TECHNICAL REPORT RD-GC-90-10

ANALYSIS OF THE FLUTTER CHARACTERISTICS OF THE ADVANCED KINETIC ENERGY MISSILE (AdKEM) CONTROL SURFACE

Stephen C. Cayson
Roger P. Berry
Guidance and Control Directorate
Research, Development, and Engineering Center

February 1991

U.S. ARMY MISSILE COMMAND
Redstone Arsenal, Alabama 35898-5000

Approved for public release; distribution unlimited.
DESTRUCTION NOTICE

FOR CLASSIFIED DOCUMENTS, FOLLOW THE PROCEDURES IN DoD 5200.22-M, INDUSTRIAL SECURITY MANUAL, SECTION II-19 OR DoD 5200.1-R, INFORMATION SECURITY PROGRAM REGULATION, CHAPTER IX. FOR UNCLASSIFIED, LIMITED DOCUMENTS, DESTROY BY ANY METHOD THAT WILL PREVENT DISCLOSURE OF CONTENTS OR RECONSTRUCTION OF THE DOCUMENT.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.
This report describes the analysis of the flutter characteristics of the control fin for the Advanced Kinetic Energy Missile (AdKEM). First of all, the control fin stability equation is determined from the two-degree-of-freedom equations of motion for the fin. This equation is a function of the fin bending stiffness and the actuator dynamic stiffness, which are then found. The fin bending stiffness is found by assuming that there is a distributed load on the fin and solving for the bending moment and angular deflection using numerical integration. The actuator dynamic stiffness is solved for by applying a torque disturbance to the second order actuator equation of motion and calculating the resulting fin angular deflection. This data is then compared to the existing third order model and non-linear model data to check for validity. Knowing these values, the possibility of fin flutter may be determined.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>iv</td>
<td>LIST OF ILLUSTRATIONS</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>FIN STABILITY EQUATION</td>
<td>2</td>
</tr>
<tr>
<td>3.0</td>
<td>CONTROL FIN BENDING STIFFNESS</td>
<td>4</td>
</tr>
<tr>
<td>4.0</td>
<td>ACTUATOR DYNAMIC STIFFNESS</td>
<td>6</td>
</tr>
<tr>
<td>5.0</td>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>10</td>
</tr>
<tr>
<td>31</td>
<td>NOMENCLATURE</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>REFERENCES</td>
<td></td>
</tr>
</tbody>
</table>
| A-1 | APPENDIX A
 | TWO DEGREE OF FREEDOM HIGH SPEED FLUTTER MODEL and ARAP SIMPLIFIED | |
| | CRITERION REPORTS | |
| B-1 | APPENDIX B
 | STABILITY EQUATION PROGRAM LISTING | |
| C-1 | APPENDIX C
 | FIN MOMENT OF INERTIA EQUATIONS DEVELOPMENT | |
| D-1 | APPENDIX D
 | BENDING PROGRAM LISTING | |
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1.</td>
<td>Two-Degree-of-Freedom Control Fin.</td>
<td>11</td>
</tr>
<tr>
<td>2-2.</td>
<td>AdKEM Control Fin.</td>
<td>12</td>
</tr>
<tr>
<td>2-3.</td>
<td>AdKEM Control Fin Stability Regions.</td>
<td>13</td>
</tr>
<tr>
<td>3-1.</td>
<td>Control Fin Shear Force and Bending Moment.</td>
<td>14</td>
</tr>
<tr>
<td>3-2.</td>
<td>General Control Fin Root Characteristics.</td>
<td>15</td>
</tr>
<tr>
<td>3-3.</td>
<td>AdKEM Control Fin Root Characteristics.</td>
<td>16</td>
</tr>
<tr>
<td>3-4.</td>
<td>Control Fin Bending Stiffness and Deflection Curves.</td>
<td>17</td>
</tr>
<tr>
<td>3-5.</td>
<td>Comparison Between Distributed Load and Concentrated Load Cases.</td>
<td>18</td>
</tr>
<tr>
<td>4-1.</td>
<td>Block Diagram of Third Order System.</td>
<td>19</td>
</tr>
<tr>
<td>4-2.</td>
<td>AdKEM Actuator Schematic.</td>
<td>20</td>
</tr>
<tr>
<td>4-3.</td>
<td>AdKEM Small Actuator Dynamic Stiffness for $\delta = .45$.</td>
<td>21</td>
</tr>
<tr>
<td>4-4.</td>
<td>AdKEM Small Actuator Dynamic Stiffness for $\delta = .50$.</td>
<td>22</td>
</tr>
<tr>
<td>4-5.</td>
<td>AdKEM Small Actuator Dynamic Stiffness for $\delta = .53$.</td>
<td>23</td>
</tr>
<tr>
<td>4-6.</td>
<td>AdKEM Small Actuator Dynamic Stiffness for $\delta = 0.0$.</td>
<td>24</td>
</tr>
<tr>
<td>4-7.</td>
<td>AdKEM Large Actuator Dynamic Stiffness for $\delta = .20$.</td>
<td>25</td>
</tr>
<tr>
<td>4-8.</td>
<td>AdKEM Large Actuator Dynamic Stiffness for $\delta = .25$.</td>
<td>26</td>
</tr>
<tr>
<td>4-9.</td>
<td>AdKEM Large Actuator Dynamic Stiffness for $\delta = .29$.</td>
<td>27</td>
</tr>
<tr>
<td>4-10.</td>
<td>AdKEM Large Actuator Dynamic Stiffness for $\delta = 0.0$.</td>
<td>28</td>
</tr>
<tr>
<td>4-11.</td>
<td>Block Diagram of AdKEM Detailed Non-Linear Actuator Model.</td>
<td>29</td>
</tr>
<tr>
<td>5-1.</td>
<td>Fin Flutter Determination Plot.</td>
<td>30</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The purpose of this report is to evaluate the flutter characteristics of a control fin for the Advanced Kinetic Energy Missile (AdKEM). First of all the two-degree-of-freedom equations of motion for a control fin under aerodynamic and actuator loads will be determined. To present a worst case analysis of the problem, these equations will be simplified by neglecting mechanical and aerodynamic damping terms. The fin characteristic equation will then be found and the fin flutter regions will be plotted. Once the flutter regions are plotted, the fin bending stiffness and actuator dynamic stiffness must be known to evaluate the possibility for fin flutter occurring.

The fin bending stiffness is determined assuming a distributed load, equal to the dynamic pressure, is applied to the fin. The fin bending moment equation is integrated numerically to determine the fin slope and resulting bending stiffness at any point along the fin span. These results are then modified for input into the stability equation.

The flutter analysis contained in Appendix A assumes that the actuator’s hinge moment stiffness can be represented by a second order system. This report investigates the validity of this assumption by comparing the second order system’s stiffness to that of a third order system and a detailed non-linear actuator model. Results indicated that for the case of zero damping, a worst case flutter condition, the second order system model provides a good approximation of the real actuator’s dynamic stiffness.

The values found for fin bending stiffness and actuator dynamic stiffness are then compared to the fin stability plot to evaluate the possibility of fin flutter. The results show that the fin design considered in the analysis lies in the flutter region.
2.0 FIN STABILITY EQUATION

The equations of motion of a missile control fin may be determined by considering the fin free-body diagram as shown in Figure 2-1. This figure shows a two-degree-of-freedom control fin with aerodynamic and actuator loads being applied. Appendix A contains two reports entitled Two-Degree-of-Freedom High Speed Flutter Model and ARAP Simplified Criterion which were used as references in the development of the equations of motion. These are

\[
\begin{bmatrix}
I_{xx} & I_{xy} \\
I_{xy} & I_{yy}
\end{bmatrix}
\begin{bmatrix}
\dot{\theta} \\
\dot{\alpha}
\end{bmatrix}
+ \begin{bmatrix}
C_{\theta} + (Q/V_m \ A \ CL_{\alpha})\beta_{yy} & (Q/V_m \ A \ CL_{\alpha})\beta_{xy} \\
(Q/V_m \ A \ CL_{\alpha})\beta_{xy} & C_{\alpha} + (Q/V_m \ A \ CL_{\alpha})\beta_{xx}
\end{bmatrix}
\begin{bmatrix}
\dot{\theta} \\
\dot{\alpha}
\end{bmatrix}
+ \begin{bmatrix}
K_{\theta} & Q \ A \ CL_{\alpha} \ Y_{ac} \ \\
0 & K_{d} + Q \ A \ CL_{\alpha} \ X_{ac}
\end{bmatrix}
\begin{bmatrix}
\theta \\
\alpha
\end{bmatrix}
= 0
\] (2-1)

