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f ABSTRACT

The effect of small amplitude, time-periodic, freestream disturbances on an
otherwise steady axisymmetric boundary layer on a circular cylinder is considered.
Numerical solutions of the problem are presented, and an asymptotic solution,
valid far downstream along the axis of the cylinder is detailed. Particular
emphasis is placed on the unsteady eigensolutions that occur far downstream, which
turn out to be very different from the analogous planar eigensolutions. These
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axisymmetric eigensolutions are computed numerically and also are described by
asymptotic analyses valid for low and high frequencies of oscillation.
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1. Introduction

The cffect of time-pcriodic disturbances in the freestream of an
otherwise steady boundary layer has reccived considerable
attention over the ycars. This work was initiated by Lighthill (1954),
who considcered the flow past a semi-infinite flat plate, with a small
amplitude, timc-periodic freestream disturbance, and obtained solutions
closc to and far from the lecading edge. This work was later cxtended
by Rott and Roscnweig (1960), Lam and Rott (1960) and Ackcrberg and
Phillips (1972). Of particular intcrest arc the unsteady cigensolutions
that form part of the far-downstrcam flow. Onc sct of thesc was
studicd by Lam and Rott (1960), Ackcrberg and Phillips (1972) and
Goldstein (1983) and has exponentially decaying solution downstrcam (sec
(8.1) below), with the featurc of decreasing decay rate with jncreasing
order; thesc cigensolutions arc determined primarily by conditions close
to the wall, A sccond sct of cigensolutions was constructed by Brown
and Stewartson (1973a,b) and has the fcaturc of jncreasing decay rate with
increasing order; these cigensolutions arc determined from conditions far
away from the wall, in the outer recaches of the boundary layer.

Indced, these scemingly diverse characleristics of the cigensolutions
have been the subjcct of some controversy over the yecars. However,
Goldstcin ¢t al (1985) includc a quite detailed discussion of this
dichotomy; bricfly, thesc authors cexpound the argument that the two scts
of cigensolutions arc in fact, cquivalent, but with the Brown and Stewartson
(1973 a,b) cxpansions being valid at much longer distances
(0(In § x)¥ >> 1) downstrcam, than the Lam and Rott (1960) cigensolutions
(which arc valid for O(x) >> 1). Further, Goldstein ct al (1983) point
out that as the order of the Lam and Rott (1960) cigensolutions incrcascs,
the asymptotic bchaviour of the (inner) solution is likely to be achicved

at progressively targer values of x, since, for x > 1, the scale of the




region associated with the cigensolutions moves away from the wall with
increasing order. This, in some ways is not inconsistent with the fact
that the Brown and Stcwartson (1973a,b) eigensolutions are centcred at the
outer edge of the steady boundary layer. Goldstein et al (1983) also
conclude, using thesc arguments, that the limit as x — « and the limit
as n — » (where n is the order of the eigensolution) cannot be
interchanged. However, and significantly, Goldstein (1983) went on to
illustrate thc physical importance of the Lam and Rott (1960)
eigensolutions, by showing how these develop, far downstream, into unstable
Tollmien-Schlichting waves.

The problcm of ''order-onc'' unstcady, frcestrcam disturbances (but
such that the frecestream does not reverse direction) has been tonsidered
by a number of authors. Pedley (1972) considered this problem,
asymptotically close to and far from the lcading edge, whilst Phillips
and Ackerberg (1973) presented numerical solutions to the problem for
locations from the leading edge to far downstream, their method being
based on a time-marching scheme. More recently, Duck (1989) presented
a new numerical method to tackle this problem, based on a spectral
treatment in time, and a spatial finite-difference scheme, which properly
takes into account regions of reversed flow that inevitably occur.

The problem of steady flow along a circular cylinder (in particular
far downstream along the axis of the cylinder) is itself interesting, partly
because it is so very different in naturc (rom that of planar (i.c. Blasius
type) flow. Early investigations of this problem include the work of
Glauert and Lighthiil (1955) and Stcwartson (1955), whilst Bush (1976) has
presented a morc modern approach to thc problem. Notably, in the far
downstream limit, the problem becomes double structurced, with an inner
layer (comparable in thickness with the radius of the body) which is

predominantly viscous in nature, and an outer layer (much larger than the




radius of the body) which is a region of predominantly uniform flow (sce
Scction 4 for fuller details).

In this paper we investigate the effect of small amplitude, time-
periodic, freestream disturbances on the axisymmetric boundary layer on
a circular cylinder. Particular cmphasis is placed on the cigensolutions
relevant to the far-downstream flow, which turn out to be markcdly
different from the analogous planar cigensolutions of Lam and Rott (1960),
and posscss some interesting propertics. Further, since an additional
lengthscale is present in the problem (i.c. the body radius), a sccond
non-dimensional parametcr (in addition to thc Reynolds number) is present,
and we arc abic to cxploit this paramctcer from an asymptotic point of view.

The layout of the paper is as follows. In Scction 2 the problem is
formulated, and in Scction 3 a fully numerical finite-difference scheme
for the stcady and unstecady problem is described, and results for the wall
shcars arc prescented, for axial locations from the lecading cdge to far
downstrcam. In Scction 4 the development of the (inhomogencous) component
of the flow is described. In Scction § the presence of cigensolutions far
downstrcam is clucidated, the cigenprobliem is formulated and expanded in the
form of an asymptotic serics. In Scction 6 numcrical solutions of the
(lcading-order) cigenproblem are described, whilst in Section 7 the
cigenproblem is considered in the asymptotic limits of high and low

freestream oscitlation. In Scction 8 the conclusions of the paper are

presented.




