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AN OVERVIEW OF THE COMMON FLUID MODELS USED
IN FLUID-STRUCTURE INTERACTIONS

INTRODUCTION

There are occasions when engineers specialized in the mechanics of solids find themselves in the
position of having to model the response of a solid structure which is interacting with an adjacent fluid
whose density is not negligible in comparison to that of the solid. The loading on the solid by the fluid must
then be properly taken into account in order to accurately predict the response of the solid, but there is a lack
of background on the part of the engineer as to what is an appropriate fluid model to couple to the one that
he is already using for the solid. The overview given by this report should enable such an engineer to obtain
at least a cursory understanding of the origin and limitations of the fluid mode!s which are in common use
for such purposes. With this as a base, the references given should allow one to pursue both greater details
and actual computer code implementations.

This report derives and discusses some of the fluid models more commonly used in fluid-structure
interaction problems. The emphasis here is on linearized equations governing disturbances generated in, and
propagated through, the fluid since this forms such a large part of the fluid-structure interaction literature.
The fluid may either surround the solid, be contained by the solid in an internal cavity, or both. In many of
the cases in which the fluid surrounds the solid the fluid is idealized as extending to infinity. This is a source
of difficulty in numerically modeling the physical system in such cases since one cannot directly extend the
computational grid to infinity. Accurate tnmcation to a finite volume of fluid would create external boundary
condition problems. A common approach to circumventing this problem in the linearized case is to refor-
mulate the fluid model into self-contained equations on the solid-fluid boundary which directly govern the
fluid pressure response there. Several versions of this approach are discussed in this report. They are all
based on a parent fluid model which is derived and discussed next.

FLUID MECHANICS FORMULATION

The behavior of the fluid in fluid-structure interaction problems is governed by the mass conserva-
tion equation

Dp+pa- = 0, (1)

the momentum conservation equation

pDui = pF 1+ , (2)
J

and the energy conservation equation

pD(e+ 7 ) = puF,+ a-(Ua) -, (3)

where the usual Einstein convention of summation over repeated subscripts is assumed, and where

Manuscrip( approved May 29, 1991.



p = fluid mass density,

u i = fluid velocity vector,

F, - body force per unit mass,

a0 = stress tensor,

e - internal energy per unit mass

qj = heat flux vector

U2 = UiUi

I = time, and

x, = spatial position vector.

The "material derivative" D can be interpreted as a time derivative following the motion of the fluid because

W~Jp~dV = JpDOdV
V V

holds for 0 any extensive property of the fluid and V the volume of any fluid particle of fixed mass moving
with the flow. 1dkng the vector inner product of ui with (2) and subtracting the results from (3) gives the
alternative energy equation

pDe = u q (4)
j i

The above governing equations must be supplemnted by appropriate equations-of-state, by appro-
priate constitutive relations, and by appropriate boundary conditions. The most important one at the solid-
fluid interface consists of the no-slip, no-penetration boundary condition

Ui = (u1) solid (5)

at each point of the interface at each instant of time. The stress tensor takes the form

Oij - -P~ij dij (6)

for isotropic fluids, where

p a (thermodynamic) fluid pressure and

di= "viscous" part of the stress tensor.
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For Newtonian fluids the "viscous" part of the stress tensor is linearly related to the spatial derivatives of
the fluid velocity as

= allk Oui au 2 fluk8 i)
Xk (FX ;T' '

where

IL = (shear) viscosity and

11 = expansion (or bulk) viscosity.

Substituting (6) into (4) and then using (1) leads to the

pDe - (e) Dp = d Cluj- c-j (7)

version of the energy equation.

The nonequilibrium setting generally present in a flowing fluid requires appropriate interpretations
[1, pp. 151-152] for thermodynamic variables such as entropy. With this understanding, the thermodynamic
relations

Dp = c2Dp + (T)Ds (8)

and
1

TDs = De+pD(-) (9)
p

are available, for which

a(-) local speed of sound squared,

s = entropy per unit mass, and

T = absolute temperature.

