REPORT DOCUMENTATION PAGE

PROJECT NUMBER

REVIEW

DATE

AGENCY USE ONLY (Leave Blank)

REPORT DATE

FUNDING NUMBERS

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(E(S))

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(E(S))

SUPPORTING ORGANIZATION REPORT NUMBER

SPONSORING/MONITORING AGENCY REPORT NUMBER

SUPPORTING ORGANIZATION NAME(S) AND ADDRESS(E(S)) 10, SOURCING

REPORT NUMBER

NO

ABSTRACT

(see title on reprint)

Weis et al.

Armed Forces Radiobiology Research Institute
Defense Nuclear Agency
Bethesda, MD 20889-5145

Defense Nuclear Agency
Washington, DC 20305

Approved for public release; distribution unlimited.

SUBJECT TERMS

NUMBER OF PAGES

PRICE CODE

CLASSIFICATION OF REPORT

CLASSIFICATION OF THIS PAGE

CLASSIFICATION OF ABSTRACT

LIMITATION OF ABSTRACT

Unclassified

Unclassified

Unclassified

Approved for public release; distribution unlimited.
Advances in radioprotection through the use of combined agent regimens*

J. F. WEISS†, K. S. KUMAR†, T. L. WALDEN†, R. NETA†, M. R. LANDAUER§, and E. P. CLARK†
†Radiation Biochemistry, †Experimental Hematology, and §Behavioral Sciences Departments, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814-5143, USA

The most effective radioprotective agents exhibit toxicities that can limit their usefulness. It may be possible to use combinations of agents with different radioprotective mechanisms of action at lower toxic doses, or to reduce the toxicity of the major protective compound by adding another agent. With regard to the latter possibility, improved radioprotection and reduced lethal toxicity of the phosphorothioate WR-2721 was observed when it was administered in combination with metals (selenium, zinc, or copper). The known mechanisms of action of potential radioprotective agents and varying effects of different doses and times of administration in relation to radiation exposure must be considered when using combined-agent regimens. A number of receptor-mediated protectors and other biological compounds, including endotoxin, eicosanoids and cytokines, have at least an additive effect when administered with thiol protectors. Eicosanoids and other bioactive lipids must be administered before radiation exposure, whereas some immunomodulators have activity when administered either before or after radiation exposure. For example, the cytokine interleukin-1 administered simultaneously with WR-2721 before irradiation or after irradiation enhances the radioprotective efficacy of WR-2721. The most effective single agents or combinations of protectors result in a decrement in locomotor activity, an index of behavioral toxicity. Recent evidence indicates that administration of the CNS stimulant caffeine mitigates the behavioral toxicity of an effective radioprotective dose of the phosphorothioate WR-1689 without altering its radioprotective efficacy. These examples indicate that the use of combinations of agents is a promising approach for maximizing radioprotection with minimal adverse effects.

1. Protection by thiols, antioxidants, and immunomodulators

Historically, the development of radioprotective agents has been dominated by the study of sulfhydryl compounds, particularly the aminothiols and the phosphorothioates. Various mechanisms or combinations of mechanisms for radioprotection by thiols have been proposed: at the molecular level, scavenging of reactive oxygen species, hydrogen transfer reactions, mixed disulfide hypothesis, enhancement or protection of repair enzymes, and at the biochemical-physiological level, modification of cellular metabolism, induction of hypothermia, anoxia, mediators and enzymes, and biochemical shock (Fove 1981, Weiss and Kumar 1988). The most effective thiol protectors developed thus far are S-(2-bis-(aminopropylamino)ethyl)phosphorothioic acid (WR-2721) and other

*Presented at the 22nd Annual Meeting of the European Society for Radiation Biology, 12-16 September 1989, Brussels.
phosphorothioates with slightly differing structures, such as S-2[(3-
methylaminopropyl)amino]ethylphosphorothioic acid (WR-3689) (Davidson et al.
1980). A dose reduction factor (DRF) as high as 2.7 against 30-day lethality in mice
has been achieved with WR-2721 (Yuhas and Storer 1969), but high levels of
protection are accompanied by side-effects that may be unacceptable in many
situations.