2. Formulation

We introduce a cylindrical polar coordinate system (ar, 0, az), where
a is the radius of the body (assumcd constari), and ihc z axis lies
along the axis of the body, with z =0 corresponding to the tip of
the body.

Supposc that the fluid is incompressible and of kincmatic viscosity
v, the freestream velocity is taken to be purcly in the =z dircction,
and of the form W, (1+8 cos ml*). where W,, 8 and o arc constants,
with & << 1. Notc that although in all the cnsuing analysis we shall
confinc our attention exclusively to freestrcam velocitics of the above
form, it is rclatively straightforward to extend our idcas to other
spatial and temporal (periodic) variations,

The velocity ficld is written as W, (u,0,w), and non-dimensional time
as t =ot*. Further, it is assumed that u,w, and indced the entire
solution is indcpendent of O, implying axial symmctry.

In this problem there arc two fundamental non-diménsional paramcters,
namcly a Reynolds number bascd on cylinder radius

Wit

R=T’ (2])

which will bc assumed to be targe throughout this paper, together with

a frequency paramcter

B = . (2.2)

w2
The usage of the boundary-laycr approximation requires (hat
Z =Rz (2.3)
is the kecy axial lengthscale, and
U = Ru (2.4)
is the important order-onc radial velocity scale. The boundary-layer

cquations then become (to lcading order)
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Law, v ydv % 1w 1w L. a5

B at dz or ar2 rar Pat

togethcr with
d d _
32 (l’W) + I (rU) = (), (2.6)

Since it will be assumed that § << 1, the unstcady component of the flow
may be taken to bc a small periurbation about the stecady solution
(a similar trcatment has been uscd in many of the related planar studics
cited in the previous scction, for cxample Lam and Rott 1960, Lighthill

1954, Ackerberg and Phillips 1972). Specifically

U(r,Z,t) = Ug(r,Z) + & Re (U(r.Z)cit}) + 0(82), (2.7)
w(r,Z,1) = wo(r,Z) + & Re {w(r,Z)cil) + 0(82),  (2.8)
The stcady componcnt of the solution is described by
wo 240 4 yy 0 - Pvo , 1 g (2.9)
07 ar Ar2 ar
gZ (r wp) + g? (rUp) =0, (2.10)

with wo(r=1) = Ug(r=t) =
wgp— 1 as 1 — e, (2.11)

whilst the unstcady perturbation to this flow is given by

W, W, G, W v 9% I,
B 9z dZ ar or ar2 rar B
(2.12)
gz (rv) + ?;F (+0) = 0, (2.13)
subject to
w(r=1) = Ui(r=1) =
W1l as r — o, (2.14)

To close the problem we further supposc that as Z — 0, planar

conditions prevail, with the boundary-layer thickness bccoming

negligible in this limit. A similar procedurc was followed by Scban and




Bond (1951) and was further utilisced in a rclated problem by Duck and
Bodonyi (1986). The (stcady) system (2.9) - (2.11) then reduces to the
‘Blasius (planar) problem as Z — 0, with corrections duc to curvature
ceffects given by Schan and Bond (1951). As Z — o, the far downstream,
double-structured solution of Glauert and Lighthill (1955),
Stewartson (1955) and Bush (1976) cmcrges from this systiem.
Regarding the unstcady system (2.12) - (2.14), this becomes quasi-stcady
in form as Z — 0, with the timc derivative term vanishing in this limit.
In the following scction fully numcrical solutions to both the stcady
and unstcady system and considerced, and in the later scctions of this paper
the far-downstrcam bchaviour of the unstecady component of the flow is

investigated in somec dctail.
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3. _Numerical solution of the problem.

In this scction we consider fully numerical solutiuns to systems
(2.9)-(2.11) and (2.12)-(2.14).

Two strecamfunctions arc introduccd, onc for thc stcady component of

the flow, the other for the unstcady component, viz ¥ and ¥y, respeclively

given by
-1 g¥ 1 ¥
Uo=va72 Y0 = 7o (3.1
gl - 1o (3.2)
The problem dctcrmining ¥ and y is then
Yerr - e SR
r r2
=ly vy -yly - L (3.3)
—? r rZ Z[ rr ',-‘2 r]' M
T
~ v Vr _ | ~ ~
v - -+ L= = Y ez Yy Yz
e B B L )
" I Vrr. EQ ] - [ Yre . 312]
Zirv T Z ] r
+iy-‘ﬂ (3.4)
with ¥=¥ =y=y,=0 on r=1, (3.5)
Yoo Yp = T aS 1~ o, (3.6)

Anticipating a Blasius-typc solution as Z — 0, thc problem for
0<Z <1 was cast in terms of
= (r-1)/2%, { = 2%, (3.7)
as the independent variables, with the dependent variables taken as
Fo and F, where
Y= Fp (1.0), v = LF.0). (3.8)
For Z>1, ¥(r,Z) and y(r,Z) werc trcatced as thc unknown variables.
Inboth Z<1 and Z > 1 the systems were writicn as a system of

first order cquations in r (or 7). Having solved the problem for




Z =0, a Crank-Nicolson procedurc in Z (or {) was adopted. Ovcrall,
the numerical diffcrencing scheme was based on that of Keller and Cebeci
(1971). At cach Z (or §) statior first the stcady system was
computed, with Newton iteration being used to trcat the non-lincarity

in the problem. Once convergence was achicved, the (lincar) unstcady
system was then computed in a straightforward manner.

Results for Y., |r=l (cssentially the stcady component of wall shear)
along the cylinder arc shown in Fig.l. This illustrates the (Blasius-type)
singularity as Z — 0, together with a monotonic decline as Z incrcascs.