Equation (9) is the well known Gibbs relation for a simple compressible substance. The thermodynamic re-
lation [1, p. 1701

( - pc2PT
Ts- Cp

where

= coefficient of thermal expansion and

cp = specific heat (at constant pressure),

combines with (8) to give

3



Dp = c-2Dp - -P~rs. (10)
CP

Combining (1) and (10) leads to

C7aj p

Combining (2) and (6) leads to

pDui+ a = pFi+ 'xdj. (12)

Combining (7) and (9) leads to

d ui aqj
pTDs= d/Z,- T-. (13)

Equations (It), (12), and (13), which govern the fluid behavior, are still quite general.

The first assumption usually made for fluid-structure interaction problems is that dissipative and
diffusive-type processes (of molecular transport origin), which lead to internal irreversibilities, are negligi-
ble. This translates into the specific conditions

qi= 0

and

which represent an inviscid-fluid, negligible-heat-conduction postulate. Implementing these conditions in

(13) leads to

Ds = 0. (14)

Using (14) in (11) and the inviscid-fluid condition dj = 0 in (12) gives

Dp +p = 0 (15)

and

pDu+a- = pFi  (16)

respectively. Equations (15) and (16) represent the governing equations for the fluid behavior under the giv-
en assumptions. One problem which originates from the inviscid assumption is that (5) can no longer be
satisfied in its entirety in conjunction with (15) and (16). This issue will be addressed more fully later.

The fluid behavior in fluid-structure interaction problems is most often thought of in terms of dis-
turbances in the fluid which propagate through it. The fluid models can be categorized according to whether
the disturbances are of small amplitude, as is the case to be considered in this report, or of finite amplitude
[2, 3]. An additional consideration is whether the disturbances are produced by, or interact significantly
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with, a background flow field through which they propagate [4]. The widely-used fluid model emphasized
in this report assumes that the total flow field decomposes into a steady, mean (background) flow field of
slowly varying velocity and small-amplitude disturbances superimpos on this mean flow. This decompo-
sition takes the form

P = PO +P 1  (17)

p = po+p 1  (18)

uI = UiO + Un (19)

C2 =2 2
C =c+C 1 , (20)

where those variables labeled with a 0 subscript are associated with the mean flow and those labeled with a
1 subscript are associated with the small-amplitude disturbances and hence they have small magnitudes. The
steady mean flow assumption can be expressed as

= (21)

at-o
= 0 (22)

at-
- = .O,(23)

whereas the slowly varying velocity assumption for the mean flow takes the form
autou, -0 (24)

at least to first order. The mean flow is independent of the disturbances and, in particular, it exists even in
their absence. This means that the mean flow field must separately satisfy (15) and (16). Substituting (21)
through (24) into these equations leads to

UJOY' / =

and
ap0

- p0F,. (25)

These two equations combine to give the relation

poujoF, = 0. (26)

Inserting (17) through (20) into (15) and (16), neglecting second order terms, and utilizing (22) through (26)
leads to the linearized equations
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Dop, + oo -8 = -pouyiFy (27)

and

ODOUil + = p1F, (28)

where

Do= + )o+

is the material derivative for the mean flow.

The next simplifying assumption consists of the
LF

2- a1 (29)
CO2

constraint on the magnitude of the body force, where

F = a representative magnitude of the body force per unit mass and

L = a representative length scale of the structure.

The constraint (29) is certainly true for the most common case for which the body force is gravity [1, p. 166].
The pressure gradient term in (28) is of the order [5, p. 245]

in magnitude and hence the estimate

IP1II MOLF\IIvPil C

follows for equation (28). (The I1 A11 symbol represents the norm of A for any given A with components
A. In this case it is the Euclidean norm so that it represents the magnitude of the vector.) The estimate

Po"s1 s o?.1

is also obtained, for equation (27), so that (27) and (28) reduce to

DoP= + PCoa'i 0 (30)

and
ap,

PoDo +- - (31)
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under the constraint of (29). Equations (30) and (3 1), which govern the Suid behavior under all of the above
assumptions, are valid for an inhomogeneous fluid for which p0 and co ae functions of position.