A number of 'natural antioxidants' with low toxicity, such as glutathione,
superoxide dismutase, antioxidant vitamins (vitamins E, A, and C), as well as
substances that mimic or induce activity of endogenous antioxidant systems (e.g.
selenium), have been studied as radioprotectors. Generally, these natural agents
provide a low degree of protection compared with phosphorothioates, but they may
be of value in certain situations. Although the post-irradiation administration of
antioxidants or free radical scavengers would not be expected to have much effect,
evidence suggests that this may occur to some extent, and is probably related to
modulation of later reactions, e.g. interaction of radiation-induced radicals of
biomolecules with reactive oxygen species evolved during normal cellular processes
(reviewed in Weiss and Kumar 1988). There is some evidence of protection against
lethality for mice administered the following antioxidants after irradiation: super-
oxide dismutase (Petkau 1987), vitamin A (Seifter et al. 1984) and vitamin E
(Malick et al. 1978). There is evidence, mostly in vitro, that thiols administered
post-irradiation can enhance DNA repair (Riklis 1983) and reduce mutagenic
effects (Grdina et al. 1985); however, mercaptopropiorylglycine does protect
against radiation-induced chromosome aberrations in bone marrow when admini-
stered to mice after irradiation (Umra Devi and Thomas 1989).

Although it is unlikely that compounds administered after irradiation will have
a greater effect than those administered before irradiation that intercept or immedi-
ately repair damage or enhance repair mechanisms, from a practical point of view it
is important to develop therapeutic agents, such as immunomodulators or biological
response modifiers, that would enhance hematopoietic and immunological
responses even when administered during the post-irradiation period.

The first and longest-studied of this class is endotoxin. When studying newer
immunomodulators it is useful to recall that although endotoxin is most effective
when administered 24 h before irradiation, it provides slight protection when
administered shortly before or even after radiation exposure (Ainsworth 1988). An
effective category of radioprotectors of the immunomodulator class is polysac-
charides. The extensive studies of Patchen (reviewed in Patchen et al. 1988)
indicate that glucan (β-1,3 polygluc0se) acts as a biologic response modifier when
it protects against radiation exposure, e.g. when particulate glucan is given 24 h
before irradiation. However, the work of Maia et al. (1986) indicates that glucan
and related polysaccharides may also act as free radical scavengers, because high
levels of protection can be obtained by some polysaccharides when they are given
shortly before irradiation (similar to aminothiohs). Our studies (Weiss and Kumar
1988), using synthetic radioprotector/immunomodulators other than glucan, such
as diethyldithiocarbamate (DDC) and levamisole, suggest that many immuno-
modulators can modulate oxidative processes and some exhibit both pro-oxidant
and antioxidant properties. These anomalies point out that it is sometimes difficult
to classify radioprotective agents into rigid categories. Also different mechanisms
may predominate, depending on dose and time of delivery. Differences in cell
biochemistry among organs or between normal and tumor tissue can result in
Radoprotectors by combined agents

Differential effects, including protection in one tissue and radiosensitization or toxicity in another. DDC is an example of a thiol protector with different effects (Kumar et al. 1986). These factors must ultimately be taken into consideration when choosing protectors of differing mechanisms for use in combinations.

2. Receptor-mediated radioprotection

Identification of specific receptors for many radioprotectors presents a great advantage as it allows a better understanding of the mechanisms of action of radioprotective agents at the cellular level. This diverse class of radioprotective agents, having known receptors, has many subclasses and would include the bioactive lipids, naturally occurring peptides, and some synthetic compounds. Bioactive lipids that are radioprotective include metabolites of arachidonic acid, such as prostacyclin (PG12) and leukotriene C4 (LTC4); synthetic analogs of prostaglandins, such as 16,16 dimethyl prostaglandin E2 (dipGE2); and other phospholipid moieties (platelet activating factor (PAF)). The radioprotective activity of endotoxin, a lipopolysaccharide, is probably related to its lipid component (reviewed by Ainsworth 1988). The extracellular and intracellular activities thought to be involved in receptor-mediated protection are shown in figure 1.