Figure 2 shows the rcsults for the rcal and imaginary components of
Vrr |r=l (cssentially the unstcady component of wall shear) for B = 0.25.
This shows how the rcal component cxhibits an inverse square singularity
as Z-— 0 (in linc with that of Yy |r=1) whilst the imaginary
component drops to zcro at the lcading cdge. This occurs because as
stated previously, as Z — 0, the system determining F(7,{) becomes
quasi-stcady, with the unstecady velocity periurbation moving entirely in
phase across thc boundary laycr. For Z 2 1, both the rcal and imaginary
components rapidly approach constant valucs. This aspect is dcalt with
in the following scction,

Figures 3,4 and 5 show the corresponding distributions for
B=1,2and 5 respectively, all of which exhibit similar qualitative
featurcs to thc P = 0.25 rcsults, although the asymptotic amplitude

of W,rl is scen to diminish as [ incrcascs. In the following

r=1

scction the asymptotic form of the flow structure, far downstream of

the leading cdge is considered.
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4. _The far downstream developmeni of the flow.

In this scction we investigate the Z >> 1 solution for the
(unstcady) system (2.12)-(2.14). It was shown by Glaucrt and Lighthill
(1955), Stewartson (1955) and Bush (1976) that the stcady solution
obtained from (2.9)-(2.11) divides into two layers far downsircam,

Spccifically, for r = 0(1) it was shown that

v=3 ey ()
On

n=(0
w N+2
+ Yk Yin(r)
n=02 1
+0 (%2). 4.1)
_ 2
where € = Tog Z° 4.2)

and where

Yon(r) = Kon {472 log r - % r2 + % b

Koo =1, Kpp = (% - log 2),

Y = 0.5772..., (Eulcrs constant). (4.3)
1 1

Y10 = Kjo {4 2 logr - 7 2 4+ Z}'

K10 = ; . (4.4)

(Note that in Stewartson 1955, the last term in his cquation (3.20) should

be a logarithmically squared term, and not as shown). It is also found

r r
' r Yoo'd d Yoo'
Y11(r) = -Kgor log r l { —ry l —gﬂ Ir [WOO IF [ —QQ- ] ]dr}dr
oo
1 1
ro.
Kyt
+ Koot log r J ;#*— dr + K,y r log r , (4.5)
100

implying that for r > 1,




4 , )
\I‘|' ~ 2 E ajn rl (|0g r)2 n .

j=0 n=0
(4.6)
Consider now the outer layer, wherein
n = r/2t = 0(1) 4.7
(consistent with (3.3)), whercin
=Z { Ypo(n) + € Yp;(n) + 0(e2) }
+ €2 Yiom) + 0(ed). (4.8)
It is found ‘;’()()(Tﬂ =} 12,
n 2
~ -in
= 2 (¢
Yor(m) = ¢ I - dn
-in2
+cC e 1,
Yrom) = Yo () - #. (4.9)

For comparison with our fully numerical results, asymptotic
approximations to the basic flow determinced from

Yre by = € Yoorr (r=1) + €2 ¥y pp (r=D)
£ g + Koy €2 (4.10)

arc shown on Fig.1 as a broken linc.

Now consider the Z ) 1 solution to the system given by
(2.12)-(2.14). This turns out 1o be quite straightforward. Consider
first (and most importantly) the radial scale r = 0(1); then duc to the
smaliness of &, w is cxpected to develop as

w(r,2) = wo(r) + 0(e), (4.11)

where W is to be detcrmined from

g , 1 Awg  i¥p_ (4.12)
or2 ror B B

the appropriate solution of which is simply
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no(Z)[://EI. ] | i
v /7]

i.c. thc axisymmetric Stokes shcar-wave solution, where Hp(2)(z) denotes

wo(r) =1 -

the sccond Hankcl function, of order zcro and argument 2. Notc also that
as P — 0, the planar Stokes shecar solution is retricved (in accord with
the work of Ackcrberg and Phillips 1972). 1In this limit, a thin Stokes
layer forms on the surface of the body and conscquently curvaturc
cffects become less important,

It is a routinc matter to continue this solution to higher orders
of €; however little additional insight is glcancd from this, and instcad
we go on to consider (bricfly) thc outer layer, where 1 = 0(1) (sce

(4.3)).

Writing
W= wo(m) + € wi(m) + 0(e?), (4.14)
then
wom) = 1. (4.15)
Wi = wp(m) = .. = 0. (4.16)

In fact the correction to &o(ﬂ) can only be algebraically small in
z-1,

Results obtained using this asymptotic structurc (in particular
(4.8)) arc shown for comparison with the fully numerical results as
broken lines on Figs. 2-5; the agreement is scen to be satisfactory.

However, since the Z >> | structurc detailed above is obtained
without any rccoursc to upstrcam conditions, therc must be a further
clement to the downstrcam flow, not rcflcected in the above analysis
(scc also the comments of Ackerberg and Phillips 1972). This
ariscs from cigenfunctions of thc system (2.12)-(2.14). This aspecct

is investigated next, in somc detail.
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4. The form of the cigensolutions as Z —p e.

Here the form of (cxponentially small) cigensolutions
as Z -+ » is sought, Spccifically, we investigate cigensolutions of
(3.4), with the basic flow described by Scction 4.

As a first approximation to the form of thcse cigensolutions,
consider the scale r = 0(1), and supposc ¥ in (3.4) is replaced by

~

e¥go(r), and tcrms 0(%) and smallcer arc ncglected. This yiclds

~ ~ & e .
Yerer - !fl + ¥£ -1 gl T WOOr Vez

- e, | 00re . 2ogr g, (5.1)
Assuming a solution for ¥ by scparation of variables, namely

V= 1(2) y(r), (5.2)

then
Verr - !fl + ¥§ - i %L
f 1 ¥ Y
- e g4 { ¢ Yoor vy +y | Q0L - e gy

0. (5.3)

1]

A solution of the assumed form is possiblc only if

Ar o
fiz+z =0, (5.4)

where A is a constant. Rccalling the definition of € in (4.2),
(5.4) integratcs to give

f(Z)

exp{-5 1Z log Z-Z1}

A A
- nZ YA
=127 z cz .

