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4.1 Executive Sumnmary

1"his report iescrilw's tlc re-u is itf ;i tih ye, erreacpro iec! perfornwr1i it! (' ar ks on

I 'iversitN as Par, 4f the \orthLAst Art tictal ltntellijzerce Consort iumr NoN i
major objectives of this research were to ganabte nlrnIngo susta

arise in the area of distributed art ificial Intelligence (D~\ and to investitgate tie ap-
plication of D A! in curnrnuncat ionis network, maniagemlent and control. Tkis report

gives a brief overvtew of . the 'prob lem doumain anld describes the pri marv res Ilts ini

three areas. First, a miodel f ir 115 21iinited, in telli gent niet work mr riethsbe
developed. Socnd.l a lst riheii e A I -Vst eri es:tbed iDA I SN' was desilne In iun-
pleniented. Third, lcuntrihuntons- !c) DIi) 1have lbeen miade In thle formi of three tic

syvstemis which have been *rni tlernent ed -o es t ou)ir theories And design st rat egwes for
DAL systems. Fit- report Ils I, (cIt Ints t i w II d III v of anl N1 ItIIfrast ruwt i1re, which,

wil support the t4ro(wth of fuitutre A\I rescar" at Cl'arkson. both In con 'in t I~tl x;i(1

other universities i the N AIC mrid withI the b .AI_ Force a! Romle Aitr )'.s!pe:i

Center.

Dist rihbuted Artificial intelligence i _ concerned wit h Issues that arise when lou,;elv
coupled problem s;olving aigents workz r,1olcvlv to solve a problem. These agents are
typicallv characterized as having a degree of functioiial specialization, A local perspec-

yie. and inc i orriplete knowledge. . h ougeh each azent uses its own )oca) perspectie

and knowlce(I in pe-rfrtnIL i lt tass, a IntnpIete t Io* In t o theI, probe I I 11it

re(l IIires coopeiration1 amnong hie aizcn: s. One of the miost Import ant issue s in these
problems is w hichb coctperatin jiT pardi tn,s are triosl appropriate.

The st ratog f( llowe I n t his researchi wais tirst to choot se an applicat ion p)roblem (11

domain to which DA I might be applicable. Til. domain should have a st ructutre and
degree of complexi ty that make it a realistic one for invest igatirng t lise Problems.

The monitoring and corn t of 'ar-,c ctv'~ i ~ t~ws selected hwcailse
It. is a nat urall dv ist ri but ed,. complex prIobIlm wi hi ic Currenth lI requires cooperation
aTiong humTans; for All eTect ive sol'it toi. The problemn is ain imiport ant onie to the
[Depart ment of D)efense, arid it is rich L 4 h Inl problertIis to be solved and IT)i t lIiire

iat can be iist'i t o invest i ate list ribitt ed prohh 'in ol vii!, parad igi.

T'he model we have uised for a comuniicarions net work is based on h le lamrge scale.

world- wide I efn ( 'I 'II III In" icat ioll S vs; t eni I)D ( 'S ).We- 11AV ave n c -ncet rait ed on niet work
managemyent arid control At the siibregion level. Ihiesubregion level represents a groulp
of several individual sites or nodes in the cornmunicat ions systemn architecture which
are monitored arid omitrolled from a single control rent er. System- wide management
arid control Is, distributed over a net work of subregion cont rol centers. tv pically from

three to twelve in nii tuber. Ouir view of the riole 4f PA Iin this en1vironmtlIT is, to



provide cooperating, intelligent, ;emi-autonomous agents to serve as problem solv;ingl
assistants to the human controllers

%Ae have developed an architecture for this svstem in which each comnponent Ian
Agzenlt IsI- a specialized and 1ocalized know ledge- based svsterii designed to provide

-A.s ine to the humian >)perator Amnik ~sis of the problem solving activities currenitly
~iplu .x hese operators fot~iid three fundamental kinds! of iunrtions reqiured 1 I)

data interpieftation and Alituatioii asstessaient, 1j2) diagnosis and fault isolation, arid
3i plannin ' to finid and allocate scarce resources for restoral of service in the evenit

an 0 n age. This suggested a natural functional dist rihutioni of agenits. Not onlyv
rn ist each agent be able to ,(xoperite with other agents perlormying differen't fu~nctio-ns

al t ihe sam~e loc.1i site, but each agent must Olso be able to cooperate with Idetical
agenits located In physically separate facilities. 'This cor' #:Ipt of a knowledge-based
nt wo'A r kT I i.I jA 14el I Vent System ais a spatial!%v and functi :nllvy distributed cletino

semi a t ~nrn C .cooperating i nt elhi~ent agents is an Import ant cointri but ion Tt the

jeve itllet.if fut iire net work T-ianal;gernent anid control systems for the Ml('S.

A I ;.~ [I Cal leV[ Ie tyit-emT i . seejl a s j ii mber of I 'urict ion ally v pc( i ahi d aeiit s

that l'(opcr ate in 4 t bo(sel. v coilpit-d fa.sh iri T hese averif-is com"(prise a local pirt i ipant

IN A eor-wd team of problem solvers. At the global le -el. the s. o siei tia be
ViewXed as a group of relativ-ely independent. spatialy distributed problem soling
"Stemrs coOpera inlg to solve a coilect ion of problemns. A key characteristic of this

model Is the reprPeentation of knowledge in a distributed manner. Our r.imt h nide

