the addition chain for contains --- , due to Corollary 1, and
only one more product is needed for the two terms inside the right hand

of (.11), we can writ,,

-2 k(2. - k -

x (2 -
'l) - k ± (A--1).



Case P(t) = 3- Let t =2A+2D + 2C, wth A >B >C >0. Weccan write

1 (2" 1) 1 (2k(2. i o) 2U2A + I k U22u"~ + £i2' ')

In a way similar to tie case P~(t) = 2, using (28) and (30), and Lemma 2,
we can obtain

-1 k ) k(2A + 2B+ 2 C) - k + A + 2.

We can Pow propose a generalization of the Scholz-Brauer conjecture in the
formi

for every k and for every n the following inequality

( 2 kn - n -i in

holds.

Note that, for k = 1, it reduces to the original conjecture.

5 Conclusions

Knuth reports that I < n < 18 and sporadic 20, 24 and 32 are SB-numbers with
equality satisfied; moreover he has shown by computer search that 1(n) = V(n)
for all integers less than 12509. As a consequence of Lemma 1, 12509 can he
assumed to he the first non SB-number.

An infinity of SB-numbers exists but it is an open question to prove the
Scholz-Brauer conjecture either in the generalized form or not.

Finally, as a consequence of the results presented in this paper, an even more
interest ing open question seems to be find the smallest value of c such that (37)
holds for fvrey 11.
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A Note on the Complete Decoding of Kerdock
Codes *t

M. Elia, C. Losana and F. Neri
Dipartimento di Elettronica
Politecnico di Torino - Italy

Abstract

A representation of the Kerdock code K(m) is given that allows in-
stantaneous encoding and the use of different complete decoding strate-
gies. Applications to error correction and to vector quantization are
described. The particularly interesting code K(4) is thoroughly ana-
lyzed and the associated bit error rate on the binary symmetric channel
is found in closed form.

1 Introduction

Kerdock codes K (m) are nonlinear codes having many interesting proper-
ties, such as high error correcting capabilities, high symmetry and beautiful
descriptions. They may be viewed in some way as dual codes of Preparata
codes P(m), another noteworthy class of nonlinear codes. The code K(4) is
very interesting because besides the relatively high rate 1/2, it coincides with
the Preparata coc; P (4), so that it looks like a sort of self-dual nonlinear
code.

The most obvious application of Kerdock codes is their use as chan-
nel codes in communication systems. K(4) may also be viewed as the
Nordstrom-Robinson code X1e, and used as a vector quantizer for encoding
random waveforms such as in the case of speech Linear Predictive Coding
(LPC) at the rate of 1/2 bit per sample [3]. In a similar way Kerdock codes

tThis paper was presented at IEEE International Symposium on Information Theory,

Kobe, JAPAN, June 1988.
*This work was financially supported in part by the United States Army through its

European Research Office, under grant n. DAJA45-86-C-0044.



0 1
2 - - 2m/2-1 2m(2m-1 - 1)

2 -1  
2 m+' - 2

2m-1 + 2m/2-1 2m(2 "m- I - 1)

2m___ _ 11

Table 1: Weight distribution for K(m).

allow the decoding from data produced by soft demodulation. In both vector
quantization and soft data decoding the problem is to minimize an objective
function, which most frequently is taken to be the squared-error distortion.

Ih Svton 2 a systematic representation of K(m) is given that allows
instantaneous encoding and the application of different strategies for a com-
plete decoding, as it will be described in Section 3. The application of K(4)
to vector quantization will also be described in Section 3. A short analy-
sis of the computational complexity pertaining to the above applications of
K (m) will be given in Appendix A. Finally, Section 4 reports some results
on the performance evaluation of K (4) used as a channel code on the Binary
Symmetric Channel (BSC).

2 A representation for K(m)

In this Section we briefly recall the formal definition of Kerdock codes in
order to introduce a systematic encoding scheme. We also collect some of
its general properties for easy reference.

The Kerdock code K(m), m even, is a nonlinear code consisting of the
Reed-Muller code of parameters (2-,m + 1,2-/2) and 2 1 - 1 coset of
R(1,m) in R (2,m). K(m) is also denoted by [2m,22m,2m - 1 - 2m/2-1].
Important features of any code are the weight and the distance distributions.
The weight distribution of a [n,M,d] code is the set {A}"_O, where A,
denotes the number of codewords of weight i, while the distance distribution
is the set {Bi}io, where M B is the number of ordered pairs of codewords
such that the distance between them is i. Linear codes have Bi = A. and
the same property is shown by Kerdock codes. The weight and distance
distribution of K(m), taken from [1], is given in Table 1.

Let ce be a vector of Z(1, m). For later use it is convenient to interpret



CR according to the following decomposition

CR z1 I ). (1)
-- + 1-' -- M - 1 -- -- 21 - 2mt--

Let w i be a coset leader that performs a translation of R(1, m) to generate
a codeword c of K(m), i.e.

C = Wi + e£;

the code K(m) is the union of disjoint cosets of .(1,m), written as follows

K(m) = [W1 + R(1,m)] U [W2 + (X,m) U ... U [W2- + R (1,m)]. (2)

The definition of K(m) strongly lies on the choice of the wi'P i =

1,... , , which may be obtained by means of primitive idempotents for
length 2m-1 - 1, or by using simplectic forms to define a convenient set of
boolean functions. A very simple construction of K(4) is given in [2] were
the cosets leaders are defined through simplectic forms, very easy to obtain,
on four variables.

For easy reference, it is convenient to introduce a binary matrix W(-),
built with the coset leaders twi written by rows, an example of which will be
given in (5).

We use a systematic R(1,m) code and its translates, given by coset
leaders wi of a special form, to generate K(m). The following two Lemmas
are the formal support to this representation.

Lemma I In every coaet of a systematic linear (n,k,d) code there exists
ezactly one word with k consecutive zeros in information positions.

Proof - Let (i I a) denote a codeword of a systematic (n, k, d) code, where
i is the subvector of information bits. This subvector ranges over the whole
set of possible 2k bit patterns. Given a coset leader (z I y), there exists one
and only one code vector (z I z) such that

(x I z) + (z I V) = (o z + V)

is the unique coset's element with k zeros in information positions.
C3
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Now let i = ( il t i 2  ) be a vector of 2m information bits.