These equations can be simplified by assuming that all damping terms are zero. This results in the equations

\[
\begin{bmatrix}
I_{xx} & I_{xy} \\
I_{xy} & I_{yy}
\end{bmatrix}
\begin{bmatrix}
\dot{\theta} \\
\dot{\alpha}
\end{bmatrix}
+ \begin{bmatrix}
K_{\theta} & Q \ A \ CL_{\alpha} \ Y_{ac} \\
0 & K_{d} + Q \ A \ CL_{\alpha} \ X_{ac}
\end{bmatrix}
\begin{bmatrix}
\theta \\
\alpha
\end{bmatrix}
= 0
\] (2-2)

The fin characteristic equation can now be determined and written in Laplace form as

\[
(I_{xx}I_{yy} - I_{xy}^2)s^4 + (I_{xx}K_{\alpha \alpha} + I_{yy}K_{\theta} - I_{xy}K_{\alpha \theta})s^2 + K_{\alpha \alpha}K_{\theta} = 0
\] (2-3)

where

\[
K_{\alpha \alpha} = K_d + Q \ A \ CL_{\alpha} \ X_{ac}
\] (2-4)

\[
K_{\alpha \theta} = Q \ A \ CL_{\alpha} \ Y_{ac}
\] (2-5)

The dynamic pressure, Q, is a function of the Mach number and is found using

\[
Q = \frac{1}{2} n_{\text{atm}} \ P_{\text{atm}} \text{ Mach}^2
\] (2-6)

The lift coefficient, CL_{\alpha}, center of pressure, and fin surface area and inertias of the fin shown in Figure 2-2 have been estimated as shown in Table 2-1.
TABLE 2–1. Control Fin Characteristics

<table>
<thead>
<tr>
<th>MACH NUMBER</th>
<th>CLα(rad⁻¹)</th>
<th>Xac (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>4.0508</td>
<td>-0.60</td>
</tr>
<tr>
<td>1.0</td>
<td>4.9217</td>
<td>-0.78</td>
</tr>
<tr>
<td>1.5</td>
<td>4.5321</td>
<td>0.15</td>
</tr>
<tr>
<td>2.0</td>
<td>3.3232</td>
<td>0.28</td>
</tr>
<tr>
<td>3.0</td>
<td>2.1257</td>
<td>0.26</td>
</tr>
<tr>
<td>4.0</td>
<td>1.5699</td>
<td>0.204</td>
</tr>
<tr>
<td>5.0</td>
<td>1.2433</td>
<td>0.17</td>
</tr>
<tr>
<td>6.0</td>
<td>1.0428</td>
<td>0.15</td>
</tr>
<tr>
<td>6.5</td>
<td>0.9740</td>
<td>0.145</td>
</tr>
<tr>
<td>7.0</td>
<td>0.8995</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Fin Reference Area = 3.463 in²
Yac = 0.9 in
Ixx = 285.43 (10⁻⁶) in·lb·s⁻²
Iyy = 122.77 (10⁻⁶) in·lb·s⁻²
Ixy = 28.672 (10⁻⁶) in·lb·s⁻²

The location of the center of pressure in the x-axis, Xac, is measured from the fin hinge line and is positive to the rear as shown in Figure 2–1. The roots of Equation 2–3 can now be solved for as a function of fin bending stiffness, actuator stiffness, and Mach number and the stability regions of the control fin can be plotted. A listing of the program used to determine the roots of Equation 2–3 is provided in Appendix B and the results are plotted in Figure 2–3.
3.0 CONTROL FIN BENDING STIFFNESS

The fin bending stiffness, \(K_0 \), must be found in order to determine if the control fin design is unstable. Bending stiffness is defined as

\[
K_0(y) = [dM/d\theta] |_y
\]

(3-1)

The distance \(y \) is measured across the fin span from the root as indicated in Figure 2-1. The equation for the bending moment, assuming a constant distributed load, \(Q \), applied to the fin, may be found by integrating the shear equation for the steel control fin root shown in Figure 3-1. In order to evaluate the shear, the fin planar area must be determined. This is

\[
A(y) = \frac{1}{2} y [2l_r + (l_t - l_r) y/l_s]
\]

(3-2)

Now the shear equation can be found by considering the force balance at a point \(y \) along the span.

\[
V(y) = Q [A(l_s) - A(y)]
\]

(3-3)

where \(A(l_s) \) is the total fin root area. Integration of Equation 3-3 results in the bending moment equation as a function of \(y \).

\[
M(y) = Q [A(l_s) (y-l_s) - \frac{1}{2} l_r (y^2 - l_s^2) - (l_t - l_r) (y^3 - l_s^3)/6l_s]
\]

(3-4)

Next, the fin slope must be determined. The difference in slope of two points along the fin root is defined as

\[
\theta_b - \theta_a = \int_{Y_a}^{Y_b} \frac{M}{EI} dy
\]

(3-5)

At the fin root the slope, \(\theta_a \), is assumed zero. Therefore, the slope at any location \(y \) may be calculated as

\[
\theta(y) = (1/E) \int_0^y \frac{M}{I} dy
\]

(3-6)
assuming that the modulus of elasticity, E, is constant. Since both the bending moment and the moment of inertia are functions of y, Equation 3-6 could be better solved using numerical integration. In that case, Equation 3-6 takes the form

\[\theta(y) = \frac{\delta y}{E} \sum_{j=0}^{y} [M/I]_j \]

(3-7)

where \(\delta y \) is the integration step size. In order to determine the slope at a point on the fin, the cross-sectional moment of inertia must be found as it varies with span. The development of these equations for the fin root in Figure 3–2 is shown in Appendix C.

Knowing the bending moment and slope at any location, the bending stiffness may be calculated from Equation 3–1. This equation can also be expressed as

\[K_\theta(y) = \frac{[M(y) - M(y-\delta y)]/[\theta(y) - \theta(y-\delta y)]}{(y-\delta y)} \]

(3-8)

where the notation ‘(y–\(\delta \)y)’ denotes the moment or slope at the previous integration point. Note that the dynamic pressure, Q, cancels out in the calculation of bending stiffness.

The equations discussed above have been incorporated into a computer program, listed in Appendix D, which calculates the fin bending stiffness and other parameters. This program first calculates the cross-sectional moment of inertia at the particular span location using the equations developed in Appendix C. Then the bending moment at that location is calculated from Equation 3–4. This is used in Equation 3–7 to calculate the slope of the point and the bending stiffness is determined using Equation 3–8. Also calculated is the deflection of the fin normalized to dynamic pressure. These data are then written to a file for plotting. This process is repeated along the length of the span.

The fin geometry parameters shown in Figure 3–3 were used as input to the program discussed above and the results are shown in Figure 3–4. This plot shows the fin bending stiffness and normalized deflection as they vary along the span.

Since the fin characteristic equation developed in Section 1.0 assumes that the dynamic pressure is resolved as the lift force applied at the center of pressure, a comparison of the two methods has to be made. This can be done by letting the deflection of the distributed load case at the fin tip equal the deflection of the simple case at the fin tip and solving for the bending stiffness that would allow this deflection to occur. This is shown pictorially in Figure 3–5. Summing moments about the fin root for the simple case shows that

\[F_L Y_{ac} = K_{\theta S} \theta_s \]

(3-9)

Solving for the spring stiffness, \(K_{\theta S} \), by relating the lift force to dynamic pressure and the bending angle to deflection shows that

\[K_{\theta S} = \frac{[A(l_s) Y_{ac} l_s]}{[z(l_s)/Q]} \]

(3-10)
where \(z(\lambda_s)/Q \) is the absolute value of the normalized deflection of the fin at the tip and is taken from Figure 3–4. Taking the value of \(z(\lambda_s)/Q \) from this figure shows

\[
z(\lambda_s)/Q = -0.910(10^{-3})
\]

and substituting this into Equation 3–10 results in an equivalent spring stiffness of

\[
K_{\lambda s} = 5280 \text{ in-lbf/\text{rad}}
\]

This value can now be used in conjunction with the actuator dynamic stiffness to determine, using Figure 2–3, if the fin design lies in the flutter regions.