he developmrenit :' i (list ri but ed knowledge b)ase such that no agent ha-s complete
~~~.~ ! ~ei~fth,- net work I rgani zat ion anid ,t ruc t ire.

\n imprt an featutre of thle svst em is cooperation of gn .iw eea ehd

10 I Wc)Iprilt:'(n havef been First~e~ . . prob~~le ' oi (1 Ma versaetlT11L

he -hange of messages. Agents may coordinate their act ions KrequeI(sting an)otlher
agenit to perform some fask inorder to achieve a oal oprco faet a

also take the form of afn exchange of kno(wledge throughk inessages when one igent
nieeds additional knowledge in or der to furt her problerrl s.olving activity. The -econd
mechanism for ccxperation is through sharing local kiiowl,,-J ief about t-~ -:7".efit state-
of thle net work and the status of problem solving activity. Inferences of one Agent ire

shared with the others in a central knc,-!-dge base. 'The shared knowledgze bast isI
maniaged b. a knowledge base mar.ager.

In I Order to) irnpionient this architecture in a laboratory environMenT WC e ll
oped a Dist ributed AlI System (DAISY) test bed which supports simulatioin (If iniltiple

agents oni one or more LISP' processors. The DAISY testbed incorporates two sy.stemT

building tools which we developed during this effort. SIMIULACT is a generic tool
fo~r suiilat I ng multiple actors in a distributed AlI system. It is domain inlieperldf -t.
permits rapid prototvping of distributed software modules. anid allows interactiv'e ex-
penrieri tat ion icorporating a gauge facility for mon itonrig and dat a c tilection.A
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graphical user interface (GUS) was developed to assist a user in capturing the strluc-
tural knowledge about a communications system. A typicaJ commumcations net work
consists of thousands of objects which are interrelated by the structural organization
of the network. GUS enables a conmunications network expert to describe the details
of this organization using a familiar set of graphical symbols within an easy-to-use
interactive window environment.

Our primary results have been in the development of cooperation paradigms for
distributed agents. As an example of cooperation through message exchanges, the
service restoral tak requires agents which perform distributed planning subject to

constraints imposed by network topology and resource availability. We have ,level-
oped a distributed multi-agent planner (DMAP) which extends the current wo rk in
planning by designatng certain objects as retources so that they may he ei!icientlv
allocated for effective use in satisfaction of multiple goals. The planner consists 4f twt,
stages. plan generation and multistage negotiation. During plan generation. afenIS
are required to generate plans which utilize limited system resources in a domain
where both the knowledge about resources and the control over these rf-ollirres are
,listrihiuted among the agents. Experimental results are presented which ,h,w that
plan generation in this class of problems can be accomplished by the exchanse of a
linited amount of information between agents. It is unnecessary for any single agent
to acquire complete global information about the system.

After a set of plans has been established, agents must cooperatively select specific
plans to execute as many goals as possible, subject to resource constraints. Mul-
tista~ze negotiation has been developed as a means by which an agent can acquire
,em 0ugh additional knowledge to reason about the impact of local decisions on nonlo-

al syst em -;tre and t hiis modifv its behavior accordingly. Because no ini'le agent
, in contrl and no single agent has complete knowledge of the er tire svstem state.
an important aspect of multistage negotiation is the mechanism for providing agents
with nonlocal information. We have developed a formalism for abstracting and prop-
agat 1mg information about the nonlocal impact of decisions made locally. Our work
provides mechanisms for determining impact, at three levels: locally on the level of
plan fragments, locally on the level of goals. and nonlocally. This approach may be
viewed as promoting cooperation among agents by using constraint-based reasoning
to ,eevlip good. local heLristic decision making.

A sIcond example of our results in the study of cooperation metho l., invoIves
,haring knowledge among local agents. We law in pti iental a met hod by which
knowledge can be shared in a local knwledge base in the form of inferences and
default assumptions. Specifically, a Multiagent Assumption-based Truth Maintenance
System iATMS, has been developed to manage a knowkedge base shared by multiple
problem solvers. The most important feature of the MATMS is that it provides the
f'ridat i )n for resolvinv inconsistency between agent ., while suppor, : t he not ion



that two problem solvers can have different views concerning the state of a particular

piece of knowledge. The MATMS handles differing views by allowing independent

belief sets for each of the agents. It supports resolving inconsistency between agents

by providing a mechanism for comparing two agents' belief sets. An agent's belief

set is characterized as the default knowledge base (which is common to all agentsI

with an overlay placed upon it. The MATMS is efficient iargels because it focuses
its efforts on managing these overlays, not the entire belief et Of ar agent. By
concerning itself only with the overlays, the MATMS can switch from addressing one
problem solver's belief set to addressing another's expeditiously. It can also change
an individual problem solver's belief set. quickly, because the detault knowiedge is not
explicitly carried over from one belief set to another.

The third area of significant results for distributed cooperation is the develop:'nt

of a distribut-,d alt.omat.(o1 re ..-ng system i. DARES). This represents some 4t our

most recent work and thus is still in an early stage of development. DARES hts
implemented a distributed theorem prover as a model for cooperation among atrnts
performing a distributed situation assessment task. Each agent has some li:it1d iew
of the network state and thus ma\ form art hypothesis of the global rnetwork slate.
However, in order to confirm this view, additional knowledge obtained from )I her
agents is necessary. Confirmation of this view becomes a theorei to be proved. Our
preliminary results indicate this approach appears to be very promising.

In a series of tests which investigated comparisons of distributed reasoning tasks
using DARES, we found that a distributed set of agents with only partial knrou'dq

pewrformed better than a single agent with complete knowledge, or a similar vit of
agents each having complete knowledge. The reason for this behavior is that having
complete knowledge often expands the search space without providing a compensatiN
means for focusing the search. In a multi-agent system with each agent having only
a limited view, each agent is able to focus its own search more quickly. Messages are
only exchanged after an agent has made some progress and (hus narrowed the qpace
of relevant responses. We believe these test results provide solid evidence in support
of our architectural approach which is to employ distributed agents reasoning from a
localized and limited perspective and cooperating in finding global solutions.

The building of an infrastructure to support the continued growth of Al research
activities among the NAIC universities was an important ancillary objective of this
research project. At Clarkson we have made significant developments in terms of
the growth of faculty activity in Al research, offering of new Al courses at both

undergraduate and graduate levels, addition of new research facilities, and an increase
in the numbers of graduate students working in Al. During the past five years we have

formed new working relationships with research groups at other NAIC universities and
with other contractors to RADC. These relationships have strengthened our abilities
to conduct meaningful research and to assist the transfer of technolog frni th,
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university research lab to the industrial development environment.

Finally, this report looks ahead to future research problems. While we believe we
have made significant progress during the past five years, the work started then is not
yet complete. As a result of what we have learned about knowledge representation
and acquisition, we have new ideas for the design of a local knowledge base for network
management. The importance of graphical tools was underestimated in our original
design of the DAISY testbed. Since the human operator or user is expected to
continue to play an important role in these systems, an improved interface between
intelligent agents and the human is critical to the development of a successful system.
With the basic testbed now defined, and component parts developed, there remains
much work to be done in testing the initial design choices under a varietv of adverse
operating environments. We have yet to determine the robustness of our cooperation
paradigms under stress. Thus this report should be looked upon not as the conclusion
of this work, but rather as having set the stage for new work in investigating the design
of distributed AI systems. These systems have application not only in communications
network management, but also in other areas of command, control, communication.
and intelligence information processing.

4.2 Introduction

This report documents the primary results of a five-year research project which inves-
tigated the application of distributed artificial intelligence (DAL) to the management
and control of communication networks. This work has produced three broad cate-
gories of results: (1) development of a model architecture for a distributed, intelligent
network management system, (2) design and implementation of a distributed Al sys-
tem testbed, and (3) implementations of three distinct DAI systems. The important
features of this problem domain and the scope of research issues investigated are
introduced in the remainder of this section.

4.2.1 Problem Domain Description

The application domain of interest for this research effort is the monitoring and control
of large communications systems. Maintaining reliable communications under a wide
variety of operating environments is vital to the preservation of both our national
security and world peace. It is an important problem to the Department of Defense,
and as we will discuss in the paragraphs which follow, it provides a rich set of problems
for research in distributed problem solving.

In our studies we have concentrated on the Defense Communications System
(DCS), and especially on the European theater. The DCS is a highly complex sys-
tem consisting of tens of thousands of circuits interconnecting users at, more than
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300 sites world-wide. We have chosen the European theater for several reasons. The
DCS network structure in Europe is particularly interesting for the study of dis-
tributed problem solving paradigms. It consists of a large number of sites (about
200) which are interconnected in an irregulai structure. It is currently controlled by
close cooperation and coordination among a group of highly skilled human cintrollers
distributed throughout the system. The variety of transmission media and communi-
cations equipment in use give rise to the need for sophisticated problem solving tools
to assist these human operators in providing the best possible control of the system.

The size, complexity, and near constant state of change of the DCS make it un-
wieldly for direct incorporation into our investigations. Instead, the goals of this
research program have been better served by using a simplified model of the DCS
which incorporates those characteristics important to system control, This section
describes the organization of the DCS and the tasks involved in system control. Em-
phasis is placed on those system features and aspects of problem solving activity
relevant to our model of the DCS.

4.2.1.1 Organization of the DCS The DCS is a large, complex communica-
tions system consisting of many component subsystems. It provides the long-haul,
point-to-point, and switched network communications needed by the DoD. A careful
analysis of the DCS reveals that the organization of the DCS must be viewed from
a multidimensional perspective. For example, all DCS facilities may be divided into
one of two groups: either DoD-owned or DoD-leased. As a general rule, the majority
of DCS facilities in the continental U.S. are leased, whereas the majority of facilities
overseas are owned and operated by the DoD.

The DCS may also be viewed as a layered organization consisting of three basic
layers: transmission facilities, circuits and networks. Each of these layers may be
further subdivided into component subsystems. Transmission facilities may be either
terrestrial or satellite. Terrestrial transmission is based on either analog or digital
channels, multiplexed into groups or digroups, and then into supergroups which are
transmitted over communications links from one station to another. The most com-
mon transmission medium used is line-of-sight (LOS) microwave; however, there are
also tropo-scatter, fiber optic, and cable links used. Satellite transmission facilities
are also used, primarily for transoceanic links. We have not used satellite links in our
model.

The transmission facilities form the backbone structure over which the second
layer, consisting of circuits and trunks, is built. The European theater of the DCS
consists predominately of dedicated circuits between users. These circuits may tra-
verse several stations following fixed paths. There are a number of key data items
which are associated with each individual circuit or trunk, and which are important
in the performance of system control. These are important details in our model,

10



and include the user priority level, the restoration priority, and the quality of service
required.

Networks form a third layer of the DCS organization. There are three general
categories of networks: voice switched, data switched, and dedicated or special pur-
pose networks. These networks rely on trunks to provide the interswitch connectivity.
The voice networks are AUTOVON, AUTOSEVOCOM (a secure voice network), and
DSN (Defense Switched Network). These networks provide circuit switched voice con-
nections among subscribers. The data networks include DDN and AUTODIN. These
networks are in a period of evolution from the older AUTODIN style network to the
modern, packet switched DDN style network. At this stage of development we have
not incorporated details of networks into our model.

Yet another perspective of the DCS is equipment oriented. The DCS consists of
a very large inventory of communications equipment, such as modems, multiplexers,
radios, switches, etc. Each equipment item has certain distinguishing characteris-
tics including its function within the overall system, its status signals (which may
be monitored and made available to system controllers), and its control capabilities
(which provide the mechanism for implementing desired control actions on the sys-
tem). Knowledge about equipment is vital to problem solving agents attempting to
control the system, and cuts across the layered organization described above. For
example, a particular multiplexer may be a part of a transmission facility, as well as a
part of one or more circuits, and a part of one or more networks. Generic equipment
types incorporating the important characteristics of typical units in actual use have
been used in our model.

The final dimension along which the DCS may be analyzed is its organization for
monitoring and control. Currently the DCS system control function is almost entirely
manual, and is highly fragmented. Each new network, or transmission subsystem
incorporated into the DCS has included its own control system. As the DCS evolves
to a modern, digital communications system, with automated control systems, it has
become increasingly important to integrate these various controls. In the next section
we discuss the system control problem. Our view of DCS system control is based on
our understanding of the future directions system control for the DCS will take.

4.2.1.2- System Control of the DCS System control is defined [17, page 2-1]
as the process "... which ensures user to user service is maintained under changing
traffic conditions, user requirements, natural or manmade stresses, disturbances, and
equipment disruptions on a near term basis." System control incorporates five major
functions: facility surveillance, traffic surveillance, network control, traffic control,
and technical control. Each of these functions will be described in more detail and
related to specific problem solving activities in the paragraphs which follow.

DCS system control is to be organized in a five level hierarchical structure. Be-
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ginning at the lowest level and moving up, each level in this hierarchy represents a
broader view of the DCS, a larger geographic area, a greater responsibility and a
higher authority. Level 5 (the lowest level) represents stations or facilities at which
either a technical control or patch and test capability exists, or an access switch ex-
ists, or an earth terminal for a satellite link exists. Level 4 represents either a major
technical control facility or nodal switch Level 3 represents a subregion control center
(SCRF). Level 2 corresponds to theater level control and may be either an area com-
munications operations center (ACOC) or alternate ACOC. Level 1 is the worldwide
Defense Communications Agency Operations Center (DCAOC). For the purposes of
our research, we are concerned with level 3 and lower levels. These are the levels most
closely associated with the real time or near real time control of the system. Within
the European theater approximately six SRCFs are expected to be established. Each
of these control centers will have responsibility for integrated control of transmission,
circuit, trunk and network resources over a significant portion of the DCS. Thus, it is
at this level (level 3), or lower, that the need for cooperative problem solving is likely
to be the greatest.

Three distinct problem solving activities have been identified within the five major
functions of system control. We refer to these activities as performance assessment
(PA), fault isolation (FI), and service restoral (SR). A general task description for
each of these is given below and related back to one or more of the five functions of
system control.

Performance Assessment (PA)

Performance assessment may be viewed as a problem in data interpretation and
situation assessment. Since data is available only on a distributed basis, coordination
must take place among the PA agents in order to arrive at a coherent, view of the
state of the communications system. The facility surveillance and traffic surveillance
functions of system control are included within the PA activity. Real time equipment.
transmission network, and traffic data are measured and collected to provide the
controller with the information needed to determine the status of the transmission
system and facilities, the quality of communications circuits and network performance.
Trouble reports from users are also significant inputs to this activity.

The goal of PA is to formulate a local view of system status and performance, and
to identify as quickly as possible the impact of any observed deviations from normal
operating conditions. The PA agent is responsible for determining the need to invoke
either fault isolation and/or service restoral agents. Since few problems are likely to
be localized within the area of responsibility of a single SRCF, the PA agent must
also communicate with similar agents in neighboring areas to arrive at a consistent,
assessment of status throughout the system.
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Fault Isolation (FI)

The fault isolation task is a diagnostic activity- It is concerned with identifying
the specific cause and location of faults within the communications system. The term
fault is used in a very broad sense to mean either a complete outage of service or a
degradation in quality or performance. The FI agent responds to reports of known
or suspected faults determined by PA. Much of the same data available to PA is also
used in the FI activity, however the analysis is carried out in greater depth, and the
cause-effect relationship is emphasized. In some instances the immediate results of
FI may be inconclusive and will require additional testing to resolve ambiguities in
the data.

The FIl agent incorporates the in-depth analysis aspects of facility and traffic
surveillance as well as the testing aspects of technical control. Coordination and
cooperation with similar agents at intermediate or distant end stations involved in a
faulty link. trunk, circuit, or network are often necessary to determine the cause, and
location of a fault.

Service Restoral (SR)

Service restoral is a plan generation activity which recommends a set of specific
control actions needed to restore user service. These actions may involve alternate
routing of trunks or circuits, switch control, or transmission system configuration
control (such as reallocation of equipment, use of backup or spare equipments, etc.).
The network control, traffic control, and technical control functions are encompassed
in the SR activity.

4.2.2 Scope of Research

Clearly a complete and integrated approach to an intelligent, distributed network
management system would be a major project involving basic and applied research,
prototype development, field testing, and eventual full scale production. Such an
effort is, in fact, not feasible as a single project given the dynamic advancement
of computer-communications technology. Rather, as the DCS technology evolves.
we should expect system control to advance along with it. It seems clear that this
advancement will likely include some sort of knowledge-based, expert or intelligent
systems. The objective of this research was to investigate the issues which arise in the
application of distributed intelligent systems to communication network management.

The scope of this work involved the development of a simplified model of the
DCS network, an analysis of functional requirements for problem solving, a study
of knowledge representation for these problems, and development of an architecture
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which incorporated the necessary problem 3olving skills. In order to construct and test
various distributed components of this architecture, we designed a general purpose
distributed Al testbed which greatly facilitates program development and simulation
of multiple intelligent agents in a distributed system. As mentioned previously, our
results may be viewed in terms of their contributions to the state of knowledge in
distributed artificial intelligence and to the development of future distributed network
management systems, These contributions are described ID detail in the remaining
sections of this report.

4.3 A Model for Distributed, Intelligent Network
Management

An important contribution of this research to the future development of distributed
network management systems has been the creation of a model for a distributed,
intelligent network management system. This model is based on an architecture
involving a functional distribution of agents at a single site, together wi'th a spatial
distribution of similar agents across a network of control centers. The development
of this architecture also includes the design of a distributed knowledge base.

4.3.1 System Architecture

In this section, we present the design of an architecture for an intelligent distributed
problem solving system to assist in the management, and control of a communication
system such as the DCS. This discussion addresses three primary facets of the archi-
tecture: (1) the role of intelligent information processing in the context of the overall
system, (2) the structure of the intelligent system residing at each node, and (3) the
overall structure of the distributed problem solving system.

Any deployed distributed problem solving system would most likely be viewed
as an intelligent assistant to the system controllers in the field. It would perform
the tasks of filtering the data received, analyzing and interpreting it as well. Based
on these interpretations, it would recognize various critical situations which might
arise in network operations; it would advise human operators as to which equipments
are probably malfunctioning; and it would suggest. alternative restoral plans and
appropriate control actions. The human operator would have the responsibility of
directing service restoral, dispatching service personnel, and initiating control actions.
In addition, the human retains the privilege of preempting the system at any time.
As an intelligent assistant, the system would relieve the controller of many tedious
tasks. It would also provide a vehicle for trining activity that can be utilized by new
personnel.

Distributed problem solving systems are often viewed as being comprised of a
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Figure 1: Control Node Architecture

network of loosely coupled agents which cooperate in solving a problem. In the
context of communication systems, each locus of control activity is also a site where
a node of the problem solving network resides. As the discussion in the previous
paragraph indicated, several problem solving activities may be active concurrently.
For example, performance assessment would typically be an ongoing data filtering and
interpretation task, while fault isolation and service restoral tasks would be initiated
in response to specific events. We have chosen a node level architecture that represents
a decomposition of nodal problem solving activity into these three primary tasks.

The specific structure of the node level architecture is shown in Figure 1. There

are three primary problem solving modules at the node level: Fault Isolation (FI).

Service Restoral (SR) and Performance Assessment (PA). Each of these modules
or agents requires access to the same knowledge about the structure and expected
behavior of the network being controlled; this knowledge is contained in the local

Knowledge Base (KB). There are two revhanisms for cooperation arn,,,g thece loca'
agents: exchanging of messages and sharing of inferences. Messages may be exchanged
as shown in the diagram by interagent communication paths (dotted lines in the
figure) in order to coordinate specific actions, such as the request by one agent for
another to complete some task. Inferences are shared by sharing a common local
knowledge base. In order to coordinate multiple agents' access to this knowledge
base, a Knowledge Base Manager (KBM) is needed. Our work in DAI has included
the development of a domain independent multiagent truth maintenance system,
MATMS, which forms a significant component of the KBM. The MATMS will be
described further in Section 4.5.2.
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Figure 2: Distributed System Architecture

The overall structure of the distributed problem solving system reflects distribu-
tion in two dimensions. At one level, the system is seen as a number of complex
agents that operate in a loosely coupled fashion to solve the problem of controlling
the communication network, At another level, the overall system can be regarded as a
group of relatively independent, specialized, distributed problem solving subsystems
cooperating in the solution of one or more similar type problems. One of these sub-
systems is composed of the group of fault isolation agents. The fault isolatioa agent
at each node cooperates with its counterparts at other nodes in solving the fault
isolation problem for the communication system. In a similar fashion, the service
restoral and performance assessment agents can be regarded as distributed problem
solving subsystems in their own right. This architecture is shown in Figure 2. Each
large block, denoted by Sn, represents the local intelligent problem solving system
at a single control site. The dotted lines indicate interagent communications. We
observe that at, this level, all cooperation must take place by message exchange since
geographic separation makes sharing a common knowledge base impractical.

Our results in designing, implementing, and testing a distrib"1cA :;:tern 2
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tecture will be presented in subsequent sections of this report in the form of two
distributed reasoning systems, DMAP and DARES. Our results using DMAP (cf. Sec-
tion 4.5.1) has shown that plans for service restoral can be generated in a distributed
fashion with no central control and no global knowledge of network configuration.
Further, DMAP has demonstrated that distributed decision making can lead to a
globally coherent and globally optimal selection of restoral actions by the exchange
of messages which describe the nonlocal impact of local decisions. Although DARES
(cf. Section 4.5.3) is at an earlier stage of development than DMAP, we believe it
demonstrates a means for cooperation among a wide variety of "expert system-like"
agents by the exchange of knowledge in the form of inferences obtained as partial
results in a theorem proving context. This cooperation paradigm is being used in
implementing distributed performance assessment agents.

4.3.2 Knowledge Representation

In forming the model discussed in the previous section, we discovered there were
ovO primary categories of knowledge: problem solving knowledge, which was largely

domain independent, and domain knowledge. The domain knowledge for a physi-
cal system such as a large communication network is primarily structural knowledge.
Structural knowledge of a physical system embodies the components of the system, the
behavioral characteristics of these components, component connectivity, and system
behavioral characteristics derived from component behavior propagated along con-
nections [4]. Example domains of which structural knowledge is an inherent property
include communication networks, automated factory configurations, and electrical
circuits. Knowledge about the structure of a physical system is needed by a wide
variety of problem solving tasks. Our analysis of problem solving activities, such as
fault isolation, service restoral, and performance assessment, found that each depend
upon structural knowledge to reason about the network.

Natural extensions from structure are behavior and function. Informally, system
structure refers to how system components are connected, behavior refers to how
these components act, and function refers to the purpose of these components. The
behavior of a system is expressed in system terms, whereas the function of a system
is expressed in terms relating the system to its environment. For example, the typical
behavior of a traffic light is to display a red, yellow or green light. The function of a
traffic light is to control the flow of traffic.

The design of a knowledge representation scheme should not only concern struc-
tural details, but also address behavioral characteristics. This. is particularly im-
portant since the principle problem solving activities in this domain (fault isolation,
service restoral and performance assessment) rely heavily upon component and sys-
tem behavior as well as system structure. Our knowledge base must embody both
structural and behavioral knowledge.
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Ongoing research relates a physical system's structure to its function by traversing
the intermediate system property of behavior [29]. It is this transition from structure
to function via behavior which is going to relate the machine captured structural
knowledge to machine control of system behavior.

We have designed a knowledge representation scheie which supports the prob
lem solving activities performed in a distributed netwoik . nanagement systern. The
knowledge base at a local control site contains information about the structuxre, func-
tion and current state of the network, and will be shared by the various problem
solving agents at that control site.

An important feature of this local knowledge base is that it forms a componet. in
a network-wide distributed knowledge base. In distributing other aspects of network
management, such as data coilection, data reduction, decision making, and control
action execution, we believe the knowledge base must be distributed as well. Since
the knowledge base includes a great number of details about local equipment con-
figuration, allocation, and status, it seems highly unlikely that this level of detailed
information should be widely known outside the primary area where 0i. is generated.
The local knowledge base must, however, include less detailed, partial views of the
non-local parts of the network.

4.2.2.1 Domain Knowledge Classification The domain knowledge base con-
tains three types of knowledge: graphical knowledge, structural knowledge arid state
knowledge (Refer to Figure 3). Graphical knowledge is the primary mechanism for
the graphical representation of structural knowledge; in the current system, graphical
knowledge is only used during user input or editing of the knowledge base. Structural
knowledge embodies configuration knowledge and communication path knowledge,
each of which entails the representation of application domain objects and how they
are physically related. State knowledge represents self-descript, ive at.tributez and sta-
tus of application domain objects. The key point to remember here is thai, knowledge
about structure and state is common and available to each of the different problem
solving activities at a local control site.

As shown in Figure 3, there are three levels of configuration knowledge correspond-
ing to the natural hierarchy of application domain structure: subregion, network, and
equipment configuration knowledge. Configuration knowledge is largely topological
in nature, and describes the physical communications system. Knowledge about this
system is hierarchical in nature, where at the highest level subregions are represented
in terms of one station designated as the current SRCF or SubRegion Control Facil-
ity. This is the control site mentioned previously, and it is responsible for the control
dccisions made for the stations within it, subregion, or area of responsibility. At
the network level stations are interconnected via links, and collections of stations are
grouped into subregions. Each station corresponds to a node or site in our distributed
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Figure 3: Classification of Knowledge

problem solving system. The knowledge base therefore contains complete declarative
knowledge concerning each site in the subregion. including its name, geographic lo-
cation, and its current operating status. In addition, each link in the subregion is
also represented, with information concerning which sites correspond to the link's two
endpoints, and the media type and capacity of the link.

At the third level in the hierarchy, within each site there is a collection of inter-
connected equipments. The physical topology is similar to the top level network, b-t
at this level specific pieces of equipment are interconnected by various kinds of arcs.
A typical equipment configuration for a site is given in Figure 4. Types of equip-
rnent include radios_ second level multiplexors (MVX), first level MUXes. and digital
patch and access systems (DPAS). Interconnecting these equipments, and connect-
ing equipments with users, are supergroups, digroups, and channels. The equipment
configuration knowledge within each site also forms a hierarchy. A radio within a site
may be connected to a second level MIVX or to another radio at the same site via
a supergroup. Each second level MUX is connected either to a first level MUX or
to a DPAS via a digroup. Finally, each first level NII'X is connected to a user via a
channel.

In addition to the knowledge described above concerning specific pieces of equip-

rnent and their connectivity, equipment configuration knowledge also contains more
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general information on each item in the hierarchy: that is, generic information on sub-
regions, stations, links, as well as kinds of equipments and connections among them is
represented in the knowledge base For instance, generic information common to all
radios of the same type includes the type of alarm signals which may occur, specific
actions to take in the advent of such alarms, and operational parameters for that kind
of radio.

The configuration knowledge describes the components and connections which
comprise a topology representing the communication network system as a whole. This
network structure forms a natural guideline for search of solutions in many instances.
for example, in service restoral. This structural hierarchy permits abstraction of the
search space which will expedite search techniques.

Equipment state knowledge is also necessary for system control. Wherea-s equip-
rment configuration knowledge describes the physical connectivity of the network,
equipment state knowledge contains information concerning the ,urrent operational
status of each piece of equipment. This includes any current alarm signals for the
equipment, but also includes expected behavioral characteristics for each kind of
equipment. and any deviations from this norm which a specific piece of equipment
might have. Equipment state knowledge also incorporates conclusions and interpre-
tations of the measured status !ata as produced by an agent such as performance
assessment or fault isolation This data is available to any agent as it analyzes the
current state of the communications network.

r inallv, communication path knowledge reflects the current user-to-user connec-
tinis in the network. The primary unit of tel ecommunications service carrving mes-
,age traffic between two locations is known as a commnunications channel. The three
telecomnuinications connectivity entities are circuits, trunks and links, which carry
the transmitted signals in a communications channel. A circuit is a path between two
end-users, and consists of a sequence of adjacent nodes and arcs such that no node
or arc appears more than once in the path. A node corresponds to a location where
a conmnhinications signal may be originated, manipulated. cr terminated, and an arc
consists of the set of communications channels between two adjacent nodes. Examples
of nodes include end-user points at some location, drop-and-insert points which cor-
respond to Intermediate nodes in a cormrminications channel. arid PTT- pickup point,
where a coinmunications channel is transferred from a D('S controlled transmission
facilitv to a common-carrier t ransmissiotu facility .. \ trunk is a single comml nications
channel between two or more nodes. and may itself be chaiimelized: a trunk or any of
its channels may carry a single circuit or another triunk. and the signals at the initial
node and the termir'iting node of thp t ,,nk are in the same form. Finally, a link is
a.s described above in the equipment configuration knowledge. It is a transmission
facility, such as a cable or microwave radio system, connecting t'. o adjacent nodes.,
and may be channelized. The terms node. arc. and path are related to geographic
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terms location, link and route; that is, a route is a sequence of transmission facilities
traversed by a communications channel, and so can be described by a sequence of
locations and links. Also, communications path knowledge is time-dependent, as cir-
cuits and trunks are associated with a particular configuration only for a finite period
of time, and may be alternately routed if necessary.

4.3.2.2 Design of the Knowledge Base The design of the local knowledge base
is built on two fundamental ideas for knowledge representation: frames and inclusion
hierarchies. It was implemented using an object-oriented programming paradigm.

A frame-based system was used because it provides a natural way to describe the
many details about each equipment type, link type, or site. A frame representation
groups each of the significant characteristics of an object type together while pro% iding
a modular structure for the knowledge base. This modularity is of great irmportance
in developirg efficient search methods for very large knowledge bases. In our work we
have taken advantage of this modular organization in the development of local agents
for performance assessment and service restoral. The frame structure also facilitates
tbe incorporation of default values for equipment configurations and operating tatus
as a substantial portion of the knowledge base. In designing the MATMS truth
maintenance system, which forms part of a knowledge base manager, we found the
frame representation particularly appropriate.

The second significant characteristic of the knowledge base design is the use of in-
clusion hierarchies in representing network knowledge The structure of the know ed ve
suggests an inclusion hierarchy for two reasons. First, there are numerous examples of
knowledge about generic equipment, such as radios. Given specific examples of these
objects it is useful to transfer the known properties and attributes of the generic
object to the specific example.. This is knowu as inheritance. The second reasof, for
using inclusion hierarchies is the natural hierarchy of communication paths impoed
by the multiplexing schemes in common use. Thus we have inheritance of propert ies
among physical objects (radios, multiplexers, etc.) and also drlTong logical objects
(links., trunks, circuits, etc.).

This knowledge base is implemented in ZetaLISP on a Symbolics 3670 Lisp ma-
chine. Object-oriented programming techniques were employed to describe the ab-
stract data types needed, and to orovide data encapsulation. This provided the
modularitv and flexibility needed in a developing system. in addition, since many of
the objects have homologous features, the implementation makes extensive use of the
concept of methods or generic functions. Methods are used to implement common
functions to be performed on similar objects. For example, there are common oper-
ations to b- performed on equipments, such as radios, mriliplexers and switches or
on path components, such as links, supergroups, and digroups.

Fuirther inplementation details are provided in Section 4.A.2 which describes a
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graphical tool for user interaction with the knowledge base.

4.4 Development of a Distributed AI Testbed (DAISY)

We have developed a Distributed Al SYstem (DAISY) testbed which suppolts simu-
lation of multiple agents on a group of heterogeneous LISP processors. The DAISY
testbed incorporates two system building tools which we developed during this ef-
fort. SIMULACT is a generic tool for simulating multiple actors in a distributed Al
system and is described in Section 4.4.1. In Section 4.4.2 we describe a graphical
user interface (GUS) which assists a user in capturing structural knowledge about a
communications system.

4.4.1 Distributed Environment Simulator (SIMULACT)

As part of the testbed, we have developed an environment intended to aid the de-
velopment of applications involving distributed problem solving. Specifically, we will
describe in this section a domain independent development and simulation facility
which permits rapid prototyping, interactive experimentation, and ease of modifica-
tion of such systems.

Our environment, cailed SIMULACT, is based on a model which regards intel-
ligent agents as semi-autonomous problem solving agents which interact with one
another by means of a message passing paradigm. This system is currently imple-
mented on a network of LISP machines which incorporates both TI EXPLORER and
SYMBOLICS machines.

Distributed problem solving systems have received increasing attention in the Al
community. Two factors have motivated this phenomenon. First, the advent of
large parallel machines and the development of small, powerful microprocessor based
systems have encouraged research on problems related to parallel and distributed
P , systems. Secondly, research in distributed problem solving has been driven by
the observation that a number of important applications are inherently distributed.
Examples include distributed situation assessment, distributed sensor nets, air traffic
control, and control of geographically distributed systems such as communications
systems and power transmission networks.

It is easy to envision application environments in which on the order of ten to
fifty semi-autonomous agents might be cooperatively solving a problem. In such an
application, a distributed problem solving system would generally be implemented as
a distributed system with as many independent processors as there are -gents in the
system. It would be prohibitively expensive to build a network of processors for the
purpose of providing a testbed in which feasibility studies could be performed and
initial prototype systems developed. The alternative of simulating the desired system
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on a single processor is not attractive, since testing a system of this magnitude on
a single LISP machine would probably require time consuming simulation runs for
evaluation purposes. A facility which permits a network of k machines to emulate
the behavior of a network of n machines (where n > k) would provide an attractive
alternative.

SIMULACT is a development environment for distributed problem solving systems
which provides such a facility. The underlying model of problem solving which is
employed regards the problem solving system as a collection of semi-autonomous
agents which cooperate in problem solving through an exchange of messages. The
system is modular: each agent is essentially an independent module which can easily
be "plugged in" to the system. An agent's interaction with other agents in the
system is totally flexible, and is user specified. Neither the form nor the content
of inter-agent messages is specified by SIMULACT itself. In addition, the user can
suspend execution at any time, examine the state of any agent, modify the state, the
knowledge base, or even the code of an agent, and resume execution. A trace facility
makes post-mortem examination of activity feasible, and a gauge facility allows the
user to instrument the system in a very flexible manner.