Lemma 2 In the matrix W(m) there exists a submatriz made of m - 1
columns whose rows are the 2 '-1 different binary sequences of m - 1 bits.

Proof - It is known [9] that Kerdock codes can be viewed as systematic
codes. This means that all the different patterns of 2m bits must appear in
the 2m information positions of the 22,n codewords. As already mentioned,
these codewords can be viewed as translations of R(1, m) due to the 2 m-1

coset leaders wi. These leaders, by Lemma 1, can be chosen to have m + 1
zeros in the m + 1 information positions of R(1, in):

, = (o I I vi),

and the codewords of R(1, m) can be taken in systematic form:

CR = (i1 I Z IZ2).

Therefore every codeword of K(m) will be of the form

(il I z1 +x, ZI 2 + Yj.

According to the observation above, all the subvectors (il I z, + z,) must
be different for different pairs il and i. In particular

(il I Z1 + xi) i4 (il Z2 + x,)
for every i : j. That is zi 0 zi for every i 0 j or, in other words, all the
subvectors xi in the 2 m-1 vectors wi's are distinct and range over all the
different binary sequences of m - I bits.

El

As a consequence of Lemmas 1 and 2, toi may be taken of the form

to. = (o 1 i2 IY)

so that the codewords will result of the form

c--( i1  I z 1 +i2  I Z2+u ). (3)
M - rI+--- "- -I -- 2-2 n-- -,

As noted in [9] the Kerdock code could also be viewed as a stiirtly
systematic code at the cost of loosing the orderly representation reported
above.

4



i Li

0 1
1 16
2 120
3 112
4 7

Table 2: Weight distribution of ML correctable error patterns for K(4).

2.1 Application to K(4)

The above results applied to K (4) let the generating matrix of the underlying
R(1,4) code be written in the form

(10000 ill 01101001\
01000 110 11010101

Gg = (GI IG 2 I Gs) 00100 101 I0110011 , (4)
00010 011 1000111

00001 000 0111111

and correspondently the matrix of coset leaders in the form

00000 000 00000000
00000 001 11100101
0O000 010 10111001

w(4) = ooo0 100 11001011 (5)
00000 011 01010011
00000 101 00011101

00000 110 00100111

00000 ill 11111110

A very interesting feature is the fact that suitable translations of K(4)
cover the whole vector space GF(2)' 8 without overlapping. In fact 256
correctable error patterns 4, have been found by computer search such that
the translates 4, + K(4) do not overlap and cover the whole space GF(2) 16 .
The weight distribution {Li} 2' of the correctable error patterns is reported
in Table 2, where Li denotes the number of error patterns of weight i. This
property shows that Standard Array decoding is possible for K(4), aa it will
be described in the Section 3.

From Table 2 the fact that K (4) is not quasi-perfect can also be observed.

5



The property reported above for K(4), can be conjectured to hold for all
Kerdock codes K(m):

suitable translations of K(m) cover the vector space GF(2) 2 '

without overlapping.

2.2 Encoding

The representation (3) shows that instantaneous encoding is possible. In

fact the first m + 1 bits can be transmitted while they enter the encoder. At
the (m+ 1)-th bit the remaining parity check bits for the R(1,m) code, i.e.
the vectors z1 and z2, can be computed. As the remaining m- 1 information
bits enter the encoder, they are summed with the entries of vector z1 and
transmitted. At that point the coset leader wi (hence the vector V) is known,
such that the remaining parity check bits can be computed as z 2 + V and
transmitted.

3 Decoding and Quantization

In this Section some procedures for decoding Kerdock codes and for per-
forming the vector quantization based on Kerdock codes are described. As
a consequence of the representation introduced in Section 2, the problem of
decoding Kerdock codes may be formulated as follows:

given a received word r, find the pair ftbi, Z] made of a coset

leader and a Reed-Muller codeword, such that the decoded
codeword = 4n; + satisfies the chosen decoding criterion.

Several decision rules may be considered, their main difference lying in
the manner adopted to resolve ties whenever more than [ 2 1 ] errors are

detected, since these codes are not perfect. In particular two strategies
deserve special interest: the Maximum Likelihood (ML) and the Minimum
Correction (MC) rules. They are defined as follows.

Maximum Likelihood rule: r is decoded as the codeword Z that max-
imizes the conditional probability p {c I r}. On BSC this rule coincides
with the minimum distance decoding, i.e. r is decoded as the codeword Z

corresponding to the minimum distance.
Minimum Correction rule: r is decoded as the codeword at the min-

imum distance if the distance is less or equal to [4=1]; otherwise the in-
formation bits are extracted from the received word without any correction
attempt.

6



Four algorithms for decoding Kerdock codes are described in the fol-
lowing, based on the arithmetic in GF(2). They show increasing memory
requirements and decreasing computational complexity. Let us remind that
the Hamming weight wt(z) of a vector z is the number of its nonzero com-
ponents and let us introduce the vector r, decomposed as in (1)

r = (rI I 2 I 3),

that will be referred to as the received vector.

Algorithm 1 (Minimum distance decoding) - The codewords ei are
stored in a table. For every received vector r, the 2 2m Hamming dis-
tances yi = wt(r - ei), i = 1,... ,2 , are computed and the minimum
ji is found. Ties are resolved by random equiprobable choices. The
decoded bits i are recovered from the corresponding codeword k.

Algorithm 2 (Syndrome decoding: NL rule) - Hp, the parity check
matrix of R(1,m), the vectors zi = HRwi, i = 2' - , and the
vectors ui = HRpl, j = 1,...,2 2 1 are stored. For every r the
syndrome a = Hjr is computed. The pair [isi] that sums to & is
then found and - is recovered from fii. The received vector r is finally
decoded as = r + 1i and the information bits i are recovered from Z.

This algorithm must be restricted to K(4), as it takes advantage from
the fact that Standard Array decoding is possible (see Section 2.1). -

As already mentioned, we conjecture that it may also be applied to
decode K(m), for every m even.

Algorithm 3 (Syndrome decoding: MC rule) - This is the previous
scheme adapted to the MC decoding rule.

parity check matrix of " , m), a table T of the syndrome vec-
tors H e associated to error patterns e of weight not greater than
[2/ 2

-- 1 and GR, generating matrix of R(1,m), are stored. For
every r the syndrome a - Her is computed. The error pattern i
is searched in T, using the entry s. If it is found, r is decoded as

= r + i and the information bits s are recovered from Z. Otherwise
the first n + I information bits il = r, are taken unmodified, the
vector z --- GT i is computed and the remaining m - 1 information
bits are obtained as i2 = r 2 + I.



