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AN OVERVIEW OF THE COMMON FLUID MODELS USED
IN FLUID-STRUCTURE INTERACTIONS

INTRODUCTION

There are occasions when engineers specialized in the mechanics of solids find themselves in the
position of having to model the response of a solid structure which is interacting with an adjacent fluid
whose density is not negligible in comparison to that of the solid. The loading on the solid by the fluid must
then be properly taken into account in order to accurately predict the response of the solid, but there is a lack
of background on the part of the engineer as to what is an appropriate fluid model to couple to the one that
he is already using for the solid. The overview given by this report should enable such an engineer to obtain
at least a cursory understanding of the origin and limitations of the fluid mode!s which are in common use
for such purposes. With this as a base, the references given should allow one to pursue both greater details
and actual computer code implementations.

This report derives and discusses some of the fluid models more commonly used in fluid-structure
interaction problems. The emphasis here is on linearized equations governing disturbances generated in, and
propagated through, the fluid since this forms such a large part of the fluid-structure interaction literature.
The fluid may either surround the solid, be contained by the solid in an internal cavity, or both. In many of
the cases in which the fluid surrounds the solid the fluid is idealized as extending to infinity. This is a source
of difficulty in numerically modeling the physical system in such cases since one cannot directly extend the
computational grid to infinity. Accurate truncation to a finite volume of fluid would create external boundary
condition problems. A common approach to circumventing this problem in the linearized case is to refor-
mulate the fluid model into self-contained equations on the solid-fluid boundary which directly govern the
fluid pressure response there. Several versions of this approach are discussed in this report. They are all
based on a parent fluid model which is derived and discussed next.

FLUID MECHANICS FORMULATION

The behavior of the fluid in fluid-structure interaction problems is governed by the mass conserva-
tion equation

ou,
Dp + Py = 0, 0))
/)
the momentum conservation equation
30,
J
and the energy conservation equation
2 9q;
pD(e+7%) = puiFi+£;(u,-0‘.j) -ﬁj-' 3)

where the usual Einstein convention of summation over repeated subscripts is assumed, and where
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p = fluid mass density,

u; = fluid velocity vector,

F; = body force per unit mass,
cij = stress tensor,

e = internal energy per unit mass

q; =heat flux vector

X; = spatial position vector.
The “material derivative™ D can be interpreted as a time derivative following the motion of the fluid because
d =
4 fp8av = fpDBav
| 4 v
holds for © any extensive property of the fluid and V the volume of any fluid particle of fixed mass moving

with the flow. Taking the vector inner product of u; with (2) and subtracting the results from (3) gives the
aliernative energy equation
du; dg;

pDe = 6, n— - )
The above goveming equations must be supplemented by appropriate equations-of-state, by appro-
priate constitutive relations, and by appropriate boundary conditions. The most important one at the solid-
fluid interface consists of the no-slip, no-penetration boundary condition
¥ = (u) solid ©)
at each point of the interface at each instant of time. The stress tensor takes the form
o, =- p8,.j +dy (6)
for isotropic fluids, where
P = (thermodynamic) fluid pressure and

d;; = “viscous” part of the stress tensor.




For Newtonian fluids the “viscous” part of the stress tensor is linearly related to the spatial derivatives of
the fluid velocity as

4o = au,S du; du; 2 au,‘s
o= e k(a3 ()
where

K = (shear) viscosity and

T = expansion (or bulk) viscosity.

Substituting (6) into (4) and then using (1) leads to the
du; dq
~-®)Dp = dit =2
pDe (p)DP d,jb;j » m
version of the energy equation.

The nonequilibrium setting generally present in a flowing fluid requires appropriate interpretations
[1, pp. 151-152] for thermodynamic variables such as entropy. With this understanding, the thermodynamic
relations

op
Dp = &*Dp+ (L) Ds (8)
9s’p
and
TDs = De+pD(%) ©)

are available, for which

2 _ ,Op, _
¢ = (a-‘-’-),-localspeedofsoundsquared,

S = entropy per unit mass, and
T = absolute temperature.