Equation (31) can be integrated easily for the common case in which p0 is taken to be a constant
and the gradient of a velocity potential 01 is utilized for uiI. This assumption, along with the assumption
of constant c0 , will be taken as valid for the remainder of the report. This leads to

p0Do,+pl =f(t)

as the integration of(31) foran arbitrary functionf(1) of time only. There is no loss in generality in taking
f to be zero since any nonzero f can be absorbed into the definition of 01 as

()ew = 01-pot Jf(t')di'

without affecting ui,. The above expression hence reduces to

P =-P0D0 j (32)

with the velocity potential defined by

U ***** * (33)

Equation (32) can be substituted into (30) to give

Co - = 0 (34)

=6 0
ii

which, with appropriate boundary conditions, can be solved for the disturbance solution 01. The complete
model for the fluid disturbance is hence given, at this point, by equations (32) through (34) and appropriate
boundary conditions. Operating on (34) with -PoDo and using (32) leads to

= 0 (35)

as the equation for pI.

Classical Wave Equation of Acoustics

When the above equations are transformed into a reference frame which is at rest with respect to
the fluid they then describe the fluid as an acoustical medium whose behavior is governed by the classical
wave equation. This is the simplest, and probably the most common, rigorous fluid model in use for fluid-
structure interaction problems. It, and approximations to it, will form the basis of the remainder of the report.
The simplest way to obtain the version of the above fluid model in a frame at rest with respect to the fluid
is to take Ujo = 0 in all of the above expressions so that D o reduces to alai. To ease the notational burden,
the subscript 1 on p 1, * , and U11 will be dropped. In addition, since p, and c, are never referred to, the
subscript 0 on p0 and co will be dropped so that p will represent the constant p0 and c will represent the
constant c0 . The p of (17) will be denoted by Prtoal so that (17) becomes
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Po = Po + P " (36)

Equations (23) and (25) are repeated here as

-0 o (37)

and
apoax= pr (38)

i

under this new notation. (Equation (21) is not needed since it is implied by (37), (38) and the fact that p is
a positive constant.) Equations (32), (33), and (34), which govern the fluid disturbance propagation, become

p= -pa, (39)

u = -, (40)

and

a20 A0. (41)

As in the case for ,the classical wave equation

a = 0, (42)

results, in this case from (35), for the acoustic pressure p. The disturbance part of the total mass density also
obeys the same wave equation, but it is not usually explicitly used in modeling the fluid.

Other than boundary conditions, which will be discussed in the next subsection, equations (36)
through (41) give a complete model, henceforth referred to as the potential-based model, of the fluid behav-
ior. Equation (42) is an equivalent substitution for (41) in the above complete set, for t 2 to, if the initial
condition

- = 0 (43)

is imposed on 0. This is most often satisfied by the condition that 0 is a constant, usually zero, at some time
I = to and earlier. An alternative fluid model, henceforth called the pressure-based model, is hence given
by equations (36) through (40), (42), and (43). The solution to the governing equations ultimately provides
a history of the distribution of p,0 tl along the solid-fluid interface, which is required for predicting the re-
sponse of the solid.

. . . . .. .. . .. . ... . . . .. .. . . .. . .. .. . . . .. .. . .. .. .. . .. . ... ... .. .. .. . . ... .. . .. .. .. . . . . .. .



Boundary Conditions

Either of the above alternative, equivalent models is incomplete without appropriate boundary con-
ditions. The boundary condition for Po is simply

Po (Xo) = Poo, (44)

where

Xio =a given, fixed point in the fluid or on its boundary and

Poo a prescribed constant value.