4.4.1.1 Background The architectures of the distributed Al systems that have
been developed have largely been driven by the nature of the application. For exam-
ple, the DVMT [331 is clearly a descendent of the HEARSAY systems, and this has
been natural because the signal interpretation tasks involved in vehicular tracking
are similar in nature to those of speech recognition. There have been very few ef-
forts directed towards the problem of establishing a domain independent environment
suitable for the development, testing, and debugging of distributed applications.

One of the notable exceptions is MACE (Multi-Agent Computing Environment)
[21]. This system is a development and execution environment for distributed agents.
It essentially provides a tool for programming multiprocessor systems in an object
oriented fashion. In MACE, agents are regarded as intelligent entities, each of which
is capable of performing tasks. These agents are directed and organized by the pro-
grammer through the specification of inter-agent relationships together with high
level directives and constraints on behavior. Agents in MACE are implemented as
property lists of the agent name, so only oi :: copy of an agent may reside on a given
processor. By contrast, in our system multiple instances of a given agent. type can be
resident on a processor, thus providing greater flexibility to the user.

Among those systems that are intended for development of distributed applica-
tions, most have been designed with the intent of gaining as much speed in execution
as possible Examples of this type of system are found in Stanford's CAGE and
POLIGON. Both of these systems are designed for parallel execution of applications
built using them and are based on a blackboard model of problem solving. CAGE
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[1] provides a problem solving framework which is based on the assumption that de-
velopment will proceed on a multiprocessor system involving up to a hundred or so
processors with shared memory. The user must specify explicitly what is permit-
ted to run in parallel. POLIGON [401, on the other hand, is designed to be run on
distributed memory multiprocessor machines involving a large number (hundreds or
thousands) of processors. High bandwidth interprocessor communication is necessary
for a successful implementation of POLIGON. A number of primitive operations (such
as rule evaluations and blackboard updates) are automatically done in parallel.

Both CAGE and POLIGON have programming languages associated with them.
As in our system, these languages facilitate the writing of application programs and
provide a layer of abstraction between the user and the system's implementation
details. Unlike our system, CAGE and POLIGON have been devised in an attempt to
investigate issues related to exactly how much speedup can realistically be anticipated
when AI programs are run in parallel environments.

In the following two sections, we discuss SIMULACT's system structure and con-
currency control mechanisms. We also describe the five user interface facilities, which
were designed to make SIMULACT attractive as a development environment. We
conclude with a brief discussion of experiments we have performed in order to assess
the degree of overhead due to SIMULACT as implemented on one and two machines.

4.4.1.2 System Structure SIMULACT is a distributed system that allows n
agents to be modeled on k machines, where n > k. Each agent runs asynchronously
and coordinates its activity with that of other agents through the exchange of mes-
sages. The activities performed by each agent are assumed to be complex, so that the
parallelism is coarse grained. SIMULACT allows the programmer to write code in
Lisp as though there were as many Lisp machines in the network as there are agents
in the distributed system being developed.

As is evident from Figure 5, SIMULACT is comprised of four component types:
Actors, Ghosts, Directors, and an Executive Director. Actors are used to model
agents in the distributed environment. Each Actor type is individually defined, and
used as a template to create multiple instances of that Actor type. An Actor is a
self contained process which runs in its own non-shared local environment. Although
Actors run asynchronously, the elapsed CPU time for each actor never varies by more
than one time frame. These Actors closeiy resemble the entities described in Hewitt's
"Actor Approach To Concurrency" [231.

Ghosts are used in SIMULACT to generate and inject inform,.tion into the model
that would naturally occur in a "real" distributed expert system. They do not rep-
resent any physical component of the model. For example, external inputs (alarms.
sensors, etc.) affecting the state of the system can be introduced via Ghosts, as well
as inputs that reflect the side effects of the systems activities. Ghosts can also be
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used to inject noise or erroneous information into the system so that issues concerning
robustness can be easily investigated. The performance of an expert system can be
monitored in subsequent runs through the simple modification of these Ghosts.

Due to the similaxities between Actors and Ghosts, we refer to them as Cast
members. Each Cast member has a unique stagename and a mailbox used by the
the communication facility in routing messages among members. Each also has a
script function which defines its high level activity.

The control structure residing at each host processor in SIMULACT's distributed
environment is known as the Director. The Director is responsible for controlling the
activities of the Cast members at that site, and for routing messages to and from these
members. These activities are assigned to the Grip and Messenger respectively. The
responsibilities of the Grip range from setting up and initializing each Cast member's
local environment to managing and executing the Actor and Ghost queues. The Mes-
senger only deals with the delivery and routing of messages. When a message is sent,
it is placed directly into the Messenger's message-center. During each time frame,
the Grip invokes the Messenger to distribute the messages. Whenever the destination
stagename is known to the Messenger, the message is placed in the appropriate Cast
member's mailbox. Otherwise, it is passed to the Executive Director's Messenger and
routed to the appropriate Host.

There is one Executive Director in SIMULACT which coordinates all Cast member
activities over an entire network. The Executive Director provides the link between
Directors necessary for inter-machine communications, directs each Grip so that syn-
chronization throughout the network is maintained, and handles the interface between
the user and SIMULACT.

4.4.1.3 Concurrency Control In SIMULACT Concurrent execution of n Ac-
tors on k machines (n > k) is emulated through the imposition of a time frame
structure in execution. A time frame cycle breaks down to three fundamental parts:
invocation of the Ghosts, the distribution of mail by the Messengers, and invoca-
tion of the Actors. For SIMULACT distributed over two hosts, Figure 6 depicts a
representation of two time frames.

At the start of the first time frame, the Executive Director notifies both Directors
to begin executing Ghosts. (This models the occurrence of events in the world external
to the distributed system.) At the conclusion of the Ghost frame, each Director
automatically invokes its Messenger. The Messenger distributes all messages which
were generated during the current Ghost frame, as well as all those resulting from
the previous Actor frame. Mail destined for Cast members residing on the same
host processor is placed in the appropriate mailboxes. The solid line extending from
ea-h Director's Messenger represents the transfer of non-local mail to the Executive
Director's Messenger. In order to reduce network overhead, this transfer is done in
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the form of a single message. This communication always occurs, even if there are
no messages to distribute, as a synchronizing mechanism for the time frame so that
Actors cannot "run away". After sending this message, each Director enters a wait
state until the Actor frame directive is received from the Executive Director. The
dotted line directed out of the Executive Director's Messenger represents the possible
distribution of inter-machine mail prior to sending the Actor frame instruction. The
Executive Director's Messenger is invoked immediately following the receipt of the
last Director's Messenger communication.

Upon receiving an Actor frame command from the Executive Director, the Direc-
tor's Messenger is invoked to distribute any inter-machine messages that may have
been received. Next, each Actor is allowed to run for one time slice (time frame). At
this point the Executive Director immediately enters its next time frame cycle, sends
the Ghost frame command, and waits for all the Director Messengers to send their
next synchronizing signal. Again in the second time frame of Figure 6, it is Director
2 which requires the most time to run.

4.4.1.4 User Interface Facilities There are five user interface facilities that
will be discussed in this section. These facilities provide mechanisms for inter-agent
communication (Mail), code sharing (Support Packages), interactive monitoring and
debugging (Peek and Poke), post mortem trace analysis (Diary), and runtime moni-
toring (Gauge). These features were designed to make SIMULACT more attractive
as a development environment for expert systems.

Depending on the constraints and characteristics of the expert system being de-
veloped, the application programmer constructs a network environment of intelligent
agents which collectively work together towards the satisfaction of one or more goals.
SIMULACT provides several mechanisms allowing these agents to communicate with-
out being concerned with implementation details.

In general, communication between agents occurs when one agent sends a packet
of information to another, addressing the target agent by its stagename. The format
of these packets is not specified by SIMULACT. Instead, it is left up to the user to
formulate a syntax that is convenient in the context of the system being devclcp, d.

The send-memo function is the simplest mechanism one Cast member can use
to communicate with another. This function accepts two arguments: the stagename
of the destination Cast member and the memo to be sent. Automatically, at the
beginning of the next time frame, this message will appear in the destination agent's
mailbox. Each memo contains the stagename of the sending member, as well as a
timetag indicating when it was sent. It is the responsibility of each Cast member to
periodically to check its mailbox for incoming messages.

Many communications between agents take the form of requests for infoi-nation.
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Using the send-memo function requires that a sending agent sort its mail to retrieve
the reply to a request after it has been received. Futures (11, 22, 40, 42] provide
an agent with a mechanism for sending a message that returns a result. A memo
sent using the future facility in SIMULACT returns a data structure called a future.
After the memo has been received and processed, the result is routed back to this
data structure. The sending agent uses this future to determine when the result is
available, and to extract it after it has arrived. SIMULACT provides this capability
through the send-future function.

In some cases, requests for information may not have one definitive reply. Instead,
pieces cf information may be returned at different times. SIMULACT allows two Cast
members to establish a future stream between themselves for returning resu* over
time. The user specifies criteria for determining when a future stream should be
closed.

A Support Package contains code that can be accessed by several Cast members,
thus reducing memory requirements. As in any shared memory system, an integrity
violation could occur whenever a Support Package accesses or alters global informa-
tion. The underlying assumption concerning independent environments for each Cast
member would be violated. To guard against these problems, SIMULACT detects
the potential occurrence of integrity violations and warns the user when a Support
Package tries to instantiate a global variable. Ideally, Support Packages should con-
tain purely functional code. However, this restriction would severely constrain the
cvAt. that can be placed into Suppc,.:. 1',ckages.

There are two ways to use Support Packages other than for purely functional code.
One way is for a Cast member to pass a local data structure as an argument to a
Support Package function. If that function is "for effect", the result could then be
bound appropriately. The other method requires the application programmer to use
SIMULACT's sim-set functions. Basically, the sim-set function allows the Support
Package to alter a global variable th -t is present in each of the Cast; packages. The
goal of the Support Package facility is to reduce overhead. Use of Support Packages
does reduce the overhead, but it does so at the expense of requiring that the user
have more knowledge about SIMULACT's implementation and Lisp packages [45]
than might be desirable.

This facility can be invoked at any time when running an expert system as a
monitoring and debugging tool. It allows the user to enter the local environment of
any Cast member and to examine or change any part of its environment. The Peek
and Poke is invoked through a menu and displayed at the Executive Director's host.
However, any Cast member residing on any host can be accessed.

The Diary facility can be used as a debugging tool, or simply as a mechanism
f( post mortem analysis of system behavior. There are three levels of Diaries, all
of vhich may be independently active. The Executive Director's Diary, when turned
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on, records all inter-machine messages handled. Director Diaries record all local
communications, while Cast member Diaries record all screen activities. All Diaries
are written to files to permit post mortem examination.

This facility is used by SIMULACT to display the current elapsed run time, current
mode of operation, and the time frame ratio which is a measure of SIMULACT's
distributed performance. It can also be used as a runtime monitoring device by the
user. The make-gauge function accepts two arguments: a string to be displayed in
SIMULACT's gauge window and a function to be evaluated periodically. SIMULACT
automatically evaluates this function and updates the gauge window appropriately
throughout the execution of the expert system.

4.4.1.5 Performance Issues The overhead incurred in managing the emulation
of a distributed environment is one important measure of system performance. In
this section we present preliminary results indicating the overhead incurred by SIM-
ULACT as implemented on one and two machines. We first outline the experiments
which were performed, then discuss the results obtained.

Our experiments were designed to obtain results that would assess SIMULACT's
behavior as the number of messages per time frame increases. In each of the exper-
iments, the number of messages per time frame, m, was varied over the range 0 to
10n, where n is the number of Actors in the system. Each Actor process worked
continually, consuming its total time slice allowed per time frame. Thus when m = 0,
we measured SIMULACT's best case performance. It should be pointed out that
in the distributed case where n > 0, the number of messages per time frame in our
experiments represented entirely inter-machine communications, emulating a worst
case scenario.

The measurement used to represent SIMULACT's performance was a time frame
ratio gauge. This ratio is defined as:

elapsed wall time

sum of all Actor elapsed time

This ratio times the number of Actors in the system provides an estimate of how
much time is required by SIMULACT to execute one time frame. For the ideal
situation involving no overhead, this ratio would be 1.0 and 0.5 for the one and two
machine cases respectively.

Figure 7 a depicts our experimental results for SIMULACT running on a single
processor. Figure 7 b shows the two processor results. In each case, data was collected
over a range of 1 to 40 Actors per processor and a one second time frame was specified.
These results are preliminary and modifications to SIMULACT have already been
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,cheduled to enhance performance. Further testing is planned to observe the effect
of three machine distribution as well as varying time frame sizes.

For the single machine case with no message passing, SIMULACT's overhead
approaches 4.5%. Similarly, the distributed case approaches 10% overhead. Both
sets of curves indicate that as the number of messages per time frame increases, so
does the overhead. In fact, between 100 and 200 messages per time frame handled
by the system seems to be a saturation point for the Messenger. Currently the
Messenger uses an a-list to associate stagenames with Cast members. We should see
improvement when this is implemented as a hash table lookup. Also note that the
distributed case after saturation degrades at a much faster rate. One explanation for
this can be deduced from Figure 2. All inter-machine messages are handled three times
by different Messengers and must, be sent over the Lisp machine network. Messages
among agents residing at the same host processor are handled once by the Messenger
and sent directly to the appropriate mailbox.

4.4.1.6 Status We have described SIMULACT, an environment for the design
and development of distributed intelligent systems. SIMULACT is written in ex-
tended Common Lisp, and is currently running on a network of Symbolics 3670 and
TI EXPLORER Lisp machines. Our implementation makes extensive use of flavors to
improve data encapsulation and to facilitate the modeling of environments in which
a group of semiautonomous processes do not share common memory.

SIMULACT has been particularly useful in the development of a distributed plan-
ning system [7]. It has been used to expose the nature of message traffic in this planner
and to develop and debug plan generation in a distributed environment. SIMULACT
has also been used as an aid in the development of a distributed theorem prover [25].
In each of these projects, SIMULACT's modularity and transparency have allowed
us to concentrate our efforts on the development of these agents rather than on the
problems associated with managing a distributed environment.

4.4.2 Graphical User Interface for Structural Knowledge (GUS)

Knowledge acquisition is a crucial phase in constructing knowledge-based systems.
This process consists of identifying, formalizing, and representing the relevant knowl-
edge. Application domains which involve reasoning about physical systems usually
include knowledge about the structure of the target system. For this reason, we
have designed and implemented a tool to assist an expert in convey!ng structural
knowledge in a form suitable for machine manipulation. Although the present design
is directed toward a specific application domain, the design principles employed are
domain independent.

When a knowledge engineer questions an expert about, problem solving for some
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physical system, the expert will often begin with a sketch of system components and
their interconnections. The symbols used by the expert to represent components and
interconnections comprise a language for structural knowledge description. Verbal
reasoning and explanation about the behavior of the physical system proceed, with
the expert using the sketch as an aid in his or her description I seems clear that a
diagram of a physical system often embodies wnat is known about structure. 'his
knowledge is represented using a set of graphical symbols ot icons that are specific to
the domain of interest. For this reason, a graphical interface for capturing structural
knowledge should be built upon the symbols used by the expert for structural knowl-
edge description. Furthermore, the composite diagram of domain specific symbols
can then be used as an explanation facility, much as it would in a non automated
environment. Part of the gap between expert and machine is bridged by providing a
common language.

The graphical user interface system we developed enables an expert to easily draw
a diagram of a physical system with a graphical interface tool, automates the machine
extraction and interpretation of embedded structural knowledge from the diagram.
and forms the machine representation of interpreted knowledge.

4.4.2.1 Overview We have developed a Graphical User interface for Structural
knowledge (GUS) which provides an interactive, mouse and menu-driven interface
for capturing the structural knowledge for a specific application domain: large scale
communications network systerns. Our implementation of GUS is currently running
on a Symbolics 3670 Lisp Machine and is written in Zetalisp [24]. A combination
of the mouse, menus, window system, and object-oriented flavors package provided
the necessary tools for building GUS. User interaction is primarily via manipulat-
ing a mouse-controlled cursor. Components are selected with the mouse for addition
from a library of component icons and thci posioiied upuu wt- drawing area. Con-
necting components follows a similar pattern: select the type of connection desired
from the library of connection icons and select a component and connect it to an-
other component in the drawing area. Attribute values for objects are easily edited via
menus. Continuation of this process results in a complete graphical display represent-
ing a communications network with specific equipment configurations. Additionally,
a knowledge base which embodies the captured structural knowledge is constructed.

The key idea here is the following knowledge base building is dynamic and trans-
parent. Knowledge base building is dynamic in the sense that editing of the graphical
model also edits the model's knowledge base. Knowledge base building is transparent
in that the user need not be concerned about how objects are represented, only how
displayed component objects are graphically positioned and connected to comprise a
composite communications network model.
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4.4.2.2 Design Objectives Our design of GUS reflects three basic criteria for a
knowledge representation language. The first is exprcssive power. How easily can the
expert communicate his knowledge to the system? Supporting this criterion is the ex-
tensive use of domain specific icons representing components and connections. These
icons form a natural vocabulary of symbols which are the foundation of a language for
structural knowledge description. The second important criterion is understandabil-
ity. Can experts understand what the system knows? Machine captured structural
knowledge is represented graphically with the same component and connection icons
used by the expert to convey structural knowledge to the machine. This commonality
of structural knowledge expression supports an environment for natural comprehen-
sion of machine knowledge. The final criterion is accessibility [19]. Can the system
use the knowledge it has captured from the expert? From a system perspective, the
purpose of this interface is to create a system knowledge base consisting, in part. of
structural knowledge. Simulation techniques and problem solving agents such as fault
isolation, service restoral and performance assessment make heavv use of structural
knowledge represented in the system knowledge base.

4.4.2.2.1 Conceptual Design Perspective An object-oriented design meth-
odology was adopted for design and implementation. An object is the primitive
element of an object-oriented programming environment. Larger or more complex
objects are formed from the composition of simpler objects. What is interesting is
that objects combine data and functions. Data is represented in attribute slots of the
object and functions which utilize this data are resident in attached structures called
methods. Communication with an object requires a message to be sent to the object.
The function contained by a method is executed in response to receipt of a message
bv the object. A method capable of recriving this message must be associated with
the ieceiving object. The result of function execution can be the alteration of object
state (modification of attribute slot values) or the execution of a predefined task.

Object-oriented programming has been used in many systems to create interac-
tive, menu-driven graphical applications [31]. This is the result of application en-
tities (graphical icons, menus, mouse sensitive text) being naturally represented by
objects. Structural representation of many physical application domains is greatly fa-
cilitated by objects. For example, objects of an electrical circuit application domain
would include resistors, capacitors and transistors. Methods for a resistor could in-
clude calculate-your-voltage-drop and short-yourself-out. Thus, by sending the
calculate-your-voltage-drop message to a resistor object, the associated method
utilizes object data to determine voltage drop. The effect of a resistor may be removed
by sending the short-yourself-out message (this could be implemented by altering
object state knowledge, i.e. setting the resistance attribute to 0). Expansion along
these lines will result in i powerful representation of physical circuit domain objects
useful for circuit fault diagnosis techniques. Paralleling these ideas to other physical
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application domains is a natural extension. Consequently, elements of interest in our
application domain are modeled by objects.

The first step in the object-oriented design was the specification of type classifi-
cations of objects. To conform to the structural theme of representation. four tYpe
classifications were conceived: component-objects, connection-objects. utility objects
and window-objects (Refer to Figure 8). Component-ohbects contain those obje ts
which model components of the application domain. ('onriection-obje( ts is a col-
lection of objects representing different types of connection media. Itilit'-object,
consists of one object which is responsible for all information regarding graphical
input and output. Window-objects contains the window objects used for graphical
editors and the file system interface.

4.4.2.2.2 Functional Design Perspective Three fundamental functions are
provided by GUS. First, structural knowledgc is captured from an expert. Second.
this knowledge is interpreted and represented in the structural knowledge base. Third.
this knowledge is displayed graphically (Refer to Figure 9).

Knowledge about the structure of our application domain is captured via. inter-
pcetation of graphical input. Graphical input, is performed by rmousin g coinpOi IItl
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icons and adding them to a configuration and selecting connection icons in order to
connect added components. As the user draws a component or a connection with
the mouse, the machine also interprets the graphical addition of this component or
connection as an addition of the internal representation of this component or con-
nection to the knowledge base. As discussed earlier, the internal representation used
is an object. Therefore, graphical addition of components and connections results in
the addition of instances of objects representing these components and connections
to the knowledge base.

Inherent to equipment connectivity are structural constraints. Depending upon
the type of connection, there are certain valid endpoints. Therefore, a functional agent
tightly coupled with capturing structural knowledge is necessary to guide the user in
selecting valid endpoints in the context of the type of connection being added. With
the aid of dynamic mouse sensitivity and highlighting techniques, these connection
constraints are effectively enforced.

Upon the completion of a graphical configuration, a knowledge base representing
the configuration is also completed. This knowledge base contains component and
connection objects, all of which are related in some physical sense. Two types of
knowledge are represented in the knowledge base: graphical and state knowledge.
Knowledge concerning graphical display encompasses all information necessary for
graphical representation of an object. State knowledge embodies specific and generic
attributes of the object. Since a frame-based knowledge representation is employed,
both types of knowledge are stored as attribute slot values of appropriate objects.
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The last function provided by GUS is the display of structural knowledge. Config-
urations drawn on the computer screen can be saved and loaded later as needed. The
display of machine represented knowledge is comprised of the same component and
connection icons used in the drawing of the configuration when it was saved. Each
component and connection icon is a representation of a component and connection in
the knowledge base, respectively.

4.4.2.3 Design Implementation This section gives more detail about object
classes. Additionally, input and output techniques, mouse sensitivity and structural
hierarchy from an implementation point of view are presented.

As discussed in Section 4.4.2.2.1, the first step in an object-oriented design was the
specification of object type classifications. The next design step is the specification of
object types within each classification. Object types of component-objects are site,
radio, MUX-99, MUX-98, DPAS, and crypto. Types of connection-objects are link,
supergroup, digroup, jumper and circuit.

The single object within the utility-objects classification is GUS-utility. The
GUS-utility object is the heart of the interface and coordinates graphical display
of component-objects and connection-objects.

The window-object classification has two object types: GUS-window and filer-
window. GUS-window is a customized window for graphical input and output and
is the basis upon which the network and equipment editors are built. User interac-
tion is primarily supported by a level specific library of icons. That is, for each level
of structural detail, there are associated icons which form the basis of user interac-
tion. Filer-window provides an interface window for binary file saving and loading of
network configurations.

The input device primarily employed by the interface design is the mouse. The
advantage of user input based upon pointing rather than typing in a command is
that seeing something and pointing to it is significantly easier than typing. From a
psychological viewpoint this issue is known as recognition versus recall. Numerous
experiments based on distance, target size, and learning found the mouse fastest
and with the lowest error rate relative to other input devices such as joysticks and
keyboards [341.

Graphical input by the mouse is chiefly supported by two drawing techniques.
The first technique is an implementation of a library of items to be displayed as icons
on the 3creen for convenie't selection and placement in the drawing. There are two
reasons for the use of icons. First, icons are visually more distinctive than a set of
words. Second, an icon is able to represent more information than words in a small
place, and conservation of screen space is of high priority for items not directly part
of a drawing [341.
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The second drawing technique implemented is rubber-banding. This technique is
utilized during the placement of a connection. It allows the user to strategically place
a connection and see what it will look like before fixing it in place. ,,n additional
capability provided as part of the connecting process is tacking down. Tacking permits
the user to tack a connection down at specified intermediate points (as opposed to
endpoints). This capability enables the user to specify connections other than point-
to-point straight lines; specifically, connections comprised of line segments. Therefore,
connections can always be specified such that any one segment of any given connection
is parallel or perpendicular to other existing connections.

A graphical coding technique is used for graphical output. Icons are used to rep-
resent physical component and connection objects of the application domain. The
symbols used for component and connection icons of the icon library are the same
symbols used for graphical output. For instance, the addition of a radio to an equip-
ment configuration results in the output of a radio symbol to the screen. This radio
symbol represents the newly created radio object added to the system knowledge
base. This radio symbol is also the same symbol used to comprise the radio icon.
Hence, the graphical coding technique stems from the idea of each displayed graph-
ical symbol not only being a visual display, but also a representation of a physical
object of the application domain and an object in the knowledge base.

A common source of erroneous input in a menu-driven graphical interface is using
the mouse to select a menu command or displayed object when such an action is
out of the current context. For example, choosing to add a connection or remove
a component and having all object types displayed be mouse sensitive would be of
poor design. A solution to such problems is dynamic control of mouse sensitivity to
implement the concept of context sensitive mouse sensitivity.

By dynamically controlling the mouse sensitivity of displayed objects, the mouse is
context sensitive in the sense that the items which may be pointed at with the mouse
are dependent upon the current context. For example, when an icon command rep-
resenting a component or connection is selected, a menu of commands will appear.
These commands are only associated with the type of object represented by the icon.
Component icon commands for type component only provide mouse sensitivity for
type components. Similarly, the type connection icon addition command only pro-
vides mouse sensitivity for those component objects which are valid type connection
endpoints.

Multi-level structural knowledge is an inherent property of the physical structure
of the application domain. In the following, a representational view of multi-level
structural knowledge is described. The connectivity of a communications system
can be edited at all three levels of structural detail, but only displayed at two (the
network and equipment levels). The ability to represent and edit all levels of structural
knowledge was a principle design objective.
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At the network level, site connectivity is represented by sites and respective link
interconnections (See Figure 10). A library including icon symbols representing sites,
links, and subregions have associated with them command menus. By selecting the
appropriate icons and subsequent commands, the user assembles a drawing repre-
senting site-to-site connectivity of a network. Once the site connectivity has been
specified, editing of either the subregion or equipment level of structural detail is
permitted.

Subregion editing, the most abstracted level of structural detail, is achieved by
the appropriate selection of subregion icon commands. Grouping sites together and
designating a control center comprises a subregion and consequently, a new subregion
object is added to the system knowledge base.

From the network level, selection of the EQUIPMENT EDITOR icon command
and subsequent selection of a site brings the user to the equipment level (See Fig-
ure 11). At this most detailed level of structure, internal equipment editing and
connectivity of a site can be specified. A library of equipment icons, similar in design
to the library of network level icons, encapsulates configuration commands. While
it is true that the equipment level represents the equipment configuration at a par-
ticular site, it is important to remember that equipment configuration is, in a sense,
continuous between sites. That is, links specified at this level of detail are represen-
tations (pseudo-links) of links existing at the network level. A link at the network
level may only be represented at the equipment level if it is connected to the site at
which equipment configuration is taking place.

4.4.2.4 GUS Architectural Design There are several important features of the
design which are discussed in this subsection. First, GUS has two basic editors, the
network editor (for specification of site and subregion connectivity) and the equip-
ment editor (for specification of equipment connectivity). Second, operations are
grouped into two categories: components and connections. This decision was made
because there are number of logical similarities among operations. This grouping of
operations provides an environment in which the user may interact with the system
in the same way for all operations in a given category. Similarly, physical objects of
the application domain are represented by two groups of objects: component-objects
and connection-objects. Third, a variety of connection constraints are enforced dur-
ing connection specification processes. Each constraint is enforced in a consistent
manner by using dynamic mouse sensitivity. Guidance is provided to the user in the
form of highlighting to show which displayed objects are mouse sensitive.

Mouse sensitive objects are those displayed objects which react in a controlled
manner to the positioning of the mouse cursor over them Certain terms derived
from the word mouse are commonly used in the realm of mouse pointing devices and
their application. For instance, mousing refers to selecting with the mouse, moused
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means selected, and mouseable means the capability to react to the mouse.

4.4.2.4.1 User Interaction User interi -tion with GUS is primarily through
mouse and menu driven commands. Mouseable graphic icons and commands in each
editor represent groups of type specific sub-comlmands for the type of object repre-
sented by the icon or command. From a graphi lc perspective, those graphical icons
which represent objects that are components of the network model are the same
graphical displays used by the graphics support when adding a component to a con-

figuration. This visual one-to-one corresponderce is the foundation of our symbolic
language for structural knowledge description.

User interaction is implemented by means e[ two physical devices, the keyboard
and the mouse. Keyboard input is limited to situations in which the user must
supply data values that cannot be predicted or guessed by the system. The majority
of user input is via the mouse, with the use of mouseable commands and graphic
icons. Most often the selection of a mouseable command or graphic icon results in
presentation of more commands in menu form. The use of menus and pointing devices
is a preferred implementation of user interaction because the user is presented a set
of possible command choices (dependent upon the current context) rather than being
required to remember commands. Additionally, only context dependent commands
are available for :hoice, consequently, erroneous command choices are avoided.

Pop-up menus are used in GUS force user input by remaining displayed until a
choice has been made. This type of menu is typically used for selection of available
links (link addition at the equipment level) or inputs (choosing a host input number
for a connection to a piece of equipment). The item choices displayed at a particular
time in one of these menus are the result of somne evaluating processes. For example,
the input menu only displays spare input numbers of a piece of equipment (those
inputs which do not already host a connection).

4.4.2.4.2 Network and Equipment Le-'vl Design As discussed earlier, our
application domain exhibits a high degree of hierarchical structure. GUS captures
structural knowledge at two levels of structura detail (the network and equipment
levels) via the network editor and the equipme t editor. The editing of structure in
either editor is limited only by constraints imp.; ed by mouse state diagrams and an
implied ordering of data input. In this way, the ,:,er is given a freedom of input which
is bounded by mouse state.

The network editor is an icon-based menu-d:iven user interface for the creation,
editing and saving of network level components, connections and subregion designa-
tions. With simple mouse and menu commands t he user can add sites and make link

connections by selecting sites as endpoints. The equipment level is similar in design
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to the network level. Entering the equipment editor places the user in a familiar
environment.

The equipment editor is an icon-based menu-driven user interface for the editing
of equipineuc level components and connections. it provides an easy and natural
means of configuring equipment within a site location and is accessible only through
the network editor by selecting a site at which equipment configuration is desired.

One point of interest, from a human factors perspective, is the specification of
connections between equipment. Depending upon the type of connection, certain
constraints regarding endpoints must be observed. This was not the case at the
network level since there was only one type of connection and one type of component.
The only connectivity constraint was the common sense constraint of a link not having
the same site for both endpoints.

4.4.2.4.3 Enforcing Connection Constraints Types of connections found
at the equipment level are links, supergroups, digroups, jumpers. and circuits. As
we have mentioned, there are endpoint constraints for each type of connection. In
order to enforce connection constraints during the connection specification process,
a combination of dynamic mouse sensitivity and graphical highlighting is employed.
Highlighting valid choices makes it easy for the user to identify mouse sensitive com-
ponents. For any connection type the user selects, only those pieces of equipment
which are valid endpoints are highlighted and mouse sensitive. Which endpoints are
valid is dependent upon the type of connection, which endpoint is being specified,
and the presence of spare inputs or outputs to host the connection.

In order to provide design guidelines for connection specification, two general
constraints are imposed on the user during the connection specification process. First,
a connection will always start at a piece of equipment. Second, if both endpoints of a
connection are constrained to be equipment, then the first endpoint will always start
at the piece of equipment which hosts the connection as an input.

Link addition or removal at the equipment level does not actually add or remove a
link to the knowledge base. Instead, equipment level links can be thought of concep-
tually as pseudo-links or representations of links at the network level. The network
level provides abstracted information concerning network connectivity that consists
of link connectivity for all sites, whereas the equipment level provides connectivity
information only for the site at which equipment configuration is taking place. Addi-
tionally, the equipment level provides information consisting of which radios each link
is connected to and complete equipment connectivity at that particular site. Con-
sequently, link connections hold the special status in that they are the only type of
connection which bridges the network and equipment levels of representation.

Several link connection constraints must be satisfied. A site can only have as
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many links specified in its equipment configuration as there are liakq connected to
it in the network configuration. Link connections (at the equipment level) always
start at a radio and end in free space. Only one link may be connected to a radio.
Note that there may be more radios than links at the network level, but there will
remain extra radios which are noT connected to any iinks. Consequently, these radios
would not be part of the equipment connectivity and would constitute an incomplete
representation of a network system.

A special type of connectivity specification is supported for configuring DPASes.
DPASes only host digroup connections. The function of a DPAS is to interconnect
digroups at the channel level of connectivity. DPAS configuration is supported by a
DPAS configuration editor window. This window is physically comprised of an input
completion pane at the top of the window, with the remaining bottom three-fourths
divided column-wise into an input pane on the left and a configuration pane on the
right.

4.4.2.4.4 Circuit Representation A circuit is a complete path (consisting
of connections and equipment) from one MUX-98's input to another MUX-98's input.
There is at least one level of multiplexing involved in each circuit. Circuit specification
is easily performed by the user, though it has been a very complex task from a design
and development perspective.

The addition of circuits should only take place after all sites have been configured
at the equipment level. This is because circuit addition requires a complete path
from the originating MUX-98 to the destination MUX-98. If an incomplete path
is discovered during the path seeking algorithm, then the addition process for that
particular circuit is unconditionally aborted and information about the problem area
is presented to the user. One side benefit of circuit specification is thus knowledge
base consistency checking. Successful completion of the circuit path seeking algorithm
indicates that the specified equipment connectivity for that circuit's path is logically
sound and meets connectivity constraints imposed upon circuit paths.

4.4.2.5 Comparison With Existing Tools An existing knowledge representa-
tion tool in use today is Intellicorp's KEE (Knowledge Engineering Environment)
system. KEE offers many graphics tools, some of which have many conceptual and
functional characteristics similar to those of the graphical interface we have developed.

The KEE system is a development environment for building models and reasoning
about and analyzing those models. Within the KEE environment there are graphics
tools which help users construct graphic images, image libraries, and interfaces via