Of the compounds acting through receptor mediation, the most active appear to be dipGE2 (Hanson and Ainsworth 1985, Walden et al. 1987), LTC4 (Walden et al. 1988), PG12 (Hanson 1987), and PAF (Hughes et al. 1989). DipGE2 and LTC4 effectively protect hematopoietic stem cells and intestinal crypt cells and enhance survival of irradiated mice (Hanson and Ainsworth 1985, Hanson 1987a, Walden et al. 1987, 1988). Of the many arachidonic acid metabolites tested, PG12 (Hanson 1987) and the prostaglandin analogue misoprostol (Hanson et al. 1988) also provide a high degree of intestinal protection. All of these compounds are only effective when given before irradiation.

The studies of Walden and co-workers show that the maximum protection attainable by treatment with bioactive lipids (30-day survival of irradiated mice) is in the range of protection afforded by the phosphorothioates. However, when a comparison is made based on administration of equitoxic doses (1/4 LD10), they are not as effective: WR-2721 or WR-3898 > dipGE2 > LTC4 = PAF. The major problems with dipGE2 are extensive diarrhea and behavioral toxicity at radioprotective doses. The eicosanoids mediate many important physiological and pathological reactions, ranging from vasoconstriction to inflammation, thus complicating the elucidation of the mechanisms responsible for their radioprotective properties. In addition, the eicosanoids also function as mediators of radiation injury (inhibitors of prostaglandin synthesis, such as indomethacin, can be radioprotective). Protection may involve events at the cell membrane level and induction of cell hypoxia, as well as profound physiological effects (Walden 1987).

Many biological response modifiers, such as endotoxin and glucan, induce the peptide cytokines interleukin-1 (IL-1) and tumor necrosis factor (TNF), and some of the properties of endotoxin may be due to prostaglandin and leukotriene induction as well. A common feature of synthetic immunomodulators that are protective is their ability to induce cytokines, such as colony-stimulating factors (CSF) and interleukins (Chirigos and Patchen 1988). Although the radioprotective effects of a variety of biological response modifiers may be due to enhancement of hematopoietic recovery, or other effects on a variety of immune cells, this may come about by the release of cytokines, which in turn induce the release of many
mediators, such as the products of arachidonic acid metabolism, and pathways that can be considered inflammatory (Neta 1988). Identification of IL-1 and TNF as protective and therapeutic agents against radiation (Neta 1988, Neta et al. 1988) presents direct evidence that inflammatory pathways participate in prevention of radiation damage and in repair, because these two cytokines are key inflammatory mediators, produced endogenously in response to multiple exogenous insults (infections, trauma and other physical stresses).

IL-1 provides varying degrees of protection, depending on the time of administration in relation to radiation exposure, probably involving a variety of mechanisms (Neta et al. 1988, 1989). These may include induction of hematopoietic growth factors (G-CSF, GM-CSF, IL-3 and IL-6) and induction of scavenging acute-phase proteins and superoxide dismutase, and probably other mechanisms not yet recognized (Durum et al. 1989). The protective effects of single doses of IL-1, whether administered before or after irradiation, contrast with G-CSF, which is effective in improving survival of mice and neutrophil recovery only when it is administered after irradiation in multiple doses (Laver et al. 1990). Most studies of biological response modifiers and cytokines indicate a limit of protection of 1.3 DRF.

Other peptide hormones, such as luteinizing hormone-releasing hormone (LHRH), may also protect through receptor mediation. Pre-treatment of rats with analogs of LHRH produces specific protection from radiation-induced injury to the testes (Schally et al. 1987). This may have important clinical applications. Methylxanthines, isoproterenol and norepinephrine act through receptors to increase cellular cyclic AMP levels, which might contribute to protective activity.