Algorithm 4 (Tabular decoding) - A table T1 of the indices j's asso-
ciated to the error patterns ti's for every r E GF(2) 2 " and a table
T2 of the error patterns 4's, j = 1,... , 2m-1 are stored. For every r
the index j is obtained using Table T. The error pattern 4 is read
in Table T2 using j, in order to compute r = +-. The information
bits i are finally recovered from c.

Vector quantization is a field where K(4) has found a valuable applica-
tion. Let us formally recall the vector quantization problem with minimum
squared-error distortion. Let z = (zl, .. , zn) E R n be the input to the vec-
tor quantizer and let {cj}Nl be the set of codewords. The problem may oe
formulated as follows:

find the codeword ci among the N possible ones which min-
imizes the squared error

iz - , 112= zT - 2zTei + CTc, (6)

where if eTcj is independent of i then the minimum distance
is achieved by the codeword ci yielding the largest scalar prod-
uct y = zTci.

The most efficient algorithms known today for performing the vector
quantization using K(4) are based on the Hadamard Transform (HT), whose
definition, for easy reference, will now be recalled.

Let H, denote an Hadamard matrix in Sylvester form, which is a n x n
matrix of + l's and -l's with the property that the scalar product of any
two distinct rows is 0. Thus H, must satisfy the relation

HHT = hi

where I is the n x n identity matrix.
An n-dimensional column vector V is called the HT of the vector z if it

is obtained multiplying the vector z by an Hadamard matrix, i.e.

Y = H.z.

In this context we shall consider the i-th binary codeword of K(m) as a
vector of +I's and -l's, with +1's replacing O's and -l's replacing l's. It
is easy to see that this will replace the usual vector sum over GF(2) with
the dot component-wise product of integer vectors, hereafter denoted 0.



The scalar and dot products are compatible in the sense that the following
propcrty holds

XT(Yoz) = (zoy)Tz. (7)

Vector quantization using K(m) requires, by direct application of (6), the
computation of 2 2, . scalar products

Y= = T C= 1,... , 2
"2m ,  (8)

and 22m - 1 comparisons to search the minimum Yi.
Applying the property (7), yj may be computed as

y, = zT(w, Dc) = (zO w)Tc . (9)

As noted in [1,2,3], the 2m+1 codewocds of R(1,m) can be grouped to firm
a Hadamard matrix H 2-. and its negative -H 2 .. Therefore the yj's can be
computed as 2'-dimensional HT's of the 2

' -1 vectors (z E w). Moreover
only 22,-1 comparisons are necessary to find the maximum scalar product;
the search can be limited to the absolute values I xTed I and the proper
codeword can then be chosen according to the sign of xTe.

The above observations can be also applied to the minimum distance
decoding of soft data. The computation of Algorithm 1 may be performed
by executing the HT's of the received vector r and the companion vectors
r 0 w, j = 2,..., 2m 1. In the following, two algorithms that implement
the decoding along these lines are described.

Algorithm 5 (HT decoding: Nn rule) - The matrix W(') of the
coset leaders and the Hadamard matrix H2 . in Sylvester form are
stored. For every r, the 2 2" scalar products y' = rTed, i = 1,..., 2 2m,
are computed by performing the 2' HT's B2- (r E) w) and -H 2 . (r EO
wi), i = 1,...,2m. The maximum Yj is then found, resolving ties by
random equiprobable choices. The received vector r is finally decoded
as the codeword 4. from which the information bits i are recovered.

Algorithm 6 (HT decoding: MC rule) - The matrices W( ' ), H 2 .

and Ge, generating matrix of of P.(1,m), are stored. For every re-
ceived vector r, the 2 2, scalar products yj = rC, i = 1,... ,2 2 , are
computed by performing the 2' HT's, H 2 - (r (t,) and -H 2-(r (D wt),
i 1,..., 2m. The maximum j is then searched. If there are no ties,
r is decoded as the codeword e, from which the information bits i are
recovered. Otherwise the first m+ 1 information bits are taken unmod-
ified (S1 = rl), the vector a G2i 1 is computed and the remaining
rn - 1 information bits are taken as i 2 = r2 + aI.

9



Direct application Direct FHT Proposed schemeH 23m-1 - 2- - 1  m2 2 - 1  2-13 + (m - 2)2m-1j
1,920 512 304

6 129,024 122,88 8,384
8 8,355,840 262,144 197,376

Tdble 3: Complexity figures for vector quantization with K(m).

An efficient method for computing the HT's required by the above Algo-
rithms is reported in Appendix A, together with computational complexity
remarks. The resulting complexity figures are summarized in Table 3.

4 Bit and Word Error Probabilities for K(4)

In general it is very hard to compute either bit error rate or word error
rate for nonlinear codes. For K(4), however, such a computation is feasible
because its structure is very similar to that of linear codes. In fact, as
previously observed, the decoding can be oiganized as a Standard Array,
since the translates of K(4) by the correctable error patterns do not overlap
and cover the whole vector space of dimension 16 over GF(2). In this case
(see [1,61) the bit error probability Pb and word e-ror probability p,, after
complete decoding on the BSC can be expressed as a polynomial in the raw
bit error rate p of the BSC:

1 16

8 E E p''

where the coefficients Ei are reported in Table 4. They have been computed
from the Standard Array according to a counting scheme proposed in [1].
Interesting are the asymptotic expressions Pb 1_44p and Pb 1 '3 Y

for the ML and MC decoding respectively, as p tends to zero. From these
relations it follows that, at least asymptotically, the MC rule is superior to
the ML rule as far as the bit error rate is concerned. On the other hand,
as expected, the word error probability, whose asymptotic expressions are
p, - 448p and p,,, 504p9, shows a better asymptotic expression in the
ML cCae.

