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Abstract

Spectral methods have proven invaluable in numerical simulation of PUN,
but the frequent global communication required r:.ises a fundamental barrier to

their use on highly parallel architectures. To explore this issue, we implemented

a three dimensional implicit spectral method on an Intel hyperculbe. Utilization
of about 50% was achieved on a 32 node iPSC/860 hypercube, for a 61 x 64 x 64

Fourier-spectral grid; finer grids yield higher utilizations.

Chebyshev-spectral grids are more problematic, since plane-relaxation based
miltigrid is required. However, by using a semicoarsening multigrid algorithm,
and by relaxing all multigrid levels concurrently, relatively high utilizations were
also achieved in this harder case. In fact, since the amount of work per processor

was higher in this case, we achieved somewhat higher utilization, typically 60%

on moderate sized problems. Thus spectral methods remain attractive on the
current generation of distributed memory architectures.

Research Qir~nrf..P Y Nr 1k-_ju.LAcs and Space Ad.iniwration under NASA Contract
NAS1-18605, while the sec&Jd author was in residence at ICASE.



1. Introduction. Spectral methods have proven of great value in numer-
ical simulation of turbulence, numerical weather prediction, acoustics, and in a
variety of other applications. Unlike difference methods, spectral methods accu-
rately approximate all frequencies present on the grid, and are thus well suited to
problems, like turbulene, where accurate resolution of evolving solutions is crit-

ical. However, on parallel machines, the frequent global communication required
by spectral methods seems to impose a fundamental barrier to their continued
use. In this paper, we study this issue, in the context of time dependent implicit

spectral methods.

Communication arises in spectral methods in two principal ways. First, eval-
uation of the spectral operator requires global ccmmunication, usually in multidi-
mcnsicnal FFT-. S,;tcd, in many problems, viscous stability limits constrain the

time step so severely that one must resort to implicit methods. This holds true

especially for Chebyshe -spectral methods, where the close spaci-ng o-1 collocation

points near boundaries imposes severe stability limits on explicit methods.

Given the frequent global communication required, it is not clear whether
spectral methods remain attractive on parallel architectures. That is, the subtle

numerical advantages of spectral methods may be completely swamped by the
high cost of communication and synchronization. This woild be unfortunate,
since there are many applications in which spectral methods are invaluable[2].

Thus we undertook to study the basic issues involved in implementing spectral
methods on distributed memory machines, in order to assess the extent to which

spectral methods remain competitive on these architectures.
To explore this issue, we designed and implemented an implicit spectral

method on the Intel iPSC/860 hypercube. Our program performs a multigrid-

based implicit solution of the time dependent, variable coefficient tHelmholtz equa-
tion,

ut = va(x, y, z). Vu - b(x, y, z)u + f(x, y, z,t),

on three dimensional tensor product grids, a problem arising in the Uzawa for-

mulation of the incompressible Navier Stokes equations and in ocean circulation

problems.

2. Finite Element Preconditioners. One can solve the nearly dense lin-
ear systems[2] arising in spectral methods in a variety of ways. One of the
best approaches is to use a Richardson or conjugate gradient iteration, precon-
ditioned by inversion of a low order finite element system. Suppose S is the
Fourier-spectral discrete Laplacian, and let H be a low order finite difference or

finite element operator. If H is the standard 5 point Laplacian in two dimensions,
the spectral condition number of the preconditioned spectral system, 1H'S, is
K =- 9) A7 while for hh-ar filte elements it is 1.44.



With this improved condition number, noted originally by Deville and Mund[41,
the convergence rate of optimal parameter Richardson iteration, given by

K- I

drops from 0.42 to 0.18, making Richardson iteration quite effective.

The condition number of the preconditioned Fourier-spectral operator can be
further improved by introducing mass lumping into the finite element discretiza-

tion. In one dimension, this amounts to replacing the finite element system

Ku = Mf

by an analogous system with a partially lumped mass matrix:

fl = 0.95 Al + 0.05 I

In higher dimensions, one gets the same effect by tensoring one dimensional
discretizations. Suppose one has the improved one dimensional finite clement
discretizations

K2u, = MY, f
IKtut = _AI'f t

along x and y mesh lines respectively. Then the analogous two dimensional finite
element discretization is:

(K3 0 M' + M 0K3) u = f

The condition number of the preconditioned spectral system, based on this im-
proved finite element discretization, is 1.26, for a Richardson convergence rate of
0.11. Since one typically needs to reduce the initial residual by four or five orders
of magnitude at each implicit time step, five or six preconditioned iterations are
needed per time step.