Both of the alternative models are based on solving the classical wave equation
W _ 24 = 0, (45)

where 4 is either * or p, depending on the model. The appropriate boundary information for this equation
is to specify either v (Dirichlet), €)V/an (Neumann), or a linear combination (mixed) of them on the
boundary, where

g= njxand

n, = the unit normal vector on the boundary, specified as either inwad or (usually) outward.

In addition to this, one needs to specify an initial condition for 4,(x,, t) as

V (xj, 0) = Wo (x), (46)

where

,Wo (x i) is the prescribed intial distribution of 1v.

In each model the closest approximation that one can make to (5) at the solid-fluid interface requires
the Neumann boundary condition. Taking the ordinary vector inner product of (5) with n5 gives the result

Un = (Un)sold, (47)

where

UR = nfuj is defined as the normal component of the velocity vector.

Talking a/i)t of (5) and then taking the vector inner product of the results with n, leads to

a. = (a) solid' (48)

9



where

auj
a - n- is defined as the normal component of the acceleration vector.

Both (47) and (48) are only approximations to (5) since they each contain only pan of the information con-
tent of (5). Equations (47) and (48) are not equivalent as can be seen from the identity

aun anj
-= u + a. (49)

The vector ani/at is easily seen to be tangential because

an, a(njn , a 1
fjj-j -- - o.

If ani/t is negligible or zero then taking a/at of (47) gives (48), and integrating (48) over time from to
to t gives (47) for t > to if (47) is true at t = t0 .This is at least approximately the case when the displace-
ments of the solid during its response are small. The relation (47) is used for the potential-based fluid model
as can be seen by taking the vector inner product of (40) with ni and substituting (47) into the results to get

- = (u)o a  (50)

as the appropriate fluid-solid interface boundary condition. Taking the gradient of (39), taking the vector
inner product of the results with n,, and substituting (48) into the results leads to

a- = -p (a.) sod(51)

as the appropriate fluid-solid interface boundary condition for the pressure-based fluid model. The two mod-
els hence lead to different results when the unit normal at the interface is not constant in time.

In many of the problems in fluid-structure interactions the fluid surrounds the solid and goes off to
infinity in all directions. In these cases one needs to consider an additional boundary condition which applies
as one approaches infinity. A radiation boundary condition, which will be discussed later where its meaning
will be easier to understand, is usually appropriate.

REFORMULATION INTO INTERFACE INTEGRAL EQUATION

The source of the disturbances propagating through the fluid may be the solid itself, or the source
may be located within the fluid, or both. The modeling of incident pressure waves which are emanating from
a source within the fluid and impinging on the solid can be handled by including a source term a (of bound-
ed extent) in the governing wave equation (45) for the disturbances, so that

aF; a C (52)
X jw

governs the disturbances for W either the velocity potential or the acoustic pressure, where a = 0 through-
out most of the fluid. Let i denote the Fourier transform, with respect to time, of iW, so that

(o) = (2x)-l"'J..1v4(t)exp(iot)dt

10



and similarly for any other dependent variables. As in [6], equation (52) will be reformulated into a surface
integral equation throgh the intermediate use of Fourier vansforms. Mlbing the transform of (52) and using

FW =-oWo (53)

leads to

'i) 2V- (54)

where

k = w/cdefines k.

An equation governing the solution to (54) on the surface bounding the fluid can be obtained
through the use of a Green's function G defined by

a e) G(xi,x'1 ,) = (x - x',) ,(55)

where

8the Dirac delta function, (actually a generalized function or distribution).