4.0 ACTUATOR DYNAMIC STIFFNESS

The flutter analysis contained in Appendix A uses a second order linear system to represent the actuator’s hinge moment stiffness. The intent of this section is to determine how well a second order system represents the dynamic stiffness of an actual open center valve pneumatic actuator. To accomplish this the second order system's dynamic stiffness is determined and compared to that of a linearized actuator model, as well as a detailed non-linear actuator model.

The second order system’s dynamic stiffness is determined by considering the equation of motion of a second order system subjected to a torque disturbance.

\[
I_{yy} \ddot{\alpha} + C\alpha \dot{\alpha} + K\alpha \alpha = T_0 \cos(\Omega t)
\]

The steady-state solution to this equation is given by

\[
\alpha_{ss} = \alpha_\ast \cos(\Omega t - \phi)
\]

Substituting Equation 4–2 and its derivatives into Equation 4–1 results in

\[
-I_{yy} \Omega^2 \alpha_\ast \cos(\Omega t - \phi) - C\alpha \Omega \alpha_\ast \sin(\Omega t - \phi) + K\alpha \alpha_\ast \cos(\Omega t - \phi) = T_0 \cos(\Omega t)
\]

Since each term in this equation represents a force acting on the inertia, the equation can be represented by a force vector polygon, from which it is easily seen that

\[
T_0^2 = (K\alpha \alpha_\ast - I_{yy} \Omega^2 \alpha_\ast)^2 + (C\alpha \Omega \alpha_\ast)^2
\]

and
\[
\tan(\phi) = \frac{C_0 \Omega}{(K_a - I_{yy} \Omega^2)} \tag{4-5}
\]

Solving for the amplitude of the steady-state fin position, \(a_s\), and recalling expressions for frequency ratio, natural frequency and damping factor results in

\[
a_s = \frac{(T_0/K_a)}{[(1 - r^2)^2 + (2\delta r)^2]^{1/2}} \tag{4-6}
\]

From Equation 4-6 the desired expression for the second order system's dynamic stiffness is obtained

\[
K_d = (T_0/a_s) = K_a \left[(1-r^2)^2 + (2\delta r)^2\right]^{1/2} \tag{4-8}
\]

An expression for the dynamic stiffness of the third order, linearized actuator model, represented by the block diagram in Figure 4-1, was obtained from Reference 1 and is given by

\[
K_d = (1/s) \left(I_{yy} s^3 + B s^2 + (K_a - H_a) s + K_a K_s G_c \right) \tag{4-9}
\]

Setting \(s\) equal to \(j\Omega\), an expression for the magnitude of Equation 4-9 is obtained, which is the desired expression for the third order system's dynamic stiffness.

\[
K_d = \left[(K_a + H_a - I_{yy} \Omega^2)^2 + [B\Omega - (K_a K_s G_c/\Omega)]^2\right]^{1/2} \tag{4-10}
\]

Substituting expressions for frequency ratio, natural frequency and damping factor, which were defined for the second order system, Equation 4-10 becomes

\[
K_d = K_a \left[(1-r^2 + (H_a/K_a))^2 + [2\delta r - (K_s G_c/\Omega)]\right]^{1/2} \tag{4-11}
\]

Note that for the condition where \(H_a\) is small compared to \(K_a\), the dynamic stiffness determined by Equation 4-11 approaches that of Equation 4-8 at high frequencies. However, at low frequencies the dynamic stiffness determined by Equation 4-11 approaches infinity, while Equation 4-8 approaches \(K_a\).

In order to apply Equations 4-8 and 4-11, an expression for the actuator's static stiffness must be determined. From the diagram shown in Figure 4-2, an expression for torque about the hinge line is determined.

\[
T = \left[A_c P_c - (A_c - A_r) P_s\right] L \tag{4-12}
\]
Differentiating this equation with respect to α results in

$$\frac{dT}{d\alpha} = A_c L \frac{dP_c}{d\alpha}$$

From the actuator geometry, a differential change in volume is related to a differential change in actuator position according to the relation

$$\frac{d\alpha}{dV} = -\frac{1}{A_c L \sec^2(\alpha)}$$

If the compression of the gas above the piston follows an isentropic process then pressure and volume are related according to

$$P_c V^n = \text{constant}$$

Differentiation of Equation 4-15 results in

$$\frac{dP_c}{dV} = -\frac{n P_c}{V}$$

Combining Equations 4-13, 4-14, and 4-16 provides an expression for the actuator's static stiffness.

$$K_\alpha = n P_c (L A_c)^2 \sec^2(\alpha) / V$$

The dynamic stiffness was determined for the small and large AdKEM pneumatic actuators using Equations 4-8, 4-11, and 4-17. The following parameters were used for the small actuator.

$$P_c = 1587.3 \text{ psia} \quad L = 0.6 \text{ in} \quad A_c = 0.2961 \text{ in}^2$$
$$V_o = 0.046 \text{ in}^3 \quad n = 1.667 \quad B = 0.50 \text{ in}\cdot\text{lb}/\text{rad}/\text{s}$$
$$H_{\alpha} = 0 \text{ in}\cdot\text{lb}/\text{rad} \quad G_c = 1.0 \quad K_s = 124.64 \text{ rad}^2/\text{s}$$
$$I_{yy} = 122.77(10)^{-6} \text{ in}\cdot\text{lb}^2/\text{s}^2$$

From which the small actuator's static stiffness and natural frequency are determined at the null position ($\alpha = 0^\circ$).

$$K_\alpha = 1808 \text{ in}\cdot\text{lb}/\text{rad}$$

$$\Omega_n = 611 \text{ Hz}$$

The small actuator's dynamic stiffness obtained from the second order model is compared to that of the third order model in Figures 4-3 thru 4-5 for various values of δ. A good match is seen for $\delta = 0.50$, which requires that $C_\alpha = 0.47$. A comparison for the case of zero damping is shown in Figure 4-6.
The large actuator's dynamic stiffness was determined based on the following parameters.

\[
\begin{align*}
P_c &= 1492.2 \text{ psia} \\
V_o &= 0.085 \text{ in}^3 \\
I_{zz} &= 0 \text{ in-lb_rad} \\
I_{yy} &= 245.54 \times 10^{-6} \text{ in-lb_rad}^2
\end{align*}
\]

\[
\begin{align*}
A_c &= 0.586 \text{ in}^2 \\
L &= 0.560 \text{ in} \\
\eta &= 1.667 \\
B &= 0.50 \text{ in-lb_rad_s} \\
K_d &= 124.04 \text{ rad}^2 \text{ s}^{-1} \\
\theta &= 10 \text{ in-lb_s}^2 \\
K_a &= 3138 \text{ in-lbf_rad} \\
\Omega_n &= 569 \text{ Hz}
\end{align*}
\]

From which the large actuator's static stiffness and natural frequency are determined at the null position (\(\alpha = 0^\circ\)).

The large actuator's dynamic stiffness obtained from the second order model is compared to that of the third order model in Figures 4-7 thru 4-9 for various values of \(\delta\). A good match is seen for \(\delta = 0.25\), which requires that \(C_a = 0.44\). A comparison for the case of zero damping is shown in Figure 4-10.

As a final comparison the stiffness of the small AdKEM actuator was determined using a detailed non-linear actuator model. A block diagram of this model is shown in Figure 4-11. The stiffness was determined by applying a torque disturbance and determining the resulting deflection. Simulation results are shown compared to the second and third order models in Figures 4-4 and 4-6 for \(\delta = 0.50\) and \(\delta = 0\) respectively. Note that for the case with damping the detailed non-linear model indicates a sharp drop in stiffness at the closed loop system's natural frequency, which is not predicted by the linear models. However, for the case of zero damping the models are in fairly close agreement.

