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ABSTRACT

The evaluation of the reliability, stability, and performance of fault
tolerant control systems (FTCS) is considered. New sufficient conditions
for stochastic stability of FTCS with standard Markovian component failure
behavior and Markovian failure detection decision behavior are derived. By
specializing these results to the class of linear time-invariant (LTI) FTCS
with linear state feedback control la—s that zre reconfigured by switching
the feedback gain matrix according to the identified failure configuration,
the stability results are strengthened to necessary and sufficient
conditions for stochastic stability of a special type (exponential in mean
square) that implies a very strong sense of stability (a.s. in probability).
An approximate feedback control design technique for LTI FTCS is then

proposed and demonstrated on a simple numecical case.

In addition, previous results on semi-Markov analysis of FTICS reliability
are used to derive a numerical method for establishing approximately optimal
failure detection test thresholds for sequential failure detection tests.
This method, though approximate, is shown to yield thresholds that provide a
considerable increase in system reliability relative to those provided by a
method based on a rigorously derived reliability approximation for one

numerical case.




1. INTRODUCTION

1.1 Motivation and Discussion ¢f Problem

The evaluation of the reliability, performance, and stability properties of
fault tolerant control systems (FTCS) is problematic due to several
cnaracteristics <f these systems. Furdamentally, the behavior of FICSs isg
probabilistic in nature. The vrandom nature of the behavior stems from the
random occurrence of failures, the random noise disturbing the system and
corrupting its outputs, and the interaction of the failure detection a.d
isolation (FDI) logic with the noise-corrupted outputs. This means that any
evaluation technique must account for all of the random behavior to which

FTCS are subject.

Most of the evaluation m thods that have found success for FTCS are based
upon Markov modeling. The failure behavior of the components comprising
mest FTCS is usually well-modeled by a Markov jump process, and if the
correlations between component failure events (if any) are known, then the
system failure configuration can be modeled by a finite-state Markov jump
process. The random noise corrupting the measurements is often modeled as
white (i.2. as if uncorrelated in time). If the FDI tests used by the
system are instantaneous, such as the standard threshold tests or
instantaneous parity equation tests based on analytic redundancy, then the
FDI decision behavior 1s also Markovian when conditioned on the failure
configuration. This situation lends itself to a Markov jump process model
of the FTCS behavior from which the system reliability and performance can
be derived, provided the interaction between the FDI logic and the system
configuration is properly accounted for [l]. The problem for the FTCS
evaluator is then one of solving for the transient behavior of the resulting
Markov model. The transient solution is often complicated by the large
number of states possessed by typical FTCS models and by large ranges in the
transition rates ¢f the model due to the often extremely slow rate of

component failures relative to the rate at which FDI decisions are made.

The Markov jump process modeling technique breaks down when the FDI tests

involve memory. Any sequential FDI test (such as Wald’'s sequential

probability ratio test, the Shiryaev test, or any likelihood ratio test

based upon a history of measurements) and any test involving dynamic

filtering of the measurement data (such as the detection filter, the

dedicated observer approach, and the unknown input filter) no longer behaves
3




in a Markovian fashion even if the noise corrupting the measurements in use
is white. In many of these cases, however, the FDI decision behavior can be
modeled by a finite state semi-Markov process conditioned on the failure
behavior. When combined with the Markovian failure characterization, the
result is a semi-Markov model for the FTCS behavior that yields reliability
and performance information if the transient solution to the model can be

calculated [2].

Much of our previous work has dealt with the difficulty of solving for the
transient behavior of semi-Markov FTCS behavior models [3-8]. These
solution difficulties arise from the sources cited above (large number of
model states, wide range of transition rates) and also from the convolutions
necessary to evaluate the transient solution to semi-Markov models. The
work described in {3-8] was directed toward approximating the transient
solution by simpler forms obiained by exploiting the wide discrepancy that
typically exists between the failure rates of the components and the FDI
decision rates to decompose the semi-Markov model into aggregate classes.

The reader is referred to [3-8] for further details and results.

In the work reported here, we shift our attention slightly to the problem of
evaluating stability properties of FTCS and to determining thresholds for
sequential FDI tests that are commonly used in FTCS. The stability issue,
like the reliability and performance evaluation problem, is complicated by
the fact that FTCS are fundamentally stochastic systems. Therefore,
stability for FTCS must be defined in a stochastic sense and the theory of
stochastic stability must be employed to derive results. The threshold
determination issue, which we have addressed for a special type of system
{9-10], is related more closely to our reliability evaluation work because
the reliability is often the measure by which the FDI threshold selection is

judged.

1.2 Previous and Related Work

As discussed above, our own previous work and that of others (reported in
{3-8] and the references thereof) has focused primarily on the reliability
evaluation problem for FTCS. We have examined the threshold deteirmination
problem before }9-10], but only for the case of instantaneous FDI tests. To
our knowledge, the threshold determination procedure for sequential FDI
tests discussed later in this report is unprecedented in the literature on

FTCS.




The stability question for FTCS has been studied in recent years by several
other researchers. Our work is closely related to that of Mariton, reported
in [11], who examined the stochastic stability of FTCS under the assumption
that the FDI decisions could be delayed by a random time but were always
correct. Our results also are related slightly to those reported by Ji and
Chizeck in [12]) for the special case of FTCS called the jump linear
quadratic regulator (JLQR) problem with the assumption that the FDI
decisions are always correct and delayed by no more than one time step. In
fact, our results are generalizations of the results of both of these

references, as we shall show.

1.3 QOutline of Report

The remainder of this report is laid out as follows. The next section
presents a detailed summary of our research findings. These results are
presented in the form of manuscripts included as subsections of the next
section, each preceded by a brief introduction to its contents. Section 3
summarizes the major findings reported in Section 2. The personnel involved
in the project are listed in Section 4. Section 5 lists the publications
and presentations that resulted from this work and from the previous AFOSR-
supported work that appeared during the project period. Finally, the

references are listed in Section 6.




2. PROGRESS SUMMARY

In this section, we present a detailed summary of the technical work
accomplished under the grant. Because they concisely summarize our results
and relate our work to the work of other researchers, we rely almost
entirely in this section on the manuscripts of three papers written under
the grant and submitted for publication. (See Section 5 on papers and
presentations.) To place these manuscripts in perspective, each is preceded
by a brief description of its contents and its relationship to the other

work accomplished under the grant.

2.1 Determination of Approximately Optimal Sequential Test Thresholds

This work most closely follows from the work on reliability analysis that we
accomplished under previous grants [3-8]. Basically, the assumption is made
that a semi-Markov wodel has been constructed that describes the behavior of
a FTICS including random failures and FDI decision delays and errors. If
this mcdel is (o be used to determine the test thresholds that minimize the
system unreliability at some fixed duration, then crdinarily a numerical
optimization scheme like a gradient approach must be used. Such schemes
require many evaluations of the model, each of which is very time-consuming.

In this manuscript, we suggest a simpler method for determining the

thresholds that requires the evaluation only of a few of the transition
probability mass functions in the semi-Markov model instead of the entire
7rael behavior. As we demonstrate for one numerical case, the resulting
thresholds can be better in terms of the system reliability chat results

from their use than thresholds determined by other means.




SELECTING THRESHOLDS FOR SEQUENTIAL FAULT DETECTION TESTS

R. Srichander
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Bruce K. Walker

Health Monitoring Technology Center, Department ot Aerospace Engincering and
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Abstract. Many redundancy management (RM) algorithms use sequential tests
for detecting and identifying component failures because the sequential
processing of noisy data samples often results in significant decreases in
the probabilities of false detection and of missed detection relative to
single sample tests. However, this improvement in the error probabilities
comes at the cost of a larger delay in detecting or identifying a failure.
The error probabilities and delay statistics characterize the performance of
the sequential tests, and these performance properties play a crucial role
in determining the overall fault tolerant system performance. In this paper,
a simp'~ technique to derive approximately optimum thresholds for sequential
failure detection tests is indicated where the perfcormance of the tault
tolerant control system is the optimality criterion. The threshold selection

mieeniod 15 1llusiraled by a generic uadraplon redurdant svstem example

Keywords. Failure detection; reliability; redundancy: fault tolerant

systems; Markov processes; thresholds; sequential tests.




INTRODUCTION

o tecent yeoars, redundancy ot critical components has been used to enhance
the reliability of control systems for many applications. Examples include
aircraft flight control systems (Moerder and others, 1989; Hewell and
crhers, 1983 lLooze and others, 19851, spacecraft attitude control and
nertial navigoation systems (Harrison and others, 1979; Kerr, 1457) and
e lear power plant operating systems (Gati, Harrison, & Deyst, 1981). For
b of these applications, high reliability is of prime importance, which
i oturn motivates the use of active fault tolerant control systems. An
~tive fault tolerant control system comprises a redundant set of hardware
cmponents and a fully automated redundancy management (RM) algerithm to
roecontigure the system in real lLime when component failures occur. One of
e functlons of the RM algorithm is the detection and identification of
fnaiiures. This is usually accomplished through the use of statistical
taliure deteation and identification (FDI) tests combined with autcomatic

sl to procens the test outcomes.

e reliablility of oa fault tolerant system is determined not only by the
reeiiabilities of itg individual components but also by the FDI test
statistics. For instance, the reliability of a fault tolerant system
cmrrised of very reliable components but with a fault detection algorithm
proner Lo false alarms can be unacceptably low. In such a cace, false alarms
“an be so frequent that the effective redundancy level of the system is
veddaoed. The motivation for the work reported here stems from the fact that
the overall fault tolerant system performance can be enhanced by improving

the performance of the FDI tests.

Markovian models have been used in recent times to assess the reiiability
and performance of fault tolerant systems that use FDI tests of the single
sample variety (Walker & Gai, 1979). Single sample FDI tests are tests that
use only data obtained at a single time instant, as opposed to tests that
use data obtalned over a fixed or variable window of several time samples.
The determination of optimum threshelds for systems using single sample
t~sts nas been examined by Harrison and others (1979). However, single
sample FDI tests often have high probabilities of error, particularly in

noisy signal environments, that may lead to unacceptable system




reliabilities. To overcome this drawback, moving window and sequential tests
have been suggested for FDI (Willsky, 1976). The improvement in the crror
probabilities for these tests comes at the cost of a larger delay in

frtecting and identifying a failure.

thieir nature, sequential tests are not memoryiess. Theretore, Markov
woodels are not applicable for evaluating the performance of systoems that use
roem. Instead, semi-Markov models can be used to evaluate the performance
cantities of interest for a broad class of fault tolerant systems that ucc
quential FDI tests (Walker, 1980). However, semi-Markov models are oftern
nudtationally intractable because of their large dimension, the presence
convolution sums in the calculaticns, and the long time periods that are
wically of interest in fault tolerant systems applicaltions. The
eoomposition of semi-Markov models to make practical the approximate
evaluation of Lthe reliability of fault tolerant systems over long mission
; has been described by Wereley (1987), Walker, Chu & Wereley (1988),
4 Srichander & Walker (1989).

o present work is aimed at deriving thresholds for sequential FDI tests
wi.ioch can improve the overall performance and reliability of a fault
tlerant system. In current practice, these thresholds are often cither
.xed at the 2o level of the noi~~ in the measurements or based on Monte
Carlo simulation results. Simulation experiments are very expensive at the
dosipn phase. Time varying noise statistics are also difficult to account
tor with these methods. Thresholds have also been chosen based upon single
test performance probabilities (i.e. the probability that each test will
produce a false or missed alarm), but these methods do not take into
cunsideration the structure of the FDI logic and hence do not capture the
eftfect of the thresholds on the overall system performance . In the casc of
sequential tests, we are also often interested in minimizing the average
sumple number (ASN) of the tests, which determines the delay in detecting

failures. The ASN is usually a function of the test threshold (Wald, 1947).

Irn this paper, an approximate method for determining optimal thresholds for
sequential FDI tests is presented and demonstrated on a quadraplex system
cxample that uses sequential tests for FDI. The method to generate optimal
failure detection thresholds 1s computationally inexpensive and wiil be

seen to yield significant improvements in overall system reliability




relative to the standard 3c thresholds.

The rest of the paper is organized as follows: 1~ section 2, a semi-Markov
model for a generic example of a quadraplex system is briefly described.
Section 3 describes a method to derive optimum thresholds for sequential FDI
tests baced on the first passage time and state duration statistics of a
semi-Markov model. Evaluation of the selected thresholds in terms of the
performance of the qu:draplex system and a discussion of the results are

presented in section 4.

A SEMI-MARKOV PERFORMANCE MODEL EXAMPLE

The model that is used to calculate fault tolerant system performance
quantities depends upon the architecture of the RM algorithm that is
employed. Therefore, ilhese models are system-specific, and it is not
possible to define a "generic" model structure. In this paper, a particular
quadraplex fault tolerant system architecture is discussed and analyzed.
Although a specific architecture is examined, the applications of such a
generic architecture are many. The architecture could, for example,
represent redundant air data sensors in a flight control system. Note,
however, that the concepts that are applied later in the paper for
determining FDI test thresholds are applicable to any semi-Markov
performance evaluation model where the behavior that is characterized by the
model is similar to the behavior of the example system described in this

section.

Quadraplex systems are quite common in high reliability environments because
under ° 'eal circumstances they are capable of "fail-op, fail-op, fail-safe"
performance. In other words, they can tolerate two failures with little or
no loss of performance. This section describes a particular quadraplex
sensor system architecture, and the framework for a semi-Markov performance
evaluation model for it is given. Note that the form of this model is rather
general provided the FDI decision logic is of a particular form. The tests
used for FDI are assumed to be a sequential probability ratio test (SPRT)
due to Wald (1947) and a one-sided SPRT (also known as a CUSUM procedure,
see Page (1954)), referred to in this paper and by Walker (1980) as a

sequential ratio detection test (SRDT).

10




Assumed FDI Architecture

We now proceed to describe the assumed FDI logic for the quadraplex
architecture we will examine. At the four-level stage when all four sensors
are operational, let us denote the measurement at time sample k of each
sensor by (mx(k), i=1.2,3,4}. Two pairwise differences of these measurements
are used to produce a residual sequence for failure detection as follows:

r (k) =m (k) - m_(k)
1 1 2

r (k) =m (k) - m (k)
2 3 4

We assume that E{ri(k)}=0 under the conditions of no failure (hypothesis HO)
and that when a failure in one of the instruments is present (hypothesis
Hl), the residual sequences have the following mean values:

E{rl(k)}=ia, E(rz(k)}=0 if instrument 1 fails

E{rl(k)}=$a, E{rz(k)}=0 if instrument 2 fails

E{rz(k))=ia, E{rI(k))=O if instrument 3 fails

E{rz(k)}=$a, E{rl(k)f=0 if instrument 4 fails

where a>0 is a constant. Under each of the hypotheses, we assume that the

. : 2
variances of both residual sequences are o .

At the four-level stage, we will applv four SRDTs to the residual sequences
in order to detect failures and identify polarity information. The SRDTs

have the forn

Declare a failure is present (and specify polarity) if Sl(k)>T?, (i=1,2,3,4)

otherwise continue to the next sample.

The test statistic Sx(k) is given by:

Si(k) = max{0, Si(k—l)irl(k)ia/Z)
with Si(O)=O (i=1,2,3,4) where 1=1 for i=1,2 and 1=2 for i=3,4 and the top
sign i1s used for one test and the bottom sign is used for the other. T? is
the detection threshold, which is tc be determined by the designer. We refer

the reader to Valker (1980) for more details on the form of the test.

The logic for using the outcomes of these two tests is assumed to be as

11




follows. No failure is assumed to be present until at least one of the SRDTs
terminates with a threshold crossing. If two or more SRDTs arrive
simultaneously at a failure decision, the tests are reinitiated. Otherwise,
depending on which one of the SRDTs arrived at a failure decision, one of
two isolation options is triggered that uses two SPRTs for isolating the
failed component. For the SPRTs, two residual sequences are formed as:

ql(k) ml(k) - m3(k)

q2(k)

mz(k) - m4(k)

Each SPRT has the form:
Declare a failure if Ri(k)>T:, {i=1,2) otherwise proceed to the next sample.

Here, Ti is the isolation threshold, which is determined by the designer,
and:

R (k) = R (k-1) * q (k) ¥ a/2
with Ri(kD)=0 (i=1,2) where kD is the time sample at which detection occurs,
and 1 and the signs on the quantities depend upon which SRDT was triggered
(see Walker (1980)). If both SPRTs arrive at "no failure" decisions (HO),
the SRDTs for failure detection are reinitiated (i.e. the detection alarm is
rejected as false). If only one of the SPRTs arrives at a failure decision

(H1)' the corresponding instrument is isolated as failed.

When one of the instruments is isolated by the FDI logic as being failed,
the remaining three instruments are redesignated 1,2, and 3. Two residual
sequences {rl(k)} and {rz(k)} are again generated using pairwise differences
of the observations from the instruments, in this case using instruments 1
and 2 as one pair and instruments 2 and 3 as the other. Three-level failure
detection logic using SRDTs and failure isolation logic using SPRTs are used

again.