an object-oriented implementation. Thus, KEE has a frame-based knowledge base
consisting of objects and their associated attribute slots. Some of these tools include

45



KEEpictures, Activelmages, and SimKit. KEEpictures assists the user in construct-
ing customized, graphic images and interfaces. ActiveImages is a library of images
constructed with KEEpictures. Of particular interest is the tool SimKit. With SimKit
and a librarv of vraphical simulatin oh erts. non-programmers can easily build, run
and modify simulations with simple mouse-and-menu commands.

The interesting aspect of SimKit, for our purposes, is not its simulation abili-
ties, but the rpechanism and procedure by which models are built and represented.
Users are able to interact with the application by manipulating images with a mouse-
controlled cursor. A library of icon- representing simulation components is used to
build complete simulation models. As components are selected from the library's
menu of icons for addition to the simulation model, ncw mrn.iU-ai of the class of the
simulation component represented by the icon are automatically created and added
to the model's knowledge base. Attribute slots are utilized to represent the modeled
objects' attributes and their corresponding values. Additionally, connections between
component models are represented by slots. The salient feature here is that the ex-
plicit addition of objects to the knowledge base is avoided by having knowledge base
modification be a consequence of graphical editing with the mouse.

In GUS, user interaction is primarily through mouse-controlled manipulation of
a library of domain specific icons. These icons represent the components and con-
nections of the application domain. As components are selected from the library of
icons for addition, new instances of objects represented by the icon are automatically
created and added to the system knowledge base. This is a concept held in common
with SimKit. A frame-based knowledge base implementation is also utilized with slots
and default values representing modeled physical object attributes. Another major
commonality is that knowledge base building is completed implicitly by the addition
of component and connection icons to comprise the physical architecture of the target
system.

A limitation of our graphical interface is that it is domain specific. The library of
domain specific icons is fixed and not modifiable via the interface tool itself. However,
this is not a limitation of the graphics capabilities of SimKit. SimKit permits loading
in of a library of icons. Custom application libraries can be created with the use of
KEEpictures and Activelmages.

A design goal of our interface, which is not apparent in SimKit, is to have knowl-
edge concerning graphical display of a modeled physical object be loosely coupled
to structural knowledge of the system. Although implementation and the extent to
which SimKit addresses this goal is unclear, it is believed that our approach is unique.
A common approach to coupling graphical display capabilities is via inheritance by
mixing in graphical display objects to objects of the application domain. Our ap-
proach does not follow this conventional technique, but instead allows the structural
knowledge to be represented completely independently from the graphical display
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knowledge.

4.4.2.6 Status The intent of this research effort was to develop a graphical in-
ierface too, fu, the construction of a structurai knowledge base representing domain
specific knowledge for a communications network system. In its current implemen-
tation, GUS is proving itself to be an effective tool for knowledge base construction.
Design criteria and objectives have been satisfied and in some cases exceeded.

Although the present design was directed toward a specific application domain, the
design principles employed are domain independent. The motivation behind the de-
velopment of a generic intertace tool for capturing and representing structural knowl-
edge of a variety of application domains is obvious. The careful attention paid to
modularity in designing GUS has resulted in a system which can potentially serve as
a prototype for a generic interface tool. Specifically, the use of an objected-oriented
approach lends itself to a domain independent extension by allowing the possibility of
user-defined object classes. A library of domain specific objects and their attributes
could be created and represented. These objects would then be associated with pre-
defined object classes which have generic operation capabilities. In this way, domain
speciic .Ihiects are created and acquire operational capabilities (from an interface
pcrspective) by being associated with a predefined object class. The creation of
mouse sensitive regions for domain specific objects and the creation and association
of graphic icons and textual commands to these mouse ensitive reg,'ns mru!t .1ko be
supported. User creation of certain menu types with user-specified items should ,s ,
be supported.

A limitation encountered with this implementation of GUS is that the window
size constrains the size and complexity of a represented network system at both the
network and equipment levels. This is a consequence of component objects having
a fixed location for display. Investigation of zooming and panning techniques and
their potential application to this specific problem would be an excellent approach.
At present, absolute screen pixel coordinates are used for representation and display
of objects. Zooming could be implemented by using a window-relative representation
and a scaling technique on absolute screen coordinates for display. Implementation of
panning follows from the use of relative coordinates for zooming. Depending upon the
current scale, displayed object coordinates would be relative to a scaled "home" pixel
coordinate. Various regions of the display could then be viewed by detection of mouse
cursor movement in editor window margins (similar to scrolling window capabilities).
Objects displayed would be displayed relative to the home coordinate whether it is
visible or not. The addition of zooming and panning capabilities- permits the display
of network systems with real world longitude and latitude locations and realistic
proportions. Thus, the representation and modeling of existing network systems and
the creation and modeling of hypothetical network systems closely related to real
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world coordinates would be a salient characteristic of the interface tool.

Another limitation is configuration completeness. Although consistency checking
is provided by connection constraints, it is still possible for a user to construct an
mucorect, configuration from a completeness perspective. Incomplete configurations
are detected when specifying circuits and indicate to the user that the current network
structure and corresponding knowledge base must be modified.

Future research efforts could address some of these limitations and proposed so-
lutions. Special emphasis should be applied to the extension of the design of GUS
to a generic interface tool. From this perspective, GUS is a valuable prototype tool
which provides a significant foundation for an effective, graphical interface tool for
capturing and representing structural knowledge for a wide range of physical systems.

4.5 Contributions to Distributed Artificial Intelligence

,The third area in which this report presents results is in the advancement of dis-
tributed artificial intelligence, A significant portion of our research effort has concen-
trated on issues in the design of distributed, multi-agent systems. We have focused
on investigating cooperation paradigms and have implemented three distinct cooper-
ative, distributed AI systems.

The Distributed Multi-Agent Planner (DMAP) demonstrates, in the context of the
service restoral problem, the capability to design a truly distributed planning system.
In this system thzre is no central node, no locus of control, and no complete, global
knowledge. The agents exchange messages in order to coordinate actions and gain
sufficient knowledge to make coherent, globally satisfactory decisions. We present
experimental results which show that not only is such a design feasible, but also that
the message exchange does not produce the equivalent of complete, global knowledge.

We have studied cooperation througb the sharing of inferences in a common, local
knowledge base. This work resulted in the implementation of a truth maintenance
system (the MATMS) which enables multiple agents to maintain different, possibly
inconsistent, beliefs while insisting on a single, shared, logically consistent knowledge
base

The Distributed Automated Reasoning System (DARES) was implemented to
investigate cooperative st-ategies for exchange of knowledge among agents working
toward a single goal, but with each agent having only partial knowledge locally.
DARES may be viewed as a prototypical system at this stage, but it is intended to
serve as a model for such problem solving activities as distributed situation assessment
which must be performed by the performance assessment agents.
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4.5.1 A Distributed Multi-Agent Planner (DMAP)

In this section of the report, we present our work on a distributed multi-agent planning
;ystem, DMAP. Distributed planning can be described as an activity in vhich a group
of semi-autonomous agents, each of which has a limited view of the global system state
and control over only a subset of the resources required to execute an acceptable plan,
cooperatively arrives at a set of actions that satisfy some goal or group of goals. We
view distributed planning as a process that proceeds in two phases: plan generation
and negotiation. We describe each of these phases in the sections which follow.

An important component of this planning activity is distributed plan generation;
we have developed a mechanism for performing this task in a class of problems in
which resource allocation can be viewed as a planning problem. In distributed en-
vironments such as these, problem solving agents must cooperate to incrementally
build plans to complete tasks without knowing a priori what resources are needed or
how they can be utilized. Therefore, distributed plan generation involves properly
assessing which local resouice allocations are associated with a single global plan and
which are parts of distinct global plans. Our solution to the problem requires that
an agent only be aware of a limited and abstracted view of global plans.

In many domains, planning can be vicwed as a form of a distributed resource allo-
cation problem, in which actions make use of resources that are objects available for
use in satisfying system goals. The resources available generally have three significant
characteristics: resources are indivisible (not consisting of component resources), the
supply of resources is ]imited, and use of these resources cannot be time shared for
concurrent satisfaction of multiple goals.

Our model of planning differs from many others in that both control over resources
and knowledge about these resources are distributed among problem solving agents.
Some of the resources are under the direct control of a single agent, while control over
others is shared by two agents. Resources controlled by a single agent are local to
that agent and cannot be allocated by any other agent. Indeed, any given agent only
has knowledge concerning those resources that are local and those whose control it
shares. Shared resources are also local to an agent but must be regarded somewhat
differently in reasoning because allocation of shared resources must be coordinated
by those agents that share control. Each agent must therefore know which of its
local resources are shared and which agents are involved in the shared control of a
particular resource.

In this kind of environment, global goals may arise concurrently in multiple agents.
The system objective is one of finding a set of resource allocations that satisfies as
many of the global goals as possible, subject to constraints.

In the sections which follow, we first discuss distributed plan generation in more
detail and describe one solution to the problems that arise with the aid of an example.
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These problems arise because one agent may be asked to extend the same partial plan
several times. Thus an agent must be aware of situations in which it is extending
a partial plan it has already participated in c:usiacAing. Since no agent ought to
have knowledge of an entire global plan, the central issue is one of determining a
mechanism whereby an agent can acquire this type of awareness without requiring
that it have detailed knowledge about global plans

We then describe a formalism that has been developed for abstracting and prop-
agating information about nonlocal impact of decisions made locally. Our work pro-
vides mechanisms for determining impact at three levels: locally on the level of plan
fragments, locally on the level of goals, and nonlocally.

4.5.1.1 Distributed Plan Generation We view the objective of distributed
plan generation as one of determining sequences of local actions that can be performed
in a coordinated fashion by distributed agents to satisfy several global goals. Thus.
the collection of local actions that satisfies a single global goal constitutes a global plan
that exists as plan fragments distributed among the agents. A plan fragment, then,
is a sequence of operator applications to objects under the control of an agent that
would transform the global system, possibly through intermediate states, to a new
state. An agent can extend a plan fragment if the agent can create a plan fragment
which would transform the system from the new state to a state that is closer to
the goal state. The knowledge concerning what state transformations each agent can
make is distributed among the agents thereby making it impossible, in most cases.
for a single agent to devise a global plan.

Plan generation begins when an agent is notified of the instantiation of a global
goal. The agent creates a subgoal corresponding to this global goal and determines
all sequences of actions it can take to bring the system to a state that locally appears
closer to the goal state. Each of these alternatives becomes a plan fragment. If any
of these plan fragments would modify the system state to a new state that is not
the goal state, the agent must issue requests for extension of the plan by agents that
may be able to transform the system from the new state to the goal state or a state
that may be nearer to the goal state. This process is repeated until all requests are
processed.

It is clear that every request to extend a plan must carry certain information
which will permit an agent to achieve a new state which locally appears closer to the
goal state. Specifically, a request must contain the identification of the associated
global goal, a description of that goal, and a description of the new state.

It is essential to observe that during plan generation, a given agent may be asked
to add a new sequence of actions to the same global plan several times. For example,
Agent A may formulate a plan fragment that would transform the system to state
t, then request that Agent B extend the plan. Agent B may devise a sequence of
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actions that would bring the system from state 1 to state 2 and then request that
Agent C extend the plan, whereupon Agent C may create a plan fragment that would
transform the system to some new state. Agent C could then request that Agent A
extend the plan. Clearly, it is necessary for an agent to be able to detect when it is
being asked to build another piece of a global plan it has already partially constructed.
If the agent has already built one or more parts of a plan, it must know which plan
fragments were previously used. This information is needed for two reasons. First,
the agent must not inadvertantly create a plan which would bring the system to
the same state twice. Secondly, the agent must be able to accurately assess which
action subsequences belong to the same plan fragment and which belong to totally
different plan fragments, so that interactions among plan fragments can properly be
determined.

One mechanism for providing an agent with the means for acquiring this awareness
involves attaching a list of support names to each plan fragment. Tb e support names
represent abstractions of the global plans associated with a plan fragment. They are
incrementally constructed, with each agent appending a "tag" to identify its own plan
fragments. The tags allow each agent to reason about its utilization of a particular
plan fragment in a global plan. They do not embody information which allows an
agent to reason about the participation of other agents in a particular global plan.
The discipline used in constructing support names guarantees that if, at the end of
plan generation, a given plan fragment has no associated support names then no
acceptable global plan uses this plan fragment.

Support names follow a plan as it is developed by the agents. Once a plan has
been completed, the requisite plat, fragments can be marked by tracing continuation
requests using the support name. Thus, an agent can determine which requests are
part of the same global plan and which belong to distinct global plans. If it is
determined that a plan cannot be completed, the appropriate support names can be
deleted.

4.5.1.2 An Example

As an example, consider the communications network shown in Figure 12. There
are five problem solving agents each controlling part of a network of geographically
distributed communication links. The circles represent communication sites and the
lines joining sites represent communication links. In this domain, the problem of
restoring disrupted service can be viewed as a planning problem in which one operator,
Allocate, is utilized to allocate communications resources. The resources are links and
a global plan is a sequence of local link connections which restores communication
between two sites. Thus, a partial plan or plan fragment involves an allocation of
resources that transforms the system from a state in which it has a path ending at
one site to one in which it has a new path ending at another site.
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Table 1 summarizes the knowledge about resources available to each agent and
the associated control relationships.

I I

BR7 /, RIO ' R28 E

a 0 C D S

A R5 R6 Rll
B R6 R7 RI0 R21 R28 R30

C Rll R12 R19 R30

D R10 R19 R20 R21
E R20 R28

Table 1: Local Resource Control

Let us assume that originally communication between sites E2 and Al follows a
path over links R28-R10-R7-R6-R5 but that at some point link R1O fails and commu-
nication between sites E2 and A1 must be restored over a different route. Further-

more, let us assume that Agent E is notified that a global goal to restore the path

between sites E2 and Al has been instantiated.

It is perhaps easiest to explain how plan generation proceeds by viewing the
activities of agents at global time slices.

Ti:

* Agent E creates a subgoal to restore a path from site E2 to site Al and
determines that it has one plan fragment that locally satisfies this subgoal:
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pfEl that uses R28. Since this plan fragment does not satisfy the global
goal, Agent B is requested to find a path to site A1 using R28 with support
name (El).

T2:

e Agent B: Creates a subgoal using pfB1 using R28-R21 with support name
(El)

Requests: Agent D use R21 with support name (B1 El)

T3:

• Agent D: Creates a subgoal using pfDI using R21-R20 with support name
(B1 El) and pfD2 using R21-R19 with support name (Bl El)

Requests: Agent E use R20 with support name (Dl Bl El) Agent C use
R19 with support name (D2 Bi El)

T4:

* Agent C: Creates a subgoal using pfCl using R19-RlI with support name
(D2 BI El) and pfC2 using R19-R30 with support name (D2 B1 El)

Requests: Agent A use R11 with support name (Cl D2 B1 El) Agent B
use R30 with support name (C2 D2 BI El)

* Agent E: Determines it has no way to extend Agent D's request

Notices: Agent D remove support name (BI El) from pfD1

TS:

* Agent A: Creates a subgoal using pfAl using Rll-R5 with support name
(CI D2 BI El). This plan fragment completes the global plan.

Notices: Agent C mark support name (D2 Bl El) for pfC1 acceptable

e Agent B: Creates a subgoal using pfB2 using R30-R7-R6 with support
name (C2 D2 B1 El)

Requests: Agent A use R6 with support name (B2 C2 D2 B1 El)

* Agent D: Removes support name (1 El) from pfDl however since pfD2
uses this support name, no propagation occurs.

T6:

* Agent A: Creates a subgoal using pfA2 using R6-R5 with support name
(B2 C2 D2 B1 El). This plan fragment completes the global plan.

Notices: Agent B mark support name (C2 D2 BI El) for pfB2 acceptable
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" Agent C: Marks support name (D2 Bi El) for pfC1 acceptable
Notices: Agent D mark support name (B1 El) for pfD2 acceptable

T7:

" Agent B: Creates a new plan fragment, pfB3 using R6-R7-RP30 and R21-
R28 with support name (C2 D2 B3 El). Removes support name (C2 D2
B1 El) from pfB2.
Notices: Agent C add support name (D2 B3 El) to pfC2 Agent C remove
support name (D2 B1 El) from pfC2

" Agent D: Marks support name (B1 El) for pfD2 acceptable
Notices: Agent B mark support name (El) for pfB1 acceptable

T8:

" Agent B: Marks support name (El) for pfB1 acceptable
Notices: Agent E mark pfEl acceptable

" Agent C: Adds support name (D2 B3 El) to pfC2. Removes support
name (D2 BI El) from pfC2 however, pfC1 uses this support name so no
propagation takes place.
Notices: Agent D add support name (B3 El) to pfD2

T9:

" Agent D: Adds support name (B3 El) to pfD2
Notices: Agent B add support name (El) 4o pfB3

* Agent E: Marks pfEl acceptable

T1O:

" Agent B: Adds support name (B3 El) to pfB3

Table 2 shows the plan fragments created by each agent, the resources used by
these plan fragments, and the support names associated with each plan fragment at
the end of plan generation. The "*" in the support names column for pfEl denotes
that this plan fragment has been marked acceptable. Note that pfD1 has no support
names because this plan fragment is not part of any acceptable global plan. Agent
B has determined that no acceptable global plan uses pfB2 alone; rather, if this plan
fragment is used, it is always used in conjunction with pfB1. Therefore, Agent B has
created a new plan fragment, pfB3, which uses the resources of both pfBl and pfB2
and Agent B has given this new plan fragment support Since no acceptable global
plan uses pfB2 its support names are removed. PfBJ on the other hand, is part of a
global plan that does not use other plan fragments in Agent B so the support names
for pfB1 are not removed.
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Agent Plan Fragments Resources Support Names
A pfAl Rll-R5 (Cl D2 B1 El)

pfA2 R6-R5 (B2 C2 D2 B1 El)

B pfBl R28-R21 (El)
pfB2 R30-R7-R6 none
pfB3 R28-R21 R30-R7-R6 (C2 D2 B3 El)(El)

C pfC1 R19-Rll (D2 BI El)
pfC2 R19-R30 (D2 B3 El)

D pfD1 R21-R20 none

pfD2 R21-R19 (BI El)(B3 El)

E pfEl R28 *

Table 2: Plan Generation Results

4.5.1.3 Experimental Results Research in dist- buted planning is currently be-
ing conducted in the context of the communications dmain described in the previous
example. The implementation model, however, contains much more of the detail as-
sociated with a real world communications network [10]. Local searches for plan
fragments are not simple searches for paths of links in and out of a subregion as
might be assumed given the example above. On the contrary, local searches involve
tracing through complex interconnections of various types of communications equip-
ment at the sites within a subregion. The knowledge base that is searched contains
information about physical communications equipment such as radios, various lev-
els of multiplexers, and computer controlled switching devices called DPAS's. This
equipment is connected in various configurations at each site within each subregion.
Paths through the subregion must be traced through various levels of multiplexing
and demultiplexing as they pass through long chains of communication equipment.

Existing planners use several different architectures and, moreover, the level of
abstraction at which planning occurs varies from system to system. Experiments
have been conducted so that distributed plan generation as performed in DMAP may
be compared to plan generation schemes with various architectures using different
levels of abstraction. In each of the tested schemes, an agent which has control
over part of a network has detailed information about that part of the network and
only that part of the network. If any other information is used for plan generation.
it is either abstract knowledge in the form of plan fragments, or limited, abstract
knowledge in the form of support names. The following is a description of the plan
generation paradigms used in these experiments. The first is a single agent system
and the rest are multiple agent systems.
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Single Agent/Detailed Global View (SA/DGV) A single agent is responsible
for the entire system rather than distributing system knowledge among multiple
agents. In this approach, a local search for plan fragments is equivalent to a
global search for global plans that will satisfy system goals. This will be referred
to in the text as the Single Agent strategy.

Multiple Agent/Limited Abstract Global View (MA/LAGV) This is the
approach described in this paper. Plans are constructed by multiple agents
which have an incomplete, limited view of the global plans. This incomplete,
limited view is determined by the incremental construction of support names,
and therefore is different at each agent in the system. This will be referred to
in the text as the Localized strategy.

Multiple Agent/Central Abstract Global View (MA/CAGV) Agents
use descriptions of the circuits which are to be restored to determine all the
possible ways they might be able to participate in a global plan. Circuit de-
scriptions include the circuit name, priority, source and destination. Each agent
is given this information for each circuit which is to be restored. Each agent
then returns partial routes through its subregion which could be used in a global
path. The results are returned in the form of plan fragments using local and
shared resources. The results of these local searches are sent to a single agent
who pieces the plan fragments together by their use of shared resources into
acceptable global plans. Once this is completed, each agent is notified of its
participation in global plans. The view of this single planning agent is not lim-
ited in the sense that it does know about the complete set of plan fragments in
the system. However, its view is abstract since this agent knows nothing about
the details of the communications equipment and interconnections at each site.
This will be referred to in the text as the Centralized strategy.

Multiple Agent/Replicated Abstract Global View (MA/RAGV) As in the
Centralized approach, local searches are conducted by each agent using high
level circuit descriptions. The results of these searches, the local plan fragments,
are sent to every other agent in the system. Then, with complete knowledge
of every plan fragment in the system, each agent forms the global plans and
determines its own role in each. This will be referred to in the text as the
Replicated strategy.

The key parameters monitored in these experiments are the simulated time re-
quired to generate plans, the average CPU time required by each processing node to
generate plans, and the amount of message traffic sent during the simulation.

In addition, three network configurations were chosen to observe the effect of
various topological extremes. In this domain, the network topology actually defines
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the complexity of the roles of agents in the multiple plan decompositions. Therefore,
by varying these topological extremes it is also possible to observe the performance of
these strategies when agent participation takes on roles of different complexity. Each
network contains twelve sites divided into five subregions with various inter- and
intrasubregion connectivity. Figure 13 shows the configuration where the subregions
are connected in a straight line and Figure 14 shows the subregion connections which
form a ring. The third topology chosen is shown in Figure 15. Here each subregion
is connected to every other subregion creating a tightly coupled network.

I I
* I

A22

I II®
S 0

A B C D E

Figure 13: Line Topology

The results of these experiments are shown in Figures 16,17, and 18. As expected,
the Single Agent strategy performs the worst in terms of the time taken to devise
global plans. This observation holds true over each of the tested topologies. This
points to the desirability of distributed multiagent systems over centralized single
agent systems when the systems are large.

The Centralized, Replicated, and Localized strategies all take about the same
amount of time to determine global plans for the line topology. As well, the CPU
time per agent.is approximately the same. However, the amount of message traffic
required by the Replicated strategy exceeds that of both the Centralized and Localized
strategies with the Centralized strategy performing better as the number of goals
grows.

For the ring topology, the CPU time per agent for the multiagent strategies begins
to separate with the Centralized strategy clearly performing better as the number
of goals increases. The Replicated and Localized strategies appear to be following
approximately the same line. Regarding the time to construct global plans, the
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Replicated and Centralized strategies outperform the Localized when the number
of goals is small. However, as the number of goals increases, the lines appear to be
converging. The results for the message traffic required shows that the Replicated and
Localized strategies have approximately the same requirements while the Centralized
strategy requires less message traffic.

When the topology is tightly coupled, the strategies perform with significant dif-
ferences. The Localized strategy clearly requires less time than both the Centralized
and Replicated to devise plans as the number of goals increases. However, the CPU
time per agent required is clearly less for the Centralized strategy with the Localized
strategy coming in second and the Replicated performing worse. In addition, there is
a marked difference in the amount of message traffic required by the different strate-
gies. The Localized strategy requires the most message traffic, the Replicated less,
and the Centralized still less.

For the network topologies tested, there is a clear question of trade-offs. For the
ring and line topologies, the Centralized strategy performs better overall. The price
paid however is vulnerability. In domains where survivability is an important concern,
such as a military communications network, the Centralized strategy obviously is
undesirablc because of the dependence upon a single agent. If for some reason this
single agent fails, mechanisms would necessarily have to be built in to detect the
failure. Furthermore, all the work which had been performed by this agent would
have to be recalculated. For the tightly coupled topology, the Localized strategy will
take less time to construct plans but the price paid is in the amount of message traffic
required.

4.5.1.3.1 Performance Analysis The performance of distributed plan gen-
eration can be analyzed by considering the time required to generate plans and the
amount of message traffic sent.

The time required to generate plans is influenced by factors on two levels. At
one level, this parameter is dependent upon the amount of time required to pass
the plan among each of the agents involved in its construction. Therefore, from
a global viewpoint, the time required to generate plans is directly related to the
length of the longest chain of agents involved in building a plan. At another level.
the amount of time required to generate plans is determined by the processing time
of each individual agent. As the relations between requests to extend a plan and
multiple plan decompositions become more complex, so does the processing involved
to determine distinct alternatives, Thus, from a global perspective, the time required
to generate plans is also directly related to the complexity of the roles of agents in
multiple plan decompositions.

The message traffic necessary for plan generation is also directly related to the par-
ticipation of agents in multiple plan decompositions. When an agent is notified that a
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plan it has helped to build has been deemed acceptable, that age'at is responsible for
the propagation of this information. If the agent participated only once in the plan
construction, a single message is required to continue the propagation. However, if
the agent participated multiple times in the construction, then two messages are sent,
one to propagate the new support name and one to remove the old support name.
Thus, the message traffic required to generate plans increases as the complexity of the
roles of agents in multiple plan decompositions increases. However, it should be noted
that the amount of message traffic required does not approach that which would be
needed to transmit complete, detailed global information to each agent in the system.

These experiments illustrate that distributed plan generation can be accomplished
by passing merely a limited amount of information among system agents. The only
information required includes descriptions of the goal state and the present state of
the plan, and information which allows agents to determine their previous actions
in the construction of the plan. This last piece of information is provided by the
implementation of support names. Experimentation shows that building a complete,
detailed global view at any agent is unnecessary. Plan generation using support names
will perform best in domains where goals can be satisfied through the actions of a
small number of agents who participate in the construction of plans only once. The
performance of distributed plan generation using support names will degrade as the
number of requests for extensions of plans grows and as the number of times agents
participate in building the same plan increases.

4.5.1.4 Multistage Negotiation As described earlier, we view distributed plan-
ning as consisting of two phases: plan generation and negotiation. For each global
goal, plan generation determines a set of plans each of which is feasible, taken in
isolation. Each of these plans consists of a collection of plan fragments, one resident
in each participating agent. Plan fragments which collectively form a (global) plan
must embody a consistent choice of resource allocations. This consistency is reflected
in the presence of constraints that enforce a coordinated allocation of resources that
are shared among agents. It is important to note that when a resource r is shared
by two agents (agent A and agent B), allocation of r for use in satisfying a goal must
occur in both agent A and agent B.

To motivate this assumption, consider a simple example in which there is a work
surface shared by two robots, each of which has a private collection of blocks. Suppose
that blocks come in various colors, shapes, and sizes. A goal in the context of this
example is to construct a stack of four blocks all of which have some common property
s ,bject to the constraint that no block can be placed on a block'that is smaller than
itself.

In the context of this example, the blocks can be modeled as resources, and since
each robot has its own private collection of blocks, neither robot knows the number,
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size, shape, or color of blocks the other robot controls. To avoid a collision of the
two robots, the time that a robot can be in the work space is modeled as a shared
resource. A plan fragment consists of a sequence of one or more placement operations
performed by a single robot at specific times using blocks from its own private supply.
A global plan consists of a sequence of four placement operations that construct a
tower satisfying the goal description. Depending on the distribution of blocks in the
robots' private supplies, a global plan will consist of placement operations performed
by the two robot arms in various combinations.

When we assume that there may be several goals the system is attempting to
satisfy concurrently (e.g. several towers to be built), it becomes clear that it may not
be possible to satisfy all of the global goals because of resource allocation conflicts.
Negotiation is necessary to select a set of plans that satisfies as many global goals as
possible.

Multistage negotiation [7] has been developed as a means by which an agent can
acquire enough knowledge to reason about the impact of local activity on nonlocal
state and modify its behavior accordingly. This protocol can be viewed as a generaliza-
tion of the contract net protocol [43, 44, 13]. It produces a cooperation strategy that
is similar in character to the Functionally Accurate, Cooperative (FA/C) paradigm
[321, in -. hich nodes iteratively exchange tentative and high level partial results of
their local subtasks.

In the sections which follow, we describe a formalism that has been developed for
abstracting and propagating information about nonlocal impact of decisions mau
locally. Our work provides mechanisms for determining impact at three levels: locally
on the level of plan fragments, locally on the level of goals, and nonlocally. We first
present formal definitions that characterize this impact. We then give algorithms
for the construction of sets that reflect various levels of impact and analyze their
complexity in cases for which the problem is likely to be overconstrained and those for
which it is likely to be underconstrained. Finally, we reflect on the level of transaction
activity required to propogate local information nonlocally.

4.5.1.5 Reasoning About Constraints and Conflicts For the purposes of il-
lustrating our definitions, we consider a scenario involving four agents in a distributed
system cooperatively attempting concurrent satisfaction of four goals. A number of
global plans have been constructed during plan generation, as indicated in Table 3.
In Table 3, each goal is identified by gi (i = 1, 2, 3, 4). The set of alternative plans
for each specific goal gk are identified by gkpl (1 = 1, 2, ... ). Thus we see that goal
gl has ,ive distinct alternative olans, glpl, glp2, etc.

It should be noted that Table 3 shows the global plans from a global perspective.
No single agent in a distributed problem solving system has complete knowledge
concerning any of these plans. Indeed, unless some system goal can be satisfied by a
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plan I plan fragments [rl r2 r3 r4 r5 r6 r7 r8 r9 r10 rll

glpl A-a B-a C-a D-a 1 1 1 1 1

glp2 A-a C-a D-b 1 1 1 1 1

glp3 A-c C-c 1 1 1
glp4 A-b B-b C-b 1 1 1 1
glp5 D-c 1 1

g2pl A-d C-d 1 1 1 1
g2p2 A-e B-c D-d 1 1 1 1

g2p3 C-e D-e 1 1 1 1 1

g3pl A-f C-g D-f 1 1 1 1 1

g3p2 A-f C-g D-g 1 1 1 1 1

g3p3 C-g D-f 1 1 1

g3p4 C-h D-g 1 1 1

g4pl A-g B-d 1 1

g4p2 A-g B-e C-j 1 1 1 1

g4p3 A-h C-i D-h 1 1

g4p4 A-h C-i D-i 1 1

g4p5 C-k D-h 1 1 1

g4p6 C-k D-i 1 1 1

Table 3: Global Plans Generated

single agent using its own local resources, no single agent is even aware of the total
number of alternative plans that have been generated.

From Table 3, it is evident that global plans are composed of collections of local
plan fragments. For instance, global plan g3p3 is composed of plan fragments C-g
and D-f. Plan fragment C-g denotes a set of local actions that agent C could take in
partial satisfaction of goal g3. Satisfaction of g3 using g3p3 would require the actions
D-f by agent D as well as the set of actions C-g in agent C.

Local knowledge about plan fragments is shown in Table 4. Notice that if the
entry on the resource count line for resource r in agent i is k. then agent i has k copies
of resource r to utilize in problem solving. The shared resources are evident, as they
are known to more than one agent. Observe that rio is a shared resource. There is
only one copy of r10 in the system, and its allocation must be jointly controlled by
agents B and C.

It is important to note that each agent has only the local knowledge about plan
fragments shown in Table 4. This means, for example, that agent A is aware that
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Agent A Agent C
goal plan frag rl r2 rll goal plan frag r2 r3 r4 r5 riO
resource count 3 2 2 resource count 2 3 2 2 1
gl A-a 1 1 gI C-a 1 1

A-b 1 1 C-b 1
C-c 1 1

g2 A-d 1 1
A-e 1 1 g2 C-d 1 1 1

C-e 1 1 1
g3 A-f 1 1

g3 C-g 1 1 1
g4 A-g 1 1 C-h 1 1

A-h 1
g4 C-i 1 1

C-j 1 1
C-k 1 1

Agent B Agent D
goal plan frag r9 rlO rll goal plan frag r5 r6 r7 r8 r9
resource count 1 1 2 resource count 2 2 1 3 1

gI B-a 1 gl D-a 1 1 1
B-b 1 1 D-b 1 1 1

D-c 1 I
g2 B-c 1 1

g2 D-d 1
g4 B-d 1 D-e 1 1 1

B-e 1 1

g3 D-f 1 1
D-g 1 1

g4 D-h 1 1
D-i 1 .1

Table 4: Local Knowledge About Plan Fragments
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plan fragment A-b for goal gl coordinates with s -ie plan fragment known to agent
B as a component in some global plan or plan. in satisfaction of gl. Agent A knows
this because resource rll is shared between agents A and B. Agent A does not know
anything about plan fragments that are local to agent B.

To enable an agent to efficiently exchange knowledge concerning the nonlocal
impact of local decisions, we determine a conflict set for each plan fragment. We then
use the conflict set to construct an exclusion set for each plan fragment that reflects
the potential impact on an agent's ability to participate in satisfying other goals,
assuming that plan fragment x is executed. At the highest level of abstraction, we
use exclusion sets to form infeasibility sets. Knowledge summarized in its infeasibility
sets allows an agent to reason about the way in which its decision to satisfy one goal
may affect its ability to satisfy other goals. Finally, we propagate these local concepts
to other agents with the construction of induced exclusion sets.

Before formalizing these concepts, we describe our notational conventions in the
next section.

4.5.1.5.1 Notation

* We define maximal and minimal subsets of sets whose elements are sets in the
standard way. Given a set of sets S = {S,..., S,,} with a partial order <
defined on subsets of S in the standard way (that is, Si < Sj <* S _ Sj), we
say that 5, is maximal if 2Sj 9: Si < S,. Furthermore, 5, is minimal if

Sj 3): 5i < Si.

* PA = { all plan fragments known to agent A }.

* If pf-, E PA, then pf, is associated with satisfaction of some goal g(pf.).

" The set of goals known to agent A is
GA = {g I g = g(pf.) for some plan fragment pf, C PA}.

* For each goal g in GA, there is an associated set of plan fragments
pfs, = {x I x E PA and g = g(x)}.

" copies(ri) denotes the number of copies of resource ri available for use by agent
A.

" resources(pf.,) denotes the resources required to execute plan fragment pf1.

" r,(pf1 ) denotes the number of copies of resource ri needed by plan fragment
pf .

" A set of plan fragments in Agent A, P = {pfi,..., pf, } is said to be compatible
if T-k=I ri(pfk) < copies(r,) for all i and g(pf,) J g(pfk) for j $ k.
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* A maximal compatible set of plan fragments in A relative to pfx is
a maximal subset of S. = {P I P is a compatible set of plan fragments and
pf. E P}.

4.5.1.5.2 Formal Definitions The conflict set for plan fragment pf, indi-
cates the minimal impact (locally) of a choice to execute pf.. The conflict set for
pf can be constructed by considering each maximal set M of mutually feasible plan
fragments (including pf ) known to an agent. For each such set, M, the complement
of M is an element of the conflict set for pf .

More formally, the Conflict Set for plan fragment pf- is constructed as follows:
Let X = (PA - pfs9 ) U {pf.}, where g = g(pf.). For each maximal compatible subset
M of plan fragments in A relative to pf., the set X - M is a member of the conflict
set for pf,. Thus, CSpf. = {c 1 c = X - M, where M is a maximal compatible subset
of plan fragments in A relative to pf }.

To illustrate this formalism, we compute the conflict set for D-b in our example
scenario. The maximal compatible subsets of plan fragments in D relative to D-b are:
{D-b, D-e}, {D-b, D-g}, and {D-b, D-i}. Thus the conflict set for D-b is:

{{D-d, D-f, D-g, D-h, D-i}, {D-d, D-e, D-f, D-h, D-i}, {D-d, D-e, D-f, D-g, D-h}}

We are concerned with the conflict set because the conflict set for a plan fragment
gives information as to the negative impact of executing that plan fragment. The
maximal compatible subsets, on the other hand, indicate maximal sets of feasible
choices that are available. There is no reason to believe that an agent should choose
some one of these maximal subsets for execution. Indeed, a given agent might never
participate in system satisfaction of some of the global goals. (This can be seen in
the example scenario by observing that al) four global goals can be satisfied through
choice of glp3, g2p3, g3pl, and g4pl. Agent D is only involved through partial
satisfaction of g2 and g3.)

Though the view of the conflict set as being formed using the complements of
maximal feasible sets is intuitively appealing, when the problem is underconstrained
it is computationally more attractive to treat conflict relative to pf, in a dual form:
as the collection of minimal mutually infeasible sets of plan fragments, given that
plan fragment pf, is to be executed.

Three significant observations can be made concerning the conflict set of plan
fragment pf,. First, the complement of each element of the conflict set is indeed a
maximal feasible set. Secondly, the agent will be compelled to forego execution of
all plan fragments in some element of the conflict set if it chooses to execute plan
fragment pf7. The local impact of a decision can thus be related to the size of
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elements in the conflict set. Finally, representation of impact in the form of a conflict
set seems to provide a substantially more compact form of representation that can be