3. The problem of toxicity and combinations of radioprotective agents

A major question in chemical radioprotection remains: can protective mechanisms be separated from mechanisms of toxicity? As Maisin and Bacq (1975) have emphasized, the goal of non-toxic radioprotection appears difficult to attain because radioprotection and toxicity seem to be intimately linked in all organisms, particularly in mammals. The problem of toxicity of single protectors and combinations...
is more acute when the intended use is at radiation accident sites or in space, where performance is an important factor. Behavioral and other toxicities are less problematic in clinical applications, where side-effects can be controlled. Clinical studies with WR-2721 have shown that it produces a variety of side-effects, including nausea, vomiting and hypotension (Blumberg et al. 1982). Animal studies indicate that WR-2721 also produces a decrement in performance (Bogo et al. 1985, Landauer et al. 1987). The use of WR-2721 as an adjunct to radiotherapy and chemotherapy should prove beneficial (Glover et al. 1988), especially if side-effects could be minimized. Similarly, because of exploitable differences in eicosanoid metabolism between normal and tumor tissue, the use of these bioactive lipids as protectors (or inhibition of their synthesis) in cancer treatment may some day be a reality (Walden 1987, Hanson et al. 1988). Protective cytokines, such as IL-1 and G-CSF, may also have considerable side-effects, but they are in clinical use.

Performance decrement must be evaluated when developing radioprotectors for uses where behavioral toxicity would be an unacceptable side-effect. In a series of studies, Landauer and co-workers demonstrated that the most effective protectors have the greatest behavioral side-effects, as measured by alterations in locomotor activity (Landauer et al. 1989b). In general, biological compounds produce decrements at least as large as chemical radioprotectors. Studies demonstrate that when radioprotective efficacy is compared on the basis of doses with equal behavioral toxicity, WR-2721 and WR-3689 (which have undesirable behavioral effects) are still superior to other radioprotectors tested.

There is now considerable evidence suggesting that the use of combinations of agents is a valid concept (Maisin et al. 1968, Patchett et al. 1989, Szanyik and Santha 1976, Uma Devi and Thomas 1988, Weiss et al. 1987). A review of data on combined radioprotection indicates that the maximum achievable DRF, using combinations of protectors, will be approximately 3. However, it is extremely unlikely that this will prove practical because of concomitant toxicity. A more reasonable approach is to use combinations providing a lower DRF but acceptable toxicity. In addition, DRFs obtained with combined lower doses of protectors can be further extended by bone marrow transplants and other supportive care administered after irradiation. When the intended use of a combination of protectors is as an adjunct to radiotherapy, appropriate preclinical testing must be done to determine how the combination alters tumor protection versus normal tissue protection.

Throughout the remainder of this paper we discuss protection against γ- or X-irradiation by combinations of agents, illustrated also by previously unpublished data. In all radioprotection studies reported in the tables, CD2F1 male mice were irradiated bilaterally with cobalt-60 at 1 Gy/min. The LD50/30 for saline-treated mice was 8.0–8.5 Gy. Other experimental details are given in Weiss et al. (1987) and Landauer et al. (1987).

4. Combinations of metals and phosphorothioates

Treatment of mice with salts of various metals (copper, zinc or selenium) provided a small radioprotective effect. Therefore, it was of interest to determine whether combinations of metals and thiol compounds would be beneficial. We first concentrated on selenium (Se) because of its known inter-relationship with endogenous antioxidant defense systems, such as vitamin E and glutathione peroxidase (Jacobs et al. 1983). The effect of Se, as sodium selenite, on the acute toxicity and
radioprotective effect of WR-2721, was studied in male CD2F1 mice (Weiss et al. 1987). Injection of 1.6 mg/kg Se 24 h before WR-2721 (800–1200 mg/kg, i.p.) decreased the lethal toxicity of WR-2721 significantly. Se injection alone (1.6 mg/kg) 24 h before cobalt-60 irradiation increased survival (DRF = 1.1). An enhancement of the protective effect of WR-2721 also occurred when Se was injected 24 h before WR-2721 (200–600 mg/kg, i.p., 0–5 h before irradiation). For example, after exposure to 22 Gy (1 Gy/min), 30-day survival was 100 per cent when mice were treated with both Se and 600 mg/kg WR-2721, and 13 per cent when they were treated with WR-2721 alone. The DRFs for 30-day survival after 400 mg/kg WR-2721 were 2.6 with Se and 2.2 without Se pre-treatment.

Pre-administration of zinc aspartate 2 min before cysteamine or 2-β-aminoethylisothiouronium-Br-HBr (AET) increased the radioprotective effect of the thiol (Floersheim and Floersheim 1986). Brown et al. (1988) demonstrated that zinc chloride administration 5 min before WR-2721, resulted in an increase in both the hematopoietic and gastrointestinal DRFs.

