Surface-Induced Optical Bistability in Coupled Exciton-Phonon Systems

by

D. L. Lin, Xiao-shen Li and Thomas F. George

Prepared for publication

in

Physics Letters A

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

November 1990

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

This document has been approved for public release and sale;
its distribution is unlimited.
Surface-Induced Optical Bistability in Coupled Exciton-Phonon Systems

Nonlinear optical responses of exciton-phonon-coupling systems near a reflecting surface are investigated. For a polydiacetylene chain lying parallel to the surface, optical bistability induced by the surface is discovered. It is also found that the threshold and contrast of the bistability can be controlled by adjusting the distance of the system from the surface, and that vacuum fluctuations are reduced whenever the bistability occurs. The nature of the bistability and its origin are discussed.
Surface-induced optical bistability in coupled exciton-phonon systems

D. L. Lin, Xiao-shen Li and Thomas F. George
Department of Physics and Astronomy
State University of New York at Buffalo
Buffalo, New York 14260

Abstract

Nonlinear optical responses of exciton-phonon-coupling systems near a reflecting surface are investigated. For a polydiacetylene chain lying parallel to the surface, optical bistability induced by the surface is discovered. It is also found that the threshold and contrast of the bistability can be controlled by adjusting the distance of the system from the surface, and that vacuum fluctuations are reduced whenever the bistability occurs. The nature of the bistability and its origin are discussed.

1990 PACS Numbers: 42.65.-k, 42.65.pc, 36.20.-r, 78.65.Hc
Ever since the mid-1940's, it has been known that the spontaneous emission probability of a spin system can be dramatically influenced by its environment. In recent years, inhibited spontaneous emission has been investigated extensively in atomic systems and in solids. It is found that the spontaneous radiation rate is altered markedly by merely changing the surrounding material with a different index of refraction. On the other hand, a great deal of work has been devoted to the study of an atom near a solid surface. Optical properties are radically changed because of the presence of the surface, and the change depends on the structure of the substrate material. Such problems are of fundamental importance as well as of practical interest. Fundamentally, one has to develop a quantum mechanical theory for dissipative systems to deal with such nonlinear interactions between the atom and the substrate which does not possess bulk symmetry. From a practical point of view, such studies can lead to applications in surface photochemistry and surface optics.

Instead of atoms or molecules adsorbed at a solid surface, we consider an exciton-phonon coupling system such as a one-dimensional semiconductor of polymers. In particular, we consider a sample of polydiacetylene (PDA) located near a metal surface. The system closely resembles the experimental situation in which PDA films are sandwiched between other materials. PDA is a good candidate for such considerations because of its large third-order susceptibility \(\chi^{(3)} \), and because of its small transmission loss \(\alpha \). Thus it possesses a fairly large ratio \(\chi^{(3)}/\alpha \), which is usually a measure of the usefulness of a material employed in switching devices. Moreover, PDA is more flexible to use in the construction of waveguides.

For a linear chain of PDA-toluene-sulfonate (PTS) placed at a distance \(d \) from and oriented parallel to the metal surface, we shall study its response...
to a laser beam shining on it. Novel phenomena have been found recently in
the study of the nonlinear optical response of PTS in a thin film in the
transient regime,10 and in an optical cavity in the steady-state regime.11

In this Letter, our purpose is to investigate the possibility of optical
multistability induced by the metal surface, even though there is no cavity to
feedback the incident signal. The light-induced excitons in PTS act as
emitting dipoles. The emitted light is reflected by the metal surface and
interacts with the excitons themselves, and changes their dynamical behavior.
In addition, the excitons are also coupled to phonon modes in PTS.12,13 Such
coupling plays a very important role in the nonlinear optical response of
polymers.10-12