(5.5

Here it is required that Re(A) > 0 to cnsurc decay as Z — », and

the arbitrary multiplicative constant in wy(r) has been included.
However (5.2) and (5.5) arc correct only to lecading order in ¢

and Z. It turns out the form of G required for r = 0(1)
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¥ = h@) 12) Z° (log 2)9 {ygo(r)
+ € yg1(r) + 0(e2)
+ o 1€ Fro(r) + 0(c2)]

+ 0(1/22)}, (5.6)
where (Z) is given by (5.5) and h(Z) is smaller than any power of
log Z. Further it is found nccessary to expand A itself in terms of
ascending powers of €, viz
A=Ay + eAp + €2 Ay + 0(ed). (5.7)
p and q arc constants to be dctermined at some later stage. In view
of our comments rcgarding Rc(A), then Re(Ag) > 0. The form of (5.6)
and (5.7) is nccessitated because of the series development of the
basic flow in powers of € and 1/7Z, and is found to be csscntial for
solubility at higher orders of the solution. (Indecd Goldstein 1983
pointed out the omission of algebraic terms in the strecamwisc development
of the planar cigensolutions in the work of Ackerberg and Phillips 1972,
which containcd only the cxponential development of the flow).
Substitution of (5.6) and the results of Scction 4 into (3.4), and
taking tcrms O[h(Z) YA c zP (log Z)q] yiclds the following
cquation for ygq
L{¥go) = 0, (5.8)

where

[} ()

] , i A ]
voo - B0 s [ f2 - 5+ 7 Yol

L{voo)

(5.9)
Recalling the form of Ygo. given in (4.3), then

tte ' ' I i
L{voo} = voo - YQQ + Y00 [ 72° g+ fo log r]

- g 0 = o, (5.10)
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The boundary conditions to be applied to this system are those of
no-slip and impermecabitity on r =1, i.c.
voo (r=1) = ygp' (r=1) =0, (5.11)
whilst as r — » ygy should not be cxponentially large. To be
morc precisc on this last point, the threc lincarly independent solutions to

(5.10) in this limit take the form

A~ Agoh {log T - e ], 5.12
L00) 00" {log BRg } o ( )
r
ij [Ag log r |} dr
B 1
B . A
Y00 n.QQ_”g 1y3/4 © ) (5.13)
r

-if TAg tog r 1} dr

C
c . A 1
Y00 1132077374 ¢ . (5.14)

Clcarly cither onc of (5.13) or (5.14) is inadmissible (if Ag is complex)

duc to the r >> 1 condition, and so

Yoo = Ao [tog r - Lo+ =2
BAg ronlog r

1
+ 0( ——————) (5.15)
r2(log r)? ]

in this limit, whcre Agg is an arbitary constant (amplitudc). The
system (5.10) , (5.11) and (5.15) represents an cigenvaluc probiem for
Ap. However we defer discussion of this problem until the following
scction (where a detailed investigation is carricd out of this aspect).
Instecad, lct us turn to consider higher order terms in the cxpansions
(5.6) and (5.7). Taking tcrms

o[n() z c P (log 7)9"! ]

in (3.4) yiclds

14




+

Livot) = A {- Yﬂﬂizﬂﬂi +voo | !?Q‘ - Yoo'}}

r2

+ Ag { - Yﬂﬂifﬂll + Y00 [ X?l" . I?-21']}-

(5.16)

However, on account of (4.3) this equation may be written as

|W ]
Livol) = (Ay + KoAg) { - 200200

+ oo | !?Q'.- Y?g' }. (5.17)

The boundary conditions for this system arc cssentially the samc as
those for yg: these can only be satisficd if

M = - Ko1 Ao, (5.18)
implying that

Yo1(r) = Ag1 voo(r), (5.19)
where Agp is a constant (amplitude). It is straightforward to
determine higher order terms in the A cxpansion, in a similar fashion.
For cxample .

Ay = Ag Kg12 - Ag Ko2 - ¢ Ko1 Ao (5.20)
and hence

Y02 = Ao2 Yoo(r). (5.21)
Indced, the following general result is applicablce

Yon = Aon Yoo(r). (5.22)

To progress further, in particular to determine terms that arc

0¢z-1) smallcr than those considered alrcady, lct us investigate terms

o[hz) z % ¢ Z  (log )97 ]

in the governing cquation. This yiclds the following cquation for wjqq

L{vio} = p Ry - Ap Ry, (5.23)

where

15




] A ) \y
Ry = Y00 Y00 4 o !Qg_ - Yoo¥o0"
r

A

r r
Ry = Y00 %10° Yﬂﬂ!%ﬂl vt (5.24)
r r r

In view of (4.4)

Y10 = K10 Yoo, (5.25)
and so

Ry = Kyg Ry (5.26)
Repeating the arguments used to determine Ay and Ay previously,
then
M Kqp
7
7 Mo- (5.27)

h-
]

Finally for this scction, let us consider briefly the outer solution,
applicable to the n = 0(1) scale. In view of the r = 0(1) solution,
in particular its O(log r) bchaviour as r — », together with (5.6),

then for n = 0(1) the solution is expected to develop in the following

form
¥(m.2) = ¢(2) h@) 2P (log 2)9 {Fy(n.e) + 7 Hr(n.€)
+ 0(2-2)}, (5.28)
where
g(Z) = [(Z)/e. (5.29)

It is then possible to obtain an cxact solution for 1y, which
matches on to the r = O0(1) solution. This is given by

~ ~ 7 i

Vo =Ro [ Ao -0 - 51, (5.30)
where Ap is a constant, and
Yo = ¥ €M ¥gn(M). (5.31)

n=()

1f we now cxpand

16




ﬁo = z en ‘70[](“)1
n=()

then it is straightforward to show that

Yoo = Aoo.
(which matches on to (5.15)), and

! ¥
Yo1 = Ago -8 + Ay,

CICaa

(5.32)

(5.33)

(5.34)

where Agp is an arbitary constant. Othcr tcrms may be obtained similarly.