Equation (9) is the well known Gibbs relation for a simple compressible substance. The thermodynamic re-
lation [1, p. 170}

9’y ¢, °

2
(ap) _ pcPT
p p

where
B = coefficient of thermal expansion and
Cp= specific heat (at constant pressure),

combines with (8) to give




pBT

Dp = c"sz--— . (10)
p
Combining (1) and (10) leads to
pBT
c D +p = —Ds. (11)
3_ p
Combining (2) and (6) leads to
D -4-a F.+ ad
pPDy; o = = pFr; ;fj . (12)
Combining (7) and (9) leads to

Equations (11), (12), and (13), which govern the fluid behavxor. are still quite general.

The first assumption usually made for fluid-structure interaction problems is that dissipative and
diffusive-type processes (of molecular transport origin), which lead to internal irreversibilities, are negligi-
ble. This translates into the specific conditions

q;=0

d,; =0,

which represent an inviscid-fluid, negligible-heat-conduction postulate. Implementing these conditions in
(13) leads to

Ds=0. (14)
Using (14) in (11) and the inviscid-fluid condition d,-j = 0 in (12) gives
Dp+p 2% 0 (15)
P +pcC =
9,
and
pDu,+ ? = pF,; (16)
X

respectively. Equations (15) and (16) represent the govemning equations for the fluid behavior under the giv-
en assumptions. One problem which originates from the inviscid assumption is that (5) can no longer be
satisfied in its entirety in conjunction with (15) and (16). This issue will be addressed more fully later.

The fluid behavior in fluid-structure interaction problems is most often thought of in terms of dis-
turbances in the fluid which propagate through it. The fluid models can be categorized according to whether
the disturbances are of small amplitude, as is the case to be considered in this report, or of finite amplitude
{2, 3]. An additional consideration is whether the disturbances are produced by, or interact significantly




with, a background flow field through which they propagate [4]. The widely-used fluid model emphasized
in this report assumes that the total flow field decomposes into a steady, mean (background) flow field of
slowly varying velocity and small-amplitude disturbances superimposed on this mean flow. This decompo-
sition takes the form

P =Potp,; an
P = Py+p, (18)
Uy = wtuy (19)
?=c+cd, _ (20)

where those variables labeled with a 0 subscript are associated with the mean flow and those labeled with a
1 subscript are associated with the small-amplitude disturbances and hence they have small magnitudes. The
steady mean flow assumption can be expressed as

oF,
=i=0 @1

dujg

py

whereas the slowly varying velocity assumption for the mean flow takes the form
au‘o

= (29)

*

X,
J
at Jeast to first order. The mean flow is independent of the disturbances and, in particular, it exists even in

their absence. This means that the mean flow field must separately satisfy (15) and (16). Substituting (21)
through (24) into these equations leads to

b‘x'; = pof;- (25)
These two equations combine to give the relation
PokioF; = 0. (26)

Inserting (17) through (20) into (15) and (16), neglecting second order terms, and utilizing (22) through (26)
leads to the linearized equations




T T

and
9p,
PoDo“n*‘;;l =pFi. @8
where

_ 0 0
is the material derivative for the mean flow.

The next simplifying assumption consists of the

L—f «1 29)

Co
constraint on the magnitude of the body force, where

F = a representative magnitude of the body force per unit mass and
L = a representative length scale of the structure.

The constraint (29) is certainly true for the most common case for which the body force is gravity [1, p. 166).
The pressure gradient term in (28) is of the order [S, p. 245]
2
CoPy

1vi-0( )

ol _ e
Vel ( 2 )

Co

in magnitude and hence the estimate

follows for equation (28). (The "2 " symbol represents the norm of A for any given A with components
A;. In this case it is the Euclidean norm so that it represents the magnitude of the vector.) The estimate

u,F
Potn”; .o(l_f)

20U, c
Pocoax_j
is also obtained, for equation (27), so that (27) and (28) reduce to
Dy, +p czauj =0 (30)
1 0 o&}
and
PoDok + oo @D
o¥n b_x_,




under the constraint of (29). Equations (30) and (31), which govemn the fluid behavior under all of the above
assumptions, are valid for an inhomogeneous fluid for which P, and cg are functions of position.