10
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i E, - bit Ei - word
ML MC ML MC

0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 1464 1329 3584 4032
4 -12635 -10856 -32088 -37912
5 52116 40497 140448 175000
6 -130242 -81309 -388080 -512288

7 211196 65510 744480 1047104
8 -218250 110310 -1036728 -1565760

9 117176 -409012 In69376 1753808
10 22836 675936 -820512 -1485792
11 -99288 -704544 463680 950880
12 88496 496376 -187880 -454104

13 -43680 -233184 51744 157528

14 12480 66912 -8688 -37696
15 -1664 -8960 672 5600
16 0 0 0 -392

Table 4: Coefficients for bit and word error rate computation of K(4).
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5 Conclusions

In this paper we have dealt with many different properties of Kerdock codes.
A description of Kerdock codes that allows instantaneous encoding was

given. This approach leads to the application of two different decoding
strategies, i.e. the well known Maximum Likelihood criterion and another
one that we have called Minimum Correction rule. Referring to K(4) it
has been shown that a Standard Array can be built by translating the set
of codewords without overlapping. From the inspection of this Standard
Array it turns out that K(4) is not quasi-perfect (see also Table 2). The
same Standard Array allows the computation of the bit error rate for K(4)
on the binary symmetric channel, with respect to both ML and MC decoding
strategies: in this particular case MC is asymptotically superior.

Finally it has been analized a scheme suitable both for decoding and
for vector quantization based on K(m). Based upon Hadamard Transforms,
it shows very low computational complexity figures. Table 3 compares the
number of sums required by the proposed scheme with the standard FHT
and the direct application of Algorithm 1 above.
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A Complexity of soft data decoding and vector
quantization based upon K(m)

Every dissertation on decoding complexity suffers the lacking of suitable
measures of complexity. However for most practical applications the number
of arithmetical operations (in any field), the number of logical operations
and the amount of storage required can be taken as meaningful figures. In
the following we estimate the complexity, in terms of number of arithmetic
sums, for decoding and vector quantizing based upon K(m).

In [3], by referring to a definition of K(4) as X 16 , it is shown that in the
vector quantization problem, the nearest neighbor codeword can be found
with 30' additions and 128 comparisons. By using similar arguments, based
on a variant of the Fast Hadamard Transform (FHT), and using our rep-
resentation of Kerdock codes, we will introduce a generalization to K(M),
that shows the same complexity figure in the case m = 4.

It vas already shown in Section 3 that the vector quantization problem
can be solved with the computation of 2 -1 Hadamard transforms of di-
mension 2'. TL,- camplexity of this computation stems from the following
observations, motivated in [1,2,3].

1. The HT of dimension Zm may be computed by evaluating HT's of
smali'r dimension. In fact the matrix H2- may always be written as

H2- = (H 2-...-1 - H 2--

This means that a HT of dimension 2' may be computed by perform-
ing two HT's of dimension 2 '-1 and operating 2 -2m-' sums, and every
HT of dimension 2 1 may by obtained fcrn two HT's of dimension

2 m2 and 2 - 2 2 sums, and so on.

This observation allows a decomposition of the Sylvester-type matrix

H2- in terms of H4 submnat, .ces, where the matrix H4 has the structure

1 -1 1 -

1 -I 1 1

11
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As an example

( H4 H 4 H4 H4
H 4 -114 H4 -H4

HH16 4 H4 - 4 - 114

H4 -H 4 -H 4 H4

2. The vectors z and wi can be partitioned into subvectors of dimension 4

X = (X1 IX2 X2-I -- 2)

and

and their dot product may be performed independently in each single
part

zo (wD = (z w Iz3 ®w3  I - z4 o w 4i).

Note that the action of wji on zj is to change the sign of some entry.

3. The HT's of (ai,a 2 ,a3,a 4 ) and (ai,a 2 , as, -a.:) require 12 sums

(a, + a2) + (as + a4 )

(a, + a2 ) + (a3 - a4 )

(a, + a 2 ) - (a3 + a 4 )

(a, + a2) - (as - a4)
(a, - a2 ) + (a3 + a 4 )

(a, - a2) + (a3 - a4)

(a, - a2 ) - (a3 + a 4 )

(a, - a2) - (a3 - a4).

4. Given aT = (a,,a 2 ,a 3 ,a 4 ), the HT of a vector derived from a by an
even number of the sign changes can be obtained from the HT of a by
simple permutations and sign changes. If we call bT = (b ,b2, b3 , 64)
,he HT of a, we have

( a,, a, a3, a4) -. ( b, b, b, N )

(-aj,-a 2 ,-a 3 ,-a 4 ) i-, (-b 1 ,-b2,-b3,-b 4 )

(-aj,-a2, a3 , a4 ) , (-bs,-b 4,-bj,-62)
(aj, a2,-a.,,-a 4 ) (b3, b4, bj, b2)
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(-a,, a2, -a3, a4) *- (-b2, -bl, -b4, -b3)

( al,,-a2, a3, -a4) ,- ( b2, bl, b4, bs)
(-a, a2, 43, -a4) -- (-b 4 , -bs, -b 2 , -bi)

( aI,-a 2 , -a3, a4) " (64, b3, b2, bi).

5. Due to the form of the matrix W(m), for each block of 4 columns the
computation of at least a couple of HT's as in Point 3 above must
be done. No other transforms are required due to the observation in
Point 4. The total number of sums is therefore

12 =3. 2m.
4

6. Due to Point 1 above, the combination of subtransforms to produce
H 2 - (z D wi) requires the following number of sums

2.2m-1 + 2 2 2 2 +...+2 m 2 (22 = 4) = (m- 2) 2'.

7. The number of 4-dimensional HT's to be computed is 2m-2, so that
the total number of sums is

3. 2m + 2 1(m - 2) 2m = 2m [3 + (m - 2)2"-'].

The final expression 2m 13+ (m- 2)2m- 1 1 gives the number of sums that are
sufficient for decoding and vector quantizing based upon R(m).

16



Appendix F



Multiplication in Galois Fields GF(2m ) *

Michele Elia and Daniele Vellata
Dipartimento di Elettronica - Politecnico di Torino

I - 10129 Torino - Italy

Abstract

Many data encrypting and data encoding techniques operate in
Galois fields and require that the basic arithmetical operations of sum
and product be performed as quickly as possible. Here we propose
three schemes for computing products in GF(2m), to be considered
alongside the known ones.

1 Introduction

The decoding of multiple error-correcting cyclic codes, [1,2,7], and the en-
crypting of streams of digital data 14,5] usually operate in appropriate Galois
fields. The efficiency of the basic field operations of sum and product is cru-
cial to enable the execution of these processes without affecting the overall
system performance. In particular the product of field elements seems to be
the most critical operation.

