HEAVY-TRAFFIC ANALYSIS OF MULTI-TYPE QUEUEING UNDER PROBABILISTICALLY LOAD-PREFERENTIAL SERVICE ORDER

Donald P. Gaver
J. A. Morrison

August 1990

Approved for public release; distribution is unlimited.

Prepared for:
Naval Postgraduate School,
Monterey, CA 93955
This report was prepared in conjunction with research funded under the Naval Postgraduate School Research Council Research Program.

This report was prepared by:

DONALD P. GAVER
Professor of Operations Research

Reviewed by:

Released by:

PETER PURDUE
Professor and Chairman
Department of Operations Research

Dean of Faculty and Graduate Studies
Heavy-Traffic Analysis of Multi-Type Queueing Under Probabilistically Load-Preferential Service Order

A model of queueing for a single server by several types of customers (messages, or jobs), with a simple dynamic priority rule, is considered. The rule is equivalent to selecting the next server occupant type with a probability proportional to the number of that type enqueued. The situation studied here occurs in fields such as computer and communication system performance analysis, in operational analysis of logistics systems, and in the repair of elements of a manufacturing system. It is assumed that the population sizes of the items of different types are large, and that the mean service rates are correspondingly large, in comparison with the service demand rates. Moreover, it is assumed that the system is in heavy traffic. Under these assumptions, asymptotic approximations are derived for the steady-state means and covariances of the number of items of different types either waiting or being served. Numerical comparisons with simulated results show excellent agreement.
Heavy-Traffic Analysis of Multi-Type Queueing Under Probabilistically Load-Preferential Service Order

D. P. Gaver
Naval Postgraduate School
Monterey, California 93943

J. A. Morrison
AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

A model of queueing for a single server by several types of customers (messages, or jobs), with a simple dynamic priority rule, is considered. The rule is equivalent to selecting the next server occupant type with a probability proportional to the number of that type enqueued. The situation studied here occurs in fields such as computer and communication system performance analysis, in operational analysis of logistics systems, and in the repair of elements of a manufacturing system. It is assumed that the population sizes of the items of different types are large, and that the mean service rates are correspondingly large, in comparison with the service demand rates. Moreover, it is assumed that the system is in heavy traffic. Under these assumptions, asymptotic approximations are derived for the steady-state means and covariances of the number of items of different types either waiting or being served. Numerical comparisons with simulated results show excellent agreement.

Key words. asymptotics, dynamic priority rules, logistics, repair problems

AMS (MOS) subject classifications. 60K30, 34E20, 90B05
1. INTRODUCTION

This paper is concerned with the analysis of queueing for a single server by several types of customers (messages, or jobs) under heavy traffic. A simple dynamic priority rule is presumed to schedule next service among waiting customers when the server becomes available. The rule is equivalent to selecting the next server occupant type with a probability proportional to the number of that type enqueued. For generalizations, with special attention to logistics and repair problems, see Gaver, Jacobs and Pilnick [1]. Problems similar to that considered here have been studied by Towsley [2], Yao and Buzacott [3] and by others.

The situation studied here occurs in fields such as computer and communication system performance analysis, and also in operational analysis of logistics systems. It is also possible to find it in manufacturing, where each of several types of machines suffers occasional breakdown and is eligible for repair. The total productivity of the system depends on having a sufficient number of each machine type in operation; the present scheduling discipline assists in this objective, although others (to be discussed in a subsequent paper) are more effective. Note that the current discipline closely resembles a processor-sharing scheduling rule which is frequently used for controlling multiprocessors...
in computer systems.

In a specific model formulation, there are \(r \) types of demand-producing items, and \(K_i \) is the population size of items of type \(i \). If \(N_i(t) \) denotes the number of items of type \(i \) waiting for service, or being served, at time \(t \), then the probability that a new type \(i \) demand for service is initiated in \((t, t+dt) \) is \(\lambda_i[K_i-N_i(t)]dt + o(dt) \), so that \(\lambda_i \) is the service demand rate for items of type \(i \). The service time of items of type \(i \) is exponentially distributed with rate \(\nu_i \), so that the mean service time is \(1/\nu_i \); service times are all independent. Thus all queue lengths are finite \((N_i(t) \leq K_i) \) and a long-run or steady-state distribution will always exist, as is true of the simple repairman problem [4].

A particular example of the probabilistically load-preferential scheduling rules, e.g. considered by Gaver, Jacobs and Pilnick [1], is the following. Let \(N(\tau+) = (N_1(\tau+), N_2(\tau+), \ldots, N_r(\tau+)) \) denote the state of the system at time \(\tau+ \) immediately after the service of an item is completed. Then, for \(N(\tau+) \neq 0 \), an item of type \(i \) is selected for service with probability

\[
q_i(N(\tau+)) = \frac{c_iN_i(\tau+)}{\sum_{j=1}^{r} c_jN_j(\tau+)},
\]

where \(c_j > 0 \) for \(j \in (1, 2, \ldots, r) \). Such a service schedule gives preference, with appropriate weights, to those types of items of which there are more waiting for service. If one of the queues gets long compared to the others, then it is likely that an item from that queue will be selected for service next. Hence this scheduling rule may be regarded as a variant of serving the longest queue first.
For $N(t) \neq 0$, let $I(t)$ denote the type of item which is being served at time t. It is clear from the assumptions made that $(N(t), I(t), t \geq 0)$ is a finite-state-space Markov process in continuous time with integer-valued vector state space. In principle, the joint probability distributions

$$P\{N(t) = n, I(t) = i \mid N(0) = n(0)\} = P_i(n, t; n(0)), \quad i \in \{1, 2, \ldots, r\},$$

where $0 \leq n_j \leq K_j, \ j \in \{1, 2, \ldots, r\}$, can be found, given the initial condition $n(0)$, by solving a system of $r \prod_{j=1}^{r} (K_j + 1)$ linear differential equations, the Kolmogorov forward equations [4]. All probabilistic quantities of interest can be found from such equations, or similar backward equations. In practice such solutions involve extensive computing, so it is of interest to proceed otherwise.

To simplify the analysis, we make two basic assumptions. The first is that the system is large, i.e. that the population sizes $K_i = a \alpha_i$, where $a \gg 1$ and $\alpha_i = O(1)$. Since a fast server is needed to accommodate a large system, it is also assumed that $\nu_i = a \mu_i$, where $\mu_i = O(1)$. The second assumption is that the system is in heavy traffic circumstances, meaning that $\sum_{i=1}^{r} \lambda_i \alpha_i / \mu_i > 1$. This condition ensures that the server is extremely unlikely to be idle. Under these circumstances, Gaver, Jacobs and Pilnick [1] derived a diffusion approximation, and obtained numerical results for the time-dependent problem.

In this paper we consider the steady-state problem under the same circumstances, and derive asymptotic approximations for $a \gg 1$ to the means and covariances of the number of items of different types in the system, i.e. either waiting or being served. The lowest order approximation to the means agrees with that obtained from the diffusion approximation [1]. In this paper we also derive the first order correction term to the means. Our approximation to the covariances differs from that obtained by the diffusion approximation.
approximation, when the service rates \(\nu_i \) are unequal. However, numerical results indicate that the difference is not very large.

In §2 we formulate the problem, and introduce generating functions. We then introduce the scalings corresponding to a large system in heavy traffic, and look for an asymptotic expansion in inverse powers of \(a \). The leading term in the expansion is obtained in §2, and the first order correction term is derived in §3. Asymptotic approximations to the means and covariances of the number of items of different types in the system are obtained in §4. Numerical comparisons, which show that the asymptotic and simulated results are in excellent agreement, are presented in §5. In the appendix we give an alternate derivation of the lowest-order asymptotic approximation to the means and covariances, and indicate how we obtain the first order correction to the means by this method. We also derive the lowest-order asymptotic approximation to the joint probability density function.