In subsequent studies we compared the effects of Se, zinc (Zn) as zinc chloride and copper (Cu) as copper sulfate. We used lower doses than those used previously in combination with thiol, and WR-2721 was also administered at a relatively low dose. Mice were either pre-treated with the metals, or the metals were administered simultaneously with WR-2721. Table 1 compares the effects of the metals on the lethal toxicity of WR-2721 (1000 mg/kg). Cu pre-administration (3 h or 24 h) resulted in an increase in survivors, but simultaneous administration with WR-2721 was not effective. Zn was effective when it was given 3 h before WR-2721. Although this study was done with a small number of animals, the results suggest that Se was more effective than the other metals when it was given simultaneously with WR-2721.

Table 2 shows that pre-treatment with each of the three metals at −3 h enhances radioprotection by WR-2721 (200 mg) at 14 Gy exposure when all treatments were i.p. However, when WR-2721 was administered orally and the metals i.p., Se was not effective, whereas Cu and Zn had a small effect. Table 3 shows the comparative radioprotective effects of solutions of metals and WR-2721 combined. In this situation, Se was the most effective, in a similar way to its effect on the lethal toxicity of WR-2721 (Table 1).

Table 1. Effect of metals (0.8 mg/kg, i.p.) on lethal toxicity of WR-2721 (1000 mg/kg, i.p., CD2F1 male mice).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>30-day survivors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR-2721</td>
<td>1/30</td>
</tr>
<tr>
<td>Cu at −3 h</td>
<td>9/10</td>
</tr>
<tr>
<td>Cu at −24 h</td>
<td>7/10</td>
</tr>
<tr>
<td>WR-2721 and Cu simultaneously</td>
<td>1/10</td>
</tr>
<tr>
<td>Zn at −3 h</td>
<td>8/10</td>
</tr>
<tr>
<td>Zn at −24 h</td>
<td>0/10</td>
</tr>
<tr>
<td>WR-2721 and Zn simultaneously</td>
<td>1/10</td>
</tr>
<tr>
<td>Se at −3 h</td>
<td>4/10</td>
</tr>
<tr>
<td>Se at −24 h</td>
<td>3/10</td>
</tr>
<tr>
<td>WR-2721 and Se simultaneously</td>
<td>3/10</td>
</tr>
</tbody>
</table>
Table 2. Effect of pre-treatment with metals (0.8 mg/kg, i.p., -3 h) on radioprotection by WR-2721 in CD2F1 male mice.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>30-day survivors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR-2721 (700 mg/kg, p.o.), 1 h before irradiation (14 Gy cobalt-60)</td>
<td>WR-2721 (700 mg/kg, p.o.), 1 h before irradiation (14 Gy cobalt-60)</td>
</tr>
<tr>
<td>+ Cu</td>
<td>11/16 (69%)</td>
</tr>
<tr>
<td>+ Zn</td>
<td>18/32 (56%)</td>
</tr>
<tr>
<td>+ Se</td>
<td>3/32 (9%)</td>
</tr>
</tbody>
</table>

WR-2721 (200 mg/kg, i.p.), 30 min before irradiation (14 Gy cobalt-60) | WR-2721 (200 mg/kg, i.p.), 30 min before irradiation (14 Gy cobalt-60) | 15/40 (38%) |
+ Cu	34/40 (85%)
+ Zn	27/40 (68%)
+ Se	34/40 (85%)

The results of metal effects on toxicity and radioprotection by WR-2721 suggest different mechanisms for the potentiation by metals of thiol radioprotection. Floersheim and Floersheim (1986) suggested that Zn stabilizes thiol protectors, but there is little experimental evidence for this mechanism. Inhibition of alkaline phosphatase by metals would alter the kinetics of conversion of WR-2721 to its active free thiol WR-1065. This might occur with higher concentrations of Zn (Brown et al. 1988) or Se (Weiss et al. 1987). The improvement in radioprotective effect of WR-2721 by Se and/or suppression of toxic metabolites formed during metabolism of WR-2721 may be due to induction of glutathione peroxidase activity by Se administration (Kumar et al. 1988). It is possible that other endogenous protective organometallic compounds are formed when the metals are injected, or the metals are forming new compounds by reacting with WR-1065. This appears to be most likely in the case of Se (Kumar and Weiss 1989).

