
February 1990 Report No. STAN-CS-90-1303

: ri:COPY

A Mediator Architecture for Abstract Data Access

N
N by

CWiederhold, Risch, Rathmann, DeMichiel, Chaudhuri, Lee, Law, Barsalou,
Quass

Department of Computer Science

Stanford University

Stanford, California 94305

DTIC
* ELECTE

OCTO 3

T~u~r~o E'A z

......... ,.
VTh1TMION STATM~ff Ti

Approved fca publIc rebmo..;

SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Stanford University
(if applicable)

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Department of Computer Science
Stanford, CA 94305

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) N00039-84-C-0211

DARPA I
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Arlington, VA ELEMENT NO NO NO = ACCESSION NO

11 TITLE (Include Security Classification)

A Mediator Architecture for Abstract Data Acces

12 PERSONAL AUTHOR(S)
Gio Wiederhold, et al.

13a TYPE OF REPORT 13b TIME COVERED 14, DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Final report I FROM 19B5 TO1 990 February, 1990
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Databaes7, knowledge bases, future information systems

19 ABSTRACT (Continue on reverse if necessary and ide tafy by block number)

, This report contains some concept papers describing the general architecture
that we envisage to be appropriate for future information systems, as well as
a number of papers with specific research results.

The architecture presented here is conceived to deal with a wide
variety of users, in many locals, served by many distinct experts, and
using a wide variety of databases. It is not feasible for any single
institution to address the entire problem. At Stanford,--within the KBMS
project, we have addressed a number of critical subtasks, butm more
work needs to be done. While some results are ready for prototys
implementation, the main motivation for issuing this report is to \
provide an overview with enough detail in some areas to allow the
reader to gain insights into a direction that future information
systems research needs to pursue.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFI ATIO

o UNCLASSIFIED/UNLIMITED [SAME AS RPT 0 DTIC USERS-

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Gio Wiederhold 415-723-0872
DO Form 1473, JUN 86 Previous editions are obsolete SFrIIRITY rl A-.SIFICATION OF TI1S PAGE

S/N 0102-LF-014-6603

A Mediator Architecture for Abstract
Data Access

Gio Wiederhold*l§ Tore Rtischl Peter Rathmann*
Linda DeMichiel* Surajit Chaudhuri*

Byung Suk Lee* Kincho H. Law$ Thierry Barsalou*§
Dallan Quass*

February 23, 1990

*supported by DARPA N00039-84-C-0211
tsupported by Hewlett-Packard, at the Stanford Science Center
tsupported by the CIFE project in the Stanford Civil Engineering Department
5supported by NLM R01-LM04836

Accession For

NTIS "P A. I
D ,T TAB
Um-irI;icu~ncted 0

- 2 Ju:t I AICat Io

Di (tvlbution_

Availability Codes
..Awl and/or

Dist Spoclal

Introduction K

This report contains some concept papers describing the general architecture
that we envisage to be appropriate for future information systems, as well as

a number of papers with specific research results.
The architecture presented here is conceived to deal with a wide variety of

users, in many locations, served by many distinct experts, and using a wide
variety of databases. It is not feasible for any single institution to address the

entire problem. At Stanford, within the KBMS project, we have addressed
a number of critical subtasks, but much more work needs to be done. While
some results are ready for prototype implementation, the main motivation for
issuing this report is to provide an overview with enough detail in some areas
to allow the reader to gain insight into a direction that future information

systems research will have to pursue.
The mediator concept, basic to this architecture, envisages smart modules

to be interposed between the users' workstations and the underlying infor-
mation resources. At the base of this system hierarchy can be all types of
databases, often autonomous and maintained by a variety of organizations.

Mediator modules understand the semantics of the databases. This un-

derstanding is due to knowledge which experts have contributed. The knowl-
edge must cover both the syntax of access and the semantics of the data
being accessed. Knowledge maintenance is important for long-term viabil-
ity of these modules in this architecture. The users' workstations select and
access those mediators appropriate for the information task at hand. User
pragmatics and display functions are embodied within their own application

modules.
A variety of interactions will occur among the modules; several are de-

scribed in the papers collected in this report. An impiementation of these
notions will depend greatly on effective, high-speed cormwunication networks.

iI

The first two papers provide general conceptual guidance. In [1]* the data
engineering motivations for the architecture is presented, while [2] presents an
initial formalism to deal with complexity of combining information processed
via distinct mediators.

In [3] we present our specific research architecture. An important point
is that we partition pragmatic and formally managed knowledge amoung the
users' and the experts' mediator modules. We believe that this partitioning
is essential for the growth of knowledge-based systems. The concepts under-
lying one type of mediator module, namely abstraction by generalization, are
presented in [4].

The interfaces with the underlying databases are a critical concern. We
will often want to combine base information which has differences in semantic
scope and representation. An algebra to deal with this problem is presented
in [5]. In [6] triggering mechanisms are defined for a database so that the
expert's and user's knowledge can be maintained as the base data, which
represent the real world, change.

As data move from databases to mediators, the relational representation
is typically changed to an object- or frame-based representation. A related
project, PENGUIN, focuses on this issue; we include one paper illustrating the
application of those concepts in a Civil Engineering application [7]. Effi-
ciency is a concern during this transfer. Since we expect to operate in a
fully distributed environment, optimization criteria change, as exemplified
in [81, where the requirement for outerjoin computation for remote object
generation has been addressed.

We are continuing to work on more research issues in this environment,
and are planning to cooperate with a number of other institutions in this
work. If possible, we will participate in annual workshops devoted to these
issues. The 1990 workshop is being organized by Prof. Yuri Breitbart of
the University of Kentucky. Other papers produced at Stanford related to
this work are cited in these papers. Please contact the authors if you need
copies.

*The references cite the paper number in the table of contents

ii

Contents

Introduction 1

1 The Architecture of Future Information Systems
Gio Wiederhold 1

2 Monotonic Combinations of Non-Monotonic Theories
Peter K. Rathmann 37

3 Partitioning and Composing Knowledge
Gio Wiederhold, Peter Rathmann, Thierry Barsalou, Byung Suk Lee,
and Dallan Quass.
Published in Information Systems 52

4 Generalization and a Framework for Query Modification
Surajit Chaudhuri
Published in the Proceedings of the 6th International Conference on
Data Engineering, Feb. 1990 72

5 Resolving Database Incompatibility
Linda DeMichiel
Published in IEEE Transactions on Knowledge and Data Engineer-
ing 80

6 Tuning the Reactivity of Database Monitors
Tore Risch
Published in Very Large Databases, August 1989, Morgan Kaufman 104

iii

7 Management of Complex Structural Engineering Objects in
a Relational Framework
Kincho H. Law, Thierry Barsalou and Gio Wiederhold 125

8 Prescribing Inner/Outer Joins for Instantiating Objects from
Relational Databases through Views
Byung Suk Lee and Gio Wiederhold 147

iv

The Architecture of Future Information Systems

Gio Wiederhold
Stanford University

February 14. 1990

Abstract

The installation of high-speed networks using optical fiber and high bandwidth messsage

forwarding gateways is changing the physical capabilities of information systems. These

capabilities must be complemented with corresponding softeNxare systems advances to obtain

a real benefit. Without smart software we will gain access to more data. but not improve

access to the type and quality of information needed for decision making.

To develop the concepts needed for future information systems we model information

processing as an interaction of dat- and knowledge. This model provides criteria for a

high-level functional partitioning. These partitions are mapped into information process-

ing modules. The modules are assigned to nodes of the distributed information systems. A

central role is assigned to modules that mediate between the users' workstations and data re-

sources. Mediators contain the administrative and technical knowledge to create information

needed for decision-making. Software which mediates is common today, but the structure, the

interfaces, and implementations vary greatly, so that automation of integration is awkward.

By formalizing and implementing mediation we establish a partitioned information svs-

tems architecture which is of managable complexity and can deliver much of the power that

technology puts into our reach. The partitions and modules map into the powerful dis-

tributed hardware that is becoming available. We refer to the modules that perform these

services in a sharable and composable way as mediators.

We will present conceptual requirements that must be placed on mediators to assure

effective large-scale information systems. The modularity in this architecture is not only

a goal, but also enables the goal to be reached, since these systems will need autononmous

modules to permit growth and enable diem to survive in a rapidly changing world.

The intent of this paper is to provide a conceptual fr-amework for many distinct efforts.

The concepts provide a direction for an information processing systems in the foreseeable

future. We also indicate some sub-tasks that are of research concern to us. In the long range

the experience gathered by diverse efforts may lead to a new layer of hi gh-level coiiiiiiii cat 1011

standards.

1. Introduction

Computer- based information systems, connected to world-wide high-speed networks pr)vidh

increasingly rapid access to a wide variety of data resources [Mavo:89]. This technology opens

up possibilities of access to data, requiring capabilities for assimilation and analysis which

greatly exceed what we now have in hand. Without intelligent processing these advances

will have only a minor benefit to the user at a decision-making level. That brave user will

be swamped with ill-defined data of unknown origin.

1.1 The problems

We find two types of problems: for single databases the volume of data. the lack of ab-

straction, and the need to understand the data representation hinder end-user access: for

jointly processing information from multiple databases the mismatch problem of information

representation and structure is the major concern.

Volume

The volumne of data can be reduced by selection. It is not coincidental that SELECT is the

rinicipal operation of relational database management systems, but selected data is still at

too fine a level of detail to be useful for decision making. Further reduction is achieved by

bringing data to higher levels of abstraction. Aggregation operations as COUNT, AVERAGE,

SD, MAX, MIN, etc. provide some computational facilities for abstraction, but any such

abstraction is formulated within the application using some domain knowledge.

Type of abstraction Example
Base data A bstraction

Granularity Sales detail -* Product summaries

Generalization Product data -* Product type

Temporal Daily sales -* Seasonally adjusted monthly sales

Relative Product cost. --+ Inflation adjusted trends

Exception recognition Accounting detail -- Evidence of fraud

Path computation Airline schedules -- Trip duration and cost

Figure 1. Abstraction functions.

For most base data. more than one abstraction must be supported - for the salesmanager

3

the aggregation is by sales region. while for inarketing aggregations ,v customer iComne are

apl)ropriate. Examples of required abstraction tyvpes are give iII Fig. 1.

Computational requirements for abstraction are often complicated. The groupings to

define abstractions may for instance involve recursive closures. These cannot be specified

with current database query languages. Application programs are then written by sp,-

cialists to reduce the data. The use of specific data-processing programs as intermnediaries

diminishes flexibility and responsiveness for the end user. Now the knowledge that creates

the abstractions is hidden and hard to share and reuse.

Mismatch

Data obtained from remote and autonomous sources will often not match in terms of naniing.

scope, granularity of abstractions. temporal bases, and domain definitions, as listed in Figure

2. The differences shown in the examples must be resolved before automatic processing cn

join these values.

Type of mismatch Example

Domain s

Key difference Alan Turing:The Enigma versus QA29.T8H63

reference for reader reference for librarian

Scope difference employees paid versus employees available

include, retirees includes consultants

Abstraction grain personal income versus family income

from employ mcnt for taxation

Temporal basis monthly budget versus weekly production

central office factory

Domain semantics postal codes versus town names

one ca. cover multiple places can have multiple codes

Value semantics excessive-pay versus excessive-pay

per znternal revenue servive per board of directors

Figure 2. Mismatches in data resources.

Without an extended processing paradigm, as proposed in this paper. the information

needed to initiate actions will be hidden in ever larger volumes of detail, scrollable on ever

4

larger screens, in ever smaller fonts. In essence, the gap between information and data will

vet be wider than it is now. Knowing that information exists, and is accessible creates

expectations by end-users. Finding that it is not available in a useful form or that it cannot

be combined with other dat;i creates confusion and frustration. We believe that the objection

made by some users about computer-based systems, that they create information overload.

is voiced because those users get too much of the wrong kind of data.

1.2 Use of a model

In order to visualize the requirements we place on future information systems, we consider

the activities that are carried out today whenever decisions are being made. The making of

informed decisions requires the alpplication of a variety of knowledge to information about

the state of the world. To clarify the distinction of data and and knowledge in our model we

rest ate' a definition from [Wicderhold:S6B].

Data describes specific instances and events. Data may gathered automatically or clerically.

The correctlness of data can be verified vis-a-vis the real world.

Knowledge describes abstract classes. Each class typically covers many instances. Experts

aire needed to gather and formalize knowledge. Data can be used to disprove knowledge.

To manage the variety of knowledge, we employ specialists, and to manage the volume of

data, we segment our databases. In these partitions partial results are produceci, abstracted.

and filtered. The problem of making decisions is now reduced to the issue of chosing and

evaluating the significance of the pieces of information derived in those partitions and fusing

the important, portions.

For example. an investment decision for a manufacturer will depend on the fusion of

information on its own production capability versus that of others, of its sales experience in

related products, of the market for the conceived product at a certain price, of the cost-to-

price ratio a.ppropriate for the size of the market, and its cost of the funds to be invested.

Specialists will consider these diverse topics, and each specialist will consult multiple data

resources to support their claims. The decision maker will fuse that information, using

considerations of risk and long-range objectives in combining the results.

An effective architecture for future information systems must support automated in-

formation acquisition processes for decision-making activities. By default, we approach the

solution in an manner analogous seen in human-based support systems. While we model the

system based on abstractions from the world of human information processing, we do not

constrain the architecture to be anthropomorphic and to mimic human behavior. There are

many aspects of human behavior which we have not yet been able to capture and formalize

5

adc, lateuly. Our goal is merely to define an architecture wholly composed of pieces of soft-

wNa (hat are availabtc or appear to l)e attainable in a modest tinieframe, say ten years. The

deiiiands of the software in terms of processing cost should be such that modern hardware

can deal with it.

1.3 Current state

Wc are not starting fr(ml a zero base. Systems are becoming available now with the capabil-

ities envisaged lby Vanirevar Bush for his MEMEX in 1945 [Bush:45]. We can select and scroll

infonli ation oii our workstation displays, we have remote access to data and can present the

values (on one of multiple windows, we can insert documents into files in our workstation,

a1(l we canl annotate text and graphics. We can reach conclusions based on this evidence

and advise ot hers of decisions made.

()ur Ncisi m in this paper is intended to carry us beyond, specifically to provide a basis

flr altoiiiated integration of such information. Our current systems, as well as MEMEX, do

li)t l(he>s that phase.

2. A Model of Information Processing

Tie (objective of obtaining information was already clearly stated by Shannon [Shannon:48].

Infrnmatim enables us to decide among several actions which are otherwise not distinguis-

able. Consider again a simple business environment. A factory manager needs sales data

to set production levels. A sales manager needs demographic information to project future

sales. A customer wants price and quality information to make purchase choices.

Most of the information needed by the peo ple in the examlple can be represented by fac-

tual data and should be available on some coml)uter somewhere. Communication networks

have the potential to make data a vailable wherever it is needed. However, to make the deci-

sons. a considerable amount of knowledge has to be applied as well. Today, most knowledge

is made available through a variety of administrative and technical staff in an institution

[Waldrop:S4]. Some knowledge is encoded in data-processing programs and expert systems

for automated processing.

The process of generating supporting information does not differ much in partially au-

tonlated or manual systems. In manual systems the decision maker obtains assistance from

staff and colleagues who peruse files and prepare sumiarizations and documentation for their

advice. In automated systems the staff is likely to use computers to prepare these documents.

The decisimi-niaker rarely uses the computer. because the information from multiple sources

is (ifficult to integrate automatically.

6

2.1 The processing and the application of knowledge

A technician will know how to select and transfer data from a remote coml)uter to one

used for analysis. A data analyst will understanid the attributes of the data and define

the functions to combine and integrate the data [de'Michiel:89]. A statistician may provide

procedures to aggregate data on custommiers into groups that present distinctive behavior

patterns. A psvchoiogist may provide classification parameters that characterize the groups.

Finally, a manager has to assess the validity of the classifications that have been made.

use the information to make a decision. and assume the risk of making the decision. A

public relations person may take the information and present it in a manner that can be

explained to the stockholders, to whom the risk is eventually distributed. Since these tasks

are characterized bv using data and knowledge gathered in the past, with the objective of

affecting the future, we will refer to these tasks as planning. Our definition of planning is

broader than that used in Artificial Intelligence research [Cohen:S2], although the objectives

are the same. To be able to deal with these planning actions in a focused way. we will model

the information processing aspects.

There is a recurring activity here:

1 Data are made available. These are either factual observations, or results from prior
processing, and combinations thereof.

2 Knowledge is made available. It derives from formal training and experience.

3 Knowledge about the data and its use is applied in two phases:

i Selection: subsets of available data are
(1) defined, (2) obtained, and (3) merged.

ii Reduction: the data found are summarized to an appropriate level of abstraction.
4 Several such results are made available and fused.
5 The combined informati,,n is utilized in two ways:

i Actions are taken that will affect the state of the world.
ii Unexpected results will be used to augment the experience base of the participants.

and others who receive this information, increasing their knowledge

6 The process loops are closed when
I The actions and their effect is observed and recorded in some database.

ii The knowledge is recorded to affect subsequent data definition, selection, or fusion.

The two distinct feedback loops and their interaction are illustrated in Figure 3. The data

loop closes when the effects of actions taken are recorded in the database. The knowledge

loop closes when recently gained kno-,ledge is anide available so it can be used for further

selection and data reduction decisions.

The interaction is of prime concern for future systems. Tools for the other steps are easy

to identify, we list some in Section 3. We now consider in detail aspects of Step 3 identified

above.

Expeience acquisitionN.o o410i
/ I _ __w-0.I] ~. .Education [Data VlAto

Knowledge Stored Data

knowledge selectiondata
feedback Information feedback

loop ,loop

,.~smmriztion /
abstraction X
integration

learning state changes

Figure 3. The knowledge and data feedback loops, and their interaction.

2.2 Creation of information

Let us identify where during processing information is created. Since getting information

means that something has been obtained that was not known prior to the event, one or inore

of the following conditions have to hold:

1 The information is obtained from a remote source and was previously not known

locally (Step 3.i.2 above). Here the information system must provide communication

support.

A special case of this condition is when a database is used for recall, to pro-

vide data we knew once, but cannot remember with certainty. Here the databa,.

component is used to communicate over time - from the past to the present.

2 Two facts, previously distinct are merged or unified (Step 3.i.3 above). A classiC

although trivial, example is finding one's grandfather via transitivity of parents. Ihi

realistic systems, unification of data also involvcs computation of functions., say tile

average income and its variation of groups of consumers.

3 Multiple results are fused using pragmatic assessments of the quality and risks

associated within Step 4. Here abstractions are combined rather than facts, and the

processing techniques are those associated with symbolic processing in rule-based

expert systems, although they are also found coded in application programs. In

our example the market specialist may want to unify incomes of current consumers

with their reading habits to devise an advertising strategy.

Databases record detailed data for each of many instances or events. Reducing this detail to

a few abstract cases, raises the information content per element. Of these abstractions only

a small, feasible number of justified results is brought to the decision-maker. For instance,

the market analyst has made it possible that decisions do not have to deal with individual

consumers, but with consumer groups. Certain groups may be unlikely purchasers and are

not targeted for promotions.

While the behavior of any individual may not be according to tile rules hypothesized

in the prior steps, the expected behavior of the aggregate population should be close to the

prediction. Failures occur only if we have many errors in the underlying data or serious

errors in our knowledge. Uncertainty, however, is common.

2.3 Uncertainty

We cannot predict the future with certainty. For automation of full-scale information systems

the processing of uncertainty must be supported, although there are subtasks which can

be precisely defined. Uncertainties within a domain may be captured by a formal model.

Although we have the argument that all uncertainty computation can be subsumed by pro-

babilistic reasoning [Cheeseman:85] [Horvitz:S6, it seems that the variety of assumptions

made is based on differences in domain semantics. During analysis uncertain events or states

have to be combined for extrapolation into the future. We still have no overall model to

predict which uncertainty-combining comlmtations will be best for some domain.

To assess the extent of uncertainty affecting predictions we must combine the uncertain

precision of source information, and the uncertainty created at each step where we combine

them. In the various steps, we collect observations based on some criterion - say people

living in a certain postal-code area. We also have data to associate a.n income level with that

postal-code area, and perhaps even an income distribution. At the same time we may know

the income distribution of people buying some product.

It is hence natural to make the conceptual unification step of postal code to potential

9

sales. Unfortunately, there is no logical rcasoii why sucl, a unification should be correct. We

have some formal classes - namely people with a certain postal code. and some other formal-

izable classes based on income; in addition, there are some natural classes. not formalized.

but intuited. In our example some natural classes of interest are the potential purclasers.

of which there are several subgroups. namely those that bought in the past, those that will

buy today, and those that will be buying the planned products. For the future class only

informal criteria can be formulated.

The planner, at the decision-making node will use definable classes - by postal code.

by observed and recorded purchasing patterns - to establish candidate members for the

natural class of potential consumers. These classes overlap - the better the overlap is the

more correct the decision-maker's predictions will be. If we infer over classes that do not

match well, the uncertainty attached to the generated plans will be greater. But uncertainty

is the essence of decision-making and is reflected in the risk that the manager of our example

takes on. We would not need a manager with decision-making skills if we only have to report

the postal codes for our base group of potential consumers.

2.4 Summary of the information model

Effective information is created at the confluence of knowledge and data. For prediction we

use knowledge to conceive rules applicable to natural classes. Selection of data for decision-

making is constrained by being based on formal class definitions. Uncertainty is created

when formal and natural classes are matched.

Communication of knowledge and data is necessary to achieve this confluence. The

communication may occur over space or over time. The information systems we consider

must support both communication and fusion of data and knowledge.

Our systems must also be able to deal with continuing change. Both data and knowl-

edge change over time because the world changes and because we learn things about our

world. Rules that were valid once eventually become riddled with exceptions, and a special-

ist who does not adapt will find his work to become without value. An information system

architecture must deal explicitly with knowledge maintenance.

10

3. Information System Components

We will now characterize the components available today to build information systems. All

these components are positioned along a data highway, provided by modern conmlunication

technology. The interactions of the components will be primarily constrained by logical and

informational limitations, and not by physical linkages. When we place the components into

the conceptual architecture we will recognize lacunae, i.e., places where there are currently

no, inadequate, or uncooperative components. We will see where the components must work

together. Effective systems can be achieved only if the data and knowledge interfaces of the

components are such that cooperation is feasible.

3.1 Data and knowledge resources

There is a wide variety of data resources. We might classify them by a measure of closeness

to the source. Raw data obtained from sensors, such as purchase records obtained by point

of-sale scanners, or, on a different scale, images recorded by earth satellites. are at tie factual

extreme. Census and stock reports contain data that have seen some processing. but will be

considered as facts by most users.

At the other extreme are textual representations of knowledge. Books. research reports,

and library material, in general, contain knowledge, contributed by the writers and their col-

legues. Unfortunately, from our processing-oriented view, that knowledge is not exploitable

without, a human mediator. The text, tables, and figures contained in such documents is

data as well, but rarely in a form that can be transcribed for database processing.

If document information is stored in bibliographic systems, such as DIALOG [Summit:67]

or MEDLINE [Sewell:87], only selection and presentation operations are enabled. Textual

material does not lend itself well to automated analysis, abstraction, and generalization.

Some types of reports, produced routinely, tend to have a degree of structure that makes

some extent of analysis feasible, as demonstrated for chemical data [Callahan:81], pathology

reports [Sager:85], or military event reporting messages [McCune:85].

3.2 Workstation applications

The systems environment for planning activities is provided by the new generations of ca-

pable workstations. For planning the users need to interact with their own hypotheses. save

intermediate results for comparison of effects, and display the alternate projections over time.

This interaction with information establishes the insights needed to gain confidence in one's

decisions.

The user exercises creativity at the workstation. We hence do not try to constrain the

user here at all. By providing comprehensive support for access to information we hope that

11

the complexity of the end-user's applications can be reduced to such an extent that quite

involved analyses remain manageable.

Modern operating and network systems help much with simplifying the users' tasks by

removing concern about managing hardware resources. The architecture presented here is

meant to address the management of information resources, residing on such hardware.

The base information for planning processes has to be obtained from a variety of data

resources. A capable interface is required.

3.3 Mediation

An interface from the users workstation to the database servers which only defines com-

inunication prot ocols and formats in terms of database elements does not deal with the

abstraction and representation problems existing in todays' data and knowledge resources.

The interfaces must take on an active role.

We will refer to the dynamic interface function as mediation. This term includes the

pr'cessing needed to make the interfaces work, the knowledge structures that drive the

transformations needed to transform data to information, and any intermediate storage that

is needed.

To clarify the term we will list some examples of mediation found in current information

systems. This list could be greatly expanded in length an depth. The citations provide

linkages for follow-up; we expect that most readers will have encountered these or similar

functions. Types of mediation functions that have been developed are:

1 Transformation and subsetting of databases using view definitions and object tem-

plates [Chamberlin:75] [Wiederhold:86] [Lai:88] [Barsalou:88]

2 Methods to access and merge data from multiple databases [Smith:81] [Dayal:83]

[Sa.ccA:86]

3 Computations that support abstraction and generalization over underlying data

[Hammer:78] [Adiba:8l] [Ozsoyoglu:84] [Downs:86] [Wiederhold:87] (deZegher:881

[C ichetti:89] [Chen:89] [Chaudhuri:90]

4 Intelligent directories to information bases, as library catalogs, indexing aids, and

thesaurus structures [Humphrey:87] [Doszkos:86] [McCathy:88]

5 Methods to deal with uncertainty and missing data because of incomplete or i-ris-

matched sources [Callahan:81] [Chiang:82] [Litwin:86] [deMichiel:89]

Many more examples can be added. Most readers will have used or created such interface

modules at some time, since we all need information from large, autonomous, and mismatched

sources. A major motivation for expert database systems is mediation. We excluded from the

12

list simple processing techniques that do not depend on knowledge that is extraneous to the

database proper, such as indexes, caching mechanisms, network services, and file directories.

The examples of mediation shown shown are specialized, and tied either to a specific

database or to a particular application, or both. We will now define mediators as modules

occupying an explicit, active layer between the users' applications and the data resources.

Our goal is a sharable architecture.

13

4. Mediators

In order to provide intelligent and active mediation, we envisage a class of software modules

which mediate between the workstation applications and the databases. These mediators

will form a distinct, middle layer, making the user applications independent of the data

resources. What are the transforms needed in such a layer, and what form will the modules

supporting this layer have? The responses to these questions are interrelated. We will first

identify problems with generalizing the concept of mediation identified in current information

systems, and then define some general criteria. We will also justify the necessity of having a

modular. domain-specific organization in this laver.

4.1 The Architectural Layers

We create a central layer by distinguishing the function of mediation from the user-oriented

processing and from database access. Most user tasks will need multiple, distinct mediators

for their subtasks. A mediator uses one or a few databases.

The interfaces that are to be supported provide the cuts where communication network

services are needed, as shown in Figure 4.

result --+ decision making

Layer 3 Independent applications on workstations - managed by decision makers

---- network services to information servers ----

Layer 2 Multiple mediators - managed by domain specialists

---- network services to data servers

Layer 1 Multiple databases - managed by database administrators

input 4- real-world changes

Figure 4: The three layers of thi. architecture.

Unfortunately, the commonality of function seen in the examples cited in Section 3.3

does not extend to an architectural coiiino-lity: the various examples are bound to the data

resources and the end-users applications in different ways. It is here where new technology

must be established if fusion at the application level is to be supported. Accessing one

mediator at a time does not allow for fusion; and seeing multiple results on distinct windows

of one screen does not support automation of fusion.