This complicated interacting system is treated by modeling the excitons
and phonon modes by damped oscillators and by assuming dissipative
interactions14 between the exciton and the reflected field. Thus the problem
is described by the nonhermitian Hamiltonian

\[H = H_x + H_p + H_{xp} + H_{xf} + H_{XR}, \]

where the free exciton energy operator is

\[H_x = \mathcal{H}(\omega_x - \gamma_x/2) a^\dagger a, \]

the free phonon energy is

\[H_p = \mathcal{H} \sum_i (\omega_i - \gamma_i/2) b_i^\dagger b_i, \]
the exciton-phonon interaction energy is

$$H_{xp} = \sum_{i} \lambda_{i} a^{\dagger}a(b^{\dagger} + b)^{i} \tag{4}$$

the interaction energy between the exciton and driving field in the rotating-wave approximation (RWA) is

$$H_{xf} = -(\mu a^{\dagger} e^{-i\omega_{0}t} + \mu a^{\dagger} e^{-i\omega_{0}t}) \tag{5}$$

and the interaction energy between the exciton and surface-reflected field in the RWA is

$$H_{xR} = -\mu a^{\dagger} E_{R} \tag{6}$$

The notation is as follows. The operators $a^{\dagger}(a)$ and $b^{\dagger}(b)$ create (annihilate) an exciton with energy $\hbar \omega_{x}$ and a phonon in the i-th mode with energy $\hbar \omega_{i}$, respectively. The corresponding decay rates are denoted by γ_{x} and γ_{i}, respectively, and λ_{i} is a coupling constant. The dipole moment is given as $p = \mu a$ with μ as its matrix element, and the driving field is $E = E_{0} \exp(i\omega_{0}t)$ with amplitude E_{0} and frequency ω_{0}. E_{R} stands for the reflected field at the position of the dipole. It is proportional to p and hence can be written as $E_{R} = E_{r}a$, where E_{r} is a c-number. As we shall see later, E_{R} is in general a complex quantity, so that the interaction (6) is dissipative. We also note that the momentum dependence of the exciton has been neglected in this Hamiltonian. $^{10-12}$
Following Dekker's quantization procedure for dissipative systems, the equation of motion for the density operator of the PTS absorbate can be written as

\[
\dot{\rho} = -\frac{i}{\hbar} [a^+, [a, H] \rho] + \frac{i}{\hbar} [\rho [H^+, a^+], a] \\
- \frac{i}{\hbar} \sum_i [b_{i}^+, [b_{i}, H] \rho] + \frac{i}{\hbar} \sum_i [\rho [H^+, b_{i}^+], b_{i}] .
\]

(7)

Since we are interested in the scattered field intensity \(I_{sc}\) as a function of the input optical field intensity \(I_{in}\), the effects of quantum fluctuations are negligible, and a semiclassical approach is applicable. Thus it is sufficient to use the mean values \(\alpha = \langle a \rangle, n = \langle a^+ a \rangle\) and \(\beta_i = \langle b_i \rangle\). The equation of motion for these variables in the Schrödinger picture can be obtained directly from Eq. (7). In the rotating frame, we have

\[
\dot{a} = \langle \dot{a} \rangle = \text{Tr}(\dot{\rho}a)
\]

\[
= -[i(\Delta + \omega_s) + \frac{1}{2} \gamma_X + \gamma_s] \alpha + i\Omega - i \sum_i \lambda_i (\beta_i^+ \beta_i^*) \alpha
\]

(8)

\[
\dot{n} = -(\gamma_X + 2 \gamma_s) n - i\Omega^* \alpha + i\Omega \alpha^*
\]

(9)

\[
\dot{\beta}_i = -(i \omega_i + \frac{1}{2} \gamma_i) \beta_i - i \lambda_i n
\]

(10)

where we have defined the detuning \(\Delta = \omega_X - \omega_0\) and the Rabi frequency \(\Omega = \mu^* E_0\).