3. Fourier-spectral Grids. Fourier-spectral codes are used in problems
with periodic boundary conditions. For our model problem, at each time-step,
we form spectral [C cL21! by fast Fourier transforms, and invert the spectral

linear system by a sequence of preconditioned Richard-n itorations. Since the
convergence rate of the Richardson iteration is 0.11, one multigrid V-cycle suffices
to adequately solve the preconditioning finite element system at each iteration.

Data Distriaoiqin. Tile g, ids need o be ChsuIluuted across the processors in

a way that minimizes communication and balances the load. In this section, the

communication requirements of two alternate data distributions, which we refer
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Figure 1: Multigrid Using the Z-Distribution

to as the z- and the xy z- distributions, are compared. In the z-distribution, only
the z direction is blocked, so adjacent ry-planes are placed on each processor. In
the xyz-distribution, all three coordinate directions are blocked, so each processor
owns a subcube of the grid. Both data distributions force communication in both
the VET residual computation and in the multigrid solve.

With both distributions, we compute the VETs in all three coordinate di-
rections sequentially on processors, using global exchanges to bring all required
data into the processors. Since each xy-plane lies in a single processor with the
z-distribution, this distribution requires interprocessor communication only for
the _--direction EFT. In this case, a complete exchange of data, where eachi pro-

cessor sends a block of data of size n 3 /p 2 , for an it x n. x it grid, to the p - 1 other
processors, is -equired.

The xyz-distribution requires approximately twice as much commru nication
for the spectral residual computation. Communication is required so that eachi

processor holds xy-planes before the VETs in the x~ and y directions are calcu-
lated. In addition, before the z direction is calculated, processors must hold yZ
or xz planes. Both exchanges can be done with cachi processor sending messages
of size n 3 / 1)5/ 3 to p2/3 - 1 other processors.

P- f - id the xyz-distributionz also rcquire communication of bound-

ary data after each relaxation, restriction, and prolongation in the multigrid

V-cycle. In ;.he z-distribution, processor 1 must communicate boundary planes
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to processors i + 1 and i - 1. In the xyz-distribution, each processor must com-
municate bounddry data to six neighboring processors, hut the message sizes
are shorter. There is also additional interprocessor communication required with
both data distributions, when performing restriction or prolongation operations
between levels having idle processors. Since there are fewer active processors c=
each coarser level, the work of processors becoming idle needs to be sent to the
remaining active processors.

For an n x n x n problem, the number of grid levels in the multigrid V-cycle
is log 2 n. The number of grid points per level is 8', where I denotes the level
number, with 1 = 1 the coarsest grid. The number of grid points owned by
each processor, on the grid levels with no idle processors, is 8'/p for both data
distributions. The number of coarse grid levels containing idle prcessors for the
z-distribution is determined by log 2 p. On these levels, active processors contain
one xy-plane with size 41. In the xyz-distribution, the number of coarse grid
levels containing idle processors is determined by 1 lg 2 p, and on these levels,
active processors contain only one grid point. Figure 1 shows the communication
required by the z-distribution during the multigrid V-cycle.

Using this information, we computed the amount of communication required
per Richardson iteration for each of the data distributions. The message startup
and byte transfer rate were estimated using values reported for the iPSC/860
by Bokhari[1]. Data distribution in the z-direction led to higher communication
costs in the multigrid algorithm, due both to the greater load imbalance and
longer message lengths. However, the additional communication required by
the xyz-distribution for the FFTs led to higher communication costs for the
complete Richardson iteration. The amount of communication is a function of

both problem size and the number of processors. Generally, for large n and
p n, the xyz-distribution is more efficient, while for moderate n and p, the
z-distribution is superior. Based on this analysis, we implemented the Fourier-
spectral code using the z-distribution, since it appeared to be significantly more
efficient for our machine and problem sizes.

Experimental Results: Fourier Case. Tfhe experiments were performed
on the 32-processor iPSC/860 at ICASE. Using the best current compiler (Port-
land Group), our utilization was about 65% for the spectral residual calculation
and about 40% for the multigrid solution. The load imbalance and large num-
ber of cnimunication steps in multigrid led to this lower utilization. Thus our
overall utilization, including both the residual calculation and multigrid solution
was about 50%.