Based on the above discussion it may be concluded that the linear second order system model used in the flutter analysis realistically represents the stiffness of the AdKEM actuator for the case of zero damping. Further, since zero damping is a worst case for flutter, the use of a second order system model with zero damping should provide a conservative flutter prediction.
5.0 CONCLUSIONS AND RECOMMENDATIONS

Referring to the values of control fin bending stiffness and actuator dynamic stiffness determined and comparing them to the fin stability regions shows that the fin lies in the flutter region for the small actuator design. This is shown in Figure 5-1. It is also seen that the large actuator design is very close to the flutter regions. One way of eliminating this problem is to increase or decrease the actuator stiffness. Since actuator stiffness is largely a function of the hinge moment requirement this value can not be readily changed. Therefore, it is required that the fin bending stiffness be changed. Referring to Figure 5-1 shows that the best approach would be to increase the fin bending stiffness because this would avoid the flutter regions should the hinge moment requirement, and thus the actuator stiffness, be reduced. Therefore, it is recommended that the fin root thickness be increased and the flutter analysis be performed again.
Figure 2-1. Two-Degree-of-Freedom Control Fin.
Figure 2-2. AdKEM Control Fin.
Figure 2-3. AdKEM Control Fin Stability Regions.
Figure 3-1. Control Fin Shear Force and Bending Moment.
Figure 3-2. General Control Fin Root Characteristics
Figure 3-4. Control Fin Bending Stiffness and Deflection Curves.
Figure 3-5. Comparison Between Distributed Load and Concentrated Load Cases.
Figure 4.1: Block Diagram of Third Order System.
Figure 4-2. AdKEM Actuator Schematic.
Figure 4-3. AdKEM Small Actuator Dynamic Stiffness for $\delta = .45$.
Figure 4-4. AdKEM Small Actuator Dynamic Stiffness for δ = 0.50.
Figure 4-5. AdKEM Small Actuator Dynamic Stiffness for $\delta = .53$.
Figure 4-6. AdKEM Small Actuator Dynamic Stiffness for δ = 0.0.
Figure 4-3. AdKEM Large Actuator Dynamic Stiffness for $\delta = .25$.
Figure 4-10. AdKEM Large Actuator Dynamic Stiffness for $\delta = 0.0$.
Figure 4-11. Block Diagram of AdKEM Detailed Non-Linear Actuator Model.
Figure 5-1. Fin Flutter Determination Plot.
NOMENCLATURE

A Control fin surface area (in2)
A(y) Control fin root surface area as it varies along the span (in2)
A_c Actuator control piston area (in2)
A_t Actuator rod area (in2)
B Viscous friction coefficient (in-lbf/rad/s)
C_Lα Control fin lift coefficient (rad$^{-1}$)
C_a Actuator rotational damping factor (in-lbf-s/rad)
C_θ Control fin bending damping factor (in-lbf-s/rad)
E Modulus of elasticity for steel (lb/in2)
F_L Lift force (lbf)
G_c Actuator compensator gain
H_α Hinge moment coefficient (in-lbf/rad)
I_{xx} Fin moment of inertia about x-axis (in-lbf-s2)
I_{xy} Fin product of inertia (in-lbf-s2)
I_{yy} Fin moment of inertia about y-axis (in-lbf-s2)
K_a Equivalent actuator valve gain (rad/s/rad)
K_d Actuator dynamic stiffness factor (in-lbf/rad)
K_a Actuator static stiffness (in-lbf/rad)
K_θ Fin bending stiffness factor (in-lbf/rad)
K_θ_s Simplified fin bending stiffness factor (in-lbf/rad)
L Actuator lever arm (in)
l_r Fin root length (in)
l_s Fin span length (in)
l_t Fin tip length (in)
M(y) Fin bending moment as it varies along the span (in-lbf)
Mach Missile Mach number
n Specific heat ratio of helium
n_{air} Specific heat ratio of air
α Actuator position (rad)
\(\alpha_{ss} \) Actuator steady-state position (rad)

\(P_{\text{atm}} \) Atmospheric pressure (psia)

\(P_{c} \) Actuator control pressure (psia)

\(P_{s} \) Actuator supply pressure (psia)

\(Q \) Dynamic pressure (psia)

\(r \) Frequency ratio \((\Omega/\Omega_{n})\)

\(\beta_{xx} \) Aerodynamic viscous damping factor (in\(^2\))

\(\beta_{xy} \) Aerodynamic viscous damping factor (in\(^2\))

\(\beta_{yy} \) Aerodynamic viscous damping factor (in\(^2\))

\(T \) Actuator torque output (in-lbf)

\(t \) Time (s)

\(T_{0} \) Torque disturbance (in-lbf)

\(\delta \) Damping factor \((C_{\alpha}\Omega_{n}/2K_{\alpha})\)

\(\theta \) Fin bending angle (rad)

\(\Omega \) Frequency (rad/s)

\(\theta(y) \) Fin slope as it varies along the span (rad)

\(\Omega_{n} \) Natural frequency \((K_{\alpha}/I_{yy})^{\frac{1}{2}}\) (rad/s)

\(\delta_{y} \) Numerical integration step size (in)

\(V \) Actuator control chamber volume (in\(^3\))

\(V_{m} \) Missile velocity (in/s)

\(V(y) \) Fin shear force as it varies along the span (lbf)

\(X_{ac} \) Location of center of pressure from x-axis (in)

\(\phi \) Phase angle (rad)

\(y \) Distance along fin span from root (in)

\(Y_{ac} \) Location of center of pressure from y-axis (in)

\(z(l_{s}) \) Fin deflection at tip (in)
REFERENCES

2. Two Degree of Freedom High Speed Flutter Model and ARAP Simplified Criterion provided by Garrett Fluid Power Systems Division.
APPENDIX A
TWO DEGREE OF FREEDOM HIGH SPEED FLUTTER MODEL
and ARAP SIMPLIFIED CRITERION REPORTS
APPENDIX A

TWO DEGREE OF FREEDOM HIGH SPEED FLUTTER MODEL

Consider a fin and coordinate system located at fin center of compliance.

Figure A-1. Sketch of Fin Geometry.

A complete summary of system parameters is presented in Table A-1. A summary of the dynamic equation of motion is presented in Equation A-1.
TABLE A-1. Description of System Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fin surface area</td>
<td>in²</td>
</tr>
<tr>
<td>C\alpha</td>
<td>Rotational damping</td>
<td>in-lb-sec/rd</td>
</tr>
<tr>
<td>C\theta</td>
<td>Bending damping</td>
<td>in-lb-sec/rd</td>
</tr>
<tr>
<td>CL\alpha</td>
<td>Panel lift force Coef.</td>
<td>l/rd</td>
</tr>
<tr>
<td>Fp</td>
<td>Lift force on panel</td>
<td>lb_f</td>
</tr>
<tr>
<td>Ixx</td>
<td>Moment of inertia about x axis</td>
<td>in-lb-sec²</td>
</tr>
<tr>
<td>Iyy</td>
<td>Moment of inertia about y axis</td>
<td>in-lb-sec²</td>
</tr>
<tr>
<td>Ixy</td>
<td>Product of inertia</td>
<td>in-lb-sec²</td>
</tr>
<tr>
<td>Ka</td>
<td>Rotational spring rate</td>
<td>in-lb/rd</td>
</tr>
<tr>
<td>K\theta</td>
<td>Bending spring rate</td>
<td>in-lb/rd</td>
</tr>
<tr>
<td>M</td>
<td>Bending Moment</td>
<td>in-lbf</td>
</tr>
<tr>
<td>Q</td>
<td>Dynamic Pressure (\frac{1}{2}\rho V^2)</td>
<td>lb/in²</td>
</tr>
<tr>
<td>T</td>
<td>Shaft Torque.</td>
<td>in-lb</td>
</tr>
<tr>
<td>V</td>
<td>Velocity</td>
<td>in/sec</td>
</tr>
<tr>
<td>Xac</td>
<td>Dist. of C.P. from x axis</td>
<td>in</td>
</tr>
<tr>
<td>Xcg</td>
<td>Dist. of C.G. from x axis</td>
<td>in</td>
</tr>
<tr>
<td>Yac</td>
<td>Dist. of C.P. from y axis</td>
<td>in</td>
</tr>
<tr>
<td>Ycg</td>
<td>Dist. of C.G. from y axis</td>
<td>in</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Rotational angle</td>
<td>rd</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>(\frac{I_{xy}}{\sqrt{I_{xx} I_{yy}}})</td>
<td>1</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Bending angle</td>
<td>rd</td>
</tr>
<tr>
<td>(\eta_{xx})</td>
<td>Aero viscous damping Coef.</td>
<td>in²</td>
</tr>
<tr>
<td>(\eta_{xy})</td>
<td>Aero viscous damping Coef.</td>
<td>in²</td>
</tr>
<tr>
<td>(\eta_{yy})</td>
<td>Aero viscous damping Coef.</td>
<td>in²</td>
</tr>
</tbody>
</table>
\[
\begin{bmatrix}
I_{xx} & I_{xy} \\
I_{xy} & I_{yy}
\end{bmatrix}
\begin{bmatrix}
\theta \\
a
\end{bmatrix} + \begin{bmatrix}
C_\theta & 0 \\
0 & C_\alpha
\end{bmatrix}
\begin{bmatrix}
\theta \\
a
\end{bmatrix} + \begin{bmatrix}
K_\theta & 0 \\
0 & K_\alpha
\end{bmatrix}
\begin{bmatrix}
\theta \\
a
\end{bmatrix} = \begin{bmatrix}
M \\
T
\end{bmatrix}
\]

