OFFICE OF NAVAL RESEARCH

Grant N00014-90-J-1193

TECHNICAL REPORT No. 29

Optical (Hyper)Polarizabilities of Small Silicon Clusters

by

Tapio T. Rantala, Mark I Stockman, Daniel A. Jelski and Thomas F. George

Prepared for publication

in

Clusters and Cluster-Assembled Materials

Mathematics Research Society Symposium Proceedings, Volume 206

Edited by R. S. Averback, D. L. Nelson and J. Bernholc

Departments of Chemistry and Physics

State University of New York at Buffalo

Buffalo, New York 14260

November 1990

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

This document has been approved for public release and sale;
its distribution is unlimited.
11. TITLE (Include Security Classification)
Optical (Hyper)Polarizabilities of Small Silicon Clusters

12. PERSONAL AUTHOR(S)
Tapio T. Rantala, Mark I. Stockman, Daniel A. Jelski and Thomas F. George

13a. TYPE OF REPORT

13b. TIME COVERED
from November 1990 to

14. DATE OF REPORT (Year, Month, Day)
November 1990

15. PAGE COUNT
7

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Electronic contributions to the optical (hyper)polarizabilities of small silicon clusters are theoretically determined. Geometries and the electronic structures of the clusters are established using the tight-binding model. The nonlinear polarizabilities are found to depend primarily on the symmetry of the cluster and prove to be high for the low-symmetry clusters. Possible experiments and applications are discussed.
OPTICAL (HYPER)POLARIZABILITIES OF SMALL SILICON CLUSTERS

TAPIO T. RANTALA*t, MARK I. STOCKMAN*†,
DANIEL A. JELSKI* and THOMAS F. GEORGE*‡

*Departments of Physics & Astronomy and Chemistry, Center for Electronic &
Electro-optic Materials, 239 Fronczak Hall, State University of New York at Buffalo,
Buffalo, NY 14260
†Permanent address: Department of Physics, University of Oulu, SF-90570 Oulu,
Finland
‡Also with: Institute of Automation & Electrometry, Siberian Branch of the USSR
Academy of Sciences, 630090 Novosibirsk, USSR

ABSTRACT

Electronic contributions to the optical (hyper)polarizabilities of small silicon clusters are theoretically determined. Geometries and the electronic structures of the clusters are established using the tight-binding model. The nonlinear polarizabilities are found to depend primarily on the symmetry of the cluster and prove to be high for the low-symmetry clusters. Possible experiments and applications are discussed.

INTRODUCTION

Small semiconductor clusters in the range from a few atoms to tens of atoms are of a great interest from the viewpoint of both fundamental science and applications. Their physical properties (symmetry, electronic structure, optical spectra and transition probabilities) differ significantly from those of the solid state both in the bulk and at the surface, and also from the properties of nanoscale structures, such as quantum dots. Linear and nonlinear optical properties of the latter have been shown to depend strongly on their size in the region of quantum confinement (see, e.g., Refs. 5, 9 and 10). But in these and similar works, the bulk electronic structure of the semiconductor is usually assumed and modelled by free electrons with effective mass. Obviously, this approach is valid only for sufficiently large objects with sizes not less than a few nanometers, containing on the order of 1000 atoms or more.

In the present work, the optical properties of small silicon clusters with 7 – 13 atoms are predicted. For such clusters, the bulk approximation is not valid and the detailed structure becomes important. Much work has been done on the structure of silicon clusters, both experimentally for stability and photofragmentation and for optical absorption, and theoretically with ab-initio-type calculations for smaller and other methods for larger systems. The approach we use in this paper is based upon the semiempirical tight-binding (TB) model. This model has previously been used to describe the structure of Si10 isomers. It is relatively simple, thus allowing the global optimization of the geometry even for comparatively large clusters. Moreover, the TB model couples the geometry to the electronic structure, which we find essential, but which usually is ignored for larger systems.

With the TB geometry and electronic structure and using one-electron density matrix techniques, we obtain closed sum-over-one-electron-states expressions from which linear and nonlinear optical polarizabilities of clusters are subsequently computed. These characteristics govern a number of observable effects: light scattering and absorption by clusters, second-harmonic generation (SHG), optical rectification, birefringence induced by optical fields and the Kerr effect, phase conjugation, etc.