When only two instruments remain operational, we assume that built in test
equipment (BITE) is used on the isolated instruments in order to retrieve
instruments that were isolated due to false decisions. The BITE tests are

assumed to have known proababilities of false alarm and missed alarm.

12




Semi-Markocv Model

For a system like the one described above, a semi-Markov model can be
constructed to characterize the evolution of its configuration as failures
and FDI events occur (Walker, 1980; Wereley, 1987). These models consist of
a finite set of states that represent the various system configurations and
a complete statistical description of the transition behavior among these
states. For more details on developing semi-Markov reliability models, see

Walker (1980) or Wereley (1987).

One of the states in a semi-Markov evaluation model is always a system loss
state. A system loss results if there are unisolated failed instruments in
operation whose outputs, when used to generate the control, cause a mission

failure.

The state transition diagram for a semi-Markov model of the quadraplex
sensor system described above is shown in Figs. 1 and 2. The semi-Markov
modeling technique gives rise to a 24-state model for our quadraplex
example, though in practice some of the states can be aggregated. The
definitions of some of the states in the 24-state semi-Markov evaluation

model include:

State 1. Four instruments working, no failures present, no detection alarms

by SRDTs present. (Designated 4/0/0.)

State 2. Four instruments working, no failures present, SRDT alarm has

occurred, SPRTs in operation. (Designated 4/0/D.)

State 3. Three instruments working, no failures present, one false

isolation, no detection alarms by SRDT present. (Designated 3/FI1/0.)
State 4. Three instruments working, no failures present, one false
isolation, one SRDT alarm present, SPRTs in operation. (Designated

3/F1/0/D.)

State 5. Two instruments working, two false isolations, BITE operating.

(Designated 2/2FI.)

13




For all but three of the remaining states, the state designators are given

below:
6. 4/F/0. 7. 4/F/D.
8. 4/F/P. 9. 4/F/WP.
10. 3/1/0. 11. 3/F/F1/0.

12. 3/F/F1/D. 13. 3/F/F1/P.
14. 3/F/FIswP. 15. 3/1/0/D.

16. 2/1/F1. 17. 3/F/1/0.
18. 3/F/1/P. 19. 3/F/I1/WP.
20. 3/F/1/D. 21.  2/721.

The remaining three states all result in a system loss:

State 22. System loss due to two failures present among four working

instruments.

State 23. System loss due to two failed instruments present among three

working instruments.

State 24. System loss due to one failed instrument present among two working

instruments.

Fig. 1 depicts the "fast" transitions in the model, i.e. those that are not
failure rate dependent. Fig. 2 shows the failure or g¢-dependent transitions,
where € is the failure rate per time step of the instruments and is assumed
to be much smaller than the FDI transition rates. The three system loss

states are indicated in the figures.

In developing the semi-Markov model for this system, the statistics of
central importance are the probability mass functions (pmf) of the decisive
sample number (DSN) for the various sequential tests. (The DSN is the number
of samples following test initiation until the test terminates with a
decision). In general, these pmf’'s are not known exactly and can only be
approximated numerically. One of the earliest numerical ways to approximate
them for the SPRT is described by Bhate (1959). This is based on the
derivation of upper and lower bounds on the pmf value at each value of the

DSN of the test. More recently, a method that lends itself to recursive

14




numerical solutions for these mass functions using standard numerical
quadrature routines was proposed by Walker (1980). For this paper, all of

the DSN pmf’s were evaluated using this method.

OPTIMUM THRESHOLD APPROXIMATION

The primary objective of any fault tolerant system is to maximize the
probability of accomplishing the mission. A suitable performance criterion
that reflects this objective is the minimization of the probability of
occupying the system loss state after a given number of time samples.
Considerations of this nature in developing FDI test thresholds have been
examined in the case of single-sample FDI tests by formulating a Markov
model for generating this probability, as first discussed by Walker and Gai

(1979).

An interesting aspect of using the probability of system loss as the
performance criterion is that the thresholds tend to be chosen such that the
FDI decisions are delayed as long as possible in order to keep the
likelihood of decision errors low. This is clearly reflected in the FDI
thresholds derived for the example considered by Walker and Gai (1979),
which are such that all the FDI decisions are delayed until the last segment
of the mission. Thus, the use of system loss probability as a cost function
takes into account the “"coverage" probability, but reflects nothing about
the performance degradation suffered during the delays until decisions are
reached. Also, the presence of BITE to retrieve instruments falsely isolated
by the FDI logic after the second detected failure has a significant impact
on the coverage probabilities. Since BITE usually has relatively high
probabilities of decision errors, a cost function (such as the system loss
probability) that accounts for the actions of BITE in arriving at the
thresholds for the sequential tests can result in degraded performance for
the system despite minimizing the system loss probability. This is because
the presence of BITE can result in very low threshold values for the
sequential tests, which in turn implies that unfailed instruments are
frequently isolated and then brought back into operation via BITE. Such
frequent switching among the system configurations may be undesirable from a

control point of view because it can lead to instability (Srichander, 1990).
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Another aspect of the threshold determination problem that must be
considered is the tractability of the optim®zation procedure. When Walker
and Gai (1979) considered single-sample FDI tests, the numerical calculation
of the time evolution of a Markovian model was feasible over the desired
mission times. Since the problem addressed here involves sequential tests,
repeated solution of the resulting semi-Markovian models over mission times
of interest is not feasible. Also, as pointed out earlier, the overall
system reliability alone may not reflect the true performance of the fault
tolerant system because it does not reflect the ill effects of decision
delays. This motivates us to examine other cost functions that better
reflect the system performance and yield computationally tractable
optimization problems for threshold determination. Among such cost functions
are those considered in the remainder of this section. They are based upon
examination of first passage time properties and duration statistics for

semi-Markov chains.

First Passage Times

A semi-Markov chain with N states is completely characterized by an embedded
transition probability matrix [pij] and N2 conditional holding time pmfs
h (m) (Howard, 1971). The semi-karkov model can also be completely

ij

characterized by defining the transition mass functions gij(m) defined as,

g (m) =p  h (m) (1)
ij ij ij
The transition mass functions g {m) have the following property:
1]
] N
L Leg,) =1 (2)
n=1 j=1

Equation (2) implies that for fixed i, if we maximize (or minimize) the
cunulative sum of the transition mass function for a particular destination
state j, then the collective sum of the cumulative sums of the transition
mass functions for transitions from state i to all other j is minimized (or
maximized). In other words, we will not be able to maximize (or minimize)
any one of the transition mass functions independently of the others. This
property will be used frequently in deriving the approximate optimal

threshold determination method.
The characterization of the system behavior by the ng(m) allows us to
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generate any statistic of interest from the semi-Markov model. One such
statistic is the pmf fij(n) for the time to first passage from state i to
state j. This is the probability that the first entrance to state j will
occur n time samplec after entering state i, and is given by,
flj(n) = gij(n) + Zl Zlgir(m) frj(n—m) (3)
r= m=

r¥)
with initial condition fij(0)=51j. The cumulative pmf that the first passage

from i to j will require n time samples or less is then given by,
F J(n) = Z

n n N n
= )g (k) + ¥y Y X gir(m) frj(k—m) (4)
k=1 k=1 r=1 m=1
r¥j
The first passage time statistics given by (3) or (4) are indicative of the

length of time required to make a transition from state 1 to state j for a
semi-Markov chain. A cost function based on these statistics is well suited
for our objective, because we would like to minimize the transition time
from certain degraded states to more desirable states in the system state
description. Thus, a cost function based on first passage times can be
representative of the performance degradation for the system during the

mission.

We will now illustrate the use of first passage time statistics to establish
the thresholds for the SRDTs and SPRTs used in the example system described

in the preceding section.

lLet us consider State 6 in our model of the quadraplex system given in the
preceding section. This state represents a degraded mode of system
operation, namely a missed detection at the four-level. We would like to
transition out of this state to a more desirable state as quickly as
possible. Examining the other states in our model, we notice that State 7
represents the case where the SRDT has corrcctly detected the presence of a
failure. Therefore, we would like to minimize the time for first passage
from State 6 to State 7. This can be achieved by maximizing the first

passage time cumulative pmf for some fixed n for States 6 & 7, i.e.

n
Max F__(n) = Max kz f67(k)

n N n
=Max[ ng(l') + I L Leg (mf_ (k- m)] (5)
k= k=1 r=1 m=1
r#+7
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From Fig. 1, we see that the only way of making a transition to State 7 from
State 6 is by a direct transition, which corresponds to detection by the
appropriate SRDT of the previously undetected failure. Therefore, the second
term in brackets in equation (5) contributes only through the term involving
gsﬁ(-). Since the recursion in evaluating the convolution term starts with
f67(0)=0, and noting the relationship among the transition mass functions
given by (2), the cumulative pmf F67(n) can be maximized by optimizing the

cost functicn,
J, = Max Y g _(k) (6)

Because the above cost function represents the probability of an SRDT
detection given the presence of one failure, it is characterized completely
by the SRDT threshold. Therefore, an unconstrained maximization of (6) would
result in an optimal SRDT threshold of zero, and an intolerable number of

false detections would result. This is unacceptable.

A lower bound for the SRDT threshold can be established by considering other
transitions that are influenced by the threshold that are undesirable. For
instance, consider transitions from State 1 to State 2 in the semi-Markov
model of the example system. This transition represents a false failure
decision by the SRDTs, therefore we would like to maximize the first passage
time for this transition. Stated differently, we would like to minimize the

cumulative pmf for first passage from State 1 to State 2. That is,
n
Min F__(n) = Min } f__(k)
12 12
k=1
n n N n
=M1n[ Leg, k) + L L Yg (m frz(k—m)] (7)
k=1 k=1 r=1 m=1
r#¥2
The only way of making a transition from state 1 to State 2 is by a direct

transition. Neglecting gll(') for similar reasons to those used in deriving
(6), (7) reduces to,

n
J,=Min Tg_(K) (8)

2
k=1
An unconstrained minimization of (8) would result in an infinite magnitude

for the SRDT threshold. However, (6) and (8) represent cost functions for
conflicting objectives. In some sense then, the SRDT threshold can be
optimized by defining a performance measure that combines them, such as:
n n
Min 71 = Mln[ ) glz(k) - ¥ g67(k)] (9)
k=1 k=1
The time index n appearing in the cost function is arbitrary and can be
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selected by the designer. Typically, it should approximate the maximum
permissible delay in detecting failures of the mimimum bias magnitude a that

cannot be tolerated. It can also depend on the number of instruments in use.

Proceeding along similar lines and using the dependence among the transition
mass functions defined by (2), we can show easily that when three
instruments are in use, the analogous "optimum" threshold for the SRDT can
be obtained by optimizing the cost function

n n
Min ¥ = Min[ Y g34(k) - ¥ grnzo(k)] (10)
k=1 k=1

In our example system, the SPRTs are in operation once a detection decision
is made by one of tne SkUTs. Since the SPRT is a binary hypothesis test, we
need to establish two thresholds for each SPRT. Let us consider first fixing
the lower threshold A for the SPRT, the crossing of which represents a no

failure decision.

In Fig. 1, State 2 represents the presence of a false detection by one of
the SRDTs. In this case, we would like the SPRTs to arrive at no failure
decisions as quickly as possible so that a desirable transition from State 2
to State 1 occurs. Since we want to minimize the decision delay for this
desirable transition, we try to minimize the time for first passage from
State 2 to State 1. Again, taking into account the dependence among the
transition mass functions for exits from a given state (equation (2)), the
first passage time from State 2 to State 1 can be minimized by optimizing

the cost function,

J3 = Max kgngI(k) (11)
Assuming that the upper threshold B is fixed, (11) can be maximized by
raising the lower threshold A. As before, optimization of the cost function
(11) would lead to a lower SPRT threshold that produced an unacceptable rate
of incorrect no failure decisions. To avoid this, an upper bound for A is
obtaincd Ly considering transitions from State 7 to State 6 at the
four-level stage. This transition occurs when the SPRTs fail to isolate a
faulty instrument. In order to minimize the likelihood of this decision
error, we minimize the cumulative pmf for the first passage time from State

7 to state 6, the general form of which is given by (4). This can be

achieved by optimizing:
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n
= i (1?}
J4 Min K¥1g75(k) (12

The conflicting objectives defined by (11) and (12) can be combined into a

single cost function
n n
Min = Mln[kagn(k) - k};lg?_l(k)] (13)

Minimization ot the cost function (13) for a fixed value of B will give the

optimum lower threshold A for the SPRTs.

Proceeding in an analogous manner, the optimal SPRT upper threshold B at the

four-level stage can be derived by optimizing a cost function
n n
Min F = Min[ e, (- ¥ gmo(k)] (14)
k=1 k=1
Again, the index n is to be picked by the designer depending on the maximum

permissible delay for the minimum intolerable failure bias before an

instrument must be isolated.

Duration

The motivation behind selecting optimal thresholds by the methods described
above i1s to minimize the time spent in degraded modes of system operation
while maximizing the time spent in healthy states. Here, healthy states
imply all unfailed components are in use with no detection decisions by the
sequential tests. By examining the duration statistics for each state, we
will show in this section that the optimization of the cost functions

defined above will in fact achieve these objectives.

Duration of a state is defined as the length of time a state is occupied
following its entrance until a transition occurs to some state other than
itself. The pmf for the duration in state i is given by,
N n
d(n) = % gij(n) + ) gii(m) di(n—m) (15)
j=1 m=1

j#1
with the initial conditions dl(0)=0. The cumulative pmf for the duration in

a state (i.e. the probability that the duration is less than or equal to n

samples) is given by,
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n
D’(n) = 3 di(k)
n= N n n
=Yy 7 gij(n) + ¥ ¥ gii(m) di(n—m) (16)
k=1 j=1 k=1 m=1
JEd
To minimize the probability that the duration exceeds n samples in a cstate

i, we have to maximize the cumulative pmf Di(n) given by (16), and vice
versa. Further, we would like to achieve this by optimizing the threshold
for the sequential test. This in turn implies that the optimization has to
be restricted to those transitions which depend explicitly on the test

threshold being optimized.

Consider State 6 in the evaluation model of the example system. This
represents a degraded state due to the presence of an undetected failure.
Hence, we would like to minimize the duration in this state by selecting the
threshold for the SRDT. Since the transition mass function g67(n) is an
explicit function of the SRDT threshold, we can minimize the probability
that the duration exceeds n samples in State 6 as a function of the SRDT
threshold by defining the cost function as:
n
JS = Min } g67(k) (17)

k=1
The constraint on (17) is the requirement to keep false alarms by the SRDTs

low, which in turn implies the probability that the duration of State 1
exceeds n should be maximized. Combination of these two conflicting

objectives leads to a cost function identical to (9).

We know that first passage time is a measure of the time needed to reach a
given state from another state, while duration measures the time needed to
leave a given state. We infer from this section that optimization of the
performance measures defined earlier minimizes the duration in the degraded
system states, while first passage time considerations guarantee that this
is achieved through desirable transitions in the model. In other words, the
selected thresholds guarantee quick failure detection and isolation while at
the same time reducing to the greatest extent possible the number of false

alarms.
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NUMERICAL RESULTS

The optimum threshold determination technique described above was applied to
the quadraplex redundant sensor system wilh the FDI logic structure
discussed previously. 1t is assumed for the calculations that the FDI logic
operates at a rate of 1 Hz and that the failure rate per time step of each
instrument 1is E=5X10—7 (which corresponds to a mean time to failure of 3556
hours). An upper limit of 25 secs for the SRDTs to detect the minimum
intolerable failure bias magnitude a is also assumed. Identical assumptions
were made for the SPRTs used to isolate the first and second failures. This

results in setting n=25 in the cost functions defined above.

In general, the cost functions developed above are functions of the
component failure rate g€, the minimum failure bias magnitude a, the varlance
¢’ of the residual sequence (rk}, the assumed maximum decisicn delay time
index n, iand the failure detection test thresholds. Assuming that all
rarameters other than the tect thresholds are fixed, the cost functions can
be optimized by a suitable choice of the test thresholds. Interestingly, the
cost functions defined above are all convex in tne thresholds for this
evample, hence they yield unique optimal thresholds. This convexity of the
cost functions cannot be assumed for all problems, but a convex hull can

always be defined because the cost functions always become monotonic as the

threshold approaches its limiting values.

To illustrate the cost convexity for the example system, the cost functions
defined above for the selecting the SRDT and SPRT upper thresholds are
piotted as functions of the test thresholds in Figs. 3 and 4, respectively.
A relatively simple golden section search can be used to find the optimum
thresholds in this case. For the SPRT, since two thresholds must be
determined, a few iterations are required to arrive at the optimal
thresholds A. and B' after an initial guess is made for A and B. In all
cases, the iterations converged to two decimal place accuracy in about 25-30

secs of CPU time on a VAX 6240.