2. AN ASYMPOTIC ANALYSIS

Without special boundary conditions the setup described in the previous section is an irreducible finite Markov chain and hence possesses a steady-state or long-run solution

\[
\lim_{t \to \infty} P_t(n, t; n(0)) = p_i(n), \quad i \in (1, 2, \ldots, r),
\]

(2.1)

where \(n = (n_1, n_2, \ldots, n_r) \). We note that \(p_i(n) = 0 \) if \(n_i = 0 \), and \(p_i(n) = 0 \) unless \(0 \leq n \leq K, n \neq 0 \), where \(K = (K_1, K_2, \ldots, K_r) \). The steady-state probability that the system is empty is denoted by \(p(0) \). For \(0 \leq n \leq K, n \neq 0 \) and \(n \neq K \), \(q_i(n) \) is the probability that, when an item departs and leaves the system in state \(n \), then an item of type \(i \) goes into service. We assume, for the time being, only that \(q_i(n) = 0 \) if \(n_i = 0 \), \(q_i(n) = 1 \) if \(n_j = 0 \) for \(j \neq i \) and \(1 \leq n_i \leq K_i \), and \(\sum_{i=1}^{r} q_i(n) = 1 \) for \(0 \leq n \leq K, n \neq 0 \) and \(n \neq K \).
We denote by e_i the vector with components $e_{ij} = \delta_{ij}$. Then, in a standard manner, we obtain

$$
\sum_{j=1}^{r} \lambda_j K_j p(0) = \sum_{j=1}^{r} v_j p_j(e_j),
$$

(2.2)

and

$$
\left[\sum_{j=1}^{r} \lambda_j (K_j - \delta_{ij}) + v_i \right] p_i(e_i) = \lambda_i K_i p(0) + \sum_{j=1}^{r} v_j p_j(e_i + e_j).
$$

(2.3)

and, for $n_i \neq 0$, $n \neq e_i$ and $0 \leq n \leq K$,

$$
\left[\sum_{j=1}^{r} \lambda_j (K_j - n_j) + v_i \right] p_i(n)
$$

$$
= \sum_{j=1}^{r} \lambda_j (K_j - n_j + 1) p_i(n + e_j) + q_i(n) \sum_{j=1}^{r} v_j p_j(n + e_j).
$$

(2.4)

We introduce the generating functions

$$
u_i(x) = \sum_{n=0}^{\infty} p_i(n)x^n_1 \cdots x^n_r,
$$

(2.5)

and note that $u_i(0) = 0$. We now multiply equations (2.2), (2.3) and (2.4) by $1, x_i$ and $x^n_1 \cdots x^n_r$, respectively, and sum on i and n. It is found that

$$
\sum_{j=1}^{r} \lambda_j (1-x_j) \left\{ K_j \left[p(0) + \sum_{i=1}^{r} u_i(x) \right] - x_j \sum_{j=1}^{r} \frac{\partial u_i}{\partial x_j} \right\} = \sum_{j=1}^{r} \frac{\psi_j}{x_j} (1-x_j) u_j(x).
$$

(2.6)

This equation, which holds for general $q_i(n)$ with $\sum_{i=1}^{r} q_i(n) = 1$, will be useful later. The equation is vacuous if $x = 1$, so that one of the original equations is redundant. The normalization condition is

$$
p(0) + \sum_{i=1}^{r} u_i(1) = 1.
$$

(2.7)

We now consider the particular case
\[q_i(n) = \frac{c_i n_i}{\sum c_i n_i}, \quad (2.8) \]

where \(c_i > 0 \) for \(i \in (1, 2, \ldots, r) \), and multiply equations (2.3) and (2.4) by \(c_i x_i \) and
\[\sum_{i=1}^{r} c_i n_i x_i^{n_i} \cdots x_i^{n_i}, \] respectively, and sum on \(n \). After some manipulations it is found that

\[\sum_{i=1}^{r} c_i x_i \frac{\partial}{\partial x_i} \left[\sum_{j=1}^{r} \lambda_j K_j (1-x_j) u_i \right] = p(0) c_i \lambda_i K_i x_i + c_i x_i \frac{\partial}{\partial x_i} \left(\sum_{j=1}^{r} \frac{v_j u_i}{x_j} \right) - \sum_{i=1}^{r} c_i x_i \frac{\partial}{\partial x_i} (v_i u_i) \]

\[+ \sum_{i=1}^{r} c_i x_i \frac{\partial}{\partial x_i} \left[\sum_{j=1}^{r} \lambda_j x_j (1-x_j) \frac{\partial u_i}{\partial x_j} \right]. \quad (2.9) \]

We are interested in the means and covariances of the number of items of different types in the system, namely \(E(n_j) \) and \(E(n_j n_k) - E(n_j)E(n_k) \). We note, from (2.5), that

\[E(n_j) = \sum_{i=1}^{r} \frac{\partial u_i}{\partial x_j} (1), \quad E(n_j n_k) = \sum_{i=1}^{r} \left[\frac{\partial^2 u_i}{\partial x_j \partial x_k} (1) + \delta_{jk} \frac{\partial u_i}{\partial x_j} (1) \right]. \quad (2.10) \]

We now introduce the scalings corresponding to a large system in heavy traffic, and let

\[K_j = a \alpha_j, \quad v_j = a \mu_j, \quad j \in (1, 2, \ldots, r); \quad a \gg 1. \quad (2.11) \]

where

\[\sum_{j=1}^{r} \frac{\lambda_j \alpha_j}{\mu_j} > 1. \quad (2.12) \]

Since, from (2.10), we are interested in the behavior of \(u_i(x) \) in the neighborhood of \(x = 1 \), we also let

\[x_j = 1 - \xi_j/a, \quad u_j(x) = \psi_j(\xi), \quad j \in (1, 2, \ldots, r). \quad (2.13) \]

Then, from (2.6), (2.7) and (2.9), we have
\[p(0) + \sum_{i=1}^{r} \psi_i(0) = 1. \] (2.14)

\[\sum_{j=1}^{r} \lambda_j \xi_j \left\{ \alpha_j \left[p(0) + \sum_{i=1}^{r} \psi_i(\xi) \right] + \left(1 - \frac{\xi_j}{a} \right) \sum_{i=1}^{r} \frac{\partial \psi_i}{\partial \xi_j} \right\} = \sum_{j=1}^{r} \frac{\mu_j \xi_j}{(1 - \xi_j/a)} \psi_j(\xi). \] (2.15)

and

\[\mu_j \sum_{i=1}^{r} c_i \left(1 - \frac{\xi_i}{a} \right) \frac{\partial \psi_i}{\partial \xi_j} - c_i \sum_{j=1}^{r} \mu_j \left(1 - \frac{\xi_j}{a} \right) \frac{\partial \psi_j}{\partial \xi_i} - \frac{c_j \mu_j \psi_j}{a (1 - \xi_j, a)} \]
\[+ \left(\frac{p(0)}{a} c_i \lambda_i \alpha_i \left(1 - \frac{\xi_i}{a} \right) + \frac{1}{a} \sum_{j=1}^{r} \lambda_j \alpha_j \xi_j \sum_{i=1}^{r} c_i \left(1 - \frac{\xi_i}{a} \right) \frac{\partial \psi_i}{\partial \xi_j} \right) \]
\[+ \left(\frac{1}{a} \sum_{j=1}^{r} \lambda_j \alpha_j \left(1 - \frac{\xi_j}{a} \right) \psi_j + \frac{1}{a} \sum_{j=1}^{r} c_j \lambda_j \left(1 - \frac{\xi_j}{a} \right) \left(1 - \frac{2 \xi_j}{a} \right) \frac{\partial \psi_j}{\partial \xi_j} \right) \]
\[+ \frac{1}{a} \sum_{j=1}^{r} \sum_{i=1}^{r} \lambda_j \xi_j \left(1 - \frac{\xi_j}{a} \right) \sum_{i=1}^{r} c_i \left(1 - \frac{\xi_i}{a} \right) \frac{\partial^2 \psi_i}{\partial \xi_j \partial \xi_i} = 0. \] (2.16)

We assume an asymptotic expansion of the form

\[\psi_i(\xi) \sim \psi_{i}^{(0)}(\xi) + \frac{1}{a} \psi_{i}^{(1)}(\xi) + \ldots, \quad p(0) \sim 0. \] (2.17)

since we expect \(p(0) \), the probability that the system is empty, to be exponentially small in \(a \). Then, to lowest order, from (2.16) we obtain

\[\mu_j \sum_{i=1}^{r} c_i \frac{\partial \psi_i^{(0)}}{\partial \xi_i} - c_i \sum_{j=1}^{r} \mu_j \frac{\partial \psi_j^{(0)}}{\partial \xi_i} = 0. \] (2.18)