THEORY

We write the TB Hamiltonian as

\[H = \sum_{\alpha \beta} t_{\alpha \beta} c_{\alpha}^\dagger c_{\beta} + \sum_{\alpha} \epsilon_{\alpha} c_{\alpha}^\dagger c_{\alpha} \]
where $a^\dagger_{\mu a}$ and $a_{\mu a}$ are electron creation and annihilation operators in the basis $|\mu a\rangle = \varphi_a(r - R_\mu)$, with $\varphi_a = \{3s, 3p_x, 3p_y, 3p_z\}$ as the valence orbitals of silicon atom at the sites μ with coordinates R_μ. To reproduce the bulk silicon band structure with the nearest-neighbor distance 2.35 Å, the diagonal matrix elements of the Hamiltonian (1) were fitted to the values $\varepsilon^0_s = -5.25$ eV and $\varepsilon^0_p = 1.20$ eV. and the off-diagonal elements to $V_{ssa} = -1.938$ eV, $V_{sp\sigma} = 1.745$ eV, $V_{pp\sigma} = 3.050$ eV and $V_{pp\pi} = -1.075$ eV. The off-diagonal matrix elements were taken to behave Slater-Koster-like in their angle and distance dependence, and so their bond length dependence is $1/r^2$ up to 3.3 Å. where we consider the bond to be broken.17

The diagonalization of the Hamiltonian gives the one-electron energies ε_p and the eigenvectors C_p. Thus, we can write the one-electron states of the occupied and unoccupied valence levels as

$$|p\rangle = \sum_{\mu a} C_{p\mu a}|\mu a\rangle,$$

and the cohesion energy of the N atoms due to the bond formation, which we call the "band structure" energy, can be written as

$$E_{BS} = \sum_p n_p \varepsilon_p - N \sum_a n^0_a \varepsilon^0_a + U \sum_{\mu} (q_\mu - q^0_\mu)^2.$$

where n_p and n^0_a are occupation numbers, and the difference between the two first terms is the stabilization energy of the four free-atom valence levels ε^0_a due to the bonding. The third term in Eq. (3) is added to include the intra-atomic Coulomb repulsion caused by charge transfer within the cluster, and it is evaluated using the Mulliken charges q_μ and q^0_μ, with the constant U taken to be 1 eV.18

A repulsion energy term is finally added to account for the structure of small clusters. It is the sum of interatomic pair potentials $E_d(R_{\mu\nu})$ and a term depending on the bond number N_b,

$$E_R = \sum_{\mu < \nu} E_d(R_{\mu\nu}) - N \left[c_1 \left(\frac{N_b}{N} \right)^2 + c_2 \left(\frac{N_b}{N} \right) + c_3 \right].$$

This term has been fitted within the present TB model to reproduce the bulk cohesion energies 4.64 and 4.24 eV for the diamond and FCC structures, respectively, and the ab initio potential curve of the silicon dimer. This leads to the constants $c_1 = 0.225$ eV, $c_2 = 1.945$ eV and $c_3 = -1.03$ eV, which therefore set the second term to zero for Si2. Finally, the total cohesion energy of the cluster is written as a sum of the band structure energy E_{BS} and the repulsion energy E_R,

$$E_{coh} = -(E_{BS} + E_R).$$

which is maximized to find the structures of the Si clusters in the present work.

The dipole transition matrix elements $(r)_{pq}$ can be written as

$$ (r)_{pq} = \sum_{\mu a} C^{\star}_{q\mu a} C_{p\mu a} R_\mu + \sum_{\mu ab} C^{\star}_{q\mu b} C_{p\mu a} (r)_{ab},$$

where the atomic transition matrix elements are $(r)_{ab} = \int \varphi^\star_b(r) r \varphi_a(r) dr$.