In the following scction we go on

to (5.10). The value of q is determi

o consider numerical solutions

ncd in the Appendix.
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6. Numerical solutions of the cigenvalue problem (5.10)-(5.11)

The problem was tackled using three scparate numerical techniques.
The first compriscd a fourth order Runge-Kutta technique, shooting
inwards from r = r, (chosen to bc suitably large). In particular,
the technique involved (i) imposing a solution of the form (5.12)
at r,, gencrating values of yyo? (r = 1) and voo' (r=1) and then
(ii) imposing a solution of the form (5.13) at r, (or 5.14) depending
on the sign of Re{iAgi}), generating values of yooB (r=1) and
WOOB' (r=1) (or wyoo€ (r=1) and yooC' (r=1)). The valuc of
Ap was then chosen by Newton iteration by imposing (5.11), by forcing

the determinant

voor (r=1) vooB (r=1)
(6.1)
vooh' (r=1) vooB' (r=1)
or
yoor (r=1) vooC (r=1) -
: voor' (r=1) vooC' (r=1) (6.2)
to zcro.

The sccond numerical scheme employed involved using a sccond-order
finite-difference approximation to (5.10), constructing a quadra-diagonal
system (corresponding to the approximation to (5.10), together with the
boundary conditions (5.11), (5.15)) and thc dectcrminant of this system was
forced to zcro by adjusting Agp by Newton itcration.

The third numcrical scheme uscd was a direct (global) finite-diffcrence
approach; using the same finitc-difference scheme as our sccond scheme,

the system was instcad written in the form
A-AMB=0, (6.3)

where A and B arc both squarc matrices. The Ag werc determined

18




by using NAG routinc FO2GJF, suitablic for solving gencralised cigenvalue
problems of this kind. This scheme has two distinct advantages

(i) of not requiring itcration and (ii) generating multiple values (if
present) of Ap simultancously, however it can require substantial
computer storage.

Results from all threc schemes were found to agree: in practice the
proccdurc was usually to obtain cstimates to the values of Ag using the
third scheme. If these were then decmed of to be insufficient accuracy,
enhanced solutions (obtained on a fincr and/or more cxtensive grid) were
obtaincd using the sccond scheme (i.c. the local finite-difference
scheme).

Results were obtained for a range of B. It was found that at all
the valucs of P investigated, therc arc many (probably an infinite
number) valucs of Ag. Further all threc mcthods did yicld a large number
of spurious modes. However thesc were usually rcadily identifiable, being
strongly dependent upon grid sizc and range, whilst genuine modes were
comp.ratively grid inscnsitive.

Results for Rc{Ap} arc shown in Fig.6 and for Im{Ag} in Fig.7.
Just the first four modes are shown in cach casc - higher modes become
cxtremely difficult to compute (and, indced distinguish {rom cach other
and also the previously described spurious modes), particularly
in the limits of P — e~ and P — 0. However the trends arc clcar, namely
that 1Ag)t =~ as B =0 and Agt > 0 as B — », for all modes.

In the following scction we investigate these two limits asymptotically,

19




1. Asymptotic solutions of the eigenvalue problem (5.10)
In this scction the limits f— = and p— 0 in
cquation (5.10) arc considercd, for which some analytic progress is

possible.

2.1, The limit § - o

Physically, this corresponds to a low [frequency limit to the
probliem. The numerical results prescnted in the previous section
indicate that (all the) Ag — 0 as P — =, Conscquently if r =0 (1),

then to leading order (assuming Ap = o(1))

“’00“' - m.' +m' =()'

r r2
with yop (1) = ypp' (1) = 0. (7.1}
The solution to this system is then
Yoo = Bo {r2 log 1 - £ + 31, (7.2)

where Bp is somc arbitary constant., This solution must ultimately

ccasc to bc a valid approximation to (5.10) as r — v, specifically when

r = 0(Ag-1). Considering the particular devclopment of Ap as B — w;
this is found to takc on the following form, in order to obtain a consistent

and meaningful asymptotic solution

Ag = T(B) [Ag + € Ay + 0(e2)], (7.3)
where €= - —2, (7.4)
log ¥

and Y(B) must be determined from
¥ log (3°1) = p-1. (7.5)
This is a transcendental cquation for the small paramcter ¥ (sce
Duck 1984, Duck and Hall 1989 for similar cxamples). [In order to obtain
a meaningful balance of terms when r = O(Ao'i), it is nccessary that
Ag = i (7.6)

(the lecading term in the expansion for  Ag).
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In view of these comments, and the above comments regarding the scale of

r for which (7.2) ccases to bc a valid approximation to (5.10), we
define lhc.oulcr lengthscale

p =73 r=0(D), (7.7)
where the following problem must be considered

1 | .
Xopp 5 Xpp *+ Xp [ g2+ i low e+ |
LY A (7.8)
P

with

x~cpllogp - i Al as p— =,

x=0(2) as p—0, (7.9)
where ¢y is an arbitary constant, and x is rclated to wyoo by
X = Y — Y00 (7.10)
log v}

The system (7.7) - (7.8) represents a well-posed cigenvalue problem for
the Ap's which was solved using the three numerical techniques described
in the previous scction (indeed (7.8) is very similar-to (5.10), and is
of about thc samc computational complexity, save for the abscnce of any
physical paramcicrs).