For the case where (55) is solved for an ifinite space one gets the solution

G(, ' exp (ikr) (56)

whemre and r are defined by

r= xL -X' (57)

r = (rjrj) 12(58)

The two identities

ax -X-((Ga-)
and

which follows from (54) and (55), canb cmied to give

I I lx

Let SR denote the surface of a sphere of radius R whose fixed center lies within the solid. The radius R is
taken to be lage (ultimately infinity) so that the surface SR is completely within the fluid and it completely

I1I



contains all of the source 6. (The source d is zero outside of SR.) Let S denote the solid-fluid interface
surface which encloses the solid. Let ST denote the surface defined by

ST = SUS R

and denote the fluid volume which ST encloses by V. Integrating (59) over V leads to

J*8d= JG + -G G >)ds' (60)
V V

where the unit normal in the surface integral is outward with repect to the fluid, upon using Gauss' theorem,
which states that

f;-rAj (x',) dY' = Jn'jAj (x'5) dS'
V J S

for reasonably-behaved, but otherwise arbitraryA i and for any (reasonable) given volume V which is en-
closed by surface S with outward unit normal ni . Let V$ource denote the volume of the source F, so that
C is only nonzero within Vsorce. Splitting ST into its component surfaces SR and S. equation (60) be-
comes

f8 Gd-V + f- GT-d'+ (*G (61)
jiisdf -) JS +~~ I an'-~ GW-)d.

VVB" ST7he radiation boundary condition, with G fro (56), leads to the vanishing of the SR integral in

(61) as R approaches infinity. One formulation of the radiation boundary condition is to take the ij on SR
to be a purely outgoing wave of the form

exp (ikR)
R (62)

w h e r e wO s a tis fi e s -WO

F- s O- ) + sin-0¢ W

so that ii satisfies the homogeneous (d equal zero) version of (54),
=

Ri =X i- xiO "

R = j V2,

x' I is on SR

xi0 is the center of the sphere SR and

0 and* are the spherical polar angles specifying the direction of Ri.

(The equation for Wo can be transformed into Laplace's equation in gt and by the substitution p = log[(l-
cosO)/sin O].) For large R one finds that

12



and

to first order in OR, where

Ei  i x- xio .

C~ (e.e) '

r,= £.-R i forthe r, of(57),

xi is on S ,

r- (rjrj) V2 = R 1+ (, P ] 2and

E4(

These approximations to r and r 1 are substituted into (56) and the resulting G, along with (62), are then
substituted into the SR integral term of (61). It is easily seen that the lowest order (r - R) approximation
gives identically zero for this SR integral term and hence the first order terms must be retained. The result
is that the SR integral in (61) is of order 1/R so that the integral vanishes as R goes to infinity.

The d term in (61) represents the waves emanating from the (transformed) source d in an infinite-
space fluid, that is, in the absence of the solid. As such, it represents the incident part of the wave which
impinges on the solid from sources internal to the fluid. It is hence relabeled as

*,I= G&dV' (63)

where the subscript inc denotes the incident part of the wave. Taking the inverse transform of (63) and us-
ing the relation

f (t - a) = exp (iwa)f(0) (64)

for arbitrary (reasonably behaved) f, with f = C and a = r/c since k = o/c, leads to the well known
infinite space result

Winc (xI, 0 C= -( v.Jt.. rI dV' (65)

upon using (56), where r is given by (58). The ViC of (65) satisfies (52) in an infinite fluid (no solid).

When the radiation boundary condition and (63) are inserted into (61) and R is then taken to infinity
one gets the result

13



Substituting (56) into this result gives

JfodV' = l,.c+ - {r" n'r (ikr -1) * + r -v exp(ikr)dS'

upon using
Jr n'.r.
' =i - 'ri (66)

where r, and r are defined by (57) and (58) respectively. Switching to an inward unit normal vector with
respect to the fluid gives

S +C ~jJ I 3nhjr (l I ) -i'r) exp (ikr) dS'. (67)

where the n', vector is now outward with respect to the solid. The delta function, at least the specific one
defined by (55) through (58), has the property that

f(xi) for xi inside V

Jf(x' ) 8 (x -.x',) dV' = 0 for xi outside V (68)
V a f(x,) for x, on S

for continuous functions f, where S is the surface enclosing the given volume V and

= (the solid angle subtended by the surface S at xi) = 2x for smooth surfaces.