These equations are satisfied by

\[\psi_{i}^{(0)} = \frac{c_i}{\mu_i} \frac{\partial \theta}{\partial \xi_i}, \] (2.19)

where the function \(\theta(\xi) \) is to be determined. But, from (2.15) and (2.17), we have

\[\sum_{j=1}^{r} \lambda_j \xi_j \sum_{i=1}^{r} \left(\alpha_j \psi_{i}^{(0)} + \frac{\partial \psi_{i}^{(0)}}{\partial \xi_j} \right) = \sum_{j=1}^{r} \mu_j \xi_j \psi_{j}^{(0)}. \] (2.20)
We look for a solution of the form

$$\theta(\xi) = \theta(0) \exp\left(-\sum_{i=1}^{r} \beta_i \xi_i \right).$$ \hfill (2.21)

so that, from (2.19),

$$\psi_{i}^{(0)}(\xi) = -\frac{c_i \beta_i}{\mu_i} \theta(\xi), \quad \frac{\partial \psi_{i}^{(0)}}{\partial \xi_j} = \frac{c_i \beta_i}{\mu_i} \beta_j \theta(\xi).$$ \hfill (2.22)

We let

$$A = \sum_{i=1}^{r} \frac{c_i \beta_i}{\mu_i}. \hfill (2.23)$$

Then (2.20) is satisfied if

$$A \lambda_j (\alpha_j - \beta_j) = c_j \beta_j, \quad \text{i.e.,} \quad \beta_j = \frac{A \lambda_j \alpha_j}{(A \lambda_j + c_j)}. \hfill (2.24)$$

Since we want $\beta_j > 0, \ j \in \{1, 2, \ldots, r\}$, we want $A > 0$. But, (2.23) and (2.24) imply that

$$F(A) = \sum_{j=1}^{r} \frac{c_j \lambda_j \alpha_j}{\mu_j (A \lambda_j + c_j)} - 1 = 0. \hfill (2.25)$$

But $F(0) > 0$ because of assumption (2.12), and $F(\infty) = -1$. Since $F(A)$ is a decreasing function of A for $A > 0$, it follows that there is a unique solution $A > 0$ of $F(A) = 0$. From the normalization condition (2.14), and (2.17), we have

$$\sum_{i=1}^{r} \psi_{i}^{(0)}(0) = 1. \hfill (2.26)$$

It follows from (2.22) and (2.23) that

$$\theta(0) = -\frac{1}{A}. \hfill (2.27)$$

This completes the determination of $\theta(\xi)$, and hence $\psi_{i}^{(0)}(\xi)$.

- 8 -
In the next section we determine $\psi^{(1)}_{\xi}(\xi)$. The reader who is not interested in the details may proceed to §4, where the asymptotic approximations to the means and covariances are evaluated.

3. THE CORRECTION TERM

We now consider the first order correction term $\psi^{(1)}_{\xi}(\xi)$ in the asymptotic expansion (2.17). It follows from (2.16) that

$$
\mu_i \sum_{l=1}^{r} c_l \frac{\partial \psi^{(1)}_{\xi}}{\partial \xi_l} - c_i \sum_{j=1}^{r} \mu_j \frac{\partial \psi^{(1)}_{\xi}}{\partial \xi_i} = \mu_i \sum_{l=1}^{r} c_l \xi_l \frac{\partial \psi^{(0)}_{\xi}}{\partial \xi_l} + c_i \sum_{j=1}^{r} \mu_j (\xi_j - \xi_i) \frac{\partial \psi^{(0)}_{\xi}}{\partial \xi_i} + c_i \mu_i \psi^{(0)}_{\xi},
$$

$$
- \sum_{j=1}^{r} \lambda_j \alpha_j \sum_{l=1}^{r} c_l \frac{\partial \psi^{(0)}_{\xi}}{\partial \xi_l} - \sum_{j=1}^{r} c_j \lambda_j \alpha_j \psi^{(0)}_{\xi},
$$

$$
- \sum_{j=1}^{r} c_j \lambda_j \frac{\partial \psi^{(0)}_{\xi}}{\partial \xi_j} + \sum_{j=1}^{r} \lambda_j \xi_j \sum_{l=1}^{r} c_l \frac{\partial^2 \psi^{(0)}_{\xi}}{\partial \xi_j \partial \xi_l}.
$$

(3.1)

It is found, from (2.21), (2.22) and (2.24), after some reduction, that

$$
\mu_i \sum_{l=1}^{r} c_l \frac{\partial \psi^{(1)}_{\xi}}{\partial \xi_l} - c_i \sum_{j=1}^{r} \mu_j \frac{\partial \psi^{(1)}_{\xi}}{\partial \xi_i} = \frac{c_i \beta_i}{A \mu_i} \theta(\xi) \left[\sum_{j=1}^{r} c_j^2 \beta_j - A c_i \mu_i + A \mu_i \sum_{j=1}^{r} c_j \beta_j (2 \xi_j - \xi_i) - \sum_{l=1}^{r} c_i \beta_i \sum_{j=1}^{r} c_j \beta_j \xi_l \right].
$$

(3.2)

We note that if we sum (3.2) on i, and use (2.23), then both sides of the equation are identically ze.

In view of (2.21), we let

$$
\psi^{(1)}_{\xi}(\xi) = \chi^{(1)}_{\xi}(\xi) \exp \left(- \sum_{k=1}^{\hat{r}} \beta_k \xi_k \right),
$$

(3.3)

and we define

$$
B = \sum_{j=1}^{\hat{r}} c_j \beta_j, \quad D = \sum_{j=1}^{\hat{r}} c_j^2 \beta_j.
$$

(3.4)
Then, since $\theta(0) = -1/A$,

$$
\mu_i \sum_{j=1}^{r} c_j \left(\frac{\partial \chi_j^{(1)}}{\partial \xi_i} - \beta_i \chi_j^{(1)} \right) - c_i \sum_{j=1}^{r} \mu_j \left(\frac{\partial \chi_j^{(1)}}{\partial \xi_i} - \beta_i \chi_j^{(1)} \right) = - \frac{c_i \beta_i}{A^2 \mu_i} \left[D - A c_i \xi_i - AB \xi_i + (2A \mu_i - B) \sum_{j=1}^{r} c_j \beta_j \xi_j \right].
$$

(3.5)

We look for a solution of the form

$$
\chi_i^{(1)}(\xi) = \frac{c_i}{\mu_i} \left[\frac{\partial \phi^{(1)}}{\partial \xi_i} - \beta_i \phi^{(1)}(\xi) \right] + a_i + \sum_{k=1}^{r} b_{ik} \xi_k,
$$

(3.6)

and note that the terms involving $\phi^{(1)}$ are annihilated by the operator on the left side of (3.5), i.e. they provide a solution of the homogeneous equation.

It is found that (3.5) is satisfied by (3.6) if

$$
c_i \beta_i \sum_{j=1}^{r} \mu_j b_{jk} - B \mu_i b_{ik} = \frac{c_i \beta_i}{A^2 \mu_i} [(B - 2A \mu_i) c_k \beta_k + AB \mu_i \delta_{ik}],
$$

(3.7)

and

$$
c_i \beta_i \sum_{j=1}^{r} \mu_j a_j - B \mu_i a_i = c_i \sum_{j=1}^{r} \mu_j b_{ji} - \mu_i \sum_{i=1}^{r} c_l b_{li} + \frac{c_i \beta_i}{A^2 \mu_i} (A \mu_i - D).
$$

(3.8)

If we sum (3.7) and (3.8) on i, and use (2.23) and (3.4), then both sides of each equation are identically zero. Since we are looking for a particular solution of the inhomogeneous equation, we may take

$$
\sum_{j=1}^{r} \mu_j b_{jk} = 0, \quad \sum_{j=1}^{r} \mu_j a_j = 0.
$$

(3.9)

Then (3.7) and (3.8) imply that
\begin{align*}
\text{and}
\begin{align*}
\phi^{(1)}(\xi) & = \sum_{k=1}^{r} \gamma_k \xi_k + \frac{1}{2} \sum_{k=1}^{r} \sum_{l=1}^{r} \omega_{kl} \xi_k \xi_l,
\end{align*}
\end{align*}
where we assume, without loss of generality, that
\[\omega_{kl} = \omega_{lk}. \quad (3.16) \]