The surface effect on the exciton is reflected in the surface-induced frequency shift.
\[\omega_s = |\mu|^2 \text{Re}(E_r/\mu) \]
\[\gamma_s = |\mu|^2 \text{Im}(E_r/\mu) \]

and the decay rate

The reflected electric field \(E_r \) in the dipole direction can be found by a classical approach. We take the oscillating dipole moment to be located at a distance \(d \) from the surface of a semi-infinite metal. From electromagnetic field theory, we find in a straightforward manner that

\[E_r = \frac{i}{2} \sqrt{\varepsilon_k^2 \mu} \int_0^\infty du \left[R_\perp + (1-u^2)R_\parallel \right] / \sqrt{1-u^2} \]
\[\text{when the dipole \(\vec{p} \) is parallel to the surface, and} \]

\[E_r = -i \sqrt{\varepsilon_k^2 \mu} \int_0^\infty du \frac{u^3 R_\parallel}{\sqrt{1-u^2}} \]
\[\text{when the dipole is perpendicular to the surface. Here we have defined} \quad k_0 = \omega/c \]

\[R_\parallel = \frac{\epsilon_1 \mu_2 - \epsilon_2 \mu_1}{\epsilon_1 \mu_2 + \epsilon_2 \mu_1} \]
\[R_\perp = \frac{\mu_1 - \mu_2}{\mu_1 + \mu_2} \]

\[\mu_2 = \sqrt{\epsilon_2 / \epsilon_1 - u^2} \quad \text{for} \quad l = 1, 2 \]
with ϵ as the dielectric constant and the subscripts 1 and 2 labelling the medium containing the PTS chain and the metal substrate, respectively. For definiteness, we consider the case where \mathbf{p} is parallel to the surface. It then follows directly from Eqs. (11) and (12) that

$$\gamma_s = \frac{3}{4} \gamma_0 \text{Im} \int_0^\infty du (1-u^2) R_\parallel + \frac{i\mu_1 x}{\mu_1},$$

(15a)

$$\omega_s = -\frac{3}{4} \gamma_0 \text{Re} \int_0^\infty du (1-u^2) R_\parallel + \frac{i\mu_1 x}{\mu_1},$$

(15b)

where

$$\gamma_0 = \frac{2}{3} \sqrt{\epsilon_1} \left(\frac{\omega_x}{\epsilon_1}\right)^3 |\mu|^2 = \frac{1}{2} \gamma_x$$

(16)

is the decay rate in the absence of the surface,\(^\text{17}\) and $x = 2d/\sqrt{\epsilon_1 \omega_x}$.\(^\text{17}\)

In the steady state, the solution for α can easily be found from Eqs. (8)-(10) as

$$\alpha = \Omega/\Delta + \omega_s - \lambda_p n - i(\gamma_s \frac{1}{\sqrt{2}} \gamma_x),$$

(17)

where λ_p is defined by

$$\lambda_p = 2 \sum_{i} \frac{\lambda_1^2 \omega_1}{(\omega_1^2 + 4\gamma_1^2)} = 2 \sum_{i} \frac{\lambda_1^2}{\omega_1},$$

(18)

because $\omega_1 \gg \gamma_1$. The mean number of excitons is determined by the equation
\[\lambda^2 n^3 - 2(\Delta + \omega_s)\lambda n^2 + [(\Delta + \omega_s)^2 + (\gamma_s + \frac{1}{\gamma_x})^2]n - I_{in} = 0 \] \quad (19)

where the input laser intensity is \(I_{in} = |\Omega|^2 \). In the scattering region where the incident field vanishes, it is known that the positive-frequency part of the field may be written as \(18 \)

\[E^{(+)}(\vec{r}, t) = E_f^{(+)}(\vec{r}, t) - \frac{\omega_x^2}{4\pi c^2 r^3} (\vec{p} \times \vec{r}) \times \vec{r} \cdot a(t - \frac{\vec{r}}{c}) \] \quad (20)

where \(E_f(\vec{r}, t) \) describes the free propagation. The mean value of the scattered intensity, in the steady state is thus given by

\[I_{sc} = I(\vec{r})/I_0(\vec{r}) = |\alpha|^2 \]

\[= I_{in}/[\Delta + \omega_s \cdot \lambda n(I_{in})]^2 + (\gamma_s + \frac{1}{\gamma_x})^2] \] \quad (21)

where

\[I_0(\vec{r}) = \frac{\omega_x^2}{4\pi c^2 r^3} (\vec{p} \times \vec{r}) \times \vec{r}]^2 \] \quad (22)