Table 1 shows the cost function values and optirum threshold for the SRDT at
the 4-level stage as a function of the minimum failuie bias a, the noise
level ¢ and the maximum allowable detection time n. Also tabulated are the

average time to detect failures (ATDF) by the SRDTs for the cases examined.
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The ATDF is calculated fronm,

1im

ATDF = - Tk g67(k)/ Y g67(k) (18)

k=1 k=1
Since the gij(k) that appears in (18) has negligible probability mass for

large k, an upper limit of m=100 was sufficient to calculate the ATDF for

the example considered here.

Many interesting conclusions can be drawn from the SRDT results. Note that
as the minimum failure bias level to be detected increases fcr a fixed noise
level ¢, the cost function value approaches the limiting value of one. If,
on the other hand, the failure bias a decreases for fixed o, then the
optimum cost function value drops considerably below one. In fact, the cost
function value can be regarded as a figure of merit for the FDI performance.
A value considerably lower than one for this implies that the FDI scheme is

prone to false alarms.

The ATDF is also a useful performance measure for the test designer. It
indicates the average time delay in detecting a failure by the SRDTs for the
chosen maximum delay time index n. We notice that it approaches the upper

limit n=25 as the figure of merit value decreases.

If the maximum delay time index n is increased from 25 to 50 for identical
values of a and o, the SRDT figure of merit imprecves but at the cost of
increased ATDF. This implies that the FDI scheme can take more time to
arrive at failure decisions, the net effect of which is increased threshold
levels that reduce the number of false decisions. Note the very high value

of the figure of merit in this case.

With the optimum cost function value and the ATDF at hand, the designer can
make the trade-off between false alarm rate and speed of detection in
designing the SRDT. The authors’ experience has been that a cost function
value below 0.9 usually results in an unacceptable false alarm rate {on the
nrder of 107° to 107 per test). Under these circumstances, the designer
must either increase the permissible time to detection or increase the

minimum failure bias level in order to arrive at an acceptable trade-off.

The SPRT cost functions developed above exhibited identical characteristics

when applied to the exampie system and are omitted here for conciseness. We
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point out that at both the 3-level and the 4-level stage, the optimum SPRT
thresholds were found to be A‘=‘3.33 and B‘=4.49 for the case a=0=1.0 and
n=25. We note in passing that for the SPRT at the 4-level, the transition
mass function gmlo(') needs to be used in (18) to define the ATDF. The ATDF

using the threshold values given was 11.79.

Particularlv in the case of the SPRT thresholds just considered, we note
that the threshold level for deciding H 1is considerably higher than the 3¢
level. For the above values of A‘ and B, the per-test error probabilities
for the SPRT are: Pfa=0.011 and Pm=0.035. When Walker and Gai (1979)
minimized the cost function PSL. their threshold produced a miss probability
of Pm=0.999 during most of the mission time. It is clear - pointed out by
Walker and Gai (1979) that the cest function they considered includes no
mechanism for dealing with the elapsed time between the onset and detection
of a failure, which tends to result in thresholds that delay the FDI

decisions until the last subinterval of the mission.

To examine the overall performance of the example fault tolerant system for
the thresholds generated here, the semi-Markov model was used to generate
the state probabilities for a mission length of just over an hour (actually,
4000 secs). From this, the probability of occupying the system loss state at
the end of the mission can be determined. Note that this evaluation is not
necessary to determine the thresholds, as it was for Walker and Gai (1979).
The results are presented in Table 2 under case (1) for various ’hreshold
combinations when a=c=1. In generating the results, it is assumed that the
pmfs are truncated after 100 time steps for computational tractability. It
is also assumed that the BITE which operates on isolated instruments has a
probability of making a false fallure decisiol. on an unfailed instrument per
test (Po) of 0.2 and a probability of a no failure decision on a failed
instrument per test (P1) of 0.4. BITE is assumed to operate at a rate of 0.5
Hz.

We notice that PSL decreases as the threshold levels increase. This reflects
the lack of penalization of an undetected failure that permits delayed
decisions in favor of decreased false alarm rates when PSL is used as the
cost function. Since there is no mechanism to penalize such delayed
decisions, minimization of PSL alone will produce miss probabilities close

to one, as obtained by Walker and Gai (1979). We notice also that the system
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loss probability for the use of 30 as the thresholds is very high relative

to PSL for the optimal thresholds.

To examine the FDI performance in terms of minimizing the duration in the
degraded states, the semi-Markov model described above was modified to
penalize delayed FDI decisions. This was done by adding to the model direct
transitions from all states involving a delayed decision to the system loss
state if the failure is undetected for 25 secs. Thus, a hard upper 1limit of
25 secs 1s enforced for the SRDT and SPRT to reach failure decisinns in the
presence of a failure. The results for this modified system model are
tabulated as case (2) in Table 2. All numerical parameters were the same as
the previous case. Here, it 1s assumed that P0=O.2 and P1=O.3. For this
case, we notice that as the threshold level increases, the system loss
probability PSL increases, which is contrary to the results in case (1)
examined above. We alsoc notice that the system loss probability values are
substantially larger (by 2 orders of magnitude) than the previous results,

reflecting a heavy penalty for delayed FDI decisions.

CONCLUDING REMARKS

From the results for the two models presented in Table 2, it is clear that a
cost function that uses PSL alone as the criterion for deriving optimum test
thresholds does not reflect the performance degradation suffered during the
mission due to delays in detecting failures. This is because penalization of
undetected failures is difficult to include in such cost functions. Also, it
took nearly 6 hours CPU time on a VAX 6240 to calculate PSL for each case
examined above. For longer mission lengths, or in cases where the FDI logic
operates at a faster rate, it is clearly nct feasible to repeatedly solve
the semi-Markov model numerically to examine the state probability behavior
as thresholds are varied. Instead, use of simpler cost functions based on a
few key transitions, as wac Jone here, yields approximately optimal

thresholds by relatively simple computations.

It can be easily verified that the ASN for the various cases examined in
Table 1 are widely different, even though the ATDFs are fairly close to each
other. Therefore, ASN information on the individual tests is not necessarily

meaningful for selecting the thresholds.
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Notice also that the construction of the complete semi-Markov mcdel for the
fault tolerant system is not necessary to construct the cost functions
considered here. The designer nceds to derive only the transition mass

functions appearing in the cost in order to derive the optimum thresholds.

The technique presented in this paper solves the problem of optimum
threshold selection for sequential FDI tests in a computationally efficient
way. The cost functions to be optimized are relatively easy to develop and
do not require the complete construction of the semi-Markov system
reliability model. Accounting for time varying noise statistics is
relatively simple. Also, the overall fault tolerant system performance is
closely correlated with the figure of merit and ATDF for the selected
thresholds.
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No. n i B1 ¥, ATDF
1 25 0.8 1.0 6.32 0.8287 15.53
2 25 1.0 1.0 6.21 0.9344 12.77
3 25 1.2 1.0 6.18 0. 9809 10. 90
1 25 1.0 1.2 7.56 0.8517 14.99
5 25 1.0 0.8 4.94 0.9586 10.50
6 25 0.8 1.2 7.78 0.7093 18.22
7 50 1.0 1.0 8.59 0.9967 17.55

Table 2 Comparison of system loss probabilities
case B1 A B PSl
1 3.0 -3.0 3.0 0.51982x107°
1 5.0 ~3.67 4.83 0.11508x10™*
1 6.2 -3.67 4.83 0.22663x10™°
1 6.6 -3.67 4.83 0.14447x10°°
1" 6.2 ~3.33 4.49 0.24947x107°
2 5.0 -3.67 4.83 0.67409x10™°
2 6.2 -3.67 4.83 0.78355x107°
2 6.6 -3.67 4.83 0.85756x10™>
2" 6.2 -3.33 4.49 0.69485x10™°

(I 1

* designates the use of optimal

thresholds for this case
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Fig. 1
model.
Fig. 2
model.
Fig. 3
Fig. 4

Captions for Figures

FDI rate dependent state transition diagram for

Failure rate dependent state transition diagram for

SRDT threshold versus cost function value.

SPRT upper threshold versus cost function value.
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2.2 Stochastic Stability Tests for FTCS

One of the key issues in FTCS analysis is the determination of the stability

of the system, particularly when the system uses feedback control that is
reconfigured in response to the FDI decisions Only recently have the

results of stochastic stability analysis been applied to FTCS. To date,
thiese results were restricted to FTICS for which the FDI decisions are always
correct, though possibly delayed by either one time sample or by a random
nunber of time samples [11,12). Our stability results, which are reported
in the manuscript that follows, are not restricted to this case.
Furthermore, for the special case of LTI FTCS with linear state feedback
control, we derive necessary and sufficient conditions for a relatively
strong form of stochastic stability, whereas all of the conditions that have

been derived previously are only sufficient.
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ABSTRACT

Active fault tolerant control systems are feedback control systems that
reconfigure the control law in real time based on the response from an
automatic tailure detection and identification (FDI) scheme. The dynamic
behavior of such systems 1s characterized by stochastic differential
equations because of the random nature of the failure events and the FDI
decisions. The stability analysis of these systems is addressed in this
paper using stochastic Lyapunov functions and supermartingale theorems. Both
exponential stability in the mean square and almost sure asymptotic
stability in probability are addressed. In particular, for linear systems
where the coefficients of the closed loop system dynamics are functions of
two random processes with Markovian transition characteristics (one
representing the random failures and the other representing the FDI decision
behavior), necessary and sufficient conditions for exponential stability in

the mean square are developed.
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1. INTRODUCTION

Fault tolerant control systems have been developed in order to achieve
high levels of reliability and performance in situations where the
controlled system can have potentially damaging effects on the environment
when failures of its components take place. For instance, in hazardous
chemical and nuclear plants, the consequences of an improper control action
following a contrul system component faillure can be disastrous. In fighter
aircraft, the desire for increased maneuverability and performance has led
to relaxation of the static stability requirements. The failure of a flight
control element in such cases can result in an unstable aircraft if the
system design does not properly account for it. In the case of manned spuace
systems, safety 1s the greatest priority, which implies that even in the
presence of failed components the spacecraft must be able to return safely
to its base. Other high performance automatic system applications where
reliability is of prime importance include alir traffic control systems,
computerized banking systems and automatic mecical monitoring systems.

A fault tolerant control system is designed !r retain some porticn ot
its control integrity in the event of a specifiec set of possible component
failures or large changes in the system operating conditions that resemble
these failures. Fault tolerant control system designs can be broadly
classified into two categories: passive designs and active designs. Each
will be described below.

A passive fault tolerant control system can tolerate one or more
component failures while satisfactorily accomplishing its mission without
reconfiguring itself. Among sensing systems, for instance, the passive fault
tolerant design category includes those systems that incorporate a mid-value
measurement selection strategy {(Potter and Suman 1986) or an averaging
strategy for generating the outputs of redundant sensors. Various degrees of
passive fault tolerance can also be achleved through such techniques as
robust control design (where "robust" refers here to insensitivity to the
effects of failures) or simultanecus actuation by parallel controllers
{Petkovski 1987, Vidyasagar and Vishwanadham 1985, Yedavalli 1985).

Active fault tolerance, on the other hand, involves automatically
detecting and identifying the failed components (Patton et al. 1989, Walker
1983, Willsky 1976, Willsky and Jones 1976) and then reconfiguring the

control law on-line in response to these decisions. Several examplec of




active fault tolerant control system designs have appeared in the literature
recently, primarily for reconfigurable control of tactical aircraft
(Caglayan ¢t al. 1987, Howell et al. 1983, Looze et al. 1984, Il.ooze et al.
1985, Moerder et al. 1989).

In this paper, we will be concerned with control systems that have
automatic failure monitoring capability in order to reorganize or
reconfigure the control law in real time in response to failure indications.
In other words, we will consider the behavior of active fault tolerant
control systems. In particular, we will consider tihe closed loop stability
of active fault tolerant control systems when the random events that affect
th.se systems, namely component failures and failure detection decisions,
are taken into account.

The dynamic behavior of active fault tolerant control systems is
governed by stochastic differential equations because the failures and
failure deiection decisions occur randomly. Stochastic differential
¢juations arise in a variety of problems of practical interest. In
structural engineering, for instance, the study of the dynamic stability of
elastic structural and mechanical systems subjected to randomly fluctuating
loads generate these equations. Tn communications engineering, tracking
noisc in a radar system leads to Ita differential equations describing the
dynamics of a moving target. For the control engineer, random perturbations
acting on the controlled process generate equations of the It8 type
describing the dynamic behavior of the system. The study of the
scattering phenomenon in random media and other chemical and biological
problems also generate governing equations with stochastic coefficients. Many
other examples of stochastic differential equations in engineering systems can
be cited.

In this paper, the stability analysis of active fault tolerant control
systems leads to the study of differential equations with randomly varying
parameters. Using techniques from the theory of stochastic differential
equations, the stability analysis of these systems will be presented here.
The synthesis of fault tolerant control laws for these systems is another
important issue. This will be discussed in a companion paper (Srichander and
Walker, 1990).

As pointed out above, the udynamical behavior of fault tolerant control
systems is governed by stochastic differential equations. Of primary

intcrest in this paper is the stability of the solutions to these stochastic
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differential equations. Several authors have examined the stability of
solutions to general s'ochastic differential equations (Bertram and
Sarachick 1959, Bucy 1965, Kats and Krasovskii 1960, Khasminskii 1967,
Khasminskii 1980, Kozin 1969, Kozin 1972, Kushner 1967, Kushner 1971).
Existing stability results can be broadly characterized as applying to two
categories of stochastic differential equations. One category is stochastic
differential equations perturbed by Gaussian white noise (Ita differential
equations}. The other is stochastic differential equations whose
coefficients vary randomly with Markovian characteristics. Of these
categories, the advances in the study of stability of solutions to Ita
differential equations have been more significant. This is true primarily
because the solutions to Ito differential equations are Markov diffusion
processes, which can be constructed using a Picard iteration technique to
solve the associated stochastic integral equation. For a rigorous analysis
of the existence, uniqueness, and behavior of the solutions to Ita
differential equations, we refer the reader to (Khasminskii 1962,
Khasminskii 1967, Khasminskii 1980, Nevelson 1966).

For differential equations with random Markovian coefficients,
significant results were obtained by Bucy (1965), Kats and Krasovskii
{1960), and Kushner (1967). In the work of Kats and Krasovskii (1960), the
stability of the moments of the solution process is investigated in detail
using a stochastic Lyapunov function approach. Kushner (1967, 1972) and Bucy
(1965) employ the supermartingale property of stochastic Lyapunov functions
to study the stability of the sample paths of the solutions. This is very
significant in practical problems of interest because, for a real system in
operation, we will observe only a single sample solution. Hence, the
stability results of the most practical importance are those that guarantee
the stability of every sample solution of the stochastic system, as opposed
to results on the stability of the moments of the sample solutions.

The stochastic description of fault tolerant control system behavior
studied in this paper differs from the stochastic systems investigated in
the literature cited above. For the systems considered here, the random
variations occurring in the system description are modeled as failures with
Markovian transition characteristics, and this leads to a stochastic
differential equation description of standard form. However, there is an
additional random process that induces random variations in the control law,

and therefore further affects the system description. This additional random
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process is the failure detection and identification (FDI) process, which
changes the system description through the control reconfiguration strategy.

For linear fault tolerant control systems with instantaneous deter tion
of the transitions of the failure process by the FDI process assumed, the
minimization of a quadratic cost function leads to the jump linear quadratic
regulator (JLQR) formulation investigated by Wonham (1971) and Sworder
(1969). The instantaneous detection assumption is very restrictive, however,
and renders these results invalid for many fault tolerant systems of
practical interest.

More recently, the stability of active fault tolerant linear control
systems with possible detection delays was investigated by Mariton (1989)
under the assumption of identical state spaces for the failure process and
the FDI process. The probability of false alarms is also accounted for
in deriving these stability results. Mariton uses quadratic stochastic
Lyapunov function candidates to derive sufficient conditions for exponential
stability in the mean square of the closed loop system. However, in deriving
these results, Mariton (1989) assumes that a correct feilure diagnosis is
always made following a failure subject only to a random time delay. This
assumption is too restrictive for many problems of practical interest where
incorrect failure diagnosis is common due to the noisy signal environment.
Furthermore, because the conditions derived by Mariton (1989) are sufficient
and not necessary, they are inadequate to reach useful stability conclusions
when they are violated.

The JLQR problem has been reexamined recently by Ji and Chizeck (1990)
in the context of deriving stochastic controllability and stabilizability
conditions. In particular, necessary and sufficient conditions for
the stabilizability of the Markovian JLQR problem have been derived (though
these conditions are difficult to check in practice). As in most of the
analyses cited above, however, the restrictive assumption of instantaneous
failure detection is assumed in deriving these results.