We define

\[g_{jk} = \frac{c_j \beta_j}{A} \sum_{i=1}^{r} b_{ik} - \mu_j b_{jk} + \frac{1}{A} (A \lambda_j - c_j) \beta_j \delta_{jk}, \quad (3.17) \]

\[\Gamma_j = \sum_{i=1}^{r} \frac{c_i}{\mu_i} \omega_{ij}, \quad (3.18) \]

\[h_j = \lambda_j \Gamma_j + \frac{c_j \beta_j}{A} \sum_{i=1}^{r} a_i + \lambda_j \sum_{i=1}^{r} b_{ij} - \mu_j a_j, \quad (3.19) \]

and

\[\epsilon = \sum_{i=1}^{r} \frac{c_i \gamma_i}{\mu_i}. \quad (3.20) \]

Then, it follows from (3.14)-(3.20) that

\[\sum_{j=1}^{r} \sum_{k=1}^{r} \xi_j \xi_k \left[\frac{c_j \beta_j}{A} \Gamma_k - (A \lambda_j + c_j) \omega_{jk} + g_{jk} \right] + \sum_{j=1}^{r} \xi_j \left[\frac{\epsilon}{A} c_j \beta_j - (A \lambda_j + c_j) \gamma_j + h_j \right] = 0. \quad (3.21) \]

In view of the symmetry in (3.16), we deduce from (3.21) that

\[[(A \lambda_j + c_j) + (A \lambda_k + c_k)] \omega_{jk} = \frac{1}{A} (c_j \beta_j \Gamma_k + c_k \beta_k \Gamma_j) + g_{jk} + g_{kj}. \quad (3.22) \]

Hence,

\[\omega_{jk} = \frac{(c_j \beta_j \Gamma_k + c_k \beta_k \Gamma_j)}{A [(A \lambda_j + c_j) + (A \lambda_k + c_k)]} + f_{jk}, \quad (3.23) \]

where

\[f_{jk} = \frac{(g_{jk} + g_{kj})}{[(A \lambda_j + c_j) + (A \lambda_k + c_k)]} = f_{kj}. \quad (3.24) \]

We define
\[
C = \sum_{i=1}^{r} \frac{c_i \beta_i}{\mu_i^2}.
\]

Then, from (2.23), (3.4), (3.10), (3.17) and (3.24), we obtain

\[
g_{jk} = \frac{1}{A^2} c_j \beta_j c_k \beta_k \left(\frac{1}{\mu_j} - \frac{1}{\mu_k} - \frac{C}{A} \right) + \lambda_j \beta_j \delta_{jk},
\]

and

\[
f_{jk} = \frac{2(\lambda_j \beta_j \delta_{jk} - \frac{C}{A^3} c_j \beta_j c_k \beta_k)}{[(A \lambda_j + c_j) + (A \lambda_k + c_k)]}.
\]

From (3.18) and (3.23) we have

\[
\Gamma_k = \frac{1}{A} \sum_{j=1}^{r} \frac{c_j (c_j \beta_j \Gamma_k + c_k \beta_k \Gamma_j)}{\mu_j [(A \lambda_j + c_j) + (A \lambda_k + c_k)]} + \sum_{j=1}^{r} \frac{c_j}{\mu_j} f_{jk},
\]

which is a linear system of equations for \(\Gamma_k \), \(k \in \{1, 2, \ldots, r\} \), with known coefficients, which has to be solved numerically, in general. Once the \(\Gamma_k \) have been calculated, \(\omega_{jk} \) is given by (3.23). Also, \(h_j \) is given by (3.19). We define

\[
G = \sum_{i=1}^{r} \frac{c_i^2 \beta_i}{\mu_i}.
\]

Then, from (2.23), (3.4), (3.10) and (3.11), we obtain

\[
h_j = \lambda_j \Gamma_j + c_j \beta_j \left[\lambda_j \left(\frac{2}{B} - \frac{C}{A^2} \right) - \frac{1}{A \mu_j} \right] + \frac{2}{A^2 B} (A \lambda_j - G).
\]

Next, from (3.21), we deduce that

\[
(A \lambda_j + c_j) \gamma_j = \frac{\epsilon}{A} c_j \beta_j + h_j.
\]

Hence, from (3.20), we find that

\[
\epsilon \left[1 - \sum_{j=1}^{r} \frac{c_j^2 \beta_j}{\mu_j (A \lambda_j + c_j)} \right] = \sum_{j=1}^{r} \frac{c_j h_j}{\mu_j (A \lambda_j + c_j)}.
\]
But, from (2.23),

\[1 - \frac{1}{A} \sum_{j=1}^{r} \frac{c_j^2 \beta_j}{\mu_j(A \lambda_j + c_j)} = \sum_{j=1}^{r} \frac{c_j \beta_j \lambda_j}{\mu_j(A \lambda_j + c_j)} > 0. \]

(3.33)

Hence \(\epsilon \) is determined, and then \(\gamma_j \) is given by (3.31).

It remains to determine the constant \(\kappa \) in (3.15). But from the normalization condition (2.14), and (2.17) and (3.3),

\[0 = \sum_{i=1}^{r} \psi_i^{(1)}(0) = \sum_{i=1}^{r} \chi_i^{(1)}(0). \]

(3.34)

It follows from (3.6) and (3.15) that

\[\sum_{i=1}^{r} \left[\frac{c_i}{\mu_i} (\gamma_i - \beta_i \kappa) + a_i \right] = 0. \]

(3.35)

Hence, from (2.23), (3.11), (3.20) and (3.29), we obtain

\[\kappa = \frac{\epsilon}{A} + \frac{2}{A^2 B^2} (AD - BG). \]

(3.36)

This completes the determination of \(\Phi^{(1)}(\xi) \), and hence \(\chi_i^{(1)}(\xi) \) and \(\psi_i^{(1)}(\xi) \).

4. THE MEANS AND COVARIANCES

We now evaluate the asymptotic approximations to the means and covariances of the number of items of different types in the system. From (2.10) and (2.13) we have

\[E(n_j) = -a \sum_{i=1}^{r} \frac{\partial \psi_i}{\partial \xi_j} (0), \quad E(n_j n_k) = a^2 \sum_{i=1}^{r} \frac{\partial^2 \psi_i}{\partial \xi_j \partial \xi_k} (0) + \delta_{jk} E(n_j). \]

(4.1)

Hence, from (2.17), we obtain the asymptotic approximations

\[E(n_j) \sim -\sum_{i=1}^{r} \left[a \frac{\partial \psi_i^{(0)}}{\partial \xi_j}(0) + \frac{\partial \psi_i^{(1)}}{\partial \xi_j}(0) + \cdots \right], \]

(4.2)

and
From (2.22), (2.23) and (2.27) it follows that

$$-\sum_{i=1}^{r} \frac{\partial \psi_i^{(0)}}{\partial \xi_j}(0) = \beta_j. \quad (4.4)$$

Also, from (3.3), (3.6) and (3.15), we have

$$\frac{\partial \psi_i^{(1)}}{\partial \xi_j}(0) = \frac{c_i}{\mu_j} (\omega_{ij} - \beta_i \gamma_j) + b_{ij} - \beta_j \chi_i^{(1)}(0). \quad (4.5)$$

Hence, from (2.23), (3.10), (3.18), (3.25) and (3.34), we obtain

$$\sum_{i=1}^{r} \frac{\partial \psi_i^{(1)}}{\partial \xi_j}(0) = \Gamma_j - A \gamma_j + c_j \beta_j \left(\frac{2}{B} - \frac{C}{A^2} - \frac{1}{A \mu_j} \right). \quad (4.6)$$

From (4.2), (4.4) and (4.6) we find the asymptotic approximations to the means,

$$E(n_j) \sim a \beta_j + \left[A \gamma_j - \Gamma_j + c_j \beta_j \left(\frac{1}{A \mu_j} + \frac{C}{A^2} - \frac{2}{B} \right) \right] + \cdots. \quad (4.7)$$

The quantities β_j are given by (2.24), where A is the positive root of (2.25), and B and C are given by (3.4) and (3.25). Also Γ_j, $j \in \{1, 2, \ldots, r\}$, satisfy the linear system of equations (3.28), subject to (3.27), and γ_j is determined from (3.29)-(3.32).