(The first two properties are universal for all delta functions.) Using iq for f in (68) and substituting the
results into (67) gives

-(fi k) = 2 /+ l r- '1~ - ikr) j- (69)"

( 2lc V- i -- N exp (ikr) dS' (69)
zSn

as the governing integral equation for i on S assuming that S is smooth,
l(x, t = i iijC + 4I {r-3 n'.r (-ikr) ii-i- Iexp (ikr)dS' (70)

as the equation for finding iq within the fluid after having first found it on S from solving (69), and

0 =r n,(+ f- ikr) F- exp(ikr)dS' (71)

as the equation for xi within the solid. Equation (71) serves as an alternative to (69) for determining * on
S. The transform of (50) with * = j for the potential-based model, or the transform of (51) with * = for
the pressure-based model, are substituted for ZI/n' in (69) to obtain a governing integral equation for the
fluid response on S which includes the boudary conditions.

14



Solving the Equations in Frequency Space

In some of the cases for which either the solid constitutive behavior is linear or the solid behavior
is prescribed it is useful to solve for the fluid response in the frequency space setting represented by (69)
and the transform of either (50) or (51). It is well known [7], however, that (69) with prescribed iaq/n'
and zero i .c does not yield a unique solution at certain discrete values of k (that is, characteristic frequen-
cies, since -00/c). Reference [7] offers the remedy of using a discretized version of (71) at selected
locations to supplement the main model, a discretized version of (69), so as to form an overdetermined sys-
tem which is solved by least squares. This approach,which is implemented in the computer code CHIEF, is
able to provide accurate solutions even at the problem frequencies. Alternative approaches exist [8 and 9]
for overcoming the same problem, such as that embodied in the computer code CONDOR.

Time Domain (Retarded) Formulation

Equation (69) can be reformulated into

iq(xi, k) = 2iin + lri( r - ) - F -la* exp(ikr)dS'

using (53). The inverse transform of this equation gives

3 rV (Xi, t) = 2Vi c + T r3'fV+(- C (an ))dS' (72)

upon using (64), where the pointed brackets denote evaluation at the retarded time as

f) =f(x i, t - ) for an arbitrary function f of position and time,
C

r is given by (57) and (58), and

n'i is the outward unit normal with respect to the solid.

Equation (72) can be combined with (50) to produce

(x, t) = 2-inc + n. (( S' (73)
2zS (i S nS

for I# = in the potential-based model, or with (51) to produce
p (x,, t) = 2pi + I + - 3 njrj ((P) + rp,) 1 r"1( (an.) solid) dS' (74)

p (x, t)= 2i~c  ( ) } dS' + -I
2S -at2nS

for N = p in the pressure-based model. Methods which are based on the solution of either (73) or (74) are
referred to as retarded potential methods. Computer code descriptions based on discretized versions of either
(73) or (74) can be found in references [10-12].

APPROXIMATIONS TO RETARDED POTENTIAL METHOD

There are three common approximations to the retarded potential method which are referred to as
the early-time approximation, the late-time approximation, and the DAA (Doubly Asymptotic Approxima-
tion).
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Early-Time Approximation

If S is planar and Pine is taken to be zero then (74) reduces to

p (Xi, 0) =- r- I _ ( (a.) solid )) dS' (75)
2S

since n'r - 0 everywhere, where n'i is now a constant unit vector along S and S = (plane of z = con-
stant). If, starting from zero, t represents the elapsed time and if the solid surface normal acceleration is zero
for negative times then the response at any given point on S can be influenced only by points of S within a
radius of ct. Equation (75) hence reduces further to

p (x, y, ) = ± nj 0 c0 a (x + rcosO, y + rsinO, r - ) d9dr (76)

upon using dS' = rdrdO with planar polar coordinates, where it is understood that a, represents the solid
surface acceleration. The early-time approximation assumes that

ct 4c L

whereL is a characteristic length scale for S. The fact that 0:< r < ct bounds r leads to r 4 L, so that a
Taylor series expansion gives