Equation (31) can be integrated easily for the common case in which P, is taken to be a constant
and the gmdisnt of a velocity potential ¢, is utilized for u;, . This assumption, along with the assumption
of constant ¢y, will be taken as valid for the remainder of the report. This leads to

PoPo® +p, = f(1)

as the integration of (31) for an arbitrary function f(¢) of time only. There is no loss in generality in taking
f to be zero since any nonzero f can be absorbed into the definition of ¢, as

(9),,, = ¢ -p5 [of () ar
without affecting u;, . The above expression hence reduces to

new

P = "poDo¢1 32)

with the velocity potential defined by

%9,
Uiy = . (33)
il a;:
Equation (32) can be substituted into (30) to give
%
D(23¢l - C(z,a—xﬁ- =0 (34)
f i |

which, with appropriate boundary conditions, can be solved for the disturbance solution ¢, . The complete
model for the fluid disturbance is hence given, at this point, by equations (32) through (34) and appropriate
boundary conditions. Operating on (34) with —p,D,, and using (32) leads to

2 233’1

Dop, - “O3xx, 0 35)

as the equation for p,.
Classical Wave Equation of Acoustics

When the above equations are transformed into a reference frame which is at rest with respect to
the fluid they then describe the fluid as an acoustical medium whose behavior is governed by the classical
wave equation. This is the simplest, and probably the most common, rigorous fluid model in use for fluid-
structure interaction problems. It, and approximations to it, will form the basis of the remainder of the report.
The simplest way to obtain the version of the above fluid model in a frame at rest with respect to the fluid
istotake u,; = O in all of the above expressions so that D, reduces to d/0t. To ease the notational burden,
the subscript 1 on p,, ¢, and #;, will be dropped. In addition, since p, and ¢, are never referred to, the
subscript 0 on p, and ¢, will be dropped so that p will represent the constant p, and ¢ will represent the
constant c. The p of (17) will be denoted by p,,,,; so that (17) becomes




Piotal = PotP - (36)

Equations (23) and (25) are repeated here as

gi:° =0, )
and

%}) = pF; (38)

[}

under this new notation. (Equation (21) is not needed since it is implied by (37), (38), and the fact that pis
a positive constant.) Equations (32), (33), and (34), which govemn the fluid disturbance propagation, become

p= ’Pg!: ’ 39)
_ %
u" — 5;; ’ (40)
and
2
ii’—c’az" =0. @)
atz x] f)
As in the case for ¢, the classical wave equation
3p_ 2%
—5=~C =0, 42)
af  oxdx;

results, in this case from (35), for the acoustic pressure p. The disturbance part of the total mass density also
obeys the same wave equation, but it is not usually explicitly used in modeling the fluid.

Other than boundary conditions, which will be discussed in the next subsection, equations (36)
through (41) give a complete model, henceforth referred to as the potential-based model, of the fluid behav-
ior. Equation (42) is an equivalent substitution for (41) in the above complete set, for ¢ 2 £, if the initial
condition

% ;0%

—=C =0 (43)
s % j)t=t°

is imposed on ¢. This is most often satisfied by the condition that ¢ is a constant, usually zero, at some time
! = 1, and earlier. An alternative fluid model, henceforth called the pressure-based model, is hence given
by equations (36) through (40), (42), and (43). The solution to the goveming equations ultimately provides
a history of the distribution of p,,,,, along the solid-fluid interface, which is required for predicting the re-
sponse of the solid.




Boundary Conditions

Either of the above alternative, equivalent models is incomplete without appropriate boundary con-
ditions. The boundary condition for p, is simply

Po(xi0) = Poo » (44)
where
X;o = a given, fixed point in the fluid or on its boundary and
Poo = @ prescribed constant value.

Both of the alternative models are based on solving the classical wave equation

) d

_ﬁ’ - c2 zw =0, 45)
ot XjOX;

where Vs is either ¢ or p, depending on the model. The appropriate boundary information for this equation

is to specify either y (Dirichlet), dy/dn (Neumann), or a linear combination (mixed) of them on the

boundary, where

d -0
;;—nja?jand

n; = the unit normal vector on the boundary, specified as either inwa-d or (usually) outward.
In addition to this, one needs to specify an initial condition for ¥ (x;, f) as
V(x,0) = wy(x) . (46)
where
Y, (x;) is the prescribed intial distribution of V.

In each model the closest approximation that one can make to (5) at the solid-fluid interface requires
the Neumann boundary condition. Taking the ordinary vector inner product of (5) with n; gives the result

Uy = () gytig > “n
where
U, = n;u; is defined as the normal component of the velocity vector.
Taking 9/0¢ of (5) and then taking the vector inner product of the results with 7, leads to

n = (34) p1ig “8)




where
du ’
a, = nfgi is defined as the normal component of the acceleration vector.