more efficiently used -. r-casning th'r. many others.

The ccnflict set for a plan fragment reflects the impact of executing that plan
fragment at the level of mutually infeasible sets of plan fragments. It is often necessary
to reason about the impact that executing a particular plan fragment would have on
the potential satisfaction of other goals.

The Exclusion Set for a plan fragment, pf=, is a collection of sets of goals, one
of which must be abandoned if pf, is selected for execution. Thus, if the agent selects
plan fragment pf_, then one of the elements of the exclusion set is a set of goals that
cannot be satisfied through action on the part of this agent. The exclusion set is
defined as follows:

For each s E CSpf., we define g, = {g I pfs(g) _ s}. Thus go, for an element
s of the conflict set, is the set of goals that that cannot be satisfied locally if plan
fragments in s are eliminated from consideration. We let G = {g, I s E CSpf..} and
define the exclusion set for plan fragment pf., ESpfx, as the collection of the
minimal subsets of G.

Returning to our example, we compute the exclusion set for D-b. The conflict set
for D-b has three elements. Using the definition of g., we see that

* 9D-d,D-fD-g,D-h,D-i = {g3,g4}

* gD-dD-e,D-f,D-h,D-i = {g2,g4}

* gD-dD-eD-f,D-gD-h = {g2,g3}

Thus, G = ESD-b = {{g3,g4}, {g2,g4}{g2,g3}}.

A choice by agent D to execute plan fragment D-a compels agent B to forego local
action in partial satisfaction of two of the other three global goals about which it
has local knowledge. Which two of the three should be abandoned is dependent on
decisions made elsewhere.

The exclusion set exposes relationships between plan fragments and goals. It is
often desirable to detect and reason about mutually infeasible goals. The relationship
of infeasibility is a very strong one. Goal gl is (locally) infeasible with goal g2 if each
of the (local) plan fragments for gl has g2 in every element of its exclusion set (and
conversely). When two goals are (locally) mutually infeasible, an agent knows that
it cannot act to satisfy both goals, due to local constraints. Once exclusion sets have
been determined, infeasibility is not difficult to detect.

The three types of relationships we have discussed are all rooted in local con-
straints. Conflict, exclusion, and infeasibility are essentially concepts which would
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not be particularly significant were it not for the constraints on joint execution of
plan fragments that exist locally. Although the concept of conflict does not appear
to propagate in a meaningful manner, exclusion does. The key element in this propa-
gation lies in the observation (which we have made before) that a choice on the part
of one agent to satisfy a goal through execution of a specific plan fragment constrains
the set of remaining choices that are available to other agents for satisfaction of that
goal.

As we have seen, the construction of exclusion sets allows us to assess the impact
of executing of a plan fragment that is due to local conflict. In addition, we would like
to know how the conflict associated (locally) with execution of a plan fragment affects
the ability of other agents to satisfy their goals. The Induced Exclusion Set is our
mechanism that provides a vehicle for propagating this information by capturing the
essence of the impact that local decisions have nonlocally.

In the discussion which follows, we assume that in a distributed environment
one agent does not have knowledge concerning another agent's internal state. It
specifically does not have any knowledge about resources over which it has no control.
The agent must therefore gain knowledge about the impact its choice has on other
agents from those agents, directly or indirectly.

The Induced Exclusion Set for a plan fragment, pf,, in Agent A, is a collection
of sets of goals, one of whicb must be abandoned by one or more non-local agents
if Agent A executes pf,,. The induced exclusion set for pf,, IEvf-, is defined in the
paragraphs which follow.

Let Xpf. = {pfi I pfx E PA, pfi V PA, resources(pfx) n resources(pfi) 
and g(pfz) = g(pfi) }. Thus, each individual plan fragment in Xpfx is a non-local
plan fragment which may connect directly with pfx (via a shared resource) in some
global plan.

For each agent, K, with plan fragments in Xvf we must determine the contribu-
tion to the induced exclusion set for pfx due to constraints known by agent K. For
each plan fragment p E X-pf, n PK, we therefore let

e= {el e=esU iefor esE ESp and ZeE IEp}

Notice that each ep is a set of sets, each of whose members reflects potential conflicts
that could arise if plan fragment p is selected by agent K. In this construction, each
es represents a contribution to ep that reflects constraints local to agent K, while
each ie denotes a contribution that agent K has received from other agents relative
to plan fragment p. For this reason, it is necessary to combine these contributions
into a single element, EKpj., that ma; be propagated to Agent A. EK,pI, is defined
as the collection of minimal subsets of U ep for p E xpf. l PK.
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Continuing the definition, the induced exclusion set for plan fragment pfx,
IEpf1 is the collection of the maximal subsets of E = U EK,pIZ. This definition of
IEpf, permits incremental construction of induced exclusion sets under the assump-
tion that initially IEpf1 = 0 for all plan fragments.

Once again, returning to our example, we compute the induced exclusion set for
C-a. Observe that plan fragment C-a matches (in D) with either D-a or D-b and
in A with A-a, so that Xc¢_ = {A-a,D-a,D-b}. As we have seen, the exclusion set
for D-b is {{g3, g4}, {g2, g4}, {g2, g3}}. Coincidentally, the exclusion set for D-a
is the same as that for D-b, while for A-a the exclusion set is {{g2}, {g3} ,{g4}}.
The set E used in computing the induced exclusion set for C-a is the union of the
exclusion sets just mentioned, so E = {{g2}, {g3}, {g4}, {g3,g4}, {g2,g4}, {g2,g3} }.
The induced exclusion set for C-a is the set of maximal subsets of E, so IEC._=
{{g3,g4}, {g2,g4}, {g2,g3}}.

Intuitively, this is telling agent C that agent A is forced to forego one other goal
if C-a is chosen and agent D is forced to forego two of the other three goals if C-a is
selected. Each nonlocal agent transmits a minimal set of exclusions it knows about.
Clearly, agent D reports more extensive nonlocal impact, and the construction of the
induced exclusion set via maximal subsets reflects this impact.

The induced exclusion set is incrementally built during negotiation. When one
agent (agent A) requests information about the impact of executing plan fragment pf=,
on another agent (agent B), agent B attempts to summarize all the knowledge it has
about that impact. This knowledge is initially found in the exclusion sets of each of
its plan fragments which coordinate with plan fragment pf,. As has been mentioned,
the induced exclusion set in agent A for plan fragment pf, is empty initially. As
nonlocal knowledge becomes available, this set is augmented in the obvious way.
Given sufficient time, an agent can acquire knowledge about the system wide impact
of executing each of its plan fragments. It does so, however, without the exchange of
detailed information concerning resource availability in the system. It is not difficult
to show that incremental construction of the induced exclusion set for a plan fragmelt
can be managed so that it converges after no more than 2n exchanges of information,
where n is the number of agent,t in the system.

4.5.1.6 Computation of Conflict Most of the work involved in providing an
agent with a reasonable level of understanding regarding the impact of local decisions
lies in computation of conflict within each agent. In this section. we give two proce-
dures for carrying out this computation. The first takes the view that the conflict set
relative to a plan fragment is the collection of sets determined by finding complements
of maximal feasible sets. The second constructs a representation of conflict directly
as the collection of minimal infeasible sets. Both computations yield sets that provide
the same information relative to exclusion and infeasibility.
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Strategy 1

For every plan fragment pfi in PfSA:

1. compute-maximum-compatibles( reservation-list goalsA - g(pfi) Pfi)

2. take the complement of each maximum compatible with respect to PfSA - pf39,
where gi = g(pfi).

The function compute-maximum-compatibles is defined as follows:

compute-maximum-compatibles (reservation-list goals compatible-set)
if (null goals)

add compatible-set to maximum compatible sets and delete subsets
otherwise

for every plan fragment pf. for g., the first goal in goals,
if pf., does not exceed resource availability based on reservation-list,

then for every resource r, required by pf_,
add 1 to reservation-list entry for r.
add pf. to compatible-set

compute-maximum-compatibles (reservation-list (goals - g,) compatible-set)

This algorithm computes the conflict set by finding maximal compatible sets and
their complements. Its complexity is bounded by

I PA J * [rnax(I pfs. I) * # of resources ]I0 AI

In fact, our experiments indicate that this expression does not represent a tight bound
when the scenario represents an overconstrained situation. Since there are many fewer
feasible sets when the problem is overconstrained, this is not surprising. The second
procedure, given below, computes minimal infeasible sets (under the assumption that
plan fragment pf-, is selected). It is not hard to see that Algorithm 2 is more efficient
when the problem is underconstrained, as major portions of the algorithm are not
exercised when there is no hard resource constraint to test. In the worst case, Strategy
2 is exponential in (number-of-plan-fragments * number-of-resources-known).

Strategy 2

1. For each resource, r, required by plan fragment pf,:

(a) for each goal, let S,(g) = {plan fragments for goal g that require resource
r}
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(b) let S, ={S,(gi) I gi E GA - 9p1?}

and S, =Us for s E S,

(c) if copies(r) j S, I then

i. define F = {s I s C S,, I s 1= copies(r) - 1, and sj, k E s = , g(sj) #
9(3k)}

ii. let CONF(r) = {clc=S, - s for s E F 1

2. Construct CONF = {c I c = c1 U c2 U ... U C, where ci E CONF(r,) and r, is
known to agent A}

3. Conflict is represented by the collection of minimal subsets of CONF.

It is interesting to note that complements of minimal infeasible sets are not always
identical to maximal compatible sets. The reason for this phenomenon lies in the

observation that the complement of some minimal infeasible set may contain more
than one plan fragment for some goal. Thus the complement of a minimal infeasible
set may not itself be compatible. It is true, though, that the sets computed using
both strategies do result in formation of the same exclusion sets locally, hence the

propagated exclusion sets are also the same in both cares.

4.5.1.7 Interdependence Relation We address two questions of importance to
distributed planners with no global knowledge or central control: how to achieve a

maximal set of goals in an overconstrained problem and how to determine when plan
execution may begin. Our solution to the first involves defining a relationship among
goals called interdependence. We show that the set of system goals may be parti-
tioned into subsets of interdependent goals. Each subset determines a minimal set of
agents which must exchange constraint information to negotiate a maximal solution.

In addition, the relation determines the minimal amount of constraint information
they need to exchange to guarantee consistent decisions are made. The partition is
incrementally constructed through a series of inter-agent transitive closures on the
defined interdependence relation. To determine when plan execution may begin, we

modify a termination detection technique used in distributed operating systems.

Our work in multiagent planning described in the previous sections has concen-
trated upon devising a protocol for multistage negotiation [8], generating plans in a

distributed environment [39], and detecting and propagating the impact of executing
local plan alternatives [9]. Kuwabara and Lesser [301 have proposed an extension to
our mechanisms for propagating nonlocal impact that detects overconstrained prob-
lems not found by the original protocol. In this section we concentrate upon two
remaining issues: handling overconstrained problems and determination of a system
"execution condition".
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When a problem is overconstrained, the overall set of system goals is not jointly
feasible. Thus individual agents must determine when they should abandon achieve-
ment of one or more goals to permit achievement of a maximal number of goals in the
system as a whole. The second issue, determination of a system execution condition,
involves devising a mechanism whereby agents can determine when they have collec-
tively committed to a set of mutually feasible global plans that achieve a negotiated
set of goals. At this point plan execution may begin.

We begin our discussion by briefly reviewing what knowledge is available to the
planner, and how this information is distributed. For a more detailed account, the
reader is encouraged to see [8]. We assume that achievement of a goal in a distributed
planning system involves the use of local resources which are distributed among sev-
eral agents. Furthermore, we assume that there are several system goals and that
as a result of distributed plan generation [39], a number of alternative global plans
for each goal has been determined. Each global plan exists as a collection of plan
fragments distributed among multiple agents within the system. No agent knows of
all the agents that participate in a single global plan nor does any agent know ex-
actly how many alternative plans exist for a single goal. The ovef all objective of a
distributed planner in this environment is to efficiently allocate system resources so
that a maximal set of goals may be achieved.

In our planner, each system goal is assigned to some agent which is designated as
its primary negotiator. Each goal is also designated as one of the primary goals for its
primary negotiator. The primary negotiator for a goal assumes the responsibility for
achievement of that goal. Moreover, the primary negotiator is the only agent which
can relinquish the achievement of that goal. Assigning this responsibility to a single
agent (for each goal) lessens the potential for incoherent behavior due to conflicting
decisions made by several agents.

4.5.1.7.1 Negotiating Overconstrained Problems Multistage Negotiation
begins with each primary negotiator making a tentative commitment to a plan frag-
ment for each of its primary goals, Agents which share resources involved in these
plan fragments are notified of the tentative commitments and are requested to make
tentative commitments consistent with these choices. As these agents make tentative
commitments, they in turn notify and make requests of agents which share involved
resources. This process continues until no further plan fragment coordination is nec-
essary. (Coordination is no longer necessary when an agent makes a commitment
to a plan fragment which does not involve any additional shared resources.) Now
this "path of commitment" is followed in reverse, with each agent passing a message
confirming the commitment. When the primary negotiator receives this confirmation
message, it knows that the system agents have tentatvely committed to a complete
plan for that particular primary goal. Thus, all the component pieces of a plan have
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been committed for achievement of that goal.

If an agent cannot coordinate a tentative commitment with a requesting agent
(due to previous commitments), the requesting agent is notified of the failure and
impact information [9, 301 is passed back. Thus, impact information is determined
dynamically. As a result, one can view the process of making tentative commitments
as embodying several concurrent depth first searches which have been initiated by
the primary negotiators. Primary negotiators incrementally learn about mutually
infeasible plans as their respective searches "block" one another. As these searches
progress, the primary negotiators will be able to detect if there is no set of plans which
allow achievement of all the existing goals. This is accomplished through mechanisms
presented in[9, 301. If such an overconstrained situation exists ', one or more primary
negotiators will have to abandon some number of their primary goals depending upon
the severity of the resource constraints.

The process of selecting a maximal set of mutually feasible goals is further exacer-
bated by the fact that the severity of an overconstrained situation is itself determined
dynamically. This becomes evident when one views the process from the perspective
of concurrent searches. As a rcsult of the search for mutually feasibk plans, two pri-
mary negotiators may determine that they are responsible for two goals which are in
fact mutually infeasible. That is, neither can complete a search without blocking the
search initiated by the other. Through a simple negotiation, these agents can agree
upon which goal is to be achieved and which is to be abandoned. Later, however,
a third primary negotiator could determine that its primary goal is infeasible with
the agreed upon goal, but feasible with the relinquished goal. Therefore, the primary
negotiators must be able to alter the negotiated set of goals as new constraints are
determined. Such a capability is required if a maximal set of feasible goals is to be
determined.

To meet this requirement and to ensure consistent choices for goal achievement
among the primary negotiators, we propose the following strategy. We define an
interdependence relation 7 as follows. Goals g, and g, are interdependent, g,'-gj if
any of the following conditions hold:

a. g, = g, OR
b. 3 a global plan for gi, pi,

giTlZg if a global plan for g,, p1,
D: pi,p, E 0,. for some resource, r. OR

c. 3 gk 3: gdlZgk A gklZ-g

1In systems with several goals and a limited supply of resources, we 3issume that this is a frequent

occurrence.
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where,
2

{P -Pk},

each plan pi requires resource r,

each plan pi achieves a distinct goal,
k

copies of r required by pi >
i=1

copies of r available.

It is easy to see why we call this an interdependence relation. A goal is always
interdependent with itself and two goals are interdependent if they have plans which
could potentially interfere with one another due to a resource constraint. In addition,
two goals are interdependent if they are each interdependent with the same goal.
Since the interdependence relation RZ is an equivalence relation., it induces a partition
V on the set of system goals.

The equivalence classes induced by the interdependence relation 7? are sets of
goals having the following property. If gl and g2 are not in the same class, then the
choice for a plan to achieve g1 is totally independent of the choice for a plan to achieve
g2. Thus, if an agent is not the primary negotiator for any goal in a class 'P,, it need
not be involved in negotiations regarding overconstrained problems associated with
goals in P,. Therefore, each class V, of P identifies the smallest group of primary
negotiators that must combine their constraint information relating a set of goals.

Goal Plan rl r2 r3 r4 r5
resource count 1 2 1 1 2

gl p1l 1
g2 p21  1 1
g3 p31 1 1
g4 p41 1 1 1

p42  1 1
g5 p51 1 1

Table 5: Partition Example

For the purpose of illustration, consider the example presented in Table 5. There
are five goals, and a single global plan exists to achieve each goal except goal g4, in

2 Note that for each resource, there is a finite collection of sets , . ,. defined by constraints
imposed by availability of that resource.
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which case there are two global plans. There are five resources: one copy each of rl,
r3, and r4 and two copies each of r2 and r5.

By definition:

,tk,*x = {pll,p 2 1}
k,2,1 = 0
¢Lt 3,1 = {p 3 l,p4l}

V,'3,2 = {p3l, p42 }

),4,1 = {p4l,p5l}

0,-4,2 = {p2,p5l}
14'5,1 = 0

and

P = {gl,g2}

P2 = {g3,g4,g5}

The sets in this example were calculated with a global view of resource constraints
to ease introduction of the concepts presented. In a distributed planner, however, no
agent has a global perspective. Resource constraints are determined incrementally in a
distributed manner. Thus it follows that the partition P induced by interdependence
must be computed incrementally in a distributed manner by the primary negotiators.

When a primary negotiator, say Agent X, is notified of a goal exclusion as a result
of a search it initiated, Agent X begins to construct the equivalence class associated
with the excluded goal(s). Agent X performs a transitive closure of the relation
7Z on the excluded goal(s) using its currently known constraints. This transitive
closure returns a set of goals which are related directly or indirectly by locally known
constraints. The constraints used to determine this set are transmitted to the primary
negotiators for the related goals. Upon obtaining this notification, these agents also
perform a local transitive closure and pass the results to the primary negotiators for
the goals involved in their respective constraints. Thus, at the end of this inter-agent
transitive closure, the primary negotiators for a particular equivalence class, Pi, will
have identical knowledge about the set of constraints relating their goals through the
interdependence relation. Using this information, each of the primary negotiators
for goals in P, can determine a maximal subset of goals in P, -which are mutually
feasible. Since we assume each primary negotiator is using the same algorithm and
has the same knowledge about constraints, the results in each agent will be consistent
and no acknowledgement messages are required. As new constraints are determined.
this process is repeated, ensuring that decisions about which mutually infeasible goals
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Primary Negotiator A B C D E
Primary Goals gl g2 g3 g4 g5
Known Constraints -g3 V -g4 -g3 V -g4
Abandoned Goals g3 III

Table 6: After First Inter-Agent Transitive Closure

Primary Negotiator A B C D E
Primary Goals gl g2 g3 g4 g5
Known Constraints -g3 V -g4 -g3 V -g4 -g5 V -g4

-g5 V -g4 -g5 V -g4 --g3 V -g4

Abandoned Goals I g4

Table 7: After Second Inter-Agent Transitive Closure

should be abandoned are consistent and that a maximal set of goals remains to be
achieved.

Using the previous example (see Table 5), consider the following scenario. Suppose
that cacb of the five goals has been assigned to a distinct primary negotiator and
concurrent searches for mutually feasible plans has begun. Table 6 shows the goal
distribution, the currently discovered constraints, and the goals which have been
abandoned. Notice that as the result of a previous inter-agent transitive closure,
Agents C and D have determined that goals g3 and g4 are mutually infeasible and
Agent C has abandoned g3 so that g4 may be achieved. At this point, suppose
that Agent, E is notified of a constraint relating g4 and g5, -g5 V -,g4. Since this
is the only constraint known to Agent E, it notifies the primary negotiator for g4.
Agent D, of this constraint. Upon receiving this constraint, Agent D performs the
transitive closure described and determines that goals g3, g4 and g5 are related by
the constraints -g5 V -'g4 and -,g3 V -g4. Agent D notifies Agent C of the constraint
-g5 V -'g4 and Agent E of the constraint -g3 V -'g4. Neither Agent C or Agent E have
any further related constraints, so no new messages are passed. Using this constraint
information, Agents C, D, and E can determine that goal g4 should be abandoned so
that both goals g3 and g5 may be achieved (see Table 7). Notice that the information
needed to resolve the overconstrained problem is the minimal information required
to arrive at this conclusion.
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4.5.1.7.2 Deciding When to Execute An important question remains. How
do the individual agents know when they may execute the plans to which they have
tentatively committed? Plan execution should not begin until the set of negotiated
goals is guaranteed not to change and a set of mutually feasible plans which achieves
these goals has been committed. This is referred to as the system execution condition.
Since no single agent monitors and controls the searches of the primary negotiators,
they must coordinate their activities to determine when execution may begin.

A single primary negotiator can determine when it believes the system execution
condition is met by viewing its local state. When a primary negotiator determines
that the system agents have tentatively committed to a global plan to achieve each of
its non-relinquished primary goals, it meets the local execution condition. If all of the
primary negotiators meet the local execution condition, then the system execution
condition is met. It is important to realize that once the local execution condition
is true, it does not necessarily remain true. Another search initiated by a different
primary negotiator could be blocked by a confirmed tentative commitment to a plan
for a local primary goal. As a result of a blocked search, impact information will be
sent to the primary negotiators for each involved goal. Depending upon the nature of
the resource constraints, it may be determined that both goals can be achieved, but
it may be necessary for local tentative commitments to change so that a previously
blocked plan may continue. If the change in commitments requires revoking a con-
firmed commitment, a complete tentatively committed plan for some goal no longer
exists and the associated primary negotiator no longer meets the local execution con-
dition. Clearly, this local condition could be affected by searches initiated by other
primary negotiators. However, once all the concurrent starches for mutually feasi-
ble plans for the negotiated goals have completed., there is nothing that will change
any agent's local execution condition. The solution requires a protocol whereby the
primary negotiators can determine that they each meet the local execution condition
and that none of the local conditions will change.

We employ a strategy similar to that used by the Gutenberg distributed operating

system [461 to detect its "computation commit phase". When a primary negotiator
determines that it meets the local execution condition (i.e. all its non-relinquished
plans have complete tentatively committed plans), it asks all the other agents in
the system if they too meet the local execution condition. If they do, this agent
then notifies the others to execute their tentatively committed plans. If at least one
agent has not met the local execution condition, the requesting primary negotiator
continues to participate in the negotiation process without sending the execution
directive. This participation may involve taking part in determin.ing new sets of goals
to achieve, answering requests about its completion, continuing its search if another
agent forces it to revoke a tentative commitment, and so forth. If several agents meet
the execution condition locally at approximately the same time, there may be several
roquests for local execution condition status in the system at the same time. This is
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not a problem, however, for each of the requesting agents will reply that they do in
fact meet the local execution condition and at worst, redundant execution directives
are sent.

When using a strategy that "waits" for several agents to meet a condition, it
is essential to guarantee that eventually all agents will indeed meet that condition.
Since the process of discovering constraints and finding mutually feasible plans is
bounded by an exhaustive search over a finite set of alternative plans, all agents will
eventually meet the local execution condition. The system execution condition will
be determined by the last agent(s) meeting the local execution condition.

4.5.1.8 Status We have discussed the problem of distributed plan generation and
given a mechanism for performing this task in a class of problems in which resource
allocation can be viewed as a planning problem. In distributcd environments such as
these, problem solving agents must cooperate to incrementally build plans to complete
tasks without knowing a priori what resources are needed or how they can be utilized.
Therefore, an important component of distributed plan generation involves properly
assessing which local resource allocations are associated with a single global plan and
which are parts of distinct. global plans. Our solution to the problem requires that
an agent only be aware of a limited and abstracted view of global plans.

We have also presented formalisms that permit an agent in a distributed planning
system to gain knowledge about the interaction between consequences of its local
actions and constraints existing elsewhere in the system. Abstractions that reflect
these interactions are formulated and properties of the abstraction mechanisms are
discussed. In addition, algorithms are given for computing lo'al tri-ture and their
complexity is analyzed as an indicator of the worst case performance that can be
expected. Finally, bounds on the number of transactions required to propagatc local
impact to distant sites are derived. We also show how this formalism provides a nat-
ural mechanism by which agents incrementally expand knowledge about the nonlocal
impact of their local decisions without constructing a complete global view.

The formalisms discussed above have been implemented as part of a system that
uses multistage negotiation [7] in distributed planning. Extensions to these formalisms
that are useful in dynamic domains requiring incremental plan generation are an
important area for future research.

F'inally, we have addressed two questions of importance to distributed planners
with no global knowledge or central control: how to negotiate overconstrained prob-
lems and how to determine when plan execution may begin. Our solution to the first
involves defining a relationship among goals called interdependence. We show that
the set of system goals may be partitioned into subsets of interdependent goals. Each
sulbset determines a minimal set of agents which must exchange constraint informa
tion to negotiate a maximal solution. In addition, the relation determines the minimal
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amount of constrai information they need to exchange to guarantee that consistent
decisions are made. The partition is incrementally constructed through a series of
inter-agent transitive closures on the defined interdependence :!.tion. To determine
when plan execution may begin, we modify a termination detection technique used
in distributed operating systems. Implementation of these ideas is currently being
incorporated into our distributed planning system. Our current planning system is
implemented in Common Lisp operating on a TI Explorer. The simulation of the
multiagent processing is achieved through the use of SIMULACT (described in Sec-
tion 4.4.1).

In future work, we plan to address the consequences of allowing the set of system
goals to change dynamically. We feel we have made a good °tart with our selection
of a solution to determine when plan execution may begin. As discussed in [46], this
solution permits the addition and deletion of system goals. Future work will address
the issue of deciding how o temporarily bound the set of goals under consideration
in a distributed fashion.

4.5.2 Multi-Agent Truth Maintenance System (MATMS)

During the course of normal problem solving activity, an agent, or problem solver,
may formalize or make use of assumptions. Assumptions can be divided into three
types: default assumptions ("unless there is evidence to the contrary, assume that the
employee is getting paid"), suppositions ("suppose that the employee is not getting
paid"), and new observations of the current state of the world ("the employee is not
getting paid"). The common bond among the three is a believability which is not
dependent upon any other belief.

Every inference drawn by a problem solver can ultimately be traced back to a set
(or sets) of assumptions. As opposed to assumptions, the believability of an inference
is dependent upon the believability of the assumptions. If an assumption set upon
which an inference is based is currently believed by a problem solver, then that
inference should also be believed, regardless of the type of the assumptions involved.

The assumptions and the inferences based upon these assumptions with which
a problem solver is operating are referred to as the current belief set of the problem
solver. Every time a problem solver draws an inference, makes an assumption, retracts
an inference, or retracts an assumption, it changes its belief set. When a problem
solver changes its belief set, many difficulties arise. How much of what was believed
before the change can still be believed after the change? This is commonly called the
frame problem. In more general terms, the frame problem is "... the inability to model
side effects of actions taken in the world by making corresponding modifications in
the database representing the state of the world" [3]. For example, which beliefs must
be removed, and which beliefs can remain, when a particular assumption is removed?
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Another problem arises when the agent introduces a belief to the knowledge base
which conflicts with one which is already present. How can the intentions of the
problem solver be correctly recognized? Suppose an agent wished to override a default
assumption. For example, imagine that the default is-a attribute of each object in
the knowledge base is square. If object RE33 is in the knowledge base, its default isoa
attribute is square. If the agent realizes that RE33 is actually a circle, then object
RE33 is a circle should be allowed to automatically override the default assumption.
A belief which the problem solver has explicitly made should be allowed to override a
default assumption. But what is the intended result if the problem solver introduces
a belief that is inconsistent with another which is not a default assumption. If after
asserting that object RE33 is a circle, the agent asserts object RE33 is a triangle.
then the agent has explicitly made two assertions which are inconsistent. In general,
when a problem solver adds a belief which contradicts an existing belief, does the
belief set become inconsistent, or should the most recent belief simply override the
belief with which it is inconsistent?

If a belief set of an agent does become inconsistent, classical first order logic
s'uggests everything can be proven, and everything can be disproven, so the knowledge
base is essentially worthless. It seems evident that only the attributes of those objects
which are logically affected by the inconsistency should be questioned. Consider a
knowledge base which contains object RE33 is a triangle and object RE33 is a circle.
If there exists no logical connection between object RE33 and object hy77, then the
shape of object hy77 should not be suspect.

To address problems associated with changing beliefs, truth maintenance systems
[18, 14, 37, 351 have been developed for use with single problem solvers. Whenever
the problem solver adds or retracts a belief, the truth maintenance system is invoked
to manage the beliefs. For instance, when an assumption is removed, the system
can determine (after an indeterminate amount of time) which inferences have to be
removed because they depended, eithej dire(Lly or indirectly, on the acceptance of
the assumption In addition, if two beliefs are inconsistent, the entire knowledge base
is not rendered useless. Rather, the truth maintenance system can determine which
subset of beliefs in the knowledge base are inconsistent; the rest of the knowledge
base remains consistent. Default assumptions are also handled appropriately. 'That
is, default assumptions are overridden when necessary, and "come back" if a problem
solver should retract the belief which overrides it. As an example, consider the case
when there exists a default assumption Car X has four wheels and a problem solver
asserts Car X has six wheels. If the problem solver retracts Car X has six wheels, then
the truth maintenance system would restore the belief that Car X has four wheels.

In addition to solving these problems, the truth maintenance system records every
inference made. Problem solving becomes more efficient because every inference need
only be made once. Suppose a problem solver is involved in a series of long, expensive
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computations. If it decides to stop the computations to perform another task, upon
returning to the original task, without a truth maintenance system, the problem
solver might be forced to start the task from the beginning again, thus having to
recompute many results. With the truth maintenance system, the problem solver
can continue essentially where it had halted. When the problem solver re-asserts the
assumptions which were in its belief set while it was performing the original task, the
truth maintenance system restores any inference the agent had in its belief set while
performing the task.

4.5.2.1 Problem Definition Our work is concerned with a distributed problem
solving environment in which there are a number of agents cooperating by passing
messages to each other requesting action and by sharing inferences in a central knowl-
edge base. Each agent's belief set is kept within the central knowledge base. When an
agent adds an inference to its belief set, that inference is shared with the other agents
because the validity of an inference in the central knowledge base depends only upon
the validity of its preconditions. As an example, suppose the following rule exists in
one of the agents:

AAB C

The rule can be interpreted as "If A and B are believed, then C is believed." Once the
problem solver enters this knowledge into the shared knowledge base, any problem
solver which believes A and B will believe C.

There are many difficulties in managing a shared knowledge base using the tech-
niques that a conventional truth maintenance system employs to manage a knowledge
base accessed by only one problem solver. Every problem present in the single agent
environment is also present in the multi-agent environment, and many additional dif-
ficulties are encountered that are due to the distributed aspects of the problem solving
system. First, a single agent truth maintenance system organizes its knowledge base
so that the problem solver "sees" only those beliefs which are in its current belief set.
A truth maintenance system in a multi-agent environment must perform this task
for each of the agents. In doing so, the system must handle the possibility that one
agent may believe a value for a piece of knowledge, while another may believe the
opposite. To illustrate this phenomenon, consider the fact that the use of supposition
by one agent should not modify the beliefs of another agent. For example, imagine
that one agent believes that Resource X is available. If another agent, while engaging
in hypothetical reasoning, adds the supposition that Resource X is unavailable, the
first agent should still believe that Resource X is available. The truth maintenance
system must also handle situations in which one piece of knowledge may be currently
believed by any number of agents and at the same time disbelieved by any number
of other agents.
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Another difficulty arises when one realizes that the assessment of the current state
of the world is achieved through the combined efforts of all agents. That is, part of
each agent's task is to "fill in" the incomplete portions of an overall assessment in
order to aid one another. For the most part problem solvers will agree with each other,
but there will be times when two problem solvers disagree on a piece of knowledge
in the knowledge base. For example, PSI (Problem Solver 1) might believe Resource
X is available, and PS2 might believe Resource X is unavailable. A discrepancy of
this type could cause problem solving to diverge beyond the point of recovery. It is
important that inconsistencies between problem solvers' assessments of the current
state of the world be recognized, and an attempt made to resolve them. Often there
will be times when the "differences of opinion" cannot be resolved. At these times,
the discrepancies must be permitted to stand, hopefully to be resolved in the future.

Finally, arguments concerning the importance of efficiency in a truth maintenance
system are significantly magnified when comparing a multi-agent environment to a
single agent environment. The truth maintenance system managing a knowledge base
shared by multiple problem solvers must be prepared to shift its focus of attention
from one problem solver to another quickly, even if just to answer queries. This
problem is not encountered in a single agent environment since the truth mainte-
nance system is always concerned with the single agent. Therefore, even if the other
problems in managing a knowledge base shared by multiple agents are addressed ad-
equately, the system might be too slow to be useful in any practical problem solving
system.

4.5.2.2 Summary of Results The Multi-agent Assumption-based Truth Main-
tenance System (MATMS) has been developed to manage a knowledge base shared
by multiple problem solvers. Each problem solver has its beliefs "independently"
managed in a manner similar to that provided by a conventional truth maintenance
system. That is, eveiy problem solver in the system can add and retract beliefs from
its belief set and the MATMS will ensure that the belief set remains sound and com-
plete. Every inference and only those inferences derivable from the set of assumptions
in the belief set are included in the belief set. A fundamental difference in this system
as opposed to conventional truth maintenance systems is that an inference provided
to the MATMS is also made available to other problem solvers Any agent which be-
lieves the assumptions upon which an inference is based has the inference placed in
its belief set.

The MATMS is based upon de Kleer's ATMS [14, 15] because of the ATMS's
inherent adaptability to a multi-agent environment since the ATMS supports multiple
belief sets at any given time. While the ATMS can be used in only a single-agent
environment, the MATMS can be used in an environment involving any number of
agents sharing a central knowledge base. The ATMS regards multiple derivations for
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an inference and situations in which an inference replaces an assumption as unlikely
events. Because such events are likely to occur in a multi-agent setting, close attention
in the design of the MATMS has been given to these cases.

As is the case for some other truth maintenance systems, the MATMS supports
the use of default assumptions but views default assumptions in an unconventional
manner. Much of the MATMS's efficiency results from our treatment of default
assumptions as constant entities. The "default knowledge base" does not change
much during the course of problem solving. A problem solver's belief set can therefore
be characterized as the default knowledge base with an "overlay" placed upon it.
The overlay blocks certain defaults and includes knowledge for which there is no
default. The MATMS is efficient largely because it focuses its efforts on managing
these overlays, not the entire belief set of an agent. By concerning itself only with the
overlays, the MATMS can switch from addressing one problem solver's belief set to
addressing another's expeditiously. It can also change an individual problem solver's
belief set quickly, because the default knowledge is not explicitly carried over from
one belief set to another.

The most important feature of the MATMS is that it provides the foundation
for resolving inconsistency between agents, while supporting the notion that two
problem solvers can have different views concerning the state of a particular piece
of knowledge. The MATMS handles differing views by allowing independent belief
sets for each of the agents. It supports resolving inconsistency between agents by
providing a mechanism for comparing two agents' belief sets. Comparison is swift
because the way the MATMS compares belief sets is by comparing the overlays. The
overlays do not include the default knowledge, which is usually the largest portion
of an agent's belief set. Any problem solver can ask the MATMS to compare the
beliefs of any agents in order to recognize discrepancies. The best manner in which
to resolve the inconsistencies is a matter for future research.

4.5.2.3 Multiagent Environment The MATMS has been designed to operate
in the context of a distributed knowledge based system for managing a large com-
munications system. The knowledge based system architecture consists of multiple,
cooperative, distributed agents. The functionally specialized agents at the local level
are Performance Assessment (PA), Fault Isolation (FI), and Service Restoral (SR).
An important feature of the system is the cooperation of the agents. Cooperation at
the local level is by two methods. First, problem solvers cooperate by coordinating
their actions. An agent may request another to perform some task to further the over-
all problem solving. This is achieved through an exchange of messages. The other
mecrianism for cooperation is through sharing knowledge concerning the current state
of the communications network. Inferences of one agent are shared with the others,
in a central knowledge base. The shared knowledge base is managed by the Knowl-
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Figure 19: Local System Architecture

edge Base Manager (KBM), The local system architecture is shown in Figure 19 (the
detted lines indicate the interagent communications path).

The KBM has the responsibility for managing the knowledge base. Within the
KBM, some type of truth maintenance system must be active. Its tasks involve
regulating each problem solver's beliefs in a manner similar to that provided by con-