4.2 An inappropriate approach to mediation

The concept of mediation is related to the notion of having corporate information centers,

as promoted by IBM and others [Atre:86]. These are to be corporate resources, staffed, and

14

equipped with tools to aid any users needing information. The needs and capabilities of an

information center, however, differ in two respects from those of automated mediators:

1 A single center, or mediator for that matter, cannot deal with all the varieties of

information that is useful for corporate decision-making.

2 Automation of the function will be necessary to achieve acceptable response time

and growth of knowledge and its quality over time.

3 The user should not be burdened with the task of seeking out information sources.

This task, especially if it is repetetive., is best left to an interaction of application

programs in a workstation and automated mediation programs.

The information center notion initiates yet another self-serving bureaucracy within a cor-

poration. Effective staff is not likely to be content in the internal service roles that an

information center provides, so that turnover of staff and its knowledge will be high. The

i,Iv role foreseen in such a center is mediation - bringing together potential users with

candidate information.

In order to manage mediation, modularity instead of centralization seems to be essential.

Modularity is naturally supported by a distributed environment, the dominant environment

of computing in the near future.

4.3 Mediators

Now that we have listed some examples of mediators in use or planned for specific tasks, we

can give a, general definition.

A mediator is a software module which exploits encoded knowledge about some sets or

subsets of data to create information for a higher layer of applications.

We place the same requirements on a mediation module that we place on any software

module: it should be small and simple [Boehm:S41 [Bull:87 so that it can be maintained by

one expert or at most by a coherent group of experts.

An important, although perhaps not essential, requirement we'd like to place on medi-

ators is that they be inspectable by the potential users. For instance, the rules used by a

mediator using expert system technology can be obtained by the user as in any good coop-

erative expert system [Wick:89]. In this sense the mediators provide data about themselves

in response to inspection and such data. could be analyzed by yet another, an inspector

mediator.

Since eventually there will be a great number and variety of mediators, the users have

to be able to choose among them. Inspectability enables that task. For instance, distinct

mediators which can provide the ten best consultants for database design may use different

15

evaluation criteria: one may usc the number of publications and another the number of

clients.

Some meta-mediators will have to exist that merely provide access to catalogues listing

available mediators and data resources. The search may go either way: for a given data

source one may want to locate a knowledgeable mediator and for a desirable mediator we

need to locate an adecquate data resource. It will be essential that the facilities provided by

these meta-level mediators can be integrated into the general processing model, since search

for information is always an important aspect of information processing. Where search

and analyses are separated - as is still common today - for instance, in statistical data-

processing, trying to find the data is often the most costly phase of information processing.

For databases that are autonomous, it is desirable that only a limited and recognizable

set of mediators depend on anyone of them. Focusing data access through a limited number

of views maintained by these mediators provides the data independence which is necessary for

databases that are evolving autoiom()uslv. Currently, compatibility constraints are hindering

growth of databases i terms of structure and scope, since many users are affected. As the

number of users and the automation of access increases, the importance of indirect access

via mediators will increase.

4.4 The Interface to Mediators

The most critical aspect of this three-layer architecture are the two interfaces that are now

created. Today's mediating programs employ a wide variety of interface methods and ap-

proaches. The user learns to use one or a few of them, and then remains committed until

its performance becomes wholly unacceptable. Unless the mediators are easily and flexibly

accessible, the model of common infoirmation access we envisage is bound to remain a fiction.

It is then in the interface and its support that the research challenge lies. Since our hardware

environment implies that mediators can live on any nodes, not only on the workstations and

database hosts, their interfaces nmst e grounded in communication protocols.

The User's Workstation Interface to the Mediators

The range of capabilities that mediators may have is such that a high-level language should

evolve to drive the mediators. We are thinking of language concepts here, rather than

of interface standards, to indicate the degree of extensibility that must be provided if the

mediating concepts are to be generalized.

Determining an effective interface between the workstation application and the media-

tors will be a major research effort in refining this model. It appears tha t a language is needed

to provide flexibility, composability. iteration, and evaluation in this interface. Descriptive.

10

but static interface specifications seem not be able to deal with the variety of control and

information flow that must be supported. The basic language structure s11111d lerlit in-

cremental growth so that new functions can be supported as mediators join the network to

provide new functionality.

It is important to observe that we do not see a need for a user-frien dly interface. Ve need

here a machine- and communication-friendly interface. Programs on the user's workstations

can provide the type of display and manipulation functions appropriate to its type of user.

This attitude avoids the dichotomy that has lead to inadequacies in SQI,. which tries to

be user-friendly, while its predominant use will be for programmed access [Stonebraker:88].

Standards needed here can only be defined after experience has been obtaine(l in sharing of

these resources to support the high-level functions needed for decision-making.

The Mediator to DBMS Interface

Existing database standards as SQL and RDA provide a basis for database access by niediators.

Relational concepts as selection, views, etc., provide an adequate starting point. A mediator

dealing mainly with a specific database need not be constrained to a particular interface

protocol, while a mediator which is more general will be effective through a standard interface.

A mediator which combines information from multiple databases may use its knowledge to

control the merging process and use a relational algebra subset. Joins may. for instance.

be replaced by explicit semi-joins, so that intelligent filtering can occur during processing.

Still, dealing with multiple sources is likely to lead to incompleteness. Outer-joins are often

required for data access to avoid losing objects with incomplete information [Wiederhold:83].

The separation of user applications and databases that the mediating modules provide

also allows reorganization of data structures and redistribution of data over the nodes without

affecting the functionality of the modules. The three-level architecture then makes an explicit

tradeoff in favor of flexibility versus integration. The arguments for this tradeofi focus on

the variety of uses made of databases, and by extension, the results of mediator modules

[Wiederhold:86].

1 Sharability of information requires that database results can be configured according

to one of several views. Mediators, being active, can create objects for a wide variety

of orthagonal views [Barsalou:88].

2 On the other hand, making complex objects themselves persistent blinds knowledge

to the data, which hinders sharability [Maier:89].

3 The loss of performance, due to the interposition of a mediator. can be overcome

by techniques listed in Section 5.4.

17

These arguments do not yet address the distribution of the mediators we envisage.

Available interfaces

WVe need interface protocols for data and knowlede. For data transmission there are de-

veloping standards. The level (in the OSI sense [Taiieiibauin:S7]) that we are concerned is

within the application layer. We have faith that comnnication systems will soon handle

all lower level support layers without major problems. The Remote Data Access (RDA)

protocol provides one such instance [ISO/RDA:S7j.

Other technologies that are pushing capabilities at the interface is the National File

Systen, being promoted by [Spector:SS] at CMU. However. as mentioned in the introduction.

communication of data alone does not guarantee that the data will be correctly understood

for processing by the receiver. Differences often exist in the meaning assigned to the bits

stored, some examples were shown in Figure 2.

4.5 Sharing of mediator modules

In eicher case, since we are getting access to so much more (lata. from a variety of sources.

arriving at ever higher rates, automated processing will be essential. The processing tasks

needed within the mediators are those sketched in the interaction model of Fig. 3: selection.

fusion, reduction. abstraction, and generalization. Diveise mediator modules will use these

functions in varying extents to provide the support for user apl)lications at the decision

making layer above.

The mediator modules will be most effective if they can serve a variety of applications

[Hayes-Roth:84]. The applications will compose their tasks as much as possible by acquiring

information from the set of available mediators. Unavailable information may motivate the

creation of new mediators.

Sharing reinforces the need for two types of partitioning: one, into horizontal layers

for end-users. mediators, and databases, respectively, and two. vertically into multiple usem

applications, each using various configurations of mediators. A mediator in turn will use

distinct views over one or several databases. .Just is databases are justified by the shared

usage they receive, mediators should be sharable. Note that today's expert systems are

rarely modular and sharable, so that their development and maintenance cost is harder to

amortize.

For instance, the mediation module which can deal with inflation adjustment can be

used by many applications. The mediator which understands postal codes and town names

can be used by the post office, express delivery services, and corporate mail rooms.

We foresee here an incentive for a variety of specialists to develop powerful, but generally

is

useful mediators, which can be used by multiple customers. Placing one's knowledgc into a

mediator can be more rapidly effective. and perhap. more rewarding. than writing a bool

on the topic.

We can now suninarize these observations in Figure 3.

Usei se2 ~ Usr4 Usr5 sei sereiUsr3

Queryj Relevant responses" Inspection.

Mediator./ Mediator Mediatorl Mediatorr

Formatted queryl Bulky responses T Triggered eventsT

DatDataba Database x Database y Database z

All modules are distributed over nationwide networks.

Figure 3. Interfaces for information flow.

4.6 Distribution of Mediators

We have implied throughout that mediators are distinct modules, distributed over tie net-

work. Distribution can be motivated by greater economy for access, by better locality for

maintenance, and by issues of modularity. For mediators the two latter argunents are the

driving force for distribution.
Why should mediators not be attached to the databases? In many cases it inay be

feasible: in general it is not appropriate.

1 The mediator contains knowledge that is beyond the scope of the da.tabas,' proper.

A database progranimer, dealing with, say, a factory production control system.

cannot be expected to foresee all the strategic uses of the collected information.

2 Concepts of abstraction are not part of database technology today: the focus has

been on reliable and consistent management of large olumes of detailed facts.

3 Intelligent processing of data will often involve dealing with uncertainty, adding

excessive complexity to database technology.

4 Many mediators will access multiple databases to combine disjoint sets of data Prior

to analysis and reduction.

Similarily we can argue that the mediators should not be attached to the users' worksta-

tion applications. Again. the functions that mediators provide are of a different scope than

the tasks being performed on the workstations. Workstation applications may use a variety

of mediators to explore the data resources.

19

A major motivation for keeping mediators distinct is maintenance. During thc initial

stage of most projects which developed expert systems, their knowledge bases simiply grew.

and the cost of knowledge acquisition dominated the cost of knowledge maintenance. Many

projects, in fact. assumed implicitly that knowledge, once obtained, would remain valid for

all times. History teaches us that this is not true; although some fundamental rules may

indeed not change for a long time, the application heuristics for its use change as the demands

of the world change. Concepts as KNOSs [Tsichritzis:87] recognize the problem, and focus on

the problemN within a specific domain.

Maintenance by an outside expert of knowledge stored within an application systei!i is

intrusive and risky. The end-user should make the decision when new knowledge should be

incorporated. We hence keep the mediator modules distinct.

The efficiency concerns of separating knowledge and data can be mitigated by rel)lication.

Since mediators (incorporating only knowledge and no factual data) are relatively stable.

they can be replicated as needed and placed on nodes along the data highway where they

are" maximally effective. They certainly should not change during a transaction. As long as

the mediators remain small, they can also be easily shipped to a site where substantial data

volunes have to be processed.

4.7 Triggers for knowledge maintenance

We have added one aspect of mediation into Figure 5 which has not yet been discussed. Since

the knowledge in the mediator must be kept up-to-date, it will be wise for many mediators to

place triggers or active demons into the databases [Buneman:791 [Stonebraker:86]. Now the

mediators can be informed when the database, and, by extension, the real-world changes.

The owner of the mediator should ensure that such changes are in time reflected in the

inediator's knowledge base.

We consider, again justified by the analogy to human specialists, that a mediator is

fundamentally trusted, but is inspectable when suspicions of obsoleteness arise. For instance.

an assumlption, say that well-to-do people buy big cars, may be used in the marketing

mediator. but, it is possible that over time this rule becomes invalid. We expect then that the

base data be monitored for changes and that exceptions to database constraints will trigger

information flow to the mediator. In a rule-base mediator the certainty factor of some rule

can be adjusted [Esculier:891. If the uncertainty exceeds a threshold. the mediator can advise

its creator, the domain expert, to abandon this rule. The end-user need not get involved

[Risch 89].

20

5. Related Concepts

We have shown throughout that the individual concepts underlying this architecture are

not original. The problems that future information systems must address exist now, and

are being dealt with in many specific situations. We do want to point out some significant

relationships, as well as our own focus.

5.1 Independent actors and agents

There is an obvious corollary between the mediators proposed here and the concept of ACTORS

[Hewitt:73]. However, a considerable constraint is imposed on our mediators - namely., they

do not interact intelligently with each other - so that a hierarchy is imposed for every specific

task. The reason for this constraint is to provide computational simplicity and manageability.

An actor model can, of course, be used within a mediator to implement its computational

task.

The network of connections within the global architecture means that distinct tasks can

intersect at nodes within this information processing structure. The same mediator type may

access distinct sets of data, and information from one data source can be used by distinct

mediators.

5.2 Hierarchical task control

Automation requires an understanding of the control mechanisms that maintain balance

and motivate progress or growth. To what extent networks of autonomous agents can be

motivated, is unclear.

Rather than extrapolating into the unknown we define an architecture that we can

conceptually manage today, and keep our minds open to extensions that are beyond todays

conceptual foundations. We take again a cue here from Vannevar Bush, who could identify

all units needed for the MEMEX, although its components were based on technology that did

not exist in 1945.

Todays organizations depend greatly on hierarchical structures. Many information pro-

cessing functions, now carried out in organizations, are performed by lower levels to obtain,

aggregate, use. and rank information for the decision-making levels of management. Current

development of the actors model [Hewitt:881 stresses the necessary match between actors and

functions seen in real-world organizations. The onc model also follows an anthropomorphic

paradigm [Malone:87], focusing on a wider set of problem-solving interactions, and provides

insights into distributed mediation. In all this research, concepts that model understood

organizational practices form a basis, a notion that is broadly argued by [Litwin:89].

The relationships of users to mediators is organizationally similar to that presented in

21

the contract net model by [Smith:S01, although the focus of a mediator is on partitioning for

management and not on least-cost of computations. Contract net concepts may provide ideas

for charging and accounting in this environment, an issue not discussed in this paper, but

dealt with in the FAST [Cohen:S9] project. The distributed cooperating agents of [Koo:SS]

deal with non-adversary contracting, a very desirable model for a future world.

5.3 Maintenance and learning

In effective organizations, lower levels of management involved in information-processing also

provide feedback to superior layers.

The knowledge embodied in the mediators cannot be assumed to be static. Some knowl-

edge may be updateable by human experts, but for active knowledge domains some au-

tomation will be important. Providing advice on inconsistencies between acquired data and

assumed knowledge is the first step.

Eventually some mediators will be endowed with learning mechanisms. Feedback for

learning may either come from performance measures or from explicit induction over the data-

bases they manage [Blum:82] [Wilkins:87]. The trigger for learning is monitoring. Changes

in the database can continuously update hypotheses of interest within the mediator. The

validity of these hypotheses can be assessed by inspecting corollary observations in the view

of the mediator [DeZegher:S8]. The uncertainty of hypotheses can provide a ranking when

an application task requests assessments.

5.4 Techniques

Mediators will embody a variety techniques now found both in freestanding applications and

in programs that perform mediation functions. These programs arc now often classified by

the underlying scientific area :'ather than by its place in information systems.

Techniques from artificial intelligence

The nature of mediators is such that many techniques developed in AI will be employed. We

expect that mediators will often use

1 Declarative approaches.

2 Capability for explanation.

3 Heuristic control of inference.

4 Pruning of candidate solutions

5 Evaluation the certainty of results

The literature on these topics is broad [Cohen:84]. Heuristic apprcaches are likely to be

important because of the large solution spaces. Uncertainty computations are needed to deal

with missing data, and mismatched classes.

"99

Techniques from logical databases

Since the use of mediators encourages a formal approach to the processing of data techniques

being developed within logical and deductive database are likely to be equally important. As

long as conventional DBMS do not provide well for recursive search the computations that

achieve closure are likely to be placed into mediators [Beeri:S7] [R.amakrishnan:89]. Since

proper definition of the rules for stable and finite recursion is likely to remain difficult, these

techniques are best managed by experts.

Another example of logical mediation is dealing with generalization, iii order to return

results of specified cardinality [Chaudhuri:90]. A frequent abstraction is to derive tempo-

ral interval represe4ntations from detailed event data. Here we also see a need to attach

techniques that depend on domain semantics to the attributes in the database [Jajodia;90].

Techniques for efficient access

In this paper we do not focus on the efficiency of mediated access. We realize that interposing

a layer in our information systems is likely to have a significant cost. We will argue that

the flexibility and adaptability of a modular approach will overcome in time the inefficiencies

induced bv an inflexible, rigid structure. The partitioning of the tasks will also make research

subtitsks more ma.nagaable. It is today infeasible to carry out a really significant integrated

system development in any single academic institution. Within specialized laboratories sub-

stantial systems can be developed and tested, but those are still hard to integrate into the

world outside.

We can show some examples of systems research that focuses on overcoming processing

bottlenecks:

1 Caching and materialized views and view indexes within the mediators [Roussopou-

los:86] [Hanson:87] [Sheth:SS]

2 Rule bases for semantic query optimization [King:S4] [Chakravarthy:85]

3 data reorganization to follow dominant access demands [Fursin:86]

4 an ability to abandon ineffective object bindings [Gifford:88].

5 Privacy protection for sensitive data through interface modules [Cohen:88

Sharing

Artificial intelligence, logical, and systems techniques can of course be shared among the

mediators. Only knowledge specific to the application needs to be local to each mediator.

In the framework which we present a variety of techniques can cooperate and compete to

improve the production of information.

23

5.5 SoDs

The KBMS Project group at Stanford is in the process of formulating a specific form of

mediators, called SoDs [Wiederhold:90]. A SoD provides a declarative structure for the

domain semantics, suitable for an interpreter. We see multiple SoDs being used by an

application executing a long and interactive transaction. We summarize our concepts here

az one research avenue in providing components for the architecture we have presented.

Specific features and constraints imposed on SoDs are:

1 The knowledge should be represented in a declarative form

2 SoDs should have a well-formed language interface

3 They contain feature descriptions exploitable by the interpreter

4 They should be inspectable by the user applications

5 They should be amenable to parallel execution

6 They access the databases through relational views

7 During execution source and derived data objects are bound internally

8 They consider object sharing.

By placing these constraints on SoDs as mediators, we hope to be able to prove aspects of

their behavior and interaction. Provable behavior is not only of interest to developers, but

also provides a basis for prediction of computational efficiency.

However, the modularity of SoDs causes two types of losses:

1 Loss in power, due to limitations in interconnections

2 Loss in performance, due to relying on symbolic binding rather than on direct.

linkages.

We hope to offset these losses through gains obtained by having structures that enable

effective computational algorithms. An implementation of a demonstration using frame

technology is being expanded. The long-range benefit is of course that small, well-constructed

mediators will enable knowledge maintenance and growth.

An Interface Language

Our research identifies the language problem as a major issue. For application access to

SoDs we start from database concepts, where high-level languages have become accepted

[WWHC+:89]. The SoD access language (SoDaL) will have the functional capabilities of

SQL, plus iteration and test, to provide Turing machine level capability [Qian:89]. New

predicates are needed to specify intelligent selection. Selection of desirable objects requires

an ability to rank objects according to specified criteria. These criteria are understood by the

SoD and are not necessarily predicates on underlying data elements, although for a trivial

24

SoD that may be true. These criteria are associated with result size parameters as 'Give

me the 10 best X', where the 'best' predicate is a semantically overloaded term interpreted

internally to a particular SoD.

The format of SoDaL is not envisaged to be user-friendly - after all, other subsystems

will use the SoDs, not people. It should have a clear and symmetric structure which is

machine friendly. It should be easy to build a user-friendly interface, if needed, on top of a

capable SoDaL.

25

6. Limits and Extensions

The separation into layers reduces the flexibility of information transfer. Especially struc-

turing the mediators into a single layer between application and data is overly simplistic.

Precursors to general mediators already recognize hierarchies, as the contract net [Smith:S0],

and general interaction, as actors [Hewitt:731.

A desire to serve large-scale applications is the reason for the simple architecture pre-

sented here. To assure effective exploitation of the mediator concepts we propose to introduce

complexity within their layer, and the associated processing cost, slowly. only as the foun-

dations are established to permit efficient use.

Structuring mediators into hierarchies should not lead to problems. We already assumed

that directory mediators could inspect other mediators. Inspection of lower-level mediators

is also straightforward. Low-level mediators may only have database access knowledge, and

understand little application domain semantics. On the other hand, high-level mediators can

take on minor decision-making functions.

More complex is lateral information sharing among mediators. Some such sharing will be

needed to maintain the lexicons that preserve object identity when distinct mediators group

and classify data. Optimizers may restructure the information flow, taking into account

success or failure with certain objects in one of the involved SoDs.

Fully general interaction among mediators is not likely to be supported at this level of

abstraction. Just as human organizations are willing to structure and constrain interactions,

even at some lost-opportunity cost, we impose similar constraints on the broad information

systems we envisage.

Learning by modifying certainty parameters in the knowledge-base is relatively simple.

Learning of new concepts is much more difficult, since we have no mechanisms that relate

observations automatically to unspecified symbolic concepts. By depending initially fully on

the human expert to maintain the mediator, then moving to some parameterization of rule

priorities, we can gradually move to automated learning.

Efficiency is always a concern. Once derived data are available the need to analyze large

databases is reduced, but the intermediate knowledge has to be maintained. Binding of the

knowledge to provide the effect of compilation of queries is an important strategy. Work

in rule-based optimizers and automatic creation of expert systems points in that direction

[Schoen:S8]. These tactics exacerbate the problems of maintaining integrity under concurrent

use. Research into truth-maintenance is relevant here [Filman:S8] [Kanth:8S].

Requirements of data security may impose further constraints. Dealing with trusted

mediators however, may encourage database owners to participate in information sharing to

26

a greater extent than they would if all participants would need to be granted file-level access

privileges.

27

7. Summary

We envisage a variety of information processing modules residing in nodes along the data

highways that advances in communication technology can now provide. A conceptual lay-

ering distinguishes nodes by function: decision-making exploration, information support by

mediation of data by knowledge, and base data resources.

The mediation function, now seen in a variety of programs, is placed into explicit me-

diation modules, or mediators. For clarity we place all the mediators into one horizontal

layer. These mediators are to be limited in scope and size to enable maintenance by an

expert as well as inspection and selection by the end-user. Mediators are associated with the

domain expert, but may be replicated and shipped to other network nodes to increase their

effectiveness. Specialization increases the power and maintainability of the mediators and

provides choices for the users.

Applications obtain information by dealing with abstractions supported by the media-

tors, and not by accessing base data directly. A language will be needed to provide flexibility

in the interaction between the end-users' workstation and the mediators. We discuss the par-

titioning of artificial intelligence paradigms into pragmatics (at the user-workstation layer)

and the formal infrastructure (in the mediation layer) further in [Wiederhold:90].

For query operations the control flow goes from the application to the mediator. who

would interpret the query to plan optimal database access. The data would flow to the medi-

ator, be aggregated, reduced, pruned, etc., and the results reported to the query originator.

Multiple mediators serve an application with pieces of information from their subdoinais.

The knowledge-based paradigms inherent in intelligent mediators indicate the critical

role of artificial intelligence technology foreseen when implementing mediators. Knowledge

sources of the mediation examples listed in Section 3 range from type information to business

rules. The mediating modules we are developing, SoDs, stress structure and and declarative

domain semantics for interpretation and inspection.

Mediators may be strengthened by having learning capability. Derived information may

simply be stored in a mediator. Learning can also lead to new tactics of data acquisition and

control of processing.

The intent of the architectural model is not to be exclusive and rigid. It is intended to

provide a common framework under which many new technologies can be accomnodated.

As shown throughout, many existing concepts can be viewed as implementations of media-

tion. Especially of techniques listed in Section 5.4 have validity within and outside of this

framwork, but will become more accessible and sharable. Now they are at best enbedded

within intelligent application programs.

28

An important objective of the architecture is the ability to utilize a variety of infor-

mation sources without demanding that they be brought into a common format and with

only minimal requirements onl their interfaces. Maintenance of the knowledge bases in the

mediators requires specialization and a manageable size.

In a recent report the three primary issues to be addressed in knowledge-based

systems were maintenance, problem modeling, and learning and knowledge acquisition

[Buchanan+:89]. The architecture we presented here contributes to all three issues, largely

by providing a partitioning that permits large systems to be composed from modules that

are maintainable, that can implement specific submodels, and that access domain data for

learnine and knowledge validation.

29

8. Acknowledgement

This paper integrates and extends concepts developed during research into the management of

large knowledge bases, primarily supported by DARPA under contract N39-84-C-211. Useful

insights were gathered by interaction with researchers at DEC (project title 'Reasoning about

RiME') and with the national HIV-modeling community [Cohen:88]. The DARPA Principal

Investigators meeting (Nov.88, Dallas TX) helped with solidifying these concepts, in part by

providing a modern view of the communication and processing capabilities that lie in our

future. Robert Kahn of the Corp. for National Research Initiatives encouraged development

of these ideas. Further inputs were provided by panel participants at the DASFAA 1 (Seoul,

April 1989), VLDB 15 (Amsterdam, August 1989) and IFIP 11 (San Francisco, August

19S9) conferences. Research work on triggers is being carried out by Tore Risch at the

Hewlett-Packard Stanford Science Center and his input helped clarify salient points. Andreas

Paepke of HP commented as well. Dr. Witold Litwin of INRIA and the students on the

Stanford KBMS project, especially Surajit Chaudhuri, provided a critical review and helpful

comments.

References

[Adiba:81] Michel E. Adiba: "Derived Relations: A Unified Mechanism for Views, Snap-

shots and Distributed Data"; VLDB 7, Zaniolo and Delobel(eds), Sep.1981, pp. 2 93-

305.

[Atre:86] Shaku Atre: Information Center: Strategies and Case Studies, Vol. 1; Atre Int.

Consultants, Rye NY, 1986.

[Barsalou:88] Thierry Barsalou: "An Object-based Architecture for Biomedical Expert

Database Systems", SC.AMC 12. IEEE CS Press, Washington DC, November 1988.

[Basu:88] Amit Basu: "Knowledge Views in.Multiuser Knowledge Based Systems"; IEEE

Data Engineering Conference 4. Feb.1988, Los Angeles.

[Beeri:87] C. Beeri and R. RaMiakishnan: "On the Power of Magic"; ACM-PODS, San

Diego, Mar.1987.

[Blum:82] Robert L. Blum: Discoicry and Representation of Causal Relationships from a

Large Time-Oriented Clinical Database: The.tRA Project; Springer Verlag, Lecture

Notes in Medical Informatics, no.19, 1982.

[Boehm:84] Barry W. Boehm: "Software Engineering Economics"; IEEE Trans. Software

Eng., Vol.10 No.1, Jan.1984, pp.4- 2 1.

[Bull:87] M. Bull, R. Duda, D. Port, and J. Reiter: "Applying Software Engineering

Principles to Knowledge-Base Development"; Proc. Expert Systems and Business

30

87, NY, Learned Information, Meadford NJ, Nov.1987, pp.27-37.

[Buchanan+:89] B.G. Buchanan, D. Bobrow. R. Davis. J. McDermott, and E.H. Short-

lifle: "Research Directions in Knowledge-Based Systems"; Stanford KSL report

89-71, to appear in J. Traub (ed.): Annual Review of Computer Science.

[Buneman:79] O.P. Buneman and E.K. Clemons: "Efficiently Monitoring Relational

Databases"; ACM Trans. on Database Systems, Vol.4 No.3, Sep.1979, pp.368-3S2.

[Bush:45] Vannevar Bush: -As We May Think"; Atlantic Monthly, Vol.176 No.1, 1945.

pp. 10 1- 108 .

[Callahan:81] M.V. Callahan and P.F. Rusch: "Online implementation of the CA

SEARCH file and the CAS Registry Nomenclature File"; Online Rev., Vol.5 No.5.

Oct.1981, pp.377-393.

[Chamberlin:751 D.D. Chamberlin, J.N. Gray, and I.L. Traiger: "Views, Authorization,

and Locking in a Relational Data Base System"; Proc.1975 NCC, AFIPS Vol.44.