Recently hardware implementations, [8,9], of finite field multipliers have
been proposed, which are based on known algorithms [10,11,12]. All these
algorithms use, to a different extent, linear -eedback shift registers, [6].

Here we introduce some alternative schemes for computing products in
GF(2" ) which we believe to be new and that in several cases outperform
the known algorithms. In particular:

e Algorithm I is the direct interpretation of the product definition; at
the cost of some storage it works fast and with no limitations as to
the field definition or order.

*This work was financially supported in part by the United States Army through its
European Research Office, under grant n. DAJA45-86-C-0044.



" Algorithm II is reminescent of the FastFourierTransf orm speeding
up principle, needs less memory than the previous one, but requires a
more complex implementation.

" Algorithm II is based on a special form of the primitive polyno-
mial defining the basis element for GF(2m ), performs very well but is
limited to special values of m.

One of the main concerns in this kind of problems is the balance among
different resources or performance requirements. These problems will be
shortly debated in the final section. While in the next section we will recall,
for sake of easy reference, some useful notations and we will introduce the
necessary definitions.

2 Field element representation

An element a of GF(2' ) can be represented either as a power of a primitive
element q}, that is

where Lq(a) denotes an integer number called logarithm of a to base q, or
as a polynomial in P of degree m - 1, where f# is root of a polynomial g(X)
irreducible over GF(2) of degree m, that is

rn-1
C = E ai EGF(2)

i=O

For later use we define the polynomial a(x) associated to a:

ft-i

a(z) = k jz.=
t=0

Note that a = a(#i).
It is commonly believed that exponential representations are better for

computing products while polynomial representations are better for com-
puting sums in GF(2), [2]. Really, the matter is slightly different, because
multiplication of numbers in the exponential representation requires the ex-
ecution of sums of integers modulo 2m - 1 with the waste of time due to carry
propagation. Moreover, in many applications the polynomial representation
is unavoidable.
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Now let us recall how the product of two numbers a and -y in GF(2n) may

be computed when polynomial representation is used. Writing

rn-I

8~~1 -aI-Z tiaj
i=0

we see that 6 is computed by summing up f' whenever aj = 1. The
addend -yfi can be obtained as the content of a linear feedback shift register,
having characteristic polynomial g(z), starting with initial content -y, and
performing i steps. Along the same line of the well known algorithm used
to evaluate the product of integers, we may represent the products -yfjT,
i = 0,. , n - 1 as an array of dots with the convention that each dot
corresponds to a product "y'f. With abuse of language we say that dots on
the same column must be added modulo 2 and finally the stream of dots of
length 2n - 2 must be reduced to a stream of the n rightmost positions. See
fig.1.

Equivalently these operations may be described using the polynomial
representation so that the product a'y can be computed by first executing
the product a(z)i'(z) and then reducing the result modulo g(z)

2m-2

a(x)-y(x)= E az' = 6(x) +g()p(x), (1)
i=0

hence setting z = f to get

rn-i
E t-

j=0

where a =a(8), -y = -(#) and 6 =(f).
Observe that, for later use, the product a(x)-y(z) can be written as:

(z)y(x) T(x)-- xmb(x). (2)

where
rn-I m-2

a(x) E aj z' b(x) = ai+mx'.
1=O i=O

3 Algorithms

In this section we describe the algorithms in an abstract form so that the
presentation is not influenced by present-day technology. Comparisons with

recent implementations will be given in the final section.

3



Algorithm I. Using equation (1) and substituting x =,6, we get

2m-2 2m-2 M-ICf" = E C =' 1.=# = E a' + E ,,.,t. (3)
s=0 i=m i=0

In this expression only the sum from m to 2m - 2 must be processed. The
reduction process can be very fast if we have previously stored the following
m - 1 powers of #

rn-I

Et 'i f' , < j : 2 m - 2 ci E GF(2)
i=0

which allows us to compute 6 in a straightforward way

M-I 2m-2 rn-I

b=ZE ifiT+ZEaj cij,6'
i=0 i=m s=0

Algorithm II. To describe this algorithm, which requires less stored
data but is slower than Algorithm I, let us consider the first sum in equation

(2) and let us suppose that the following power of 6 is known

ln = : bi,' (4)
i=0

where n = rn - I + L-VJ. Noting that

rn-1flnl+J E bip + j

i=0

the (n+j)-th power can be obtained by shifting j times to the left the se-
quence (b,,-1,bn_,,...,bo) M-I- I j > >0.

The powers of P whose exponent is between n and 2m - 2, do not need
to be stored. In fact using equation (3) and the above observations, the
first sum in equation (1) can be reduced to the sum having the maximum

power of O less or equal to n - 1. The next steps consist in repeating these
operations successively on the powers of P of exponent m - 1 + [m2 ,
rn - 1 + [I[']]!J, ... , m- 1 + [1/2[ ... l1/2[(m - 2)/2] ... J, the number of

iterations being [1og2m - 2].

4



Algorithm l. This algorithm is based on special forms of the generat-
ing polynomial g(x). Here we consider fields that have elements associated
to irreducible trinomials of the form g(z) = x-+xl+ 1, where 2 < t < [9]"
The cases g (x) = x + x + 1 and g2 (x) =x m + 2 + 1 will be considered
separately both to start and to explain the procedure. In case of gl(x), we
can recast equation (2) as follows

cr(x)'y(x) = a(x) + (1 + z)b(z) + (xm + x + 1)b(x)

so that substituting x = f, we get 8 as

6 = a(,6) + (1 + Pl)b(p )

which is computed in two steps with no storage.
Also g2(z) presents the same behaviour; in fact we have

a (x)-y(x) = a(x) + b(x) + X2 [b(x) + bm_2Xm
- 2] + bm-2 (X2 + 1) +

+ b,,-2(X + X2 + 1) + (x"' + X2 + 1)b(x) (5)

so that substituting x = P, we get b as

6 = a(P) + b(p) + p 2 [b(I9) + b.- 2#"&- 21 + b._(- 2 + 1) (6)

which is computed in two steps with no storage.

In general we have

c,(x)"l(x) = a(x) + (1 + x t)b(x) + (x' + xt + 1)b(x).