Next, from (2.19), (2.21), (2.23) and (2.27), it follows that

$$\sum_{i=1}^{r} \frac{\partial^2 \psi_i^{(0)}}{\partial \xi_j \partial \xi_k}(0) = \beta_j \beta_k. \quad (4.8)$$

Hence, from (4.2)-(4.4) and (4.8), we obtain

$$E(n_j n_k) - E(n_j) E(n_k) \sim a \left[\beta_j \delta_{jk} + \sum_{i=1}^{r} \left(\frac{\partial^2 \psi_i^{(1)}}{\partial \xi_j \partial \xi_k}(0) + \beta_j \frac{\partial \psi_i^{(1)}}{\partial \xi_k}(0) + \beta_k \frac{\partial \psi_i^{(1)}}{\partial \xi_j}(0) \right) \right] + \cdots. \quad (4.9)$$
But, from (3.3) and (3.34),
\[\sum_{i=1}^{r} \left[\frac{\partial^2 \psi^{(1)}_{j}}{\partial \xi_j \partial \xi_k} (0) + \beta_j \frac{\partial \psi^{(1)}_{j}}{\partial \xi_k} (0) + \beta_k \frac{\partial \psi^{(1)}_{j}}{\partial \xi_j} (0) \right] = \sum_{i=1}^{r} \frac{\partial^2 \chi^{(1)}_{j}}{\partial \xi_j \partial \xi_k} (0). \tag{4.10} \]

Also, from (2.23), (3.6), (3.15) and (3.16), we have
\[\sum_{i=1}^{r} \frac{\partial^2 \chi^{(1)}_{j}}{\partial \xi_j \partial \xi_k} (0) = - A \omega_{jk}. \tag{4.11} \]

From (4.9)-(4.11) we find the asymptotic approximations to the covariances,
\[E(n_j n_k) - E(n_j) E(n_k) \sim a(P_j S_{jk} - A \omega_{jk}) + \cdots, \tag{4.12} \]

where \(\omega_{jk} \) is given by (3.23) and (3.27). We note that the covariances, as well as the means, are of order \(a \).

We now consider those systems for which
\[\lambda_j = \lambda, \quad c_j = c, \quad j \in \{1, 2, \ldots, r\}, \tag{4.13} \]
since it is then possible to explicitly solve (2.25) for \(A \) and (3.28) for \(\Gamma_k \). We note that assumption (2.12) is now
\[\lambda \sum_{j=1}^{r} \frac{\alpha_j}{\mu_j} > 1. \tag{4.14} \]

The solution of (2.25) is found to be
\[A = c \left(\sum_{j=1}^{r} \frac{\alpha_j}{\mu_j} - \frac{1}{\lambda} \right). \tag{4.15} \]

Also, from (2.24),
\[\beta_j = \frac{A \alpha_j}{(A \lambda + c)}, \tag{4.16} \]
and, from (3.27).
\[f_{jk} = \frac{\beta_j}{(A\lambda + c)} \left(\lambda \delta_{jk} - \frac{c^2 C}{A^3} \beta_k \right) . \] (4.17)

where, from (3.25),

\[C = c \sum_{i=1}^{r} \frac{\beta_j}{\mu_i^2} . \] (4.18)

We define

\[\Omega = \sum_{j=1}^{r} \frac{\Gamma_j}{\mu_j} . \] (4.19)

Then, from (3.28) and (4.15)-(4.17),

\[A(2A\lambda + c)\Gamma_k = c^2 \Omega \beta_k + 2cA \beta_k \left(\frac{\lambda}{\mu_k} - \frac{cC}{A^2} \right) . \] (4.20)

If we divide (4.20) by \(\mu_k \) and sum, we find that

\[\Omega = \frac{C}{A^2 \lambda} (A\lambda - c) . \] (4.21)

Hence, from (4.20),

\[\Gamma_k = \frac{c^2 \beta_k}{(2A\lambda + c)} \left[\frac{2\lambda}{\mu_k} - \frac{cC}{A^2 \lambda} (A\lambda + c) \right] . \] (4.22)

It follows from (3.23), (4.17) and (4.22) that

\[\beta_j \delta_{jk} - A \omega_{jk} \]

\[= \frac{c^2 \beta_j \beta_k}{(A\lambda + c)} + \frac{c^2 \beta_j \beta_k}{(A\lambda + c)(2A\lambda + c)} \left[\frac{C}{A^3 \lambda} (2A^2 \lambda^2 + 2A\lambda c + c^2) - \lambda \left(\frac{1}{\mu_j} + \frac{1}{\mu_k} \right) \right] , \] (4.23)

which gives an explicit expression for the asymptotic approximations (4.12) to the covariances.

It remains to calculate the first order correction term to the means in (4.7). The quantities \(h_j \), \(\epsilon \) and \(\gamma_j \) are obtained in a straightforward manner from (3.29)-(3.32) and
It is then found from (4.7) that

\[E(n_j) \sim a\beta_j + \frac{c^3 \beta_j}{A(4\lambda + c)(2\lambda + c)} \left(\frac{1}{\mu_j} - \frac{C}{A} \right) + \ldots \]

(4.24)

Since our approximation (4.12) to the covariances differs from that obtained by the diffusion approximation [1], we give an alternate derivation of our results in the appendix. Corresponding to the scalings in (2.11) we let \(n_j = a\beta_j + \sqrt{a} \nu_j \) in (2.4), with \(q_i(n) \) given by (2.8). We then develop an asymptotic expansion in inverse powers of \(\sqrt{a} \) for \(\phi_i(\nu) = a^{r/2} p_i(n) \). It is found that, to lowest order, \(\mu_i \phi_i(\nu) \sim c_i\beta_i \Phi^{(0)}(\nu) \), where \(A \Phi^{(0)}(\nu) \) is a multivariate Gaussian probability density function. From this we are able to obtain the lowest order approximations to the means and covariances, and we again obtain (4.12) and \(E(n_j) = a\beta_j + O(1) \). Although we omit the rather lengthy details, we have in fact carried out the analysis to the next order in the asymptotic expansion, and have verified that it leads to the approximation (4.7) to \(E(n_j) \). It is of interest that the asymptotic expansions of the densities are in inverse powers of \(\sqrt{a} \), whereas the expansions of the moments are in inverse powers of \(a \).

The difference in the equation for the covariances between our approximation and the diffusion approximation [1] is pointed out in the appendix.

5. NUMERICAL EXAMPLES

In order to check the accuracy of the approximations proposed, several systems were both simulated and approximated. In all cases studied the agreement between the asymptotic expansion approximation and simulation was excellent for both mean and standard deviation of the steady-state distribution. The mean of the diffusion approximation agrees with the lowest-order asymptotic approximation; the standard deviation of the current diffusion approximation agrees precisely with the lowest-order
asymptotic approximation only when the service rates are identical, but correspondence is quite close numerically for all situations investigated to date.

Here are the systems, and their properties.

<table>
<thead>
<tr>
<th>System 1</th>
<th>((r = 5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i):</td>
<td>1</td>
</tr>
<tr>
<td>(K_i):</td>
<td>100</td>
</tr>
<tr>
<td>(\lambda_i):</td>
<td>1.3</td>
</tr>
<tr>
<td>(v_i):</td>
<td>50</td>
</tr>
<tr>
<td>(c_i):</td>
<td>1</td>
</tr>
</tbody>
</table>

Means

- Asymptotic: 81.40 89.54 97.68 105.82 113.96
- Simulation: 81.14 89.39 97.47 105.60 113.74

 (95% Conf.) (81.04, 81.24) (89.23, 89.54) (97.37, 97.57) (105.42, 105.79) (113.53, 113.95)

Std. Deviations

- Asymptotic: 3.73 4.38 4.93 5.23 5.50
- Diffusion: 3.75 4.38 4.91 5.20 5.47
- Simulation: 3.75 4.38 4.89 5.24 5.56

 (95% Conf.) (3.67, 3.82) (4.31, 4.45) (4.80, 4.97) (5.17, 5.31) (5.48, 5.65)
System 2

$$ (r = 5) $$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_i</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>λ_i</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>v_i</td>
<td>50</td>
<td>100</td>
<td>300</td>
<td>400</td>
<td>450</td>
</tr>
<tr>
<td>c_i</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Means

- **Asymptotic:** 39.18, 78.37, 117.55, 156.73, 195.91
- **Simulation:** 39.10, 78.17, 117.35, 156.26, 195.57
- **(95% Conf.):** (39.03, 39.18), (78.05, 78.28), (117.12, 117.57), (155.95, 156.57), (195.30, 195.84)

Std. Deviations

- **Asymptotic:** 2.78, 4.25, 5.85, 7.13, 8.34
- **Diffusion:** 2.85, 4.33, 5.90, 7.24, 8.56
- **Simulation:** 2.78, 4.21, 5.90, 7.19, 8.33
- **(95% Conf.):** (2.75, 2.80), (4.16, 4.27), (5.81, 6.00), (7.13, 7.25), (8.26, 8.40)

The simulations were carried out on an IBM 3033 computer at the Naval Postgraduate School, using the LLRANDOMII random number operating package; Lewis and Uribe [5]. Time-dependent queue lengths were simulated: an event clock was advanced at either job arrivals or service completions, and queue lengths were suitably incremented or decremented. The current queue lengths were recorded at fixed discrete time steps; 500 independent replications were recorded. A batch mean process was utilized to obtain the confidence limits. For further details see Pilnick [6].