AFIPS Press, pp.425-430.

[Chakravarthy:85] U.S. Chakravarthy, D. Fishmann and J. Minker; "Semantic Query Op-

timization in Expert Systems and Database Systems"; Expert Databases. Kersch-

berg(ed), Benjamin Cummins, 1985.

[Chaudhuri:90] S. Chaudhuri: "Generalization and a Framework for Query Modifica-

tion"; IEEE Data Engineering 6, Los Angeles, Feb. 1990.

[Cheeseman:85] Peter Cheeseman: "In Defense of Probability"; Proc. IJCAI, Los Ange-

les, 1985, pp. 10 0 2 - 10 0 9 .

[Chen:89] M.C. Chen and L. McNamee: "A Data Model and Access Method for Sum-

mary Data Management"; IEEE Data Engineering Conf 5, Los Angeles, Feb.19S9.

[Chiang:82] T.C. Chiang and G.R. Rose: "Design and Implementation of a Production

Database Management System (DBM-2)"; Bell System Technical Journal, Vol.61

No.9, Nov.1982, pp. 2 511-2528.

[Cicchetti:89] R. Cicchetti, L.D. Lakhal, N. LeThanh, and S. Miranda: "A Logical

Summary-data Model for Macro Statistical Databases"; DASFAA 1, Seoul Korea.

KISS and IPSJ, Apr.1989, pp.43-51.

[Cohen:82] P.R. Cohen and E. Feigenbaum (eds.): The Handbook of Artificial Intelli-

gence: Morgan Kaufman. 19S2.

[Cohen:88] H. Cohen and S. Layne (editors) Future Data. Management and Access.

Workshop to Develop Recommendations for the National Scientific Effort on AIDS

Modeling and Epidemiology; sponsored by the White House Domestic Policy Coun-

cil. 1988.

31

[Dayal:S31 U. Dayal and H.Y. Hwang: "View Definition and Generalization for Database

Integration in Multibase: A System for Heterogeneous Databases": IEEE Trans.

Sofrware Eng., Vol.SE-10 No.6, Nov.1983, pp.628-645.

[DeMichiel:89) Linda DeMichiel: "Performing Operations over Mismatched Domains";

IEEE Data Engineering Conference 5, Feb.1989; IEEE Transactions on Knowledge

and Data Engineering, Vol.1 No.4, Dec. 1989.

[DeZegher:88] I. DeZegher-Geets., A.G. Freeman, M.G. Walker. R.L. Blum and G. Wie-

derhold: "Summarization and Display of On-line Medical Records"; M.D. Comput-

ing, Vol.5 no.3, March 1988, pp. 3 8 -4 6 .

[Downs:S6] S.M. Downs, M.G. Walker, and R.L. Blum: "Automated summarization of

on-line medical records"; IFIP Medinfo'86, North-Holland 1986, pp.800-804.

[Doszkocs:86 Tamas E. Doszkocs: "Natural Language Processing in Information Re-

trieval"; J.Am.Soc.Inf.Sci., Vol.37 No.4, Jul.1986, pp.191-196.

[Esculier:89] Christian Esculier: Introduction a la Tolerance Sematique; PhD thesis,

Un. Joseph Fournier, Grenoble, 1989.

[Filnan:S8] Robert E. Filman: "Reasoning with Worlds and Truth Maintenance in

a Knowledge-Based Programming Environments"; Comm. ACM. Vol.31 No.4,

Apr.1988. pp. 382-401.

[Fursin:S6] Gennadiy I. Fursin: "Estimating and Decision Making Techniques in Data-

base Design"; Control Systems and Machines, Kiev, No.1, Jan.1986, pp.141-155.

[Gifford:88] D.K. Gifford, R.M. Needham, and M.D. Schroeder: "The CEDAR File Sys-

tem": Comm. ACM, Vol.31 no.3, Mar.1988, pp. 2 88-298.

[Gray:86] Jim N. Gray: "An Approach to Decentralized Computer Systems"; IEEE

Trans. Software Eng., Vol.Se-12 No.6, Jun.1986, pp.684-692.

[Hammer:78 M. Hammer and D. McLeod: "The Semantic Data Model: A Modelling

Machanism for Data Base Applications"; Proc.. A CM SIGMOD 78, Lowenthal and

Dale(eds), 1978, pp. 2 6 - 3 6 .

[Hanson:87] Eric Hanson: "A Performance Analysis of View Materialization Strategies";

Proc. ACM-SIGMOD 87, May 1987.

[Ha ves-Ioth:84] Frederick Hayes-Roth: "The Knowledge-based Expert System, A tuto-

rial"; IEEE Computer, Sep.1984, pp.11-28.

[Hewitt:73] C. Hewitt, P. Bishop, and R. Steiger: "A Universal Modular ACTOR Formal-

ism for Artificial Intelligence"; IJCAI 3, SRI. Aug.1973, pp. 2 3 5- 2 45.

rHewitt:88 Carl Hewitt: Knowledge Processing Organizations proposal; Nov.1988.

[Horvitz:861 E.J. Horvitz, D.E. Heckerman, and C. Langlotz: "A Framework for Compar-

32

ing Alternate Formalisms for Plausiblh Reasoning"; Proc. AAAI-86. 19S6, pp.210-

2.4.

[Humphrey:87] S.M. Humphrey. A. Kapoor. D. Mendez, and M. Dorsey: "The Indexing

Aid Project: Knowledge-based Indexing of the Medical Literature"; NLM, LH-

NCBC 87-1, Mar.1987.

[ISO/RDA:87] Working draft of ISO Remote Access Protocol; ISO/TC97/SC21 N 1926

(ANSI X3H2-87-210), Jul.1987.

[Kanth:88] M.R. Kanth and P.K. Bose: "Extending an Assumption-based Truth Main-

tenance System to Databases", IEEE CS Data Engineering Conference 4, Feb.1988,

LosAngeles.

[Kaplan:84] S.Jerrold Kaplan: "Designing a Portable Natural Language Database Query

System"; ACM TODS, Vol.9 No.1. Mar.1984, pp.1-19.

[King:84] Jonathan J. King: QuerY Optimization by Semantic Reasoning; Univ.of Michi-

gan Press, 1984.

[Koo:88] C.C. Koo and G. Wiederhold: "A Commitment-based Communication Model

for Distributed Office Environments": ACM-COIS, Mar.1988, pp.291- 2 98.

[Lai:88] K-Y. Lai, T.W. Malone, and K-C. Yu: "Object Lens: A Spreadsheet for Cooper-

ative Work"; A CM Ttans. on Office Inf Systems, Vol.6 No.4, Oct.1988, pp.332-353.

[Litwin:86] W. Litwin and A. Abdellatif: "Multidatabase Interoperability"; IEEE Com-

puter, Vol.19 No.12, Dec.1986, pp.10-18.

[Litwin:89] W. Litwin and N. Roussopolous: "A Model for Computer Life"; University

of Maryland, Institute for Advanced Computer Studies, UMIACS-TR-89-76, July

1989.

[Maier:89] David Maier: "Why isn't there an Object-oriented Data Model"; Information

Processing 89, Ritter (ed). IFIPS North-Holland 1989, pp.7 9 3 -7 9 8 .

[Malone:87] T.W. Malone, IK.R. Grant. F.A. Turbak, S.A. Brobst, and M.D. Cohen:

"Intelligent Information-Sharing Systems"; Comm. ACM, Vol.30 No.5, May.1987,

pp.390-402.

[Mayo:89] J.S. Mayo and W.B. Marx. jr.: "Introduction: 'Technology of Future Net-

works"'; AT&T Technical Journal, Vol.68 No.2, Mar.1989.

[McCarthy:88] John L. McCarthy: "Knowledge Engineering or Engineering Information:

Do We Need New Tools?"; IEEE Data Engineering Conference 4, Feb.1988, Los

Angeles.

[McCune:85] B.P. McCune, R.M. Tong, J.S. Dean, and D.G. Shapiro: "RUBRIC: A

System for Rule-based Information Retrieval"; IEEE Trans. Software Eng., Vol.SE-

33

11 no,9. Sep.19S3. pp.939 -945.

[McIntyre:87] S.C. McIntyre and L.F. Higgins: "Knowledge Base Partitioning For Local

Expertise: Experience In A Knowledge Based Marketing DSS "; Hawaii Conf. on

Inf, Systems 20, Feb.19S7.

[Ozsovoglu:84] Z.M Ozsoyoglu and C. Ozsoyoglu: "Summary-Table-By-Example: A

Database Query Language for Manipulating Summary Data"; IEEE Data Engi-

neering Conf. 1, Los Angeles, Apr.1984.

[Qian:89] XiaoLei Qian: "The Deductive Synthesis of Iterative Transaction"; PhD thesis,

Stanford University, June 1989.

[Ramakrishnan:89] Raghu Ramakrishnan; "Conlog: Logic + Control"; Un. Wisconsin-

Madison, CSD, 1989.

[Risch:89] Tore Risch: "Monitoring Database Objects"; Proc. VLDB 15. Amsterdam,

Aug. 1989, Morgan Kaufmann Pubs.

[Roussopoulos:86] N. Roussopoulos and H. Kang: "Principles and Techniques in the

Design of ADMS"; IEEE Computer, Vol.19 No.12, Dec.1986 pp.19- 2 5.

[Sacc6:86] D. Sacc, D. Vermeir, A. d'Atri, A. Liso, S.G. Pedersen, .J.J. Snijders, and

N. Spyratos: "Description of the Overall Architecture of the KIWI System"'; ES-

PRIT'85, EEC, Elseviers, 1986, pp. 685-700.

[Sager:85] N. Sager, E.C. Chi, C. Friedman, and M.S. Lyman: "Modelling Natural

Language Data for Automatic Creation of a Database from Free-Text Input": IEEE

Database Engineering Bull., Vol.8,No.3, Sep.1985, pp.45-55.

[Schoen:88] E. Schoen, R.G. Smith, and B.G. Buchanan: "Design of Knowledge-based

Systems with a Knowledge-based Assistant"; IEEE Trans. Software Eng.. Vol.14

No.12, Dec.1988, pp.1771-1791.

[Sewell:86] W. Sewell and S. Tietelbaum: "Observations of End-user Online Searching

Behavior over Eleven Years"; J.Am.Soc.InfSci., Vol.37 No.4, Jul.1986, pp. 2 34 -245.

[Shannon:481 C.E. Shannon and W. Weaver: The Mathematical Theory of Computa-

tion;1948, reprinted by The Un.Illinois Press, 1962.

[Shen:85 Sheldon Shen: "Design of a Virtual Database"; Information Systems., Vol.10

No.1, 1985, pp. 2 7- 3 5 .

[Sheth:88] A.P. Sheth, J.A. Larson, and A. Cornellio: "A Tool for Integrating Conceptual

Schemas and User Views"; IEEE Data Engineering Conference 4, Feb.1988. Los

Angeles.

[Smith:80] R.G. Smith: "The Contract ;et Protocol: High-Level Communication and

Control in a Distributed Problem Solver"; IEEE Ttans. Computers, Vol.C-29 No.12,

34

Dec.1980, pp.1104-1113.

[Smith:81] J.M. Smith et al: "MULTIBASE - Integrating Heterogeneous Distributed

Database Systems"; Proc.NCC, AFIPS Vol.50, Mar. 1981. pp. 4 8 7 - 4 9 9 .

(Stonebraker:85] M. Stonebraker, D. DuBourdieux, and WN . Edwards: "Triggers and In-

ference in Database Systems"; Brodie, Mylopoulos, and Schmidt (eds) On Knowl-

edge Base Management Systems: Integrating Artificial Intelligence and Database

Technologies, Springer, Feb.1986, pp.297-314.

[Stonebraker:88] Michael Stonebraker: "Future Trends In Database Systems"; IEEE

Data Engineering Conf 4, Feb.1988, Los Angeles.

[Summit:67] R.K. Summit: "DIALOG: An Operational On-Line Reference Retrieval Sys-

tem"; ACM Nat. Con£ 22, 1967, pp.51-56.

[Tanenbaum:88] Andrew S. Tanenbaum: Computer Networks, 2nd ed; Prentice-Hall,

1988.

[Tsichritzis:87] D. Tsichritzis, E. Fiume, S. Gibbs. and 0. Nierstrasz: "KNOS: Knowledge

Acquisition, Dissemination and Manipulation Objects": ACM Trans. on Office Inf.

Svs., Vol.5 No.1, Jan.1987, pp.96-112.

[Waldrop:84] M.Mitchell Waldrop: "The Intelligence of Organizations"; Science, Vol.225

No.4667, Sep.1984, pp.1136-1137.

[Wetherbe:85] J.C. Wetherbe and R.L. Leitheiser: "Information Centers: A Survey of

Services, Decisions, Problems, and Successes"; hIn Sys. Mianag., Vol.2 No.3, 1985,

pp.3-10.

[Wick:89] M.R. Wick and J.R. Slagle: "An Explanation Facility for Today's Expert

Systems"; IEEE Expert, Spring 1989, pp .26-36.

[Wiederhold:83] Gio Wiederhold: Database Design: McGraw-Hill, 1983.

[Wiederhold:86B1 Gio, Wiederhold: "Knowledge versus Data"; Chapter 7 of Brodie,

Mylopoulos, and Schmidt (eds.) 'On Knowledge Base Management Systems: In-

tegrating Artificial Intelligence and Database Technologies' Springer Verlag, June

1986, pages 77-82.

[Wiederhold:86] Gio Wiederhold: "Views, Objects. and Databases"; IEEE Computer,

Vol.19 No.12, December 1986, Pages 37-44.

[Wiederhold:87] G. Wiederhold and X-L. Qian: "Modeling Asynchrony in Distributed

Databases"; IEEE Data Engineering Conference 3, Los Angeles, Feb. 1987.

[Wiederhold:90] G. Wiederhold, P. Rathmann, T. Barsalou. B-S. Lee, and D. Quass:

"Partitioning and Combining Knowledge"; hIformation Systems, to appear 1990.

35

[WWBTD:86] G.C.M. WiN'ederhiold. M.G. Wkalker, R.L. Bluin, and S.M. Downs: "Acqui-

sition of Knowledge from Data"; Proc. ACMI SIGART ISMIIS, Oct.1986, pp. 7 4 -84.

[WAWHC+:89] G.CM Wiederhold, M.G. W~alker, W. Hasan, S. Chaudhuri, A. Swam-i.

S.K. Cha, X-L. Qian, M. W;inslett, L. DeMich1-ie!, and P.K. Rathniann: "KSYS:

An Architecture for Integrating Databases and Knowledge Bases"; in Arnar Gupta

(ed.), Het erogenous Integrated Iformation Systems, IEEE Press, 1989.

[Wilkins:87] D.C. Wilkins, W.J. Clancey, and B.G. Buchanan: "Knowledge Base Re-

finement by Monitoring Abstract Control Knowledge"; Stanford, TR. STAN-CS-

87-1182, Aug.1987.

36

Monotonic Combinations of
Non-Monotonic Theories*

Peter K. Rathmann
Computer Science Dept.

Stanford University
Stanford, CA 94305

February 23, 1990

Abstract

If a logical theory with nonmonotonic properties is partitioned for
ease of maintenance, it is possible that a conclusion derived from one
of the partitions will not be supported by the theory as a whole.

This paper argues that such behavior is undesirable and that large
knowledge bases should be built so that local deduction is globally
sound.

A sufficient condition is presented which ensures such soundness
for partitioned knowledge bases based on prioritized circumscription.

1 Introduction

Many of us remember evenings spent with Perry Mason, when witnesses
swore to "tell the truth, the WHOLE truth, and nothing but the truth".

Imagine hearing the following exchange:

*This work was supported by DARPA under grant N39-84-C-211 (KBMS Project, Gio
Wiederhold, principal investigator).

37

Q: Did Mr. X see you take his car?
A: Yes.
Q: And he didn't object?
A: No, he didn't say a thing.

If later we learn that Mr. X was bound and gagged at the time in question,
we may feel deceived, even though neither of the answers given is actually
false.

However, in designing knowledge bases, we sometimes can't "tell the
whole truth". A large knowledge base must be built in partitions if it is
to be maintainable, and users often want only a simplified view of a com-
plex system. In other words, both the builders and users of a system are
often dealing with only a partial truth. How can we prevent it from being a
misleading one?

This paper presents tools and conditions for ensuring that views and
partitions of knowledge bases are not misleading, even when the knowledge
base allows nonmonotonic inference.

2 Partitioning and Nonmonotonic Reason-
ing

The basic motivation for this work comes from the problem of assembling the
next generation of large knowledge bases. Such knowledge bases will need to
be flexible enough to evolve over time and to serve diverse groups of users.
This maintenance requirement argues strongly for a partitioned architecture,
since partitioning is our most successful strategy for dealing with complexity.

In addition, such knowledge bases will need to support some form of
nonmonotonic reasoning. Even if a system does not specifically bill itself as
employing a formalized version of nonmonotonic reasoning, nonmonotonicity
is unavoidable if a system needs to deal with uncertainty, to weigh evidence,
or to employ any sort of heuristic. In any of these cases, the system is drawing
conclusions which may later be retracted in light of new evidence.

However, problems arise if both partitioning and nonmonotonic reason-
ing are used together in the same system. If a human or mechanical agent
restricts its attention to a single partition, and if that partition omits some-
thing critical, the agent may draw (nonmonotonic) conclusions which are

38

contradicted by other partitions. This is dangerous and results in awkward
semantics for the global knowledge base. It may seem that we are forced to
disallow any inference mechanism which does not have access to the entire
knowledge base, but in disallowing such local deduction, we forego many of
the benefits of partitioning.

We argue for an different approach. We allow local inference, but design
the knowledge base so that nonmonotonic deductions are limited to those
which are sound globally. This ensures that the process by which we combine
partitions into a global theory is monotonic, even if the theories themselves
are not. Specifically, we will be adjusting the priority schemes of prioritized
circumscription to assure such a sound combination process.

3 Definitions and Background

3.1 Combining Theories

First, let us make at least a preliminary definition of what it means to in-
tegrate component theories. Our definition is perhaps the simplest possible;
the combination of two theories is the set theoretic union of their sentences.
So, if A and B are theories, i.e., sets of sentences in some form of logic, then
the combination of them is given by T = A U B. T is then the global theory,
and A and B are its components, or subtheories. This definition is essentially
syntactic - there is no requirement that any of the above theories be closed
under logical deduction, and in general, they will not.

3.2 Circumscription
Circumscription [BS85, EMR.85, Eth88, Lif86, McC80, McC86, Per87, Sho871
seeks to solve the problem of common-sense reasoning by "preferring" certain
models of a theory T to others. More precisely, circumscription picks out
those models of a theory that are minimal with respect to some partial order
on models [Shoham 87]. Thus, a circumscriptive partial order encodes our
intuitions about which of the logically plausible alternative models of T are
the most "normal" and reasonable.

The results of this paper are all given in terms of the most common
version of circumscription, in which the partial order on models is based on

39

set inclusion of predicate extensions. For some applications, especially those
involving equality, it is useful to use an alternate version of circumscription
in which the partial order is based on the presence or absence of model
homomorphisms [RW88, RW89]. Results very similar to those presented in
this paper hold for this alternate version. For a presentation of these results,
see [Rat90].

3.3 Prioritized Signatures

In circumscription, the preference criteria for models, including holding pred-
icates fixed, allowing them to vary, and minimizing with priorities are all a
property of the signature alone, and do not depend on the theory. We can
take advantage of this, and define as a notational convenience the concept of a
prioritized signature. A prioritized signature includes the function and pred-
icate symbols. The predicate symbols are divided into three non-overlapping
subsets, corresponding to those predicates held fixed, those allowed to vary,
and those minimized. In addition, there is a partial order imposed on the
subset of minimized predicates, corresponding to the priority with which the
predicates are to be minimized. We will write Circ(T, fl) for Circ(T, A < B),
if we have previously defined f? to be a prioritized signature where A < B.
This notation will be convenient when we manipulate and compare different
priority schemes.

3.4 Comparing Theories with Different Signatures

In ensuring soundness of local deduction, we will need to be able to compare
the semantics of the partition to the semantics of the global theory. In making
such a comparison, we need to deal with the possibility that the partition
will have a different (smaller) signature than the global theory. Normally,
when we want to see if one theory is stronger than another, we can rely on
a simple semantic definition. If the models satisfying a theory or statement
T, are a subset of those satisfying T2 , we say that T, implies or semantically
entails T 2. However, when T and T2 are defined with different underlying
signatures, this definition is not applicable, since the models of T have a
different structure from the models of T2 . Here the thing to do is to make
the model theory follow the proof theory. If a theory does not mention a

40

particular predicate, any syntactically allowed extension of that predicate is
consistent with the theory.

In comparing circumscribed theories with different signatures, we use
the same basic condition. A predicate not mentioned in the signature of a
circumscribed theory should have an unconstrained extension. It turns out
that such an unconstrained extension is equivalent to including the predicate
in the signature, but holding it fixed in any circumscription.

Lemma 1 If signature 11' is a subset of signature fl, but all predicates which
appear in F but not 1' are held fixed in 2, then, by the definitions of this
section Circ(T, fl) is logically equivalent to Circ(T, W2).

Proof: First of all, it is syntactically implicit that T can not mention any
predicate from fl - Sl'. Otherwise, the sentence Circ(T, f1') would not make
any sense.

A rigorous proof would be quite lengthy, here we will give a plausability
argument. Let M be a minimal model of Circ(T, WZ'). We can extend M
with any syntactically allowed extensions for the predicates of n - ST. Since
T does not mention these extra predicates, the extended model, M, still
satisfies T. Moreover, it must be a minimal model of Circ(T, fl), since it
is only comparable with other models with these same extensions of the
extra fixed predicates. In effect, each different extension of the extra (fixed)
predicates creates a new independent copy of the partial order in Circ(T, W).
Since M is minimal in Circ(T, 1), V is minimal in Circ(T, fl). In other
words, the extended model is minimal, precisely if the original one was.

To get a minimal model, of Circ(T, Q), we take a minimal model of
Circ(T,), and extend it with any extension at all of the new predicates.
Thus, Circ(T, SI) is a conservative extension of Circ(T,), which means that
the proof theories will be equivalent.

r0

4 Using Priorities

Prioritized circumscription gains considerable control over the semantics of a
theory by specifying the order in which predicates are to be minimized. We
can make use of this control by adjusting the priorities within the partition,

41

with the goal of limiting local inference to that which is sound globally. We
shall approach this goal in stages, first proving some more specialized results.
Our first condition shows that holding a predicate fixed weakens the theory.

Theorem 1 Let T be a theory. Let Of1 and Q be prioritized signatures for
T, differing only in that Qfl holds a predicate Q fixed, while f2 minimizes Q
or allows Q to vary. Then,

Circ(T,Q) # Circ(T, fl f)

Proof: We consider first the special case where all minimized predicates
in the signature 12 have the same priority. In this case, the models which
satisfy Circ(T, fl) and Circ(T, SIf) are those minimal in the respective partial
orders. The partial order on models determined by f1f is a suborder of
that determined by fl, since holding a predicate fixed just adds an extra
condition for two models to be comparable. Hence any model minimal by
the partial order of fl must also be minimal in the order determined by f1f,
and Circ(T,1 S) = Circ(T, lf2).

Now we turn to the general case, where predicates may be minimized
with differing priorities. Let f? = (F, P < P2 < ... < P,,, V) where F is a
set of fixed predicates, P1,... , P,, are sets of minimized predicates with those
in P having greater priority than those in P2, and so on, and V is a set of
predicates which are allowed to vary.

Prioritized circumscription is defined is terms of a conjunction of unpri-
oritized circumscriptions, in particular,

Circ(T, f?) =/ ACirc(T, 12i),
i=l

where the f1i's are defined by

l2i = F fixed
P,...,P minimized
Pi+P,..., P. allowed to vary
V allowed to vary

The rest of the proof will depend on whether Q, the predicate being held
fixed, was originally fixed, minimized, or allowed to vary.

42

Case 1 - Q is fixed in nt
Formally, this case is not allowed in the statement of the theorem. However,
if Q is already held fixed, holding it fixed does not change anything, and the
theorem is trivially true.
Case 2 - Q is allowed to vary in Q
In this case, Q E V, and we decompose the prioritized circumscription into

n

Circ(T, itj) = A Circ(T, itl),
t=1

where the Ql1 i's are defined by

Itfi = F U {Q} fixed
Ujsi Pj minimized
Uj>i Pi allowed to vary
V - {Q} allowed to vary

For each i, 1fi differs from Oi only in that tfi holds Q fixed, while Ii allows
Q to vary. So, by the result for the unprioritized case,

Circ(T, Oi) - Circ(T, Zjf)

holds for each i. Substituting, we get

i n t=n

A Circ(T, fti) =, A Circ(T, f£2 h),
i=1 i=1

or equivalently,
Circ(T, fl) , Circ(T, f?1),

For the case where Q is allowed to vary.
Case 3 - Q is minimized in fl
If Q is a minimized predicate, it means Q E Pk for some k, 1 < k < n. Then,
as before, we decompose the prioritized circumscription into a conjunction
of circumscriptions, where we define the f 1fi's for i < k, by

fi = Fu Q}fixed
%iPj minimized

U i>i Pi - {Q} allowed to vary
V - {Q} allowed to vary

43

and for i > k, by

fi= FU{Q} fixed
Uj<i P - {Q} minimized
Uj>i P allowed to vary
V allowed to vary.

For either case, we know that fixing a predicate weakens a circumscription,
so Circ(T, Ii) =* Circ(T, fZf) for each i. As above for case 2, we substitute
each implication into the definition of prioritization to get that Circ(T, fS)
Circ(T, 1), where Q is a minimized predicate.

Thus, because each of the three possible cases results in a weaker theory,
we conclude that fixing a predicate of a prioritized theory weakens the theory.

0

So, holding a predicate fixed weakens the circumscribed theory. In fact,
if we hold all predicates fixed, our next lemma shows that circumscription
adds nothing to the theory.

Lemma 2 If T is a theory and f~f is a signature in which all predicates are
held fixed,

T =. Circ(T, f)

Proof: With all predicates fixed, no model is preferred to any other, so all
models which satisfy T are minimal, and hence satisfy Circ(T, nf). 0

Lemma 2 shows that if we hold all predicates fixed in the view or compo-
nent, circumscription is equivalent to ordinary first-order logic. First order
logic is monotonic, and so deduction within a component is sound. This
provides us with a first, admittedly drastic way of assuring that views and
components are not misleading. If we take a component (subset) of a theory,
and restrict the circumscription of the component to hold all predicates fixed,
any deduction we make in the component will be sound in the context of the
global theory.

So far we have been varying the prioritized signature, i.e., the recipe for
circumscription, and seeing what this does to the strength of the circum-
scribed theory. In our next lemma, we take a complementary approach. We
keep the signature constant, and change the theory. In particular, we will
see that we can drop any sentence involving only the fixed predicates of a
circumscribed theory, without losing soundness.