The intensity \(I_{sc} \) is studied numerically as a function of \(I_{in} \) according to Eq. (21) for a PTS chain parallel to the surface of an ideal metal for which \(\epsilon_2 \rightarrow \infty \). As a realistic approximation, we have assumed that only four phonon modes \(13 \) are strongly coupled to excitons in PTS. The parameters for these modes are: \(10-13 \)

\[\omega_1 = 5.16, \lambda_1 = 2.0; \omega_2 = 3.68, \lambda_2 = 1.66; \omega_3 = 2.98, \lambda_3 = 0.46; \text{and } \omega_4 = 2.36, \lambda_4 = 0.48. \] For simplicity we have chosen \(\frac{1}{2}\gamma_x \) to be
the unit for all quantities of the dimension t^{-1} in our calculations. Optical bistability is found when the input field frequency matches the exciton frequency. Some of our results for the resonant excitation ($\Delta = 0$) are plotted in Fig. 1, clearly demonstrating that the bistability is induced by the surface. Our numerical calculation shows a strong dependence of the optical bistability on the distance d of PTS from the surface, especially when $x \leq 2.5$. As x decreases further, it is observed that the contrast of the bistability (the ratio of the intensity of the upper branch to that of the lower branch) increases markedly, and that the threshold (the smallest input field intensity for multiple solutions of I_{sc}) decreases at the same time. Furthermore, we have also found that the optical bistability appears only when γ_s becomes negative. In other words, reduced vacuum fluctuations always accompany the optical bistability.

It has been established both experimentally2,19 and theoretically17 that the spontaneous emission changes dramatically when the atomic system is near a reflecting surface or between two mirrors. This implies that the mode structure of the vacuum field suffers significant modification because of the finite geometry. A similar situation in solid-state physics and electronics has also been reported, and the spontaneous electron-hole recombination rate can be controlled by adjusting the mirror position or by varying the index of refraction of the medium.3 What we have found here is that by adjusting the environmental conditions to reduce the radiation rate, one can not only produce low-noise lasers from a semiconductor quantum well but also create optical bistability from a polymer chain near a reflecting surface.

The origin of the optical bistability may be understood by looking at the driving frequency dependence of the scattered field intensity. For a
fixed driving field intensity, its frequency can be scanned over the near-resonance region. Thus the exciton number becomes a function of ω_0, as can be seen from Eq. (19). Consequently, I_{sc} can be regarded as a function of ω_0 also. Figure 2 shows the surface-induced optical bistability from the point of view of the driving field frequency instead of its intensity. It is found that there are three possible absorption rates for a certain small frequency range. The scattered intensity in the higher branch corresponds to the higher absorption rate, and in the lower branch to the lower absorption rate. Since the absorption part of the optical susceptibility is proportional to the scattered field intensity for fixed input intensity and distance x, the bistability described above is mainly an absorptive one. In other words, the surface-induced absorption rate is responsible for this particular optical bistability. This is easily understood from energy considerations, because a higher output intensity of the excitonic dipole results from more effective absorption of the input energy, and vice versa.

Acknowledgment

This work was supported in part by the Office of Naval Research.
References

1. E. M. Purcell, Phys. Rev. 69, 681 (1946).

Figure Captions

1. Scattered field intensity I_{sc} vs the driving field intensity I_{in} for various distances x when $\Delta = 0$: (a) $x = \infty$, (b) $x = 1.5$, (c) $x = 1.1$, (d) $x = 0.9$ and (e) $x = 0.85$.