Valucs for the first few Ay's arc tabulated in Table 1 (accuracy
to at least the number of digits shown)., It appecars that all the
Ai's posscsscd the same rcal valuc (and hence decay rate) to within the
accuracy of the computation. The cvidence was that a large (probably
infinite) number of these modes cexist: these higher modes were difficult
to computc accurately, requiring small grid sizes and extensive grid
domains. Further, with increasing order, the imaginary part of the A¢'s
became progressively more negative, although the difference between modes
did diminish. Indced, thesc trends can be confirmed, asymptotically,
by carrying out a (A1 >> 1 analysis on (7.8)-(7.9). In this
limit., a WKB solution to (7.8) cxists of the form
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p
[ ililogp+hg it dp
Blpi p

X = e 0
[ilogp+hy13/4

+ cyllogp+idg] (7.11)
for Re {logp=iA;) > 0 (and the path of integration lics within this
region) where

PO = cik‘- (7.12)
(and we cxpect ¢y = 0 (By)), whilst

X = cyllogp-iAy]

p
ililogp+iy ) dp
" | p+h|

b [ A PO
[ilogp+hy13/4

P
- ititogperq 1t dp

Ay Lo }

(7.13)
for Rec {logp-iAi} < 0 (and the path of intcgration lics within this
region).
A routinc trcatment of the transition laycr about p = py
rcveals
Ay = iAy. (7.14)
To procced further, consider an inner layer wherein
p1 = M p = 0(1), (7.15)

with x satisfying the lollowing cquation to leading order

X

I | )

Xo1p101 PIPY
the solution of which is
1
= » Bopy § , 7.17
Xp, = 7 BoP1 Jo(pp) (7.17)

(the sccond solution of this cquation involving Yg(py) is ncglected
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on account of (7.9)). Taking the limit of (7.17) as pj — = gives

/P
%o, ~B0 g cos (1P (7.18)

The timit of (7.13) as p — 0 is

X — <y {logp-iky]

I
Apt ¢! -idpdp, . -21+idgdp
T T {c + ic } (7.19)

0
I =[ ililogp+Apll dp, . (7.20)
Py

where

with the intcgration path lying within Re {logp-idy} < 0. 1If (7.19)

is to match with (7.18) then

el (7.21)
which lcads to
A o= ;’; - ilog 12 JTnl, (7.22)
where n is a (large) positive integer. For consistency, we also require
By = 2i 2 4. (7.23)
M‘

The formuta rcpresented by (7.22) was uscd to obtain asymplotic
estimates to the rcsults shown in Tablc 1. Mode Il corresponds to
n=1, mode IIT corresponds to n =2 and so on: it is scen the
agrcement between the computed asymptotic results is most satisfactory,
(g = (.785...). It is quitc clcar that this asymptotic form will fail when
n =0y D).
The leading order terms, namely Re(Ag) = g Y€ and Im(Ay) z
¥ arc shown on Figs.6 and 7 respectively, for comparison with the
numcrical solutions obtaincd from the full cquation, (5.10). The
results arc not contradictary, given the "largeness" of the small

-

parameter €. Indced, computations for Ag from (5.10) at larger
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values of B did become cexceedingly difficult, duc to the large
lengthscale  (0(¥-1)), together with mode "jumping" causcd by the
closc proximaty of modes, which made ihe usc of grid refinement with

the local method impractical.

1.2, The limit § — 0

This corresponds to the high frequency limit of the problem.
According to the numerical results presented in Section 6 1Ag1 increascs
as B — 0. This limit is now investigated.

It is possiblc to writc a WKB-type approximate solution to (5.10)

(assuming 1At and B! arc both large) as

Yoo(r) = By [log r - Kéﬂ ]
r .
: . i
-5/ i| 1Ag log r - B 1} dr
+ [An log r - B ] ri {Byc 0

r .
-ifIAg tog ¢ - &ll dr
+Bgec 0 . (7.24)

(for Rc {Aplogr - ﬁ } <0, and the path of integration lics within

this region), where

2i1 ¢, (-iy 2
B3 = e | ! 53}2 o} : (7.25)
l[-f{] + Ag
. -1/4 . i
By = - Ap (-f;] [Bz ¢! +Bjec ], (7.26)
and rg = cxp [ 3%6 ] (7.27)
is the turning point, and
ro -
1=-[[Agtogr- & ]* ar. (7.28)
1
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(7.25) and (7.26) arc obtaincd by imposing boundary conditions on r = 1,
and the intcgration path lies within Re {Aglogr - é] < 0.