Because oxygen plays an important role in the modulation of radiation sensitivity, modulation by metals of oxygen uptake by WR-1065 was investigated using an in vitro model system (Kumar and Weiss 1989). The highest rate of oxygen consumption by WR-1065 occurred in the presence of Cu, followed by Se, and Zn had very little effect. Purdie et al. (1983) suggested that WR-1065 is oxidized to the disulfide, and the consequent anoxia may contribute to protection by the drug. Our studies indicate that formation of the disulfide of WR-1065 is accelerated in the presence of increased levels of Cu. Earlier in vivo work by Yuhas et al. (1973)...

Table 3. Radioprotection in CD2F1 male mice by combined treatment with WR-2721 and metals. Solutions of WR-2721 (200 mg/kg) and metals (0.8 mg/kg) administered i.p. simultaneously 30 min before irradiation.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>14 Gy</th>
<th>15 Gy</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR-2721</td>
<td>8/16 (50%)</td>
<td>1/16 (6%)</td>
</tr>
<tr>
<td>WR-2721 and Cu</td>
<td>11/16 (69%)</td>
<td>9/16 (56%)</td>
</tr>
<tr>
<td>WR-2721 and Zn</td>
<td>13/16 (81%)</td>
<td>5/16 (31%)</td>
</tr>
<tr>
<td>WR-2721 and Se</td>
<td>16/16 (100%)</td>
<td>13/16 (81%)</td>
</tr>
</tbody>
</table>
showed that the protective effect of WR-2721 was probably influenced by oxygen tension. Denekamp et al. (1982) reported that an optimum level of oxygen is needed for maximum protection with WR-2721, and protection is lower below and above that level of oxygen. It is difficult to correlate our in vitro results with the observed radioprotective effects in mice of the metal and WR-2721 combinations, but the studies established that metal ions are important factors in the interaction between sulfhydryl compounds and oxygen with respect to radioprotection.

An important adjunct to studies on radioprotection by combinations of agents are determinations of behavioral toxicity of single agents compared with combinations of agents. Automated quantitation of spontaneous locomotor activity has been found to be a sensitive measurement of the behavioral toxicity of radioprotectors (Landauer et al. 1987). Table 4 summarizes the effects of combinations of metals and WR-2721 on mouse locomotor activity. Mice (n = 11/group) were tested during the nocturnal phase of their light/dark cycle. All treatments resulted in locomotor decrements. Administration of metals alone resulted in an earlier onset of locomotor decrement than the WR-2721 treatment, but it took longer to recover from the decrement produced by WR-2721. When WR-2721 was administered with the metals, the Cu combination resulted in the most severe locomotor decrement, due mainly to the longer recovery time. The Zn and WR-2721 mixture appears to be the least toxic because WR-2721 alone produced a greater performance decrement than the combination. Information on the behavioral toxicity, lethal toxicity and radioprotective effects of combinations can be useful for comparative assessments of combined radioprotective regimens.

5. Combinations of receptor-mediated and other biological compounds with phosphorothioates

The first indication that biological response modifiers or immunomodulators might be effective in combination with thiols resulted from studies of endotoxin and AET. Administration of endotoxin at 24 h and AET 15 min before radiation exposure of mice resulted in greater than additive protection (Ainsworth et al. 1970). Unpublished work by Walden, using detoxified endotoxin (monophosphoryl lipid A) injected at −24 h, produced an additive effect with WR-2721 administered at −30 min.

The combined use of WR-2721 and diPGE₂ has been investigated (Hanson 1987a, Steel et al. 1988, Landauer et al. 1989b). The studies have shown a favorable protective response with γ-irradiation. When WR-2721 was administered 15 min before irradiation with 0.4 mg/kg diPGE₂ given 5 min before irradiation, 30-day survival increased as compared with that of WR-2721 alone. In this case, protection by the combined agents was slightly less than additive. The DRF for WR-2721 (200 mg/kg) was 1.9; for diPGE₂, 1.45; and for the combination, 2.15. A protective response that was greater than additive was obtained for survival at 6 days when diPGE₂ was administered 1 h before irradiation and before WR-2721 (Hanson 1987a). Greater protection of murine intestinal crypt cells was observed after the combined treatment, but protection by high doses of WR-2721 (approximately 300–400 mg/kg) could not be improved by the addition of diPGE₂. The greater protection produced by using the combination of agents in this study could have resulted from the order of administration, which produced different physiological responses, or from modified catabolism of the radioprotectors. Misoprostol, a synthetic analog of prostaglandin E₁, was effective in protecting intestinal clone-
Radioprotection by combined agents