4. Chebyshev Grids. Solving the spectral equations on Chebyshev grids
is inherently more difficult, since the grid stretching leads to poor condition
numbers, and since the matrix corresponding to the pseudospectral discretization

4



PO 10P P3  P4  P5  P6  P7

Figure 2: Concurrent Multigrid Data Distribution

on Chebyshev grids is asymmetric. However, a more serious issue is the problem
of solving the finite element system on highly stretched grids. When the mesh
aspect ratios

AX/Ay, Ay/Ax

are large, point relaxation multigrid is ineffective. Line relaxation suffices to
resolve this problem in some cases; however, in the general case, one must use
plane-relaxation based multigrid.

There are two viable kinds of plane-relaxation based multigrid, algorithms

employing plane relaxation sweeps in all three coordinate directions and algo-

rithms using plane relaxation in only one direction. The latter are known as
"semi-coarsening" algorithms, since the grid is coarsened in only one coordinate

direction. That is, if the fine grid is an n x n x n grid, the next coarser grid
will be an n x n x n/2 grid, the one after that will be an n x n x n/4 grid, and

so on.

Semi-coarsening algorithms are cheaper than plane relaxation algorithms with
relaxation in all three coordinate directions, since plane relaxation is needed

in only one direction. They also converge faster and are less sensitive to grid
stretching[3]. In addition to these numerical advantages, this algorithm is attrac-

tive for parallel computing, since the z-distribution allows the plane relaxations
to be carried out with relatively little interprocessor communication.

Despite these advantages, there is an inherent problem with this approach;
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the sizes of the planes (10 not decrease as one goes to coarser grids,. leading to

verx poor utilizations. We addressed this issue by usi g concurrent it eration
il which all grid levels are simultaneously relaxed[5]. Corn libitingff a concurrent
relaxation multigrid algorithin in the a-direction, with a stanlard seni-coarsenin"

line relaxation algorithm in xy-planes, led to a robust aid effciti algorithlin
which is highly parallel and maps easily to distributed nenory architect ures.

Experimental Results: Chebyshev Case. The Chebyshev inuitigrid was
implenlented using a concurrc:t iteration nlultigrid scheme with red-black plane
relaxation. Figure 2 illustrates the (list ribut ion of fine and coarse grid planes

across the processors and the communication required during the rest rict ion

phase. The prolongation communication is similar to that for the restriction.
For the Chebyshev case, we obtained processor utilization of approximately 60%/,
for a :32 x 32 x 32 problem. The increase in utilization was due to Loth the im-
proved load balance and the increased ratio of cornlutation to coin,,inicat ion.

5. Conclusions. Mapping implicit spectral codes to distributed menlory
ardiitectures is 1dificult. While we achieved 50%c processor utilization on both the
F'ourier-spectral and Chebyshev-spectral codes, this performance is very sensitive
to the architecture's communications capabilities. If processor speeds were to
increase by a factor of ten, without a commensurate increase in communication
bandwidth, spectral methods would become virtually unusable.

As can be seen from our results, we obtained reasonable processor utiliza-
tion, despite the relatively small size of problems considered, without extensive
program "tuning." With larger problems, having perhaps 1024 mesh points in
every direction, we would expect to achieve 7.5% processor utilization on hy-
percubes having a few thousand processors, assuming the present communica-
tion/computation speed ratio. The amount of exploitable parallelism on this
class of applications is really very large.

To achieve high utilization on machines having thousands of processors will
require several improvements in our algorithm. Fiist, some level of overlap of
corrimiinication and cornputation is necessary. While this is trivial inl principle,
it, entails extensive programming changes. Second, alternate ways of distributing
the computation on the hypercube needed to be explored. While our approach

of (listributing the data in only the s-direction is optimal in some cases, it ex-
acerbates th multigrid "idle processor" problem on coarse grids and iincreases
total communication. Thus it may be better to use hybrid decompositions, in

which ome grid levels are decomposed in one way and others in other ways.
Third, new variants of multigrid[7], based on the use of multiple ,oarse grids'

V. tHackbusch is also exploring the use of multiple coarse grids to obtain robustness (personal

communication).
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promise to eliiiinate the nleedl for aindt~ planre relax ation altogether, allowinp
much igher lev-e!s of parallelism. This is p~rob~ably tie miost fruitful direct iori for

future research in this area.
Exploring these issues is interestiag, hut rather awkward at the m1-oment, with

thie current Intel software environment. The avaliability of better programrming
environments, such as the IKali. Dino, and P'ortran D languages[(;, 8] should dra-

mnatically ease exploration of such alternatives.
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