For Re {Aplogr- &} > 0 the WKB-type approximatc solution can be

written

voo(r) = By [l()g r - T(%B ]

ro }
L}
[ [ B - Ag log r ] dr
Byrt "0 (7.29)
/4 ! )

[ é - Ap log r ]

-+

where it has been assumcd Rc{(-Ao)i} < 0 (othcrwisc we require the
negative root inside the integral), Bj is given by (7.26), and the
integation path lies within Rc (Aglogr - %} > 0. In order that
(7.29) matches to (7.24) across the transition layer of thickness

-1/3

0(Ag -3/2)

), (routinc) treatment (scc also the analysis for Ag = O(B
below) of the latter yiclds
By = - iBjp, ) (7.30)

and the following dispersion rclationship for Ag results

i 261 g, ¢ i 02
[ - B ] cing =t i - B ] -a ) a3
It turns out that therc arc two distinct familics of solution as
B-—0.
The first family of solutions as P — 0 corresponds to Ay = 0p-1).
Morc specifically

Ao = B! [ Ag + B!/ Ay . ]. (7.32)

where XO' Kl arc gencrally 0O(1) quantitics. This implics that

ro-1 = 0(1). Conscquently to lcading order (7.31) reduces to
LRI (7.33)

However it appears 1 = O(ﬁ'i), and so there 15 a contradiction,

which can only be avoided if
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ro

[ thgrog r - it dr=o, (7.34)
1
or
i
A
[eP pt dp = 0, (7.35)
0
or
3 i
v 5 —]=0, (7.36)
(35

where y(z1.29) represents the incomplcte gamma function. This represents
an cigenvaluc problem for Ro. which was solved numerically using a
combination of trapezoidal quadraturc and Ncwton itcration; results

for the first few Ro arc shown in Tablc 2. Note that there appear

to be many valucs (probably an infinitc number), although these

scem to be concentrated within a finite annular region in the complex

Ro planc. As the order increascd, the valucs become very close to
neighbouring valucs, and the computation became cxceedingly difficult;
however, with incrcasing order the valucs of Ro do scem to be
approaching a finite value (indccd the author was unable to find

any solution flor lxol < 0.098). Note too that it is casy to show

using integration by parts that therec arc no solutions to (7.35) as

tA6| — =, whilst using the asymptotic cxpansion for the incomplcte
gamma function (Abramowitz and Stcgun 1964) it is also possible to show
that no solutions exist as |A6| — 0 cither; this then confirms our
statement about the values of Ay being confined to an annular region in

complex Ap spacc.

Notec also that both Ag and -complex conjugate {Ag} are roots of
(7.35); however the latter family of solutions may be disrcgarded since

in all cascs we requirc Ap 1o posscss a positive real part.
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The sccond family of solutions for Ap occurs when
Ag = 0(B-3/2). In this case, from (7.27), 1rp-11 << 1,
and indeed the wall (r=1) lics jnside the transition layer.
Conscquently, we arc unable to usc (7.31), but must consider the
transition layer in detail (although this is quite a routine task).
Supposc
Ag = 732 Ry, (7.37)
where Ag = 0(1). Then defining
¢ =(r-1) pt, (7.38)

to lcading order (5.1'0) reduccs. to

AAA

voottg + voor (Rol-i)

- Ao voo = 0. (7.39)
Writing g= R Mo+ L, (7.40)
Ao
and differentiating (7.39) with respeet to é, yiclds
Y00gg5g = © Y00gg = 0- (7.41)
The required solution (that is not cxponentially large as © — )
is
Y0gg = P Al (0), (7.42)
(where D is independent of o).
The implementation of the boundary conditions on & =0 requires
Y0O3 ¢ (L=0) = 0, and so
.o x A\ 1/3
YR e Gl D ) (7.43)
Ay
Now sincc the zerocs of the Airy function and its derivative arc
confined cxclusively to the ncgative real axis, then
Ai' (-8 = 0, (n=1,2,3,...) (7.44)

where the &, arc rcal and positive and tabulated by Abramowitz and
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Stegun (1964). Conscquently

~ 1+i
An = + 0B, (7.45)
07 332

whcre the appropriate roots have been chosen to ensurc boundedness
of the Airy function.

It is intcresting (although, in some ways not too surprising) that
(7.45) is identical to the corresponding expression found in the
analogous planar study (Lam and Rott 1960, Ackerberg and Phillips
1972 and Goldstein 1983), although of coursc the corrcsponding  (7)
is quite diffcrent in the present casc.

As a check on the numerical results as B — 0, on Fig 8 the
variation of $3/2 Ap with B is shown (first three modes). It is very
clear that these results approach those given by (7.45) as B — 0.
The O(B']) family of results rcfer to higher modes, and thus it is
not rcalistically possibic 1o comparc our numerical rcsults with this
family.

In the following scction we draw somc conclusions from this work.
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8. Conclusion

In this paper the cffect of small amplitude frecstrecam oscillations
on an otherwisc stcady boundary laycr on an axisymmetric body has been
investigated. Particular attention has been focused on the far-
downstrcam cigenvalucs and cigensolutions. As noted in Scction 1, in
the casc of the planar problem, two distinct familics of cigensolutions have
been prescented, namely those originally considercd by Lam and Rott (1960)
and thosc considercd by Brown and Stewartson (1973a,b), with the former
family having dccay rates that decrease with increasing order, whilst the
latter family have decay rates that jncreasc with increasing order.

In the present study, cigenvalucs appear to occur with decreasing decay
ratc with incrcasing order. However, somec of the asymptotic'work in
Scction 7 (in particular that relevant to B — =, with Ag = O(B'l))
docs strongly suggest that a finite valuc of Ap 1is being approached
with increcasing ordcr. Indced, the author was unable to obtain a
consistent asymptotic solution to (5.10) for B = 0(1), Ag — 0, again
suggesting the finite limit of Ag with incrcasing order. This, in
somc ways may be rcgarded as a rather more satisfactory state of
affairs than that found with the Lam and Rott (1960) cigensolutions,
which have decay rates that become diminisingly small with incrcasing order
(although scc our comments, attributed to Goldstein et al 1983, in
Scction 1). Further the B — 0 work of Scction 7 docs suggest

that all modes possess the same deccay rate in this limit up to at lecast
sccond order.