r r

ai (x+ rcos0, y + rsin0, t- c) -a 5 (x,y,t -) + 0 (r)
C C

for the ai in (76). (Note that r/c is not small compared to t in this case and hence no expansion is warranted
for the time dependence.) For small enough t, the radius ct becomes small enough that the initial assump-
tion of a planar surface becomes true locally even for an S with global curvature, at least as long as the sur-
face is smooth. Equation (76) now reduces to

p(x,y,t) = pnjJotaj(x,y,t--r)d dr

since there is no longer any 0 dependence in the integrand. The change of variable t' = t - r/c transforms
the above integral into

p(x, y, ) = pcn1Jo'ai (x, y, t') dt' (77)

which is one form of the early-time approximation. Differentiating (77) with respect to time gives another
useful form

ap pc (an) (78)--- solid

on S for the early-time approximation. Higher order results for small ct can be found in reference (13].

Late-Time Approximation

The late-time approximation is based on the assumption

ct,, L ,
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which leads to I * r/c because r is ultimately bound by r:5 L in magnitude if L is the length scale asso-
ciated with the largest global extent of S. (The above approximation can also be thought of in terms of the
wavelength X so that c/co X * L.) A Taylor expansion for small r/c for generic retarded functions f

= f(x'l,t- r ) -f(x' 1 t)- (f)ff t) + r()1 2aY-(xi 1)+O )3 (79)
C CdtV ai -5- C

is hence relevant in this case. Using (79) in (72) with zero for 4 isc ives

1(xi,,) = fr-3njrjv -rJ-IiS (80)

upon retaining only lowest order terms. Equation (80) can be derived from Laplace's equation

a2 0 (81)

in direct analogy to the derivation of (72) from the wave equation (52) with no internal sources (so that ViC
and (T are zero). Equation (80) can hence be thought of as representing the governing equation on S for
solutions to (81). If W is taken to be the velocity potential * then (80) describes a potential flow and the
flow is hence incompressible near the solid body [5, p. 280]. Equation (81), equation (50) on S, and the van-
ishing of the gradient of $ at infinity together form a boundary value problem for t which can be reformu-
lated in terms of a distributed surface source on S so as to ultimately produce an added mass model [14] of
the fluid response. An alternative route to an added mass model is initiated by taking V = p in (80) to get

p =rp- -1 -ap

p = P p ;-7, (82)

where

r -3) rn',rf} dS' for r operating on a generic functionf

D(1) = - (r-') dS' for 0 operating on a generic f'nctionf, and
2xS

rf is a shorthand notation for r () and similarly for 0.

The use of an operator notation, where the integrations of (80) am symbolically represented as the operators
r and 0 in (82), is common in functional analysis and allows a great economy and conciseness in the de-
velopment. Inserting (51) into (82) leads to

p = rp + 0 (a) Mid

which can be symbolically solved for p as

p = A (an) sotid (83)

where

I = the identity operator and
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A = (I-r)-l for (I-f)- as the inverse of the operator (I-r).

The inverse T " of an operator T, when it exists, has the property

rl-Tf= T=rf = f

for a generic function f, the Laplace transform and inverse transform being examples of such a T and r
respectively. An alternative, less abstract, interpretation consists of taking r' and 4) as discretized versions
of the corresponding integral operators of (80) so that r and 4 are then matrices and p, ap/n, and the
solid normal surface acceleration are then column vectors. Under such an interpretation, which would also
be the practical approach in an actual implementation, equation (82) becomes an approximation to (80), the
I becomes the identity matrix,

(i - n-1 becomes the inverse of the matrix (I - r), and

A is the matrix multiplication of ( - r)- 1 and 0.

The presentation in [14] is, in fact, given in terms of matrices originating from a finite element discretiza-
tion. The force on the solid per unit area due to the fluid is -pni and hence, by Newton's second law and
(83), the A can be interpreted as an "added mass per unit area" operator (or matrix) which is due to the pres-
ence of the fluid. In other words, for an element at the surface S in a finite element subdivision of the solid,
adding the fluid force acting on this element to the other such forces is equivalent to adding a mass operator
to the mass of the solid for that element in the equations of motion.