Table 4. Behavioral toxicity (locomotor decrement) in CD2F1 male mice treated i.p. simultaneously with metals (0.8 mg/kg) and WR-2721 (200 mg/kg).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Onset of locomotor decrement (min)</th>
<th>Maximum locomotor decrement (min)</th>
<th>Time to recover from decrement (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR-2721</td>
<td>25</td>
<td>25</td>
<td>70</td>
</tr>
<tr>
<td>Se</td>
<td>15</td>
<td>15</td>
<td>70</td>
</tr>
<tr>
<td>WR-2721 and Se</td>
<td>10</td>
<td>20</td>
<td>95</td>
</tr>
<tr>
<td>Cu</td>
<td>10</td>
<td>10</td>
<td>66</td>
</tr>
<tr>
<td>WR-2721 and Cu</td>
<td>10</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>Zn</td>
<td>10</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>WR-2721 and Zn</td>
<td>20</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

...and genic cells when combined with WR-2721 (Hanson et al. 1988). The combination of misoprostol (25 µg/mouse) followed by a high dose of WR-2721 (10 mg/mouse) extended the longevity of mice irradiated with 20 Gy and 23.5 Gy.

When WR-2721 followed by diPGE₂ was administered before fission neutron irradiation, there was no improvement in the survival of mice compared with those given WR-2721 alone (Steel et al. 1988). Behavioral toxicity studies conducted on mice receiving the combination of WR-2721 and diPGE₂ demonstrated a greater behavioral decrement measured by locomotor activity than those produced by either agent alone (Landauer et al. 1989b).

Although Maisin et al. (1986) failed to find improved radioprotection with polysaccharides and AET, Patchen et al. (1990) reported enhanced protection by WR-2721 in combination with glucan. The protective effect (DKF 1-2) of particulate glucan administered at -20 h was additive with the protective effect of WR-2721 (200 mg/kg, -30 min). Furthermore, an even greater protection was obtained when Se was also given at -20 h. Treatment with each of the three agents, which act by different mechanisms, resulted in an increase in hematopoietic stem cells (endogenous spleen colony-forming unit assay). Treatment with the combination of the three agents was most effective in this regard, as well as in accelerating bone marrow and splenic granulocyte-macrophage colony-forming cell regeneration (Patchen et al. 1990). A greater than additive effect was obtained when WR-2721 was given before irradiation and soluble glucan (Glucan-F) was administered after irradiation (Patchen et al. 1989). This study established a potential role for the post-irradiation use of immunomodulators in combination with traditional thiol radioprotectants. Such combinations appear to depend on the sequential thiol-mediated cell protection and immunomodulator-mediated hematopoietic stimulation.

We demonstrated that IL-1 was effective in improving the survival of irradiated CD2F1 mice when it was administered at times ranging from 20 h before to 2 h after radiation exposure. When administered after irradiation in combination with WR-2721 (200 mg/kg, -30 min), IL-1 enhanced survival at radiation doses (15-16 Gy) causing hematopoietic and gastrointestinal injury (Neta et al. 1989). Table 5 shows the effect of simultaneous administration of IL-1 (human recombinant interleukin-1, Hoffmann-LaRoche) and WR-2721 at 30 min before irradiation. IL-1 alone has no protective effect at the high radiation doses tested. Greater than additive
radioprotective effects of combinations of WR-2721 and IL-1 in CD2F1 male mice. Simultaneous i.p. administration 30 min before irradiation.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>14 Gy</th>
<th>15 Gy</th>
<th>18 Gy</th>
<th>20 Gy</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR-2721 (200 mg/kg)</td>
<td>14/32 (44%)</td>
<td>0/24 (0%)</td>
<td>14/32 (44%)</td>
<td>1/32 (3%)</td>
</tr>
<tr>
<td>+ IL-1 (4 µg/kg)</td>
<td>23/24 (96%)</td>
<td>6/16 (38%)</td>
<td>30/32 (95%)</td>
<td>15/32 (47%)</td>
</tr>
<tr>
<td>+ IL-1 (400 µg/kg)</td>
<td>16/16 (100%)</td>
<td>13/16 (81%)</td>
<td>25/32 (78%)</td>
<td>6/32 (19%)</td>
</tr>
</tbody>
</table>