This equation can be conveniently rewritten as

,m-2
a(z)-I(z) = a(x) + b(x) + (x + xi + 1)b(x) + bix'+ t -

i=O

= a(x) + b(x) + (zm + x + _)b(z) + bi ,'+ +
i=O

t-2 t-2

+ (,i + t + 1) E b,+mtr + (x' + 1) E bj+,m,-x (7)

so that substituting x = , we get 6 as

m-i-lt t-2
6 = a(f) + b(fl) + E b, 9'+' + (flt + 1) Z + b+-tp;. (8)

i=0 i=0

which is computed in two steps with no storage.

5



Alg. I Alg. II Alg. III Alg. SR Alg. STP

m PS NS PS NS PS NS PS NSPS NS

GF(2")

4 12 3 4 3 0 2 0 6 0 4

8 56 3 16 4 0 2 0 14 0 8

16 240 3 48 5 0 2 0 30 0 16

Table 1: Algorithm comparissons

" PS indicates the required storage measured in bits;

" NS indicates the number of steps between input and output;

" SR stays for Shift Register;

" STP stays for Scott- Tavares-Peppard.

4 Conclusions

This paper presents three schemes for computing products in GF(2'). The
algorithms are not strictly comparable as far as they make use of different

resources. As a matter of fact special algorithms for performing products
in finite fields have been proposed in the scientific literature. In particular
the Massey and Omura multiplier utilizes the normal basis representation
of the field elements, while the Berlekamp multiplier uses both the stan-
dard and dual bases representations: for both algorithms it is difficult to
change the polynomial which generates the field. The algorithm proposed
by Scott, Tavares and Peppard, which has been hardware implemented, does
not present the previous limits and can be compared with the ones proposed
here.
For sake of comparison Table 1 shows for the mentioned algorithms the
amount of required storage and the number of steps between input and
output.

The facts emerging from this table were confirmed by both software pro-

6



gramming and hardware implementations. From both programming serii-

plicity and execution time points of view, Algorithm III is undisputably

preferable. Its limits stem from the fact that neither primitive irreducible

trinomials are available for every m, nor it is known whether an infinite

number of such primitive trinomials does exist.
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On the Concatenation of Binary Linear Codes

Michele Elia * and Fabio Neri
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Abstract

Many recent applications of error-correcting codes, especially in
the case of transmission over very noisy channels, have been based
on concatenation to achieve high performances. This paper considers
concatenation of linear block and convolutional codes, presenting some
considerations on the bit error rate computation after complete decod-
ing. The fact that code concatenation is not a commutative operation
is discussed.

1 Introduction

The use of error-control codes is steadily increasing in a variety of digital
systems like digital recording [2], satellite links [4,5,6] and HF mobile radio
transmissions. In many of these applications coding is unavoidable to achieve
high performances and often simply to allow the system to work.

In most situations the symbol error probability and the transmission rate
are conflicting targets, and the application of efficient and flexible codes
is necessary. In these cases the choice of the code is conditioned by two
constraints, namely the complexity of the receiving devices and the decoding
delay. Code concatenation seems to offer a good compromise in terms of the
constraints above.

Furthermore, several applications require uneven protection of the infor-
mation symbols. This is the case, for example, of packetized information
transmissions, where the protocol information carried by packets often re-
quires better protection than the information part. Unequal error protection
is a target easily pursued with code concatenation.

*This work was financially supported by the United States Army through its European
Research Office, under grant n. DAJA45-86-C-0044.
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Figure 1: Channel model with .ode concatenation

It must be observed that the concatenation of codes does not give optimal
performances as promised by Shannon's bounds: in general concatenated
codes are not as powerful as the best single-stage code with the same rate.
However multistage decoding presents a reduced complexity. Moreover in
some interesting practical cases, concatenation yields performances that are
not improved by any known single code.

This paper presents some features that are peculiar to code concate-
nation. It is structured as follows. Section 2 describes the model of code
concatenation assumed in the papei. Section 3 recalls some relevant results
on the computation of symbol error probabilities, while Section 4 presents
error probability results for the case of code concatenation. Finally, some
applications of concatenated codes are described in Section 5.

2 Channel model for code concatenation

Let's consider the transmission chain resulting from the concatenation of
two codes. The model of the system is shown in Fig. 1, where two main
parts can be identified: the inner and the outer channel. The inner channel
is a discrete channel resulting either from a chain of modulator + physical
channel + demodulator or from another embedded coding section. The inner
channel is supposed to be a memoryless binary symmetric channel (BSC),
characterized by an error probability p. The code directly facing the inner
channel is called inner code.

The outer channel is the discrete channel resulting by the chain inner
coder + inner channel + inner decoder, considered as a unit.

2



The inner code may be either a convolutional or a block code, sometimes
jointly used with modulation, providing either a hard or a soft output. Let

(nIN, kIN, dIN) denote the parameters of the inner code, where dIt is the
minimum distance in the case of block codes and the free distance in the
case of convolutional codes. Let RIN = kIN/nIN be the inner code ra..

The outer code usually is a block code. Let (noUT, korrT. douT) be the
parameters of the outer code, with the same conventions as for inner codes.

Let ROUT = koUT/noUT be the outer code rate.

Code concatenation reduces the net information rate; the overall rate
results in

R = RIN RoUT.

The decoding delay D9 is an important parameter used to evaluate the per-
formance of codes. It is defined as the number of symbols passed between

the instant that an information symbol enters the encoder and the instant
that the same symbol comes out from the decoder. Concatenation usually
increases this figure, but other processing operations, like interleaving or
signal propagation, affect delay even more. Here we consider only the net

delay introduced by the co-decoding operations. It is direct to verify that

D mm {h nIlN I h ntN >! nouT}.
h integer

3 Error Probability I - Basic results

In this section we recall definitions as well as results concerning the compu-
tation of the symbol error probability. Let's consider In, M, d ] block codes,

n being the dimension, M = 2 k the number of code vectors, and d the

minimum distance.
For every binary block code, linear or nonlinear, the bit error rate P,,ymb

is defined as [9]
1 k M

Psymb= k - 1: Prob{i # xji I ri was sent) (1)
i=1 j=--

where the code. vectors xj = (zj, z, 2 ,..., ri are equally likely, i =

(il ,z 2 , .. , 4i) is the decoded vector, and k is the number of information bits

per codeword. In the case of linear codes on a BSC with error probability
p, Equation (1) can be written in the form

Pymb = 1 Z f(e) pwt(e)( 1 - P)n-Wt(e) (2)

e
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where f(e) is the number of incorrect information bits after decoding with
the assumption that the all zero code vector was transmitted, and the sum-
mation is extended over all the 2' binary n-tuples. wt(o) is the Hamming
weight function: wt(r) is the number of nonzero bits in a. For computa-
tional purposes equation (2) can be rewritten in the form

Psymb -- Bi pi(1 - p)n-i = 5Ei p' (3)
i=0 i=0

where
B= 5 f(e) 

(4)
wt(e)=i

and Zwt(e)=i sums f(e) for all error patterns e of Hamming weight i.