(A-1)

The aerodynamic moments presented in Equation A-1 may be expressed by:

\[
(-Q/V \cdot A \cdot CL_a) \begin{bmatrix}
\eta_{yy} & \eta_{yx} \\
\eta_{xy} & \eta_{xx}
\end{bmatrix}
\begin{bmatrix}
\theta \\
a
\end{bmatrix} - (Q \cdot A \cdot CL_a) \begin{bmatrix}
Y_{sc} \\
X_{sc}
\end{bmatrix}
\begin{bmatrix}
\theta \\
a
\end{bmatrix} = \begin{bmatrix}
M \\
T
\end{bmatrix}
\]

(A-2)

Equations A-1 and A-2 may be combined to yield:

\[
\begin{bmatrix}
I_{xx} & I_{xy} \\
I_{xy} & I_{yy}
\end{bmatrix}
\begin{bmatrix}
\theta \\
a
\end{bmatrix} + \left\{ \left[\begin{bmatrix}
C_\theta & 0 \\
0 & C_\alpha
\end{bmatrix} + (Q/V \cdot A \cdot CL_a) \begin{bmatrix}
\eta_{yy} & \eta_{yx} \\
\eta_{xy} & \eta_{xx}
\end{bmatrix} \right] \begin{bmatrix}
\theta \\
a
\end{bmatrix} + \left\{ \begin{bmatrix}
K_\theta & 0 \\
0 & K_\alpha
\end{bmatrix} \right\} + (Q \cdot A \cdot CL_a) \begin{bmatrix}
0 \\
Y_{sc}
\end{bmatrix} \begin{bmatrix}
\theta \\
a
\end{bmatrix} \right\} = 0
\]

(A-3)

Simplifying Equation A-3 Produces:

\[
\begin{bmatrix}
I_{xx} & I_{xy} \\
I_{xy} & I_{yy}
\end{bmatrix}
\begin{bmatrix}
\theta \\
a
\end{bmatrix} + \begin{bmatrix}
C_\theta + (Q/V \cdot A \cdot CL_a) \eta_{yy} & (Q/V \cdot A \cdot CL_a) \eta_{yx} \\
(Q/V \cdot A \cdot CL_a) \eta_{xy} & C_\alpha + (Q/V \cdot A \cdot CL_a) \eta_{xx}
\end{bmatrix}
\begin{bmatrix}
\theta \\
a
\end{bmatrix} + \begin{bmatrix}
K_\theta \\
0
\end{bmatrix}
+ (Q \cdot A \cdot CL_a \cdot Y_{sc}) \begin{bmatrix}
\theta \\
a
\end{bmatrix} = 0
\]

(A-4)

Consider solving for the roots of the characteristic equation of expression 4 by taking
the Laplace transform of Equation A-4. This expression may then be expressed as:

\[
\begin{bmatrix}
(I_{xx} s^2 + C_\theta s + K_\theta) & (I_{xy} s^2 + C_{\theta\alpha} s + K_{\alpha\theta}) \\
(I_{xy} s^2 + C_{\alpha\theta} s) & (I_{yy} s^2 + C_\alpha s + K_{\alpha\alpha})
\end{bmatrix}
\begin{bmatrix}
\theta \\
a
\end{bmatrix} = 0
\]

(A-5)

Where:

\[
C_\theta = C_\theta + (Q/V \cdot A \cdot CL_a) \eta_{yy}
\]

(A-6a)

\[
C_{\theta\alpha} = (Q/V \cdot A \cdot CL_a) \eta_{xy}
\]

(A-6b)

\[
C_\alpha = C_\alpha + (Q/V \cdot A \cdot CL_a) \eta_{xx}
\]

(A-6c)
\[
K_{a\theta} = Q A C_{\alpha} Y_{ac} \quad (A-6d)
\]

\[
K_{ac} = K_{\alpha} + Q A C_{\alpha} X_{ac} \quad (A-6c)
\]

The systems characteristic equation is:

\[
(\text{lxx} s^{2} + C_{\theta} s + K_{\theta}) (\text{lyy} s^{2} + C_{\alpha} s + K_{ac}) - (\text{lxy} s^{2} + C_{a\theta} s + K_{a\theta}) (\text{lxy} s^{2} + C_{a\theta} s) = 0
\]

Which is also:

\[
(\text{lxx} \text{lyy} - \text{lxy}^{2}) s^{4} + \text{lxx} C_{\alpha} + \text{llyy} C_{\theta} - 2\text{lxylx} C_{a\theta} s^{3}
+ \text{lxx} K_{ac} + C_{\theta} C_{\alpha} + \text{llyy} K_{\theta} - C_{a\theta}^{2} - \text{lxy} K_{a\theta}) s^{2}
+ (K_{ac} C_{\theta} + K_{\theta} C_{\alpha} - K_{a\theta} C_{a\theta}) s + K_{\theta} K_{ac} = 0
\quad (A-7)
\]

Equation A-7 is the characteristic equation from which the appropriate roots may be computed to determine stability.

The technique for studying flutter consists of finding the flight conditions which generate roots of Equation A-7 with positive real parts. These solutions generate divergent oscillations. A sample solution for a high v flutter problem is found in Figure A-2. This figure shows the boundary between flutter and flutter free operation as a function of rotational springrate, \(K_{\alpha}\), and rotational damping, \(C_{\alpha}\). Note that \(K_{\alpha}\) and \(C_{\alpha}\) are dominated by actuator springrate and damping. Note also that the flutter boundary is plotted for five values of bending springrate at a constant Mach number and altitude. Figure A-2 illustrates that there are three ways to prevent simple fin flutter.

1. Generate a high value of rotational springrate, \(K_{\alpha}\). For \(K_{\alpha} > 8200\) in-lb/rd no combination of conditions can generate flutter.

2. Generate a high value of bending springrate, \(K_{\theta}\). For \(K_{\theta} > 10000\) in-lb/rd flutter can not occur. There is no value of \(K_{\alpha}\) and \(C_{\alpha}\) that will generate flutter.

3. Generate sufficient \(K_{\theta}\) and \(C_{\alpha}\) to prevent actuator stiffness and damping characteristics from intersecting the flutter zone. Note a hydraulic damper may be required to achieve sufficient rotational damping in such a scheme.

Note that the technique number one is the traditional solution to fin flutter. However, techniques two and three may be required with a pneumatic fin actuation system.

Figures A-3 and A-4 have been included to show the affect of damping on the flutter boundaries. The analysis of Figure A-3 shows where the flutter boundaries exist when the bending damping, \(C_{\theta}\), is reduced to 0. Likewise, Figure A-4 shows the affect of reducing the aerodynamic damping terms to 50% of the value calculated for the specified flight condition.
ARA SIMPLIFIED CRITERION

A simplified criterion was developed by GPSD and Aeronautical Research Associates of Princeton in order to evaluate K_a and K_θ for flutter-free operation. This criterion only applies to high supersonic fins. A summary of the criterion follows.