ventional truth maintenance systems, as well as providing a means by which an agent
can easily share its inferences with the others. While the truth maintenance system
will not directly address resolution of inconsistencies across agents, it must provide
an efficient mechanism by which the KBM can recognize inconsistencies between PA,
F1, and SR.

Prior work on truth maintenance systems have not resulted in the development of
mechanisms that support activity in a multi-agent environment such as this. Existing
truth maintenances systems have been designed for single agent systems and have not
had to deal with some of the issues that arise in multi-agent systems.

4.5.2.4 Existing Truth Maintenance Systems Existing truth maintenance
systems have failed to address the need for a system in which multiple problem
solvers' inferences are controlled by a single truth maintenance system. However,
because we have adopted much of the terminology of conventional truth maintenance
systems, and the MATMS borrows heavily from concepts developed in existing truth
m-.intenance systems, the two dominant classes of truth maintenance systems are
presented.
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Doyle's Truth Maintenance System (TMS) [18] was the first domain independent
truth maintenance system. Doyle proposed that reasons for believing or using each
belief, inference rule or procedure be recorded. This allows new information to dis-
place previous conclusions and a consistent knowledge base to be kept. In the TMS,
each belief in the knowledge base is explicitly marked as either IN or OUT, where IN
means that the belief has at least one currently acceptable reason, and OUT means
that it has no currently acceptable reason for belief. Given a belief or a justification
for an existing belief, the job of the TMS is to determine the belief status of each of
the beliefs in the knowledge base, thus retaining one consistent knowledge base.

Doyle's TMS defined the class of justification based truth maintenance systems.
That is, the status of each belief is determined by searching through each justification
until reaching a set of assumptions. If the set of assumptions are valid (or believed),
then the belief is valid. Considering that these justifications are examined for each
belief in the knowledge base, and any particular chain of inferences which eventually
leads to a particular inference in question may be long, updating the knowledge base
may require a long period of time.

The TMS was deemed inappropriate for a multi-problem solver environment be-
cause it maintains only one belief set at a time. Given any point in time, the TMS has
one set of beliefs which are IN and one set which are OUT. Switching belief spaces
is cumbersome because the status of each belief has to be directly recomputed. As
we have observed, in a multiple problem solver environment, the truth maintenance
system must be able to switch belief spaces quickly.

De Kleer, in his Assumption based Truth Maintenance System (ATMS) [14, 15],
recognized this problem also, though not for the same reasons. De Kleer was interested
in hypothetical reasoning, in which assumptions are made often, and results compared
against the assumptions. Therefore, the ATMS was designed explicitly to switch belief
sets efficiently. The ATMS is the foundation for the MATMS, and as such will be
discussed in much greater detail.

In order to create a system which could switch beliefs sets quickly, de Kleer rec-
ognized that an inference is ultimately dependent on a set (or sets) of assumptions.
That is, an inference may be derived from other inferences, and these inferences may
have been derived from other inferences, but eventually this trace will find assump-
tions only. Therefore, when a problem solver changes its belief set, the justifications
of the inferences in the previous belief set do not have to be traced to determine if
they still have valid support. Rather, each inference could be tested to see if the
assumptions upon which it is based are still present in belief set.

In the ATMS the entire set of beliefs is divided into sets Called contexts: each
context represents a belief set. Esentially a context is defined by its assumption
set, which is called an environment, and includes all inferences which can be derived,
either directly or indirectly, from the environment.
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As a context is associated with a particular set of beliefs, each belief is associated
with a list of contexts to which it belongs. Much of the ATMS's work involves ensuring
that each belief's label, the set of environments from which the node is derivable, is
consistent, sound, complete, and minimal with respect to the justifications. A label is
consistent if each environment in the label is consistent, sound if every environment
can derive the belief, complete if every way to derive the belief is included in the
label, and minimal if no environment in the label is a superset of another in the label.
Labels must be kept this way primarily for efficiency.

There are three features which make the ATMS more appropriate than the TMS
for the multi-agent system described. First, the ATMS maintains more than one
belief set at a time by maintaining multiple contexts. Each agent in a multi-agent
system could conceivably be operating with a different set of beliefs, so it is essential
that a truth maintenance system handling their beliefs have the ability to maintain
multiple belief sets. Second, a problem solver using the ATMS can change its belief
set much more swiftly than if it were using the TMS, because the TMS is often
forced to perform costly tracing in order to reassign belief status to each of the beliefs
in the knowledge base. Switching belief sets is also quicker in the ArMS because
the new belief set could already be defined. For example, suppose a problem solver
utilizing the ATMS adds assumption X to its belief set. After the ATMS calculates
the problem solver's new context, the problem solver retracts assumption X. When
this happens, the ATMS simply returns the problem solver to its previous context.
The TMS in this situation would have to reassign belief status to each belief in the
knowledge base, only to return the problem solver to its original belief set. The third
reason is that the ATMS handles multiple derivations for an inference better than the
TMS. (Although it still does not handle it very elegantly, it is still far more capable
than the TMS.) In a multi-problem solver environment, where inferencing schemes
are numerous, a belief is likely to be inferred from more than one set of beliefs. A
truth maintenance system in a multi-agent system must be able to determine that,
if support for an inference is removed, there may be other support which keeps the
belief in the current context.

The major drawback to the assumption based systems is the computation of sup-
port for each inference in the knowledge base. When an inference is added to the justi-
fication based system, only the immediate preconditions of the inference are recorded
(this is what makes the system justification based). Therefore, adding inferences is
not difficult. In an assumption based system, the immediate preconditions must be
traced until assumption sets are found. In situations involving inferences already in
the knowledge base that are themselves immediate preconditions to other beliefs, this
causes inefficiency. Each belief which is either directly or indirectly influenced by a
'new" inference must have the assumption set upon which it is based recomputed.
Therefore, adding inferences might require a significant amount of computation.
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An interesting observation is how each truth maintenance system handles default
assumptions. The focus of each is how to make default assumptions "come back"
when a belief which previously overrode the default is retracted. Both the TMS and
the ATMS have chosen to include default assumptions explicitly in the belief set of
the problem solver. If the number of default assumptions is large, then each system
is hampered.

Martins and Shapiro in [35] present a similar comparison of assumption based and
justification based truth maintenance systems. They also present a useful example of
how an assumption based system manages beliefs as opposed to a justification based
system.

4.5.2.5 MAIMS Design The MATMS has been designed for use in a system
involving any number of agents sharing a central knowledge base. In such a system,
each problem solver registers its beliefs with the MATMS. An inference is registered
along with the beliefs upon which it directly depends, and the job of the MATMS is to
maintain multiple belief sets. Thus the MATMS is responsible for placing an inference
in any belief set which contains the assumptions upon which it is based, informing
an agent when its belief set becomes inconsistent, changing the belief set of an agent
efficiently, and switching its focus of attention from one agent to another quickly. In
this section, the definitions, data structures, algorithms, and general operations of
the MATMS are discussed.

4.5.2.5.1 Definitions As a matter of convention, the operators of proposi-
tional logic are utilized from this point on. Specifically, the logical connectives of
interest are A (and), V (or), = - (implication), -, (not), and I (false). Some exam-
ples are A ' B (A implies B), C A D =* I (the quantity C and D implies false),
and E V F =' -,G (E or F imply not G). Shorthand notation will be used for A:
C A D = I will usually be written as CD => I, and ((A)(B)) means (A) V (B).

A proposition is the MATMS datum that represents a piece of knowledge which a
problem solver has told the MATMS. Each proposition is unique. Example proposi-
tions are "Jim is a golfer," "Radio RI has failed," and "The Celica is being repaired."

Each proposition is attached to a belief, the basic datum on which the MATMS op-
erates. Beliefs are explicitly divided into two categories: assumptions and inferences.
An inference is a belief whose validity depends upon other beliefs. For instance, if an
agent has the rule (A A B)V (CA (EV F)) => G and tells the MATMS that it believes
G because of it believes C and E, then G is an inference because it is only believed
in this case if C and E are believed. An assumption is a belief whose validity does
not depend upon the acceptance of any other belief. Assumptions are divided into
three types: default assumptions, suppositions, and new observations concerning the
state of the world. The last two types will be referred to as non-default assumptions.
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For discussion purposes, we represent inferencing mechanisms as rules, but they
do not necessarily have to be interpreted in a strict sense. For instance, A =*- B is
merely meant to represent that inference operations can be activated in the presense
of A to draw the logical conclusion B. The exact meaning of an inference rule can be
interpreted as "in the presense of certain beliefs, another belief is implied, no matter
which other beliefs are present.' In other words, if A =:> B, B is included in any set
which contains A, such as (AB) and (AEF).

A justification for a belief is the set of beliefs which must be present for its validity.
An assumption has no justification (the justification is nil), whereas an inference
must have at least one justification, and may have many. The justification for an
inference is comprised of two components: its immediate preconditions (the beliefs
from which it can directly be inferred), and the assumptions upon which it is based
(the assumptions that it ultimately depends upon). For example, considering A => B,
the assumptions that B is based upon are the same as its immediate preconditions,
i.e. ((A)). If B => C, the assumptions that C is based upon are again ((A)), but
the immediate preconditions necessary for its derivation are ((B)). If C = D and
E =* D, the assumptions that D is based upon are ((A)(E)) and the immediate are
((C)(E)). (Rcvill that ((C)(E)) should be interpreted as (C) V (E).)

At any point in time, each problem solver has a belief set which is a set of as-
sumptions and inferences which have been derived from those assumptions. Some of
the beliefs are default assumptions, some are non-dcfault assumptions, and some are
inferences. An environment is a unique set of non-default assumptions under which a
problem solver has operated. Environments are created incrementally so that when-
ever a problem solver retracts or adds a non-default assumption, an environment is
created if one does not exist that matches the new set of assumptions.

A context is an environment and all inferences which have been derived from the
environment; hence it is a group of beliefs. For every environment, there is exactly one
context, and a context is created each time an environment is created. If a problem
solver has never worked with a particular grouping of assumptions, the MATMS does
not have this set of assumptions listed an an environment, so there is no context for
this group.

A premise is a rule which states that a set of propositions are inconsistent. Beliefs
with these propositions are therefore inconsistent. Examples of premises are:

-'("Fred is dead" "Fred is alive")
or

-,("a man is working""a man is resting")

As is evident from these examples, premises can be specific or general It is important
to observe that a premise has no meaning until a belief is supplied to the knowledge
base which has as a proposition one of the propositions named in the premise. A
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set of beliefs is said to be contradictory if the propositions of the beliefs violate any
premise. The set will be referred to as an incompatible belief set, or incompatible.

A context is inconsistent if it contains contradictory beliefs. In other words, the
context is inconsistent if any subset of its beliefs is an incompatible belief set.

The MATMS monitors the belief set of a problem solver by recording the conext
in which the problem solver is currently working. A problem solver is working in
a particular context if it has explicitly told the MATMS that it holds all of the
assumptions defining the context.

A problem solver retracts an assumption when it asks the MATMS to remove the
assumption from its current belief set. Note that neither the assumption is actually
removed from the knowledge base, nor the inferences which have been registered as
depending upon it. The problem solver is just placed in a new context. Thus, the
problem solver switches contexts whenever it adds or deletes an non-default assump-
tion.

4.5.2.5.2 Data Structures The MATMS is a frame-based system in which
there are five basic types of objects: beliefs, inferences, assumptions, contexts, and
incompatibles. Our discussion of the data structures of the MATMS begins with
belief. Each belief has slots proposition, contexts in, and influences. Contexts in is a
list of contexts in which the belief holds. Influences is a list of beliefs which this belief
directly influences. The trame for belief, as well as the other frames, is depicted in
Figure 20.

The beliefs, as previously mentioned, are explicitly divided into two classes at
any point in time: assumptions and inferences. Each class inherits from the belief
frame. The inference class, however, also includes the slots assumptions based upon
and immediate preconditions. Immediate preconditions is a list of sets of beliefs from
which inference rules were applied to produce the resultant inference. Each belief in
each of these sets has this resultant inference as a member of its influence slot. If
the length of immediate preconditions is greater than one, multiple derivations for
the inference have been provided to the MATMS. Assumptions based upon are the
minimal3 sets of assumptions from which the inference has been derived.4 If the
environment of a context is a superset of any set in assumptions based upon, then
the inference is included in the context. -Assumptions based upon is constructed by
tracing the chain of immediate preconditions until assumptions are found.

The frame for a context has environment, inferences, and incompatible belief sets
3 Minimal in terms of set inclusion. For instance, the minimal scts of ((AB)(ABC)(DE)) are

((AB)(DE)). (ABC) is not included because it is a proper superset of (AB).
4The immediate preconditions slot is not minimal because it is necessary to maintain records of

every way the inference has been derived in case a derivation is retracted by the problem solver.
This is discussed in "Write Operations."
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Figure 20: Net Connecting MATMS Frames
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slots. Environment is the unique set of non-default assumptions which defines the
context. Inferences is the list of all inferences which have been derived from the
environment. An inference is included in inferences if it is based upon at least one
set of assumptions of which at least one is non-default, and all of the non-defaults
are included in environment. The incompatible belief sets slot contains a list of sets
of beliefs in the context which have been previously defined in a premise as being
incompatible. Each belief in incompatible belief sets is a member of environment
or inferences. By definition, if incompatible belief sets is not empty, the context is
inconsistent.

At this point, it is appropriate to present an example to illustrate the data struc-
tures. Imagine a simple two-agent system consisting of Agent, and Agent2 , and sup-
pose that part of each agent's task is to plan the schedule and activities of students.
The following scenario occurs:

1. Initially, each agent is working with only the default assumptions. This "null"
context will be referred to as CO. (Alternative symbolic representations are
given so that a interpretable table can be presented at the end.)

2. Agent1 adds the assumption "Economics 337 will be held in room 445 of Harnil-
ton Hall 6/5/88" (Al) to it-s belief set. (There is a default assumption which
states that Economics 337 is usually held in Morley Hall.) This causes the
MATMS to create a new context, C1. Agent1 is then placed in C1.

3. Agent 1 adds the assumption "Hamilton Hall is further from the dorms than
Morley Hall" (A2) to its belief set. This causes the MATMS to create a new
contexL, C2. Logically, Agent , is then placed in C2.

4. Agent 1 adds the inference "It will take longer than normal to go to class tomor-
row" (11) to its belief set. The inference is based upon "Economics 337 will be
held in room 445 of Hamilton Hall tomorrow" (Al) and "Hamilton Hall is fur-
ther from the dorms than Morley Hall" (A2). The MATMS adds the inference
to every context which contains A 1 and A2; in this case, ouly C2.

5. Agent1 adds the inference "A person in Economics 337 should leave early for
class tomorrow" (12) to its belief set. The inference is based upon only "It will
take longer than normal to go to class tomorrow" (II). The MATMS adds the
inference to every context which contains I1; again only C2.

6. Agent 2 adds the assumption "Economics 337 will be cancelled tomorrow" (A3)
to its belief set. This causes the MATMS to create a new context, C3. Agent,
is then placed in C.

7. Agent 2 adds the inference "A person in Economics 337 should play golf tomor-
row" (IM) to its belief set. The inference is based upon only "Economics 337
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Figure 21: Inference Tree for Example Illustrating Data Structures

will be cancelled tomorrow" (AS). The MATMS adds the inference to every
context which contains I1, in thjis v-se, en!y 173.

Figure 21 shows the inference tree for this knowledge base, and the following table
represents the data structures of the MATMS at this point in problem solving. In the
table, "assumptions" is shorthand for "assumptions based upon," and "preconditions"
is short for "immediate preconditions."

i II c~ Cl C2 C3 iI
environment () (A1) (A1 A2) (A3)
inferences () () (11 "2) (13)

incompatibles () () () ()I Al A2 A3 11 12 13

contexts in (C C2) (C2) (C3) (C2) (C2) (03)
influences (11) (I1) (13) (12) () ()
assumptions * * ((Al A2)) ((Al A2)) ((A3))

preconditions * ((Al A2)) _ ((11)) ((A3))

Continuing with the discussion of the d?ta structures, as noted in the previous
section, premises may or may not be used by MATMS. For example, consider a
prermse "a man cannot be working and resting at the same." If a problem solver
never supplies a proposition pertaining to a particular man and his work status.
then this premise will never be used. But suppose a problem solver supplies "Jim is
working" after supplying "Jim is a man." The MATMS must recognize that "half'
of the premise has been supplied. If the other half is supplied, e.g. "Jim is resting-,
then the instantiation of the premise will be complete; the beliefs representing "Jim
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is working" and "Jim is resting" form an incompatible. Note that this premise can
be instantiated many times.

The data structure for incompatible is used to capture this notion of how incom-
patible belief sets are created. The slots are completion status, incompatible belief set,
uninstantiated problem solver data, and premise. Completion status can have either
of two values: complete or incomplete. A status of INCOMPLETE means that only
a subset of the propositions involved in a premise have been proposed by problem
solvers. This would be the case in the above scenario right after a problem solver
supplies "Jim is working." Uninstantiated problem solver data refers to the data men-
tioned in the premise which have nct yet been supplied by a problem solver. An
incompatible which has completion status of COMPLETE details a complete set of
oeliefs which cannot exist in the same context. This set is the incompatible belief
set. As an example, the following incompatible will become complete when (and if)
a problem solver provides the MATMS with an belief whose proposition is "Fred is
asleep". In this zs i i 1jcr~at to differentiate between a problem solver datum
and the MATMS belief which represents it, so we use the notation B(x) to mean "the
belief representing the problem zolver datum x".

completion status: INCOMPLETE
incompatible belief set: (B("Fred is awake"))
uninstantiated problem solver data: ("Fred is asleep")
premise: -("Fred is awake" "Fred is asleep")

When and if the incompatible becomes completed, all contexts will be searched to
determine if any one of them includes the incompatible set. The completed frame
would look like:

completion status: COMPLETE
incompatible belief set: (B("Fred is awake") B("Fred is asleep"))
uninstantiated problem solver data: ()
premise: --,("Fred is awake" "Fred is asleep")

The details associated with instantiating and using incompatibles will be discussed
more completely in subsequent sections.

4.5.2.5.3 Write Operations Operations of the MATMS will be discussed
from the perspective of the MATMS. The next two scxtiors detail how the MATMS
mdnipulates its data structures in response to problem solver requests.

Problem Solver Proposes Adding Assumption:
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context of the agent?

GCD

add assumption
notify agent to belief set

Figure 22: Decision Tree for Problem Solver Proposes Adding Assumption

There are four basic write operations: a problem solver proposes adding an as-
sumption to its belief set, a problem solver proposes removing an assumption from
its belief set, a problem solver proposes an inference, and a problem solver proposes
removing a particular justification for an inference. Each is discussed in detail.

The MATMS follows the operations described below and in Figure 22 when a
agent proposes adding an assumption to its belief set. Note that implicitly an agent
may only request to add a non-default assumption to its belief set. This will be
discussed in a later section.

When a problem solver proposes adding an assumption to its belief set, the
MATMS first determines if a proposition is already present which matches the pro-
posed assumption. If the proposition already exists, then there must exist either a
default assunipiun, A non-default assumption, or an inference which has the propo.-
sition in its proposition slot. If it isa djault ;.Qsumption, the agent is not operating
properly, because a problem solver cannot "re-accept" a detault assui:Tti2 ,'y ey-
plicitly attempting to add it to its belief set. If it is a non-default assumption, the
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MATMS must check to see if it is already present in the problem solver's current
context. If it does, then the problem solver clearly made a mistake and is so notified.
if an inference has the proposition in proposition, then the problem solver is notified
that it is attempting to assume something which has already been derived.

If a proposition did not already exist, one is instantiated at this time. Whenever
a new proposition is made, the incomplete incompatibles are examined to determine
if the new problem solver datum will complete any of them. Then the premises are
searched to determine if any new incompatibles should be started. After this search,
the assumption is instantiated with the new proposition as its proposition.

At this point, if there is an assumption with the proposition as its propositic, and
that assumption is not already in the problem solver's belief set, the MATMS must
find or create a context which ha. an environment containing only the environment of
the old problem solver context and the new assumption. Note that this has no effect
on the belief sets of the other problem solvers; they remain in their current contexts.

The creation of a context occurs in four phases:

1. The context is first instantiated with most of the slots unfilled, and only the
environment slot is set, with a list including the new assumption and the as-
sumptions of the previous context.

2. Each inference which has been derived from the set of assumptions is now placed
in the inferences slot of the context.

3. All incompatibles are now examined to see if the new context is inconsistent. If
it is, the incompatibles slot is set appropriately.

4. The context is appended to the contexts in slot of each inference and assumption
included.

Whether or not a context had to be created for this different environment, the
problem solver now switches contexts. If the context is inconsistent, the problem
solver making the assumption must be notified. A list of incompatible beliefs and
how to remove each belief (this can only be done by retracting assumptions) are
returned to the problem solver.

Problem Solver Proposes Removing Assumption:

Figure 23 illustrates the procedure the MATMS follows when a problem solver
asks the MATMS to remove an assumption from its current belief set. Again, recall
that a problem solver may oinly ask to remove a non-default assumption from its belief
set.
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Figure 23: Decision Tree for Problem Solver Proposes Removing Assumption
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Figure 24: Decision Tree for Problem Solver Proposes Inference

When a problem solver asks to remove a particular assumption from its belief set,
:t is asking to be placed in a context which includes all assumptions of its current
environment except for the assumption in question. Clearly the assumption must
already must be present in the MATMS knowledge base, and specifically it must be in
the present context of the problem solver. The problem solver is notified accordingly
if this is not the case.

To actually remove an assumption from a problem solver belief set, a context is
sought whose environment matches the new set of assumptions. If it is not found,
then it is created by the procedure described in the previous section.

The problem solver is then placed in the new context. If the context is inconsistent,
the agent is notified.

Problem Solver Proposes Inference:

As with other operations discussed, the proposition which corresponds to the
inference supplied by the problem solver is the key for how the MATMS decides on
an action to take. If the proposition is not present, clearly the inference must simply
be instantiated. If the proposition exists and is attached only to an assumption. the
inference must be instantiated. If an inference is present which has the proposition as
its proposition, the problem solver is proposing what it believes is a valid justification
for that infeience, whether or not it realizes that the inference already exists. The
decision tree implied here is depicted in Figure 24.

99



To clarify the discussion, registering an inference with the MATMS will be divided
into three types of operations: instantiating a new inference, replacing an asoumption
with an inference, and supplying an existing inference with another assumption.

Common to all three types of inference operations is a trace of the justification
supplied. When an agent proposes an inference, it also provides the justification
for the inference. The first action the MATMS takes is to trace each belief in the
justification until the assumptions upon which the belief is based are found The
minimal combinations of these assumption sets are the assumptions upon which the
inference is based. For example, suppose we have the following knowledge base for a
two-agent system "Route 101 is fast" because "there aren't many policemen on Route
101"' "Route 101 is fast" because "Route 101 is a four lane highway"; and "Route
56 is slow" because "there are many potholes Jr Route 56". An ageDi then proposes
the inference "Roote 101 is preferred over Route 56" with justification ("Route 101
is fast." "Route 56 is slow"). The rmnimal subsets upon which the inference would be
based are: (("there aren't many policemen on Route 101" "there are many potholes
on Route 56") ("there are many potholes on Route 56" "Route 10! is a four lane
highway" ').

Adding a new inference to the MATMS knowledge base is the most straightfor-
ward of the three types of operations. The procedure for adding an inference is to
instantiate the inference with the proposition as its proposition, the minimal assump-
tion sets determined above as its assumptions based upon, and the justification itself
0. 1.s sole immediate ptcondttions. After the inference is instantiated, the inference is
used in an attempt to complete the existing incompatibles. Also. new incompatibles
are created from relevant premises.

The more complicated steps in adding a new inference pertain to contexts. The
assumptions based upon slot determines to which contexts the inference should he
added. For each assumption set in assumptions based upon, the intersection of each
assumption's contexts in slot is taken. This list represents the list of contexts to which
all assumptions in the set belong. The inference is added to the inferencs slot of
each context in this list, and the context is added to the inference's contexts in slot.

Note that when a problem solver adds an assumption to its belief set, no more
than one context can be found inconsistent as a direct result of adding the assump-
tion. Only the problem solver which added the assumption might be placed into
an inconsistent context. However, when a problem solver registers an inference with
the MATMS, many contexts might be found inconsistent. This implies that other
problem solvers might suddenly be working with inconsistent belief sets as a result
of one problem solver registering an inference. Each problem solver whose belief set
becomes in onsistent must be notified and corrective alternatives must be sopplied.

An inference can replace an assumption when a problem solver has derived some-
thing which either it or another problem solver had previously assumed. (This as-
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sumption could be either default or non-default.) This is a likely occurrence as a result
of "normal" problem solving activity. As a problem solver proceeds, it may reach a
point at which it does not know the present (or any reasonable) value for a particu-
lar piece of knowledge necessary to continue working, so it "guc.: s" a value. Later
either it or another problem solver may produce or recognize confirming evidence,
which in effect replaces the assumption with an inference. Conceptually, replacing an
assumption with an inference involves replacing all occurrences of the assumption in
the knowledge base with the inference.

'he first step in replacing an assumption in the MATMS knowledge base with an
inference is to instantiate the inference using the procedure described earlier in this
section. Instantiation is independent of the fact that the inference will be used to
replace an assumption.

No new incompatible will be created nor will any be completed when an infer-
ence replaces an assumption, because incompatibles are ultimately dependent upon
propositions. not beliefs. An assumption with this proposition as its proposition has
already been created, so the incompatibles which are relevant to the problem solver
datum in question have already been created or completed. They must be altered,
though, because they refer to the assumption rather than the inference. All incom-
patibles which mention the assumption therefore have the assumption replaced by
the inference.

Next, the influences slot of the inference must be adjusted to reflect the influences
slot of the assumption. Each inference which the assumption influenced must have
its immediate preconditions and assumptions based upon recalculated. In general this
could cause a fair amount of updating if the assumption influenced many inferences.

If the assumption was non-default, the contexts which contained the assumption
must be killed, because they will never be referenced again. Killing a context means
removing the context from contexts in of each belief in the context and deleting the
instantiation of the context. If a problem solver is currently working in a context which
is about to be killed, then it should be notified properly. The problem solver will be
told that one of its assumptions has been replaced by an inference, and generally the
problem solver will simply choose to accept, the assumptions on which the inference
is based. This way, the problem solver's belief set will continue to contain at least
the same beliefs as its original belief set.

When an inference replaces an assumption, the MATMS records the details of the
transaction so that it knows what to restore in case the inference is retracted.

An example illustrates how the MATMS operates to replace an assumption with
an inference. Consider a simple two-agent system consisting of Agent, and Agent2 .
The following transaction occurs:
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1. Initially, each agent is working only with the default assumptions. This "null'
context will be referred to as CO.

2. Agent, adds the assumption "there are many potholes on Route 56" (Al) to
its belief set. This causes the MATMS to create a new context, C1. Agent, is
then placed in C1.

3. Agent 1 adds the inference "Route 56 is slow" (11) to its belief set. The inference
is based upon only "there are many potholes on Route 56" (Al). The MATMS
adds the inference to every context which contains Al; in this case, only C1.

4L Agent 1 adds the assumptior -Route 101 is fast" (A2) to its belief set. This
causes the MATMS to create a new context, C2. Agent1 is then placed in C2.

5. Agent 1 adds the inference "Route 101 is preferred over Route 56" (12) to its
belief set. The inference is based upon "Route 101 is fast" (A2) and "Route 56
is slow"(ll). The MATMS adds the inference to every context which contains
Ai and A2 irn this case, only C2.

6. Agent 2 adds the assumption "Route 101 is a four lane highway" (A3) to its
belief set. This causes the MATMS to create a new context, C3. Agent2 is then
placed in C3.

Agent2 adds the inference "Route 101 is fast" (13) to its belief set. The inf-rence
is based upon only "Route 101 is a four lane highway" (A3). The inference is
added to each context which contains A3; in this case, only C3. Because the
inference 13 replaces the assumption A l. all contexts which include A1 must be
killed; these are Cl and C2. Agent, is told that an assumption in its belief set,
"Route 101 is fast", is being replaced by an inference. In order to continue with
its activity, it. should accept the assumption "Roiite 101 is a four lane highway".

8. Agent, adds the assumption "Route 101 is a four lane highway" (A3) to its
belief set. This causes the MATMS to create a new context, C4. Agent2 is then
placed in C4.

Figure 25 shows the inference tree for this knowledge base. The following table
represents the data structures of the MATMS at this point in the problem solving.
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Figure 25: Inference Tree for Inference Replaces Assumption Example

II IICO! C3 C4]
environment () (A3) (Al A3)

inferences () (13) (I1 12 13)

incompatibles ( () ()

Al A3 I1 12 13
contexts in (C4) (C3 C4) (C4) (C4) (C3 C4)

influences (I1) (13) (12) () (12)

assumptions * ((Al )) ((Al A3)) ((A3))

preconditions ((A1)) ((I1 13)) ((A3))

The algorithm for adding a justification is not very different than the one for
replacing an assumption with an inference. To add a justification to an existing
inference, the assumptions based upon of beliefs "above" the inference in the tree must

be recalculated. In addition, beliefs below the inference could require updating in
certain cases. Consider an additional step in the two agent system scenario pres-nted
a few paragraphs above.

9. Agent 2 adds the assumption "There aren't many policemen on Route 101" (44)
to its belief set. This causes the MATMS to create a new context, C5 Agent 2

is then placed in C5.

10. Agent 2 adds another justification for the inference "Route 101 is fast" (1M). The
justification is only "There aren't many policemen on Route 101" (,44). The
inference is not added to any contexts because the only context which includes
A4 already includes the inference.
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Figure 26: Inference q'ree for Exa:npie Illustrating Multiple Derivations

Figure 2o shows the inference tree for this knowledge base. The relevant portion
of the data structures of t0- MATMS at this point in the problem solving:

_____l Cd C4 ]C5

environment (A 1 Al A3) (A3 A4)

inferences (3) (I1 12 13) (3)
incompatibles 1I () , ( ) )

A3 A4 I1 12 13
contexts in (C3 C4 C5) (C5) (C4) (C4) (C3 C4 C5)

influences (13) (13) (12) () (12)
assumptions * ((Al)) ((At A3)(Al A4)) ((A3)(A4))

preconditions ((A1)) ((I1 13)) ((A3)(A4))

In general, adding a justification to ikn existing inference could be far more ex-
pensive than simply replacing an assumption with an inference because seaich must
occur in both directions, instead of just up the tree.

Problem Solver Proposes Retracting Justification of Inference:

When an agent proposes retracting a justification for an inference, it is asking to
remove a certain list of beliefs from the inference's immediate preconditio'.s. If the
justification exists, the MATMS must perform a potentially long series of operations
The easiest steps are the earliest. First, the justification is removed from the infer-
ence's immediate preconditions. Next, the influences slot of each belief mentioned in
the justification the problem solver wishes to remove is readjusted. More precisely.
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does proposition exist?

is proposition
an inference? notify agent

remove justification. notify agent
does inference still
have immediate justification?

recalculate "immediate preconditions" move inference from "inferences" to
and "contexts in" of the inference. "contexts in" of every context the

recalculate "contexts in" of every inference was in. notify each agent
inference up the tree. working in a context altered by the

previous step that the inference is
now an assumpton

recalculate "assumptions based upon" for inference.
recalculate "assumptions based upon" for every inference
up the tree.

Figure 27: Decision Tree for Problem Solver Proposes Retracting Justification

the inference is removed from influences of each belief in the justification which is no
longer mentioned in any member of immediate preconditions of the inference. From
there, the steps become more costly.

If there is still at least one set of beliefz in the inference's immediate preconditions,
then the contexts in of every inference up the tree (including the inference itself) must
be recalculated, because it may no longer belong to a context currently in contexts in.
An inference is removed from a context by removing the context from the inference's
contexts in and removing the inference from the context's inferences.
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If there is not a set of belif ir the inference's immediate preconditions, then,
conceptually, the procedure detailed earlier concerning replacing an assumption with
an inference must be reversed. The only deviation from simple inversion of that
algorithm is that for every context to which the inference previously belonged, the
inference is replaced by the assumption Also, if a problem solver is currently working
in one of these contexts, it must be notified that an inference it was working with is
now an assumption.

Next, every inference "up" the tree (including the inference from which the jus-
tification has been removed) must have its assumptions based upon recalculated, as
well as a possible adjustment to contexts in.

4.5.2.5.4 Read Operations The discussion of the MATMS would not be
complete unless its knowledge access functions were discussed. The read operations.
from the perspective of the MATMS, are simple. The problem solver has the much
more difficult task of deciding what to ask, and how to ask it.

The most important (and usually the most difficult) feature of accessing MATMS
data is the domain dependent mapping from the problem solver data implied in
the query to the relevant set of beliefs. This mapping results in both knowledge
which has been explicitly stated by a problem solver in the course of normal problem
solving and the default knowledge. A domain-specific mapping function which relates
to a frame based knowledge base implementation will be discussed in detail in a
subsequent section. Once the set of relevant beliefs has been deter-nined, the rest's
straightforward.

Read operations can be viewed as falling into one of three categories: is a par-
ticular problem solver datum contained in a particular problem solver's belief set?
(problem solver dependent query); what problem solvers currently believe a particu-
lar problem solver datum? (all problem solver query); and describe all beliefs relevant
to a particular problem solver datum (context independent query).

Ior a p, owem solver dependent query, after determining which beliefs are relevant
to the problem solver data in question, the context. of the problem solver to which the
query refers is consulted. First, the non-default beliefs are considered. If any of these
are contained in the context, the MATMS replies appropriately. The MATMS could
respond with more than one belief, and the beliefs could be contradictory. If none
of these beliefs are conta]Ded in the context, then the problem solver is considered
"opinionless', and only the default knowledge is returned if it exists. If default
knowledge is returned, it is identified as such in the response.

For the all problem solver query, a problem solver dependent query is performed
for all problem solvers.

An all context query is used when an agent requires all relevant beliefs concerning
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a particular problem solver datum. All beliefs, including default beliefs which are
relevant, are returned. If the belief is an inference, then its derivation is returned.
Assumptions are simply returned, identified as assumptions.

The problem with the responses to an all context query is that a problem solver
may not understand many of the intermediate steps used to derive the inference. It
may not even understand the assumptions the inference is based upon. Perhaps a
more useful query is a variation, such as the problem solver simply giving the MATMS
a set of beliefs, and then asking what a particular problem solver datum would be if
the beliefs were "true". In other words, the problem solver might ask something of
the form "Suppose A and B were true. What would be the value of C?" If C can be
derived from A and B either directly or indirectly, the MATMS responds accordingly.
If C is an assumption in the knowledge base, then the MATMS wouid respond that
it is an assumption and its validity is thus not connected to A or B. If no logical
connection between A, B, and C has been registered with the MATMS, then it would
reply only the default value for C if it exists.

4.5.2.6 Using The MATMS The MATMS was designed to be used by agents
that "understand" a specific set of operating constraints. For this reason, unless it
is used properly, some features of the MATMS might be lost. This section discusses
how the MATMS should be used by agents without constraining how problem solvers
should be written. Problem solving can take place in a variety of forms, so a presenta-
tion of how exactly it should be done is impossible. Rather, this section details some
basic aspects of problem solving and in particular what a problem solver should ex-
pect the MATMS to do and reply when the problem solver interacts with it. Whereas
the previous section was written from the viewpoint of the MATMS, this section is
from the viewpoint of a problem solver.

4.5.2.6.1 Designing an Appropriate Problem Solver A problem solver
which would work well in the MATMS setting must be rational. In terms of read and
write operations, it also must be aware of what to expect from the MATMS, and how
to use the MATMS.

Rationality:

The problem solver can only expect rational results from the MATMS if its infer-
ence mechanisms are rational. That is, supplying the MATMS with inferences which
contradict each other logically on the basis of the inference's immediate preconditions
will cause the MATMS to act irrationally. This should be expected, since the MATMS
is only reflecting what it is supplied with.
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The general rule is that a problem solver cannot produce inconsistent inferences
from the same set of assumptions. The concept of rationality can be illustrated by a
number of examples.

1. AB C
AB D
CD=,,±

A problem solver possessing these rules would be clearly irrational. Two rules