Now let B(X, Y) denote the generating polynomial of the Bi's, i.e.

n

B(X, Y) 5Bi XiY-i;
i=0

thus we can write

Psymb B(p, 1 - p). (5)

Moreover let W(X, Y) denote the weight enumerator polynomial, i.e.

W(X, 1") Ai Xiy n - i

i=0

where Ai is the number of code vectors whose Hamming weight is i. It
can be shown that B(X, Y) can be mechanically derived from W(X, Y),
by means of a linear operator, which admits an explicit representation as
antisymmetric homogeneous differential operator in the algebra Z[[X, Y]l,
see [14].

The closed expression of symbol error rates for many interesting block
codes are now known and reported in the literature. Unfortunately this is
not true for convolutional codes, although the bit error rate (BER) asymp-
totic expressions are known for many interesting codes of both kinds.

BER curves. The curves of the bit error rate (BER) versus the error
prcbability of the BSC p show a threshold phenomenon for most commonly
used codes: there is a fast transition between the region where the code

4
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Figure 2: BER versus raw bit error probability for (23,12,7) Golay code

reduces the channel noise and the region where the code is useless. Fig. 2
depicts such a phenomenon in the case of the Golay (23,12,7) code.

It must be noted that the symbol error rate on the BSC, even if derived

under the assunption of a stationary behavior of the BSC characteristics,
gives useful indications on the behavior in a time varying environment: if

the dynamic in the time varying environment is limited within a given range,

the performance is described by the image of this range, see Fig. 3.

Asymptotic expressions for BER. In the case of binary block codes
the asymptotic expressions for the BER take the form

Piymb - Bp'T+1 (6)

where d is the minimum distance of the code and B is a suitable constant.

Table 1 shows the asymptotic BER expressions for some interesting block
codes.

In the case of convolutional codes, it has been shown [10] that the bit

error probability can be written in the form

Psymb - C p(I- p)]df/2 + 0 (p+) (7)
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Figure 3: Bit error performances for time varying channels. The case of

code [ (n, k, d) 1 BERWJ*,,mp IP pon BSC
1 (T,4,3) 9 0.2115
2 (15,7,5) i15p7 0.2444
3 (15,5,7) -0.3233

4 (23,12,7) 2695 0.1522
5 (24,12,8) 771 0.1905

Table 1: Values of asymptotic BER and p, for some binary block codes

b



[L7 BERj -_ - (7

10- 4.0 10- 0.988

4 6 10- 7.0 1 0-3 2.915
10- 1.5 16T 1317.

Table 2: Estimations of the constant C by simulation. Legenda:
L = constraint length of the rate 1/2 convolutional code
d! = free distance
p = BSC raw error probability

Psymb ' P (8)

where d/ is the free distance of the particular code and C is a constant that
is normally difficult to evaluate. Values of C estimated by simulation for
some codes are reported in Table 2.

Critical error probabilities. The critical error probability, another in-
teresting feature of binary codes, is defined as follows.

Definition I - The critical error probability p, for a binary code is defined
as the minimum error probability of a binary symmetric channet (BSC) for
which the bit error probability after complete decoding is not greater than the

-1,, error probability of the channel.

It is immediately apparent that it is not convenient to use the code whenever
the error probability on the BSC is greater than the critical error probability:
in -uch a case, in fact, the u!-- -%f the code leads to worse error performances
than no coding at all. Table 1 shows the critical error probabilities for some

interesting linear codes.
It might be useful, in order to select aitiong alternative codes over a BSC,

to define the relative critical error probability as follows.

Definition 2 - The relative critical error probability p,, for a pair of
binary codes is defined as the minimum error probability of a binary sym-
metric channel at which the bit error probabilities after complete decoding
for the two codes are equal.

Note that the critical error probability may be also considered for con-
catenated codes: in fact one of the advantages deriving from "good" concate-
nations is the increase of the resulting critical error probability, maintaining
at the M,, time good ..- ,e performances for p below such limit.

7
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Figure 4: Asymmetry of code concatenation

4 Error Probability II - Concatenated codes

Recalling the code concatenation model given in Section 2, the inner code

may be viewed as a mechanism that transforms the error probability pi
of the inner channel to p, = fi(pi), the bit error probability of the outer

channel. The outer code performs a similar operation by transforming p0 to

the error probability of the concatenated system p, - fo(p 0 ). The resulting
transformation is

P.- = f 0 (ft(pi)).

Due to the non-linearity of the fi(o) and fo(o) functions, this is in general

different from

p,=fo(p,).

Therefore the optimal concatenation of two codes, under the only constraint
of achieving the minimum symbol error probability at a given rate, depends

in general on the order in which the two codes operate.

A sketch of how the concatenation of two codes depends on the order is
shown in Fig. 4. In the figure, for a given value of the inner channel error

probability - pi = p = 0.13 - and two particular codes with similar rates

- code I ic the Golay code (23,12,7) and code 2 is the Hamming (7,4,3)

code -- , it is shown that two different values of the overall error probability

p, can be obtained. In particular, when code I is chosen as the inner code,



p i -P 0.112 and p, = P12 =- 0.0806, while, when code 2 is the inner

code, p- P2 = 0.103 and p, = P21 = 0.0657.
It should be renembered that often the need for the high error correcting

capabilities of concatenated codes ar'ses at high channel error probability
( I 1- 5 10--2), where the asymptotic expressions do not hold.

In many applications, codes are used in the presence of sufficiently small
channel error probabilities, so that the polynomial expressions introduced

in the previous section can be substituted with their asymptotic form for
p tending to zero: this means that we can consider only the term of the
polynomials where p has the smallest exponent.

Under the assumption that p is small enough for the asymptotic expres-
sions to hold, we may develop some considerations that allow the compar-
ison, in terms of the symbol error probability, of the two possible concate-
nation orders for a couple of codes.