If all damping terms are neglected in Equation A-4 then:

\[
\begin{bmatrix}
I_{xx} & I_{xy} \\
I_{xy} & I_{yy}
\end{bmatrix}
\begin{bmatrix}
\theta \\
\alpha
\end{bmatrix}
+ \begin{bmatrix}
K_\theta & Q A \ Cl_\alpha \ Yac \\
0 & (K_a + Q A Cl_\alpha \ Xac)
\end{bmatrix}
\begin{bmatrix}
\theta \\
\alpha
\end{bmatrix}
= 0
\]

(A-8)

Likewise the system characteristic equation becomes:

\[
(I_{xx} I_{yy} - I_{xy}^2) s^4 + (I_{xx} K_{aa} + I_{yy} K_\theta - I_{xy} K_{a\theta}) s^2 + K_{aa} K_\theta = 0 \]

(A-9)

If the characteristic equation is factored, the condition where all four roots have the same frequency (that is the condition where flutter begins) is:

\[
(I_{xx} K_{aa}) - 2 I_{xx} I_{yy} K_{aa} K_\theta - 2 I_{xx} I_{xy} K_{aa} K_{a\theta} \\
- 2 I_{yy} I_{xy} K_\theta K_{a\theta} + (I_{yy} K_\theta)^2 + (I_{xy} K_{a\theta})^2 \\
+ 4 I_{xy}^2 K_\theta K_{aa} = 0
\]

(A-10)

Equation A-10 which is the boundary of flutter is plotted for the sample case in Figure A-5. In this figure the fin flutter boundary is presented as a function of rotational and bending stiffness. Of particular interest are points A and B on this curve. If bending stiffness, K_θ, is greater than that defined by point A then no flutter can occur. If rotational stiffness, K_a, is greater than that defined by point B, then no flutter can occur. Points A and B are defined by:

Point A $K_\theta \geq \frac{I_{xx}}{I_{xy}} Q A \ Cl_\alpha \ Yac$
(No Flutter)

(A-11a)

Point B $K_a \geq \frac{I_{yy}}{I_{xy}} Q A \ Cl_\alpha \ Xac - Q A Cl_\alpha \ Xac$
(No Flutter)

(A-11b)

Refering to Figures A-2, A-3, A-4, and A-5, the following conclusions may be reached:

1. Figure A-2 illustrates that increasing C_α can increase the value of K_a that is required for absolute stability. Figures A-3 and A-4 illustrates that decreasing either bending damping or aerodynamic damping will increase the rotational stiffness necessary for absolute stability (Point B).

2. The analysis of Figures A-2, A-3, and A-4 shows that the criterion for the bending springrate required for absolute stability, (Point A), is affected only slightly by system
damping. The bending stiffness requirement, for absolute stability, that is predicted as
suming zero damping is 9650 in-lb/rd. Variations in the damping terms increased this
figure only slightly to 10,000 in-lb/rd.

The simple criterion described above can therefore be used as a useful guide to predict
the bending stiffness, \(K_0 \), that can be used to eliminate flutter regardless of the values of ro-
tational stiffness, \(K_\alpha \), and rotational damping, \(C_\alpha \).

A more detailed analysis is required to predict the rotational stiffness, \(K_\alpha \), that is re-
quired to produce absolute stability because of the significant affects of system damping on
the flutter boundaries. Using such an approach to eliminate flutter is therefore much more
involved and may require controlling both rotational stiffness, \(K_\alpha \), and damping, \(C_\alpha \).
Bending Springrate
- KTH = 5000
- KTH = 6000
- KTH = 7000, $\xi_\theta = 0.02$
- KTH = 8000
- KTH = 9000

I xx = 3.58 lb in²
I yy = 2.92 lb in²
I xy = 1.64 lb in²

Sea Level
Mach No. = 3.2

No Flutter for Kθ > 10,000

Figure A–2. Sample Flutter Boundaries for High δ Fin.
Figure A-3. Sample Flutter Boundaries for High δ Fin.
Figure A-4. Sample Flutter Boundaries for High δ Fin.
Figure A-5. Sample ARAP Flutter Boundary.
APPENDIX B

STABILITY EQUATION PROGRAM LISTING

C PROGRAM NAME: FINSIMP FOR

C Steve Cayson
C US Army Missile Command
C Research, Development, and Engineering Center
C Redstone Arsenal, AL
C OCT–NOV 89

This program is used to calculate the flutter regions for the AdKEM control section fin using equations developed in a paper written by Garrett Fluid Systems Division in Phoenix, AZ. The equations were developed using a two–degree–of–freedom model for a control surface assuming no damping terms. The characteristic equation for this system was then found and used to calculate the fin stability regions based on fin and actuator stiffness and aerodynamic parameters. The region is solved for and the data is written to a file, FLUTTER.DAT, that can be plotted.

C VARIABLE DESCRIPTION

C IXX Fin inertia about hinge line (in–lb–s^2)
C IYY Fin inertia about root line (in–lb–s^2)
C IXY Fin product of inertia (in–lb–s^2)
C REFA Control fin surface area (in^2)
C Q Dynamic pressure (psia)
C MACH Mach number
C V Missile velocity (in)
C CLIFT Fin lift coefficient (rad^-1)
C XCP Distance of center of pressure from x–axis (in)
C YCP Distance of center of pressure from y–axis (in)
C KALPHA Fin bending stiffness factor (in–lb/rad)

REAL IXX, IYY, IXY, KAA, KAT, KALPHA, KTHETA, MACH

DIMENSION A(11), B(11), C(26), D(26), E(25), F(25)
DIMENSION RR(10), RI(I0), AA(26), BB(26), RREAL(25), RIMAG(25)
OPEN(4, FILE='FLUTTER.DAT', STATUS='NEW')

C ****** CONSTANTS USED IN ROOT SOLVER SUBROUTINE ******

C ORDER OF POLYNOMIAL EQUATION
NN = 2
C → INITIAL ESTIMATES FOR ROOTS
X₀ = 5.
Y₀ = 5.
X = X₀
Y = Y₀

C ***** INPUT FIN CHARACTERISTICS *****

C – INERTIAS (in–lbf–s²)
IXX = 0.00028543
IYY = 0.00012277
IXY = 0.000028672

C – FIN REFERENCE AREA (in²)
REFA = 3.463

C – INPUT MACH NUMBER AND CALCULATE DYNAMIC PRESSURE (psia)
WRITE(*, 100)
100 FORMAT(2X, 'MACH NUMBER?', 2X)
READ(*, 110) MACH
110 FORMAT(F10.7)
Q = 10.29* (MACH**2.)

C – CALCULATE LOCAL VELOCITY (in/s) ASSUMING TEMP 70F
V = MACH*13540.

C – INPUT FIN LIFT COEFFICIENT (rad⁻¹) AND CP (in) AT MACH NUMBER
WRITE(*, 120) MACH
120 FORMAT(/, 2X, 'LIFT COEFFICIENT AT MACH ', F5.2, ' (1/rad)', 2X)
READ(*, 110) CLIFT
WRITE(*, 130)
130 FORMAT(/, 2X, 'DIST OF CP FROM HINGE LINE (+ is in aft direction)', 2X)
READ(*, 110) XCP, YCP = 0.91

C ***** LOOP TO DETERMINE FLUTTER REGION *****
DO 200 K = 0, 10000, 20
KALPHA = K*1.0

C – PRELIMINARY CALCULATIONS
QUANT = Q*REFA*CLIFT
KAT = QUANT*YCP
KAA = KALPHA + QUANT*XCP

C – REAL COEFFICIENTS OF POLYNOMIAL – A(1) IS HIGHEST ORDER COEF.
A(1) = IYY**2.
A(2) = 4*KAA*(IXY**2.) – 2*IYY*IXY*KAT – 2*IXX*IYY*KAA
A(3) = (IXX*IXX*KAA*KAA) + (IXY*KAT)**2. – 2*IXX*IXY*KAA*KAT
C - IMAGINARY COEFFICIENTS OF POLYNOMIAL
 B(1) = 0.
 B(2) = 0.
 B(3) = 0.