$$H_{TB} = \sum_{\mu a} \varepsilon^0_{\mu a} a^\dagger_{\mu a} a_{\mu a} + \sum_{\mu a \nu b} V_{\mu a \nu b} a^\dagger_{\mu a} a_{\nu b}.$$
We use the technique of the one-electron density matrix \(\rho_{pq} = \langle a_p^\dagger a_q \rangle \), which exactly takes into account the Fermi statistics of electrons, rather than the conventional many-electron matrix\(^{26,27} \). Using this technique, the \(n \)th-order polarizability \(\alpha^{(n)} \) is conventionally represented by means of double Feynman diagrams. For example, one of the second-order contributions to \(\alpha^{(2)} \) is given by

\[
(\omega_1, j) \quad r = c^2 \sum_{pq} \frac{(r_k)_{pr}(r_i)_{rq}(r_j)_{qp}}{(-\Omega - \omega_{qr} + i\Gamma_{qr})(\omega_1 - \omega_{pr} + i\Gamma_{pr})^2} \quad (7)
\]

where \(\Gamma_{pq} \equiv \Gamma_p + \Gamma_q \) is the \(pq \)-transition linewidth. Here one can trace the diagrammatic rules. The horizontal lines correspond to one-electron states over which summation is implied. These lines are separated by vertices, and the vertex between the lower \(p \) and \(q \) lines corresponds to \(-\epsilon(r)_{qp} \), and between the upper \(r \) and \(p \) lines to \(\epsilon(r)_{pr} \). The vertical line connecting the states \(r \) and \(q \) denotes the one-electron propagator \([\sum k - \omega_{qr} + i\Gamma_{qr}]^{-1}\), where \(\sum k \) is the sum of all photon frequencies to the right of the propagator. \(\omega_{qr} = (\varepsilon_q - \varepsilon_r)/\hbar \) is the transition frequency between the one-electron states, and the free \(p \) lines denote \(\rho_p^{(0)} \). The present diagrammatic technique is similar to the conventional one,\(^{26,27} \) with the difference here that all the operators and states are one-electron ones. The second- and third-order polarizabilities are given by 8 and 48 diagrams, respectively.

NUMERICAL RESULTS

Maximization of \(E_{coh}(5) \) yields the cluster structures. The obtained cluster symmetry groups and important electronic structure data are given below in Table 1.

<table>
<thead>
<tr>
<th>Name</th>
<th>(N)</th>
<th>Point group</th>
<th>(E_{coh}) (eV/atom)</th>
<th>(\varepsilon_g) (eV, (\mu \text{m}))</th>
<th>Coordination</th>
<th>Coordination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(eV)</td>
<td>(eV, (\mu \text{m}))</td>
<td>min. max. av.</td>
<td>min. max. av.</td>
</tr>
<tr>
<td>DBTA-I</td>
<td>10</td>
<td>(C_{2v})</td>
<td>4.0</td>
<td>1.4, 0.87</td>
<td>4, 7, 5.4</td>
<td></td>
</tr>
<tr>
<td>TTP</td>
<td>10</td>
<td>(C_{3v})</td>
<td>3.6</td>
<td>2.6, 0.48</td>
<td>3, 6, 4.8</td>
<td></td>
</tr>
<tr>
<td>TO</td>
<td>10</td>
<td>(I_h)</td>
<td>4.4</td>
<td>2.8, 0.44</td>
<td>6, 12, 6.7</td>
<td></td>
</tr>
<tr>
<td>TO</td>
<td>13</td>
<td>(I_h)</td>
<td>4.4</td>
<td>2.8, 0.44</td>
<td>6, 12, 6.7</td>
<td></td>
</tr>
</tbody>
</table>

The linear polarizabilities \(\text{Re} \alpha_{ij}(\omega) \) (10\(^{-23} \text{ cm}^3 \)) of the clusters obtained for different photon energies \(\hbar\omega \) are given in Table 2. It follows from this table that \(\text{Re} a \) is nonsensitive to the symmetry of the cluster, thus bearing little structural information. In contrast, the cluster absorption spectra (See Fig.1), governed by \(\text{Im} \alpha \), strongly depend on the cluster structure: the lower the symmetry of the cluster, the richer its spectrum with more red-shifted offset.

The values computed for the second-order polarizabilities (10\(^{-28} \text{ esu} \)) \(\beta_{ijk}(\omega, \omega) = \alpha^{(2)}(-2\omega; \omega, \omega) \) and \(\beta_{ijk}(-\omega, \omega) = \alpha^{(2)}(0; -\omega, \omega) \), governing SHG and rectification, are given in Table 3 (for the clusters not shown, \(\beta = 0 \) due to symmetry requirements). It can
TABLE 2