44

Lemma 3 Let T1 and T be theories, such that T1 g T, and let S1 be a
signature in which all the predicates from sentences in T. - T, are held fixed.
Then Circ(T., S) = Circ(T, Q)

Proof: Let M be a minimal model of Circ(Tg, Q). Is it possible that M is
not a minimal model of Circ(TI, fl)? Let us assume it is not, and derive
a contradiction. The model M J= TI, since T1 g T. Thus, the only way
M can be not minimal in Circ(T1, l) is if 3M' < M and M' T1. Now,
M' K T., since M is minimal in Circ(Tg, 11). Hence there must be a sentence
S E T -TI, such that M' K S. But M' < M in fl and f2 holds all predicates
mentioned in S fixed. However, we now look at the sematic definition of
truth for first order logic, given in, for example, [End72]. The important
thing to note about the definition is that it does not refer to any predicates
mentioned in the sentence. This means that it is impossible for one model
to satisfy a sentence S, and for another model with the same universe, and
the same extensions on every predicate mentioned in S not to satisfy S. 0

In order to state a more general condition, we shall define some additional
terminology. Let us have a global theory T and a component theory T, _ T.
We call a predicate full in T1 if every mention of it in Tg also appears Ti.
Conversely, we call a predicate partial if it is mentioned in sentences from
Tg - T1. Finally, let fl be a prioritized signature for T and let 09 be a
prioritized signature for T. Then we say f~l is a consonant with fIg if

1. 1 is a subsignature of fl,. This means that every sort, predicate and
function symbol of 01 also occurs in flg. Further, if a symbol appears
in both Ill and fl., it has the same arity and type in each.

2. The ordering on the predicates of Ql is a subordering of that on the
predicates of ft.. In other words, if R and R' are minimized predicates
in fl, such that R < R' in struct(fZl), R and R are also minimized in
fl, and R < R' in fl.

3. If a predicate is fixed in ftl, it may be fixed or minimized in flg, but
not varying.

Now, we come to the main result of this paper, which ties all of the pre-
vious results together to yield a useful condition for when deduction in a
circumscribed component theory will be sound relative to the global theory.

45

Theorem 2 If T, is a subtheory of Tg, with prioritized signatures f1 and Q.
respectively, and ftl is consonant with Q., and all predicates ofT, which are
not full in T are held fixed in III, then

Circ(Tg, f) . Circ(T, fl).

Proof:
The proof proceeds in stages, showing that

Cic(T,,n,) = Cic(T,,TI) t Cic(TI, D1- Circ(TI, il),

where TF7 is an intermediate signature obtained by extending fl, with any
predicates present in SI, but not fl. These added predicates are held fixed
in ?T.

The left hand implication is a generalization of theorem 1. Again we must
decompose the prioritized circumscription into a conjunction of unprioritized
circumscriptions, and apply the theorem to each conjunct.

The definition of prioritized circumscription states that,

circ(T., W) =A Circ(T,?Fl1),

where each fl is defined by

7= F fixed
Uj<i Pj minimized
Uj>i Pj allowed to vary
V allowed to vary

where F is the set of predicates held fixed, and the Pi's are sets of predicates
making up the priority order of U' . Any predicate within a particular set P
is equivalent in the priority order to any other in predicate in Pi, it is greater
in the priority order than a predicate from any P, for j < i and lower in the
priority order than any predicate from Pj, for j > i.

We shall prove that Circ(T, flu) implies each of the conjuncts which make
up Circ(T, 1-1). Consider a particular one of these conjuncts, Circ(T,W).
From among the predicates which are minimized in I li, we select a particular
predicate Q which is maximal in the priority ordering of flg. Q must also be
maximal in the priority scheme of ffW, since the predicate ordering of 9 is a

46

subordering of that in f1 g. This Q is in some Pk, one of the sets of predicates
determining the priority scheme of Q2.

Now, the following facts are true:

1. Circ(T, Q) =*- Circ(T, Qgk). This follows from the definition of prior-
itized equality circumscription, since the right hand side is one of the
conjuncts of that definition.

2. Qgk minimizes every predicate minimized in ?Xi, and allows to vary
any predicate allowed to vary in ?J. This follows from the definition
of consonant, and the fact that Q was maximal among the minimized
predicates of I jT.

3. Some predicates fixed in Ti7 may be minimized or allowed to vary in
f k . However, repeated application of theorem I yields the conclusion
Circ(T, fQ9 k) =- Circ(T, 7).

Combining (1) and (3), we find that for any i,

Circ(T, f1.) = Circ(T, N-i).

taking the conjunction of these for l i we find

Circ(T, 0.9) =* Circ(T, TDh',

which is what we wanted to verify the lefthand implication.
The middle implication is follows from repeated application of lemma 3

and the right hand equivalence follows from lemma 1.
These stages, taken together, prove the theorem.

5 Using the Theorem

Now we shall give a flavor of how this theory can be used by working through
example of partitioning, and how it affects non-monotonic inference within
a component.

Consider a global knowledge base T, of employee information which is
partitioned into two components. The component T, contains records for

47

exempt (salaried) employees, while T2 contains records for non-exempt em-
ployees. These components partition the knowledge base, i.e., every employee
is either exempt or non-exempt and no one is both.'

In both partitions, the predicate is called Employee, and takes the same
arguments. Since neither partition has a complete set of the ground instances
of Employee, neither can use a closed world assumption. In the terminology
of this paper, Employee is not full in either partition, and must be held fixed
in any circumscription within the component.

However, we can regain a partial closed world assumption if we adjust the
signature and theory to reflect the partitioning more closely. We rename the
predicate used in T, to be Empl, and the predicate used in T2 to be Emp2.
The statements in T, will be terms of Empl, and since Emp, will be full in
T1, we can safely circumscribe, minimizing Empl. The situation is symmetric
for T2. We can connect the new predicates to the global predicate Employee
with the rules:

Erupt(x,.... Employee(x,...)
Emp2(x,...)= Employee(x,...)

We will assume that the intended global semantics is for all three predi-
cates, Empl, Emp2, and Employee to be minimized in a circumscription. If
both partitions contain the above rules, and these rules are the only sentences
which mention Employee, then Employee will be full in both partitions, since
each will have a complete set of all sentences mentioning Employee. Both
Emp, and Employee are full in T1, while Emp2 is partial in T1. Therefore, us-
ing theorem 2 it is sound to circumscribe T1, minimizing Emp and Employee
and holding Emp2 fixed.

Note that this is still a partial open world assumption for the predicate
Employee, since Emp2 is held fixed, (i.e., we have an open world assumption
for Emp2) and any element of Emp2 must also be an element of Employee.
However, in this case, the partitioning is based on a known semantics - the
difference between exempt and non-exempt employees. For example, if we
also have a rule that all managers are exempt, we can answer a query such
as "What is the total payroll expenditure for managers?", entirely within T1.
Thus, there are useful nonmonotonic inferences which are guaranteed to be
sound within the partition.

'Assume that this is a globally maintained integrity constraint.

48

6 Completeness

The main results of this paper have been concerned with safety - that de-
duction within a view should be sound. However, soundness is not all we are
looking for. If it were, we could have stopped when we realized that sound-
ness can be assured by avoiding nonmonotonic inference entirely. Instead, we
want some assurance that our methods are, if not complete, at least powerful
enough for our applications.

In one sense, our results are the most powerful possible. If we stay within
the framework of adjusting the priority scheme to weaken inference within
a view, it is easy to find examples where it is not sound to minimize partial
predicates or allow them to vary.

On the other hand, our definition of full is not the most general possible.
Perhaps, this should not be too surprising, since it is a simple syntactic con-
dition on the intensions of theories, and it ensures a rather complex semantic
property.

We can weaken the definition of full by requiring, not that every every
mention of the predicate in the global theory actually occur in the partition,
but only that the partition contain every sentence in some subset from which
all the sentences in the global theory can be monotonically derived. This
generalization can make a difference if the global knowledge base contains
many redundant sentences, perhaps because it caches derived information.
As long as the derived sentences are monotonically derivable from the subset,
the partition has no semantic need to include and maintain copies of such
derived sentences.

Verifying that a predicate is full by this generalized definition requires
deduction in first order logic, which can be very expensive.

In addition, some global sentences, even if they are not redundant, may
not restrict the possible extensions of a mentioned predicate. A common
example is provided by view definitions, which may mention base predicates,
but only to derive new predicates from them. Recognizing such sentences in
general is likely to be difficult, although no doubt useful special cases exist.

It will probably take more extensive experience with applications to de-
termine what is an appropriate balance between generality and efficiency of
the condition for full.

49

7 Conclusion

We have argued that partitioned knowledge bases should be organized so
that even the nonmonotonic conclusions derivable from a partition should
also be derivable from the knowledge base as a whole. This soundness of
local deduction is useful for comprehensibility and maintenance, and may
also affect efficiency as well. For example, it makes it possible to confidently
apply efficient special purpose inference techniques, even if they only apply
to a limited partition of a knowledge base.

Our scheme for ensuring the soundness of local deduction directly applies
only to knowledge bases which represent knowledge as a circumscribed the-
ory, but we expect that the basic principles can be used as a guideline for
other knowledge representations as well.

References

[BS85] G. Bossu and P. Siegel. Saturation, nonmonotonic reasoning
and the closed-world assumption. Arificial Intelligence, 25:13-
63, 1985.

[EMR85] D. W. Etherington, R. E. Mercer, and R. Reiter. On the ad-
equacy of predicate circumscription for closed-world reasoning.
Computational Intelligence, 1:11-15, 1985.

[End72] Herbert B. Enderton. A Mathematical Introduction to Logic.
Academic Press, New York, 1972.

[Eth88] David W. Etherington. Reasoning With Incomplete Information.
Morgan Kaufmann, Los Altos, California, 1988.

[Lif86] Vladimir Lifschitz. Pointwise circumscription. In Proceedings,
AAAI-86, Philadelphia, PA, 1986. Also appears in Readings in
Nonmonotonic Reasoning, M. L. Ginsberg, ed., Morgan Kauf-
mann, Los Altos, California, 1987.

[McC80] John McCarthy. Circumscription-a form of non-monotonic rea-
soning. Arificial Intelligence, 13(27), 1980. Also appears in Read-

50

ings in Nonmonotonic Reasoning, M. L. Ginsberg, ed., Morgan
Kaufmann, Los Altos, California, 1987.

[McC86] John McCarthy. Applications of circumscription to formalizing
common-sense knowledge. Arificial Intelligence, 28, 1986. Also
appears in Readings in Nonmonotonic Reasoning, M. L. Gins-
berg, ed., Morgan Kaufmann, Los Altos, California, 1987.

[Per87] D. Perlis. Circumscribing with sets. Arificial Intelligence, 31,
1987.

[Rat90] Peter K. Rathmann. Nonmonotonic Semantics for Partitioned
Knowledge Bases. PhD thesis, Stanford University, 1990. in
preparation.

[RW88] Peter K. Rathmann and Marianne Winslett. Circumscribing
equality. Technical Report TR UIUCDCS-R-88-1473, University
of Illinois, 1988.

[RW89] Peter K. Rathmann and Marianne Winslett. Circumscribing
equality. In Eleventh International Joint Conference on Artificial
Intelligence, Detroit, Michigan, pages 468-473, 1989.

[Sho87] Yoav Shoham. A semantical approach to nonmonotonic logics.
In Proceedings of the Tenth IJCAI, Milan, Italy, pages 388-392,
1987. Also appears in Readings in Nonmonotonic Reasoning, M.
L. Ginsberg, ed., Morgan Kaufmann, Los Altos, California, 1987.

[WRR+901 Gio Wiederhold, Peter Rathmann, Tore Risch, Byung Suk Lee,
Surajit Chaudhuri, Thierry Barsalou, Kincho H. Law, and Dal-
lan Quass. A mediator architecture for abstract data access.
Technical report, Stanford University, 1990.

51

Partitioning and Composing Knowledge

Gio Wiederhold, Peter Rathmann, Thierry Barsalou, Byung Suk Lee, and Dallan Quass

Stanford University

Abstract
This paper argues for an approach which places the management of large knowledge
bases into a comprehensive, engineering-oriented framework, and reports on an
initial demonstration of these concepts. The underlying concepts are well-recognized
as being effective in many areas of science:

1 Partitioning of the knowledge into manageable segments.
2 Rules for the composition of these segments.
3 A language to provide access to these segments, control their composition,

and provide the power of the system in a flexible and clear way.

The motivation for this research is to deal with problems that are beginning to
occur in large knowledge-based systems. As current developments of such systems
lead to further growth, we foresee that their management needs will exceed the
capabilities of the existing system infrastructure, In particular we find that in the
past issues related to knowledge maintenance have been ignored. Maintenance of
knowledge-bases is critical if the systems are to persist.

1. Introduction
Problems of knowledge maintenance in large knowle" #.-based systems motivate our research.
Today these problems are evident in only some in, -nces, but will become more prevalent
as knowledge-based systems grow in scope and depth, and last beyond the lifetime of a PhD
thesis. Some researchers from the AI community have looked towards database technology to
help in dealing with issues of size and update management [Kerschberg]. Database systems
have focused on simple structuring and normalization to deal with large bodies of information,
and do not deal well with the complexities of structures needed to represent knowledge.

We are using concepts from database research here as well, but must be very careful
in intermingling database and knowledge-base representations. We need to avoid creating a
combination with the weaknesses of the two fields, rather than the strengths. Future infor-
mation systems will benefit from distributed knowledge sources and distributed computation.
An architecture to deal with future systems must consider the technological opportunities
that are becoming available. We see these systems supporting decision-makers through a
two-phase process:

1 Locating and selecting relevant factual data and aggregating it according to the
decision alternatives.

2 Processing and reducing the data so that the number of alternative choices to be
decided among is small, and the parameters for each choice are aggregated to a high
conceptual level.

52

Today most of these support tasks are carried out by human experts who mediate between
the database and the decision maker. For many tasks in medicine, warfare, emergency relief,
and other areas requiring rapid actions, dependence on human intermediaries introduces
an intolerable delay. Future information systems will increasingly need to use automatic
mediators to speed up these support processes [Wiederhold89.

The databases, the mediators, and the applications will all reside on nodes of powerful
networks. The end-users will always have computers available to serve their specific tasks.
We refer to those machines as application workstations, although they may at times be large
and powerful processors.

1.1 Large Knowledge Bases
We expect that future information systems will contain large quantities of knowledge in order
to support high-level decision-making tasks [Feigenbaum88; Methlie85]. A few large systems
of this type exist today [Bachant84] and more are being planned, some of extremely large size
[Lenat86]. In the process of building these systems and endowing them with great deductive
power, the issue of long-term maintenance is underemphasized. This issue is recognized by
the people actually using large knowledge bases [Barker89].

The lack of emphasis on maintenance in early systems is easy to understand. At first,
knowledge seems to be a static resource to be acquired, represented, and utilized. However,
the world changes, and both the underlying data and the knowledge we derive from this data
change, albeit at different rates. Large and long-lived systems need a clear approach on how
changes to data and knowledge are to be managed.

In database design, update has always been a concern and has affected the storage repre-
sentation and, hence, the methods of retrieval that are feasible. Methods for representation of
knowledge which seem best for retrieval may become inadequate when updates to knowledge
become a concern. In turn, a representation suitable for maintenance will require adaptation
of the methods used to exploit the stored knowledge.

This paper focuses on the specifics of knowledge management. We will need to deal with
knowledge update and retrieval. We have argued earlier for a distinction between data (that
portion of informationwhich can be mechanically maintained) and knowledge (the portion
requiring expertise for its maintenance) [Wiederhold86a]. Expertise is required for knowledge
maintenance because changes can have wide implications. The distinction between knowledge
and data is less sharp in utilization, since here integration is essential.

In addition to distinguishing knowledge and data, our approach further partitions knowl-
edge along two dimensions: horizontally and vertically. Before describing the partitioning
however, we present some background to justify our criteria for horizontal partitioning.

1.2 Overview of the paper
This paper deals with a specialization of the mediator concept elucidated in [Wiederhold89].
The partitions we will define are the SoDs* introduced in that paper.

Our partitioning involves data and two categories of knowledge-based processing. Access
to data was surveyed in [Wiederhold89]. In the next section we elaborate a conceptual
distinction within knowledge-based systems as pragmatic versus formal approaches. This
distinction defines a boundary we use for an engineered partitioning of large knowledge

* The term SoD is a new term to correspond with the new concept described here. We found

that all other words we could think of already had excessive semantic baggage.

53

bases. We will assign pragmatic processing predominantly to the application layer and formal
processing predominantly to the SoD layer.

Subsequently we discuss how knowledge may be partitioned into manageable units, and
in Section 4 we present the approaches available for their synthesis. We follow a traditional
engineering principle here: analysis of a problem into solvable subcomponents, followed by a
synthesis phase into a product. Section 5 of the paper presents a simple demonstration. A
mapping of the conceptual architecture into modern, distributed hardware follows. Finally we
list some hard topics yet to be addressed. In the conclusion, we discuss some generalizations
now foreseen, but in our work best delayed until we have gained experience with the concepts
presented here.

2. Two Paradigms of Artificial Intelligence
The problems we are addressing are not novel, but are related to what we view as the source
of some controversy in artificial intelligence research. We find two equally valid paradigms
in artificial intelligence: the pragmatic paradigm, and the formal paradigm. We use these
two terms simply as convenient labels, and include in the formal paradigm the logic-based
approaches, which seek a formal, typically mathematical, grounding, and in the pragmatic
paradigm those that focus on the cognitive aspects of human knowledge.

The knowledge-base partitioning we propose recognizes their differences and is intended
to support and profit from both of them. We will briefly discuss some salient features of
each.

2.1 The Pragmatic Paradigm
Much knowledge exists in the minds of experts. It is obtained from education and experience,
and forms the most powerful tool we have for solving problems [Lenat87]. One of the great
powers of such knowledge is that an expert, when confronted with a new set of facts, can
use extrapolations and analogies to predict and evaluate the future effects of actions. The
internal models in the experts' minds are undoubtedly quite deep and extremely difficult to
extract. However, the rules by which these experts operate can be extracted, at least in part.

The acquisition of knowledge from experts has led to a large and successful activity
starting from MYCIN [Shortliffe76] and documented in [Feigenbaum88]. In general, only
surface knowledge needs to be obtained to have effective systems focusing on advice-giving
on one specific topic. Modest numbers of rules, often fewer than one hundred, have provided
effective encodings of some experts' domain knowledge. For many domains, however, more
rules are needed.

More depth in the knowledge base is needed when expert systems are to encompass
knowledge covering more than one topic, i.e., knowledge from more than one expert. Due to
their interaction, the number of rules for problems covering multiple topics increases faster
than their sum.

Even more serious is the issue of mutual consistency, when disparate topics are joined.
We cannot expect the surface extraction of the internal models of two experts, covering
dissimilar but overlapping topics, to match. More depth, i.e., the explicit representation
of internal causal events and the logic which leads to their external expression, is likely to
be needed. Mismatches of terms used to describe internal phenomena makes the results
hard to validate. The issue of mismatch in databases has been addressed by a recent thesis
[DeMichiel89]; in expert systems the problem is harder.

54

User interfaces and explanation facilities further greatly increase the size of systems.
When the set of rules becomes large, problems of performance, validation, and knowledge
maintenance become critical.
2.1.1 The Formal Paradigm
The alternative paradigm is the formal paradigm, which has received a major impetus since
logic programming languages have appeared on the scene and made experimentation in this
direction effective [Gallaire84]. Here we often see a direct exploitation of underlying data
resources, and a wide variety of schemes to make data access effective [Ceri89].

The formal paradigm derives all its answers from well founded base rules and their com-
position. Heuristics are mainly used to improve the performance of the systems, typically by
focusing search. Most accepted heuristics can be shown to have no affect on the result values
[alpha beta]; others have a small risk of missing some potentially useful results [maximal
objects].

The formality of the approach provides much confidence in the results, but also leads
to some obvious weaknesses. We perceive as the fundamental weakness that any provable
scheme is restricted to deal with the past up to the present. Any extrapolation of results into
the future can never be proven, since unpredictable events can always occur. Unfortunately,
the beneficial use of information by decision-makers is always due to a prediction of the
future.

2.2 Combining the Two Paradigms
We need both the power of the formal approach, to make large systems predictable and
manageable, and the power of expert abstraction and extrapolation. The interaction of the
rules in an expert system is such that the user cannot predict the result-and that is of the
essence of the service which is provided. In multi-expert systems, the roles of experts and
users are intertwined. As these systems grow, a point is reached where an expert can no
longer predict the outcome. Formal structures will help with the managing the knowledge,
but the complexity of interacting bodies of knowledge is such that truly large systems need
a partitioning.

The right combination will let us build future systems which are both reliable and non-
trivial. Combining concepts from these two paradigms is not novel; we see it everywhere
in today's practiec, -.'t.r---r systeir- are tecively used. However, today's tools do not
promote any partitioning of the two types of knowledge, it is even hard to separate deductive
rules and ground facts.

When we analyze practical systems today, we find a mixture of both paradigms, but
often a dominance of one over the other, according to the application and the taste of the
designer. In a recent paper we survey a number of projects, tools, and approaches that
provide a knowledge-based layer for dealing with data [Wiederhold89). We used the term
mediator to capture the general concept of a knowledge layer between the user and the data.
Mediators may be programs, written by an expert, in which heuristic knowledge is fully
integrated with the formal techniques.

2.3 Heuristics
In our discussion we often focused on the issue of heuristics. We found that use of heuristics
does not in itself provide a discrimination of the pragmatic and formal paradigms. Heuristics
are nearly always used to deal with computational complexity. Most knowledge processing
paradigms would not be feasible in practice without their use, and optimization strategies
used heuristics based on parameters such as expected domain sizes, user needs, etc., to

55

develop practical solutions. The results obtained by such strategies are typically correct but
not necessarily optimal.

In pragmatic systems we see a further exploitation of heuristics. Here application knowl-
edge may provide heuristics about adequate approximate solutions. These may have errors in
terms of set membership or rankings, but without taking such risks them no answers would
be obtained. The pragmatic systems, in that sense, model with an unfortunate accuracy the
situations faced by decision makers in practice.

2.4 Large Systems
We have stated earlier that we primarily concerned with large systems. Unfortunately, there
are no simple criteria for the size of knowledge-based systems. A simple count of rules is
a deceptive measurement. Some apparently large systems may use a substantial number of
rules to store ground facts or static data. The expert knowledge may still consist of only a
few hundred deductive rules.

Some other expert systems that do embody much knowledge use fairly simple knowl-
edge representations; for instance, AI/RHEUM [Kingsland83] uses an interaction matrix of
symptoms and diagnoses. Expanding such a simple representation, however, (for instance,
to include issues such as time dependencies [Bolour82]), has been difficult.

3. Partitioning
There are two dimensions to the partitioning of the information systems we foresee. Hor-
izontal partitioning divides the architecture into three main layers, as summarized in the
following table:

Layer Type of information Deductions supported Implemented With
H3 Broad application knowledge Pragmatic reasoning Expert Applications
H2 Formal domain knowledge Logical inference SoDs
H1 Factual knowledge or data Relational algebra Relational Database

These layers have been sketched already in [Wiederhold89]. The need for distinguishing
updates to factual data and knowledge (for instance constraint rules) is reiterated in [Kat-
Men89].

There is another dimension of partitioning in our model. Layers H1, H2, and H3,
cannot be monolithic entities, and each will be vertically partitioned. The bottom layer,
H1, may contain multiple autonomous databases and H2 will contain many SoDs. These
SoDs may have some limited interaction as peers, but more importantly, they will share the
underlying databases by means of views. At the top level (H3), multiple applications will
exist, sharing and combining knowledge from the SoDs of layer H2.

This paper focuses on the central issue of knowledge partitioning in the relatively formal
layer H2, but must, of course, also deal with the interfaces to the supporting data layer H1
and the supported application layer H3.

result --+ decision making
3 Independent applications on workstations

network services to information servers
2 Multiple Mediators:

network services to data servers
I Multiple databases.

56

input +- real-world changes

Figure 1: Interfaces for three horizontal layers of this architecture.

3.1 Desiderata for the Partitioning of Knowledge into SoDs
Recall that our objective is to make knowledge manageable. Two prerequisites have to be
fulfilled to achieve this goal:

1 The knowledge can be formally Structured.
2 The knowledge is limited to manageable Domain of discourse.

Since eventually, we also wish to support automatable combinations of the results of the SoDs,
we also must be concerned that the SoDs use mergable representations for their knowledge. It
is hence not adequate to have arbitrarily dissimilar SoDs, whose results are presented on, say,
distinct windows of a terminal. This approach forces the end-user to perform all integration
visually, or manually by cut-and-paste methods. While having multiple terminal windows
provides an advance over a desk piled high with multiple pieces of paper and terminals, it
does not cover our vision of the future.

The principle for the vertical partitioning into SoDs is based on Domains of Knowledge.
These are seen to correspond simultaneously in multiple dimensions.

1 They are limited in scope so that one expert can cover them and recognize incon-
sistencies.

2 They each have one consistent structure imposed on them so that changes in knowl-
edge (or the underlying facts which led to a piece of knowledge) can be accommo-
dated with secondary changes of limited and predictable scope.

3 They deal with one constrained set of base data so that updates to the underlying
data and data structure required by new knowledge can be handled effectively and
unambiguously.

4 They produce one range of results, understandable in terms of scope and deptb by
the end-user applications.

An essential hypothesis for our research is that the partitions for these four dimensions can
be made congruent. Complementary to this partitioning hypothesis will be a combination
hypothesis, to follow in Section 4.

From these criteria we can derive some more specific observations on the natural struc-
tures we expect to find in the domains of a SoD. We plan to exploit these structures whenever
possible.

3.2 The Structure and Related Semantics of SoDs
The structure of a SoD expresses the structure of its semantics. We hope to have many
structurally similar SoDs, since we expect that that common structures will appear in many
different domains, although their labels and cardinalities may differ greatly. Our goal is as
well to decompose knowledge-bases so that the structure of many So' -mill be simple. We
prefer hierarchical structures, but realize that some SoDs will need to use sets, DAGs, or
more complex representations.

3.2.1 Hierarchical Structures
In any specific domain there is strong tendency to impose a hierarchy on the knowledge struc-
tures, which often corresponds with organizational requirements of the organizations dealing
with the information. Hierarchies are instantiations of the divide-and-conquer paradigm we
are trying to exploit also within the SoDs. When manipulating data through a hierarchy, we

57

have a predefined generalization-specialization structure. Processing in such a structure is
much easier to manage than in arbitrarily connected networks of knowledge - many important
problems which are intractable for general graphs have O(n log n) solutions for hierarchies.

The hierarchical structure is beneficial in operations of grouping and aggregating base
data into higher level abstractions, searching for specific information defined by predicates
which describe such abstractions, and disambiguating updates.

While predicates can specify abstraction levels directly (department in a personnel hi-
erarchy) quantitative goals may be satisfied by finding the right level of the hierarchy. If we
need more programmers than we can find in our department, a move up to the division level
may satisfy that request [Chaudhuri89].

3.2.2 Closed Worlds
We expect our SoDs to be self-describing and inspectable, and an important part of a SoD is a
description of what kinds of assumptions we can make about the domain the SoD represents.
Some of the SoDs will be able to support the closed world assumption (CWA) [Reiter78].
This assumption is commonly made when dealing with databases, but is risky for general
expert systems. If the maintaining expert's confidence and the intrinsic definition of a domain
is such that the CWA holds, then operations requiring universal quantification and negation
can be supported in SoD, otherwise they should not be supported.

In a SoD dealing with corporate personnel and maintained by an expert attached to
the personnel department, the CWA is likely to be valid. A SoD dealing with database
consultants may be able to locate many instances of consultants, but is unlikely to be able
to locate all of them until an ACADEMY OF DATABASE CONSULTING is established, and all

non-members are disbarred.
Since SoDs are not restricted to relational data we will eventually need to support more

flexible formalisms such as circumscription [McCarthy80].