C - SOLVE FOR ROOTS USING SUBROUTINE ROOTS
CALL ROOTS(A, B, NN, X, Y, RR, RI, NERR)

C - CHECK TO SEE IF ROOTS ARE EQUAL, IF SO HALT PROGRAM EXECUTION
CHECK = RR(1) - RR(2)
IF (ABS(CHECK) .LT. .1) GOTO 99
IF (RR(1) .LT. 0.0) RR(1) = 0.0
IF (RR(2) .LT. 0.0) RR(2) = 0.0
C WRITE(*,10) KALPHA, RR(1), RR(2)
WRITE(4,10) KALPHA, RR(1), RR(2)
10 FORMAT(2X, F7.1, 2(2X, F10.3))
200 CONTINUE
99 END

SUBROUTINE ROOTS(A, B, NN, X0, Y0, RR, RI, NERR)
DOUBLE PRECISION AA, BB, RREAL, RIMAG, C, D, E, F, P, Q, X, Y, TOL, DENOM, R, RS
DIMENSION A(*), B(*), RR(*), RI(*)
DIMENSION AA(26), BB(26), C(26), D(26)
DIMENSION RREAL(25), RIMAG(25), E(25), F(25)
C INITIALIZE
 NERR = 0
 R = 0.0D0
 N = NN
 NP1 = N+1
 K = 0
 TOL = .5D-8
 X = X0
 Y = Y0
 DO 5 I=1, NP1
 AA(I) = A(I)
 BB(I) = B(I)
 5 C TEST FOR FIRST DEGREE EQUATION
 10 IF(N .EQ. 1) GOTO 60
C BEGIN SYNTHETIC DIVISION FOR F(Z) AND F'(Z)
20 KTR = 0
 NP1 = N+1
 IF(X .EQ. 0.0D0) X=.37D0
 IF(Y .EQ. 0.0D0) Y=.37D0
 C(1) = AA(1)
 D(1) = BB(1)
 E(1) = C(1)
F(I) = D(I)

23 DO 25 I=2,NP1
IM1 = I-1
C(I) = AA(I) + X*C(IM1) - Y*D(IM1)
D(I) = BB(I) + Y*C(IM1) + X*D(IM1)
IF(I .EQ. NP1) GOTO 25
E(I) = C(I) + X*E(IM1) - Y*F(IM1)
F(I) = D(I) + Y*E(IM1) + X*F(IM1)
25 CONTINUE

C CALCULATE X AND Y
30 DENOM = E(N)**2+F(N)**2
P = (C(NP1)*E(N) + D(NP1)*F(N))/DENOM
Q = (D(NP1)*E(N) - C(NP1)*F(N))/DENOM
X = X-P
Y = Y-Q
RS = R
R = DSQRT(P**2+Q**2)
IF(R .LT. RS) GOTO 40

C TEST LOOP COUNTER WHEN CORRECTION DOES NOT DECREASE
KTR = KTR+1
IF(KTR .LE. 25) GOTO 40
NERR = 1 GOTO 50

C CHECK FOR CONVERGENCE
40 IF(R .GT. TOL) GOTO 23

C ROOT FOUND – REDUCE POLYNOMIAL
50 K = K+1
RREAL(K) = X
RIMAG(K) = Y
DO 55 I=1, N
AA(I) = C(I)
BB(I) = D(I)
N = N-1
55 GOTO 10

C SOLUTION FOR FIRST DEGREE POLYNOMIAL
60 DENOM = AA(1)**2+BB(1)**2
x = (-AA(1)*AA(2) - BB(1)*BB(2))/DENOM
Y = (AA(2)*BB(1) - AA(1)*BB(2))/DENOM
K = K+1
RREAL(K) = X
RIMAG(K) = Y

C MOVE DOUBLE PRECISION ROOTS TO SINGLE PRECISION OUTPUT
70 DO 75 I=1,NN
RR(I) = RREAL(I)
75 RI(I) = RIMAG(I)

C
999 RETURN
END
APPENDIX C
FIN MOMENT OF INERTIA EQUATIONS DEVELOPMENT
APPENDIX C

The leading wedge of the control fin root is represented as shown in Figure 3–2. The width, \(b_3(y) \), is calculated using

\[
b_3(y) = (l_{13} - l_{r3})(y/l_s) + l_{r3}
\]
(C-1)

and the thickness, \(t_3(y) \), is found from the equation

\[
t_3(y) = (t_s - t_r)(y/l_s) + t_r
\]
(C-2)

The leading edge thickness can be calculated using

\[
t_{le}(y) = (t_{le} - t_{ile})(y/l_s) + t_{ile}
\]
(C-3)

A trapezoid such as the one shown below has now been defined and the inertia about the \(x \)-axis can be found.

\[z\]

Figure C-1. Typical Fin Wedge Cross-Section

The trapezoid may be divided into two regions, the rectangular portion and the triangular portion. The inertia of the rectangular portion is just

\[
I_{3R}(y) = \frac{[b_3(y)t_{le}(y)]}{12}
\]
(C-4)

The inertia of the triangular sections can be found by integration of

\[
I_{3T} = 2 \int_A z^2 \, dA
\]
(C-5)

where \(z \) is the distance as shown in Figure C-1. Substitution of the proper limits into Equation C-5 results in the double integral

\[
I_{3T} = 2 \int_{0}^{b_{23}} \int_{mb_{2x} + b_{23}}^{b_3(Y)} z^2 \, dz \, dx
\]
(C-6)
where

\[b_{23} = t_{le}(y)/2 \] \hspace{1cm} (C-7)

and

\[m_{23} = \frac{|t_3(y) - t_{le}(y)|}{2} b_{3}(y) \] \hspace{1cm} (C-8)

Evaluation of Equation C-6 results in

\[I_{3T}(y) = b_3(y)^2 \left[m_{23} b_3(y)^2/6 + 2 m_{23}^2 b_2 b_3(y)/3 + m_{23} b_3 y^2 \right] \] \hspace{1cm} (C-9)

and the total inertia of the leading wedge section as a function of \(y \) is

\[I_3(y) = I_{3R}(y) + I_{3T}(y) \] \hspace{1cm} (C-10)

The inertia of the trailing section is found similarly. The inertia of the rectangular portion is

\[I_{1R}(y) = \frac{b_1(y) t_{le}(y)^3}{12} \] \hspace{1cm} (C-11)

and the inertia of the triangular section is

\[I_{1T}(y) = \frac{b_1(y)^2}{2} \left[m_{21} b_1(y)^2/6 + 2 m_{21}^2 b_2 b_1(y)/3 + m_{21} b_2 y^2 \right] \] \hspace{1cm} (C-12)

where

\[b_1(y) = (l_l - l_{le})(y/l_s) + 1_{st} \] \hspace{1cm} (C-13)

\[t_1(y) = (l_s - t_s)(y/l_s) + t_r \] \hspace{1cm} (C-14)

\[t_{le}(y) = (t_{ste} - t_{le})(y/l_s) + t_{tie} \] \hspace{1cm} (C-15)

\[b_{2l} = t_{le}(y)/2 \] \hspace{1cm} (C-16)

\[m_{2l} = \frac{|t_1(y) - t_{le}(y)|}{2} b_1(y) \] \hspace{1cm} (C-17)

Therefore, the total inertia of the trailing wedge is

\[I_1(y) = I_{1R}(y) + I_{1T}(y) \] \hspace{1cm} (C-18)

The middle section of the fin is simply a rectangle and the inertia is found using

\[I_2(y) = b_2(y) t_2(y)^3/12 \] \hspace{1cm} (C-19)
where

\[h_2(y) = (l_{12} - l_{12}) (y/l_s) + l_{12} \] \hspace{1cm} (C-20)

and

\[l_2(y) = (l_s - l_7) (y/l_s) + l_7 \] \hspace{1cm} (C-21)

The total inertia of the section is then found from

\[I_{tot}(y') = I_1(y) + I_2(y) + I_3(y) \] \hspace{1cm} (C-22)
APPENDIX D
BENDING PROGRAM LISTING

C PROGRAM NAME: FULLFIN.FOR

C Steve Cayson
C US Army Missile Command
C Research, Development, and Engineering Center
C Control Systems Branch
C 04 DEC 89