Doubly Asymptotic Approximation

The Doubly Asymptotic Approximation (DAA) originated with Geers [15] and represents a smooth
joining of the early-time and late-time (in the form of an added mass model) approximations. The simplest
such joining consists of

Aa + pcp = pcA (an) solid' (84)

so that (84) reduces to (78) when the apiat term dominates and (84) reduces to (83) when the p term dom-
inates. (It is assumed that the inverse of A exists.) Equation (84) is denoted by DAA1, the next higher order
version being denoted by DAA2 [16]. An advantage of the DAA over the retarded potential method is that
the DAA equation is local in time. This leads to substantial computational savings for the DAA when the
methods are implemented numerically. The tradeoff is that the DAA is less accurate than the retarded po-
tential method in a variety of circumstances [17].

ACKNOWLEDGMENTS

This work was supported by DARPA Naval Technology Office.

REFERENCES

1. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge,
1967).

18



2. 0. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics, (Consultants
Bureau, New York, 1977).

3. R. H. Cole, Underwater Explosions (Dover, New York, 1948).

4. E. A. Muller, "Flow Acoustics", in Theoretical and Applied Mechanics, W. T. Koiter, ed. (North-
Holland, Amsterdam, 1976), pp. 155-170.

5. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1959).

6. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975) pp. 427-432.

7. H. A. Schenck, "Improved Integral Formulation for Acoustic Radiation Problems", J. Acoust. Soc.
Am., Vol. 44, 1968, pp. 41-58.

8. A. J. Burton and G. F. Miller, "The Application of the Integral Equation Method to the Numerical
Solution of Some Exterior Boundary Value Problems," Proc. R. Soc. London Ser. A, Vol. 323,1971,
pp. 201-210.

9. C. C. Chien, H. Rajiyah, and S. N. Atluri, "An Effective Method for Solving the Hypersingular In-
tegral Equations in 3-D Acoustics," J. Acoust. Soc. Am., Joumal, Vol. 88, 1990, pp. 918-937.

10. K. M. Mitzner, "Numerical Solution for Transient Scattering from a Hard Surface of Arbitrary
Shape - Retarded Potential Technique," J. Acoust. Soc. Am., Vol. 42, 1967, pp. 391-397.

11. H. Huang, G. C. Everstine, and Y. F. Wang, "Retarded Potential Techniques for the Analysis of Sub-
merged Structures Impinged by Weak Shock Waves," in Computational Methods for Fluid-Struc-
ture Interaction Problems AMD-Vol. 26, T. Belytschko and T. L. Geers, ed. (American Society of
Mechanical Engineers, New York, 1977), pp. 83-93.

12. M. Tamm, "Parametric Patch Surface Geometry Definition for the Three-Dimensional Retarded Po-
tential Technique," NRL Memorandum Report 5904, 1987.

13. C. A. Felippa, "A Family of Early-Tine Approximations for Fluid-Structure Interaction," J. Appl.
Mech., Vol. 47, 1980, pp. 703-708.

14. J. A. DeRuntz and T. L. Geers, "Added Mass Computation by the Boundary Integral Method," Int.
J. Numer. Methods Eng., Vol. 12, 1978, pp. 531-550.

15. T. L Geers, "Residual Potential and Appoximate Methods for Three-Dimensional Fluid-Structure
Interaction Problems," 1. Acoust. Soc. Am., Vol. 49, 1971, pp. 1505-1510.

16. T. L. Geers, "Doubly Asymptotic Approximations for Transient Motions of Submerged Structures,"
J. Acoust. Soc. Am., Vol. 64, 1978, pp. 1500-1508.

19



17. H. Huang, "A Qualitative Appraisal of the Doubly Asymptotic Approximation for Transient Anal-

ysis of submerged Structures Excited by Weak Shock Waves," NRL Memorandum Report 3135,
1975.