3.2.3 Closure
We will often look for a SoD to provide all instances satisfying some precisely stated criteria
of relatedness. For example we may want to find all the descendants of a given person, or
find all the papers which are "similar" to a given example paper. Such queries look for some
sort closure in the domain, and for SoDs with a hierarchical structure, these queries are often
expressed most naturally in terms of transitive closure. At other times, like in the "similar"
papers example, we will want to use distance-based concepts which are not transitive. While
for simple structures, such closure-based queries can be dealt with by simple extensions to
database query languages, we will need to provide some fairly complex computations to
answer such queries over more general SoDs. This issue intertwines closely with the ideas
of closed-world SoDs expressed above. Whether or not the closed world assumption holds
in a SoD may affect the implementation of a closure-based query, but more importantly,
drastically affects the interpretation and confidence to be attached to the results of the
query.

3.3 Evaluation Functions
For decision-making processes we often need only the n best alternatives according to some
ranking. The rank is obtained by an evaluation-function; such functions may be simple (say,
the highest paid programmers) or complex (say, the best programmers). The SoDs for these
two queries may be distinct, although the database views needed for the evaluation may
be overlapping. The highest paid programmers are obtained from the personnel SoD; the
challenge here is to find an efficient algorithm that can avoid unnecessary database accesses.

58

The SoD to find the best programmer will be complex and will depend both on some experts'
insights and on complex database access functions in order to collect all the correlative data.
In fact, there may be more than one SoD available to answer the best-programmer query,
say the Brooks-best-programmer SoD and the Orr-best-programmer SoD.

3.3.1 Inspectability
We now arrive at a new criterion for SoDs. We wish them to be inspectable. Whereas
simple formal systems may hide lower level information in order to maintain application
independence, we cannot see doing this for SoDs because the application user should have
the capability of determining whether the Brooks-SoD or the Orr-SoD is best for the current
objective. Such an inspection may be mediated by an inspector SoD, and may not support
copying of the SoD or direct access to the base data.

3.3.2 Declarative Approaches
To support inspectability it is desirable that, as much as possible, the processes within a SoD
be driven by declarations and formal parameters. We would hope to capture the differences of
Brooks's evaluation and Orr's evaluation by parameter settings and that the same processing
routine can be employed by both SoDs.

3.4 From Data to SoDs
Because we propose a partitioned architecture for future information systems, an important
issue is the interface between the supporting data layer HI and the SoDs of layer H2.
Although the SoDs are most naturally implemented with object structures (as discussed in
Section 5), we use relational databases as the storage scheme for factual information of layer
Hi.

Storing information in the form of complex objects can seriously inhibit sharing-
different groups of users will need to assign different object boundaries to the same in-
formation [Wiederhold86b]. However, object-oriented presentations of information can be
clearer and more concise than long tables of voluminous text. A desirable compromise is to
provide an object-oriented interface to relational data, combining many of the better features
of each representation [Barsalou88]. Such an interface serves as an effective mapping from
databases to SoDs, translating Hl's relational tuples into H2's object instances. An active
area of our research has been directed toward this goal.

We introduce an object-based interface on top of a relational database system. This
architecture does not call for storing objects explicitly in the database, but rather for gener-
ating and manipulating temporary object instances by binding data from base relations to
predefined object templates. The three components of the object interface are:

1 The object generator maps relations into object templates; each of which can be
a complex combination of join and projection operations on the base relations. In
addition, an object network groups together related templates, thereby identifying
different object views of the same database. The set of object networks constructed
over a given database form an object schema, which, like the data schema for
a relational database, represents the domain-specific information needed to gain
access to the objects. The whole process is knowledge-driven, using the semantics
of the database structure.

2 The object instantiator provides nonprocedural access to the actual object in-
stances. A declarative query specifies the template of interest. Combining the
database-access function (stored in the template), and the specific selection crite-
ria, the system automatically generates the relational query and transmits it to

59

the DBMS, which in turn transmits back the set of matching relational tuples. In
addition to performing the database-access function, the object template specifies
the structure and linkage of the data elements within the object. This information
is necessary for the tuples to be correctly assembled into the desired instances.

3 The object decomposer implements the inverse function; that is, it maps the object
instances back to the base relations. This component is invoked when changes to
some object instances need to be made persistent at the database level. An object
instance is generated by collapsing (potentially) many tuples from several relations.
By the same token, one update operation on an object may result in a number
of update operations that need to be performed on the base relations. We plan
to apply here results of research in the KBMS project, which deals with updating
through relational views [Keller86].

An object template therefore represents a view of the database. Instantiation selects, retrieves
and aggregates relevant data into object instances that can now be manipulated by a SoD. In
addition, the SoDs can share factual information by sharing the object templates and their
access functions. The same object, say a person, can be instantiated by more than one SoD,
let's say in one SoD as a faculty member and in another SoD as a database consultant.

The formal design for this approach is domain-independent. It is then our belief that
ideas, principles and programs developed in this process will be applicable to other knowledge-
based interface approaches

4. Composition
A single SoD has a power which is comparable to that of a simple expert system with ac-
cess to a database or, in the database paradigm, of an advanced database query processor.
Such systems are typically limited to one domain and implemented using one type of struc-
ture. Simple hierarchical systems can be effective for some tasks, as classification, ranking
of alternatives, etc., but are rarely adequate for multi-objective assessments and decision-
making support [Miller 70]. We do not wish to make our SoDs more complex, lest we lose
maintainability.

Instead we wish to make them composable. Successful composition is the second hy-
pothesis in this research.

One way in which SoDs can cooperate is as peers, working like a team of expert advisors
to a top executive, to solve a common problem. In order to cooperate, they will need a way to
exchange information. To facilitate this, the high-level language, by which -,pplications query
and command SoDs should have good algebraic properties. We discuss the basic language
features in this section and will return to present further work needed in Section 7.

There is another kind of composition that must be supported, and this composition
relates to the internal structure of a SoD. A SoD is a complex entity, containing data,
inference techniques, knowledge and abstractions. All these subunits should be sharable, and
in fact must be shared wherever possible. This is the exactly same reason that databases are
normalized or software is built of reusable modules--duplicated structure leads to inefficiency
and update anomalies.

4.1 An Access Language for SoDs
We envisage SoDs to be used by high-level, heuristic applications. Flexibility of access
requires that the interface be non-rigid, and the intent to be able to deal with multiple SoDs
in an application requires composability, as further addressed in the next section.

60

We hence specify an access language, SAL, which provides access to information produced
by the SoDs. This information is seen to have the form of instantiated complex objects,
similar to the nested-relation tuples described by [RothKS89]. The mappings from data
resources to these objects is hidden within SoDs. We do need, however, some additional
functionality.

This language is not yet fully specified, but it must support primitives to specify
1 Selection of subsets of objects satisfying user defined criteria.
2 Transitive closure
3 Constraints on the cardinality r of answer sets.
4 A best predicate to select from a ranking.

5 Computation over temporal data.

We will not discuss this last feature in this paper, although it is obvious that to project
results into the future, some temporal processing is needed, as shown in some of our earlier
research [Blum82, deZegher88].

It is important to note that distinct SoDs may support the extended primitives (2,3,4
above) in different ways, dependent on the structure of their domains. The best predicate
is especially likely to be interpreted in a domain-sensitive manner. Without a defined best
predicate a SoD can just return the r first object instances when a cardinality constraint is
imposed.

Note that this language is intended to provide a smooth and sensible transition between
the traditional database and PROLOG styles of data retrieval. The database style, exemplified
by DATALOG, retrieves all instances, i.e., implies a cardinality constraint r = 0o [Maier]. The
PROLOG style retrieves initially the first instance found, implying r = 1. Having the cardi-
nality specified explicitly also addresses a vexing problem in the database-to-programming-

language interface. Most programming languages deal only with fixed length structures,
or at best with variable length structares up to a certain maximum size. (As our current
demonstration is implemented in LISP, this issue does not now arise.)

Today, without the knowledge encoded in SoDs, the methods for retrieving the best
information are explicitly specified by the user. It is likely to require distinct methods for
multiple domains. Both in database and PROLOG access styles, these specifications require
knowledge of each the underlying domains and their structure. In todays' database languages
a sensible specification is likely impossible to state, so that all the data has to be retrieved
into memory, and then processed and reduced by application programs.

The application at layer H3 takes the information provided by the SoDs, composes it,
and reduces it as desired by intersecting results of distinct SoDs with each other. It also
presents the information in the most appropriate forms to the user. To service the H3 layer
we are looking for a language similar in style to a relational algebra, rather than to a language
such as SQL which attempts to provide a user-friendly interface as well as programmed access,
and fails at both.

Having a language interface simplifies the tasks of the SoDs at layer H2 since direct
external presentation issues are ignored. Enough corresponding meta-data must be made
available to layer H3 so that smart formatting and pleasant presentation is feasible [Mackin-
lay 85]. We have not addressed this issue yet. We are experimenting with a smart menu
system, using such knowledge.

4.2 A Sod Result Language
In order to make SoDs composable, one SoD must be able to act on the results of another.

61

We therefore define a SoD result language SOREL by which this kind of communication can
take place. SOREL will be extremely simple and limited, especially in comparison to the SoD
access language. One way of looking at this is to realize that SAL is in some sense a union
of capabilities, since it must be powerful enough to express anything we would ask of a SoD,
while the SoD result language is more like an intersection, since it should be understood by
all SoDs.

The exact form of SOREL will depend on the SoDs and the needs of the application, but
for most applications, we expect the SoDs to return only ground data, i.e., tuples, relations,
and object identifiers.

The answers given by a SoD in SOREL will be returned to the application at H3. The
application may then use these results directly or as input to another SoD.

4.2.1 Identifying Shared Objects
One of the first problems that must be handled for SoDs to work together cooperatively is to
get them to agree on a common ground for communication. Human experts often disagree
as to the meanings of words or of concepts, and this will be a problem for SoDs as well.
In one common case, the architecture and its support for definitional composition, can help
greatly in identifying shared objects. Because our SoDs can be built from simpler, shared
components, it will often happen that two SoDs will be using an object created at a lower
level. In this case, it is easy for the SoDs to recognize that they are sharing the same object
- they are both looking at the same object identifier.

In the more general case, identification is not this easy. If the SoDs are using objects
'reated on different computer systems, or if the objects are created at a high level, we can

easily have two computer "objects" (with distinct identifiers) that nevertheless denote the
same abstract object in the real world. When this happens, we will have to compare the
objects, relying on key values and matching heuristics. Perhaps we can invoke a SoD to
help us with the merging tasks. If the domains of the attributes to be merged are actually
mismatched, then we certainly need intelligent processing, and we may need rankings based

on the best match [DeMichiel 89].

4.3 Power of the Combined System
By partitioning the knowledge base, we gain the ability to use and combine special purpose
SoDs and their knowledge representations without having to build one super-interpreter
which understands all knowledge representations (and all the combinations of the knowledge
representations.) This partitioning then makes maintenance much more tractable. However,
in partitioning the data into SoDs, and allowing them to communicate only via the restricted
SoD result language, we lose some of the arbitrary connectiveness associated with knowledge

representations such as semantic nets.
This loss of connectivity may reduce the expressive power of the system. For example,

let's say that when designing a wing, an aircraft designer looks at two SoDs, one of which can
evaluate and optimize a design for aerodynamic performance, and another SoD which looks
at mechanical strength and weight. Since the wing should have good performance according
to the criteria of both SoDs, the designer is faced with an iterative (or even trial and error)
process, of checking designs though both SoDs and looking for a global optimum.

This iterative process might have been avoidable, if it the two SoDs were unified into one
super-SoD able to to find a global optimum for aerodynamics, strength, and weight. What
this example tells us is that the design process which splits knowledge into SoDs is quite crit-
ical. A given partitioning may gain us a great deal in terms of impleme., .ion, maintenance,

62

and assignment of responsibility, but may also incur a significant cost in expressive power.

5. A Demonstration
To demonstrate the concepts, the students on the KSYS project have chosen the task of
assigning reviewers for journal papers submission. Four SoDs serve the task:

1 Relevance: we need reviewers with a background relevant to the submitted paper.
This task is performed by matching in a keyword classification hierarchy.

2 Quality: we pi efer the most qualified reviewers. For this task we rank potential
reviewers base6 on their published output in books, journals, etc.

3 Conflict avoidance: we cannot assign reviewers to friends or colleagues. Here we
match people based on institutional affiliation in overlapping intervals.

4 Responsiveness: The reviewers must produce their reviews in time. Here we can
look at a log of electronic-mail interactions.

We can use this example to elucidate the difference of the AI paradigms allocated to level
H3 and H2. The tasks in the SoDs at layer H2 can all be defined quite formally. At the
top layer H3 some unwarranted pragmatic heuristics are used to implement the reviewer
selection task. For instance:

1 Having written high quality publications in a topic area does not assure one that the
candidate does equally well as reviewer. It is the best guess that our application
task can make, but we all know some excellent critics who do not write much.
The mapping of qualified-writer -- qualified-reviewer is pragmatic. The
establishment of a set of qualified-writers is adequately formal to justify its
allocation to a SoD.

2 Having worked together does not make one a friend, and being a friend does not
imply favoritism. But we do need to weed out risky matches - in fact, due to prior
publications the most likely best match is the submittor of the paper.

3 Electronic mail responsiveness is probably only weakly correlated with fast review-
ing - there are people who respond instantly to email and never respond to review
requests.

The language currently used between layers HI and H2 is LISP because it supports the
extensibility essential to rapid research progress.

The data accessed by the first three SoDs are distinct views of an extensive bibliogra-
phy of knowledge and database references, collected over about 18 years, with about 6,000
entries. Information kept includes type of publication (for the Quality-SoD), authors (the
principal identifiers), author's location (for the Conflict-avoidance-SoD), publication details
and sequence with dates (for the Conflict-avoidance-SoD), title, abstract, and classification
(the last three are used by the Relevance-SoD).

Two of the SoDs are currently implemented - relevance and conflict avoidance. They
are implemented as Lisp programs which have access to the object system and a commercial
relational database. As we gain more experience, we intend to replace the Lisp code with a
more declarative representation.

At the simplest level, the relevance SoD takes a keyword (or list of keywords) describing
the subject of the paper to be reviewed, and looks in the database for authors who have
written papers on the keyword(s). If the enough authors are returned by this database
query, this is all that happens. If however, the database query does not find enough authors,

63

or if the application asks for more candidate reviewers later, the relevance SoD will replace
the original query by a more general one, in order to increase the cardinality of the result.

This capability is an example of query generalization [Chaudhuri89j. It is possible
because the SoD makes use of some of the semantics of the keywords. The keywords are
arranged in a hierarchy, in which the parent is the more general keyword, and the children
the more specific. If a query is does not return sufficiently many results, a concept of semantic
distince in the hierarchy is used to suggest alternate keywords to try.

The data structures used by the SoD are designed to efficiently support this kind of
iterated query style efficiently. A set of authors can be found by a succession of related
queries can be answered with about the same total effort as would be needed to find that
same set of authors with one more general query.

The application interface is simply a set of Lisp functions which the application can
use. As our system evolves, we intend to built a higher-level interface. In our design, an
application which is looking for reviewers would submit a query of the form:

select best 3 reviewer
from relevance-SoD
where relevant - 'knowledge-base'

and reviewer not in
(select all friend
from conflict-avoidance-SoD
where author - 'Gio Wiederhold')

Note that this query refers to two different SoDs. Since a particular SoD can only answer
queries about its own domain, this query is translated into a slightly lower level form, which
specifies the individual queries to the SoDs, and the information flow between them.

a :s select all friend
from conflict-avoidance-SoD
where author - 'Gio Wiederhold'

b :u select best 3 reviewer
from relevance-SoD
where relevant - 'knowledge-base'
and not in a

RETURN b

Note that even this second query is fairly high level. It refers to such abstractions as
relevant, which are implemented by the SoDs.

6. The Implementation Architecture
The demonstration is implemented in fairly straightforward way, but a short description will
illustrate some issues better than an abstract discussion can.

6.1 SoD Implementation
The criteria we have listed encourage an implementation which supports object-oriented
type definitions. We are building a simple LISP-frame structure to support SoDs. Low
level frames correspond to database schema entries and support retrieval from databases;
data that is retrieved must be bound into the object-type structures and represent object
instances as discussed in the previous section. Concepts such as trackers [Ceri89] deal with
effective handl;ng of partially or fully instantiated sets of data.

64

Functions and predicates from the object type definitions are inherited by the object
instances. Default values are overridden by any actual data retrieved from the database.

Common methods, as selection and transitive closure, will be shared by multiple SoDs,
especially when their general structure is similar. Sharing should be possible even if their
object types and instances differ. General parameters, as the CWA, can cause alternate
variants of methods to be invoked. Note again that SoDs are not distinguished by their
program structure or algorithms, but rather by their structure and domain knowledge.

6.2 Elements of a SoD
The specific structure of a SoD is shown in Fig. 2.

Interface: high-level language

Primitives

Objects and
Rules

Binding

Interface: data-base access language(s)

Figure 2: The components of a SoD.

Each SoD contains a simple hierarchy of objects pertaining to its domain. The views
provided by the objects compose the entire view of the SoD over the database. Rules em-
bedded in the object structures are used to control the instantiation of objects and compute
dynamic slot values. Each SoD provides primitive operations it can support and accepts the
parameters it needs from applications. Binding interfaces the SoD objects with the under-
lying databases by retrieving object instances generated from the databases. For efficiency,
the instances of the SoD objects are bound into memory as early as possible.

In terms of their external interface we expect SoDs to be free-standing units, accessible
on the high-speed communication networks now in the planning stage. For efficient execution,
SoDs can be replicated on other computing nodes where the data (Hi) or the applications
(H3) reside.

6.3 Structure of an Object
We indicated earlier that we are implementing the SoDs using frames, similar as seen in the
UNITS system [Stefik79] and its successors such as KEE and RX [Blum82]. This means that
an object is implemented as a frame in a LISP structure.

A frame is composed of a number of slots. Each slot is labeled, and contains the following
elements:

1 An indication of its SoD membership
2 A domain definition, to constrain its values
3 A value

Values may be constants or references to other objects. Constants occur mainly in frames
that have been instantiated from the database.

65

An object frame inherits its slots from the SoD that it is a member of. A frame in our
system that belongs to a single SoD differs but little from frames seen in other systems. The
differences arise when on object becomes a member of multiple SoDs.

6.4 Structural Support for Composition

An object may be a member of multiple SoDs. It is the task of the binding layer to recognize
that information for an object already exists and perform the binding for the two overlapping
instances.

The joint object will inherit the slots from all the SoDs it belongs to. We see here a
departure from the common schemes used when multiple inheritance is needed: the informa-
tion is not intermingled according to local rules. Since we use mainly information from the
database, it is not likely that there will be rules to cover the variety of interactions that can
be realized among objects from distinct. SoDs. The disjoint inheritance is also imposed on
the values in the object slots:

0 An inherited slot value is inherited from only one specified SoD.

We hence provide for multiple inheritance into objects, but not into the same slots of objects.
This rule eliminates the multiple inheritance problem for which no general solution is likely
to be found for multiple inheritance. We find solutions that have been proposed too specific
for a general system, but recognize that multiple inheritance is a valid and useful concept.

An example will clarify our approach. Say that the Personnel-SoD has retrieved an
individual (John) with location, job-classification, salary, etc., information from a
PEOPLE database. John is also being retrieved by a Skills-SoD as possessing the skills
and a willingness *o do weekly consulting on some topic. The slots identifying John are
identical and shared, not requiring inheritance. The salary slot belongs to the Personnel-
SoD, and may either be explicitly retrieved or filled in by inheritance for all employees of that
classification. The fee slot belongs to the Skills-SoD, and may be estimated by averaging
known fees of similar individuals. There is less likely to be a well established hierarchy here.

For some decision-making process at layer H3 we may actually need an income estimate.
The application can ,otain the distinct components and combine them as it pleases.

If the task of estimating incomes is frequent and consistency is desired, then it should
be formalized. This means we assign a new expert to the task and let her define a SoD for
income estimation. An income slot, inherited from that SoD may be adjoined to the object
for John and income is then computable on the basis of salary, fee, alimony, and any other
financial reward slots that other SoDs may instantiate in this object. The values in this slot
will not be subject to inheritance, only the formula is inherited.

66

Label SoD domain value

ID identifier internal
name - identifier John

j ob-class Personnel code G21
salary Personnel dollars 35000
deductions Payroll count 3
skill Consult code 2324, 2386, 3756

fee Consult dollars 1000
willingness Consult +scale 4
income Estimator formula salary + alimony*12 + fee*52

Figure 3: Frame with SoD labeled Slots.

It is clear why inspectability of SoDs is needed. The questions of composability are so
complex that it is often desirable to determine how a value as income is computed. Still, we
wish to delegate the actual computation to a SoD, in which we place normally some trust. The
confidence in the SoD emulates confidence we have in the reports and summaries provided by
svecialists from our Personnel department, the Skills specialists, and in our assistants who
compose the information. Only if we need to question the result do we inquire into their
methods.

7. Subproblems to be Addressed
The task of managing large knowledge-bases, which undergo growth and change is daunting.
While we have sketched those aspects of our approach that seem clear to us, there are many
tasks which require expansion and generalization.

We will list some here. For some of these we have some ideas on how to address them,
other problems are quite open.

7.1 Object Identification
Correct obje,' identification is critical for the matching operations at layers H3. While ob-
jects instantiated with SoDs at layer H2 have a simple linkage with the underlying database,
we can use database keys or derived surrogates from layer HI to identify objects.

When derived objects are created within SoDs such identifiers may become difficult to
link. The fact that SoDs will share computational processes can help, but probably not
guarantee correct matching when information follows different processing paths.

7.2 Dynamic Slot Generation
Dynamic slot values are derived using knowledge about the data in the database. This may
take the form of a default values when the base data are unpopulated, procedural functions
over the base data, or declarative rule sets.

The issues in this area involve deciding at what point to compute the derived value and
determining how to re-compute this value when the base data changes. It may even be that
some derived values are stored in the database for efficiency. In this case we may need trigger
mechanisms to update the values when the base data changes.

At a higher level of abstraction we must consider how object3 acquire new slots. In our
example a slot was acquired by merging selected objects with the Estimator SoD. How such
a procedure can be generalized has not yet been defined. A follow-on phase could have the

67

application at Layer H3 define a private SoD, or its equivalent, so that private computations
can be attached to materialized objects in layer H2. We do not foresee dynamic generation
of data accessing slots.

7.3 Language Optimization
Choosing an algebraic language, SAL, for communicating with the SoDs should enable opti-
mization. Currently we process the SoDs in the order mentioned in the task definition, but
other sequences are likely to provide better performance. While we understand issues of join
ordering [Swami88], we have new operations now that will require new optimization rules.

This SAL language operates on larger granules of primitives than current 4GL languages.
Semantically similar primitives of the language will be executed differently in the various
SoDs. To perform global optimization the SoDs have to be able to provide abstractions or
evaluation functions of their methods to the global optimizer.

Note that SoDs interact at the language interface level :n at least two ways:
1 The output from one SoD may help another SoD reduce its search
2 The output from one SoD may necessitate a previously-executed SoD to be re-

executed.

For example, when searching for "three competent and responsive reviewers," the list of
competent reviewers could help reduce the search for responsive reviewers, but if only one
of the competent reviewers turns out to be responsive, then perhaps the "competency" test
should be relaxed and re-executed in order to return the requested three reviewers. In neither
of two cases will it be necessary to ship large volumes of data for resolution of the intersection
result to the computer used for the application.

7.4 Object Instantiation
In the system design adopted for KSYS, a binding module interfaces between the frame system
layer and database layer. It provides object instances generated from databases data into
the frame system.

The instances of frames used by SoDs are generated from relational databases. Each
frame prototype for a SoD defines a view of the database for selecting a subset of the database
as frame instances. When frame instances are needed, its view is translated into a relational
query and delivered to the database. The query results are stored in main memory and
processed. We expect that for many complex queries delivered to the database we cannot
achieve reasonable performance by simply delivering the queries to the database.

We are thus developing a binding strategy for minimizing accesses to secondary storage
databases. The binding strategy is to cache the multiple query results in a nested, prejoined
form for compact storage for retrieval of frame instances. Queries delivered to the database
are modified as needed whenever the binding module detects that relevant reusable query
results have already been bound into main memory.

7.5 Interacting SoDs
At present the top application layer is the executive responsible for the integration of knowl-
edge obtained from SoDs. An extension of this architecture we must investigate is the
hierarchical composition of a SoD from sub-SoDs. In this way the parent SoD would perform
the task of integrating knowledge from sub-SoDs, and itself might be a sub-SoD of another
SoD. For this to be possible, the interface exported from a SoD (i.e., the query language
supported) must provide a superset of the functionality used by a SoD.

68

This direction moves us closer to the interacting ACTORS paradigm [Hewitt;73]. We do,
however, still expect to impose constraints on their composition, and in that sense are closer
to concepts of the ORG approach [Malone 87].

8. Conclusion
We have presented an approach to deal with the management large knowledge-based systems.
The approach is based on a domain and structure sensitive partitioning of the data and
knowledge to be managed, and careful and limited interactions among the partitions. A
simple demonstration ilustrates our approach.

We define the criteria for SoDs, our principal unit for the partitioning, and discuss the
effects of those criteria. With the benefits of partitioning a loss of power is induced; we can
no longer navigate in seemingly arbitrary ways throughout the knowledge base. It is difficult
to assess the cost-benefit ratio of this tradeoff. We are optimistic that it is high; analogies
can be found in human organizations as well as in other large computer systems.

In our current demonstration the efficiency cannot be measured. We know that accep-
tance of new technology requires both conceptual benefits as well as reasonable efficiency,
and we hope to gain efficiency with our binding approaches. These will benefit from the
structure information that SoDs provide.

Automation of techniques of knowledge management will be essential in a wide range of
future applications. We hope and expect that the principles we have laid out will contribute
to an orderly and productive growth of the field.

Acknowledgements
This paper presents research results developed primarily with the KBMS project on man-
agement of large knowledge bases, supported by DARPA under contract N39-84-C-211. Use-
ful insights were gathered by interaction with researchers at DEC (project title 'Reasoning
about RIME') and the RX knowledge acquisition project, NCHSR/DHHS HS 04389, NLM
LM-4334, by NIH RR HD-12327, RR-0785, and F32 GM08092. We would like to thank
Prof. Arthur Keller, Surajit Chaudhuri, and Keith Hall for their help and careful reading of
earlier drafts of this paper.

References
[Bachant 84] J. Bachant and J. McDermott: "R1 revisited: Four years in the trenches"; The

AI Magazine, 5(3):21-32: 1984.
[Barker89] Virginia E. Barker and Dennis E. O'Connor: Expert Systems for Configuration

at Digital: XCON and beyond"; Comm ACM, Vol.32 No.3, March 1989, pp. 298-318.
[Barsalou 881 T. Barsalou: "An object-based architecture for biomedical expert database

systems"; Proceedings of the Twelfth Symposium on Computer Applications in Medical
Care, IEEE Computer Society, pp. 572-578, 1988.

[Blum 82] R.L. Blum: "Discovery and representation of causal relationships from a large
time-oriented clinical database: The RX project"; Lccture Notes in Medical Informatics,
Springer-Verlag, New York, 1982.

[Bolour 82] A. Bolour, T. Anderson, L. Dekeyser, and H. Wong: "The rulle of time in infor-
mation processing: A survey"; A CM SIGART Newsletter, 80:28-48, 1982.

[Chaudhuri 89] S. Chaudhuri: "Generalization as a Query Modification Operation"; Submit-
ted to VLDB 89.

69

[Ceri 89] S. Ceri, G. Gottlob, and G. Wiederhold: "Interfacing Relational Databases
and PROLOG Efficiently"; IEEE Transactions on Software Engineering, pp.153-164,
Feb.1989.