<table>
<thead>
<tr>
<th>N</th>
<th>Group</th>
<th>(i j)</th>
<th>(h \omega) (eV):</th>
<th>0.0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.77</th>
<th>1.5</th>
<th>2.33</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>(D_{5h})</td>
<td>(xx, yy)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(zz)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(C_{2v})</td>
<td>(xx)</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(yy)</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>15</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(zz)</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>43</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(C_{3v})</td>
<td>(xx, yy)</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(zz)</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(T_d)</td>
<td>(xx, yy, zz)</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>(I_h)</td>
<td>(xx, yy, zz)</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Absorption spectra of clusters with the names and symmetry groups shown: (a) \(Si_{10} \), DBTA-I \((C_{2v}) \); (b) \(Si_{10} \), TTP \((C_{3v}) \); (c) \(Si_7 \), \((D_{5h}) \); (d) \(Si_{10} \), TO \((T_d) \).
be seen from Table 3 that for the lower symmetry clusters C_{2v} and C_{3v}, the magnitude of γ is considerably higher than for the higher symmetry T_d cluster, reaching values which are characteristic of organic molecules with high nonlinear responses.

The third-order polarizability $\gamma \equiv \alpha^{(3)}$ (data are not shown) is symmetry-allowed in all the cases. Again, the maximum responses are predicted for low-symmetry clusters, reaching high values, $\gamma \approx 2 \times 10^{-32}$ esu, for the C_{2v} and C_{3v} clusters.

DISCUSSION

Linear polarizability can be measured for single clusters in experiments using laser light scattering and photon-counting detection. However, this quantity is not sensitive to cluster structure. In contrast, the optical absorption and hyperpolarizabilities do primarily depend upon the cluster symmetry and, therefore, bear important structural information.

The optical absorption of single clusters in jets can be measured similar to Ref. 30 in the following experiment. Clusters are excited by tunable probe radiation and are also subjected to powerful IR radiation which is not absorbed from the ground state but ionizes the clusters already excited by the probe light. The clusters ionized are detected by the mass spectrometer.

The nonlinear optical responses can be detected if it is possible to accumulate clusters in host media. High magnitude of the polarizabilities predicted promises possibility of applications in optical and optoelectronic devices.

ACKNOWLEDGMENT

This research has been supported by the Office of Naval Research and the National Science Foundation under Grant CHE-9016789.