Let p, = Ajpf ' and P2 = A 2p
n 2 be respectively the bit asymptotic error

probabilities of codes C1 and C2. If the concatenation shows C1 as the outer
and C, as the inner code, we obtain the asymptotic BER

P12- A1 A"' pfl -

while C2 oiter and C1 inner gives

P21 =4 A fll

In the particular case nj = n2 = n, it is straightforward to see that the
best asymptotic performances are obtained when the inner code has a lower
asymptotic error probability, i.e. when it has a lower value for the coefficient
.4.

Table 3 shows the asymptotic expressions of the bit error rate for the
two possible concatenation orders for some couples of codes (taken from

Table 1).

5 Applications

In this section we consider some widely used code concatenations and we
evaluat? their performances.



Order off [ 1 Order of
concatenation J concatenation

1-2 119025 p6  83835 p 6  2-1
1-3 1979649 ps 3077109 pS 3-1
2-o 6.39 1011 p12  3.10 1011 p12  5-2

3-5 4.T58 1015 p1" 8.57 1013 p 16  3-5

Table 3: Comparison of code concatenation orders

5.1 Rate 1/2 convolutional and Reed-Solomon code chain

One of the first proposed code's chain, see [1], consists of a convolutional
code of rate 1/2 and constraint length 7 with Viterbi decoding as the inner
code and a Reed-Solomon (RS) code over GF(25 ) as the outer code.

The maximum free distance for noncatastrophic convolutional codes with
rate 1/2 and constraint length 7 is 10, see [21, page 2511. The asymptotic
BER for this convolutional code is, from (8), Cp'. The constant C has been
estimated by simulation, using the TOPSIM III simulator [20].

5.2 Uneven error protection - the LPC case

Several applications require uneven protection of the information to be trans-
nuitted. This is the case, for example, of packetized data transmissions,
where the protocol information carried by packets requires better protection
than the information part. A typical situation is the transmission of voice

digitized according to the Linear Predictive Coding (LPC) [22] approach.
The LPC-10 is a US Government standard that allows the transmission

of digitized voice at 2.4 Kbit/s. The speech signal is segmented in contiguous
talkspurts of 22.5 ms, called frames. Each frame is coded into a 54 bit
packet. Frames can be of -vo k'nds: voiced and unvoiced. Voiced frames
are reconstructed at the receiver by filtering a basic waveform with a filter
whose coefficients are estimated by the transmitter by means of the LPC
covariance analysis algorithm. These coefficient are transmitted inside the
54 bit packets. Unvoiced frames carry little information content, so that
they are rebuilt as filtered noise, with a lower order filter whose parameters

require less bits in the 54 bits packets; the remaining bits are used for error
protection of the bit stream. One bit is used to discriminate between voiced
and unvoiced packets.

It should be clear that LPC packets contain various kinds of information

10



(filter coefficients, other LPC parameters, voiced/unvoiced flag, error pro-
tection, etc.) whose need for error protection varies: it is very important,
for example, not to spoil the content of the voiced/unvoiced flag, while an
error in a low order bit of a filter coefficient is much less significant. In
this case it is desirable to have a better error protection on some bits of the
packets: this target is easily pursued with code concatenation. The inner
code could be applied only to those parts requiring more protection, while
the outer code could protect the whole bit stream.

5.3 The Compact Disc audio system

In the Compact Disc audio system error protection is achieved by the use
of two chained Reed-Solomon (RS) codes [2]. A (32,28,5) RS code is used
as the inner code and a (28,24,5) RS code is the outer code, both are over
GF(28 ); detected errors in the inner codes are erasures for the outer code.
Th' concatenation order has been chosen out of several constraints, but it
can be shown to be not optimal.

The two RS codes show the same minimum distance, hence the same
exponent for p in (6). The coefficient B in the same equation is greater for
the (32,28) than for the (28,24) code, since the former offers similar error
correcting capabilities on a larger number of information symbols. But in
Section 4 it has been shown that, under these conditions, the inner code
should be the one with the smaller coefficient B: this implies that the reverse
concatenation order would lead to better symbol error performances.

5.4 Comparison of code concatenation with single stage
codes

As final example let us compare an instance of concatenated codes with
several single codes with comparable rate. It seems that concatenated cades
outperforms any known single code even at the relatively small rate of 0.38.
The codes are listed below and the results are summarized in Table 4.

1. Concatenation of inner Hamming (15,11,3) code and outer Golay
(23, 12, 7) code

2. Concatenation of outer Hamming (15,11,3) code and inner Golay
(23, 12,7) rode

3. Single BCH (33,13, 10) code

II



Codes Rate Dec. Asymptotic J p,
inner outer delay BER I

1 (15,11,3) (23,12,7) 0.383 30 839,548,980 p' 0.137
2 (23,12,7) (15,11,3) 0.383 23 171,588,966 p8  0.124

3 (33,13,10) 0.394 33 35,960 pr 0.290
4 (39,15,10) 0.385 39 73,815 p' 0.311

5 (55,21,15) 0.382 55 178,181,640 ps 0.279

Table 4: Comparisons among error-control schemes

4. Single BCH (39, 15, 10) code

5. Single BCH (55, 21, 15) code

The asymptotic BER was derived according to the approach described
in [14].

The decoding complexity may be hard to define, due to the fact that
an efficient decoding algorithm is not always available. Referring to the
decoding schemes available today, the codes used in the concatenations 1.
and 2. can be decoded with the very efficient error trapping procedure
devised by Kasami [161, while for the other single stage codes the known,
[24] and [23], complete decoding procedure, is direct computation of the
minimum distance. It turns out that the latter codes are incomparably
more difficult to decode.

6 Conclusions

The use of error-control codes calls for a compromise between efficiency
and complexity. The original scheme proposed by Forney [1] of concatenat-
ing two or more codes and modulation provides the proper answer to the
problem: it is now well accepted that concatenation van be advantageously
applied to manage many interesting situations, and sometimes it can be the
only solution with affordable complexity.

The decreasing cost of digital circuits allows to foresee that cost-effective
applications of codes will be even more widespread in the near future. Code
concatenation yields cheaper implementations together with high perfor-
mances. Many authors support the opinion that code concatenation is not
only a trick, due to our limited knowledge of codes' structure, to achieve
good performances; rather it is an effective way to obtain high performance

12



with limited complexity. This opinion is upheld by the proof, see [25], that
the general decoding problem, also for linear codes, is NP-complete.
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