The inadequacy of the existing results in characterizing the stability
of active fault tolerant control systems is the primary motivation behind
this paper. Specifically, we will investigate in this paper cases where
the FDI decision process is random with Markovian characteristics, such as
when memoryless FDI tests are used on measurement data corrupted by additive
white noise. In particular, necessary and sufficient conditions for the

stochastic stability of linear fault tolerant control systems under these
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conditions will be derived. These results are derived without the
restrictive assumption of identical state spaces for the FDI and failure
processes and without the restrictive assumption of instantaneous failure
detection, thereby making them applicable to many practical fault tolerant
control systems. The basic tools for the stability analysis will be
stochastic Lyapunov functions (Kushner 1967) and supermartingale theorems
(Doob 1956).

The paper is organized as follows: Section 2 discusses the mathematical
formulation of the active fault tolerant control problem for continuous time
systems. A brief description of the assumptions regarding the FDI process
and the notation used in this paper are also given. In section 3, we will
present some useful results on supermartingales and define the notion of
stochastic stability. Conditions for the stochastic stability of the general
dynamic system defined in section 2 are derived in section 4. These results
are applied in section S to derive necessary and sufficient conditions for
the exponential stability in mean square of a linear stochastic dynamic
system of the form that fault tolerant control systems take when the failure
and FDI processes are Markovian. Section 5 also shows that the JLQR results
of (Wonham, 1971) follow as a special case of our results, and that almost
sure asymptotic stability in probability is guaranteed when the conditions
for exponential stability in mean square are satisfied. Conclusions are then
given in section 6.

The results of this paper allow us to unambiguously determine the
stochastic stability of active fault tolerant systems with Markovian failure
and FDI characteristics, including some of the reconfigurable control
strategies that have been presented in the literature. Under certain
conditions, these reconfigurable control laws can lead to a closed loop
system that does not possess stochastic stability despite the fact that the
reconfiguration law always leads to a deterministically stable feedback
system. This will be illustrated in the companion paper (Srichander and

Walker, 1990) using a numerical example.

2. PROBLEM FORMULATION

In designing active fault tolerant control systems, we are interested in
monitoring the random variations that occur in the system description due to
random failures in order to change the control accordingly. In practice,

these random variations are not directly measurable but rather can only be
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monitored by an FDI scheme, which is subject to errors and delays. Let r(t)
denote the state of the FDI process which monitors the state np(t) of the
random process describing the failures. The process r(t) is a finite state
stochastic process whose random behavior is conditioned on the failure
process state n(t). We are interested in designing a control law to generate
the system input u(t), such that the control law is a function only of the
FDI process state r{t) and the system states x(t), and such that the

solution x=0 for the dynamical system,

x(t) = f(x(t),n(t),ulx(t), r(t),t),t) (2.1)

is stable Vtzto. (We assume here without loss of generality that x=0 is a
solution to (2.1)). Note that we do not allow the control to be a function
of the actual failure process state 7n(t).

In the discussion to follow, we assume that 7n(t) and r(t) are separable
measurable Markov processes (Doob 1956) with finite state spaces 2Z={1,...,v}
and S={1,...,7%}, respectively. Thus, the system description depends upon
the true failure state 7n(t) while the input that is applied to the plant
depends upon the control law used in response to the indication by the FDI
process that the system state is r(t). In real systems, it is often true
that r{t)#n(t), and this will be the starting point for much of the analysis
that follows. The stability analysis in section 4 will pertain mostly to the
general nonlinear stochastic dynamical system described by (2.1). Later in
our stability analysis, we will consider a special case of the system (2.1)

whose state space description is of the linear form,

x(t) = Ax(t) + B(n(t))u(x(t),r(t)) (2.2)

where, u(x(t),r{t))=-K(r(t))x(t). Equation (2.2) will be referred to as the
linear plant model in this paper.

Note that both descriptions above restrict the effects of the random
variations due to failures to the input matrix B. This restriction is only
for convenience and the nature of the results remains the same when the
plant matrix is also subject to random variations.

For notational simplicity, we will denote B(n(c))=Bk when n(t)=keZ and

u(X(t),r(t),t)=ul when r(t)=ieS wherever appropriate. We also denote x(t)=x,
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r(t)=r, and n(t)=n wherever no confusion arises regarding the time
dependence of these quantities. We shall assume that the pairs (A,Bk) in
(2.2) are controllable for each keZ. This assumption implies that the given
system has redundant control elements, which is a generic property of any
fault tolerant system architecture.

The following notations will also be used in the sequel. |x| will
denote the L° norm, i.e. "x"=(xf + xz ...+ x:)1/2 where X, are the
components of xeR". When t=t0, the initial conditions will be denoted by
x(t0)=xo, r(to)= Ty n(to)= - The inner product of two vectors will be

denoted by <+, *>. The notation o(At) will denote infinitesimal terms of
1im  o(At)
At-0 At
definite matrix N will be denoted by N>0 and a positive semi-definite matrix

order strictly higher than one in At (i.e.

=0). A positive

by Nz0. We will call a mxn matrix A bounded if there exists a positive
constant B such that |Ax|=8|x| vxeR", x20.
We further assume that f(x,m,u(x,r,t),t) in (2.1) is a

Borel-measurable function of (x,r,m) satisfying the following conditions.

1. There exists a constant L such that if x’ and x’’ are any two solutions
of (2.1) with |x’||, |x’|<R, then,
| f(x’ . moulx,r, t), t)-f(x",n,ulx,r,t),t)| = L|x""-x’| (2.3)

In (2.3), L is referred to as the global Lipschitz constant in x.

2. The function f(x,n,ul(x,r,t),t) satisfies,
f(0,n,ulx,r,t),t) = 0, VreS, vneZ, and Vtzt0 (2.4)

Under these conditions, the solution x(t)=x(t;xo,ro,no,to) of (2.1) is
almost surely unique and is an absolutely continuous stochastic process.
(This can be seen following arguments in Khasminskii (1980)). Note that the
linear system (2.2) is a special case of f(-) satisfying these conditions.
Further, it can be easily shown that the joint process {x,r,n} whose
realizations satisfy (2.1) is a (n+2)-dimensional Markov process. To see
this, let us consider the interval tOSSst. Then, x(t) is determined uniquely
by x(s) and by m(t) and r(t) for s=t=<t. Under the assumption that n(t) and

r(t) are Markov processes, it follows that n(t) and r(z) for Tzs are
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independent of 7m(t’) and r(t’), t’<s when conditioned on 7m(s) and r(s).
Hence, {x(t),r(t),n(t)} is independent of the random variables
{x(t’),r(t"),n(t’)}, T’<s, when conditioned on {x(s),r(s),n(s)}, which
establishes the Markov property of {x,r,7n}.

In the analysis thao Tollowe, we will denote tix,n,ulx,r,t),t)=
f{x,r,n,t). We will now proceed to describe briefly the FDI process which

monitors the random variations.

2.1 FDI Process

An FDI scheme is essentially an approach to a stochastic hypothesis
testing problem. This hypothesis testing can be implemented using single
sample tests, moving window tests or sequential tests. In single sample
tests, the information used for the FDI tests is gathered, processed, and
discarded at each time sample. In such cases, if the noise statistics on the
information are white, then the FDI processing is memoryless, i.e. the
future outcomes of the FDI tests are independent of the past and present
outcomes if 7m(t) and r(t) remain fixed. Under these conditions, Markov
models can be used to characterize the transition behavior of the state of
the FDI process conditioned on the failure status of the components.

Any hypothesis testing algorithm has error probabilities associated
with its decisions (Van Trees 1968). As a result, the FDI process state r(t)
(which is intended by design to follow the failure process state 7) will
deviate from m(t) in the presence of false decisions and detection delays.
Let us assume now that n(t) is homogeneous. Since r(t) is a Markov process
when conditioned on 7n(t) for single sample FDI tests acting on signals with
additive white noise, the conditional probability ptj(At) that the r(t)
process will jump from state i to state j, i, jeS, in an infinitesimal time

interval of length At given that m=keZ is,

pl:j(At) = q‘;j At + o(At) (i%3) (2.5)

Here, qtj represents the transition rate from i to j for the Markov process
r(t) conditioned on n=keZ. Depending on the values of i, jeS and keZ, various
interpretations, such as rate of false detection and isolation, rate of
correct detection and isolation, false alarm recovery rate, etc., can be

. k
given to qu
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For the failure process n{t), the transition probability from state i

to state j, i, jeZ, in the infinitesimal interval At is given by,
piJ(At) = alj At + o(At) (2.6)

where «  are the transition rates of the homogeneous Markov process 7n(t).

In our case, the alj are related directly to the component fajilure rates.

3. DEFINITIONS

In this section, we will summarize some of the results on
supermartingales that are relevant for our purposes. Also, we will present
some definitions on stochastic stability and introduce the weak
infinitesimal operator that is required in the analysis to follow. The
material in this section is mostly drawn from Doob (1956), Kushner (1967)
and Khasminskii (1980). In the discussion to follow, &£(t,w)=£(t) will denote
a random process defined on the probability space (Q,U,P) which is
Nt-measurable for every tzto. Here, Nth denotes a family of c-algebras of
events in  defined for every tzto. Further, B will denote the o-algebra of
Borel subsets on a closed interval [to,t1]=7.

To begin, we will formally define a Markov process and the strong
Markov property. The stochastic process g(t,w)eml will be called a Markov

process if for AeB, rzto, and t=0

P{g(r+t,w)eA|NT} = P{g(r+t,w)eA‘€(t,w)} (3.1)

with probability one. Here, NT is the o-algebra of events generated by all
events of the form {€(u,w)eA}, ust and AeB. If the above equality holds for
any Markov time (Kushner 1967) t, then £(t,w) will be called a strong Markov
process.

Let us again consider the stochastic process €(t,w)=£(t) which is
Nt—measurable Vtzto. Let £(t) have finite expectation E{£(t)}<w Vtzto. Then
the family {S(t),Nt} is called a supermartingale if for s<t, the feollowing
inequality holds with probability one:
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E(€(L)|¥_} = &(s) (3.2

If in (3.2), &(t)>(=) O Vtzto, then £(t) is called a positive (nonnegative)

Zaplimalr Lingaie.

Theorem 3.1 (Doob 1956): If {E(t),Nt}, tzto, is a positive supermartingale,

then the limit € = '™
Iim ® ke

E{gm} = e E{€(t)}.

€(t) almost surely exists and is finite. Further,

Theorem 3.2 (Doob 1956): If {E(t),Nt}, tzto, is a non-negative

supermartingale, then for any A>0,

P{ sup E(t)z?\} < E{€(0)} (3.3)

0=t=c A

The motivation for considering supermartingales here is that stochastic
Lyapunov function candidates under certain conditions possess the
supermartingale property. Hence, supermartingale theorems can be used to our
advantage to study the stability of systems governed by stochastic
differential equations. In the discussion to follow, N; will denote the
o-algebra generated by the time history up to time t by any random process
under consideration.

We will now present some definitions that are required in the analysis

to follow.

Definition 3.1: The solution x=0 of system (2.1) is said to be almost surely

stable in probability if for any roeS, nOeZ, €>0 and p>0, there exists a

6(§O,£,p)>0 such that if uxo“<6(§0,s,p) we have,

sup > <
P{05t<m % () -e} =p (3.4)

Defini*ion 3.2: The solution x=0 of system (2.1) is said to be almost surely
asymptotically stable in probability it it is almost surely stable in

probability and x(t)-»0 with probability one as t-ww.
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Definition 3.3: The solution x=0 of system (2.1) is said to be exponentially
stable in the mean square if, for any rOeS, ner and some 6(r0,no)>0 there
exist two numbers a>0 and b>0 such that when "xonsa(ro,no), the following

inequality holds for all solutions of (2.1) Vtzto with initial condition X

el 101} = vl | exp[-aet,)] @.5)

Definition 3.4: A bounded function f(£€) is said to be in the domain of the

weak infinitesimal operator £ of the random process £(t) if the limit

E{£(£(t+1))|E€(1)) - £(E(1))

lim

30 = = 2f(§) = h(§) (3.6)
exists pointwise in R and satisfies,
l;g E{h(£(t+1))|E(t)} = h(E(L)) (3.7)

If we generalize Definition 3.4 to time varying functions f(&,t), then we

have

er(g,t) = 2

|

5 f(g,t) + h(g,t) (3.8)

o1}

In general, #f(£) is interpreted as the average time rate of change of the

process f(€) at time t given that &(t)=£.

Definition 3.5: Let £(t) be a right continuous strong Markov process and T a
random time with E{t}<x. If the bounded function f(£) is in the domain of ¢

with £f(€)=h(£), then

T
E(£(E(0)|€)-1(5,) = E{[ h(£(s))as|€(0))
[o]
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T
- E(J 2£(€(s))ds[£(0)) (3.9a)
(o]

For time-varying functions, we have for every fixed s<t

T
E{f(§(7),T)|&(s)}-f(E(s),s) = E(J (g{ f(§(s),s)+h(€(s),s)]ds|€(s))

T
= E{J 2£(€(s), s)ds |£(s)) (3. 9b)

Since £(t) is a Markov process, there is no loss of generality when equation
(3.9b) is conditioned on the o-field Ns induced by the process £(s). We
shall assume this in our later analysis.

Fruation (3.9) is referred to as Dynkin's formula. In our analysis, all
Markov processes under consideration will be assumed to be ctrongly
Markovian (a valid assumption for the case of Markov processes studied as
models of physical processes) (Kushner 1967). We will now proceed to derive

conditions for stochastic stability of the solution x=0 for (2.1).

4. STOCHASTIC STABILITY

In this section, we will derive conditions for almost sure asymptotic
stability in probability and conditions for exponential stability in the
mean square (ESMS) of the solution x=0 of the stochastic dynamical system
(2.1). The tools for stability analysis will be stochastic Lyapunov
functions and supermartingale theorems. In simple terms, a stochastic
Lyapunov function is a suitable function of the state of the random
differential equation that possesses the supermartingale property. From the
existence of such functions, the asymptotic and finite time properties of
the random trajectories of the stochastic differential equations can be
inferred. We will now define the notion of a stochastic Lyapunov function
candidate (Kats and Krasovskil 1960, Kushner 1967) and derive conditions for
it to possess the supermartingale property.

Let us consider the function V(x,r,m,t) of the joint Markov process
{x,r,n}. For fixed m<w, let the following conditions hold:

(a) The function V(x,r,m,t) is positive definite and continuous in x and t
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in the open set O ={x(t):V(x,r,m,t)<m} VreS, vneZ and Vtzto, and

m
Vix,r,m, t)=0 only if x=0. (The function V(x,r,n,t) is said to be
positive definite if V(x,r,m, t)=W(x)} VreS, VneZ and Vtzto, where W(x) is

positive definite in the sense of Lyapunov)

-~
o
o

The joinl Markov process {x,r,7n} is defined until at least some
T =inf{t:x(t)e0 } (or, Vt<w if x(t)e0 for t<w). If x(t)e0 Vit<w, then
m m m m
T =c0.
m
(c) The function V{(x,r,m,t) is in the domain of £ where ¥ is the weak
infinitesimal operator of the joint Markov process (x(rt),r(rt), n(rt)),
where T =min(t,t ).
t m
A function V(x,r,m,t) that satisfies the above conditions will be said
to qualify as a stochastic Lyapunov function candidate for (2.1). We will

now prove the following lemma that establishes the supermartingale property

of the function V(x(tt),r(rt),n(rt),rt)

Lemma 4.1: Let the random function V(x,r,m,t) satisfy assumptions (a)-(c)

above and let erO . Further, let #V(x,r,m,t)=0 in the open set O . Then
m m

V(X(Tt)’r(Tt)’n(rt)’Tt) is a positive supermartingale.

Proof:

Applying Dynkin’s formula we have,

E(V(x(rt),r(rt),n(rt),rt)lﬂs)—V(x(s),r(s),n(s),s)

T

t
= E{J i’V(x(r),r(‘t),n(r),r)drlfvs} =0 (t055<-ct) (4.1)

In (4.1), Ns is the o-algebra generated by the process {x,r,n} up to time s.
From (4.1), it follows that

E(V(x(rt),r(rt),n(rt),rt)|Ns)sV(x(s),r(s),n(s),s)<m (s<1t) (4.2)

From the above equation and the positive definiteness of V(x,r,n,t), we see
that V(x(rt),r(rt),n(rt),tt) is a positive supermartingale of the stopped

process {x(rt),r(Tt).n(Tt))
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The conditions for stochastic stability of the solution x=0 of the

system (2.1) will now be derived using the above result.

4.1 Conditions for Stability in Probability
The following theorem gives sufficient conditions for almost sure

stability in probability for the solution x=0 of the system (2.1).

Theorem 4.1: Let us assume that conditions (a)-(c) given above hold.
Further, let £V(x,r,m,t)=0 in the open set 0m for reS and nmeZ for {2.1).