acting on the same set of preconditions cannot result in contradictory expres-
sions.

2. AB E
CD= F
E F =>, I

At the other end of the spectrum, a problem solver with these rules is rational.
Two rules can act on completely different sets of beliefs and result in differing
expressions. Comparisons of most problem solving rules fall into this category.

3. AB= C
AD=' E
CE =, I

This example falls in between the extremes characterized by the first two ex-
amples. These inference rules are rational when compared to each other.

4. AB=> C
ABE => D
CD => I

While these rules also fall in between the extremes given by the first two ex-
amples, this set is irrational according to the manner in which the MATMS
operates. The first rule states that in the presence of A and B, the MATMS
should include C. The second rule states that in the presence of A, B, and E,
include D. With these rules, the context of the environment ABD will include
C and D, which is irrational.

Rationality as discussed here is conceptually not difficult to encode in a problem
solver, for it requires only that the inference rules of a problem solver be rational as
compared to each other. This property will be referred to as self-rationality.

Assumptions:
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During normal problem solving activities, an agent can be expected to make or
use assumptions. A problem solver makes assumptions when it is unsure of a partic-
ular piece of knowledge. There are three points which need to be made concerning
assumptions.

First, consider the example situation. An agent has a particular rule:

ABCD E

If the agent currently believes A, B, and C, then it could assume that E is valid, also.
Even though an inference rule indirectly has produced E, E should not be registered
as au inference. An inference is meant to represent that all preconditions of a rule
have been met, which is not the case in this example.

This leads to the first point regarding assumptions. Problem solvers should inter-
nally record why a particular assumption was made. It is important to realize that
the MATMS should be used to record the assumption itself, not the reasons why the
assumption was made. A problem solver should simply record E with the MATMS.
and internally maintain the knowledge that E was assumed because it has a rule
(ABCD . E) which had most of the preconditions necessary for its firing believed.

Second, an agent should never attempt to add a default assumption to its belief set,
because it is most likely already present. If it is not, because the agent has overridden
the default, then the appropriate way of reasserting the default is by retracting the
belief which overrides it.

Third, if the problem solver is presented with contradictory default assumptions,
the manner in which it should register with the MATMS that it bel-eves one default
in particular is by accepting beliefs which directly override the defaults which the
agent does not accept. This is a little awkward, but overall the best procedure. In
general, inconsistent default assumptions should be avoided.

Interacting with the MATMS:

When a problem solver changes its assumption set, it should always register the
change with the MATMS so that the MATMS can either remove or add inferences
as necessary and determine if the new belief set is consistent. The MATMS will
always confirm the transaction with the problem solver in one way or another. This
confirmation might include a message indicating that the problem solver may have
made a mistake, such as when the agent attempts to add an assumption to its belief
set which is already present. If the resulting belief set is inconsistent, the MATMS will
inform the problem solver that certain subsets of the belief set are inconsistent. Each
belief in each subset will be described. Each description includes the assumptions
from which the belief has been derived. It is up to the problem solver to determine
which assumptions it wishes to remove in order to make its belief set consistent.
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When an agent registers an inference with the MATMS, the inference rule used to
generate the inference should not be included (this was proposed in [16] as a method
to record the control sequences used to generate knowledge.) This would be counter-
productive to the overall system, because an inference of one agent should not be
inherited by another unless it explicitly included the other's inference rules in its
belief set.

Determining which read operation to perform in a given situation is difficult.
When an agent queries its own beliefs of itself as well as other problem solvers, the
problem solver dependent query should be used. If a problem solver must assess
the overall belief state of a particular piece of knowledge, the all problem solver
query should be considered. To determine what any problem solver has ever believed
concerning a particular piece of knowledge, the all context query should be used.

4.5.2.6.2 Designing a System around One MATMS Designing a problem
solving system around one MATMS should be influenced by two topics: mutual
rationality and inconsistency across problem solvers.

Mutual Rationality:

It has already been discussed that a problem solver must be self-rational. In
addition, a problem solver rmust be rational as compared to the others for essentially
the same reasons as were mentioned in the case of a single problem solver. This is
true because inferences are not problem solver dependent. We say that two problem
solvers are mutually rational if the inference rules of each problem solver could be
used to create a self-rational problem solver.

When considering a single problem solver, requiring rationality is not unreason-
able. If any problem solver in any system were not rational, it would probably not be
very productive. However, the criteria that problem solvers be rational when com-
pared to one another is a somewhat more restrictive and difficult to achieve. Two
problem solvers could for instance be self-rational, but be irrational when compared
to each other. To ensure mutual rationality, problem solvers must be designed in
accordance with overall system goals; coordination of design is essential.

Resolving Inconsistency among Problem Solvers:

Mutual rationality suggests only that the inference rules of. one problem solver
be consistent with all other problem solving rules. For instance, given the same
preconditions, two inference rules should not produce two pieces of knowledge which
are contradictory. Mutual rationality includes nothing about what assumptions each
problem solver can choose with which to work. This allows each problem solver to
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perform in a variety of problem solving activities, fairly independent of the activity
of the others.

Two problem solvers which are mutually rational could seemingly present contra-
dictory beliefs to the MATMS. For instance, suppose one problem solver had presented
"it's 900 out" as an assumption in its current belief set, and had then inferred "it's a
good day to go swimming because it's 900 out". Suppose that another problem solver
had told the MATMS that its current context belief set includes "it's 40' out", and
had then inferred "it's a bad day to go swimming out because it's 400 out". Clearly
each problem solver is self rational, as well as mutually rational when compared to
the other. In addition, the MATMS would "support" the context of each problem
solver, because the belief set of each problem solver is self-consistent.

However, there is clearly a problem with the overall problem solving. The indi-
vidual problem solving is diverging if indeed the first problem solver believes that
it is truly 900 outside, and the second believes that it is 400 (neither agent is in-
volved in hypothetical reasoning). Certainly the MATMS recognizes that there are
two assumptions in the knowledge base, 900 out and 400 out, which can not exist in
the same context because they are directly contradictory. The conflicting beliefs are
not present in the same context, so there is no problem from the viewpoint of the
MATMS.

Any time the MATMS is used, a single problem solver should monitor the true
world assessments of the others and recognize when inconsistencies between prob-
lem solvers arise. This problem solver is essentially part of the domain independent
MATMS, except when considering that the rules necessary to resolve the conflicts
must be domain dependent.

Two architectures could be investigated, depending upon the domain. These archi-
tectures are shown in Figure 28, with the agent responsible for resolving inconsistency
labeled as PSC. The architecures differ primarily in the interagent communication
paths utilized. In the first, each agent interacts directly with the MATMS to get its
beliefs. This would be faster for the individual problem solvers, but would also make
the job of the agent resolving the inconsistencies difficult. In the second, each prob-
lem solver interacts through the agent resolving the inconsistencies to communicate
with the MATMS. Monitoring beliefs is thus much easier.

The agent responsible for maintaining consistency across local problem solvers
can certainly recognize inconsistencies between problem solvers. To resolve them,
either of two methods could be used. The PSC could itself choose one value over the
other witho-it consulting the two problems solvers from which the beliefs originated.
Alternatively, the PSC could tell the problem solvers that they conflict with one
another, leaving resolution up to the inconsistent problem solvers. Both methods
require further research.
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Figure 28: Proposed Interagent Communications Paths

4.5.2.7 Example Implementation

4.5.2.7.1 The Domain The domain for which the MATMS has been imple-
mented is a distributed knowledge based system for managing a large-scale communi-
cations network. The communications network provides telecommunications service
for people as well as machines. The communications system can be described on three
levels.

On one level, the communications network can be viewed as a sparsely intercon-
nected array of transmission facilities called sites. Each site is generally only con-
nected to one or two other sites. The interconnections between sites (links) provide a
transmission medium over which to send communications signals between sites. For
control purposes, sites are grouped into non-overlapping sets called subregions. Each
subregion contains one SubRegion Control Facility (SRCF) to which each site in the
subregion reports the operational status of its equipment, availability of resources,
etc. A portion of a "typical" communications network is presented in Figure 29.

Another level is the equipment configuration at each site. This level includes the
"barebones" equipment and connections necessary to originate and switch communi-
cations signals. An example equipment configuration is given in Figure 30 (adapted
from [10]). Equipment and their interconnections are constrained by a variety of
rules.

The third level forms the communications path level which is probably the most
important, for it can be considered the fundamental view of the network. The two
primary objects present at the communications path level are trunks and circuits.
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Figure 29: Sample Communications Netw,-,rk

A circuit is the comnplete elementary path between two pieces of terminal equip-
meat by which two-way telecommunications service is provided. A trunk is a group
of equipment and connections which establishes telecommunications connectivity by
providing a resource for circuits to ride. Circuits ride on channels of a trunk; there is
typically a capacity for several channels per trunk. A useful analogy for channels on a
trunk is to imagine one big pipe (the trunk), which contains a number of small pipes
(channels) running the entire length of the big pipe. With this analogy, it is easy to
see that a trunk can ride channels of other trunks. The trunk exists with or without
the circuit, but this is not symmetric; a circuit cannot exist unless it rides a trunk,
or a list of trunks connected in series. The trunk refers to "physical" connectivity,
whereas the circuit refers to "logical" connectivity. For more details, see (38].

In order to understand how the MATMS operates in this domain, one should
understand the general concepts of the communications path level. Thus, an example
of two sites partially configured is presented in Figure 31 with careful attention to
trunks and circuits. The description of Figure 31:

I (connecting userl and user2) rides trkx which rides trly which rides trkz.

•trkx starts at m981 and ends at m982. It has 24 channels.

9 trky starts at m991 and ends at m992. It has 8 channels.
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Figure 32: Communications Network Knowledge-Based System Architecture

e trkz starts at radl and ends at rad2. It has 2 channels.

If any piece of equipment should fail or degrade to the point of causing any of trkx,
trky, or trkz to fail, then the two end users of cktl would be disconnected. The circuit
would be said to be disrupted.

Maintaining communications service is the primary objective of the system. If any
circuit fails, then the circuit must be restored often at the same time as the problem is
being diagnosed. Restoration could proceed by reconfiguring equipment, or selecting
existing alternative trunks, or a combination of both.

4.5.2.7.2 Knowledge-Based System Architecture The knowledge base
system architecture was briefly discussed in Section 4.3.1 The plirpose of this section
is to expand on that description. In particular, the role of the KBM will be discussed
further.

The architecture of the knowledge-based system is shown in Figure 32. The inter-
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agent communications paths have been included in the figure to convey the general
operation of the system. Although agents can communicate with other agents of the
same type at different subregions, most communication is with the local Knowledge
Base Manager (KBM).

The KBM has many responsibilities. It grants access to the knowledge in the local
knowledge base, must process the transactions from the SR, PA, and FI agents in a
logical order, must know where knowledge requested by the agents resides (if it not
present within the local knowledge base), and most importantly it has to maintain
a consistent local view of the state of the world by monitoring the beliefs of the
individual agents in the node in combination with other KBMs in the network.

To aid in maintaining a consistent local view, the KBM includes the MATMS.
The MATMS is used to keep the belief sets of each of the agents consistent, as well
as to recognize inconsistency when comparing belief sets. It is the KBM, however,
which must attempt to recognize and resolve the inconsistency. The role of the KBM
after recognizing discrepancies is to advise the problem solvers as to how to resolve
the inconsistencies, often by consulting other KBMs where appropriate. For example.
if PA believes a certain trunk is not operable, and FI believes it is, the KBM might
ask another KBM what it believes the state of the trunk to be. This of course would
only work if the trunk crossed subregion boundaries (so that another KBM would
have knowledge of it), and the KBM knew which other KBM to ask.

4.5.2.7.3 Architecture Implementation The global knowledge base is cre-
ated using the Graphical User Interface for Structural Knowledge (GUS [24]) on
a Symbolics 3670. An option in GUS divides the knowledge base along subregion
boundaries in order to create the knowledge bases for each problem solving system
discussed in the previous section. Division of knowledge can be modified to test dif-
ferent distributed knowledge representation schemes. The knowledge represen',ation
scheme in GUS, which is frames, is utilized in the distributed knowledge bases.

A distributed simulation environment (SIMIULACT [27]) is used to test the knowl-
edge based system. It provides a parallel simulation environment for any number of
agents. Interagent communications support is provided in a highly flexible format.

The Knowledge Base Manager (KBM) comprises a single agent in SIMULACT.
At this time, it contains query processing functions, the knowledge base itself, and the
MATMS. Knowledge provided to the KBM from GUS is treated partially as constants
and partially as default assumptions to the MAT*IS. For example, a particular radio's
name is constant, as is its operational definition, while its initial.status is treated as
a default assumption. In the absence of information to the contrary, the status of a
radio is assumed to be the value provided by GUS.

The MATMS exploits the knowledge representation scheme (frames) and to some
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extent the domain itself. In particular, the task of finding all the beliefs which are
relevant to a particular problem solver query is handled by realizing that most queries
will access a particular slot in a frame. Therefore, beliefs which are relevant to a given
slot are kept within the slot along with the default. This will be illustrated in the
section which follows.

4.5.2.7.4 Examples of MATMS Usefulness

Example 1:

The purpose of this example is to illustrate the way data structures are accessed.

Suppose that there is a frame for a particular instance of a trunk:

id: trk9
is--a: trunk
type: digroup

status: > MATMS default frame<<

The default frame is:

default: UP
beliefs: ()

The default frame can be interpreted as "Trk9 is up by default. There are no beliefs
presented by problem solvers to override the default."

Now suppose that PA asks the KBM for its (PA's) belief concerning the status
of trk9. The KBM would invoke the MATMS by attempting to access a slot of a
frame which is controlled by the MATMS. In other words, the KBM would attempt
to access the slot, which automatically invokes the MATMS. Because there are no
beliefs in the context which PA is currently working in (this must be the case because
the behefs slot of the default frame is empty), the response wouid be "UP, by default."

If PA subsequently proposed the assumption "the status of trk9 is down", the
MATMS would change the status frame to be:

default: UP
beliefs: (A 1)
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where Al corresponds to "the status of trk9 is down."

If PA asked again whait the status of trk9 is, the KBM would reply "down" (the
KBM would invoke the MATMS to determine the status of trk9, which would find
Al present in the environment of the current context of PA). However, if F1 asked,
it would still get "UP, by default." Note that if for some reason FI proposed that the
trunk is down, the status slot of trk9 would remain the same. F1 would just have A 1
added to its current belief set. Incidentally, if these were the only transactions which
the MATMS had made, then the end result is that F1 would be placed in the same
context as PA.

Example 2:

Example 2 shows more of the potential of the system and is tied more closely to
the domain.

Suppose that the following configuration exists for a subregion (Figure 33). A
general description is that cktl rides trkz, trkw, and trkx. Ckt2 rides trky, trkw,
and trkz. Ckt3 rides trkx, and then trkv to another subregion.

Initially, Fl, SR, and PA have not made any assumptions about the communi-
cations network. Each problem solver is working in C1 (context 1). Each time a
new context is created by the MATMS, the context counter is increased by one. For
instance, the next context created will be named C2, and so on. The knowledge
base consists of the defaults (though only the defaults relevant to the discussion are
mentioned here):

trkw is up [Al]
trkv is up [A2]
trkz is up [A3]
trky is up [A4]
trkx is up [A5]
cktl is up [A6]
ckt2 is up [A7]
ckt3 is up [A8]

In addition, the following premises have been entered into the MATMS: a trunk
cannot be up and down (P1), a circuit cannot be up and down (P2).

Now, at time to, suppose PA is notified of a user alarm concerning cktl, at the
same time that it is notified of a user alarm concerning ckt2. (A user alarm is when
the user of a circuit notifies a technical control facility to complain that he has lost
service in a particular circuit.) PA views user alarms as assumptions in the form of
new observations of the world, and immediately registers the assumptions with the
MATMS.
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user alarm cktl at to [A91
user alarm ckt2 at to [AlO]

Adding the two assumptions [A9] and [A10] results in contexts C2 and C3, respec-
tively.

PA continues working and eventually registers the following inferences with the
MATMS, through the KBM. Even though there was not a user alarm, PA concluded
that ckt3 was down through the application of the rule "If multiple circuits on a trunk
fail at the same time, assume the trunk has failed." Therefore, PA asserts that trkw
and trkx are down. Asserting that trkx is down leads PA to infer that ckt3 is also
down.

cktl is down because user alarm cktl at to [I1]
ckt2 is down because user alarm ckt2 at to [12]
cktl, ckt2 fail at same time because user alarm cktl at to [13]

user alarm ckt2 at to
trkx is down [All]
ckt3 is down because trkx is down [4]
trkw is down [A12]

Note that ckt1 is down does not represent a contradiction of beliefs for PA in the
MATMS, because cktl is up was a default assumption.

The end result of this is that PA is placed in a context which is defined by:

name: C5
environment: (A9 AlO All A12)
inferences: (I1 12 13 14)
incompatible belief sets: ()

The knowledge base is briefly described as:

SA9 A10 All A12
contexts in j(C2 C3 C4 C5) (C3 C4 C5) (C4 C5) (C5) 1
influences (I1 13) . (12 13 ) (14) j I

11 12 13 14
contexts in (C2 C3 C4 C5) (C3 C4 C5) (C3 C4 C5) (C4 C5)
influences () () 0 0
assumptions ((A9)) ((AlO)) ((A9 A10)) ((All))
preconditions ((A9)) ((A10)) ((A9 A10)) ((All))
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Because it has no reason to disbelieve PA at this time, the KBM accepts the
assessment of the current state of the world by PA as correct. In other words, it
adopts the belief set of PA by asking the MATMS to place it in the same context as
PA.

When PA is finished assessing the user alarms on the circuit operation, it tells
FI to begin work. F1 begins by asking the KBM for its current assessment, which
happens to be solely PA's assessment. Therefore, F1 is placed in context C5. Thus,
it inherits the beliefs which assert that cktl is down, ckt2 is down, trunkx is down,
etc.

F1 performs measurements on each of the circuits or trunks in question and de-
termines that ckt3 is actually up, not down. F1 enters the following beiiefs into the
knowledge base:

tests of cktl at t, [A12]
tests of ckt2 at t, [A13]
tests of trkx at t, [A14]
cktl is down becoiise tests of cktl at t, [16]
ckt2 is down t)ecause tests of ckt2 at t, [17]
trkx iAs up because tests of trkx at t, [18]

A more careful, step by step analysis of the steps involved when FI changes its
belief set is necessary to understand the operations of the MATMS.

1. FI adds A12 to its belief set, which causes C6 to be created. The KBM accepts
A12 into its belief set.

2. F1 adds A13 to its belief set, which causes C7 to be created. The KBM accepts
A13 into its belief set.

3. FI adds A14 to its belief set, which causes C8 to be created. The KBM accepts
A14 into its belief set.

4. 16 adds another justification for "cktl is down". ft serves as confirming evidence,
as does adding 17. Because the KBM has accepted the beliefs upon which both
16 and 17 are based upon, it automatically inherits 16 and 17.

5. When FI attempts to add 18, the MATMS responds that its belief set is incon-
sistent, because it currently believes that trkx is up, and'trkx is down. The
MATMS marks the current context of F1 (C8) inconsistent. The MATMS in
forms F! that it can remove "trkx is down" directly, because it is an assumption,
and it can remove "trkx is up" by retracting "tests of trkr at t,". For Fl, there
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is no great difficulty in deciding that "trkx is down" should be removed from
its belief set, because "trkx is up" is an inference which it just made.

However, the KBM is faced with maintaining consistency. At this point, F1
believes that "trkx is up", and PA believes that "trkx is down". In this situ-
ation, the KBM clearly believes FI, because PA is prone to errors due to time
constraints. That is, PA is forced to make a fast, rough estimate, while FI must
be certain AW its wo:k bcfore it e-erz be!efs ;rto the knowledge base. For that
reason, the KBM follows FI and retracts "trkx is down". Note that KBM no
longer believes that "ckt3 is down". Further work by F1 would suggest that
trkv is operating properly.

At this point, F1 tells SR that it is finished. SR begins work to restore circuits
cktl and ckt2.

4.5.2.8 Status There are limitations to the current design of the MATMS which
should be investigated further. Specifically, premises need to be extended, and overall
system efficiency should be investigated further.

The current premise structure allows for two pieces (or classes) of problem solver
data to be considered inconsistent. For instance, "a trunk cannot be up (operational)
and down (inoperable) at the same time." This causes difficulties when one attempts
to model a more complex premise structure which involves more than two objects. A
one-OBof-three situation (choosing one route from three choices) or perhaps a two-
of-three situation (having enough money to buy any two of a fishing pole, a softball
glove, and a tennis racket, but not all three) cannot be handled currently. This
has not been attempted yet because there is no immediate need for it; the premises
necessary for our application demand a simple binary situation.

Although the design clearly addresses the importance of an efficient system, the
degree of efficiency is still questionable. It is not obvious whether the inefficiencies
present are a result of the implementation or the design. It is clear that the system
is often forced to recompute justifications for inferences. This could involve a large
amount of time in order to keep the inference trees as compact as possible.

There was always some debate about including default assumptions explicitly in
the environment of contexts. If they were included, creating contexts could be per-
formed more quickly than in the present design, but there would be more pointers
between objects in the knowledge base. On the other hand, not including default
assumptions explicitly in contexts increases the ease of comparing belief sets and in
general makes the operations of the MATMS more efficient. If, upon testing the
system more, it is determined that the MATMS spends most of its time creating con-
texts, an argument could be made for a redesign which would put default assumptions
explicitly in contexts. This modification would not be difficult to make.
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Many of the questions involving the efficiency of MATMS have not been addressed
because the problem solvers (FI, PA, SR) have been under development at the same
time. Interactions involving the MATMS have only been tested with the SR problem
solver, so such concerns as multiple derivations, context switching, and to some extent
multiple context maintenance have only been tested using "typical" cases which have
been fabricated. As the knowledge based system matures, the MATMS will surely be
refined, although the design appears to be sufficiently flexible to handle most changes
an ,was debigncd to lbe &daptab!.

4.5.3 Distributed Automated Reasoning System (DARES)

Issues related to distributed problem solving in geographically and/or logically dis-
tributed domains are addressed with respect to the role of knowledge. As a vehicle to
explore these issues, a Distributed Automated REasoning System (DARES) has been
implemented. This system can be viewed as a collection of distributed agents which
interact to perform automated reasoning about the distributed domain. DARES' 'ar-
chitecture and its knowledge acquisition heuristic are discussed. A detailed example
of how DARES performs automated reasoning in a distributed domain is given, and
preliminary results based on DARES' performance are also presented.

The purpose of this work is to explore issues related to the role of knowledge
in distributed problem solving domains which are geographically and/or logically
distributed. The problem solving environment in such a domain can be viewed as a
collection of semi-autonomous, loosely coupled, intelligent agents. Each agent has its
own partial view of the domain, and no one agent has complete knowledge. These
agents use a message passing paradigm to cooperate and coordinate their problem
solving activities towards the satisfaction of one or more concurrent goals or
In domains of this kind, there is an underlying assumption that no single agent can
achieve the task at hand by itself. Cooperation is required for effective problem
solving. This work is concerned with assessing the degree to which shared knowledge
impacts problem solving behavior and the degree of sensitivity a distributed problem
solving system has to where nonlocal knowledge resides.

In this research we use a Distributed Automated REasoning System (DARES) as
a vehicle for investigating the role of knowledge in distributed problem solving. This
system can be viewed as a collection of distributed agents which interact to perform
automated reasoning about the domain. Many concurrent reasoning tasks proceed
simultaneously, and an agent may be involved in solving any subset of the complete
set of tasks. Since the domain is distributed, there is no global view. Each agent
has its own understanding or assessmrct of the domain expressed in the first order
predicate calculus.

A distributed deduction system such as DARES was chosen to investigate the role
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of knowledge in distributed problem solving, because many domains can be expressed
using the first order predicate calculus. Furthermore, automated reasoning using
the predicate calculus is a mechanical inferencing process which separates domain
characteristics from reasoning strategies. Our goal is one of gaining insight into the
role of knowledge in distributed problem solving which is domain independent.

There is a distinction between this work and other work on parallel theorem prov-
ing. Although speed considerations are important, they are not the primary criterion
of performance in this work. Issues associated with qualitative information exchange
and its impact on problem solving behavior are. Other work is being done in de-
veloping algorithms and architectures to perform theorem proving in parallel, which
reduces the exponential nature of classical theorem proving to near linear character-
istics [2, 6].

Our preliminary results indicate that distributed theorem proving is feasible and
can be made complete. We have also observed performance characteristics that exceed
those of a single agent performing a proof by itself with respect to number of resolvents
generated and also with respect to the amount of time required.

These results are based on data being collected from our Distributed Automated
Reasoning System referred to as DARES. In DARES, each agent has multiple in-
stances of a saturation level, binary resolution theorem prover [41, 5], which uses a
tautology and subsumption deletion strategy. DARES runs on top of SIMULACT
[26], described in Section 4.4.1, which is a distributed testbed for the development of
distributed systems.

We begin our discussion of distributed automated reasoning by first presenting
a brief overview of traditional theorem proving and the resolution principle. A sim-
ple single agent example is given to illustrate these concepts. We then present the
Distributed Automated Reasoning System's architecture, followed by an introduc-
tion to its distributed theorem proving strategies. The single agent example is then
distributed over several agents and a detailed solution demonstrating how DARES
performs distributed theorem proving is given. In conclusion we present our initial
findings with respect to automated distributed deduction.

4.5.3.1 Automated Reasoning in Single Agent Domains Traditional theo-
rem proving using the resolution principle was developed in the mid-1960s [41) and
is based on the first order predicate calculus. Domain knowledge is represented by a
conjunction of logical statements or clauses, where each clause is a disjunction of lit-
erals. A literal is an atomic formula or a negated atomic formula., Resolution is a rule
of inference that is used to deduce a new fact from known information. For instance,
if we know that C, and C2 are TRUE, where C, = (A V B) and C2 = (-,B V C), then
we can deduce that C3 must be true, where C 3 = (A V C).
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We can deduce C3 from C1 and C2 , because C1 and C2 each contain the same
literal, B, in complement form. If B is FALSE, then A must be TRUE according to
clause C1. Likewise, if B is TRUE, then C must be TRUE according to C2. Since we
do not know whether B is TRUE or FALSE, we don't know if A or C is TRUE But
we do know independent of B's value that (A V C) will be TRUE for thie reasons just
discussed. This reasoning process is formally known as resolution.

Theorem proving uses resnlution to determine if a given theorem can be deduced
(logically follows) from what is currently known. It does so by a refutation process
which assumes what it is trying to deduce is FALSE. It then uses the resolution
principle to determine if there is a contradiction between this assumption and what
it knows to be TRUE. If a contradiction is found, then the assumption must be
incorrect, thus proving the theorem to be TRUE. A contradiction is detected when
two single literal clauses resolve together producing the empty (or NIL) clause.

During theorem proving it is possible for the two clauses being resolved together
to have literals which are comprised of variables. In order to perform resolution, these
clauses need to have one literal, each of which is exactly the complement of the other.
The process of binding these variables to values in order to make resolution possible
is known as unification.

As an example of traditional theorem proving, as well as to demonstrate the asso-
ciated concepts mentioned above, we now consider the following example of theorem
proving in a single agent domain. This example s includes the following six axioms
and negated theorem:

SI: -'R(x) V S(x, f(x)) V T(x) (axiom)

S2: Q(f(x)) V -'R(x) V T(x) (axiom)

S3: P(a) (axiom)

S4: R(a) (axiom)

S5: P(y) V -S(a, y) (axi. -n)

S6: -iP(x) V -T(x) (axiom)

S7: -'P(x) V -Q(x) (negated theorem)

Without using a subsumption [5] and tautology [12] deletion strategy, this proof
generates 825 resolvents before generating the NIL resolvent. When using subsump-
tion and tautology reduction the solution space is pruned to 68 resolvents, of which
only 6 are necessary in establishing the validity of the theorem.' The resolvent tree
structure is shown in Figure 34, and Figure 35 is a listing of all clauses appearing in
Figure 34.

'This example is a modification to Example 5.22 on page 89 in [5].
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Si S5 S2 S7

S3 S6 S9 S13

S14 S36

S4 S66

NIL

Figure 34: Proof of Example Theorem in a Single Agent Domain

Axioms, Negated Theorem, and Pertinent Resolvents:

S9: P(f (a)) V -'R(a) V T(a) (resolvent of S1 and S5)

S13: -'P(f (x 1)) V -'R(xl) V T(xl) (resolvent of S2 and S7)

S14: -'T(a) (resolvent of S3 and S6)

S36: -'R(a) V T(a) (resolvent of S9 and S13)

S66: -'R(a) (resolvent of S14 and S36)

S75: NIL (resolvent of S4 and S66)

Figure 35: Solution Space Clause List for Single-Agent Example
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4.5.3.2 Distributed Theorem Prover Architecture In a loosely coupled dis-
tributed system, an agent spends most of its CPU time in computation as opposed
to communication. Since theorem proving by nature is computationally intensive,
we have chosen a loosely coupled implementation for our distributed theorem prover.
Each theorem prover agent spends the majority of its time performing binary reso-
lution, with the balance spent on problem assessment and communication, Problem
assessment helps determine what course of action to take next to further the proof
locally, as well as to selectively transmit newly derived information of potential use
to other agents. Determination and selection of this tendered information is based on
previous requests made by an agent. Communication between agents generally falls
into one of the following categories: (i) A request is sent to one or more agents for
information; (ii) An agent returns information in response to a request; (iii) an agent
offers new information based on past communications.

The architecture for the theorem proving agent has been tailored to suit the
characteristics of the problem solving domain mentioned above (e.g. loosely coupled.
multiple concurrent tasks). In 'Figure 36 the theorem proving agent is shown as
being comprised of several processes attached to a communications network and a
*REQUEST-QUEU E*. There is one mail process, with the remaining processes each
being associated with a distinct problem solving activity. Each process has equal
priority and active processes compete for CPU time in a round robin fashion. Under
normal circumstances, every theorem prover process is active. The mail process
is typically in a wait state and becomes active when new mail is received via the
communications channel. Each theorem prover process has its own environment and
is associated with one automated reasoning task identified by a unique tag. Theorem
prover processes working on the same reasoning task throughout the network have
the same tag. Furthermore, no two theorem prover processes for a given agent may
work on the same theorem. It need not be the case that every agent works on every
theorem. Figure 37 represents a fragment of a typical theorem proving network of
agents connected only by a communications link (There is no shared memory among
agents).

This architecture has proven to be extremely effective. The separate mail process
eliminates the need for a theorem prover process to periodically check for incoming
mail, which in itself is a complicated issue. By having a dedicated mail process, the
processing of knowledge requests made by other agents is expedited, since attention
to these requests is given immediately upon their arrival. We have also observed an
increase in system performance when the CPU time to process incoming requests is
minimized. It will be evident in our algorithms presented later that a theorem prover
process making a request does expend effort in formulating the request, such that the
CPU time required to process the request is minimized.

It can be seen in Figure 36 that all incoming mail is directed to the mail process.
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Distributed Theorem Prover Agent

- *REQUEST-QUEUE*

Mail Theorem Theorem
Process Prover Prover

r - Process * * * Process
Mailbox
Futurebox <tag-I> <tag-n>

A-------------

Figure 36: Architecture of a Distributed Theorem Prover Agent

Agent i-1 A an i Agent i+

Communication Network >

AgentAgent gent j Agent j+.

Figure 37: A Typical Network of Distributed Theorem Provers
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Mail which is a one-way exchange between two agents is done using memos. A memo
is an interaction between agents that does not require a reply. Futures [22, 42] are
used to handle requests that do warrant a reply. A future is a data object that the
requesting agent instantiates and retains on making a request. The reply is then
routed back to that future when it is available. A future is tested periodically by the
sending agent to ascertain when it is possible to extract the reply Future streams are
used in a similar manner as futures, but in situations where more than one reply is
expected.

Theorem prover processes communicate directly with other agents via the commu-
nications network. Within an agent, theorem provers post requests to other theorem
provers through the *REQUEST-QUEUE*. Entries into this queue are posted using
theorem tags.

4.5.3.3 Distributed Theorem Proving Strategies As is the case with single
agent theorem provers, theorem proving in distributed domains exhibits exponential
behavior. It turns out, however, that some of the strategies used in classical theorem
proving to help minimize the number of resolvents generated can also be used in
the distributed case to reduce the content of information exchanged between agents.
Development of these strategies are essential, since the performance of distributed
theorem proving can be greatly enhanced by them. For instance, if the computational
effort in replying to a request is significant, it may have not been worth making
the request in the first place. Similarly, in information intensive domains such as
distributed theorem proving, requests that receive a bombardment of information
can be counterproductive.

In this section we outline our approach to distributed theorem proving. We will
also introduce some distributed theorem proving concepts that are directly related to
well-established classical theorem proving reduction strategies. Since this is a general
introduction to distributed theorem proving, a detailed example will be given in the
next section.

Figure 38 is a flow diagram which depicts a high level view of our approach
to distributed theorem proving. Essentially, the top left loop in the diagram is no
more than a flowchart for the traditional saturation level type theorem prover. In
traditional theorem proving, resolution is done one level at a time. When a NIL
resolvent is generated, the system halts with the theorem having been established.
When there is no NIL resolvent and the current level of resolution has exhausted all
possibilities, the newly generated resolvents are then used to begin the next level of
resolution. This process continues until either a NIL resolvent is eventually obtained,
or the current saturation level fails to generate any new resolvents.

We have previously stated that in our distributed environment no one agent can
achieve the task at hand by itself. Therefore, we do not terminate the resolution
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process simply because the current resolution level has failed to generate new resol-
vents. In fact, reaching this point triggers a theorem prover agent to attempt to
import relevant information from other agents as shown in Figure 38. If an agent is
successful in importing aew '.:sowledge, the resolution processes continues. Otherwise
the distributed theorem proving process terminates with no conclusion being drawn
about the current tiaeorem.

It is not sufficifat in our distributed environment just to wait for local resolution to
halt prior to imp )rting new knowledge, since mechanical theorem provirg in general
may not term;nate when dealing with incomplete knowledge. Therefore, as shown in
Figure 38, our - .stem must evaluate whether or not progress is being made locally
towards a solution. The Proof Advancing test is made at the conclusion of each
resolution level to heuristically determine if the p-,oof has advanced towards a NIL
resolvent. This tesL :annot give a definitive an- .ver It can only say "Yes, progress
has been made," or th4A it "does not know." Or. this basis, local resolutior moves
to the next level only if uiu Proof Advancing test concludes that progress has been
made. Otherwise, nonlocal knowiedge is n-apocted just as if the current level failed
to produce new resolvents.

The primary role of this Proof Advancing heuristic is to prevent a distributed agent
from expending its resources in an effort that is not likely to be productive. When it
is apparent that an agent is not progressing, this heuristic triggers the importation of
nonlocal information in order to increase the agent's knowledge with respect to the
task at hand, thus potentially permitting the theorem prover to continue ii, a more
productive manner.

Although this heuristic is used to enhance system performance, it should not be
made too sensitive. If it appears that an agent is progressing towards a solution, the
agent should be allowed to proceed as long as it continues in this direction. Importing
knowledge prematurely may be seen to be counterproductive, given the exponential
behavior of theorem proving in general.

Definition The Proof Advancing heuristic is defined as follows:

I. Given clauses C and D with literal length c and d respectively, a resolvent of
these two clauses, R, is said to make progress towards a solution if the resolvent
clause length, r, is less than (c - d) - 2.

2. A proof is also said to have made progress whenever a single literal resolvent is
generated, or whenever a single literal clause is used to generat, a new resolvert.

3. A proof may not bf makng progress whenever (1) and (2) do not occur, and
the nunher of dsticct predicate symbols found in the resolvent clauses of two
successive r,-s,,i.tn levwls is not decreasing.
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In general, when two clauses are resolved together using binary resolution, the
resolvents will always have length less than or equal to the length of the two parent
clauses added together, minus the two literals which are consumed by the resolution
process. Condition 1 in the Proof Advancement heuristic considers a proof to be
advancing whenever a resolvent is generated having length less than its upper bound.
This situation happens whenever the substitution used to transform one literal from
each parent clause into exact complements of each other (prerequisite for resolution
to take place) also generates literals in the parent clauses which are identical. When
this happens, identical literals in the parent clauses become one literal in the resolvent
clause, thus reducing the resolvent's length to be less than its upper bound.

Condition 2 in the Proof Advancement heuristic definition recognizes that some re-
solvents are sought after, although their length equals the upper bound. For instance,
when a single literal clause C is resolved with clause D of length n, the resolvent has
length c + d- 2 = 1 + n - 2 = n - 1. The importance of these resolvents are recognized
by the Unit Preference [47] strategy and is discussed in detail later.