However, it may wcll be that the planar work of Brown and Stewartson
(1973a,b) could perhaps be cxtended to include the effects of curvature, to
yield a further (perhaps related) family of cigensolutions. A further
interesting study would be an investigation of the far-downstream evolution

of the cigensolutions. Just as in the planar casc, thesc all beccome

29




incrcasingly oscillatory far downstrcam, and will, as a conscquence,
ultimately ccasc to be valid approximations to lhc.Navicr Stokcs cquations.
This will lcad, precsumably, to the formation of unstablc Tollmicn-
Schlichting waves, in a manncr analogous to that described by Goldstein
(1983) in the planar casc.

However, there arc a number of (other) important differences between the
planar and the axisymmctric cigensolutions and cigenvalues. Most
importantly the downstream (i.c. axial) bchaviour of these cigensolutions
(described by f(Z)) which is quite diffcerent in the two cascs, in the
axisymmetric casc being given by (5.6) whilst in the planar Blasius case

3/2
r(x) = ¢ M %P, (8.1)

as shown by Goldstein (1983), (where x is the strcamwisc coordinate).
Note that if the basic flow were of the form ¥ = x™ F(n), with n = y/xM, y
being the transverse boundary layer variable, then using arguments similar
to this paper,

r(z) = xP cxp{-A x20-m+1}  for  2n-m+l > 0. (8.2)
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Considcr terms

- A2 AgZ
"g_ "g‘i p-1 (108Z) q-1 }

O{h(Z) YA c

in (5.1) to cnable us to detcrmine the valuc of q.

It is found, aftecr some algcbra

Livin) = of Y001, Yor'veo

- Y00 [-\'i(rll . !‘r% ] -Wm[!‘rm” - !?12’ 1}

+q{m;—‘:m' -%Voo[ﬁrm“- \'-":‘21 }

+Al{mm' -M'-f-“[()[m” -?.1-(21'
r r r r

+wio [ Yo' Yo'

+ Ao {- Mo tor” . YioWor” . Fii Voo

+woo[3’r-l' -q—llri']wm [!’-:Q \'%1} ]

1 , , 1 () '
- — o' Yoo' +gteo [ YO - WO
2r r r2

(A.1)
Recalling the cxpressions obtained already for p, Ay, voi. Vi0.
(A.1) lcads to the following (slightly simplificd) cquation
Ly} = Q(n) { Ao K1o Agr + 3+ Ag Kor Ao - (Ao + K10) Ag }

\y 1] 1] ‘*[ LN ) ‘{[ L}
- _J.l_‘ﬂm_ + \VO() [ _-u - ...l%
r r r
l . , ] [N} '
+ ==’ Yoo' + 7Yoo [H - WO] a2
2r r r

where
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Q(r) = Y00 Voo’ . Voo [ Yoo !ﬂg' ]. (A.3)
r r r

It is quite clear that yj1 = 0(r2(|og r)2) as r — =, To
simplify arguments later, we write

vir = v lan) + q v tion), (A.4)

where yi1ll(r) is any rcgular function which has the following bchaviour

a8 l— =
H(ry = - 200, 4 o(1). A.S
vt B%gz (1) (A.5)
The governing cquation for Wlll may then be written in the form
L{vi1!) = R3(r) + q Rg (1), (A.6)
where
R3(r) = Q(r) { Ag K10 A1 + Ao ko1 Atg
\y t 1
- (Arg + Kip)Ag) - Y00
\*’ " \y t
O
r r
l \ \ l e []
+— o' Yoo' + 3 Yoo [ YO - Y0
2r r r
and

Ra(r) = - 7 Qr) - Liyp ). (A.7)

The boundary conditions that must be applicd to this sysiem arc
virhan = -yt
ypl = -yt
and that vl >0 as r — -, (A.8)
The valuc of ¢ is then determined by the condition that a solution
to this system cxislts.

Considcr now the (complex conjugate of the) adjoint to the

system (5.10), denoted by y*(r), and determined from




vt ¥+"+ vt [ Ag log r - % - %2]

+280 4 -0, (A.9)

subject to the boundary conditions
vr(r=1) = 0, v (r=1) = 1 (say), (A.10)
vt =0 ((logr)-2) as r — . (A.11)

If we now furthcr supposc, as we arc quite at libery to so do (although
this simplifics, but is not crucial for our arguments) that
vit Ty =y 11y = 0, (A.12)

then

R3(r) y*(r) dr

q-=- (A.13)

Rg(r) y*(r) dr

ey § Pty §

(Hartman 1964, for exampic).

This (at lcast in principle) determines, or provides a mecans of
determinining the index of the logarithmic term multiplying f(Z).
At this stage it would also appcar to be legitimate to set the function
h(Z) in (5.6) cqual to a constant, although catcgorical determination
of this point scems difficult because of the algebraic complexity

in cxtending the analysis to higher order,
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Mede M Asymptotic Ay
1] .785 + .160i
1| 785 - 1.282i|7 - 1.266i
| o785 - 1.93ilF - 1,959
IV | 785 - 2.340i|7 - 2.364i
v|.785 - 2.631i|7 - 2.652i
VI | 785 - 2.858° |2 - 2.875i
VIT | 785 - 3.044i|7 - 3.057i
VIIL | .785 - 3.200i |7 - 3.2110i

Table 1 Valucs of A

L3

Ao

. 1408 +

.2262X10- 1§

.7455x10-1 4

.7991X10-2j

.5076x10-1 +

.4181X10-2;

.3848Xx10-1 +

.2603X10- 14

.3099x10-1 4+

. 1790X10-2j

.2594X10-1 +

.1313X10-2i

.2231X10-1 4+

.1007X10-24

.1952x10-1 &+

.7996X10-3i

.1742%x10-1 4+

.6514X10-3i

JA571X10-1 4

.5418X10-3i

Table 2 Values of A
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Fig. 7. Variation of Im {Ap} with .
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