Both (47) and (48) are only approximations to (5) since they each contain only part of the information con-
tent of (5). Equations (47) and (48) are not equivalent as can be seen from the identity

du, on,
The vector dn;/dt is easily seen to be tangential because

n.n.
i = e ED =8 =0

If dn;/dt is negligible or zero then taking 9/0¢ of (47) gives (48), and integrating (48) over time from f,,

to t gives (47) for ¢ > ¢, if (47) is true at ¢ = ;. This is at least approximately the case when the displace-
ments of the solid during its response are small. The relation (47) is used for the potential-based fluid model
as can be seen by taking the vector inner product of (40) with n; and substituting (47) into the results to get

g% = (), 0ia (50)

as the appropriate fluid-solid interface boundary condition. Taking the gradient of (39), taking the vector
inner product of the results with 7;, and substituting (48) into the results leads to

0
3% = =P () ;g GDh

as the appropriate fluid-solid interface boundary condition for the pressure-based fluid model. The two mod-
els hence lead to different results when the unit normal at the interface is not constant in time.

In many of the problems in fluid-structure interactions the fluid surrounds the solid and goes off to
infinity in all directions. In these cases one needs to consider an additional boundary condition which applies
as one approaches infinity. A radiation boundary condition, which will be discussed later where its meaning
will be easier to understand, is usually appropriate.

REFORMULATION INTO INTERFACE INTEGRAL EQUATION

The source of the disturbances propagating through the fluid may be the solid itself, or the source
may be located within the fluid, or both. The modeling of incident pressure waves which are emanating from
a source within the fluid and impinging on the solid can be handled by including a source term G (of bound-
ed extent) in the governing wave equation (45) for the disturbances, so that

Ay 9y
E};FX;-C 5; =0 (52)

govems the disturbances for \ either the velocity potential or the acoustic pressure, where ¢ = 0 through-
out most of the fluid. Let ¥ denote the Fourier transform, with respect to time, of , so that

V(@) = 20 [Z w()exp(inndt

10




and similarly for any other dependent variables. As in [6], equation (52) will be reformulated into a surface
integral equation through the intermediate use of Fourier transforms. Taking the transform of (52) and using

oy
5 = —iov(e) . (53)
leads to
d
v +K'§ =5, (54)
T,
where
k = w/c defines k.

An equation governing the solution to (54) on the surface bounding the fluid can be obtained
through the use of a Green's function G defined by

2
(ﬁ%;+ )G (x, %) = 8(x,~x) , (55)
J

where

= the Dirac delta function, (actually a generalized function or distribution).

For the case where (55) is solved for an infinite space one gets the solution

exp (ikr)
G( ) | —— 4“' ’ (56)
where 7; and r are defined by
r= ()2, (58)
The two identities
6V __ 3 6, _ 3 OV,
3 Vo, O, = oy Vay) "3 0
'%2% gj‘,\?a; ¥8-Ga.
which follows from (54) and (55), can be combined to give
o = 3 —0G, 9 OV
wS-Go-l-;;j(wrxj) 3?,(63?,)' (59)

Let S, denote the surface of a sphere of radius R whose fixed center lies within the solid. The radius R is
taken to be large (ultimately infinity) so that the surface S is completely within the fluid and it completely

11




contains all of the source G. (The source G is zero outside of S g-) Let S denote the solid-fluid interface
surface which encloses the solid. Let Sy denote the surface defined by

and denote the fiuid volume which Sy encloses by V. Integrating (59) over V leads to
I\VSdV' = jc;adv +!(wg%-cg¥)dsn (60)
v v ,

where the unit normal in the surface integral is outward with repect to the fluid, upon using Gauss’ theorem,
which states that

a ' - ] ] v -
JEAJ.(:: Jdv = :!njAj(x ) ds
for reasonably-behaved, but otherwise arbitraryA; and for any (reasonable) given volume V which is en-
closed by surface § with outward unit normal n;. Let V. denote the volume of the source G, so that

-— s
G is only nonzero within V, . ... Splitting Sy into its cgt':;:mem surfaces Sp and S, equation (60) be-
comes