Whenever conditions I and/or 2 occur during resolution, the proof is considered
to be advancing. If neither occurs, we do not know if the proof is making progress.
Since we do not want our Advancement heuristic to be too sensitive, we do not
allow it to kick in and make a knowledge request when conditions 1 or 2 do not occur.
Instead, we use a third constraint to ensure that eventually a knowledge request will be
made if uncertainty about proof advancement persists. Condition 3 above meets this
requirement in that the number of predicate symbols found in the resolvent clauses
of two successive resolution levels must be decreasing whenever advancement is not
detected. If the number of predicate symbols is not decreasing, a knowledge request
is made. On the other hand, when advancement is not detected and the number of
predicate symbols is decreasing, eventually this number must be 0. This situation
can only occur when the current resolution level fails to generate new resolvents and
will be detected by the New Resolvents test (refer to Figure 38).

We devote the remainder of this section to explaining how our agents interact,
and how an agent determines what knowledge to exchange during the distributed
automated reasoning process. We begin by first introducing subsumption, which is
a classical reduction strategy used by our knowledge acquisition heuristic. Then the
heuristic itself is presented in primitive form. Problems associated with the heuristic
are identified, and improvements to the heuristic are made to minimize these problems
and increase system performance.

In traditional theorem proving, one technique used to help keep the number of
resolvents at a minimum is subsumption.

Definition Clause Ci subsumes clause C2 if there is a substitution a such that
Clo C C2.
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As an example of subsumption, suppose C1 = Q(x) and C2 = Q(a) V R(b). In this
case, C1 subsumes C2 , since the substitution a = {a for x} satisfes the constraint
C ,a C C 2 . In other words, since Q(x) is TRUE for aOl z, then Q(a) must be TRUE.
Thus, C2 is TRUE independent of R(b) and can be reduced to no more than an
instance of C,.

When viewing distributed theorem proving as a distributed problem solving task,
we have found subsumption to be an effective and efficient mechanism which plays an
important role in the acquisition of nonlocal knowledge by an agent. Subsumption
is used by the agent making the request, as well as by the agents responding to the
request, in order to minimize the amount of knowledge exchanged among agents.

To demonstrate the role subsumption plays in the exchange of knowledge between
agents, consider the following situation in a distributed theorem proving environment.
Suppose that local resolution for an agent has been exhausted and nonlocal knowledge
must be imported from other agents in order to continue as shown in Figure 38.
The first step of the knowledge acquisition process is to determine what knowledge is
needed. Is there some way to know what information is lacking locally, and which may
be present somewhere else in the system? Are there some requests for knowledge that
would be more appropriate to issue than others? Note that these kinds of questions
are commonly posed within a group of human experts who are themselves involved
in a problem solving task! In an attempt to answer these queotions, we will first show
how an agent determines what to ask for, then we will show how subsumption is used
to formulate better requests and replies.

In our environment, when an agent has reached a point where it is evident that
new information must be acquired in order to continue problem solving, the agent
formulates a Priority Set P. This Priority Set is comprised of information which has
been selected as relevant, and if pursued, most likely to advance the agent closer to
a solution. Then, based on the contents of P, an appropriate query to other agents
is made.

Definition A Priority Set P has the form P = {Cl, ..., C,,} where each C, for
0 < i < n is a clause heuristicly determined to have a high likelihood of furthering
the proof towards a NIL resolvent. P is said to have lengtb n, whCre n is the number
of clauses in P.

In distributed theorem proving, the process of determining what to impo:-t from
other agents can be viewed as the single most important issue contributing to success.
In problem solving in general, it is this sense of direction through the problem space
that is difficult to achieve by computers, but what is done naturally by humans.

The heuristic we use to determine the likelihood of a clause extracts some ideas
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found in two popular resolution strategies: Set of Support [48] and Unit Preference
[47]. However, our heuristic is far more than just a combination of these two strategies,
as will become evident as we develop our technique. In the Set of Support strategy,
resolution bct. :ten claus eei -llcwed only if cae or both of the ciauses have an ancestor
which is either the negated theorem itself, or is a resolvent derived from the negated
theorem. This technique has proven to be extremely effective in domains with a
large knowledge base, and is complete providing that the axiom set is consistent6 .
The incorporation of elements of this strategy into our knowledge acquisition process
allows us to focus on the proof, and not on other local knowledge that may have
no relevancy to the proof. The Unit Preference strategy is based on the principle
that whenever a clause comprised of a single literal is resolved with another clause
of length n, the resolvent will always be of length n - 1. This reduction in resolvent
clause length can be viewed as furthering the proof towards a NIL resolvent, which is
of length 0. The perception is that a reduction in clause length is seen as furthering
the proof towards a solution is also shared by our heuristic. Clauses with fewer literals
are regarded as being closer to a solution than clauses of greater length.

Our heuristic determines a likelihood that a clause will be relevant in furthering
a proof towards a NIL resolvent. This heuristic is based on clause length and clause
ancestry. Clauses whose ancestry do not lead back to the negated theorem have no
likelihood and are assigned the value of 0. Clauses having an ancestry link to the
negated theorem have a likelihood whose value is the reciprocal of the clause length.
Single literal clauses with a negated theorem ancestry have maximum likelihood of 1.

As a first cut in distributed theorem proving, one could simply form the Priority
Set P using all clauses possessing maximum likelihood. Then P could be sent to all
agents, with each agent being requested to return any clause that can resolve with one
or more members in P. Unfortunately, P could potentially be large, thus requiring
significant processing on behalf of each agent receiving the request. A better strategy
would be to first remove any clause in P which is subsumed by another clause in
P, as any reduction in the size of P reduces the overhead cther agents incur while
processing the request.

Though use of subsumption in this way reduces the size of P, it still has the
potential to be relatively large. This is undesirable in cases involving a large number
of agents and concurrent theorem proving tasks. An alternative approach makes use
of a Minimal Literal Set Lmi, derived from P that is defined as follows:

Definition Let each clause C, in a Priority Set P of length n be of the form
C, = {LI, ..., Li,,} where Lj is a literal, and:

6 Note in future work we plan to explore distributed theorem proving in domains possessing in-
consistent knowledge bases. Under these conditions, the completeness of the Set of Support strategy
would be affected, as will most other reduction strategies.
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1. 1<I<n;
2. mi > 0 and is the number of literals in clause i;
3. 1<j<mi.

Then the Priority Literal Set L is defined to be the union of literals found in clauses
C1 , ... , Cn and has the form L = {C 1 U ... U C,}.

Definition Given L, the Priority Literal Set for P = {C 1 ,..., Cn}, we define
L,,n, the Minimum Priority Literal Set for P as follows:

L,in = L - L', where L' = {Lik E L I there is a literal Lpq in L, such that Ljk is
subsumed by Lpq}.

After computing the Minimal Priority Literal Set Lmn from the Priority Set P, the
agent transmits Lin to other agents and requests knowledge about clauses they may
have that resolve with one or more literals in Lmn. The significance of transmitting
Lin as opposed to P lies in the savings of computational effort required to process this
request. For Lmn the process involves trying to resolve each literal in Lm,, one at a
time, with each axiom and resolvent known to the agent. For P, resolution would also
be attempted with each axiom and resolvent, but would have to be done for each clause
in P. The difference between these two methods is that in the former, unification
is always done involving a single literal. In the latter, the exponential nature of the
unification process becomes evident, because clauses in P do not generally have unit
length. In either case, when unification is possible the current clause is tagged to
be considered later as part of the reply. Our experimental results indicate that the
request process time is dramatically reduced using the L,,n method, thus enhancing
our architecture's performance as discussed in Section 4.5.3.2.

The significance of tagging potential clauses during the unification process is
twofold. Once a clause is tagged, it is never again considered when subsequent re-
quests are made by the same agent with respect to the current theorem under inves-
tigation. Secondly, subsumption will be used among the tagged clauses to minimize
what is returned to the requesting agent. Clearly, this tagging mechanism helps avoid
redundancy in what is returned in response to subsequent requests. In addition, tag-
ging can be viewed as an aggregation of knowledge about other agents' activities (Not
unlike the behavior evident in the scientific community metaphor [28, 20, 44, 321). We
hope to eventually use this knowledge to gain insight to when newly generated forms
of local knowledge should be sent to other agents based on their previous requests.

4.5.3.4 Multiple Agents Example As an example of theorem proving in a
multi-agent domain we consider the previous single agent example now distributed
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over three agents. The intent of this example is twofold: (1) To demonstrate the
ability of an agent to acquire pertinent nonlocal knowledge from other agents as
needed; (2) To show how the strategies discussed in the previous section are used in
this knowledge acquisition process.

In the single agent example there were oix axioms and one negated theorem used
in the proof. To emulate a worst case scenario for this problem, we distribute two of
the six axioms to each agent, so that no two agents share a common axiom. A copy
of the negated theorem is also distributed to each agent, since they are all working
to prove the theorem locally. The following clauses show the initial distribution of
knowledge among the agents:

Agent A's Initial Knowledge:

Al: - R(x) V S(z,f(x)) V T(x) (axiom)

A2: Q(f(x)) V -R(x) V T(x) (axiom)

A3: -'P(x) V -,Q(x) (negated theorem)

Agent B's Initial Knowledge:

BI: P(a) (axiom)

B2: R(a) (axiom)

B3: -,P(x) V -,Q(x) (negated theorem)

Agent C's Initial Knowledge:

Cl: P(y) V -S(a, y) (axiom)

C2: -P(z) V -,T(x) (axiom)

C3: -P(x) V -,Q(x) (negated theorem)

Although all agents generate the proof concurrently, we only focus on the solution
from agent A's perspective in this example. Figure 39 shows the resolution tree used
by agent A in the proof and Figure 40 is a listing of all clauses appearing in Figure 39.

Referring to Figure 39, it can be seen that resolvent A4 is generated directly from
local clauses A2 and A3. However, A4 is the only resolvent possible in agent A's
first level of resolution. Since no resolvents are possible during the second level of
resolution, agent A is forced to request information from other agents in order to
continue.

The first step in determining what to request from other agents is to formulate
Priority Set P. This is done by considering only those clauses with an ancestry related
back to the negated clause, and then extracting the clauses with the highest likelihood
of furthering the proof towards a NIL resolvent. As discussed in Section 4.5.3.3 our
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Figure 39: Proof of Example Theorem in a Multi-Agent Domain
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Agent A's Axioms, Negated Theorem, and Pertinent Resolvents:

Al: -R(x) V S(x, f(x)) V T(x) (axiom)

A2: Q(f(z)) V -R(x) V T(z) (axiom)

A3: -"P(x) V -Q(x) (negated theorem)

A4: -iP(f(x)) V -R(x) V T(x) (resolvent of A2 and A3)

A6: P(y) V -'S(a, y) (imported Cl)

A10: -,R(x1) V -iS(a, f(xl)) V T(xl) (resolvent of A4 and A6)

A12: -R(a) V T(a) (resolvent of Al and A10)

A13: R(a) (imported B2)

A19: -T(a) (imported C15)

A41: -,R(a) (resolvent of A12 and A19)

A55: NIL (resolvent of A13 and A41)

Agent B's Axioms, Negated Theorem, and Pertinent Resolvents:

BI: P(a) (axiom)

B2: R(a) (axiom)

B3: -P(x) V -Q(x) (negated theorem)

Agent C's Axioms, Negated Theorem, and Pertinent Resolvents:

Cl: P(y) V -S(a,y) (axiom)

C2: -P(x) V -,T(x) (axiom)

C3: -P(x) V -Q(x) (negated theorem)

C9: P(a) (imported B1)

C15: -'T(a) (resolvent of C2 and C9)

Figure 40: Solution Space Clause List for Multi-Agent Example
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heuristic for determining likelihood is the reciprocal of clause length, so that single
literal clauses have highest likelihood (1).

At this point in the proof procedure there are only four clauses known to agent
A:

Al: -'R(x) V S(x, f(x)) V T(z) (axiom)

A2: Q(f(x)) V -tR(x) V T(z) (axiom)

A3: -P(x) V -Q(x) (negated theorem)

A4: -P(f(x)) V -"R(x) V T(x) (resolvent of A2 and A3)

We see that clauses A l and A2 have no negated theorem ancestry, thus their likelihood
is 0. A3 is the negated theorem and has likelihood of 0.5, since its clause length is
2. The likelihood of A4 is 0.33 based on its claase length of 3. Therefore, agent A's
current Priority Set P is:

P = {A3} = { {-'P(x) V -,Q(x)} I { {-P(x), -Q(x)} }

Given P, the Priority Literal Set L is defined to be the union of all literals found in
each clause of P. Furthermore, Lmt is a subset of L, where any literal in L subsumed
by any other literal in L has been removed. Therefore, for this example we see that:

L,., = L = {-'P(x),-'Q(x)}

At this point agent A now has a Minimum Literal Set. This set contains literals
from clauses which have been rated as having the highest likelihood of furthering the
proof towards a NIL resolvent. In order to further the proof towards a NIL resolvent,
new clauses that can resolve with these literals must be imported from other agents.
In other words, these imported clauses must contain at least one literal which can
resolve with a literal in L,..i,,. Thus these imported clauses must contain at least one
literal which can be unified with the complement of a literal in Lmn.

Definition Given a Minimum Priority Literal Set Lmn = {Ql, .-., Q,} of
length n, where each Qi is a literal for 0 < i < n, then the Minimum Priority Negated
Literal Set NL,,, has the form NLin = {R 1,...,PR}, where each R, = -Q, for

0<i<n.

7Recall that in theorem proving, knowledge is represented in conjunctive normal form, where
each conjunct is either an axiom or resolvent. In this set notation, the AND connective is dropped
and a comma is used to separate clauses. Furthermore, each clause is in disjunctive normal form.
Again, in set notation, the OR connective is dropped and a comma is used to separate literals.
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In DARES, the Minimum Priority Negated Literal Set NLmi,, is transmitted to
the other agents, and these agents are asked to eturn clauses that can be unified
with at least one literal of NL,,,in. Although we could have transmitted L..i,, rather
than NLmmi, use of NL.i,, allows the responding a;ent to perform unification directly
on the request, thus minimizing the response tim.- (see Section 4.5.3.2).

There is one more constraint used by an agen' when importing information from
other agents. The literal length of any clause eturned must be no greater than
the length of the clauses in priority set P. TI'i added restriction is included in

the request, and is, based upon the heuristic that ilauses of lower literal length have
higher likelihoods. Initial experimental results strongly support the use of this length
limitation based on priority set clause length.

Returning to our example, we see that agent A's request is for clauses of length 2
or less which can unify with at least on literal from NLm,i, where

NL,,i, = {P(x), Q x)

In response to this request, the following two clauses are imported from agents B and

C respectively:

A5: P(a) (imported B)

A6: P(y) V -,S(a,y) (imported Cl)

Figure 39 shows that imported clause C1 becomes local clause A6 and is resolved

with A4 to yield clause A10. It also shows that Al and A10 are resolved together to

form A12. However, once reaching this point, local resolution is again exhausted and
cannot proceed without importing new nonlocal knowledge.

This time the acquisition process for new kn, wvledge is based upon the following
twelve local clauses, two of which are single literds:

Al: -'R(x) V S(x,f(z)) V T(x) (axiom)

A2: Q(f(x)) V -R(x) V T(x) (axiom)

A3: -,P(x) V -'Q(x) (negated theorem)

A4: -,P(f(x)) V - R(x) V T(x) (rc:-- )lvent of A2 and A3)

AS: P(a) (imported BI)

A6: P(y) V -S(a,y) (imported Cl)

A?: P(f(a)) V -R(a) V T(a) (re:solvent of Al and A6)

A8: -,Q(a) (resolvent of A3 and A5)
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A9: -'Q(xl) V -,S(a, zl) (resolvent of A3 and A6)

AlO: -iR(xl) V -S(a,f(xl)) V T(xl) (resolvent of A4 and A6)

All: -Q(f(a)) V -'R(a) V T(a) (resolvent of Al and A9)

A12: -R(a) V T(a) (resolvent of Al and A10)

In its first attempt to import new knowledge based on its current clause set, agent
A uses the single literal clauses A5 and A8 to form its current Priority Set P1 , Pri-
ority Literal Set L 1, Minimum Priority Literal Set Lmin, and the Minimum Priority
Negated Literal Set NL,,,i,, as follows:

P, = {A5, A8} = { {P(a)}, {-'Q(a)} }

Li = {P(a),-Q(a)}

Ly,,,, = {P(a),--Q(a)}

NLm,,I = {-P(a), Q(a)}

Sending NLmin to agents B and C fails to import any knowledge. Now agent A
must relax its likelihood constraint and try again. This time clauses of length 2 or
less are used to derive the following:

P2 = {A3,A5,A6,A8,A9,A12}

= { {-P(x),-Q(x)}, {P(a)}, {P(y),-'S(a,y)}, {-,Q(a)},

{-'Q(x),-S(a,x)}, {-R(a),T(a)} }

L2 = {-P(x), -Q(z), P(a), P(y), -S(a, y), -'Q(a), -,Q(x), -S(a, z), -R(a), T(a)}

L,,, 2 = {-P(x), -Q(x), P(y), -'S(a, x), -R(a), T(a)}

NL,, 2 = {P(x), Q(r), -P(y), S(a,x), R(a), -T(a)}

Note that clauses A5 and A8, which were the basis for the previous request, are
also covered by this current request. This ensures that if new knowledge pertinent
to the previous request has since been derived or acquired by agents B and C, it
will be returned in response to this current request. We would also like to point
out that the tagging mechanism described in Section 4.5.3.2 does not allow clauses
previously considered to be tested again. This reduces the overhead associated with
including A5 and A8 in P2 . However, as our system matures, we envision that the
inclusion of A5 and A8 will not be necessary, since agents will be able to realize when
to automatically forward new information that is relevant to previous requests.

In response to what agents B and C return based on this current level 2 query,
the following seven clauses are instantiated in agent A's environment:
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A13: R(a) (imported B2)

A14: Q(f(a)) V -R(a) (imported B9)

A15: Q(f(a)) V T(a) (imported B10)

A16: P(f(a)) V T(a) (imported Bll)

A17: -,P(a) V Q(f(a)) (imported B12)

A18: -P(x) V -T(x) (imported C2)

A19: -T(a) (imported C15)

This new imported information now allows agent A to continue the resolution process.
We see in Figure 39 that resolvent A12 now resolves with A19 (imported from agent
C) to form A41. This new resolvent along with A13 (imported from agent B) are then
used during the next level of resolution to derive a NIL resolvent. This NIL resolvent
indicates that there is a direct contradiction between the axioms and the assumption
that the negated theorem is TRUE. Therefore, the negated theorem must be FALSE.
Thus, the theorem is shown by refutation to logically follow from the axioms.

4.5.3.5 Status In the previous example, agent A is able to complete the proof
in about half the time required by a single agent possessing complete knowledge of
the axioms. Furthermore, for the multi-agent case where all three agents solve the
theorem completely, the average number of resolvents generated per agent is 37 as
opposed to 69 in the single agent domain. This average number of resolvents per
agent is even less when all efforts to prove the theorem are abandoned as soon as one
of the distributed agents completes the task.

We are finding that these performance characteristics are far better for proofs
that require a fair amount of computational effort. For example, Figure 41 is the
time characteristics recorded by DARES for a problem comprised of six axioms and
two negated theorem clauses. You will note that we have taken the natural log of
the time, since there is an order of magnitude enhancement in the performance. The
time axis has also been normalized so that the single agent case has a value of unity.
The Redundancy axis has been scaled by a factor of five (0 < R < 1) for legibility.

We are observing results indicating that when there is a high level of redundancy
among the agent's local knowledge, that DARES' run time begins to approach that of
the single agent. This can be attributed to a very low interaction rate between agents.
since each agent's theorem prover has enough local knowledge to advance the proof
almost to completion by itself. However, when the proof does stop advancing and the
agent is forced to import nonlocal knowledge to continue, the request made is usually
very specific and available. In other words, our knowledge acquisition heuristic for
agents possessing a high redundancy rate successfully identifies what portions of the

143



,le

Figure 41: Typical Time Characteristics for DARES.

proof are close to a solution and is able to make very specific requests based on this
assessment. Furthermore, since other agents also have high redundancy rates and
have had ample time to advance their local efforts, the information being requested
by the first agent is typically available. This behavior is evident in Figure 41.

Figure 41 also suggests that performing distributed theorem proving is best done
by many agents possessing little redundancy. For this circumstance, each agent can be
thought of as becoming specialized. At the start of the distributed theorem proving
process, each agent advances its part of the proof as far as it can before making
a knowledge request. At the time such a request is made, the agent has begun to
concentrate its efforts on its local advancements and imports knowledge relative to
this acquired focus. Since redundancy is low, we see the agents becoming specialized
in different areas, which reduces search space overlap between agents and leads to
increased system performance.
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Another interesting characteristic depicted in Figure 41 is a small mound that is
prevalent in data taken for networks comprised of small numbers of agents. It appears
that this mound shifts incrementally out of the picture as the number of agents
increases. One explanation for this phenomenon that is currently under investigation
has to do with the selection of the Priority Set by our knowledge importation heuristic.
At the time resolution first halts for an agent in the area under this mound, it may
be that the proof locally has not advanced far enough for the heuristic to generate a
meaningful Priority Set. Instead, the Priority Set may be very general, thus leading to
an influx of information which is also general in nature. A second factor contributing
to this glitch may be due to replies to knowledge requests that are themselves too
general. This could occur when an agent formulates a reply based on its local theorem
prover state, which may not have progressed very far.

It appears that there is a natural pruning of the search space that occurs when
knowledge is distributed throughout the network. This can be attributed to the
difference between traditional theorem proving and our distributed approach. When
a single agent performs theorem pioving, resolvents are mechanically produced based
on all information at hand. In our distrib-ited environment, this mechanical process
terminates relatively quickly when compared to the single agent case due to the lack
of local knowledge. Instead of importing everything possible from other agents (which
would emulate the single agent situation) we use the heuristic of attempting to acquire
knowledge that is most likely to advance the proof towards a solution. If we fail to
advance, we then import information rated less likely to be useful. It is the use of this
heuristic that results in a pruning of the search space. This heuristic also guarantees
completeness of the distributed theorem algorithm, since every clause that can be
used in resolution will be acquired if necessary.

Currently, we are still collecting data for more complex problems. However, these
new experiments are also yielding results similar to those mentioned above. We are
finding that as the complexity of our test problems increase, so does the performance
of our distributed system. We are continuing work to develop other strategies for
enhancing the capabilities and performance enhancement of this particular distributed
problem solving environment based on an agent's local knowledge about the current
state of the domain, previous interactions with other agents, and knowledge about
theorem proving in general.

4.6 Development of an AI Infrastructure

One of the goals in forming the Northeast AI Consortium was to'foster the growth of
Al research activities at the member universities. While some members of the NAIC
brought a distinguished record of past Al research to this effort, other members, such
as Clarkson University, had not previously been active in Al research. In order to
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initiate a long-term, viable research program of high quality, a substantial investment
in building up the basic infrastructure was required. This section briefly documents
the steps taken at Clarkson in making this investment.

4.6.1 Development of AI Research at Clarkson University

The two most important ingredients of a successful research program are first-rate
facilities and hi-,h quality personnel. Using internal research funding (with some
assistance from the CASE center at Syracuse University), Clarkson began the devel-
opment of an Al research lab with the purchase of a Symbolics 3670 LISP machine.
Approximately two years later, the lab was expanded through the joint sponsorship of
Clarkson and a Department of Defense Research Equipment grant. In this last year
the lab has expanded further as a result of the generosity of Texas Instruments, Inc.
The AI Laboratory now has five LISP machines and a laser printer; it is networked
with the campus Sun file servers and the external research community over ARPAnet.

Research personnel have grown from the original two faculty, and no graduate
students, to five or six faculty with approximately six to eight graduate students. We
have added three graduate level courses in Al, introduced a required undergraduate
course in symbolic computation based on the LISP dialect, Scheme, and have mod-
ified a database management course to include introductory material on knowledge
base management. These curricular changes are especially important in ensuring
that future graduate students who come into the program will have an appropriate
academic background for Al research.

The most visible measure of research activities from an external viewpoint is, of
course, scholarly publications in the form of theses, journal articles, books and con-
ference papers. The bibliography for this report includes the citations to most of
our publications. Our work has been selected to appear in two different collections
of papers on DAI, was solicited for one chapter in a book, and most recently re-
ceived a citation for the best paper at the Ninth Workshop on Distributed Artificial
Intelligence.

4.6.2 Coordination within the NAIC

From the initial meetings of the NAIC, personnel from Clarkson University have
expressed interest in wnrking cooperatively with other researchers within the NAIC.
There have been two excellent exampes of the realization of this interest.

First, it was the efforts of Dr. Susan Conry at Clarkson, working closely with
the principal investigators at each of the other NAIC members, which resulted in
the successful proposal to the Department of Defense for LISP machines at each
university. The most significant aspect of this proposal was not that it provided
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additional computational facilities, but that it ensured a single common environment
available to all researchers within the NAIC. Having such an environment has clearly
encouraged the various joint research projects which have developed among the NAIC
members subsequently.

The second example of cooperative efforts was a seven month sabbatical by Drs.
Conry and Meyer spent working with Dr. Victor Lesser at the University of Mas-
sachusetts. During this period one of Clarkson's graduate students also studied in
residence at the University of Massachusetts. As a result of this joint work, we have
written joint papers and have continued our association with Dr. Lesser on new
projects.

4.6.3 Technology Transfer to other RADC efforts

Another measure of the growth of Al research at Clarkson is the increased level of
interaction with other research and development teams involved in similar activities.
An important goal of Clarkson's research effort in this project has been one of doing
work which is relevant to the needs of RADC. As a secondary objective to support
this goal, we have sought to establish close working relationships with other RADC
contractors, especially those engaged in the development of applications which might
involve the use of AI technology arising from our research. There are two principal
actions we have taken to further these objectives.

First, we have participated as an active observer in several other RADC commu-
nications system control projects in order to enhance our understanding of the overall
problem area. For example, near the beginning of this project we were involved with
the Integrated DCS Control Study performed by the Honeywell Corp. for RADC.
Our participation included a ten day field survey (along with personnel from RADC,
Honeywell Corp., and the Air Force Communications Command) of several DCS sites
in Europe. The knowledge gained from this experience has been especially valuable
in our development of a model of system control for a DCS-like network. A second
example is found in our participation with Lincoln Laboratories as a consultant in the
development of the expert tech controller project. Through this interaction we have
gained valuable insight into the nature of the problems faced by human operators and
the expert knowledge they used in solving these problems. More recently, we have
participated in a project at RADC to enhance the multinet gateway. In this effort
we have broadened our understanding of network management and control to include
tactical communication networks a well as the DCS.

The second step in making the results of our research relevant to the needs of
RADC has been to assist in the transfer of this technology from the university labo-
ratory environment to the industrial development process. For example, in the case
of Lincoln Laboratories, we have continued to maintain a close working relationship
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so that we were aware of the problems they were addressing, and similarly they were
aware of our work. The specific benefits have been that the two efforts have been
complementary rather than duplicative. We have provided early copies of our soft-
ware systems so that they could understand what we had accomplished. In turn,
they have invited us to visit them and participate in detailed technical discussions
about their work. This level of cooperation has proven to be of great value in assist-
ing technology transfer. We have also worked with Harris Corp. as a subcontractor
in developing a methodology for the design of Al applications for communications
network management in the SDI (Space Defense Initiative) area. This type activity
represents a direct transfer of expertise developed within the university research labs
to an industrial development project.

4.7 Future Developments

At this point in the report we assess the results and accomplishments achieved thus
far and look forward to areas for future development. As described in the previ-
ous sections we have designed and implemented a testbed environment, known as
DAISY, in which distributed artificial intelligence (DAI) issues may be studied. We
have used DAISY to demonstrate the applicability of DAI techniques for communica-
tions network management and control. However, there are several outstanding issues
and questions which remain unanswered at this time. We find the areas which need
improvement and further study are as follows: (1) improvements in DAISY, (2) gen-
eralization and standardization of domain knowledge represented, (3) enhancements
to MATMS and extension of truth maintenance to distributed knowledge bases, (4)
demonstration of cooperative problem solving among a group of local performance as-
sessment agents using DARES, and (5) investigation of the performance of our current
problem solving strategies under network dynamics and consideration of alternative
designs.

4.7.1 Improvements in DAISY

DAISY is the basic testbed for development and testing of prototype DAI paradigms.
In large part, DAISY is domain-independent; it could be used for developing DAI
problem solvers for any particular problem area. DAISY does include some compo-
nents which have been designed especially for the problems in communications net-
work management. For example, GUS was developed to provide a graphical interface
for the knowledge representation modules, and thus it is specifi c to communication
networks and in particular to the network model we used. Having used the overall
system during the last few years, we have found graphics to be essential not only
in the original knowledge representation step, but also in displaying the progress of
distributed problem solvers in cooperatively finding a solution. We believe the basic
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graphics capability of GUS should be made independent of the problem domain and
included as part of the domain-independent part of DAISY. This would provide a
common graphics framework for any DAI module to use in displaying on-line graphic
representations of the problem state.

4.7.2 Enhancements in Domain Knowledge Representation

There are two limitations in our current approach to domain knowledge representa-
tion. First, we do not provide an extendable language for network representation; the
choice of network objects, such as link type, radio type, and switch type, are prede-
fined and may not be augmented except by changes in program code. We recommend
changes be made in the knowledge representation scheme which would allow the user
to extend object definitions to incorporate new types not originally programmed. In
conjunction with this, we would suggest that the basic network model be broadened
to incorporate more generic network types including packet switched networks, in-
tegrated services digital networks (ISDN), and networks with both fixed and mobile
nodes.

The second limitation of our current approach is the use of a non-standard object-
oriented database for basic network configuration knowledge. While wishing to con-
tinue the benefits of the object-oriented approach, we have recognized the importance
of utilizing a more standardized method. The compromise we suggest is to investi-
gate the use of a conventional SQL-based relational database for the largest portion
of network configuration data, coupled with an object-oriented interface which would
include the graphical interface based on the generic graphics modules as discussed
in the previous section. This approach could be viewed as providing an intelligent
front-end to a more conventional relational database. We believe an investigation of
this area would be of interest in a number of Al problem domains.

4.7.3 Enhancements and Extensions to MATMS

There are four primary issues for future investigations involving the multi-agent truth
maintenance system (MATMS): (1) creating a third type of belief, (2) grading as-
sumptions and inferences with certainty factors, (3) performing distributed truth
maintenance, and (4) studying techniques for resolving inconsistency across problem
solvers.

In Section 4.5.2.7.4, Example 2 illustrates the possible need for a third type of
belief. In that example, PA had reasoned that a trunk (trkx)" was down because
multiple circuits on the trunk failed at the same time. However, since PA had no
direct evidence of the trunk failure, it was taken as a non-default assumption rather
than an inference. This belief does not cleanly fit into either category.
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In analyzing the example if "trkx is down" were called an inference and the
scenario continued, problems would arise later in deciding how to retract it. In
general, an inference is only retracted when an assumption upon which it is based
is retracted. In this case none of the underlying assumptions (about the failure of
multiple circuits at the same time) should be retracted. Yet, F1 must, eventually
retract either the assumption that trkx tests good or the belief that trkx is down.

The belief "trkz is down" is not strictly an assumption because its validity is
dependent upon other beliefs. For example, if "cktl is down" were retracted, then
"trkz is down" would also be retracted. The problem in treating "trkz is ' )wn"
as an assumption is that the MATMS will not automatically retract it when an
agent removes "cktl is down" from its belief set. The current design insists that the
problem solver explicitly retract each belief in this case. Therefore, clearly part of the
the MATMS's purpose is defeated when "trkx is down" is treated as an assumption.

Overall, the problem is that there will be beliefs which are difficult to categorize.
A third category of beliefs, perhaps called reasoned assumptions, should be pursued.
Reasoned assumptions should be handled like assumptions in some ways, and like
inferences in other ways.

Another issue which requires further study involves the determination of which
assumptions should be removed when inconsistencies arise. When a problem solver's
belief set becomes inconsistent, it must usually remove one or more non-default as-
sumptions in order to correct the problem. The decision as to which assumption(s)
should be removed is very difficult to make. For example, if the MATMS provides a
problem solver with the knowledge that two assumptions in its belief set, A, and A2,
are inconsistent, how does the problem solver decide which assumption to remove?

At this time, assumptions provide a purely black-and-white world; either they are
present within a problem solver's belief set, or they are not. The reasons why a partic-
ular non-default assumption is made is kept solely within each problem solver making
the assumption. For example, as discussed above, PA used the rule "If multiple cir-
cuits on a trunk fail at the same time, assume that the trunk has failed' to conclude
that "trkx is down." Clearly PA knows why it made the assumption; however, this
knowledge is not kept within the MATMS. The MATMS is designed only to keep
track of which inferences depend upon the assumption, not why the assumption was
originally made by the problem solver. There is no real means by which the problem
solver can compare assumptions, except by chronological backtracking to determine
why it made the assumption. Even then, the choice may not be evident.

An alternative design would suggest keeping the reason why an assumption was
made with the assumption itself in the MATMS knowledge base. -The MATMS could
then attempt to resolve inconsistencies. One approach would be to include a certainty
factor with each reason. The assumption with the "lower degree of certainty" would
be rejected. Of course this creates another problem, precisely how to assign certainty

150



factors to assumptions. It is exceedingly difficult to place a single measure upon an
assumption in order to allow comparisons between assumptions. It is much easier
to simply compare a set of assumptions as the inconsistencies arise to determine
which to discard. If certainty factors could be reasonably assigned to assumptions,
then choosing between two viable default assumptions, an action which is almost
impossible now, could be resolved.

Distributed truth maintenance has been a long term concern in working with
distributed problem solving systems. Although not particularly evident (and not pre-
sented in this work because distributed truth maintenance is not the immediate pur-
pose of the MATMS), the MATMS incorporates the basic framework for distributed
truth maintenance.

Distributed truth maintenance is necessary for any distributed knowledge base
in which at least some of the knowledge is replicated. In our domain, trunk and
circuit information is replicated in certain knowledge bases. When an agent in one
subregion determines that a particular trunk is down and enters this knowledge into
its MATMS, then the KBM of the subregion should inform all other KBMs with
knowledge of the trunk that it believes that the trunk is down. Mason and Johnson
describe the fundamentals of distributed truth maintenance in [36].

In much the same way that the KBM must seek to resolve inconsistency among
the problem solvers in its local system, the KBM must also attempt to resolve in-
consistency between itself and other KBMs. In both situations we are concerned
with questions of a problem solver's scope of knowledge, and credibility. An inter-
esting area we have identified for future investigation is the detection of rational vs.
irrational behavior by a problem solving agent. Distributed truth maintenance is
especially interesting because it necessitates distributed control. A single KBM re-
solving conflict within a single knowledge base implies central control. When KBM
agents and the knowledge are distributed, a cooperative control strategy is required.
These issues clearly merit further study.

4.7.4 Cooperative Assessment of Network State (CANS)

As discussed earlier, DARES is a general distributed reasoning system with no domain
knowledge. In order to demonstrate cooperative performance assessment, local agents
with detailed knowledge about communication network performance characteristics
must be designed, tested, and integrated. The combined system of these local, rule-
based PA agents cooperating using DARES is known as CANS. At the time of this
report, CANS is currently being implemented. We believe DARES has demonstrated
the feasibility of distributed reasoning, so the primary remaining issue here is the
ability to design a clean interface between the local, domain-knowledgeable agent
and the cooperation paradigm represented by DARES.
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4.7.5 Consideration of Dynamic Environments

A significant research problem for many application areas of Al is the ability to
operate under dynamic contexts. The classical approach to knowledge-based expert
systems has generally assumed a static, off-line operating scenario as compared with
the dynamic, on-line, near real time situation demanded by most real-world problems.
Certainly a complete network management and control system is characterized by its
abilty to perform in highly dynamic situations which arise.

There are a number of important areas in our own work which require additional
investigation and testing to determine their performance under dynamic network
conditions. The work on distributed planning for service restoral and distributed
situation assessment assumes that we are solving problems given a "snapshot" of
the state of the network. Our negotiation protocols that determine a set of desired
restoral actions, for example, assume that all of the assets that are used in restoral are
available when the control actions are to be executed. It is clear that this assumption
is not entirely -realistic.

First, careful and comprehensive testing is required under a set of dynamic sce-
narios. These tests would reveal the areas of weakness and strength in each of the
problem solvers for various network dynamics. Specific problem solving strategies
could then be identified for further development.

Extensions and enhancements to these problem solving strategies should be inves-
tigated. These enhancements would address such issues as: (1) adapting the strategy
used to existing network conditions, (2) incremental problem solving as a mechanism
for responding to dynamic system changes in a timely fashion, (3) problem solving at
different levels of abstraction, and (4) regional variation in problem solving strategy.
The previously discussed extension to more generic network models which include
mobile elements would provide an excellent basis for testing these new ideas.

4.8 Conclusion

This report has described the important achievements of this research project during
the past five years. There are clearly many areas not yet fully investigated in this
work, and there have been several new issues raised in the course of this study.
Rather than this report serving as a conclusion of this work, it has set the stage for
new work in investigating the design of distributed Al systems. These systems have
application not only in communications network management, but also in other areas
of command, control, communication, and intelligence informati6n processing.
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