Then the solution x=0 of (2.1) is almost surely stable in probability.

Proof:
From Lemma 4.1, it follows that for xonm, V(X(TL),T(Tt),n(Tt),Tt) is a
positive supermartingale. Here, Tt=min(t,rm), where Tm is the first exit
time of x(t) from Om. Consider the sequence of Markov times {Tm} as m-o.
Then, it is easy to see that T defines a non-decreasing sequence of Markov
times such that T 0 with probability one as msw. (The proof follows
immediately from Theorem 3.2).

Further, from Theorem 3.1 the following limit almost surely exists and

is finite:

lim _

T o V(X(Tt)’r(Tt)’n(Tt)’Tt) =V <o (4.3)

It follows from (4.3) that V(x,r,n,t) is bounded Vtzto. From this and for

xon , it can be shown that V(x,r,m,t) is a positive supermartingale. Hence,
m

from Theorem 3.2, we have for any &’>0,

V(xo, ro My to)

sup !
P{05t<m V(x,r,7n, t)ze } = =7 (4.4)

Under the assumptions (a)-(c) on V(x,r,7n,t), it follows that V(x,r,mn, t)-0 as
x->0. Hence, for a suitable choice of xon , we have for any rOeS, noez, c’'>0
m

and p>0,
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sup ’
P{osc<w Vix,r,n, t)ze } <= p (4.5)

Further, from the positive definiteness of V(x,r,m,t), it follows that there
exists a function W(x) which is positive definite in the sense of Lyapunov

such that,
Vix,r,m t) 2 Wix) = «fx(t)] (a>0) {(4.6)

F-om the above equation, we can see easily that for e=(g’/«a)>0,

P{oirim ”x(t)”ze} =p (4.7)

Hence, the proof 1s complete.

For the class of functions V(x,r,7n,t)=V of the joint Markov process
{x,r,n} satisfying the assumptions (a)-(c) above, the weak infinitesimal
operator ¥ of the process {x,r,n} for the system (2.1) at the point
{x,r=1,7m=k, t} is given by,

_av : av K . _ :
BV = g H E k) 2>+ oq VG Gk 8-V 1 K t)]
jEs
j#i
+ ¥ o« [V(x 1,3, t)-V(x, i,k,t)] (4.8)
kj
jEZ
j*k

Recall that in the above equation, akj, k, jeZ are the transition rates
of the m(t) process from state n=k to state n=]j and q?j, keZ and jeS, are
the conditional transition rates of the FDI process state from r=i to r=j
(conditioned on m=k), which were defined in chapter 2. The first term in
(4.8) occurs due to incremental changes in the function V(x,r,n,t) when x, r
and n are constant. The second term in (4.8) is the increment in the
Lyapunov function due to changes in x in an infinitesimal interval when r
and 7 are fixed. The third term in (4.8) is the change in the stochastic
Lyapunov function in an infinitesimal interval when r(t) transitions from

state i to j, (i, jeS;) given that n=keZ2. The last term in (4.8) is due to the
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incremental changes in the stochastic Lyapunov function when 7n(t)
transitions from the state k to j, (k, je2).
The following theorem gives sufficient conditions for almost sure

asymptotic stability in probability.

Theorem 4.2: Assume conditions (a)-(c) given above hold. Further, let
$V(x,r,m, t)=-K(x,r,7m,t)<0 in the open set Om for (2.1) when reS and neZz,
where K(x,r,n, t)>0 and continuous in X Vtzto, and K(x,r,n,t)=0 only if x=0.
Then the solution x=0 of (2.1) is almost surely asymptotically stable in

probability.

Proof:

Under the conditions stated above, the solution x=0 of (2.1) is almost
surely stable in probability (follows from Theorem 4.1). Also, we know that
Vix,r,m,t) is a positive supermartingale. From the inequality (4.2) and the
positive definiteness of V(x,r,n,t) (and hence non-negativity of the
conditional expectation), it follows that the left hand side of (4.1) is
bounded Vrtzto. Now, let us denote the total time spent in the set
{x:K(x,r,n,t)2€>O}nOm during the interval [t,rm) by T(t,e). Then, for T =
it follows from (4.1) that

u>V(xO,r0,nO,to)ZE{J K(x(s),r(s),n(s),s)ds[NS}zeE{T(t,e)} (4.9)
t

The above equation implies that T(t,c)<wo with probability one, and hence, as
too in (4.9), T(t,e)->0 with probability one. In other words, K(x,r,m,t)»0 cs
t>o with probability one. Since K(x,r,n,t) is continuous in x Vtzto, this

implies that x(t)-»0 as t-w with probability one. This completes the proof.

4.2 Conditions for Exponential Stability

In this section, we will derive necessary and sufficient conditions for
exponential stability in the mean square (in the sense of Definition 3.3)
for the general dynamic system given by (2.1). We point out that using these
conditions, it is difficult to verify the exponential stability in the mean
square of a general stochastic dynamic system of the form (2.1). However, if

we consider the linear plenat model (2.2), then it is easy to verify whether
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th» system is stable in the sense of Definition 3.3 ¢r not. We will examine
this particular case in section 5.
The following theorem gives a sufficient condition for exponential

stability in the mean square sense for the system (2.1).

Theorem 4.3: The solution x=0 of the system (2.1) is exponentially stable in
the mean square for tzt0 if there exists a function V(x,r,m,t) satisfying

the conditions (a)-(c)} in section 4 such that,

k [x(0)]% = Vo, r,mt) = k [x(0)]° (4.10)

and  £V(x,r,m,t) = ~k_|x(t)]? (4.11)
for some positive constants k1’ k2 and kj

Proof:

It can be shown that the condition (4.11) is sufficient to ensure
V(x(rt),r(rt),n(rt),rt) is a positive supermartingale. This implies that the
limit (4.3) exists and hence, V(x,r,m,t) has finite expectation Vtzto.
Applying Dynkin’s formula to the bounded function V{(x,r,n,t) of the Markov

process {x,r,m}, we have for any t<w

E(V(x,r,m, t) %, rom} - V(X Ty s ty)

t
= E(J $V(x,r,n,t)ds|x0,ro,n } (4.12)
t

0

0

Taking expectations on both sides of equation (4.12) and differentiating

with respect to t, we obtain

%EE(V(x,r,n,t)} = E{¢V(x,r,n, t)} (4.13)

Taking the expectations of the inequalities (4.10) and (4.11) and
substituting on the right hand side of (4.13), we have
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k
d
afE{V(x,r,n,t)) = - —Ei E{V(x,r,n,t)} (4.14)

Integrating both sides of (4.14) with respect to t, we obtain the inequality

k
E{V(x,r,m,t)} = V(xo,ro,no,O) exp[— Ei t] (4.15)

Again, taking the expectation of (4.10) and substituting for E{V(x,r,n, t)},

we get the relation

b

k
EJx(0) % = 2 x| eXp[- i t], tat (4.16)
1 2

The proof is complete.
A necessary condition for exponential stability in the mean square for

(2.1) is given by the following theorem:

Theorem 4.4: If the solution x=0 of the system (2.1) is exponentially stable
in the mean square, then there exists a function Vi(x,r,n,t) VreS and VYne2
that is continuous Vtzto and satisfies conditions (4.10) and (4.11) for some

positive constants k1’ k2 and ky

Proof:

Let us define the function V(x,r.m,t) as

t+T
Vi, T, t) = j E{|x(x)|%}dx (4.17)
t

We shall show that (4.17) satisfies all the conditions of the theorem for a
suitable choice of T. If the solution x=0 of (2.1) is exponentially stable
in the mean square, it follows from Definition 3.3 that for some «>0 and

B>0,

E(Mx(r)nz) = ocﬂx(t)”2 exp[— B(T~t)], =t (4.18)
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Substituting for E{"x(r)"z) from (4.18) into (4.17) we obtain

t+T
Vix,r,m,t) = afx(t)]? J exp[— B(r—t)]dr (4.19)
t

For a suitable choice of T>0, it follows that

2
Vix,rm, t) =k [x(O)f7 (k,>0) (4.20)

Further, every realization of a solution to (2.1) satisfies the

condition

E{”x(t)"z} z ”x0“2 exp(-2nLt) (4.21)

where L satisfies the Lipschitz condition defined in (2.3) and n is the

dimension of x. From this we obtain

t+T

Jt E(”x(t)"z}dr

Vix,r,n, t) =

t+T
J [x(£)]? exp(-2nL(z-t))dt
t

I\

t+T

Ix(t)]? J exp(-2nL(t-t))dt (4.22)
t

From (4.22), the following inequality follows for any k1 such that
1-exp(-2nLT)
<k = :
0 kl 2nL )

Vix,ront) =k [x(£)] (4.23)

From (4.19) and (4.23), we see that the condition (4.10) is satisfied.
To show that V(x,r,7n,t) is in the domain of ¥ (and hence continuous)
and the relation (4.11) is satisfied, we proceed as follows. By the

definition of ¥ we have,
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L1 EQV(x(t+8), r(£+8),n(t+8), t+8)|F) - Vix, 1,7, t)

¥V = 530 (4.24)
3
where F=(x(t),r(t),n(t)). From (4.17) and (4.24) we have,
lim 1 t4T+d 2 T 2
Vo= o3 [E{j E{||x(t)|"}dt|F} - J' E{|x(7)] }dr] (4.25)
t+d t
From (4.25) and the inequality (4.18), we can show that
1i 1 2 t+T+5 {
PV =< 550 5 a["x(t\” J eypk— B(T—t)]dT
t+0
5 (T
- Ix ()] f exp[— B(r—t))dr] (4.26)
t

Evaluating the integrals in (4.26) and after further simplification, we

obtain the following inequality:

ar (1o7BO _BS
v = afx(0)]* o 3 [ e BT Lize 7)) (e 7 ] (4.27)

8-0 8 o)

Taking limits in (4.27) it can be shown after some simplification that

EVix,r,m, t)

1A

a (e_BT—l) Ix(t)]? («,B,T>0)

IA

~k_|x(t)]? (4.28)
3

for any k32a(1—exp(—BT))>0. Hence, the proof is complete.
Before concluding this section, we mention that for linear dynamical

systems of the form (2.2) the following lemma is true:

Lemma 4.2: If the solution x=0 of (2.2) is exponentially stable in the mean
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square, then for any given quadratic positive definite function Wix,r,m, t)
in the variables x which is bounded and continuous Vtzto, VreS and VneZ,
there exists a quadratic positive definite function Vix,r,m,t) in x that
satisfies conditions (4.10) and (4.11) and is such that
Vix,r,n, t)==W(x,r,7n,t).

The proof for this lemma follows by selecting the function V(x,r,mn,t)

as follows:
t+T
Vix,r,n,t) = J E{W(x,r,m,t)}dt (4.29)
t

It is easy to verify using arguments similar to those used for proving
Theorem 4.4 that for this choice of V(x,r,mn,t), the conditions in Lemma 4.2
hold for the linear plant model (2.2).

We will now apply the results derived in this section to obtain
conditions that will enable us to verify the exponential stability in the
mean square of the linear plant model (2.2) under any linear time-invariant

state feedback control law dependent on the FDI process state.

5. NECESSARY AND SUFFICIENT CONDITIONS FOR EXPONENTIAL STABILITY

As pointed out earlier, the results in section 4.2 are difficult to
apply to check the exponential stability in the mean square of a general
dynamical system described by (2.1). In this section, conditions that allow
us to verify whether or not the linear plant model (2.2) under the control
law u{x,r)=K(r)x(t) has exponential stability in the mean square will be
derived. We will denote this contrel law by ui=-Kix when r=ieS. For the
time-invariant case, we will assume without loss of generality that to=—m.
The results in this section will be useful in synthesizing a fault tolerant
feedback control law that ensures the stochastic stability of the linear
plant model (2.2). This will tc discussed in the companion paper

(Srichander and Walker, 1990).

Theorem 5.1: A necessary and sufficient condition for exponential stability
in the mean square of the linear plant model (2.2) under the control law
ui=-Kix, i€S, is that there exist steady state solutions P1k>0' ieS, keZ as

t>-o to the following coupled linear matrix differential equations:
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. T N k
Pm(t) * AL Pm(t) + Pm(t)A“(+ ¥ q P (t)

jes Ik
j*t
+ ¥ % ij(t) *Q, =0, ieS, kez, te(-w,0] (5.1)
jez
J#k
with boundary conditions,
ka(O) = 0, VieS, VvkeZ (5.2)
where Qik>0' VieS, VkeZ, and
R, =A-BK -057 ql;_ - 0.5La , ieS, keZ (5.3)
.t jes jez ?
j#—'i j$k

Proof of necessity:

Assume that (2.2) is exponentially stable in the mean square under the
control law ui=-Kix, vieS. Let W(x,r,n,t)=xTQ(r,n)x, reS, neZ denote a
quadratic positive definite function. Then it follows from Lemma 4.2 that
there exists a quadratic positive definite function V(x,r,mn,t) VreS and V¥YneZ
that satisfies the condition (4.10) and is in the domain of the weak
infinitesimal operator £ such that £V(x,r,7m, t)=-W(x,r,7n,t). Let us denote
the quadratic function that satisfies these conditions by
V(x,r,n,t)=xTP(r,n,t)x. We shall denote in the sequel Q(r,n)=Qik and
P(r,n,t)=Pik(t) when r=ieS and 7n=keZ.

Evaluating the function £V(x,r,m,t) for (2.2) under the control law
ui=—Kix when the quantities r=ieS and m=keZ have occurred at some time

te(-w, 0], we can show after some simplification that

T(: ~T ~ K
2V = x [ka(t) AL P£k(t) + Pm(t)A‘k + 7 q, P)k(t)
jes
J#4
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+Ya P (t)]x, ieS, keZ (5.4)
kj 1]
jez
J#K

~

where Afk is given by (5.3). Further, since £V(x,r,n,t)= -W(x,r,7n, t), we
have the identity

T2 ~T ~ k
X [ka(t) * A Pik(t) * Pik(t)Alk * L a4, P (t)

jes Ik
J#i
+.Z @, Pij(t) + Qik]x = 0, ieS, keZ (5.5)
jez
¥k

We note in particular that the quantity inside the brackets of (5.5) is
identical to the coupled matrix differential equations given by (5.1).
Let us examine the solutions to (5.1) under the boundary conditions

(5.2). We shall denote by Q_k(t,t) the fundamental matrix associated with
1

¢ (t,7) = exp(A (t-7)), ieS, keZ, -w<Tsts0 (5.6)

Then, it is easy to check that under (5.1) and (5.2) the solutions ka(t)‘

ieS, keZ are given by,

0

T K
P (1) = J @ik(t,r)[ ) q, ij(r) +-Z % Pij(r)
. j€s jez
J#i J#k
+ Qik]éik(t,r)dr, ieS, kezZ, te(-w,0) (5.7)

The coupled integral equations given by (5.7) have unique solutions
(Pik(t), ieS, keZ} that are continuous on te(-w,0). Further, since Qik(t,r),
VieS, VkeZ are non-singular for t,te(-w,0] and Q‘k>0, VieS, VvkeZ, it follows

immediately from (5.7) that Pik(t)>0, VieS, vkeZ for te(-o,0). Also, from
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the positive definiteness of Pik(t), VieS, vkeZ and the non-negativity of
the transition rates of r(t) and n{t), it follows from (5.7) that the
solutions Pik(t), VieS, VkeZ are monotonically increasing on (-«,0] as t
decreases. Since, from Lemma 4.2, we know that V(x,r,mn,t) satisfies the
condition (4.10), the solutions {ka(t)’ i€S, keZ) are bounded on te(-w,0].
In other words, as t decreas=s, the P‘k(t), VieS, VkeZ, define a set of
monotone increasing sequences of positive operators on te(-wo,0] that are
bounded from below. We now state a lemma for positive operators in Hilbert

space to prove the convergence of the sequence {Pl(t),ieS}.

Lemma 5.1 (Akhiezer and Glazman 1981): Every monotonically increasing

sequence of bounded positive operators in Hilbert space converges strongly.

From the above lemma, it follows immediately that the solutions
converge to steady state solutions (Pik>0, ieS, keZ} as t-»-o. Hence, the

necessary condition is proven.

Proof of sufficiency:

Let us assume that there exist steady state solutions {Pik>0, ies, keZ}
as t-o~-w to the coupled differential equations (5.1) under the boundary
conditions (5.2). Then, it is easy to see that the function
V(x,r,n,t)=xTP(r,n)x satisfies the conditions (a)-(c) in section 4 and also
the condition (4.10). Evaluating £V(x,r,m,t) for the linear plant model
(2.2) under the control law ui=—Kix, ie€S when the quantities r=ieS and n=keZ

have occurred at some time te(-«,0}], we have,

¢V = xT[KT P +P A +Yq"P +Ta P ]x, ieS, kez (5.8)
ik ik ik 1k ij gk kj i}
jes jez
j#Fi j¥k

where ka is given by (5.3). Since by hypothesis (Pik, iesS, keZ} satisfies
(5.1), we have #V(x,r,mn,t)=-W(x,r,n,t). Further, since W(x,r,m,t) is
positive definite VreS and VneZ, it follows from Theorem 5.1 that (2.2)
under the control law u1=—Kl, ie€S is exponentially stable in the mean square

Vtzto. Hence, the proof is complete.