C This program will calculate the fin bending spring rate for the
C stainless steel core of the AdKEM control fin assuming a constant
C distributed load (dynamic pressure) on the fin. First of all the
C fin geometry is input to the program. This includes the span,
C various thicknesses, and the root and tip lengths. Then a
C loop is used to calculate the moment and slope at each point along
C the span and solve for the stiffness measured in in-lbf/rad.
C The equation is
C
C \[K(Y) = \frac{\text{dMOMENT}}{\text{dTHETA}} \]

C VARIABLE DESCRIPTION

C THKFACT Thickness multiplier for variable thicknesses
C LR1 Trailing wedge length at root (in)
C LR2 Mid-section length at root (in)
C LR3 Leading wedge length at root (in)
C LRTOT Total fin length at root (in)
C TROOT Mid-section thickness at root (in)
C LT1 Trailing wedge length at tip (in)
C LT2 Mid-section length at tip (in)
C LT3 Leading edge length at tip (in)
C LTTOT Total fin tip length (in)
C TSPAN Mid-section thickness at span (in)
C LSPAN Length of span (in)
C TSLE Thickness of leading edge at span (in)
C TRLE Thickness of leading edge at root (in)
C TSTE Thickness of trailing edge at span (in)
C TRTE Thickness of trailing edge at root (in)
C ATOT Total fin root area (in2)
C MOM1 Bending moment at fin root (in-lbf)

IMPLICIT REAL (I,K-M)
DOUBLE PRECISION THETA1, THETA2, DELTH, XDEF, DY
OPEN(4, FILE='FULL.DAT', STATUS='NEW')
THKFACT = 1.0

C ***** INPUT FIN GEOMETRY SPECIFICATIONS *****
C ROOT GEOMETRY (ALL DIMENSIONS IN INCHES)
 LR1 = .699
 LR2 = .822
 LR3 = .674
 LRTOT = LR1 + LR2 + LR3
 TROOT = THKFACT * 0.1

C TIP GEOMETRY
 LT1 = .299
 LT2 = .444
 LT3 = .357
 LTTOT = LT1 + LT2 + LT3
 TSPAN = THKFACT * 0.057

C SPAN LENGTH
 LSPAN = 1.80

C LEADING AND TRAILING EDGE THICKNESSES AT ROOT AND SPAN
 TSLE = THKFACT * .017
 TRLE = THKFACT * .025
 TSTE = THKFACT * .025
 TRTE = THKFACT * .025

C CALCULATE TOTAL FIN AREA AND BENDING MOMENT AT Y=0
 ATOT = LSPAN/2. * (LRTOT + LTTOT)
 MOM1 = LSPAN/6. * (LSPAN*(LTTOT + 2.*LRTOT) - 6.*ATOT)

C ***** OTHER VARIABLES *****
C FIN COEFFICIENT OF ELASTICITY (psi)
 E = 28.5E06
C INTEGRATION STEP SIZE
 DY = .001
C DO LOOP TERMINATION VALUE CALCULATION
 JDY = LSPAN/DY
C LOOP INITIALIZATION
 SUMMOI = 0
 THETA1 = .0
 ZDEF = .0
 JPRINT = 1

C!!!
\[B_1 = (LT_1-LR_1) \times Y/LSPAN + LR_1 \]
\[T_1 = (TSPAN-TROOT) \times Y/LSPAN + TROOT \]
\[TTE = (TSLE-TRLE) \times Y/LSPAN + TRLE \]
\[MZ_1 = (T_1-TTE)/(2. \times B_1) \]
\[BZ_1 = TTE^2. \]

C CALCULATE TRAILING SECTION INERTIA
C (RECTANGULAR PORTION)
\[XI_{1R} = (1/12. \times B_1 \times (TTE^3)) \]
C (TRIANGULAR PORTION)
\[XI_{1T} = B_1 \times ((MZ_1 \times B_1)^3)/6. + (2. \times BZ_1/3. \times (MZ_1 \times B_1)^2 + \]
\[& MZ_1 \times B_1 \times BZ_1^2) \]
C TOTAL
\[XI_1 = XI_{1R} + XI_{1T} \]

C CALCULATE MIDDLE SECTION INERTIA
C1 = (LT_2-LR_2) \times Y/LSPAN + LR_2
C2 = ((TSPAN-TROOT) \times Y/LSPAN + TROOT)**3
C3 = 1/12. \times XI_2 = C3 \times C1 \times C2

C CALCULATE LEADING SECTION PARAMETERS
B_3 = (LT_3-LR_3) \times Y/LSPAN + LR_3
T_3 = (TSPAN-TROOT) \times Y/LSPAN + TROOT
TLE = (TSLE-TRLE) \times Y/LSPAN + TRLE
MZ_3 = (T_3-TLE)/(2. \times B_3)
BZ_3 = TLE/2.

C CALCULATE LEADING SECTION INERTIA
C (RECTANGULAR PORTION)
\[XI_{3R} = (1/12. \times B_3 \times (TLE^3)) \]
C (TRIANGULAR PORTION)
\[XI_{3T} = B_3 \times ((MZ_3 \times B_3)^3)/6. + (2. \times BZ_3/3. \times (MZ_3 \times B_3)^2 + \]
\[& MZ_3 \times B_3 \times BZ_3^2) \]
C TOTAL
\[XI_3 = XI_{3R} + XI_{3T} \]
C TOTAL INERTIA OF CROSS-SECTION
\[XI_{TOT} = XI_1 + XI_2 + XI_3 \]

C **** CALCULATE BENDING STIFFNESS *****
C CALCULATE MOMENT/DYNAMIC PRESSURE AT Y AND CHANGE IN
MOMENT
\[M_0M_2 = ATOT \times (Y-LSPAN) - LRTOT/2. \times (Y^2-LSPAN^2) - \]
\[(LTTOT-LRTOT) \times (Y^3-LSPAN^3)/(6. \times LSPAN) \]
\[DELMOM = MOM_2 - MOM_1 \]
C CALCULATE THETA/DYNAMIC PRESSURE AT Y AND CHANGE IN THETA
\[RAT = MOM_2/XI_{TOT} \]
\[SUMMOI = SUMMOI + (MOM_2/XI_{TOT}) \times DY \]
\[THETA_2 = SUMMOI/E \]
\[DELTHET = THETA_2 - THETA_1 \]

D-3
C CALCULATE DEFLECTION/DYNAMIC PRESSURE
 ZDEF = ZDEF + THETA2*DY

C CALCULATE FIN STIFFNESS
 KFINY = ABS(DELMOM*DELTHT)

MOM1 = MOM2 THETA1 = THETA2

C ***** WRITE DATA TO FILE *****
C PRINT EVERY 10th DATA POINT
 IF (JPRINT .EQ. 10) THEN
 C WRITE SPRING RATE AT Y TO FILE
 WRITE(4, 100)N, KFINY, MOM2, THETA2, ZDEF
 100 FORMAT(2X, F6.4, 2X, E15.3, 2X, F11.3, 2X, E15.3, 2X, E15.3)
 JPRINT = 0
 ENDIF
 JPRINT = JPRINT+1

10 CONTINUE
END
DISTRIBUTION LIST

AMSMI-RD
AMSMI-RD-CS-R
AMSMI-RD-CS-T

AMSMI-GC-IP, Mr. Fred M. Bush 1

U. S. Army Materiel System Analysis Activity
ATTN: AMXSY-MP (Herbert Cohen)
Aberdeen Proving Ground, MD 21005

IIT Research Institute
ATTN: GACIAC
10 W. 35th Street
Chicago, IL 60616

AMSMI-RD-GC, Mr. Sliz 1
AMSMI-RD-GC-C, Mr. Warren 1
Mr. Dunaway 1
Mr. Dixon 1
Mr. Berry 10
Mr. Cayson 10
Ms. Butler 1

AMSMI-RD-ST-WF, Mr. Schexnayder 1
Col Price 1

AMSMI-RD-ST-SA, Mr. Christensen 1
Mr. Schaeffel 1
Mr. Nourse 1
Mr. Hall 1

ASMI-RD-SS-AT, Mr. Washington 1
Mr. Ferguson 1

Copies
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1