The radioprotective effect of WR-2721 was observed with combinations of IL-1 and 200 mg/kg WR-2721 (1/4 the LD₁₀ dose) or 400 mg/kg WR-2721. The higher dose of IL-1 (400 mg/kg) did not provide much benefit over the lower dose (4 µg/kg). WR-2721 may be protecting hematopoietic stem cells, which in turn may be amplified because of IL-1 administration. Whether similar explanations can be used to account for improved protection with WR-2721 and IL-1 in the gastrointestinal dose range is being investigated. Although the biochemical mechanisms of protection by IL-1 are unclear, it is known that IL-1 treatment of mice induces ceruloplasmin and metallothionein (reviewed by Neta 1988), both of which have antioxidant and possible radioprotective effects. The induction of superoxide dismutase by IL-1 also was observed recently in vitro (Masuda et al. 1988). Vaishnav et al. (1989) showed that IL-1 can induce manganese-superoxide dismutase in vitro, but only at 6 h after administration with the higher dose (400 µg/kg). Therefore, superoxide dismutase may contribute to the radioprotective effect of IL-1, but may not be the only radioprotective mediator.

It would be useful to combine more than one cytokine with a phosphorothioate, because additive protection has been observed with combinations of cytokines or biological response modifiers: IL-1 and TNF (Neta et al. 1988), IL-1 and G-CSF (Laver et al. 1990) and glucan and BM41.332 (Patchen et al. 1988). Presently, the only recommended biological factors for the treatment of radiation injuries in humans are recombinant G-CSF and GM-CSF (Browne et al. 1990) because more clinical data are available for these agents. Because WR-2721 is also in clinical use, animal studies on combinations of pre-irradiation administration of phosphorothioates combined with post-irradiation administration of G-CSF or GM-CSF show promise for early acceptance for human use (Patchen and MacVittie, unpublished work). The further addition of post-irradiation bone marrow transplants has been shown previously to be of value with a number of protectors, for example, in combination with IL-1 (Oppenheim et al. 1989).

6. **Combinations of casein and phosphorothioates**

Research on chemical radioprotectors needs to be expanded to include studies on drugs that will prevent radiation-induced behavioral disruption and per-
Table 6. Effect of caffeine on radioprotection by WR-3689 in CD2F1 male mice. Simultaneous oral administration 1 h before irradiation.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>10 Gy</th>
<th>11 Gy</th>
<th>12 Gy</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR-3689 (400 mg/kg)</td>
<td>12/32 (38%)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>+ caffeine (40 mg/kg)</td>
<td>14/32 (44%)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>WR-3689 (500 mg/kg)</td>
<td>4/8 (50%)</td>
<td>2/8 (25%)</td>
<td>—</td>
</tr>
<tr>
<td>+ caffeine (40 mg/kg)</td>
<td>10/16 (63%)</td>
<td>4/16 (25%)</td>
<td>—</td>
</tr>
</tbody>
</table>

Acknowledgements

This research was supported by the Armed Forces Radiobiology Research Institute, Defense Nuclear Agency, under work units 00162 and 00159. Views presented in this paper are those of the authors; no endorsement by the Defense Nuclear Agency has been given or should be inferred. Research was conducted according to the principles enunciated in the 'Guide for the Care and Use of Laboratory Animals' prepared by the Institute of Laboratory Animal Resources, National Research Council. WR-2721 and WR-3689 were obtained from the Drug Synthesis and Chemistry Branch, Division of Cancer Treatment, National Cancer Institute, Bethesda, MD. The assistance of the technical staff of the Radiation Biochemistry and Behavioral Sciences Departments, AFRRI, is gratefully acknowledged.

References

Radio protection by combined agents