Remarks on Theorem 5. 1:
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The stochastic stability analysis presented here takes into account the
decision errors and delays associated with the FDI decision making process.
Most of the results on fault tolerant control systems available in the
literature so far (see Ji and Chizeck 1990, Sworder 1969, Wonham 1971), do
not account for these decision errors and delays, and hence, do not ensure
stability of the solution x=0 of the linear plant model {2.2) that describes
the behavior of a true active fault tolerant control system. The stability
analysis for these systems investigated by Mariton accounts only for the
delayed decrisions and false alarms of the FDI schemes. The stability
analysis presented by Mariton (1989) assumes that correct failure isolation
is done following a failure and that the state spaces of the FDI and failure
processes are identical. These assumptions are questionable in real systems
where the FDI scheme might involve a failure detection phase and a failure
isolation phase (Walker 1980) and incorrect failure isolation can result
following the detection of the presence of a failure. Thus, the analysis of
Mariton (198910 is also inadequate to ensure the stability of active fault
tolerant control systems. Hence, the results derived in this section are a
significant contribution towards the stability analysis of active fault
tolerant control systems that reconfigure the control gains using
information from the FDI schenme.

We shall now show that the results on the JLQR problem investigated by
Wonham (1971) can be derived as a special case of the results in this
section. For the JLQR problem, it is assumed that the transitions of the
failure process n(t) are detected instantaneously, which implies r{t)=n(t)
Vtzto. Hence, we need to consider only the cases where r=n=ieS, and analvze
the stochastic stability of the linear plant model under any control law of
the form u1=—Kix, ieS. It is obvious from the assumption of instantaneous
detection that when j#ie€S, we have qu=O. Hence, when r=n=ieS, it follows
that
A = A - BK - 051 o , ieS (5.9)

11
jes
J#i

When the Klk in (5.1) are replaced by the Kii, ieS, defined above, then the
results for the JLQR problem derived by Wonham (1971) are obtained as
special cases of the sufficient conditions for stability given by Theorem

5.1.
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We mention finally that if the linear plant model (2.2) is
exponentially stable in the mean square, then it is almost surely
asymptotically stable in probability. The proof follows immediately from
Theorems 4.2 and 4.4. Thus, if the conditions in Theorem 5.1 are satisfied,
then the linear plant model (2.2) under the control law ui=—Kix, ieS is
almost surely asymptotically stable in probability. In other words, the
existence of steady state solutions (Pik>0, ieS, ke2} implies that the plant

model is almost surely asymptotically stable in probability.

6. CONCLUSIONS

The stochastic stability of fault tolerant control systems
incorporating a real time reconfiguration strategy based on FDI decisions
has been addressed in this paper. In particular, necessary and sufficient
conditions for exponential stability in the mean square of linear fault
tolerant control systems were derived. It is shown that these conditions are
also sufficient for almost sure asymptotic stability in probability. The
results in thie n-per~ are also shown to be an extension tec the carlier
results on JLQR problems, where instantaneous detection of mode transitions
of the failure process is assumed. Since such an assumption is invalid when
a realistic FDI scheme subject to errors and delays is used to detect these
changes, the results in this paper are significant contributions toward the
stability analysis of actively reconfigurable fault tolerant control
systems. As already pcinted out, the earlier results on reconfigurable
control systems have the drawback of addressing only the deterministic
stability of the closed loop system after the FDI scheme has correctly
identified the failures. Such an analysis does not guarantee the stochastic
stability of the solution x=0 for the system under incorrect failure
isolation for all FDI transition rates. This will be illustrated by means of
a numerical example for the linear plant model (2.2) in the companion paper

{Srichander and Walker, 1990).
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2. A Stocha - :’cally Stable FTCS Feedback Control Law

In this sectisn, we derive a linear state feedback law for LTI FTCS and use
the stochastic stability conditions derived in the previous subsection to
anclyze its stab’lity for several different case. In particular, the
necessary and sufficient conditions for LTI FTCS with linear state feedback
are employed. As we show in the following manuscr.pt, when the coupled
matrix Riccati cquations given in the last subsection have a finite steady
state solution, almost sure asymptotic stability in probability is assured,
and the simulation results we show in this subsection demonstrate this.

When a finite <teady state solutior does not exist, then the system does not
possess exponential stability in mean square, and again our simulation

results show that divergence can occur.

We ave in the process of running some extra simulations before submitting

this manuscript for publication. Therefore, it should be treated as a draft

veygsion,
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ABSTRACT

The synthesis of a feedback control law for active fault tolerant
linear control systems is addressed in this paper. This synthesis technique
is based on the use of a control model description of the system that
closely resembles the actual system dynamics, which cannot be directly
deduced due to random decision errors and delays by the failure detection
and identification (FDI) system. The definition of stochastic
stabilizability of active fault tolerant control systems and of the control
model is introduced. Necessary and sufficient conditions for stochastic
stabilizability of the control model are then established. These conditions
lead to necessary conditions for the stochastic stabilizability of the class
of active fault tolerant control systems examined. These conditions also
provide the information necessary to construct an active fault tolerant
feedback control law. The stochastic stability of the resulting closed loop
system under this fault tolerant control law can then be examined by
applying the necessary and sufficient conditions for exponential stability
in the mean square derived in a companion paper. Finally, a numerical
example is presented to illustrate the feedback control design methodology

and to verify the results of the stability analysis.
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1. INTRODUCTION

Active fault tolerant control involves detecting and identifying
failures of the controlled system that occur at random instants of time and
then compensating for these failures by some automatic logic. In particular,
the control law must be reconfigured following the diagnosis of a failure by
the automatic failure detection and identification (FDI) scheme. Because the
FDI logic operates on measurement data corrupted by random noise and because
the failure events to be diagnosed are random in nature, the FDI system is
subject to random errors and delays. If the control design does not account
for these errors and delays, catastrophic instability of the closed loop
system can result, even if the system possesses deterministic closed loop
stability for every failure mode that can be tolerated when the appropriate
reconfigured control law 1s used.

In this paper, we consider the problem of synthesizing a fault tolerant
control law for a linear system that is subject to actuator failures, and of
verifying the stochastic stability of the resulting closed loop system
(using the theory of (Srichander and Walker 1990)). The control synthesis and
stabillity analysis techniques are developed such that the random failures of
actuator components and the random errors and delays of the FDI system are
accounted for. A numerical example of a simple fault tolerant system is used
to demonstrate the control synthesis method and to illustrate the
analysis of its closed loop stochastic stability.

In the remainder of this section, we will summarize the existing
results relevant to control law design for systems subject to random mode
changes, including active fault tolerant control systems.

The results that are relevant to our problem are those that involve the
control of systems subjcct to random variations in the system parameters.
Work on this topic dates back to Krasovskii and Lidskii (1961}, who derived
an optimal control law that minimizes an integral performance criterion for
systems undergoing random structure variations (mode transitions) governed
by a Markov process. The solution to this problem is based on the use of
stochastic Lyapunov functions (Kushner 1967), the parameters of which are
functions of the random process governing the structural changes. In
(Krasovskii and Lidskii 1961}, sufficient conditions for the optimality of

this control law in minimizing a mean square error criterion are derived
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assuming that an admissible control exists. The latter assumption ensures
the boundedness of the cost function under the optimal control law.

Further investigations of the control problem for continuous time
linear systems with structural parameters that randomly vary in a finite
state space were carried out by Sworder (1969) and by Wonham (1971). In
(Sworder 1969), the stochastic maximum principle is used to derive an
optimal control law that minimizes an integral performance criterion
function, while in (Wonham 1971), the dynamic programming principle is
employed to arrive at a solution. In both cases, the optimal control law for
a system with parameters governed by a jump Markov process is a state
feedback control with gains that switch according to the state of the jump
process. When the performance criterion of interest is quadratic, this class
of problems leads to a jump linear quadratic regulator (JLQR) solution. In
(Wonham 1971), sufficient conditions are also derived for the existence of a
steady state optimal solution to the jump linear quadratic regulator problem
based on the average transition rates between the modes and the
stabilizability of the linear plant for each mode of the jump process.

In each of the formulations discussed above, it is assumed that the
mode changes are correctly diagnosed immediately after they occur. In other
words, it is assumed that the controller has knowledge of the true system
description at every instant of time. The optimality of the resulting
control law is guaranteed only under this restrictive assumption.

In practice, however, the mode changes must be identified using an FDI
scheme. The behavior of these FDI schemes is statistical in nature due to
the presence of measurement noise. Thus, the FDI system has nonzero error
probabilities associated with its decisions and is subject to random
decision delays. The likelihood of decision errors by FDI schemes can
usually be reduced by increasing the time allowed for identifying a mode
change. This modification, however, has the detrimental effect of increasing
the average delay in detecting and responding to mode changes.

Under the delayed and imperfect decisions that are actually generated
by the FDI scheme, the control law synthesis techniques discussed above do
not even guarantee the stability of the unforced solution to the plant
equations, let alone the optimality of the control law. Hence, any practical
fault tolerant control design that reconfigures the control law based on FDI
decisions must take into account the random detection delays and decision

errors associated with those decisions to ensure the stability of the closed
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loop system.

The design of active fault tolerant controllers that account for these
effects to varying degrees have been investigated in (Caglayan et al. 1987),
(Looze et al. 1984), (Looze, et al. 1985), and (Moerder et al. 1989). In
(Looze et al. 1984), for instance, a reconfigurable control algorithm for a
linear system based on the linear quadratic design methodology is presented.
The algorithm uses the linear quadratic design parameters for the unfailed
system as a basis for choosing the parameters for the failed system.
Further, it is assumed that correct failure mode information is available to
the controller at all times except for imprecise knowledge of the remaining
control effectiveness. The validity of this assumption 1s questionable in
practice, particularly when analytic redundancy techniques are used for FDI
(Horak, 1988) 1Tn (Moerder et al. 1989), the feedback gains for the no-fail
and control-impaired cases are designed off-line and scheduled as a function
of the FDI information. Again, the assumption that the FDI logic requires
only a short delay before correctly identifying the failure mode renders the
technique inapplicable for many practical systems.

In each of the references cited above, the choice of the control law is
based on deterministic stability analysis of the resulting closed loop
system for those cases where the FDI scheme has correctly identified the
failure modes. Clearly, under random parametric variations in the given
system and random detection delays and errors by the FDI scheme, the
resulting system is actually governed by stochastic differential equations.
Hence, the stability conclusions of the references above are suspect. This
will be demonstrated later in this paper by a numerical example.

In this paper, we present a control synthesis technique that yilelds a
fault tolerant feedback control law that explicitly accounts for the random
decision errors and delays associated with the FDI process.

The rest of the paper is organized as follows: In section 2, we will
formulate the fault tolerant control problem and introduce a control model
for the system dynamics. Then, we derive an optimal control law that
minimizes a given performance index for the control model. The definition of
stochastic stabilizability is also given in this section. The results are
then used in section 3 to derive necessary conditions for stabilizability of
the plant. In section 4, a synthesis method for a fault tolerant control law
for the actual plant is presented, which makes use of the information

provided by the stabilizability conditions. The stability analysis of the
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plant under this control law is then addressed using the results in
(Srichander and Walker 1990). The control design methodology and the
stability analysis are then illustrated by a numerical example in section 5.

Conclusions are summarized in section 6.

2. PROBLEM FORMULATION AND THE CONTROL MODEL
The stochastic evolution of the systems of interest in this paper are
characterized by two random processes, one describing the mode jumps
occurring in the system description (which represent the failures), and the
other describing the FDI process that monitors these random parametric

jumps. The linear plant model is assumed to be described by:
x(t) = Ax(t) + B(nlulx,r,t) (2.1)

where u(x,r, t)=-K{r)x(t). In (2.1), n{t) is a continuous time, discrete
state Markov process modeling the failures occurring in the system and takes
values in the finite set 2={1,2,..,v}. In (2.1), r(t) is also a continuous
time, discrete state Markov process that models the FDI process and takes
values in the set S$={1,2,..,7}. We will assume that aij (i, jeZ) represents
the transition rates of the failure process 7n(t) (i.e. the failure rates)
and q?j (i, jeS, keZ) represents the conditional transition rates of the FDI
process r(t) given that n(t)=k (i.e. the rates of FDI decisions). The rates
alj and qTJ are assumed to be known. x(t)eR" is the process state vector and
u(x,r,t)eR" is the control vector, which is explicitly constrained to be
dependent only on the process state vector x(t) and the state of the FDI
process r(t). In other words, the control is not allowed to depend on the
true failure state m(t), which is known only indirectly through the FDI
state r(t). We will also assume that u(x,r,t) takes the linear state
feedback form u{x,r,t)=-K(r)x{(t), which will be shown later in this paper to
be the form of the globally optimal feedback control law for a quadratic
cost problem related to the problem at hand.

Note that (2.1) restricts the effects of faiiures to the input
sensitivity matrix B. The results derived here, however, extend directly to
the case where the system dynamics matrix A is affected by the failure.
Also, nonzero bias terms that are dependent on n can be added to (2.1) if
the results are suitably modified. For brevity, we will present complete

results only for the restricted case described by (2.1).
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The synthesis of a fault tolerant feedback control law
u{x,r,t)=-K(r)x{(t), reS for the plant model (2.1) is the main focus of this
paper. We will also establish necessary conditions for the existence of a
fault tolerant control law of this feedback form that stochastically
stabilizes the plant (2.1) (i.e. necessary conditions for stochastic
stabilizability). These conditions will be seen later to relate directly to
the informat..n needed to construct the control gain matrix K(r).

In order to derive necessary conditions for stochastic stabilizability
of the plant model (2.1), we introduce the following control model

description:

x(t) = Ax(t) + B(m)ulx,r,n,t) (2.2)

Obviously, the control model (2.2) differs from the plant model (2.1) in the
form of the control law. For the control model (2.2), we assume that the
control law u(-) is a function of the system states x(t), the FDI process
state r(t), and the failure process state n(t). In other words, we assume in
(2.2) that we can design a fictitious controller that uses information on
both of the Markovian processes r(t) and n(t). As noted above, the state of
the failure process n(t) is not available to the controller in practice.
However, our objective here is to solve an optimization problem for the
control model (2.2), which then will help us to derive necessary conditions
for stochastic stabilizability of the plant model (2.1) and to construct a
control law for the plant (2.1) that results in a stable closed loop system.
In deriving the optimal control law G*(-) for the control model (2.2),
we specify that any control law u(-) that uses information from the failure
process state 7m(t) only and disregards the information provided by the FDI
process state r(t) is not an admissible control law. In other words, if ¢
denotes the class of admissible controls for the control model (2.2), then
®: txR"xSxZ-R" or &: txR'xSoR". This assumption is consistent with the
nature of the fault tolerant control problem, where only information from
the FDI process state r(t) is available in practice. Notice that if the FDI
and failvre nroreas ctates are the same at every instant of time (as is the
case under the assumption of instantaneous correct diagnosis of the failure
mode by the FDI process), then the plant model (2.1) and the control model

(2.2) are identical (each breaking down to the Markovian jump system
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considered in (Ji and Chizeck 1990)}).
Before we derive the optimal control law G*(')EQ for the control model
(2.2), we will define stochastic stabilizability with reference to the plant

model (2.1) and the control model (2.2).

Definition 2.1: The plant model (2.1} is said to be stochastically

stabilizable if, for any xoeRn, rOeS, and noez, there exists a linear state
feedback control law u(x,r,t)=-K(r)x(t) such that for any bounded positive
definite matrix M(r,n) (possibly time varying) which is a function of the
FDI and failure process states, the solution x(t) of (2.1) satisfies the

following inequality for some bounded M>0:

T
tim E{J' xT(t)M(r,n)x(t)dt} < x Mx (2.3)
T ¢ 0 0

0

(We will call a mxn matrix bounded if there exists a positive constant B8
such that |Ax|=g|x| VxeR", x#0. Here “x“=(xf+x2+...+x2)1/2 where x are the
i 1

components of xeR ).

It is easy to see that under the above definition, stochastic
stabilizability of the plant model (2.1) implies that there exists a
feedback control law u(x,r,t)=-K(r)x(t), reS which drives the state x(t)
from any given initial condition xOERn asymptotically to the origin in the
mean square sense given any initial conditions roeS and nOeZ on the FDI and

failure process states.