[DeMichiel 89] L. DeMichiel: "Performing Operations over Mismatched Domains"; IEEE
Data Engineering 5, Los Angeles, Feb.1989.

[deZegher 88] I. deZegher-Geets, A. Freeman, M. Walker, R. Blum, and G. Wiederhold:
"Summarization and display of on-line medical records"; MD Computing, 5(3):38-45,
1988.

[Feigenbaum 88] E. Feigenbaum, P. Nii, and P. McCorduck: The rise of the expert company:
How visionary companies are using artificial intelligence to achieve higher productivity
and profits; Times Books, 1988.

[Gallaire 84] H. Gallaire, J. Minker, and J-M. Nicolas: "Logic and Databases: A Deductive
Approach"; ACM Comp.Surveys, Vo1.16 No.2, Jun.1984, ,?.153-185.

[Hewitt:73] Carl Hewitt, P. Bishop., R. Steiger.: "A Universal Modular ACTOR Formalism
for Artificial Intelligence"; IJCAI 3, SRI, Aug.1973, pp.235-245.

[Miller 70] James R. Miller: Professional Decision Making - A Procedure for Evaluating
Complex Alternatives; Praeger pubs., 1970.

[KatMen 89] H. Katsuno and A.O. Mendelzon: "A Unified View of Propositional Knowledge
Base Updates"; Univ. of Toronto, rcvd. Jan.1989.

[Keller 86] A.M. Keller: "The Role of Semantics in Translating View Updates"; IEEE Com-
puter, 19(1):63-73, 1986.

[Kerschberg 85] Larry Kerschberg (editor): Expert Database Systems; Benjamin-Cummins,
1985.

[Kingsland 83] L.C Kingsland, D.A.B. Lindberg, and G.C. Sharp: "AI/RHEUM: A consul-
tant system for rheumatology"; Journal of Medical Systems, 7:221-227, 1983.

[Lenat 86] D. Lenat, M. Prakash, M. Shepherd: "Cyc: Using Common Sense Knowledge
to Overcome Brittleness and Knowledge Acquisition Bottlenecks"; The AI Magazine,
6(4):65-85, 1986.

[Lenat 87] D. Lenat and E. Feigenbaum: "On the thresholds of knowledge"; IJCAI 87, Milan,
Italy, 1987.

[Mackinlay 85] J. Mackinlay and M. Genesereth: "Expressiveness and Language Choicc";
Data and Knowledge Engineering, 1(1):17-29, June 1985.

[Malone 871 T.W. Malone, K.R Grant, F.A. Turbak, S.A. Brobst, and M.D. Cohen: "Intel-
ligent Information-Sharing Systems"; CACM, 30(5):390-402, May 1987.

[McCarthy 80] J. McCarthy: "Circumscription-a form of non-monotonic reasoning"; Arti-
ficial Intelligence, 13:27-39, 1980.

[Methlie 85] L.B. Methlie and R.H. Sprague: "Knowledge Representation for Decision Sup-
port Systems"; 1985.

[ORG]
[Rathmann 89] P. Rathmann and M. Winslett: "Circumscribing Equality"; IJCAI 89, De-

troit, Michigan, 1989.
[Reiter 78] R. Reiter: "On Closed World Data Bases"; in H. Gallaire and J. Minker (eds.),

Logic and Data Bases, pp. 119-140, Plenum, New York, 1978.
[Reiter 80] R. Reiter: "A Logic for Default Reasoning"; AI, Vol.13, Apr.1980.
[RothKS88] Mark A. Roth, Henry F. Korth, and Abraham Silberschatz: "Extended Algebra

and Calculus for Nested Relational Databases"; ACM TODS, Vol.13 No.2, dec.1988, pp.

70

389-417.
[Shortliffe 76] E.H. Shortliffe: "Computer-based medical consultations: MYCIN"; American

Elsevier, New York, 1976.
[Stefik 791 M. Stefik: "An examination of a frame-structured representation system"; IJCAI

79, Tokyo, Japan, 1979.
[Swami88] A. Swami and A. Gupta: "Optimization of Large Join Queries"; Proceedings of

ACM-SIGMOD International Conference on Management of Data, 1988.
[Wiederhold 86a] G. Wiederhold: "Knowledge versus data"; in M.L. Brodie and J. Mylopou-

los (eds.), On knowledge base management systems, pp. 77-82, Springer-Verlag, New
York, 1986.

[Wiederhold 86b] G. Wiederhold: "Views, objects and databases"; IEEE Computer,
19(12):37-44, 1986.

[Wiederhold 891 G. Wiederhold: "The architecture of future information systems"; to appear
in the Proceedings of the International Symposium on Database Systems for Advanced
Applications, KISS and IPSJ, Seoul, Korea, 1989.

[WWHCSCWDR 87] G. Wiederhold, ,M. Walker ,W. Hasan, S. Chaudhuri, A. Swami,
S.K. Cha, X-L. Qian, M. Winslett, L. DeMichiel, and P.K. Rathmann: "KSYS: An
Architecture for Integrating Databases and Knowledge Bases" in Gupta and Madnick
(eds) Technical Opinions Regarding Knowledge Based Integrated Information Systems
Engineering, MIT, 1987.

71

To appear in the Proceedings of the Sixth
International Conference on Data Engineering,
Los Angeles, Feb 1990

Generalization and a Framework for
Query Modification

Surajit Chaudhuri
Stanford University

Abstract framework that formalizes the basic ideas in query mod-
ification. The framework opens up the possibility of

The rigidity and the limited expressiveness of the re- partially automating the above iterative process. We
lational queries often force us to iteratively modify a illustrate the framework with the example of general-
query. We pose an initial query and once we dis- ization as a query modification operation.
cover that the answer does not meet the additional The paper is organized as follows. In the next sec-
constraints, which are not expressed in the relational tion, we informally discuss the concept of query mod-
query, we try to modify the query in a way such that ification and outline our approach. In section 3, we
those constraints are satisfied. Our aim in this paper is present our framework for query modification. The
to capture this iterative process by extending the query following section introduces generalization as a query
model. We define extended queries which express addi- modification operation. In section 5, the rules of gen-
tional constraints on the answer set and designate some eralization are presented. An algorithm to pick an ac-
of the conditions in the relational query as flexible. The ceptable generalization is outlined in section 6. Section
query modification operators modify flexible constraints 7 summarizes the related work in this area. We con-
to satisfy an extended query. We describe in detail the clude with an outline of future work.
query modification operation Generalization. We iden-
tify the conditions under which generalization is appli-
cable. We propose rules of generalization and suggest 2 W hat is Query Modification?
an algorithm for picking a minimal generalization. Query Modification' is the process of refining a query

when the answer to the query does not meet the ex-

1 Introduction pectations of the user. Let us begin by examining two
simple examples where query modification is required:

Current relational database systems retrieve tuples Example 2.1: We need to find at least five review-
from databases which satisfy a relational query. Effi- ers for the paper: "Application of Object Oriented
cient query processing techniques have been developed Databases to CAD". Therefore, we ask the database
to evaluate tLe select-project-join class of queries. How- for the reviewers who have both CAD and object ori-
ever, it is often hard or impossible to express many ented databases as their areas of expertise. However,

useful constraints on the answer relation (e.g., aggre- there may not be five such reviewers. In that case, we

gate properties) in relational languages. Therefore, it modify the query to accept reviewers who are knowl-

is likely that the the answer to the query may not meet edgeable in engineering and object oriented databases.

the expectations of the user. In such a case, the user The set of people who have expertise in engineering

modifies the query. This iterative process continues un- includes people who have expertise in CAD. We may

til the answer set meets the expectations of the user. need to continue weakening our constraints further in

The process of query modification puts an undue bur- order to meet the cardinality constraint.

den on the user. He must have considerable background Example 2.2: Our task is to get together an interna-

knowledge about the semantics of the database in order tional fleet drawing manpower from smaller fleets each

to perform such iterative modifications well. As we at- of which must have a frigate, and is based in the Persian

tempt to model complex applications using databases, Gulf. We want to have a total manpower of 20,000 or

we perceive a pressing need to provide tools and tech- more. The condition that each participant must have

niques to perform such modifications automatically. 'This definition is distinct from the sense in which the term

In this paper, we take a first step in providing a is used in INGRES.

72

a frigate may not be violated. However, if necessary, A query Q(F) is a conjunctive query iff it is of the
we are willing to weaken the query to allow naval ships syntactic form 2 : Q(F') = 37Ai P('T) where 7 C (F U
based nearby to satisfy the manpower requirement. W T), and Pi-s are relation symbols. The variables in 7
note that the condition on manpower requirement can are called the existential variables. For the simplicity of
not be expressed in the relational language. Also, it exposition, we will restrict ourselves to only conjunctive
is not possible to indicate that the user is willing to queries. Q(x), in Example 2.3 above, is a conjunctive
accept answers from the weakened query. query.

The two examples above illustrate the following
shortcomings of the relational query models: 3 Framework

* It is often hard to express in a relational language
the constraints that the user expects the answer to We now propose our framework for query modification.
the query to satisfy. In Example 2.1, we would like This framework extends the relational query model.
the database to return at least five reviewers. The key aspects of our framework are as follows:

a The user may be willing to allow selective modi- * A proposal for an extended query that expresses
fication of the relational query to meet his expec- the user's expectations of the answer set in addi-
tations. In Example 2.2, we relaxed the original tion to the relational query.
query to include ships from the countries which
are near the Persian Gulf. One can't designate * Query Modification Operators to modify an ex-
and take advantage of flexible conditions in the re-
lational framework. * Strategy for applying the modification operators.

a The integrity constraints and other meta- Extended Queries: We represent the additional con-
knowledge in the schema could be used for query straints by defining an extended query to have two corn-
modification. In Example 2.1, we could use the ponents. The first is a relational query, denoted by Q.
subset relationship between the set of experts in We will restrict Q to be a conjunctive query for sim-
CAD and the set of experts in engineering to de- plicity. The second component is a boolean function
rive the modified query. Unfortunately, in all ex- (predicate) P that takes as input the answer generated
isting systems, the task of refining the query is left by executing the query Q over a database D. Thus, P
to the user completely. is a function from 2' to {True, False}, where S is the

domain to which every answer tuple must belong. We
In the next section, we present our framework which will refer to the second component as the acceptance
addresses these shortcomings. Below we review the test. This component reflects the user's expectations
terminologies in relational databases that we will use of the answer set.
in the rest of the paper. We say that an extended query is acceptable for a

A database schema consists of relations and a set of database D iff p(QD) - True. The answer to an ex-
integrity constraints E. Any valid database must be a tended query is an empty set if the query is not accept-
model of its integrity constraints E. able and is QD otherwise. An extended query model

A query is an open formula, denoted Q(F), where F reduces to a relational query when ? is always true. For
is the set of free variables. The relation represented by simplicity, we assume that Q is entirely flexible and ? is
Q(YT) in a database D is denoted by QD. We will often invariant. Under the above assumptions, we can model
abbreviate Q(2) by Q when either the list of variables an extended query by a doublet: (Q, ?), where the only
is not important or is obvious. invariant part is the acceptance test ?. The framework

Example 2.3: Knows(z, y) means that person z is easily extends to the case where some of the conjuncts
knowledgeable in subject y. The set of integrity con- in Q are also invariant.
straints below state that a person knowledgeable in a
subarea (e.g., object-oriented database) is also knowl- Modification Operators: The goal of the query
edgeable in the area (e.g., database). modification operators alo a query
E = {Vz(Knows(z, oodb) -- Knows(z, database)), modification operators is to transform a query (Q,I)
Vz(Knows(z, cad) - Knows(z, engineering))) to a query (Q',?) so that the latter is acceptable. It

is therefore necessary to establish a correspondence be-
The following query asks for people knowledgeable in tween the acceptance tests and the query modification

CAD as well as object oriented databases.
Q(z) - Knows(z, cad) A Knows(z, database) operators.

2 Ai P in a shorthand notation for P A P A... A P A.. A P.

73

We will assume that the system designer specifies a query has a higher mean age, we can use the meta-
set of primitive acceptance tests. For each primitive knowledge salary <_ a * age + b to change 50k to a more
acceptance test, there will be one or more query mod- appropriate value.
ification operators and vice-versa. Thus, there will be Example 3.3 (Prototype Exclusion) Assume that we
a many to many association between the set of primi- want to find the accident number and the type of the
tive acceptance tests and the set of query modification aircraft for each air accident that occurred in 1988.
operators. Such associations may be provided by the Let accident(accidentid, type, 1988) be the relational
designer of the database schema or they could be in- query that we ask. However, on examining a sam-
ferred from properties of the query modification oper- ple of the answer relation, we realize that the an-
ators and the primitive acceptance tests. For example, swer contains military aircrafts too. One such un-
we know that the sum of values of an attribute for the wanted tuple is (A0090, F16, 1988). We realize that
answer relation will increase if the number of answer our query is too general and indicate to the system
tuples increases. Therefore, an operator that increases that the aircraft A0090 ought not to be in the an-
the number of tuples in the answer can be used for swer. The above now serves as the acceptance test
increasing the sum. Examples 3.1 to 3.3 informally de- of the extended query. The rewrite-rule for proto-
scribe a set of acceptance tests and query modification type exclusion excludes the most specific relation to
operate -s. We will assume that every acceptance test is which the unwanted answer belongs. Let that relation
a set of primitive acceptance tests. The acceptance test for the above tuple be militaryaccident. The sys-
returns true iff all the component primitive acceptance tem modifies the query by adding the negated conjunct
tests return true. -military-accident(id, type, date) to the initial query.

Next, we address the issue of how a query modifica-
tion operator is specified. A natural representation of Strategy for Operator Application: An operator
an operator is in terms of a set of rewrite rules. These becomes eligible to apply when a primitive acceptance
rewrite rules will reflect the semantics of the query mod- test with which it is associated fails. If there are multi-
ification operator and the integrity constraints in the ple eligible operators, then, we need schemes for conflict
database. We assume the following structure for the resolution. A complete discussion of the strategy selec-
rewrite rules: tion would require defining the set of primitive accep-

tance tests and studying the combinatorial properties
< ezpr >==*< expre > of the rewrite system. Example of such properties are

Church-Rosser, confluent and canonical [Hin 72]. Somewhere < ezpr > (and < ezpr' >) is a conjunctive query. of these properties help us identify equivalence classes

An application of the above rule will transform a set of of modifications.

conjuncts in the query tha unifiesowgthe instance of The strategy for operator applications must capture

ezpr to the the corresponding instance of ezprl. the intuition that the flexible constraints in an extendedExample 3.1 (Generalization): Consider Example qurshudemoieds tleapsib.Fraly
2.1. The extended query, as formulated by user, has query should be modified as little as possible. Formally,

we want our rewrite system to guarantee minimal mod-
the following components: ification:

Definition (Minimality): An acceptable modifica-
Q(z) _ Knowa(z, cad) A Knws(z, oodb) tion Q' of Q is minimal with respect to a set 1Z of

P(QD) _ Count(QD) > 5 rewrite rules if there is no other acceptable modifica-
tion Q" of Q such that the transformation to Q" uses

Let's assume that generalization is the operator associ- only a subset of the set of applications of rewrite rules
ated with *P. One of the rewrite rules for generalization needed for modifying Q to Q'.
is 3 Knows(z, cad) ==* Knows(z, engineering) A complete exposition of the language of extended
The rule is based on the integrity constraint given queries, rewrite rules and strategy selection to guaran-
above. We can generalize the above query to: tee minimality is beyond the scope of this paper. How-

ever, we will discuss these issues in the context of gener-
Q(x) - Knows(z, engineerinug) A Knowa(x, odb) alization, a useful query modification operator. We will

define the generalization transformation and will iden-
Example 3.i (Aggregate Tuning): Our relational tify the acceptance tests for which the operator can be

query is to retrieve employees who earn more than 50k. applied. We will show how integrity constraints may
The acceptance test is that the sample size must have be used to derive the rewrite rules for generalization.
mean age less than 30. If the answer set of the original Finally, we present an algorithm that enables us to pick

3 A simplied version of constant generalization (section 5.3). a minimal generalization. Our goal is to run through

74

all the steps necessary to design a query modification 5 Rules of Generalization
operator. A Rule of Generalization is a rewrite rule such that

its application to a query results in a generalization4 Generalization transformation. However, to be meaningful, the rules
should have the following properties:

Generalization is a query modification operator that (1) Each application of a rule of generalization ,u.L
weakens the query. Therefore, the set of answers gen- have a simple explanation. Also, changes in the syn-
erated by the transtormed query is a superset of the tax of the query should be few. This makes it easy to
set of answers produced by the original query. This explain the generalization easily. Such a consideration
operator can be applied to satisfy the acceptance tests argues against indiscriminatingly constructing general-
that require a minimum cardinality of the answer set izations based on deductive closures.
(or variants of such acceptance tests). Examples 2.1 (2) In order to perform generalization, the rules of
and 2.2 illustrate such acceptance tests. generalization may depend on integrity constraints for

One way to define the generalization operator is in the database. The nature of the constraints must be
terms of the relationship between the original query and such that they are likely to be specified for a database
the transformed ("generalized") one: and are easy to explain. For example, constraints de-
Definition (Generalization): An extended query rived from the taxonomic hierarchies are likely to be
(Q', 7) gei.eralizes (Q, 7), if over every database D for useful.
the given schema, (3) The computational overhead in constructing a

QD C QID generalization must be low.
In the remainder of this section, we discuss three

We can now say that the effect of the generalization op- classes of generalization all of which meet the con-
erator is to produce a generalized query. The following straints mentioned above.
facts are immediate consequences of the above defini-
tion. We assume that integrity constraints are the only 5.1 Conjunct Removal
additional knowledge used for generalization.
Fact 4.1: If Q' generalizes Q and E is the set of in- The removal of one or more of the conjuncts in Q is the
tegrity constraints, then4 , E VF(Q -. Q') where F is simplest approach to generalizing a conjunctive query.
the set of free variables in Q (and Q'). This method is computationally inexpensive and satis-
Fact 4.2: (Transitivity) If Q' generalizes Q and Q" fies the admissibility condition.
generalizes Q', then Q" generalizes Q. There are many ways in which the transformation of

We now characterize the set of acceptance tests for conjunct removal may be accomplished. Some exam-
which generalization may be used as a query modifica- ples of the transformations are given below:
tion operator. We observe that if the acceptance test is
such that generalization of an acceptable query is also 1. Predicate Removal: By dropping a conjunct ex-
acceptable, then generalization may be used as an op- plicitly: Q1 A Q2 =* Q1
erator. We call this set of acceptance tests monotonic: 2. Variable introduction:

* An acceptance test P is monotonic if P(D) is true,
then for all ' C D, 7(D') is true. (a) By replacing a constant in the query (i.e., aselection) by a new existential variable:

The constraint on the minimum value of accumulated P(, c) by P,(7, i)

manpower in example 2.3 is a monotonic acceptance (b) I h sam va o in t c t

test. For the primitive acceptance tests, we explicitly (b) If the same variable occurs in two conjuncts,
store information about whether or not it is monotonic. we may replace one of the variables by a new

The definition of generalization does not immediately existential variable. Thus, an equijoin is re-* Th deiniton f geeraizaton oesplaced by a cartesian product:
suggest an algorithm to construct the rewrite rules nec-

essary to specify the generalization operator. Indeed, Qi (F, y) A Q2 (y, F) ==€ Q 1 (F, y) A Q2(Y , Z)
depending on E and Q, there could be many candidate The last two rules introduce variables in the query.
generalizations. However, construction of all possi- The variables so introduced (y' in the examples above)
ble generalizations may be prohibitively expensive and must not occur anywhere else in the original query and
hard to explain to the user. In the next section, we ad- should be existentially quantified.
dress this issue of defining the rules of generalization. Example 5.1: Consider the query Q(z) from example

4 c E a means that a is a Iogical consequence of E. 3.1. We now may construct a generalized query Q"(z)

75

by this method of conjunct removal In Example 2.1,we want ideally to select those reviewers
wh:, have published papers on the topic of the submit-

Q"(x) = Knows(z,oodb) ted article. Then, the initial query would be:
Q(x) = Publishedin(z, cad) A Publishedin(x, oodb)

If we consider conjuncts as filters, conjunct removal cor- By using the method of predicate generalization, we
responds to removal of a filter altogether, instead of may pose the query:
decreasing the selectivity of a filter. The following ex-
ample illustrates how relying on only conjunct removal Q'(K) = Knows(z, cad) A Published-in(z, oodb)

may lead us to an undesirable generalization. Example 5.4: It is possible that a generalization
Example 5.2: Consider Q, Q' (example 3.1) and Q" transformation may result in a trivial generalization

(example 5.1). Vz(Q' - Q") and Vz(Q - Q'). If we (i.e., for all databases D, QD = QID where Q' gen-
restrict ourselves to conjunct removal only, we can not eralizes Q). We now present an example of a trivial
discover Q'. Clearly, we would prefer Q' if it is accept- generalization: Assume that a person must be either
able. In such a case, generalization to Q" weakens the a student or a member of staff. A student has addi-
original query unnecessarily. Intuitively, Q" is not sat- tional attributes such as the set of courses he or she
isfying because we are not checking for the orthogonal takes. Staff do not enroll in courses. We can concep-
interest area of engineering. tualize this database in terms of predicates student(x),

We now present examples of other rules of generaliza- staff (z), person(z), courses(z, y). Let us consider the
tions that do not suffer from this drawback of removing query: Q(z, y) = student(x) A courses(x, y). If the oc-
a filter altogether. Unlike conjunct removal, the fol- currence of student is replaced by person, then a triv-
lowing transformations are derived from the integrity ial generalization results because staff do not enroll in
constraints of the database. courses.

5.2 Predicate Generalization 5.3 Constant generalization

Predicate generalization modifies a query by replacing Constant generalization replaces an occurrence of a
one or more positive occurrences of a predicate symbol constant in a query by another constant. Let P(F, a) be
in the query by another predicate symbol. a formula where a constant a occurs. Let P(F, b) be the

The integrity constraints that can be used for this formula where b replaces a in the occurrences of a in
kind of generalization is defined by the following axiom P(F, a). The axiom schema for the integrity constraints
schema: necessary for constant generalization is as follows:

(R(z) S()) () V(P(F, a) - P(, b)) (2)

Any taxonomic hierarchy of types results in such in- The applicability condition and transformation for
tegrity constraints. Predicate generalization trans- constant generalization is similar to Lemma 5.1. Given
forms a query posed on a type to a query on its su- (2), the rewrite rule is:
pertype.
Lemma 5.1: If (1) holds, then, the rewrite rule P(T, a) =* P(Y, b)

R(T) =:= S(T) The integrity constraints for constant generalization

are likely to be induced by the natural hierarchies or

is a generalization transformation. partial orders among domain values. If < is a partial

0 order, then the axiom schema (2) may be derived from

Lemma 5.1 summarizes the applicability condition (3) for all pairs a _< b:

and the transformation needed for predicate generaliza- yVVz((y < z) -- (P(Y, y) - P(F, z)) (3)
tion. This generalization replaces one (or more) posi-
tive occurrences of R in the query by S. By transposing Example 5.5: Examples 2.1 (and 3.1) illustrate the
axiom (1), we can generalize a negative occurrence of application of constant generalization.
S by a negative occurrence of R. Example 5.6: Consider the problem of selecting re-

viewers. We have used constant generalization on

Example 5.3: The integrity constraint, given below, Knows in example 2.1. However, the source of this

states that anyone who has published in an area is constant generalization is based on a hierarchy of key-

knowledgeable in that area. words. Such a hierarchy is used by ACM for classifi-
cation of research articles [Acm 87] for computing sur-

VzVy(Publishedin(x, y) -" Knows(x, y)) vey. We denote the keyword hierarchy relationship by

76

<. If cad < engineering and Knows satisfies (3), Proof: Since t does not occur in the left hand side of
then, The following rule of constant generalization is a (5), any formula obtained by a specific substitution for
consequence of the above: t is generalized by tht formula on the right hand side

of (5). In particular, if we substitute t = Sj and then
V(Knows(z, cad) -Knows(z, engineering)) use (4), the formula reduces to the left hand side of (5).

If the relation < denotes a relationship over a do- Therefore, (5) is a rule of generalization. C3

main such as integers or reals, it may be more effective The basic idea is to replace each tuple in a relation

to generalize in steps for computational efficiency. A by a set of tuples each of which differ from another in
the set only in the value of the argument position which

modification of the axiom schema (3) to use steps is is sed or n eo geerlizato

given below: is used for neighborhood generalization.
Example 5.6: Let the predicate Ship(z,y) denote that

VVyVz((z = y + s) -- (P(F, y) -* P(r, z))) ship z operates in country y. Then, the initial query is
to retrieve all ships that operate in India.

5.4 Neighborhood Generalization Q(z) =_ Ship(x, India)

Neighborhood generalization has the effect of replacing
every value in an argument position of a predicate by The query Q retrieves the set of all ships which are reg-
its neighborhood (i.e., a set of "nearby" values). For istered in India. Assume that Near(z, y) is the neigh-
example, the query to find all people of age 40 may be borhood relation for the domain country and for the
generalized to finding all people of age between 35 and predicate Ship. For the purpose of shipping, the neigh-
45. In order to ensure that the transformed query is a boring countries may include Pakistan, China, Burma
generalization, it is necessary that the neighborhood of and Sri Lanka. Then, Q may be generalized to Q' as
a value includes itself. We now formalize these ideas. follows:

To use neighborhood generalization for an argument
of a predicate, we have to define a neighborhood rela- Q'(z) =_ Ship(z, y) A Near(y, India)
tion for it. Let Np, denote the neighborhood relation
for the jth argument position of a predicate P. Np Since the neighborhood relation depends on a domain,
may be defined either intensionally or extensionally. there may be additional domain-dependent conditions
For domains of type integer or real, the neighborhood that further characterizes a neighborhood relation.
relation may be defined intensionally. For example, we
could define a neighborhood relation to be an interval 5.5 Nature of Rules of Generalization
of length 10. Such intensional definitions depend on
the semantics of the domain. For example, the neigh- We have presented several techniques of generalization.
borhood for the dimension of a microchip will be much The predicate generalization changes a relation sym-
smaller than that of the population size. bol into another, a constant generalization substitutes

We have pointed out that in order to use the neigh- a constant by another constant and the neighborhood
borhood relation for generalization, we must ensure generalization introduces ajoin. In this section, we dis-
that the neighborhood of a value includes itself: cuss some of their interesting properties.
Reflexivity Condition: Let Pj denote the unary re- All the generalizations introduce local modifications
lation that is the projection of P onto the jth attribute, to the query. This makes it easy to explain the changes
Then, Np, satisfies the reflexivity condition if the fol- to a query to the user.
lowing holds: The rules of generalization that have been proposed

here are mutually independent in the following sense.
Vz(P(z) - Np, (z,z)) (4) It is not possible to subsume the rewrite rules for one

We observe that the reflexivity condition (4) is weaker kind of generalization by any set of rules of the other
than requiring that Np, be reflexive. The following two kinds. For example, no successive applications oflemma is a consequence of the reflexivity condition: g --dicate and neighborhood generalization can trans-
lemma is a conusatisfies (4), then the rewrite rule form the original query into a formula that has beenLemma 5.2: If Np, derived using constant generalization. However, the

P(T , 6j,72) == P(1j, t, Y2) A Npj(t, 6j) (5) three classes of generalization do interact. Applications
of one set of rules may invalidate an application of some

where 6, occurs in the ith argument position of P, and other rule of generalization.
9 is any existential variable that does not occur in the The three classes of generalization depend on the se-
query, is a generalization transformation. mantic knowledge to varying degrees. The technique

77

of conjunct removal is completely domain indepen- A rule gen, when applied, chooses a conjunct and a
dent. Predicate generalization and constant generaliza- rewrite rule to generalize Q.
tions are derived from the integrity constraints. Both A rule ungen, which given a conjunct in the initial
these techniques are based on the common hierarchical query and its current generalization, ungeneralizes it.
knowledge structures. Finally, neighborhood general- Output: A minimal generalization < Q', P >
ization must be user-defined. 1. Apply gen repeatedly at least until the generalized

query is acceptable. Call this query QG.
6 Minimal Generalization 2. Define an order P on the set of conjuncts in Q.