= —9G OV, 3G _ Oy, .,
Vj GodV'+£(wW-Ga—n—,)dS +J(w-a-? Gyo)ds'. (61)
source R
The radiation boundary condition, with G from (56), leads to the vanishing of the S g integral in
(61) as R approaches infinity. One formulation of the radiation boundary condition is to take the ¥ on Sp
to be a purely outgoing wave of the form

[wsav =
| 4

_ kR
¥ = v, (6, ¢)ff’-’:—l : 62)

where , satisfies

3%y,

2 (sin05") + ﬁé? =0
so that { satisfies the homogeneous (G equal zero) version of (54),
R, = x';~x;,
R=(RR)V,
x';ison Sy
X;q is the center of the sphere Sp , and
6 and ¢ are the spherical polar angles specifying the direction of R; .

(The equation for W, can be transformed into Laplace's equation in | and ¢ by the substitution P =log[(1-
c0s0)/sin0).) For large R one finds that

r-R[l -f’/:—;j+ ]

12




and
€ .
r'l-R°l[l+—ﬁ+...]
R
to first order in €/R, where
i = X~ X0
_ 2
€= (ejej) .

r=(rrp? = R[l+ (—Rz-fﬁ)] ,and
%«1 .

These approximations to 7 and r " are substituted into (56) and the resulting G, along with (62), are then
substituted into the S integral term of (61). It is easily seen that the lowest order (r = R) approximation

gives identically zero for this S, integral term and hence the first order terms must be retained. The result
is that the S, integral in (61) is of order 1/R so that the integral vanishes as R goes to infinity.

The G term in (61) represents the waves emanating from the (transformed) source G in an infinite-
space fluid, that is, in the absence of the solid. As such, it represents the incident part of the wave which
impinges on the solid from sources intemal to the fluid. It is hence relabeled as

Vine = | GBaV (63)

where the subscript inc denotes the incident part of the wave. Taking the inverse transform of (63) and us-
ing the relation

f(t-a) = exp(iva)f(w) (64)

for arbitrary (reasonably behaved) f, with f = G and a = r/ ¢ since k = ©/c, leads to the well known
infinite space result

1 o(x',t—-r/c)
Vine 00 0) = =2 | ‘ av’

(65)
v r

upon using (56), where r is given by (58). The ,_ of (65) satisfies (52) in an infinite fluid (no solid).

When the radiation boundary condition and (63) are inserted into (61) and R is then taken to infinity
one gets the result

[oaV" = §, 0+ V- G3¥yas.
K)

13




Substituting (56) into this result gives
—_ _ = 1 -3 , . — -1 v . '
awﬁdV‘ = vm+5‘!{r njrj(zkr-l)\v+r a—n—,}exp(tkr)ds
upon using

or ”'j" j

e L (66)

where r; and r are defined by (57) and (58) respectively. Switching to an inward unit normal vector with
respect to the fluid gives

- o 1o 3, g 10V -
{v&dV‘ = V‘HC+E-£{" n'ry(1=ikr)y—-r F}gxp(tkr)dS . 67

where the n'; vector is now outward with respect to the solid. The delta function, at least the specific one
defined by (55) through (58), has the property that

f(x;) for x; inside V
0 for x; outside V

Q
thf (x;)for x;on S

[rensxy-xpav = (68)
v
for continuous functions f, where S is the surface enclosing the given volume V and

€2 = (the solid angle subtended by the surface S at x;) = 2% for smooth surfaces.

(The first two properties are universal for all delta functions.) Using W for f in (68) and substituting the
results into (67) gives

— —_ 1 -3 , ey N = -1W . .

Y(x, k) = Zw‘“+ ﬁg{r njrj(l —ikr)y-r 3?} exp (ikr)dS (69)
as the governing integral equation for ¥ on S assuming that S is smooth,

_ — 1¢,-3, oo = -10Y . .

Yix,t) =V, + ETJ{' 3n jrj(l —ikr)y-r 15?} exp (ikr)dS (70)

S
as the equation for finding ¥ within the fluid after having first found it on S from solving (69), and
- At 1 g ] : vy -1 v . ]
0= w,.“+5£{r n'jri(1 = ikr) § =1~ 55} exp (ikr) dS )

as the equation for x; within the solid. Equation (71) serves as an altemative to (69) for determining ¥ on
S. The transform of (50) with ¥ = ¢ for the potential-based model, or the transform of (51) with ¥ = p for

the pressure-based model, are substituted for diy/dn’ in (69) to obtain a governing integral equation for the
fluid response on S which includes the boudary conditions.