Definition 2.2: The control model (2.2) is said to be stochastically

stabilizable if, for any ;oeﬁn, rOeS, and nOeZ, there exists an admissiblie
state feedback control law G(i,r,n,t)=—K(r,n);(t) such that for any bounded
positive definite matrix M(r,m) (possibly time varying) which is a function
of the FDI and failure process states, the solution x(t) of (2.2) satisfies
the following inequality for some bounded M>0:

1 T 1 - —-To=

" E{j X (t)M(r,n)x(t)dt} < X Mx (2.4)
T-0 . 0 0

[¢]

The stochastic stabilizability of (2.2) implies that there exists a
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feedback control law G(;,r,n,t)=—K(r,n)§(t), reS and neZ among the class of
admissible controls ¢, which drives the state x(t) of (2.2) from any given
initial condition ;OeRn asymptotically to the origin in the mean square
sense given any initial conditions rOeS and noez on the FDI and failure
process states.

We will now derive an optimal control law for the control model (2.2)
that minimizes a particular performance index. This will then enable us to
derive stabilizability conditions for the plant (2.1), which in turn will
lead to a control law for the plant (2.1). The notation used in the
discussion to follow will be the same as that used in (Srichander and Walker
1990). In particular, the operator ¥ will denote the weak infinitesimal
operator of the (n+2)-dimensional jointly Markov process {g,r,n}.

Consider the following index of performance,
T —_— p—
J = E{J L(x,r,n,u,t)dt} (2.5)
t
0
where L(-) is a positive definite function. Let us consider the function

V(x,r,n,t) that satisfies the functional equation

. T — f— -—
Vix,r,n,t) = E;g E{I L(x,r,n,u,t)dt(x(t),r(t),n(t)} (2.6)
t

Then the following theorem holds.

Theorem 2.1: The optimal control ﬂ‘(-)eé for the control model (2.2) that

minimizes (2.5) is the solution to Bellman’s equation,

min
ued

[ZV(;,r,n,t) + L(Q,r,n,a,t)] =0 (2.7)
subject to the boundary condition,
V(x(T),r(T),n(T),T) = 0 (2.8)
The proof for this theorem follows similar lines to those used in

(Wonham 1971) for deriving an optimal control law for the Markovian jump

system with perfect information structure.
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In particular now, let us consider the positive definite quadratic

function
L(x,r,mu, t) = xQ(r,n)x + 4 (-)R(r,m)ul-), reS, nez (2.9)

where Q(r,m)>0, R(r,n)>0 VreS and VYneZ. Further, let us assume V(x,r,m, t) is

the quadratic function V(§,r,n,t)=;T§(r,n,t);. We shall denote Q(r,n)=Qik,

R(r,n)=Rik, ?(r,n,t)=§ik(t) and G(x,r,n,t)=ﬁik(t), when r=ieS and n=keZ.
Evaluating #V(x,r,n,t) for the control model (2.2) when the quantities

r=ieS and n=keZ have occurred at time t, we have

oV = % [Pik(t) + AP () + B (0A + T a¥ (P ()P, (1)
jes
J#i

— —_— _— -—T_ —
. 3 ockJ(PU(t)—Pik(t))]x + P (VBT (t)
jEZ
j#k

+ 4 (t)B'P (t)x, ieS, kez (2.10)
ik k ik

It can be easily shown that the minimization in (2.7) using (2.9) and (2.10)

gives,

a (t) = -RBP (t)x(t), ieS, kez (2.11a)
ik ik k ik
* -

= ~Kik(t)x(t), ieS, keZz (2.11b)

where the ﬁlk(t), ieS, ke4, solve the coupled matrix Riccati equations,

Pik(t) * Aik Pik(t) * Pik(t)Aik * Z qij P‘k(t) + L akj Pij(t)
jE€S jez
_j#i jik
+KT(t)R K (t) +Q =0, ieS, kez (2.12)
ik ik ik ik
with boundary conditions,
P (T) = 0, VieS, vkeZ (2.13)

ik
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In (2.12), Kik(t) is defined as

A (t) =A-BK (t) -0.57q -0.5F « , ieS, kez (2.14)
ik k ik i kj

jES jez

%1 3%k

The coupled Riccati equations given by (2.12) have identical structure
to the coupled Riccati equations derived by Wonham (1971). Hence, under the
boundary conditions (2.13), these equations can be solved by
quasi-linearization and the successive approximation technique given in
(Wonham 1971). We shall assume without loss of generality (because both the
plant and the control model are time invariant systems) that T=0 and toz—m
in (2.5). It follows from (Wonham 1971) then that the solutions to (2.12)
with the boundary conditions (2.13) are unique, non-negative definite and
monotonically increasing as t--«. Further, the assumption that Qik>0 implies
ka(t)>o for ie€S, meZ and Vtz0. Therefore, the control law given by (2.11)
is the unique optimal control for this quadratic cost function, and it has
the state feedback form that we hypothesized earlier.

Let us assume that as to-wo there exist steady state solutions ?ik>0,
vieS and VkeZ to the coupled Riccati equations (2.12) with the boundary
conditions (2.13). Then it .ollows from (2.6) that the minimum cost under

the control law (2.11) is given by,

J = x P X (2.15)

For any other admissible control law u(-)ed for the control model (2.2), the
cost incurred for the performance index (2.5) 1s greater than Jmin. Now, let
us consider the case where the controller has information only on the FDI
process state r(t). Under the assumption that n(t)=r(t)=ieS and that S=2,

the optimal control law (2.11) becomes,
-— » -
u (x,r=i,n=1,t) = —Kxx(t)X(t)’ ieS (2.16)
So, a natural restriction to make to the optimal control law (2.11) in order

to arrive at a control law that depends only upon the FDI state r(t) is to

use the control law:
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WG, t) = WG, )| = K[ (£)x(t) when r=i (2.17)

This will lead later to a control law for the plant (2.1) without the
assumption that S=2. Let us denote by J the cost incurred under the control
law (2.17) for the control model (2.2). Then JaJmnf the equality sign
applying when mode changes of the failure process are instantaneously
detected.

The next section gives conditions for stochastic stabilizability of the
control mudel (2.2) and the plant model (2.1). These conditions will
ultimately lead to a control law for the plant model (2.1) that is similar

to the restricted control law (2.17).

3. CONDITIONS FOR STOCHASTIC STABILIZABILITY
The following theorem gives (-.ditions {or the stochastic

stabilizability of the control model (2.2).

Theorem 3.1: The control model (2.2) is stochastically stabilizable if and
only if there exist steady state solutions {P >0, ieS, keZ} to the coupled
i
Riccati equations (2.12) under the boundary conditions (2.13) for any Q,k>0»
1

R‘k>0 VieS and VvkeZ.
1

The proof of this theorem is given in the Appendix. Notice that the
conditions for the stochastic stabilizability of the control model (2.2)
given by Theorem 3.1 are very easy to check by numerically solving (2.12),
as opposed to the conditions for stochastic stabilizability of the jump
linear quadratic regulator problem derived by Ji and Chizeck (1990), which
cannot be checked in practice.

Necessary conditions for stochastic stabilizability of the plant

model (2.1) are given by the following theorem:

Theorem 3.2: Necessary ccnditions for stochastic stabilizability of the
plant model (2.1) are that there exist steady state solutions (?ik>0, ieS,
keZ} to the coupled Riccati equations given by (2.12) under the boundary
conditions (2.13).
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Proof:

Let us assume that steady state solutions {§1k>0, ieS, ke2} do not
exist to the coupled Riccati equations given by (2.12). Then, it follows
from Theorem 3.1 that no admissible control law of the form
ulx,r,m, t)=-K(r,n)x{(t), reS and mneZ exists for the control model (2.2) such
that condition (2.4) is satisfied. We need to show that under the above
assumption there exists no control law of the form u(x,r,t)=-K(r)x(t), reS
to the plant model (2.1) that satisfies the condition (2.3). We shall show
this by contradiction.

Suppose that when steady state solutions {?ik>0, ieS, ke€Z} do not exist
to the coupled Riccati equations (2.12) under the boundary conditions
(2.13), a control law of the form ul(x,r,t)=-K{r)x(t), reS, exists for the
plant (2.1) such that condition (2.3) is satisfied. Now, consider the
following control law for the control model (2.2}):

ulx,r,n, t) = -K(r)x(t), reS (3.1)

The above control law uses information only from the FDI process r(t) (and
hence is a restricted information control law), but nevertheless belongs to
the class of admissible controls ¢. Using the control law (3.1), it is easy
to see that the plant model (2.1) and the control model (2.2) beconme
identical. This implies that the solutions x(t) to (2.1) and x(t) to (2.2)
respectively are such that x(t)=x(t) VtZtO provided §O=xo. Since the control
law u(x,r,t)=-K(r)x(t) for the plant (2.1) satisfies condition (2.3) by
hypothesis, it follows immediately that the condition (2.4) is aiso
satisfied under thec control law (3.1) for the control model (2.2). In other
words, the control model (2.2) is stochastically stabilizable when steady
state solutions {§1k>0, ieS, keZ} do not exist to (2.12). But this

contradicts Theorem 3.1, and this proves the theorem.

Note that the conditions to be checked in Theorem 3.2 are identical to
those in Theorem 3.1, namely the existence of steady state solutions ﬁiw
ieS and ne2 to the coupled Riccati equations (2.12) with boundary conditions

(2.13).

4. CONTROL LAW SYNTHESIS AND STABILITY ANALYSIS

Theorem 3.2 is very useful for determining whether it is possible to
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synthesize a feedback control law for the plant model (2.1) that will lead
to a stochastically stable closed loop system. The non-existence of steady
state solutions {§1k>0, ieS, keZ} to (2.12) under the boundary conditions
(2.13) implies that no linear feedback control law u(-)= -K(r)x{t), reS can
stochastically stabilize the plant model (2.1). Under these conditions, a
fault tolerant control system designer has no choice but to try to redesign
the FDI algorithm such that the transition rates of the modified FDI process
r{t) lead to the existence of steady state solutions {§1k>0, ieS, keZ} to
the coupled Riccati equations. If no such FDI redesign can be found, then
the designer must admit defeat and seek a complete redefinition of the
system specifications because stochastic stability of the feedback system 1is
not possible.

Assuming the conditions for stochastic stabilizability of the plant
(2.1) are satisfied, we will indicate below a synthesis of a feedback
control law for the plant model (2.1) that accounts for the transition rates
of the FDI and faillure processes in its design. We will refer to this
control law as a fault tolerant control law for the plant model (2.1). The
closed loop stochastic stability of the plant model (2.1) under this control
law can then be examined using the results in (Srichander and Walker 19¢0),

which will be Ltated later in this paper.

4.1 Feedback control law synthesis.
[.et us consider the optimal control law (2.11) that minimizes the
vor formance index (2.5) for the control model (2.2). This control law uses

intormation from both the 1allure process and the FDI process to ensure

il ity of ther given cost function. The sleady state optimal control law
— — * e
00 wWhen r=1€5 and y=k<€Z wWill bLe denoted by u(x,r,n)=—K,kx(t).
1

In synthiesizing a feeabeck control law for the plant model (2.1), the
writroller has access only to the FDI process state r(t). In practice, the
POl soheme 1s designed with the intent that the FDI process state r(t)

At follow the failure process state n(t) as closely as possible. With
“hiis inomind, a reasonable choilce for a control law for the plant (2.1) is
to asmaume that plt)=1{t1 in the control law (2.11), just as we did in
Stablishin, the restricted control law given by (2.17), which was
resiricted to tne case where S=Z0 Following this arpument, we will choose

the fault tolerant control Jaw based on the following logic.




(1) When FDI and failure processes have identical state spaces (i.e. S=2Z):
When the FDI scheme indicates r=i€S, the fault tolerant control law

u(x,r,t)Eul will be chosen as:
-1 T * VoA . - .
u = ~R BP x(t) = -K x(i) = -K x, ies (4.1)
i PIE ii i

exactly as in (2.17).

(ii) When FDI and failure processes have different state spaces:
Assume that 2Z2c<S. This implies that the FDI process can have additional
states relative to the failure process. This is comimon because
additional FDI process states are often necessary to represent
intermediate FDI conditions, such as the detection of a failure but
without isolation. Let us assume that the 2 is arranged such that when
n takes increasing values in the set Z2={1,2,..,v}, the system operation
is more degraded. Simllarly, let S be arranged such that when r takes
increasing values from the set S={1,2,..,7}, the FDI scheme indicates
greater degradation in the system operation. In this case, the
following fault tolerant control law will be chosen for {(2.1) when
r=iesS:

(a) When r=ieZ, then u is chosen as in (4.1).

{b) When r=ieZ, then select

u = 4%— (v +u_ ), ieS {4.2)

min

where a and b are positive integers such that {i-a)eZ and
a

™"(i4+p)e2. Thus, the control is selected as the average of
Lthe control for the tallure state for which FDI process state
i is the appropriate FDI state and the control for the next
level of degradation of the failure process. Other strategies
could also be used for selecting the control, but this

strategy has the advantage that it Incorporates some "hedging”

against the next possible level of degradation.

4.2 Stability analysis.
The cloued loop stochastic stability of the plant model (2.1) under the
fault tolerant control law uiz‘K'x, ieS, given by (4.1} and (4.2) can be
1

investigated by applying Theorem 5.1 of (Srichander and Walker 1990). This




. "3 .

theorem is restated below:

Theorem 4.1 (Srichander and Walker 1990): A necessary and sufficient
condition for exponential stability in the mean square of the linear plant
model (2.1) under the control law ui=—K‘x, ieS, given by (4.1) and (4.2) is
that there exist finite steady state solutions (P1k>0, i€S, keZ} as to-o to
the following coupled linear matrix differential equations:

. ~T ~ k
Pty + A P (t)+P (DA +Fq P (t)

ik jes ) Jk
J#i
+ 3 akj Pij(t) + Qik = 0, ieS, keZ, te(-w, 0] (4.3)
JEZ
J¥Fk
with boundary conditions,
P,k(O) = 0, VieS, VYkeZ (4.4)
1
where Q.k>0, vVieS, VvkeZ, and
1
A =A-BK -05Yq° -057%a , ieS, kez (4.5)
1k ki . i ) jk
jE€S jez
JFi Jj*k

Note that the linear matrix equations given by (4.3) and (4.5) differ
from the matrix Riccati equations given by (2.12) in the value of the
feedback gain K that appears in the terms. Therefore, the Riccati equations
represented by (2.12) must be solved first to establish the possible
stochastic stabilizability (or the lack thereof) of (2.1) and to synthesize
the control law (4.1) and (4.2). Then, the equations (4.3) can be solved to
determine whether the resulting closed loop system possesses stochastic
stabllity.

Note also that Theorem 4.1 states necessary and sufficient conditions for
stochastic stability of the closed loop plant. Thus, checking these
conditions leads to a definite conclusion regarding the stochastic stability
of the closed loop plant.

We vill now illustrate the above fault tolerant control law design

methodology and stability analysis for the plant model (2.1) with a
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numerical example. Numerical simulation results for the resulting closed

loop system will then be presented to verify the Theorem 4.1.

S. NUMERICAL RESULTS

To illustrate the design methodology for active fault tolerant control
systems presented above and the stability conditions derived in (Srichander
and Walker 1990), we will consider a first order system with two possible
modes of operation, i.e. 2={1,2} where m=1 represents a "normal” system and
n=2 represents a "degraded" system with Markovian transitions for the
failure process n(t). We assume that the FDI process intended to detect
these mode changes uses single sample tests on a test statistic that is
corrupted by additive white noise. Therefore, the FDI process state r(t) is
also Markovian with the same two states (S=2={1,2}). The following numerical

parameters are used for this example:

A=0.4 {(hence, the open loop system is unstable),

B =1.0, B=0.2, a =C.005, « =0.001.
1 2 12 21

Thus, a "degraded" system has only 20% of the control effectiveness of a
"normal” system. Such a loss occurs every 200 time steps on average, and the
system is capable of "self-healing”, but the average time to self-heal is
1000 time steps.

We will assume that the FDI test statistic examined at each time step
is N(0,1) under normal conditions (m=1) and N(1 1} under degraded conditions
(n=2). Here, N(a,oz) represents a normal distribution with mean a and
variance ¢”. The threshold for this test is denoted T{

We shall further assume that there is a second test which is intended
to recover from false degradation indications by the D1 scheme. These tests
are frequently used in practice to recover from false alarms, and such a
test is apprpriate in this example in light of the system’s capability to
self-heal. The test statistic for this test will be assumed to be N(O, 1)
when a degraded system is under test and N(1,1) when the system is normal.
The threshold for this test is Tz

Both FDI tests are assumed to be performed at a rate of 5 Hz.

We shall illustrate below the synthesis of a fault tolerant control law
for the above example for several different FDI transition rates, which are

determined by the thresholds T1 and TZ' We shall also examine the stochastic
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stability of the solution x=0 of (2.1) under the control law that results
from using (4.1) and (2.12). In all cases, the computation of Pik(t), ieS
and k€2 in (4.3) and of Pik(t) in (2.12) was truncated after 200 secs (1000
time steps), which should be sufficient time to indicate convergence of the

solutions to a steady state or nonconvergence.