The goal of the generalization operator is to produce Observe that for each conjunct pi in P, we can

an acceptable generalization of a given extended query. identify a unique set of conjuncts Si in QG that

However, as stated in Section 3, we would like such a corresponds to its generalization.

generalization to be minimal. We obtain the definition 3. For each pi E P do:
of minimality in terms of generalization when 1Z in the
definition of minimality is restricted to rules of gener- (a) S' :=Si
alization only. For the following discussion, we assume (b) Do
that for each conjunct, the application of each step in
generalization requires all the preceding steps in gen-
eralization for the conjunct. We call this condition the ii. S' := ungen(pi, S,)

ordering hypothesis. Our algorithm relies on the the- Until (Si = pi) or (S' is unacceptable)
orem stated below. The theorem essentially says that
in order to obtain a minimal generalization, it is neces-
sary and sufficient that generalization of each conjunct
be minimal and that the local minimality condition The algorithm above allows us to first overgeneralize
is reached when ungeneralizing 5 a conjunct one more a query and to later ungeneralize the query to turn it
step makes the query unacceptable. The reason local into a minimal generalization. This flexibility could be
minimality is sufficient is because all the generalization important in searching the space of generalization (e.g.,
transformations are local in nature. The correctness of in the domain of reals and integers). Also, one could
the ungeneralization technique to test minimality relies start with a generalization which is easy to evaluate.
on the ordering hypothesis. The proof of the theorem The algorithm could be improved in several ways.
is omitted. First, we can exploit special properties of the integrity
Theorem 6.1: Assume that P in (Q, 7) is monotonic. constraints (e.g., the set of predicate generalizations
Let Q1 and Q2 be two generalizations of Q, which differ forms a tree). Next, the properties of the relational
only on the generalization of predicate P in Q. query may be used to avoid trivial generalizations (as

Q Ain Example 5.4). Finally, heuristics based on the meta-
data of the specific database (e.g., selectivity, cardinal-

Q2 - (P) A G ity) may be used to converge on an acceptable query

where A and 11 denote applications of sequences of gen- quickly.

eralization. Further, let Q, be acceptable and Q2 be
not. Then, if A(P) is an immediate generalization of 7 Related Work
1(P), and the ordering hypothesis holds, then, there
is a minimal generalization of Q where Pi is generalized Previous work on query modification has been in
to A(P). 0 the area of semantic query optimization, where the
We use the above theorem to arrive at the following modified query returns the same answer set over all
algorithm: databases [Harnm 80] [Chak 85] [King 81] . The addi-
Algorithm 6.1 tional constraints that modify the query in semantic
Input: An extended query: < Q,r >. query optimization stems from the efficiency require-

Anume we generalized P, to M(N(P,)) where M i a in- ments. On the contrary, our goal in query modification

gle application of generalization and N represents an arbitrary is to satisfy the acceptance test.
composition of generalizations. Then, the effect of ungeneralizing The idea of generalizing a query brings up the issue
M(N(P,)) with respect to P, is N(P). Ungeneralizing P with of ranking the output of the extended query. For exam-
respect to itself returns P,.

6i.e., there is no other generalization Q' of (Pj) that can be pie, the tuples contributed by the original query may

generalized to A(P,). be considered to be of "better quality". There has been

78

significant amount of work in information retrieval that be exploited. The technique of materialization and in-
address this issue of ranking the output which may be dexing of views [Rou 81] and common subexpression
adapted in our framework [Sal 83] [Smi 79]. The no- analysis [Fin 82] can be profitably used. Providing ex-
tion of preference has been used by Lacroix [Lac 87] planation and user-friendly interfaces is another con-
to prune the set of answers generated to a relational sideratioi in system design.
query. Tb.e prefereuc conditions arc user specified and
the semantic relationships are not utilized. Acknowledgement: The technique of query generaliza-

Motro [Mot 86] has defined a notion of generaliza- tion was developed as part of the research in the KSYS
tion in the context of an object-oriented data model to project at Stanford University. I am greatly indebted to
avoid null answers to queries. We have provided a more Peter Rathmann, Waqar Hasan, and Panduraig Nayak for
general framework that can accommodate other modi- their many insightful comments. The comments by Mar-ianne Winslett, Gio Wiederhold, Sang K. Cha and Arun
fication operators. We also treat additional aspects of Swami were useful.
generalization such as monotonicity. The later work

by Motro [Mot 88] addresses the issue of intensionally
defining the neighborhood relation. References

Generalization of queries shares some similarity to
concept acquisiton, whose goal is to induce general de- tAcm 87] ACM; "The Full Computing Reviews Classifica-
scriptions of concepts from specific instances of the con-
cepts [Mic 83]. The rules of generalization are similar. [Chak 85] Chakraborty, U.S; "Semantic Query Optimiza-
However, the acceptance test in concept acquisition is tion in Deductive Databases" , PhD thesis, Univer-
to generalize the class description so that it includes all sity of Maryland, July 85.
the training events. The restricted form of acceptance [Fin 82] Finkelstein, S.; 'Common Expression Analysis in
makes it possible to utilize efficient algorithms. Database Applications"; Proceedings of ACM SIG-

MOD 1982.
[Hamm 80] Hammer, M., Zdonik, S.; "Knowledge-based

8 Conclusion query processing", Proceedings of VLDB, Oct 80.
[Hin 72] Hindley J.R. et.al.; "Introduction to Combinatory

We have proposed extended query as a mechanism to Logic", Cambridge University Press, 1972.
capture the iterative model of query modification. Ev- [King 81] King, J.; "Query Optimization by Semantic Rea-
ery extended query has a flexible query and an accep- soning", PhD thesis, Stanford University, May 81.
tance test. The flexible component of the query is mod- [Lac 87] Lacroix, M., Lavency, P.; "Preferences: Putting
ified by using a set of query modification operators so More Knowledge into Queries", Proceedings of
that the acceptance test is satisfied. The concept of VLDB, 1987.
minimality is used to keep the modification as tight as [Mic 83] Michalski R.S., Carbonell J., Mitchell T.; "Ma-
possible. chine Learning: An Artificial Intelligence Ap-

Generalization is an example of a useful query modi- proach", Tioga Publishing Company, 1983.
fication operator. We provided rewrite rules for gener- [Mot 86] Motro, A.; "Query Generalization: A Method for
alization. The rules of generalization are based on the Interpreting Null Answers", in Expert Database
knowledge structures that are commonly available and Systems, Edited by Larry Kerschberg, 1986.
are therefore useful in practice. We have outlined an [Mot 88] Motro, A.; "Vague: A User Interface to Re-
algorithm to pick a minimal generalization. lational Databases that Permit Vague Queries",
Current Status and Future Work: We are exper- ACM transactions on Office Information Systems,
imenting with the techniques of query generalization July 1988, Vol 16, No. 3.
for developing an application for selecting reviewers [Ron 81] Roussopoulos N.; 'View Indexing in Relational
for a technical conference. We have utilized the ACM Databases", Technical Report TR-1046, University
keyword hierarchy [Acm 87] and a large bibliographic of Maryland, April 1981.
database maintained at Stanford University. [Sal 83] Salton G. et.aI.; Extended Boolean Information

The next goal is to experiment with other generic Retieal C ExtnDe 1983.
query modification operators and to study the strategy
for applying different operators in our framework. We [Smi 79] Smith L.; "Selected Artificial Intelligence Tech-
also need to support efficient execution of the extended niques in Information Retrieval Systems Re-

queries The useful rewrite rules may be compiled at search", Ph.D Thesis, Syracuse University, 1979.

the time of schema definition for efficiency. Opportu-
nities to reuse the answers already generated should

79

Resolving Database Incompatibility:

An Approach to Performing Relational Operations

over Mismatched Domains

by

Linda G. DeMichiel

Abstract

We present a solution to the problem of supporting relational database operations

despite domain mismatch. Mismatched domains occur when information must be ob-

tained from databases that were developed independently. We resolve domain differences

by mapping conflicting attributes to common domains by means of a mechanism of virtual

attributes and then apply a set of extended relational operations to the resulting values.

When one-one mappings cannot be established between domains, the values that result

from attribute mappings may be partial. We define a set of extended relational oper-

ators that formalize operations over partial values and thus manipulate the incomplete

information that results from resolving domain mismatch.

Index Terms

Databases, domain mismatch, extended relational algebra, federated databases, in-

complete information, virtual attributes.

1. Introduction

The increased need for communication among independent computer systems makes it

necessary to derive information from multiple database sources. These sources may range

from relations and relation fragments within a single distributed database system [4] to

relations from several independently developed databases or multidatabase systems [12].

If databases have been established independently, however, they are likely to differ in their

representation and encoding of similar information.

It is thus often necessary to perform operations over nonhomogeneous, or disparate,

domains. In particular, we want to perform operations over domains that are seemingly

incompatible (because of type conflicts, for example) but that are semantically similar.

80

§ 1 Introduction

Type conflicts may result from different physical representations of data; more important,

however, although two types may be semantically related and possibly also use the same

physical representation, they may differ in their precise semantics.

While the need for operations over mismatched domains is clearly most proncurced

in a multidatabase environment, this requirement can also arise within a single database,

such as when its conceptual design is no longer adequate to the demands placed upon it

for the generation of new information. Furthermore, it may be desirable to use a database

for a purpose that was not foreseen in its original design, such as to gather historical data.

For example, current encodings for disease categories in medical databases conflict with

the encodings used 20 years ago. By using knowledge about the domain of the database,

it is often possible to overcome limitations of the original structure and to exploit the data

to extract new information.

2. Database Integration

Work in the area of schema integration in heterogeneous databases has recognized the

importance of solving the problem of domain mismatch [7] but has provided only limited

solutions.

While prior work on the related topic of database integration has considered the issues

of schema mismatch in heterogeneous databases, it makes some rather strong assumptions

about the domains of the data involved. Most important, these efforts deal only with

the situations in which it is possible to establish one-one mappings between domains or

many-one mappings in which an element of the source domain can be mapped to P unique

element of the target domain. In practice, however, this is often not so. Consider, for

example, the problem of mapping between zip codes and town names. Many towns have

multiple zip codes, while some zip codes cover multiple towns.

Solutions for the cases in which straightforward data type conversions suffice or in

which an element of the source domain can be mapped to a unique element of the target

domain have been demonstrateu jzejdo, Embley, and Rusinkiewicz [6], by Breitbart,

Olson, and Thompson [3], and b3 empleton et al. [15].

Litwin and Vigier [13] pres it a system that allows the user to define dynamic at-

tributes in order to execute quenes over mismatched domains. A dynamic attribute may

be explicitly defined in the query in which it occurs, or its definition may be stored as an

executable program and invoked from within the query. Litwin and Vigier use dynamic

attributes to define one-one and many-one mappings between domains. After dynamic

81

§ 2 Database Integration

attribute mappings have been applied to a relation, the standard relational operations can

be invoked. Our notion of virtual attributes expands upon Litwin and Vigier's notion of
dynamic attributes. We generalize the concept to address the problems of semantic domain

mismatch in cases where one-one and many-one mappings are not possible. The removal

of the restriction that dynamic attributes be associated with complete information and the

extension to the concept to include partial values then lead us to the introduction of an
extended relational algebra to handle the resulting incomplete information in a uniform

way.

3. An Approach Using Virtual Attributes and Partial Values

In this paper we present a more general solution to the problem of performing op-
erations over mismatched domains. Our solution is designed to handle operations over

mismatched domains in cases where it is not possible to map a value in one domain to a
definite and unique value in another.

The approach we take makes use of the mechanisms of domain mappings and vir-
tual attributes. A virtual attribute, like a real attribute, denotes the property of some

entity and is associated with a particular domain. It is derivable from other attributes in
the database or from other information associated with the database. By mapping real

attributes to virtual attributes of the appropriate domain type, we can place relations in

union-compatible form or in a form suitable for the correct execution of the desired queries.

The domain mapping definitions are registered and stored within the database. They

exist as a layer above the individual database schemas to allow these schemas to be inte-
grated with the schemas of other databases. The use of virtual attribute mappings is thus

fully compatible with an environment of autonomous databases. The choice of the domain

mapping mechanism is motivated by the desire to obtain data integration while remaining
within the relational model and while requiring no modification to the structure or schema

of any foreign database.

When a real attribute value in a domain cannot be mapped to a single definite value,

a partial value may result; that is, it may be possible to characterize the result as a set

of values of which ezactly one must be correct. When operations over partial values are
performed, they in turn may produce maybe results [5]. A maybe result tuple, or maybe

tuple [2], is a tuple that cannot be excluded from the result of a query but that is not

known with certainty to belong to it.

82

§ 3 An Approach Using Virtual Attributes and Partial Values

By extending the operations of the relational algebra to partial values and maybe

tuples, we provide a uniform mechanism for performing operations over mismatched do-

mains.

Performing operations over domains corresponding to virtual attributes is a special

case of the general problem of performing operations over indefinite values [11]. Extensions

of the relational algebra to allow operations over indefinite values have been proposed by

Codd [5], Grant [9], Biskup [2], Maier [14], and others. By defining our operators to handle

the particular demands of virtual attribute mappings, we are able to obtain more precise

results in this area.

In the following sections of this paper, we briefly describe the steps involved in our

mechanism, consider an example that illustrates the application of the extended operations,

and present the definitions of a number of the extended operators.

4. Overview of the Process

The following steps are involved in performing operations over mismatched domains

by means of donmain mappings and virtual attributes. These steps will be illustrated by

the example of the following section and then will be described in greater detail.

1. Convert attributes.

Real attributes and values are mapped to virtual attributes in order to resolve domain

differences and to place the relations in a form suitable for the execution of the desired

queries. The values that result from these mappings may be partial or total.

2. Perform extended relational operations, producing partial results.

The extended relational operators are applied to the resulting relations, which may

contain partial values. The application of the extended relational operators may

produce results that are also partial. Furthermore, application of the selection and

join operators to tuples containing partial values may generate maybe tuples.

3. Continue further computation, considering the partial results and maybe tuples.

Further computation may involve applying the extended relational operators to re-

lations containing maybe tuples as well as partial values.

4. Present the final results.

83

§ 5 A Motivating Example

5. A Motivating Example

In the following example, we show how the manipulation of virtual attribute mappings

and partial values can be used to synthesize and extract information that is not available

by direct means.

Suppose we have two different relations with information on restaurants [121. These

relations may or may not reside in different databases. One gives the location of the restau-

rants by city but is otherwise not specific about location. It is, however, very specific about

the type of food available. The other contains information about restaurants in San Fran-

cisco. It is more precise about location but is otherwise very general in its categorization.

The schemas of these two relations are Chinese-Restaurants (restaurant, city, type)

and SF-Restaurants (restaurant, address, category) respectively. Some of the data

contained in these relations is given below.

We would like to eat Hunan food in North Beach.

Chinese-Restaurants
restaurant: city: type:

name city cuisine

Brandy Ho SF Hunan
Hunan SF Hunan
Mandarin SF Mandarin

China West SF Cantonese

SF-Restaurants

restaurant: address: category:
name address category

Brandy Ho 217 Columbus Chinese
Empress of China 838 Grant Chinese

Five Happiness 309 Clement Chinese

China West 2332 Clement Chinese

Asia Garden 772 Pacific Chinese

We have the following information about the relationship between street address and

84

§5 A Motivating Example

locations:
Locations

address: location:

street area
Grant Chinatown

Columbus NorthBeach

Clement Richmond

Pacific Chinatown

Additionally, if a restaurant is Chinese, we believe that it specializes in either Can-

tonese, Hunan, Mandarin, or Szechwan cuisine. That is, we define a domain mapping from

the domain category to the domain cuisine in which the value Chinese results in the

partial value [Cantonese, Hunan, Mandarin, Szechwan].

Given this information, we can now derive from the original relations the following

two union-compatible relations, Chinese-2 and SF-2:

Chinese-2
restaurant: location: type:

name area cuisine

Brandy Ho [] Hunan
Hunan [3 Hunan
Mandarin 0) Mandarin

China West [] Cantonese

SF-2
restaurant: location: type:

name area cuisine

Brandy Ho NorthBeach [Cantonese,Hunan,
Mandarin, Szechwan]

Empress of China Chinatown [Cantonese,Hunan,

Mandarin, Szechvan)

Five Happiness Richmond (Cantonese,Hunan,
Mandarin, Szechvan]

China West Richmond [Cantonese, Hunan,
Mandarin, Szechvan]

Asia Garden Chinatown [Cantonese,Hunan,
Mandarin, Szechwan]

The relation Chinese-2 iq obtained from the relation Chinese-Restaurants by ap-

plying a domain mapping to the attribute city to generate the virtual attribute location,

85

§ 5 A Motivating Example

whose domain is area. Since we have no means of deriving the location of a restaurant

given the information in Chinese-Restaurants, the values in the location column are

fully unspecified partial values (or null values). They can correspond to any element in the
domain area. We use the empty brackets (0) as a notational shorthand to denote these

fully unspecified partial values. We have projected out the city attribute.

The relation SF-2 is obtained from the relation SF-Rca;war=uts by joining SF-
Restaurants and Locations on the attribute address (we assume for now that we have

additional mappings that reconcile the domain types address and street), by performing

a mapping from the real attribute category to the virtual attribute type, whose domain is

cuisine, and by projecting out the attributes address and category. The mapping from

category to type results in the partial value [Cantonese, Hunan, Mandarin, Szech-

wan].

The result of the query otrpe= H unanAloction=NorthBeachChinese-2 is given below.
Note that the status column does not correspond to an attribute. It is used to distinguish

between true and maybe tuples.

restaurant: location: type: status
name area cuisine

Brandy Ho NorthBeach Hunan maybe
Hunan NorthBeach Hunan maybe

The result of the query a'ype=Hunan~location.NorthB.achSF-2 is

restaurant: location: type: status
name area cuisine

Brandy Ho NorthBeach Hunan maybe

Thus, when we query these two relations separately, we obtain from the first that

Brandy Ho and Hunan may be the answers to our search, if indeed they are in North

Beach. We know that they are both Hunan restaurants, but we are not certain about their

locations. From the second relation we obtain that Brandy Ho may be an answer because
it is in North Beach. However, we do not have definite information about the type of food

that if offers.

If, however, applying our generalized union operator, we first take the union of the

two relations Chinese-2 and SF-2, we obtain the following result, SF-Chinese:

86

§ 5 A Motivating Example

SF-Chinese

restaurant: location: type:

name area cuisine

Brandy Ho NorthBeach Hunan
Empress of China Chinatown [Cantonese,Hunan,

Mandarin, Szechwan]

Five Happiness Richm.vnd !i antonese,Hunan,
Mandarin,Szechwan]

China West Richmond Cantonese

Asia Garden Chinatown [Cantonese,Hunan,
Mandarin, Szechwan]

Hunan [] Hunan
Mandarin [Mandarin

If we now pose our query, it is clear that Brandy Ho is a definite answer to our search,

and that the Hunan may be a possibility, if in fact it is in North Beach. Thus, we have

been able to extract more information from our data.

The result of the query at'ype=HunanAlocation=NorthBeachSF-Chinese is

restaurant: location: type: status
name area cuisine

Brandy Ho NorthBeach Hunan true
Hunan NorthBeach Hunan maybe

In the next sections we present an extended relational algebra that formalizes these

operations.

6. Extending the Relational Algebra

In order to perform relational operations over virtual attributes, we need to extend

the definition of the relational operators to handle the partial information that arises from

virtual attribute mappings. The virtual attribute mappings that we consider map a single

real attribute value to a finite set of virtual attribute values. We will assume here definite

source databases; thus, the indefinite values that occur arise only as a result of virtual

attribute mappings.

87

§6 Extending the Relational Algebra

6.1 Definite Values and Partial Values

We say that a tuple is definite, or fully determined, if it contains no incomplete infor-

mation on any attribute. We say that a tuple whose value on a particular attribute is not

definite is indefinite on that attribute. An indefinite value can mean that no information

at all is known about the value or that no value is appropriate for that attribute. In such

cases, indefinite values are generally represented by nulls [1]. The notion of set null has

been introduced to denote a null whose value can be constrained to be one of a finite set

of values [10].

To distinguish the particular semantics that we attach to the indefinite virtual at-

tribute values that arise from domain mappings and from the operations of our extended

relational algebra, we will refer to them as partial values. A partial value corresponds to

a finite set of possible values such that the "true" or "real" value of the partial value is

exactly one of the values in that set.

A total relation is a relation in which each tuple is definite and unique. A partial

relation is a relation containing zero or more tuples with partial values. An original relation

is any source relation to which virtual attribute mappings have not yet been applied.

In operations over partial values, we need to be able to distinguish when two partial

values correspond to the same possible values, and when they actually correspond to the

same unique real value. If the partial values correspond to sets of distinguishable values,

where the value-bearing elements are accessible in some way, we can do so as follows.

If Yj is a partial value and v denotes the function from a partial value to the finite set

of values to which it corresponds, we say that a value v is an element of partial value 77,

or v E ti, if v E v(7).

We say that two partial values irl and 772 are equal (=) if they must necessarily

correspond to the same true or real value. Thus 77, = 772 if V(771) = V(r72) and Iv(tii) =

IV(r/2)1 = 1; that is, two partial values are regarded as equal if they are each of cardinality

1 and correspond to the same identical real value.

We extend the equality comparison operator = to the comparison of definite values

and partial values as follows. We say that a definite value d and a partial value 1r are equal

(=) if (I v(r)I = 1) A (i E v(17) = i = d). That is, we regard a definite value and a partial

value of cardinality 1 as equal when they correspond to the same value. We assume that

conversions can be freely made between partial values of cardinality 1 and definite values

88

§ 6 Extending the Relational Algebra

as required. In cases where it is necessary to distinguish a partial value whose cardinality

exceeds 1, we will refer to such a partial value as a proper partial value.

In many cases, two partial values will correspond to the same set of possible values,

although they may not be equal (=). That is, although v(77l) = v(772), it is not necessarily

the case that 77, = 772.

If 77 is a partial value and v(77) = 1€1, €2,..n}, then we also use the notation

[011 21, -,] to refer to the partial value. If {VI, V2, ... , vn} are all the elements in a
domain D, then in our examples we will use the shorthand notation [] to denote the

partial value [V1, v2 ,... , Vn] on an attribute whose domain is D-that is, a partial value

whose true or real value can correspond to any element of the given domain.

We define 77 O 7 2 as 773, such that v(T3) = v(nl) Olv(7 2). We define 77 U772 as 773, such
that v(773) = v(ql) U v(r2).

We extend the n operator to operate over definite values and partial values as follows.

Where one of 1, C2 is definite and the other is a partial value, we define C n 2 = C1 = C2

iff 1 = 2; C, n0 2 = C2 if (1 2 = 1 A 62 E Ci); andi 0C2 = 6 if (11I = 1 AC1 E C2).

Similarly, we extend the U operator to operate over definite values and partial values

as follows. Where one of C1, C2 is definite and the other is a partial value, we define

6 U C2 = 6 = C2 iff i '2; 61 U 2 = 6 if (161 = 1 A C2 : CI); and 6 U C2 = C2 if
(11= I A^i 6)

Finally, we define an empty partial value, 0, such that 77 = 0 iff Iv(77)l = 0. Our

extended operations, however, never result in the production of empty partial values. The

attempted generation of an empty partial value is an indication of an error condition or

an inconsistency among relations.

6.2 True and Maybe Results

When our extended relational operators are applied to partial relations, such as re-

lations that result from the application of domain mappings, they will normally produce

results that are also partial. Following Codd [5], we partition the results of these opera-

tions into two classes: true results and maybe results. The distinction between true and

maybe results is independent of the distinction between definite and partial values. The

true result of an operation consists of all those tuples that must be contained in the result.

The maybe result of an operation consists of all those tuples that cannot be excluded from

the result but that are not known with certainty to be contained in the result. The true

89

§ 6 Extending the Relational Algebra

result and the maybe result of an operation are thus defined so that their intersection is
empty. Depending on the operation itself, incomplete information may occur in the true
result, the maybe result, or both. Note that the standard relational operators, which are
defined only over total relations, produce results that consist exclusively of true tuples.

7. Definition of the Extended Operators over Partial Values

Our presentation makes use of the two relations r(R) and s(R). The relations r and
s are assumed to be union-compatible. Let X, X C R denote the designated key in both
r and s, and let Z denote the set of attributes R - X. We assume that all attributes
contained in the designated key are definite. Let C denote some attribute in Z. This
attribute may be either real or virtual. If C is a virtual attribute, we assume that C may
be indefinite.

The relations are assumed to be in third normal form. They are assumed to be in
chased form with regard to the virtual attributes.

We say that a relation r over schema R (denoted as r(R)) is in chased form [16] if
X C R denotes the set of attributes in the designated key, Z C R denotes the set of
attributes R - X, and there are no two tuples t E r, u E r such that t = u or such that
t.X = u.X and t.Z 6 u.Z.

We define our relational operators in such a way that, with few exceptions, the result
relations are in chased form whenever the source relations are in chased form, and thus it
is not necessary to perform a separate chase operation. When this is not the case, it will
be explicitly noted.

We say that two chased and union-compatible relations r(R) and s(R) are consistent
if X C R denotes the set of attributes of the designated key of both r and s, Z denotes
the set of attributes R - X, and (Vu)(Vv)((u E r A v E s A u.X = v.X) =0 (VC)(C E Z =.

u.C n v.C -0)).

The extended operators are defined only for union-compatible and consistent relations.
If, in a given implementation, relations are found to be inconsistent as a result of attempting
to apply an extended operator, the action taken should depend on that implementation.
For example, in some implementations it might be reasonable to signal an error and to
wait for user intervention, whereas in others it might be appropriate to modify the source

data.

90

§ 7 Definition of the Extended Operators over Partial Values

We show the extended definitions for the union, select, project, and natural join

operations. Definitions for the full set of relational operations are given in [8].

7.1 Union

Let the source relations be r(XZ) and s(XZ), where X is the key and Z the set of

non-key attributes.

The true result of the extended operation r U' s is

{t((t Er^(u)(,,E s ^(u.X =t.X)))

V (t E s A (u)(u E r A (u.X = t.X)))

V (3u)(3v)(u E r A v E s A (t.X = u.X = v.X)

A (VC)(C E z =. (t.c = u.c n v.C))))}

The maybe result is 0.

The relations r and s are inconsistent if

(3u)(3v)(u E r A v E s A (u.X = v.X) A (3C)(C E Z A (u.C n v.C = 0)))

The extended union operator requires that if two union-compatible relations each

contain an entry with a given key, all non-key fields must be consistent. If two tuples with

the same key each contain a partial value on a given field, we assume that if the source

information is consistent, it is correct, and thus the value of the result tuple on that field

must be given by the intersection of those partial values.

For example, if r and s are the relations given below, where X is the key and C a

non-key attribute,

r
x C
1 [a,b]
2 [g,h]
3 [a,b,c,d]

S

x C
1 Eb,c)
3 [b,c,d,e)

91

§ 7 Definition of the Extended Operators over Partial Values

then the result q = r U' s is

q
X C
1 b
2 ...[g, h]
3 [b,c ,d]

Depending on database policies and the degree of trust a system places on its source data,

these results may or may not be used to refine the data contained in the source relations

r and s.