Solving the Equations in Frequency Space

In some of the cases for which cither the solid constitutive behavior is linear or the solid behavior
is prescribed it is useful to solve for the fluid response in the frequency space setting represented by (69)
and the transform of either (50) or (51). It is well known [7], however, that (69) with prescribed d//dn’
and zero \7.'l . does not yield a unique solution at certain discrete values of k (that is, characteristic frequen-
cies, since ’c = W/ c). Reference [7] offers the remedy of using a discretized version of (71) at selected
locations to supplement the main model, a discretized version of (69), so as to form an overdetermined sys-
tem which is solved by least squares. This approach,which is implemented in the computer code CHIEF, is
able to provide accurate solutions even at the problem frequencies. Alternative approaches exist [8 and 9]
for overcoming the same problem, such as that embodied in the computer code CONDOR.

Time Domain (Retarded) Formulation

Equation (69) can be reformulated into

%, _
ot

— s 1 -3, ,=.T -10y . '
Y(x, k) = 2\vm+ﬁ£{r njrj(\y-o-z r W}exp(zkr)ds

using (53). The inverse transform of this equation gives

V(x,0) =2y, + ﬁ!{r"n‘,r,-((wﬂ £<g—:" N -Gy as )

upon using (64), where the pointed brackets denote evaluation at the retarded time as
N =f(x'yt- E) for an arbitrary function f of position and time,
r is given by (57) and (58), and
n'; is the outward unit normal with respect to the solid.
Equation (72) can be combined with (50) to produce
O(xn ) = 20, + 5 [t o+ L0 yas - ~ [ a8

for y = ¢ in the potential-based model, or with (51) to produce

1 -3 r a ' p -1 '
p(x,0) = 2p,-..c+ﬁ£{r nyr () + 2N Y as +ﬁ£{r ((@y),  PrdS' (4
for ¥ = p in the pressure-based model. Methods which are based on the solution of either (73) or (74) are
referred to as retarded potential methods. Computer code descriptions based on discretized versions of either

(73) or (74) can be found in references [10-12].
APPROXIMATIONS TO RETARDED POTENTIAL METHOD
There are three common approximations to the retarded potential method which are referred to as

the early-time approximation, the late-time approximation, and the DAA (Doubly Asymptotic Approxima-
tion).
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Early-Time Approximation
If § is planar and p;,.. is taken to be zero then (74) reduces to
- p -l ]
POt = o ! {r'(a,),, 1 dS (75)
since n';r; = 0 everywhere, where n'; is now a constant unit vector along S and S = (plane of z = con-
stant). Ifl, starting from zero, ¢ represents the elapsed time and if the solid surface normal acceleration is zero

for negative times then the response at any given point on S can be influenced only by points of S within a
radius of ct. Equation (75) hence reduces further to

ct (2%

p(x,y0) = 2—‘;nd0 0 aj(x+rcos9,y+rsin0,t-;-£)d9dr (76)

upon using dS' = rdrd® with planar polar coordinates, where it is understood that a; represents the solid
surface acceleration. The early-time approximation assumes that

cte«l

whereL is a characteristic length scale for S. The fact that 0 € r < ¢t bounds r leadsto r « L, so that a
Taylor series expansion gives

a,-(x+rcos0,y+rsin9,t-£) -a,.(x,y,t-g) +0(r)

for the a; in (76). (Note that r/c is not small compared to ? in this case and hence no expansion is warranted
for the time dependence.) For small enough ¢, the radius ¢t becomes small enough that the initial assump-
tion of a planar surface becomes true locally even for an S with global curvature, at least as long as the sur-
face is smooth. Equation (76) now reduces to