Case (1)
Let us assume that the thresholds for the FDI scheme are T1=1'8 and
T?=2.0. It is easy to calculate that under these conditions the FDI

transition rates are,
1 2 _ 1 _ 2 _
q12—0.18, q12—1.06, q, 0.79, 9, 0.12

Note that correct detections are nearly 6 times more likely than false
alarms and recoveries from false alarms are more than 6 times more likely
than continued false isolations. These behaviors are not uncommon in
practice.

In synthesizing the fault tolerant control law, the following

parameters are assumed for the quadratic cost (2.9):
Rik=1.0, VieS, VkeZ

Q11=1.O, Q12=O.5, Q21=1.75, Q22=1.O

The following state feedback gains are obtained for the fault tolerant control

law using the design methodology given in section 4.1:
K =1.538, K =4.225
1 2

The closed loop system then has the following deterministic stability

characteristics under each combination of n and r:

7 r A - B(n)K(r)

1 1 -1.138 Stable under normal conditions.

1 2 -4.625 Stable following false alarm.

2 1 0.093 Unstable with undetected failure.

2 2 ~0. 445 Stable following correct detection.
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It is worthy of note that this system does not possess deterministic
stability for one of the two cases where the FDI process state does not
correctlv indicate the failure process state. Most of the previously
reported efforts to design reconfigurable control laws would accept this
control law as satisfactory despite this instability because the closed loop
system is deterministically stable for both cases where m=r. As we shall see
below, however, the stochastic stability of this system must be carefully
examined when FDI errors and delays can lead to periods when m and r differ.
The stochastic stability of the closed loop plant using the above
parameters can be investigated by applying Theorem 4.1. We will assume
that Q1k=1'0’ VieS, VkeZ in the linear matrix equations (4.3). Note that
these are not the values of Q.lk given in the cost function. However, Theorem
4.1 does not require that the linear matrix equations have a finite steady
state solution for just the given Qik but rather for any Qik such that Qik>o
YieS and VkeZ. Therefore, Q.

ik
(4.3) in order to check the stochastic stability conditions.

=1.0 VieZ and VkeS is reasonable for solving

A summary of the results for this case 1s given in Table 1. The
equations (4.3) under the boundary conditions (4.4) have steady state
solutions for the thresholds and gains chosen here. From Theorem 4.1, we
infer that this condition implies that the solution x=0 of (2.1) is
exponentially stable in the mean square. Further, from the remarks on
Theorem S.1 in (Srichander and Walker, 1990), this implies that the solution
x=U of the plant model (2.1) is almost surely asymptotically stable in
probability. In light of the deterministic stability properties for this
system discussed above, we see that the system can "tolerate intermittent
intervals of instability” and still possess stochastic stability of a
relatively strict kind.

To verify these conclusions, a numerical simulation of the linear plant
using the thresholds and gains in Table 1 was carried out for a
duration of 100 secc (or 5000 time steps). This is sufficiently long for an
average of 25 degradations or S self-healings to occur.

The occurrence of

failure process transitions was randomly triggered by checking the value at
each point of time of a pseudorandom number uniformly distributed

between zero and unity against «  or «_, depending on whether the state of

12 21
the failure process n at that time point was 1 or 2. respectively.

85




order to

investigate the behavior

of the FDI scheme and the control law when a failure is present. Fig.1l shows
one representative sample

function observed for this case. It is seen from Fig.1l that the solution x=0
of (2.1) observed is asymptotically stable, which in turn agrees with the
analytical results in section 5 of the accompanying paper (Srichander and
Walker 1990).

Case (2)

For the second case, we shall assume that the FDI thresholds are T1=1.2
and T2=O.8. This changes the transition rates of the FDI process from those
considered for case (1). The FDI test statistic is assumed to have the same
distribution function as in case (1). In synthesizing a fault tolerant
control law along the lines of section 3.1, the following parameters were
selected for the cost function.

le=1.0, VieS, VkeZ
Qll=1.0, Q12=2.O, Q21=O.5, Q22=1.5

Table 2 lists the various parameters obtained for this case. Again,
steady state solutions to equation (4.3) weres obtained for the selected
design parameters. This implies that the solution x=0 of (2.1) is almost
surely asymptotically stable. One sample function from a numerical
simulation of the plant model (2.1) for the above parameters with a forced
mode transition from state 1 to state 2 at t=5 secs is given in Fig. 2.

Again, we can see that the simulaticn result agrees with the stability
results predicted in the accompanying paper (Srichander and Walker 1990).
Case (3)

For this case, the FDI Llhresholds and test statistics are assumed to be
the same as in case (2), but the gains K1 and K2 are chosen arbitrarily.
These gains ensure stability of the deterministic closed loop system when
r=7. In this case, the solutions {Plk(t), ieS, keZ} to equation (4.3) under
the boundary conditions (4.4) are unbounded as t-»-«, indicating that the
plant model under the above control law lacks stability in the exponential
mean square sense. The design parameters are summarized in Table 3. Again,
one representative sample function observed during the simulation run is
shown in Fig.3. It is easy to see that this sample function lacks
exponential stability.

Cases (4) & (5%
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Two other cases were examined to illustrate the importance of
accounting for the FDI transition rates while synthesizing a fault tolerant
control law for the plant model to ensure stochastic stability. For case
(4), the thresholds are chosen as T1=3.O and T2=1.S, while the gains are
selected as K1=1.4 and K2=2.25. For these design parameters, it follows from
Theorem 4.1 that the plant model lacks exponential stability in the mean
square. A representative sample function observed during the simulation run
is is shown in Fig. 4.

In case (5), identical gains K1 and K2 are used, but the thresholds are
chosen as T1=1.8 and T2=2.O. For these parameters, the solutions {ka(t)’
ieS, keZ} to (4.3) under the boundary conditions (4.4) have a steady state
solution. This implies that the plant model (2.1) for the above design
parameter values is almost surely asymptotically stable. One sample function
observed during the simulation is shown in Fig.5. This sample function can
be seen to have asymptotic stability. The design parameters for this case
are summarized in Table 5.

Before concluding this section, the following comments on the numerical
results are in order: We first note that the gains chosen in each case study
ensure stability of the deterministic closed loop system when r=n. Under
incorrect decisions by the FDI scheme, we see from the simulations that for
two of the cases investigated, the solutions go unbounded as time increases.
In particular, cases (4) and (5) use the same gains K1 and K2 with different
transition rates for the FDI process. But the sample solution observed for
case (4) is not bounded as time increases. This representative example
illustrates the importance of accounting for the FDI process transition
rates in synthesizing a control law for fault tolerant control systems that
use FDI information for reconfiguring the control gains.

The reconfigurable control methodologies that have been investigated in
the literature (Caglayan et al. 1987, Looze et al. 1984, 1985 and Mcerder et
al. 1989) do not account for the FDI transition rates in either deriving the
control laws or in addressing the stability of the resulting closed loop
system. Hence, when incorrect decisions by the FDI scheme are possible, the
stability of the resulting closed loop system is suspect. The numerical
examples presented in this section verify this claim.

6. CONCLUSIONS
The synthesis of a fault tolerant control law for the plant model (2.1)

that takes into account the transition rates of both the FDI and failure
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processes was developed. The necessary conditions for stochastic
stabilizability of the plant model were also derived. These conditions are
easy to check, and hence are useful tools for the fault tolerant control
designer. A numerical example was presented to illustrate the design
methodology presented here. The importance of accounting for the FDI
transition rates in synthesizing a feedback control law for the plant model
was clearly brought out through the simulation results.

APPENDIX

Proof of Theorem 3. 1:

et us assume that steady state solutions {ﬁxk>0, ieS, ke2} exist to
the coupled Riccati equations (2.12) under the boundary conditions (2.13)
for any Q1k>0, Rik>0' VieS and VkeZ. Choosing the control law u(-) for (2.2)
as in (2.11), it follows that the cost function (2.5) under this control law
incurs the minimum cost given by (2.15) among all admissible controls u(-)ed
to (2.2). Let us now choose M(r,n) in (2.4) as follows:

M(r,m) = Q(r,n) + K*T(r,n)R(r,n)K*(r,n), res, nez (A. 1)

For this choice of M(r,n) it immediately follows that the condition (2.4) is
satisfied. This proves sufficiency.

To prove the necessary condition, we proceed as follows: Let us assume
that steady state solutions {ﬁik>0, ieS, keZ} do not exist to (2.12) under
the boundary conditions (2.13) for any Qik>0 and Rik>0, VieS, VkeZ. We need
to show that under these conditions, there exist no control law
ulx,r,n, t)==K(r,n)x(t), reS, nezZ to (2.2) that satisfies the condition
(2.4).

Let us assume on the contrary that there exists an admissible control
law u(x,r,n, t)=-K(r,n)x(t), reS, neZ to (2.2) that stochastically stabilizes
the control medel (2.2). Let us choose M(r,n)>0 as follows:

M(r,m) = Q(r,n) + K (r,n)R(r,n)K(r,n), reS, nez (A.2)
where Q{r,n)>0, R(r,n)>0 vreS and ¥YneZ. Then it follows from the Definition
2.2 that for the above choice of M(r,mn), there exists a bounded M>0 such
that condition (2.4) is satisfied. We notice that for M(r,7m) chosen as in
(A.2), the integrand in (2.4) is identical to the function L{-) defined in
(2.9). In other words, the control law u(x,r,n, t)=-K(r,n)x(t), reS, nez
results in a finite cost for the performance function defined in (2.5). But
from Theorem 2.1, we know that the control law (2.11) produces the minimum
cost Jmin for the performance function (2.5). Since steady state solutions

{§,k>0, ieS, keZ} to the coupled Riccat’ equations ao not exist, this
1
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implies Jmln=m. It follows from this that the control law
ulx,r,m, t)=-K(r,n)x(t), reS, meZ produces a finite cost Jngﬁxo, M>0 is a
contradiction. Hence the necessary condition is proven.
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Table 1 Summary of design and stability parameters for case (1)

Thresholds| FDI rates Gains Pik values Comments
T =1.8 q1 =0. 180 K =1.538 P =0.4235 P values
1 12 1 11 ik
T =2.0 g2 =1.060 | kK =a.225 | p_=2.7188 | °conversged.
12 2 12
L Hence the
q_ . =0.790 P :-0.1588 .
21 21 system is
q° =0.114 P_=1.3036 | stable.
21 22

Table 2 Summary of design and stability parameters

for case (2)

I

Thresholds| FDI rates Gains Pik values Comments
T =1.2 q- =0.575 | K =1.500 | P =0.4061 P values
1 12 1 11 ik
T =0.8 q° =2.103 | K =a.368 | P__=2.5783 | converged.
12 2 12
\ Hence the
q. =2.896 P =0.2016 .
21 21 system is
q° =1.059 P_=1.8586 | stable.
21 22

Table 3 Summary cf design and stability parameters

for case (3)

Threshold FDI rates Gains Pik values Comments
T =1.2 q' =0.575 | K =1.000 =1.03x10° | P values
1 12 1 11 ik
T =0.8 q° =2.103 | K _=2.250 |P =3.09x10° did not
. . | converge.
a) =2.89 5 =6-42x10° |
q° =1.059 =2.63x10% | not stable.
21 22
{
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Table 4 Summary of design and stability parameters for case (4)

ThresholdsI

FDI rates Gains Pik values Comments
T =3.0 q' =0.067 | K =1.400 [P =1.97x10'*| P values
12 1 11 1k
T =1.5 q® =0.114 | K_=2.250 |P_=8.77x10'¢| d1d not
2 12 2 12
) 4| converge.
a,,=1.542 P, =9-93x107 | o g
q° =0.334 P =4.71xi0"°] not stable.
21 22

Table 5 Summary of design and stability parameters for case (5)

Thresholds| ¥FDI rates Gains Pik values Comments
T =1.8 q1 =0.180 K =1.400 P =0.5377 P values
1 12 1 11 ik
T =2.0 q% =1.060 | K _=2.250 | P_=22.909 | converged.
2 12 2 12
. Hence the
q_ =0.790 P =0.3356 .
21 21 system is
q° =0.114 P_=16 800 | stable.
21 22
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3. SUMMARY OF SIGNIFIGANT FINDINGS

The key theoretical findings of this study are primarily the conditions for
stochastic stability of FTCS derived in Section 2.2. The results on
threshold determination in Section 2.1 and the results on linear state

feedback for LTI FTCS in Section 2.3 are of more practical interest.

Summarizing these findings:

For a nonlinear fault tolerant control system subject to random
failures with Markovian failure occurrence behavior and with control
based upon the decisions of a failure detection system with Markovian
decision behavior, the following conditions exist for analyzing its

stability:

Sufficient conditions exist based upon finding a stochastic
Lyapunov function candidate and testing its stochastic time
derivative in a particular region of the state space. If this
derivative is nonnegative, then almost sure stability in
probability of the system is assured. If this derivative is
strictly negative, then almost sure asymptotic stability in
probability is assured. (See Theorems 4.1 and 4.2 of Section
2.2.)

A sufficient condition for exponential stability in mean square of
the system is that the Lyapunov function candidate mentioned above

be bounded above and below by the scaled L2 norm of the state

vector and that the stochastic time derivative of the Lyapunov
function candidate be bounded above by a strictly negative

constant times the L2 norm of the state vector. Furthermore, such

a Lyapunov candidate is guaranteed to exist if the system is
exponentially stable in mean square. (See Theorems 4.3 and 4.4 of

Section 2.2.)

If the system is linear and time-invariant, failures affect only
the input matrix (or the dynamics matrix) in the state equation,
and the control is a linear state feedback with gain dependent

only on the decision of the FDI process, then a necessary and
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sufficient condition for exponential stability in mean square of
the system is that a set of coupled matrix Riccati equations have
a finite steady state solution. Furthermore, if the system is
exponentially stable in mean square, then it is also almost surely
asymptotically stable in probability. (See Theorem 5.1 of Section
2.2.)

The last finding above is particularly significant because it is both
necessary and sufficient and is relatively easy to check in practice.
Section 2.3 demonstrates this by actually applying this result to a simple

fault tolerant system with various state feedback control strategies.
y 24

The key finding of the threshold determination study summarized in Section
2.1 is that approximately optimal thresholds for sequential failure
detection tests can be found without numerically evaluating the solution to
a semi-Markov model of the system behavior. 1In fact, the approximate
optimization is accomplished without even constructing the entire semi-
Markov model. The results for one numerical example presented in Section
2.1 show that the performance of thresholds determined by this relatively

simple procedure can be very good.
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5. PAPERS AND PRESENTATIONS

Several papers and presentations related to the work reported here were
completed or submitted during or just after the reporting period. Some cf
these papers and presentations reported on work that was accomplished
primarily under the support of the precedent grants (AFOSR-84-0160 and
AFOSR-88-0131). These include:

B.K. Walker, N.M. Wereley, R.H. Luppold, & E. Gai, "Effects of

Redundai.cy Management on Reliability Modeling,” IEEE Trans. on

Reliability, vol. 38, no. 4, pp. 475-482, October 1989.

N.M. Wereley & B.K. Walker, "Approximate Evaluation of Semi-Markov
Chain Reliability Models," Reliability Engineering and System Safety,
vol. 28, pp. 133-164, 1990.

N.M. Wereley & B.K. Walker, "Approximate Evaluation of Generalized
Markov Health Models of Fault Tolerant Aerospace Systems," pp. 1419-
1424 in G. Apostolakis (ed.), Probabilistic Safety Assessment and

Management, Elsevier, New York, 1991.

The following papers and presentations were generated as a direct result of

this grant:

R. Srichander & B.K. Walker, "Selecting Thresholds for Sequential Fault
Detection Tests," to be presented at TFAC SAFEPROCESS’91 Conf., Baden-

Baden, Germany, September 1991. (Manuscript appears in Section 2.1.)

R. Srichander & B.K. Walker, "Stochastic Stability Analysis for

Continuous Time Fault Tolerant Control Systems," Proc. of 1991 American

Control Conf., (Boston), IEEE, New York, pp. 493-501, June 1991.

(Manuscript appears in Section 2.2.)

R. Srichander & B.K. Walker, "Stochastic Stability Analysis for
Continuous Time Fault Tolerant Control Systems," to appear in Intl. J.
of Control, 1992. (Identical to above except for revisions currently

in progress.)
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B.K. Walker & R. Srichander, "The Synthesis and Stability ~f a Feedbacn
Control Law for Continuous Time Fault Tolerant Control Systems," to be

submicted to Intl. J. of Control, 1991. (Draft manuscript appears in

Section 2.3.)
R. Srichander, "Fault Tolerant Control of Continuous Time Ssy*rems,"

Ph.D. thesis, Dept. of Aerospace Eng. & Eng. Mechanics, U. Cincinnati,
Cincinnati, Ohio, July 1990.
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