For the two systems displayed, and for many others explored, the leading term asymptotic agreement with simulation was well within the 95% confidence limits displayed for the latter. Diffusion approximation was also good, but slightly less accurate than the asymptotics described here. A full description of the diffusion approximation approach
taken is given in Gaver, Jacobs and Pilnick [1]. The small size of the standard deviations as compared to their means is noticeable: certainly there is little resemblance of the current system behavior to that of a system with multi-type Poisson arrivals for service. In the latter situation the queue length standard deviation will be close to the corresponding mean queue lengths in heavy traffic. Of course in the case of multi-type Poisson arrivals there will be a steady-state solution only if a suitable traffic intensity for the system is less than unity; no such condition need be satisfied for the finite systems considered in this paper.

ACKNOWLEDGMENT

We are grateful to S. E. Pilnick for obtaining the simulated results.
APPENDIX

We here give an alternate derivation of the asymptotic approximations to the means and covariances of the number of items of different types in the system. Corresponding to the scalings in (2.11), we let

\[n_j = a \beta_j - \sqrt{a} v_j, \quad p_i(n) = \phi_i(v)/a^r, \]

and it will be shown that \(\beta_j \) is given by (2.24). From (2.4) and (2.8), we have

\[\begin{align*}
\mu_j \phi_j(v) + \sum_{j=1}^{r} \lambda_j \left[\alpha_j - \beta_j - \frac{v_j}{\sqrt{a}} \right] \left[\phi_i(v) - \phi_i(v-e_j/\sqrt{a}) \right] = & \frac{1}{a} \sum_{j=1}^{r} \lambda_j \phi_j(v-e_j/\sqrt{a}) + \sum_{j=1}^{r} \mu_j \phi_j(v+e_j/\sqrt{a}).
\end{align*} \]

If we expand in inverse powers of \(\sqrt{a} \), we obtain

\[\begin{align*}
\mu_j \phi_j(v) + & \sum_{j=1}^{r} \lambda_j \left[\alpha_j - \beta_j - \frac{v_j}{\sqrt{a}} \right] \left[\frac{1}{\sqrt{a}} \frac{\partial \phi_j}{\partial v_j}(v) + \cdots \right] - \frac{1}{a} \sum_{j=1}^{r} \lambda_j [\phi_i(v) + \cdots] \\
= & \frac{c_i}{B} \left[\beta_i - \frac{1}{\sqrt{a}} \left(v_i - \frac{\beta_i}{B} \sum_{k=1}^{r} c_k v_k \right) + \cdots \right] \sum_{j=1}^{r} \mu_j \left[\phi_j(v) + \frac{1}{\sqrt{a}} \frac{\partial \phi_j}{\partial v_j}(v) + \cdots \right],
\end{align*} \]

where \(B \) is given by (3.4).

If we sum (A2) with respect to \(i \), we find that

\[\begin{align*}
\sum_{i=1}^{r} \mu_i \phi_i(v) + & \sum_{j=1}^{r} \lambda_j \left[\alpha_j - \beta_j - \frac{v_j}{\sqrt{a}} \right] \sum_{i=1}^{r} \left[\phi_i(v) - \phi_i(v-e_j/\sqrt{a}) \right] \\
= & \frac{1}{a} \sum_{j=1}^{r} \lambda_j \sum_{i=1}^{r} \phi_i(v-e_j/\sqrt{a}) + \sum_{j=1}^{r} \mu_j \phi_j(v+e_j/\sqrt{a}).
\end{align*} \]

It follows that
\[\sum_{j=1}^{r} \lambda_j (\alpha_j - \beta_j - \frac{v_j}{\sqrt{a}}) \sum_{i=1}^{r} \left[\frac{\partial \Phi_i}{\partial v_j} (v) - \frac{1}{2\sqrt{a}} \frac{\partial^2 \Phi_i}{\partial v_j^2} (v) + \cdots \right] \]

\[= \frac{1}{\sqrt{a}} \sum_{j=1}^{r} \lambda_j \sum_{i=1}^{r} [\Phi_i(v) + \cdots] + \sum_{j=1}^{r} \mu_j \left[\frac{\partial \Phi_j}{\partial v_j} (v) + \frac{1}{2\sqrt{a}} \frac{\partial^2 \Phi_j}{\partial v_j^2} (v) + \cdots \right]. \quad \text{(A5)} \]

We assume an asymptotic expansion of the form

\[\Phi_i(v) \sim \phi_i^{(0)}(v) + \frac{1}{\sqrt{a}} \phi_i^{(1)}(v) + \frac{1}{a} \phi_i^{(2)}(v) + \cdots. \quad \text{(A6)} \]

Then, from (A3), we obtain

\[\mu_i \phi_i^{(0)}(v) = \frac{c_i \beta_i}{B} \sum_{j=1}^{r} \mu_j \phi_j^{(0)}(v) = c_i \beta_i \Phi^{(0)}(v), \quad \text{(A7)} \]

where \(\Phi^{(0)}(v)\) is to be determined. But, from (A5),

\[\sum_{j=1}^{r} \lambda_j (\alpha_j - \beta_j) \sum_{i=1}^{r} \frac{\partial \phi_i^{(0)}}{\partial v_j} = \sum_{j=1}^{r} \mu_j \frac{\partial \phi_j^{(0)}}{\partial v_j}. \quad \text{(A8)} \]

It follows from (2.23) and (A7) that

\[\sum_{j=1}^{r} [A \lambda_j (\alpha_j - \beta_j) - c_j \beta_j] \frac{\partial \Phi^{(0)}}{\partial v_j} = 0. \quad \text{(A9)} \]

This equation is satisfied if (2.24) holds, which we assume to be the case.

Next, from (A3) and (A6), we have

\[\mu_i \phi_i^{(1)}(v) - \frac{c_i \beta_i}{B} \sum_{j=1}^{r} \mu_j \phi_j^{(1)}(v) = \frac{c_i}{B} \left(v_i - \frac{\beta_i}{B} \sum_{k=1}^{r} c_k v_k \right) \sum_{j=1}^{r} \mu_j \phi_j^{(0)}(v) \]

\[+ \frac{c_i \beta_i}{B} \sum_{j=1}^{r} \mu_j \frac{\partial \phi_j^{(0)}}{\partial v_j} - \sum_{j=1}^{r} \lambda_j (\alpha_j - \beta_j) \frac{\partial \phi_i^{(0)}}{\partial v_j}. \quad \text{(A10)} \]

Hence, from (2.24) and (A7), we obtain
\[\mu_i \Phi_i^{(1)}(v) = c_i \beta_i \Phi_i^{(1)}(v) + c_i \left(v_i \right) - \frac{\beta_i}{B} \sum_{k=1}^r c_k v_k \Phi_i^{(0)}(v) \]
\[+ c_i \beta_i \left(\frac{1}{B} - \frac{1}{A \mu_i} \right) \sum_{j=1}^r c_j \beta_j \frac{\partial \Phi_j^{(0)}}{\partial v_j} , \quad (A11) \]

where \(\Phi^{(1)} \) is to be determined. But, from (A5) and (A6),
\[\sum_{j=1}^r \lambda_j (\alpha_j - \beta_j) \sum_{i=1}^r \frac{\partial \Phi_i^{(1)}}{\partial v_j} = \sum_{j=1}^r \mu_j \frac{\partial \Phi_j^{(1)}}{\partial v_j} = \sum_{j=1}^r \lambda_j v_j \sum_{i=1}^r \frac{\partial \Phi_i^{(0)}}{\partial v_j} + \frac{1}{2} \sum_{j=1}^r \lambda_j (\alpha_j - \beta_j) \sum_{i=1}^r \frac{\partial^2 \Phi_i^{(0)}}{\partial v_j^2} \]
\[+ \sum_{j=1}^r \lambda_j \sum_{i=1}^r \Phi_i^{(0)}(v) + \frac{1}{2} \sum_{j=1}^r \mu_j \frac{\partial^2 \Phi_j^{(0)}}{\partial v_j^2} . \quad (A12) \]