REFERENCES

<table>
<thead>
<tr>
<th>Professor Name</th>
<th>Department Name</th>
<th>Institution Name</th>
<th>City, State, Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor John Baldeschwieler</td>
<td>Department of Chemistry</td>
<td>California Inst. of Technology</td>
<td>Pasadena, CA 91125</td>
</tr>
<tr>
<td>Professor Steven George</td>
<td>Department of Chemistry</td>
<td>Stanford University</td>
<td>Stanford, CA 94305</td>
</tr>
<tr>
<td>Professor Paul Barbara</td>
<td>Department of Chemistry</td>
<td>University of Minnesota</td>
<td>Minneapolis, MN 55455-0431</td>
</tr>
<tr>
<td>Professor Tom George</td>
<td>Dept. of Chemistry & Physics</td>
<td>State University of New York</td>
<td>Buffalo, NY 14260</td>
</tr>
<tr>
<td>Dr. Duncan Brown</td>
<td>Advanced Technology Materials</td>
<td>520-B Danury Rd.</td>
<td>New Milford, CT 06776</td>
</tr>
<tr>
<td>Professor Stanley Bruckenstein</td>
<td>Department of Chemistry</td>
<td>State University of New York</td>
<td>Buffalo, NY 14214</td>
</tr>
<tr>
<td>Professor Paul Hansma</td>
<td>Department of Physics</td>
<td>University of California</td>
<td>Santa Barbara, CA 93106</td>
</tr>
<tr>
<td>Professor Carolyn Cassady</td>
<td>Department of Chemistry</td>
<td>Miami University</td>
<td>Oxford, OH 45056</td>
</tr>
<tr>
<td>Professor Charles Harris</td>
<td>Department of Chemistry</td>
<td>University of California</td>
<td>Berkeley, CA 94720</td>
</tr>
<tr>
<td>Professor R.P.H. Chang</td>
<td>Dept. Matls. Sci. & Engineering</td>
<td>Northwestern University</td>
<td>Evanston, IL 60208</td>
</tr>
<tr>
<td>Professor Frank DiSalvo</td>
<td>Department of Chemistry</td>
<td>Cornell University</td>
<td>Ithaca, NY 14853</td>
</tr>
<tr>
<td>Professor John Hemminger</td>
<td>Department of Chemistry</td>
<td>University of California</td>
<td>Irvine, CA 92717</td>
</tr>
<tr>
<td>Dr. James Duncan</td>
<td>Federal Systems Division</td>
<td>Eastman Kodak Company</td>
<td>Rochester, NY 14650-2156</td>
</tr>
<tr>
<td>Professor Leonard Interrante</td>
<td>Department of Chemistry</td>
<td>Rensselaer Polytechnic Institute</td>
<td>Troy, NY 12181</td>
</tr>
<tr>
<td>Professor Arthur Ellis</td>
<td>Department of Chemistry</td>
<td>University of Wisconsin</td>
<td>Madison, WI 53706</td>
</tr>
<tr>
<td>Professor Eugene Irene</td>
<td>Department of Chemistry</td>
<td>University of North Carolina</td>
<td>Chapel Hill, NC 27514</td>
</tr>
<tr>
<td>Professor Mustafa El-Sayed</td>
<td>Department of Chemistry</td>
<td>University of California</td>
<td>Los Angeles, CA 90024</td>
</tr>
<tr>
<td>Dr. Sylvia Johnson</td>
<td>SRI International</td>
<td>333 Ravenswood Avenue</td>
<td>Menlo Park, CA 94025</td>
</tr>
<tr>
<td>Professor John Eyler</td>
<td>Department of Chemistry</td>
<td>University of Florida</td>
<td>Gainesville, FL 32611</td>
</tr>
<tr>
<td>Dr. Zakya Kafafi</td>
<td>Naval Research Laboratory</td>
<td>Washington, DC 20375-5000</td>
<td></td>
</tr>
<tr>
<td>Professor James Garvey</td>
<td>Department of Chemistry</td>
<td>State University of New York</td>
<td>Buffalo, NY 14214</td>
</tr>
<tr>
<td>Professor Larry Kesmodel</td>
<td>Department of Physics</td>
<td>Indiana University</td>
<td>Bloomington, IN 47403</td>
</tr>
</tbody>
</table>
Professor Max Lagally
Dept. Metal. & Min. Engineering
University of Wisconsin
Madison, WI 53706

Dr. Stephen Lieberman
Code 522
Naval Ocean Systems Center
San Diego, CA 92152

Professor M.C. Lin
Department of Chemistry
Emory University
Atlanta, GA 30322

Professor Fred McLafferty
Department of Chemistry
Cornell University
Ithaca, NY 14853-1301

Professor Horia Metiu
Department of Chemistry
University of California
Santa Barbara, CA 93106

Professor Larry Miller
Department of Chemistry
University of Minnesota
Minneapolis, MN 55455-0431

Professor George Morrison
Department of Chemistry
Cornell University
Ithaca, NY 14853

Professor Daniel Neumark
Department of Chemistry
University of California
Berkeley, CA 94720

Professor David Ramaker
Department of Chemistry
George Washington University
Washington, DC 20052

Dr. Gary Rubloff
IBM T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Professor Richard Smalley
Department of Chemistry
Rice University
P.O. Box 1892
Houston, TX 77251

Professor Gerald Stringfellow
Dept. of Matls. Sci. & Engineering
University of Utah
Salt Lake City, UT 84112

Professor Galen Stucky
Department of Chemistry
University of California
Santa Barbara, CA 93106

Professor H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, MI 39217-0510

Professor William Unertl
Lab. for Surfase Sci. & Technology
University of Maine
Orono, ME 04469

Dr. Terrell Vanderah
Code 3854
Naval Weapons Center
China Lake, CA 93555

Professor John Weaver
Dept. of Chem. & Mat. Sciences
University of Minnesota
Minneapolis, MN 55455

Professor Brad Weiner
Department of Chemistry
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Professor Robert Whetten
Department of Chemistry
University of California
Los Angeles, CA 90024

Professor R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, CA 90024

Professor Nicholas Winograd
Department of Chemistry
Pennsylvania State University
University Park, PA 16802

Professor Aaron Wold
Department of Chemistry
Brown University
Providence, RI 02912

Professor Vicki Wysocki
Department of Chemistry
Virginia Commonwealth University
Richmond, VA 23284-2006

Professor John Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, PA 15260