- ct _r
p(x)y") = pndo aj(x:y’t C)dr

since there is no longer any 6 dependence in the integrand. The change of variable £’ = ¢ — r/ ¢ transforms
the above integral into

px,yt) = pcnjjaaj (x,y,1)dr, an

which is one form of the early-time approximation. Differentiating (77) with respect to time gives another
useful form

g!i, = pc(a,) g 78
on S for the early-time approximation. Higher order results for small ¢t can be found in reference [13].
Lsate-Time Approximation
The late-time approximation is based on the assumption

ct»L,
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which leads to ¢ » 7/c because r is ultimately bound by 7 < L in magnitude if L is the length scale asso-
ciated with the largest global extent of S. (The above approximation can also be thought of in terms of the
wavelength A sothat /@ = A » L.) A Taylor expansion for small 7/ ¢ for generic retarded functions f

) =f(x':"‘£) "f(x':»l)-(z,r-)g—{(xpt)+ (= )za? -.t)+0(£)3 79
is hence relevant in this case. Using (79) in (72) with zero for \, _, gives
v(x, 1) = %c [ -righyas (80)
upon retaining only lowest order terms. Bquafim (80) can be derived from Laplace’s equation
gj’y =0 ‘ @81

in direct analogy to the derivation of (72) from the wave equation (52) with no intemal sources (sothat ;.
and © are zero). Equation (80) can hence be thought of as representing the goveming equation on S for

solutions to (81). If y is taken to be the velocity potential ¢ then (80) describes a potential flow and the

flow is hence incompressible near the solid body [, p. 280]. Equation (81), equation (50) on S, and the van-
ishing of the gradient of ¢ at infinity together form a boundary value problem for ¢ which can be reformu-
lated in terms of a distributed surface source on S so as to ultimately produce an added mass model [14] of
the fluid response. An alternative route to an added mass model is initiated by taking ¥ = p in (80) to get

p=TIp-p ltbb—- (82)

where

ry = zlg{r n';r,f} ds' for I operating on a generic function f,

L 16)) -zg-f f)dS'fortbopemnngonagemncﬁmcnonf and

h

I'f is a shorthand notation for I" (f) and similarly for ®.
The use of an operator notation, where the integrations of (80) are symbolically represented as the operators
I" and ® in (82), is common in functional analysis and allows a great economy and conciseness in the de-
velopment. Inserting (51) into (82) leads to
p=Tp+ 0(0,,) solid '
which can be symbolically solved for p as
p= A (al) solid (83)
where

I = the identity operator and
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A= (I-1)7'® for (1-T)"" as the inverse of the operator (/-T").
The inverse T~' of an operator T', when it exists, has the property
T'Tf=TTY=f

for a generic function f, the Laplace transform and inverse transform being examples of such a T and !
respectively. An alternative, less abstract, interpretation consists of taking I" and @ as discretized versions
of the cotresponding integral operators of (80) so that I" and @ are then matrices and p, dp/dn, and the
solid normal surface acceleration are then column vectors. Under such an interpretation, which would also
be the practical approach in an actual implementation, equation (82) becomes an approximation to (80), the
I becomes the identity matrix,

(l--I")'l becomes the inverse of the matrix (/-T), and
A is the matrix multiplication of (/—=T") ! and ®.

The presentation in [14] is, in fact, given in terms of matrices originating from a finite clement discretiza-
tion. The force on the solid per unit area due to the fluid is —pn; and hence, by Newton’s second law and
(83), the A can be interpreted as an “added mass per unit area” operator (or matrix) which is due to the pres-
ence of the fluid. In other words, for an element at the surface S in a finite element subdivision of the solid,
adding the fluid force acting on this element to the other such forces is equivalent to adding a mass operator
to the mass of the solid for that element in the equations of motion.

Doubly Asymptotic Approximation

The Doubly Asymptotic Approximation (DAA) originated with Geers [15] and represents a smooth
joining of the early-time and late-time (in the form of an added mass model) approximations. The simplest
such joining consists of

Aap+ cp = pcA(a,) 84)
ot pcp = P n’ solid’

so that (84) reduces to (78) when the dp/d¢ term dominates and (84) reduces to (83) when the p term dom-
inates. (It is assumed that the inverse of A exists.) Equation (84) is denoted by DAA |, the next higher order
version being denoted by DAA, [16). An advantage of the DAA over the retarded potential method is that
the DAA equation is local in time. This leads to substantial computational savings for the DAA when the
methods are implemented numerically. The tradeoff is that the DAA is less accurate than the retarded po-
tential method in a variety of circumstances [17].
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