From (A7), (A11) and (A12), with the help of (2.23), (2.24) and (3.25), it is found, after considerable reduction, that
\[\frac{1}{A} \sum_{j=1}^r c_j \beta_j \left(\frac{1}{\mu_j} - \frac{C}{A} \right) \sum_{k=1}^r c_k \beta_k \frac{\partial^2 \Phi_i^{(0)}}{\partial v_j \partial v_k} - \sum_{j=1}^r c_j \beta_j \frac{\partial^2 \Phi_j^{(0)}}{\partial v_j^2} \]
\[+ \frac{1}{A} \sum_{k=1}^r \frac{c_k}{\mu_k} \sum_{j=1}^r c_j \beta_j \frac{\partial}{\partial v_j} (v_k \Phi_j^{(0)}) - \sum_{j=1}^r (A \lambda_j + c_j) \frac{\partial}{\partial v_j} (v_j \Phi_j^{(0)}) = 0 , \quad (A13) \]

an equation involving \(\Phi^{(0)} \) only. From (A1) the normalization condition implies asymptotically, from the Euler-Maclaurin summation formula [7], that
\[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \sum_{i=1}^r \phi_i(v) \, dv_1 \cdots dv_r = \int_{-\infty}^{\infty} \sum_{i=1}^r \phi_i(v) \, dv \sim 1 . \quad (A14) \]

Hence, from (A6),
\[\int_{-\infty}^{\infty} \sum_{i=1}^r \phi_i^{(0)}(v) \, dv = 1 , \quad \int_{-\infty}^{\infty} \sum_{i=1}^r \phi_i^{(1)}(v) \, dv = 0 . \quad (A15) \]

It follows from (2.23) and (A7) that
\[
\int_{-\infty}^{\infty} \Phi^{(0)}(v) dv = \frac{1}{A}.
\]
(A16)

We let
\[
M_i = A \int_{-\infty}^{\infty} v_i \Phi^{(0)}(v) dv.
\]
(A17)

Then from (A13), after multiplication by \(v_i\) and some integrations by parts, we obtain
\[
(A \lambda_i + c_i) M_i = c_i \beta_i \frac{\Delta}{A}, \quad \Delta = \sum_{k=1}^{r} \frac{c_k}{\mu_k} M_k.
\]
(A18)

Hence,
\[
\left[1 - \frac{1}{A} \sum_{i=1}^{r} \frac{c_i^2 \beta_i}{\mu_i (A \lambda_i + c_i)} \right] \Delta = 0.
\]
(A19)

It follows from (3.33) that \(\Delta = 0\), and then from (A18) that \(M_i = 0\). Consequently, from (A1), (A6), (A7), (A15) and (A17), \(E(n_j) = a \beta_j + O(1)\). We have in fact carried out the analysis to the next order in the expansion \((n_j) = a \beta_j + O(1)\), and have verified that it leads to the asymptotic approximation \((4.7)\) to \(E(n_j)\). However, we omit the rather lengthy details.

Next we consider the covariances, and let
\[
M_{ij} = A \int_{-\infty}^{\infty} v_i v_j \Phi^{(0)}(v) dv.
\]
(A20)

If we integrate by parts and use (A16), we obtain
\[
A \int_{-\infty}^{\infty} v_i v_j \frac{\partial^2 \Phi^{(0)}}{\partial v_j \partial v_k} dv = \delta_{ij} \delta_{ik} + \delta_{ij} \delta_{ik},
\]
(A21)

and
\[
A \int_{-\infty}^{\infty} v_i v_j \frac{\partial}{\partial v_j} (v_k \Phi^{(0)}) dv = -\delta_{ij} M_{ik} + \delta_{ij} M_{ik}.
\]
(A22)

Hence, from (A13), we find that
\[
[(A\lambda_1+c_i) + (A\lambda_1+c_j)]M_{ij} - \frac{1}{A} \sum_{k=1}^r \frac{c_k}{\mu_k} (c_i\beta_iM_{ik} + c_j\beta_iM_{jk})
\]
\[
= 2c_i\beta_i\delta_{ij} + \frac{1}{A} c_i\beta_i c_j\beta_j \left(\frac{2C}{A} - \frac{1}{\mu_i} - \frac{1}{\mu_j} \right). \tag{A23}
\]

If we let
\[
M_{ij} = \beta_i\delta_{ij} - \lambda \omega_{ij}, \tag{A24}
\]
then we obtain equation (3.23) for \(\omega_{jk}\), where \(\Gamma_j\) and \(f_{jk}\) are given by (3.18) and (3.27).

The asymptotic approximations (4.12) to the covariances follow from (A1), (A6), (A7), (A20) and (A24).

We remark that in the diffusion approximation [1] to the covariances, the off-diagonal terms on the right-hand side of equation (A23) are absent, although the diagonal terms agree exactly.

We will now show that \(A\Phi^{(0)}(v)\) is a zero-mean multivariate Gaussian probability density function. We introduce the characteristic function
\[
\chi^{(0)}(y) = A \int_{-\infty}^{\infty} e^{iv \cdot y} \Phi^{(0)}(v) dv, \quad v \cdot y = \sum_{i=1}^r v_i y_i, \tag{A25}
\]
where \(i = \sqrt{-1}\). If we integrate by parts, we obtain
\[
A \int_{-\infty}^{\infty} e^{iv \cdot y} \frac{\partial^2 \Phi^{(0)}}{\partial v_j \partial v_k} dv = -y_j y_k \chi^{(0)}(y), \tag{A26}
\]
and
\[
A \int_{-\infty}^{\infty} e^{iv \cdot y} \frac{\partial}{\partial v_j} (v_k \Phi^{(0)}) dv = -y_j \frac{\partial \chi^{(0)}}{\partial y_k}. \tag{A27}
\]

It follows from (A13) that
\[
\left[\sum_{j=1}^{\hat{r}} c_j \beta_j y_j^2 - \frac{1}{A} \sum_{j=1}^{\hat{r}} c_j \beta_j \left(\frac{1}{\mu_j} - \frac{C}{A} \right) \sum_{k=1}^{\hat{r}} c_k \beta_k y_k y_k \right] \chi^{(0)}(y)
- \frac{1}{A} \sum_{k=1}^{\hat{r}} c_k \sum_{j=1}^{\hat{r}} c_j \beta_j y_j \frac{\partial \chi^{(0)}}{\partial y_k} + \sum_{j=1}^{\hat{r}} (A \lambda_j + c_j) y_j \frac{\partial \chi^{(0)}}{\partial y_j} = 0. \quad (A28)
\]

But, from (A16), (A17), (A20) and (A25), since \(M_j = 0\), we have

\[
\chi^{(0)}(0) = 1, \quad \frac{\partial \chi^{(0)}}{\partial y_j}(0) = 0, \quad - \frac{\partial^2 \chi^{(0)}}{\partial y_j \partial y_k}(0) = M_{jk}. \quad (A29)
\]

It is straightforward to verify, with the help of (A23), that (A28) and (A29) are satisfied by

\[
\chi^{(0)}(y) = \exp \left(-\frac{1}{2} \sum_{l=1}^{\hat{r}} \sum_{m=1}^{\hat{r}} M_{lm} y_l y_m \right). \quad (A30)
\]

which establishes the desired result [8].
REFERENCES

INITIAL DISTRIBUTION LIST

1. Library (Code 0142) ..2
 Naval Postgraduate School
 Monterey, CA 93943-5000

2. Defense Technical Information Center ...2
 Cameron Station
 Alexandria, VA 22314

3. Office of Research Administration (Code 012) ..1
 Naval Postgraduate School
 Monterey, CA 93943-5000

4. Prof. Peter Purdue ...1
 Code OR-Pd
 Naval Postgraduate School
 Monterey, CA 93943-5000

5. Department of Operations Research (Code 55) ..1
 Naval Postgraduate School
 Monterey, CA 93943-5000

6. Prof. Donald Gaver, Code OR-Gv ...15
 Naval Postgraduate School
 Monterey, CA 93943-5000

7. Prof. Patricia Jacobs ...1
 Code OR/Jc
 Naval Postgraduate School
 Monterey, CA 93943-5000

8. Center for Naval Analyses ..1
 4401 Ford Avenue
 Alexandria, VA 22302-0268

9. Dr. David Brillinger ...1
 Statistics Department
 University of California
 Berkeley, CA 94720
10. Dr. R. Gnanadesikan ... 1
 Bellcore
 435 South Street
 Morris Township NJ 07960