2. I_{sc} as a function of the driving field frequency ω_0 for a fixed $I_{in} = 0.10$: (a) $x = \infty$ and (b) $x = 1.5$.
Fig. 1

(a)

(b)

(c)

(d)

(e)

I_{sc} (Arbitrary Unit)

I_{in}
Fig. 2

(a)

(b)

I_{sc} (Arbitrary Unit)

$\omega_x - \omega_o$
Office of Naval Research (2) Dr. Robert Green, Director (1)
Chemistry Division, Code 1113 Chemistry Division, Code 385
800 North Quincy Street Naval Weapons Center
Arlington, Virginia 22217-5000 China Lake, CA 93555-6001

Commanding Officer (1)
Naval Weapons Support Center
Dr. Bernard E. Douda
Crane, Indiana 47522-5050

Chief of Naval Research (1)
Special Assistant for Marine Corps Matters
Code 00MC
800 North Quincy Street
Arlington, VA 22217-5000

Dr. Richard W. Drisko (1)
Naval Civil Engineering Laboratory
Code L52
Port Hueneme, CA 93043

Dr. Bernadette Eichinger (1)
Naval Ship Systems Engineering Station
Code 053
Philadelphia Naval Base
Philadelphia, PA 19112

David Taylor Research Center (1)
Dr. Eugene C. Fischer
Annapolis, MD 21402-5067

Dr. Sachio Yamamoto (1)
Naval Ocean Systems Center
Code 52
San Diego, CA 92152-5000

Dr. James S. Murday (1)
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Harold H. Singerman (1)
David Taylor Research Center
Code 283
Annapolis, MD 21402-5067

Dr. David L. Nelson (1)
Chemistry Division
Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217

Defense Technical Information Center (2)
Building 5, Cameron Station
Alexandria, VA 22314
FY90 Abstracts Distribution List for Solid State & Surface Chemistry

Professor John Baldeschwieler
Department of Chemistry
California Inst. of Technology
Pasadena, CA 91125

Professor Steven George
Department of Chemistry
Stanford University
Stanford, CA 94305

Professor Paul Barbara
Department of Chemistry
University of Minnesota
Minneapolis, MN 55455-0431

Professor Tom George
Dept. of Chemistry & Physics
State University of New York
Buffalo, NY 14260

Dr. Duncan Brown
Advanced Technology Materials
520-B Danury Rd.
New Milford, CT 06776

Dr. Robert Hamers
IBM T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Professor Stanley Bruckenstein
Department of Chemistry
State University of New York
Buffalo, NY 14214

Professor Paul Hansma
Department of Physics
University of California
Santa Barbara, CA 93106

Professor Carolyn Cassady
Department of Chemistry
Miami University
Oxford, OH 45056

Professor Charles Harris
Department of Chemistry
University of California
Berkeley, CA 94720

Professor R.P.H. Chang
Dept. Matls. Sci. & Engineering
Northwestern University
Evanston, IL 60208

Professor John Hemminger
Department of Chemistry
University of California
Irvine, CA 92717

Professor Frank DiSalvo
Department of Chemistry
Cornell University
Ithaca, NY 14853

Professor Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, NY 14853

Dr. James Duncan
Federal Systems Division
Eastman Kodak Company
Rochester, NY 14650-2156

Professor Leonard Interrante
Department of Chemistry
Rensselaer Polytechnic Institute
Troy, NY 12181

Professor Arthur Ellis
Department of Chemistry
University of Wisconsin
Madison, WI 53706

Professor Eugene Irene
Department of Chemistry
University of North Carolina
Chapel Hill, NC 27514

Professor Mustafa El-Sayed
Department of Chemistry
University of California
Los Angeles, CA 90024

Dr. Sylvia Johnson
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Professor John Eyler
Department of Chemistry
University of Florida
Gainesville, FL 32611

Dr. Zakya Kafafi
Code 6551
Naval Research Laboratory
Washington, DC 20375-5000

Professor James Garvey
Department of Chemistry
State University of New York
Buffalo, NY 14214

Professor Larry Kesmodel
Department of Physics
Indiana University
Bloomington, IN 47403