11. Prof. Bernard Harris ... 1
 Dept. of Statistics
 University of Wisconsin
 610 Walnut Street
 Madison, WI 53706

12. Prof. W. M. Hinich ... 1
 University of Texas
 Austin, TX 78712

13. Prof. I. R. Savage ... 1
 Dept. of Statistics
 Yale University
 New Haven, CT 06520

14. Prof. W. R. Schucany .. 1
 Dept. of Statistics
 Southern Methodist University
 Dallas, TX 75222

15. Prof. D. C. Siegmund .. 1
 Dept. of Statistics
 Sequoia Hall
 Stanford University
 Stanford, CA 94305

16. Prof. H. Solomon ... 1
 Department of Statistics
 Sequoia Hall
 Stanford University
 Stanford, CA 94305

17. Dr. Ed Wegman ... 1
 George Mason University
 Fairfax, VA 22030

18. Dr. P. Welch ... 1
 IBM Research Laboratory
 Yorktown Heights, NY 10598
19. Dr. Neil Gerr
Office of Naval Research
Arlington, VA 22217

20. Prof. Roy Welsch
Sloan School
M.I.T.
Cambridge, MA 02139

21. Dr. J. Abrahams
Code 1111, Room 607
Mathematical Sciences Division
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

22. Prof. J. R. Thompson
Dept. of Mathematical Science
Rice University
Houston, TX 77001

23. Dr. P. Heidelberger
IBM Research Laboratory
Yorktown Heights
New York, NY 10598

24. Prof. M. Leadbetter
Department of Statistics
University of North Carolina
Chapel Hill, NC 27514

25. Prof. D. L. Iglehart
Dept. of Operations Research
Stanford University
Stanford, CA 94350

26. Prof. J. B. Kadane
Dept. of Statistics
Carnegie-Mellon University
Pittsburgh, PA 15213
27. Prof. J. Lehoczky .. 1
 Department of Statistics
 Carnegie-Mellon University
 Pittsburgh, PA 15213

28. Dr. J. Maar (R513) .. 1
 National Security Agency
 Fort Meade, MD 20755-6000

29. Prof. M. Mazumdar ... 1
 Dept. of Industrial Engineering
 University of Pittsburgh
 Pittsburgh, PA 15235

30. Prof. M. Rosenblatt ... 1
 Department of Mathematics
 University of California, San Diego
 La Jolla, CA 92093

31. Prof. H. Chernoff .. 1
 Department of Statistics
 Harvard University
 1 Oxford Street
 Cambridge, MA 02138

32. Dr. T. J. Ott .. 1
 Bellcore
 435 South Street
 Morris Township, NJ 07960

33. Dr. Alan Weiss .. 1
 AT&T Bell Laboratories
 Mountain Avenue
 Murray Hill, NJ 07974

34. Prof. Joseph R. Gani .. 1
 Mathematics Department
 University of California
 Santa Barbara, CA 93106

35. Prof. Frank Samaniego 1
 Statistics Department
 University of California
 Davis, CA 95616
36. Dr. James McKenna .. 1
 AT&T Bell Laboratories
 Mountain Avenue
 Murray Hill, NJ 07974

37. Prof. R. Douglas Martin .. 1
 Department of Statistics, GN-22
 University of Washington
 Seattle, WA 98195

38. Dr. D. C. Hoaglin .. 1
 Department of Statistics
 Harvard University
 1 Oxford Street
 Cambridge, MA 02138

39. Prof. N. D. Singpurwalla ... 1
 George Washington University
 Washington, DC 20052

40. Center for Naval Analysis .. 1
 2000 Beauregard Street
 Alexandria, VA 22311

41. Prof. George S. Fishman ... 1
 Curr. in OR & Systems Analysis
 University of North Carolina
 Chapel Hill, NC 20742

42. Dr. Alan F. Petty .. 1
 Code 7930
 Naval Research Laboratory
 Washington, DC 20375

43. Prof. Bradley Efron .. 1
 Statistics Dept.
 Sequoia Hall
 Stanford University
 Stanford, CA 94305
44. Prof. Carl N. Morris
Statistics Department
Harvard University
1 Oxford St.
Cambridge, MA 02138

45. Dr. John E. Rolph
RAND Corporation
1700 Main St.
Santa Monica, CA 90406

46. Prof. Linda V. Green
Graduate School of Business
Columbia University
New York, NY 10027

47. Dr. David Burman
AT&T Bell Telephone Laboratories
Mountain Avenue
Murray Hill, NJ 07974

48. Dr. Ed Coffman
AT&T Bell Telephone Laboratories
Mountain Avenue
Murray Hill, NJ 07974

49. Prof. William Jewell
Operations Research Department
University of California, Berkeley
Berkeley, CA 94720

50. Prof. D. C. Siegmund
Dept. of Statistics
Sequoia Hall
Stanford University
Stanford, CA 94305

51. Operations Research Center, Rm E40-164
Massachusetts Institute of Technology
Attn: R. C. Larson and J. F. Shapiro
Cambridge, MA 02139
52. Arthur P. Hurter, Jr. ... 1
Professor and Chairman
Dept. of Industrial Engineering and Management Sciences
Northwestern University
Evanston, IL 60201-9990

53. Institute for Defense Analysis .. 1
1800 North Beauregard
Alexandria, VA 22311

54. Prof. J. W. Tukey ... 1
Statistics Dept., Fine Hall
Princeton University
Princeton, NJ 08540

55. Dr. Daniel H. Wagner ... 1
Station Square One
Paoli, PA 19301

56. Dr. Colin Mallows ... 1
AT&T Bell Telephone Laboratories
Mountain Avenue
Murray Hill, NJ 07974

57. Dr. Jon Kettenring .. 1
Bellcore
435 South Street
Morris Township, NJ 07960

58. Dr. S. R. Dalal ... 1
AT&T Bell Telephone Laboratories
Mountain Avenue
Murray Hill, NJ 07974

59. Dr. M. J. Fischer ... 1
Defense Communications Agency
1860 Wiehle Avenue
Reston, VA 22070

60. Dr. Prabha Kumar
Defense Communications Agency .. 1
1860 Wiehle Avenue
Reston, VA 22070
61. Dr. B. Doshi .. 1
AT&T Bell Laboratories
HO 3M-335
Holmdel, NJ 07733

62. Dr. D. M. Lucantoni ... 1
AT&T Bell Laboratories
Holdmel, NJ 07733

63. Dr. V. Ramaswami .. 1
MRE 2Q-358
Bell Communications Research, Inc.
435 South Street
Morristown, NJ 07960

64. Prof. G. Shantikumar .. 1
The Management Science Group
School of Business Administration
University of California
Berkeley, CA 94720

65. Dr. D. F. Daley ... 1
Statistic Dept. (I.A.S.)
Australian National University
Canberra, A.C.T. 2606
AUSTRALIA

66. Dr. Guy Fayolle .. 1
I.N.R.I.A.
Dom de Voluceau-Rocquencourt
78150 Le Chesnay Cedex
FRANCE

67. Professor H. G. Daellenbach ... 1
Department of Operations Research
University of Canterbury
Christchurch, NEW ZEALAND

68. Koh Peng Kong ... 1
OA Branch, DSO
Ministry of Defense
Blk 29 Middlesex Road
SINGAPORE 1024
69. Professor Sir David Cox
Nuffield College
Oxford, OX1 1NF
ENGLAND

70. Dr. A. J. Lawrence
Department of Mathematical Statistics
University of Birmingham
P. O. Box 363
Birmingham B15 2TT
ENGLAND

71. Dr. F. P. Kelly
Statistics Laboratory
16 Mill Lane
Cambridge
ENGLAND

72. Dr. R. J. Gibbens
Statistics Laboratory
16 Mill Lane
Cambridge
ENGLAND

73. Dr. John Copas
Dept. of Mathematical Statistics
University of Birmingham
P. O. Box 363
Birmingham B15 2TT
ENGLAND

74. Dr. D. Vere-Jones
Dept. of Mathematics
Victoria University of Wellington
P. O. Box 196
Wellington
NEW ZEALAND
75. Prof. Guy Latouche
University Libre Bruxelles
C. P. 212
Blvd. De Triomphe
B-1050 Bruxelles
BELGIUM