7.2 Selection over an Attribute, C

Let the source relation be r(XC), where X is the key and C is a single attribute.

The true result of the extended operation a = r, where z is a constant, possibly a

partial value, is

{it It E r A (t,.C = z)}

If the constant z is a proper partial value, the true result is thus empty.

The maybe result is

{t I (3u)(u E r A (u.C n z # 0) A (t.X = u.X) A (t.C = u.C n z))}

- {tIt E r A (t.C = z)1

Note that the maybe result excludes tuples contained in the true result.

For the special case where z is a definite value, the maybe result is

{t I (3u)(u E r A (z E u.C) A (t.X = u.X) A (t.C = z))}

- {tlt E r A (t.C = z)}

52

§ 7 Definition of the Extended Operators over Partial Values

7.3 Projection over an Attribute, C

Let the source relation be r(XC), where X is the key and C is a single attribute.

The true result of the extended operation 7r'r is

{t I (3u)(u E r A (t = u.C))}

The maybe result is 0.

If C corresponds to = attribute that -o.itains partial values, and duplicates are elimi-

nated from the resulting relation, information may be lost. The source relation may contain

two or more tuples that have partial values that correspond to the same possible values

on attribute C. Were the information in that relation to be complete, these partial values

might or might not correspond to different definite values. For this reason, it is important

to retain the key when a series of extended operations is to be performed.

7.4 Natural Join

Let the source relations be r(XC) and s(YC), where X and Y are keys and C is a

single attribute.

The true result of the extended operation r m' s is

{t I (3u)(3v)(u E r A v E s A (t.X = u.X) A (t.Y = v.Y)

A (t.C = u.C = v.C))}

The maybe result is

It I (3u)(3v)(u E r A V E s A (t.X = u.X) A (t.Y =v.Y)

A (t.C = u.C nv.C 00))}
- {t I (3u)(3v)(u E r A v E s A (t.X = u.X) A (t.Y = v.Y)

A (t.C = u.C = v.C))}

7.5 Properties of the Extended Relational Operators over Partial Values

All four of the extended operators defined above-union, selection on a definite value,

projection, and natural join-are faithful [14] to the corresponding standard operators.

That is, the extended relational operators listed above are defined to be identical to the

93

§ 7 Definition of the Extended Operators over Partial Values

corresponding standard relational operators on all union-compatible total relations con-

taining only definite tuples.

When the extended relational operators are applied to indefinite relations, informa-

tion loss in the form of maybe tuples can result from the extended selection and extended

natural join operations when partial values occur in the selection and join domains respec-

tively.

8. Extending the Relational Operators to Maybe Tuples

In this section we present an extension to the relational operators shown above to

include operations over maybe tuples.

We will first present a definition of the extended operators over partial values and

maybe tuples and then will explain some of our motivations. '

As before, we assume the relations r(R) and s(R) are union-compatible. Let X,

X C R denote the designated key in both r and s; let Z denote the set of attributes

R - X. We assume that tuples resulting from extended relational operations over partial

values carry a status designation {true, maybe}, and that status(t) gives access to the

status designation for a given tuple t. This status designation is not part of the value of

the tuple.

8.1 Union

The true result of the extended operation r U' s is

{tl((t E r A (status(t) = true)

A (u)(u E s A (status(u) = true) A (u.X = t.X)))

V (t E s A (status(t) = true)

A (u)(u E r A (status(u) = true) A (u.X = t.X)))

V (3u)(3v)(u E rA V E s
A (status(u) = true) A (status(v) = true)

A (t.X = u.X = v.X)

A (VC)(C E Z => (t.C = u.C n v.C))))}

Since if true tuples are consistent they are assumed to be correct, we combine them.

Thus true tuples refine the incomplete information of other true tuples.

94

§ 8 Extending the Relational Operators to Maybe Tuples

The maybe result is

{ t ((r = r A (status(t) = maybe)

A (u)(u E s A (t.X = u.X)))

V (t E s A (status(t) = maybe)

A (u)(u E r A (t.X = u.X)))

V (3u)(3v)(u E r A v E s A (u.X = v.X)

A (status(u) = maybe) A (status(v) = maybe)

A (t.X = u.X)

A (VC)(C E Z = (t.C = u.C U v.C))))}

Maybe tuples do not refine the incomplete information of any other tuples.

Note that the cesult may contain fewer maybe tuples than the two source relations

combined. Every maybe tuple in the result corresponds to a maybe tuple in one or both

of the source relations.

The relations r and s are inconsistent if

(3u)(3v)(u E r A v E s A (u.X = v.X)

A (status(u)= true) A (status(v) = true)

A (3C)(C E Z A (u.c v.C = 0)))

8.2 Selection over an Attribute, C

The true result of the extended operation r = r, where z is a constant, possibly a

partial value, is

{t It E r A (t.C = z) A (status(t) = true)}

The maybe result is

{t I (3u)(u E r A (t.X = u.X) A (u.C n z 6 0) A (t.C = (u.C n z)))}

- {t It E r A (t.C = z) A (status(t) = true)}

95

§ 8 Extending the Relational Operators to Maybe Tuples

8.3 Projection over an Attribute, C

The true result of the extended operation 7r'r is

{t I (3u)(u E r A (status(u) = true) A (t = u.C))}

The maybe result is

{t 1(3u)(u E r A (status(u) = maybe) A (t = u.C))}

Note that if duplicate tuples are eliminated from the true result and from the maybe

result to bring each into chased form, information may be lost.

8.4 Natural Join

The true result of the extended operation r m' s is

{t I (3u)(3v)(u E r A v E s

A (status(u) = true) A (status(v) true)

A (t.X = u.X) A (t.Y = v.Y)

A (t.C = u.C = v.C))}

The maybe result is

{t I (3u)(3v)(u E r A v E S

A (t.X = u.X) A (t.Y = v.Y)

A (t.C = u.C nv.C# 0))}
- {t (3u)(3v)(u E r Ay E. s

A (statua(u) = true) A (status(v) = true)

A (t.X = u.X) A (t.Y = v.Y)

A (t.C = u.C = v.C))}

9. The Meaning of Maybe Tuples

As we noted above, a maybe tuple represents information that may not be true. Thus,

it cannot be used to refine the information contained in true tuples. A more subtle point,

however, is that it also cannot be used to refine the information contained in other maybe

tuples or to detect inconsistencies among the maybe tuples of different relations.

96

§ 9 The Meaning of Maybe Tuples

Consider the following example. As before we assume that the relations r(R) and s(R)

are union-compatible and that X, X C R, denotes the designated key in both r and s.

I.Ir

X C status
1 [a,b,c] true

2 [b,c,d] true

S

X C status
1 [a,b,c] true
2 [b, c, d] true
3 [c, d, e] true

By our definitions of the extended operators, the result of a'c=CS is

X C status
1 c maybe
2 c maybe

3 C maybe

Consider now q = r U' (a'=cs). It seems obvious that the first two maybe tuples in

the result of a'= s should not override the information contained in the true tuples of r.

They thus do not affect the result. The result is

q
X C status
1 [a,b,c] true

2 [b,c,d] true

3 c maybe

However, consider (a'= r) U' (a'=,s). The result of a' r is

X C status
1 b maybe

2 b maybe

97

§ 9 The Meaning of Maybe Tuples

Because a maybe tuple represents a result that may be true, all maybe tuple values
need to be reflected in the result of an operation over maybe tuples. Thus, the query
(0'c=br) U' (a'c= s) results in the following relation q, even though the tuples whose X
values are 1 and 2 are seemingly inconsistent. The relation q is shown in unchased form:

q
X C status
1 b maybe
2 b maybe
1 c maybe
2 c maybe
3 c maybe

If we define the union operator over maybe tuples as given in section 8.1, the result

of (a' =j) U' (a'cs) is

q

X C status
1 [b, c] maybe
2 [b, c] maybe

3 c maybe

This result is in chased form and is semantically equivalent to q.

Note further that when we execute the query (a.=br) U' (a' =cr), the result w is

WC

X C status
1 [b, c]- maybe
2 (b, c] maybe

which is the same as the result of aC=[bclr and thus corresponds to our intuitions.

Let us now consider another example, this time involving the set difference operation.

We make use of the following relations r and s:

98

§ 9 The Meaning of Maybe Tuples

r
X C status
1 [a,b,c] true
2 [a,b,c] true

s

X C status

1 [a,b,c] true
2 [a,b,c] true

Since X is the key and since we believe the two relations to be consistent, it should

follow that q = r -, s = 0.

Consider c=bS. The result of a =bS is

X C status
1 b maybe
2 b maybe

Consider now r -' a'cbS If the C values of the tuples in s are in fact b, the C values

of the turles in r must be b also, or the two relations would be inconsistent. Thus, it

follows that if C values are b, the result of r -' (ac=S) must be 0. If, however, the C

values of these tuples are not b, the result of r -(' (=s) must be

X C
1 [a, c]
2 [a, C3

In other words, r -'(a' = q, where q is the following relation:

q
X C - status

1 [a,c] maybe
2 [a, c] maybe

99

§ 9 The Meaning of Maybe Tuples

The follow~n,, definition of the maybe result of the set difference operator on maybe

tuples reflects this semantics:

{t ((3u)(u E r A (status(u) = maybe)

A (v)(v Es A u.X = v.X)

A(t =u))

V (3u)(u E r A (status(u) = maybe)

A (]v)(v E s A (status(v) = maybe)

A (t.X = u.X = v.X)

A (VC)(C E Z => (t.C = u.C - v.C 0 0))))

V (3u)(u E r A (status(u) = true)

A (Bv)(v E s A (status(v) = maybe)

A (VC)(C E Z = (u.C n v.C 5 0))

A (t.X = u.X = v.X)

A (VC)(C E Z =.> (t.C = u.C - v.C 54 $))

10. Preserving Additional Information

By maintaining information about the origins of maybe tuples, it is possible to charac-

terize the conditions whose satisfaction guarantees that the maybe tuples are in fact part

of the true result of a given operation. It is thus possible to preserve additional information

when performing a series of operations involving partial values.

Sometimes it is useful to distinguish among individual partial values. Partial values

that are marked are distinguished from all other partial values that do not bear an identical

mark r141. If two partial values bear the same identical mark, they are identical and

therefore denote the same identical real value. The use of marked partial values may

allow more information to be retained when the relational operators are applied to partial

relations. They can, however, significantly increase the complexity of these operations

without necessarily increasing the information content of the result.

Mechanisms for preserving information in operations involving partial values and

maybe tuples, the use of marked partial values, and the properties of extended relational

operations with regard to the preservation of information are described in [8].

100

§ 11 Implementation

11. Implementation

We have implemented the described concepts in connection with work on the KSYS

project [17] at Stanford University. This system, DomainMatch, uses domain mappings,

virtual attributes, and a full set of extended relational operations over unmarked partial

values and maybe tuples to perform relational query operations over data obtained from

mismatched domains. DomainMatch is written in Common Lisp. It is currently running

as a front end to the VAX Rdb/ VMS database system on Naxos, the KSYS project VAX

11/750.

12. Conclusion

We have presented a solution to the problem of performing operations over mismatched

domains. Operations over mismatched domains can be performed through first resolving

the domain differences by mapping the conflicting attributes to a common domain and then

performing the desired operations over identical domains. The application of a domain

mapping to a real attribute results in a virtual attribute. The virtual attribute values may

be total or partial.

We have formalized operations across the partial values that result from virtual at-

tribute mappings by defining an extended relational algebra. We have described an ex-

tension of the relational algebra that models operations across relations containing both

partial values and maybe tuples and have presented definitions of a number of the extended

operations of this algebra. As we have demonstrated in examples, our operations allow us

to extract more information from our data than would be available by a straightforward

application of the standard relational operators.

This approach is particularly suitable for use in a distributed environment where

individual databases are autonomous and all updating control resides with local databases,

since it can be used with no modification of local schemas.

13. Acknowledgments

The work reported here was supported in part by the DARPA contract N00039-84-

C-0211 for Knowledge Based Management Systems. The author would like to thank Gio

Wiederhold for his valuable suggestions.

101

§ 14 References

14. References

[1] ANSI/X3/SPARC Study Group on Data Base Management Systems, Interim Report

75-02-08, SIGMOD FDT Bulletin, Vol. 7, No. 2, 1975.

[21 Joachim Biskup, "A Foundation of Codd's Relational Maybe-Operations," A CM Trans-

actions on Database Systems, Vol. 8, No. 4, December 1983, pp. 608-636.

[3] Yuri Breitbart, Peter L. Olson, Glenn R. Thompson, "Database Integration in a Dis-

tributed Heterogeneous Database System," Proceedings of the International Conference on

Data Engineering, 1986, pp. 301-310.

[4] Stefano Ceri and Giuseppe Pelagatti, Distributed Databases: Principles and Systems,

McGraw-Hill, 1984.

[5] E. F. Codd, "Extending the Database Relational Model to Capture More Meaning."

A CM Transactions on Database Systems, Vol. 4, No. 4, 1979, pp. 397-434.

[6] Bogdan Czejdo, David W. Embley, Marek Rusinkiewicz, "An Approach to Schema

Integration and Query Formulation in Federated Database Systems," Proceedings of the

Third International Conference on Data Engineering, 1987, pp. 477-484.

[7] Umeshwar Dayal and Hai-Yann Hwang, "View Definition and Generalization for

Database Integration in a Multidatabase System," IEEE Transactions on Software En-

gineering, Vol 10, No. .6, Nov. 1984, pp. 628-645.

[8] Linda G. DeMichiel, Performing Database Operations over Mismatched Domains, Ph.D.

Dissertation, Stanford University, 1989.

[9] John Grant, "Incomplete Information in a Relational Database," Fundamenta Infor-

maticae, Vol.3, No. 3, 1980, pp. 363-378.

[10] Arthur M. Keller and Marianne Winslett Wilkins, "On the Use of an Extended Re-

lational Model to Handle Changing Incomplete Information," Transactions on Software

Engineering, Vol. 11, No.7, July 1985.

[11] Witold Lipski, Jr., "On Semantic Issues Connected with Incomplete Information

Databases," ACM Transactions on Database Systems, Vol. 4, No. 3, Sept. 1979, 262-296.

102

§ 14 References

[12] Witold Litwin, "MALPHA: A Relational Multidatabase Manipulation Language,"

Proceedings of the International Conference on Data Engineering, 1984, pp.86 -93.

[13] Witold Litwin and Philippe Vigier, "Dynamic Attributes in the Multidatabase System

MRDSM," Proceedings of the International Conference on Data Engineering, 1986, pp.

103-110.

[14] David Maier, The Theory of Relational Databases, Computer Science Press, Rockville,

Maryland, 1983.

[15] Marjorie Templeton, David Brill, Son K. Dao, Eric Lund, Patricia Ward, Arbee L.

P. Chen, and Robert MacGregor, "Mermaid-A Front End to Distributed Heterogeneous

Databases," Proceedings of the IEEE, Vol. 75, No. 5, May 1987, pp. 695-708.

[16] Jeffrey D. Ullman, Principles of Database Systems, 2nd ed., Computer Science Press,

Rockville, Maryland, 1982.

[17] Gio C. M. Wiederhold, Michael G. Walker, Waqar Hasan, Surajit Chaudhuri, Arun

Swami, Sang K. Cha, Xiaolei Qian, Marianne Winslett, Linda DeMichiel, and Peter K.

Rathmann, "KSYS: An Architecture for Integrating Databases and Knowledge Bases," in

Amar Gupta and Stuart Madnick, eds., Technical Opinions Regarding Knowledge Based

Integrated Information Systems Engineering, MIT, 1987.

103

Tuning the Reactivity of Database Monitors

Tore Risch *

February 20, 1990

Abstract

Database Monitors allow application programs to asynchronously monitor result
changes of database access queries by associating tracking procedures with the queries.
Whenever some application process U commits updates that the DBMS suspects will
change significantly the result of a query monitored by a monitoring process M, the
DBMS will invoke the associated tracking procedure of M. The invocation is asyn-
chronous so that the updating process U is autonomous from the monitoring process
M.

This paper first gives a formalization of the concept of database monitors. Then
we define the Reactivity as a measure of how often a given Tracking Procedure will be
invoked. Some Tuning Parameters are introduced that give the programmer a means
to adjust the reactivity. The settings of these parameters adapt the behavior and
the performance of database monitors to the needs of particular applications. High
reactivity will allow fine grain tracking but it will also decrease the performance of the
application, the DBMS, and the communication network. By lowering the reactivity
we gain efficiency at the expense of loosing information. The use of tuning parameters
is exemplified for two implemented prototype applications.

Key Words and Phrases:

Active Databases, Data Monitoring, Triggers, Real Time Databases, Knowledge Based
Systems Support, Object-Oriented Databases.

* Visitor from Stanford Science Center, Hewlett-Packard Laboratories, 1501 Page Mill Rd., Palo Alto,
CA 94303

104

1 Introduction

We have proposed and implemented a Database Monitor feature [18] within the Object-
Oriented DBMS Iris [10]. The main ideas behind database monitors are the following:

Assume that we have a multi-user DBMS, such as the Object-Oriented DBMS Iris [10], and
we also have query language, such as Iris' OSQL[2], with operators to declaratively query
the database. Given that the database content is continuously and concurrently updated
using atomic transactions, our system allows application processes to be informed when
these updates cause the results of given database access queries to change. In particular
the technique can support knowledge based modules, or mediators [261, where inference
methods are triggered to adapt to the observed changes.

We assume that two transactions cannot finish at exactly the same time. At any point
in time tj the database has a global state S(tj). We denote by Uj the transaction that
finishes at time tj. The database is in state S(tj) when Uj completes.

Derived data can be specified as views by declarative access queries. An access query Q
can be regarded as a mapping from the global database state S(ti) into the derived result
domain of the query, Q(S(t3)). Updates of the global database state S(ti) over time will
also effect Q(S(tj)). We are interested in observing result changes to Q(S(tj)) for each
given access query Q, i.e. situations where
Q(S(t,)) # Q(S(tj)), i < j.
A process that is interested in such changes of a query result is said to be monitoring the
query. For example a process may be continuously monitoring a query deriving the highest
paid employee of a company.

We denote with Q(p) a parameterized query where P is a set of actual parameters. Pa-
rameterized queries are called derived functions in Iris. They are access path optimized
for arbitrary parameters similar to canned queries in relational DBMSs [7]. In Iris, object
attributes are modeled by derived functions where the first parameter typically is bound
to the object identifier. For example, we may define a derived function that retrieves the
highest paid employee for any given department. We denote the result of Q(p) at time
tj as Q(p)(S(tj)). Q can be regarded as a special case of Q(p) with no parameters, i.e.
Q(S(ti)) - Q}(S(ti)). Thus we can generalize by monitoring a parameterized query for a
given set of parameters, i.e. situations where
Q(p)(S(ti)) # Q(p)(S(ti)),i < j.

105

We need some mechanism to inform the monitoring process that a result change has
occurred for each if its monitored queries whenever Q(p)(S(ti)) 0 Q(p)(S(ti)). Therefore,
the programmer does not only specify Q(p), but also a tracking procedure or tracker, denoted
by r. A tracker is an application program procedure that is called by the DBMS when a
result change has been detected. Thus the tracker is part of the application program and
is written in programming language of the application program (e.g. C). The DBMS does
not send any data to the tracker when a result change has occurred. However, the tracker
can freely access the database to retrieve the current result of the monitored query. Thus,
we separate change detection (invoking the tracker) from retrieving the new result.

Committed database updates by one process U will cause a tracker of another process M to
be invoked asynchronously if the updates of U changed the result of a query monitored by
M. Monitoring processes are autonomous from the updating processes, so that committing
transactions need not wait for tracking procedures to finish. In this paper we only deal
with changes in Q(p)(S(t,)) as seen by monitoring processes other than those causing the
result change to occur. Thus we only look at committed data.

A database monitor can be compiled once for a given query [18]. By activating a monitor
in an application process we inform the DBMS that it shall from now on invoke the tracker
whenever significant result changes are detected for a given query and parameters, Q(p).
A monitor is deactivated either explicitly or when the process is terminated.

Formally, a monitor activation AM by a particular monitoring process M is denoted by a
tuple

AM =< Q(p), r, Av, At, Si, Nc >

where Q(p) is a parameterized database query (canned query) monitored for change, P are
the actual parameters, and r is the tracker; Av, At, Si, Nc are called Tuning Parameters.

If the tracker is invoked ezactly every time it holds that Q(p)(S(t_,)) : Q(p)(S(t,)), we say
that we have perfect tracking. In practice it is often not possible to have perfect tracking.
We have identified four important Tuning Parameters with which the programmer can
control how often the tracker is to be invoked:
Av (Change Significance),
At (Tracking Delay Time),
Si (Synchronous Initiation),
and Nc (Nervousness Class).

106

In section two we describe the semantics of the four tuning parameters. Section three
gives examples of how to use the tuning parameters in two fully implemented prototype
applications. In section four we discuss relationships to other distributed modeling concepts
such as the identity connection introduced in [25] and to database triggers.

2 Tuning Parameters

With the reactivity of a monitor activation, we mean the frequency with which its tracker
is invoked, defined as R(AM). The tuning parameters we introduce will influence the
reactivity.

The reactivity of an activation depends on five factors:

1. It depends on the structure of the monitored query.

2. It depends on the update frequency for the data over which the monitored query is
defined.

3. It depends on the execution time of the tracker. The reactivity will be low if a tracker
takes a long time to execute, because the application need to have time to process
the notifications.

4. It depends on the overhead for the DBMS to detect change and to transmit the
notification to the client.

5. It depends on the tuning parameters below. They allow the programmer to adjust
the reactivity.

We say that we have an underreacting activation if its tracker is invoked more seldom than
with perfect tracking. Thus an underreacting tracker 7- is sometimes not invoked at time
tj even though it was previously invoked at time ti and Q(p)(S(ti)) # Q(p)(S(ti)).

If the data retrieved by Q(p) is intensively updated, the reactivity can become very high,
resulting in high overhead and network traffic. In the worst case the monitoring application
will spend all its time invoking tracking procedures. For such applications it is desirable
to have underreacting monitors.

107

The asynchronous execution model for trackers makes us have underreacting activations if
changes are detected more often than the execution time of the tracker. If one or several
changes happen while the tracker is running, the system cannot immediately invoke the
tracker for every change. The method used is that the system delays execution of pending
trackers until immediately after the first tracker has finished. Therefore, if it takes at least
E(AM) time units to execute the tracker of AM then

R(AM) <5 1
R E(AM)

We now continue by discussing tuning parameters and their influences on reactivity.

2.1 Change Significance

One way to decrease the reactivity of an activation AM is to make the tracker not react to
small changes in monitored data, but only to significant changes. The tuning parameter
AV controls how significant a change to the result of a monitored query need be before
the tracker is invoked. If the difference between the old and the new result is within an
interval specified by Av, then there is no significant change.

Av is relevant only for queries returning numerical results. For queries returning sets of
results the significance test is applied to each numeric element in the set, and the tracker
will be invoked whenever any result in the set is significantly different from the old result.

The interval can either be specified as a relative difference, denoted AvR, or as an absolute
difference, denoted AvA.

We denote the previous time the tracker was invoked by ti. Assuming that Q(p) returns a
numeric value, if an absolute difference AvA is specified, we invoke the tracker at time tj
if it holds that:

IQ(P)(S(t,)) - Q(p)(S(t,)l > AVA.

By contrast, if a relative difference AVR is specified, we invoke the tracker when it holds
that:

IQ(P)(S(t)) - Q(p)(S(ti))l > AVR

[Q(P)(1(ti))l

108

Different activations can have different Av specified.

It is advantageous if the active DBMS can do this kind of dynamic filtering before notifying
the application in order to decrease the frequency of notification for intensively updated
data. The application can dynamically change the difference interval to decrease the reac-
tivity if it is performing some critical task. Dynamic filtering is required by, for example,
real time monitoring AI systems where the tracker initiates time consuming reasoning
activities [22].

We have initially chosen only to provide the two difference comparison tests above. Other
comparisons are also possible, e.g., fixed thresholding or moving averages [22]. As will be
shown in an example, fixed thresholding can be specified by inequality comparisons in the
monitored query.

It should be noted that a simple scheme, where the comparison function is well under-
stood, can be more easily optimized than complicated comparison schemes. If the system
understands the comparison function, it can do special optimizations for that particular
comparison function. Complicated comparison schemes will pose a significant overhead on
the system.

2.2 Tracking Delay Time

Another way to decrease the reactivity is to specify that the invocation of a tracker, should
not be initiated more frequently than once per a given time interval.

For example, if we are tracking the failure rates of produced parts, we may only want to
display the failure rate each 10 minutes.

The tuning parameter At, the Tracking Delay Time, specifies a time interval between two
tracker invocations.

With At > 0, the tracker will be invoked if Q(p) has changed and at least At time units
have passed since the last time it was invoked. Thus if the tracker was previously invoked
at time t, it will be invoked at time tj if

Q(p)(S(t,)) # Q(p)(S(t,)), t - ti = At.

109

The time when the tracker is invoked is also delayed by the overhead time for the DBMS
to detect the change, Oh(AM). We denote the commit time of the transaction causing the
change with tu, the time where the tracker gets invoked with tj. It holds that

tu + Oh(AM) _ tj

Specifying tracking delay time corresponds to sampling changes in the result of Q(p). If
Q(p) does not change state too irregularly this is an effective method.

Tracking delay time may be combined with change significance, meaning that we are
sampling significant change to monitored data at given time intervals.

2.3 Synchronous Initiation

The tuning parameter Si specifies synchronous initiation of the tracker. A tracker is
synchronously initiated if its execution is started before the change causing transaction
commits. However, we do not wait for the tracker to finish before committing. Thus syn-
chronous initiation makes the updating transaction semi-autonomous from the monitoring
process. The monitoring process can test if a given tracker has started. The system does
synchronous initiation when Si = True.

Normally trackers are initiated asynchronously (Si = False), i.e., they are invoked as
soon as possible after the change causing transaction is committed. For asynchronously
initiated trackers, if the transaction causing the change committed at time tu, and the
system overhead to detect the change and to invoke the tracker of the activation AM is
Oh(AM), then the tracker will be invoked at time

tu + Oh(AM)

Notice that synchronous initiation can be very expensive when monitoring data that is
intensively updated. This is because every updating transaction need to determine if
change in monitored data has occurred, as well as waiting until it receives confirmation that
the tracker has been initiated. Thus synchronous initiation delays commits of updating
transactions with time Oh(AM). Synchronous initiation will decrease the reactivity at
the expense of autonomy between the updating and monitoring processes. Synchronous
initiation should be avoided unless Oh(AM) can be brought down to a minimum.

1
110

Settings of At > 0 are meaningful only when Si = False.

2.4 Nervous Monitors

If the trackers are invoked too often, i.e., it is invoked at time ti and tj even though
Q(p)(S(ti)) = Q(p)(S(ti)) and no change occurred between t, and tj, we say that we

have an overreacting or nervous monitor. For performance reasons, it is sometimes very
advantageous to have nervous monitors. The reason is that the test to detect change of a
nervous monitor can be designed to have little overhead Oh(AM). For nervous monitors
we only need a simple test that succeeds if the system suspect$ that an update has caused
the result of a monitored query to change. We call such a simple test for suspected changes
in Q(p)(S(t,)), a screening test. The screening test normally analyzes the write set of a
transaction, which we denote Ws(U).

These are some examples of screening tests:

1. A trivial test would be to check if the database has been updated by a transaction

(i.e. Ws(U) * Null) then any monitored query eventually has changed. That is an
extremely cheap test, but in most cases it would generate too many notifications.
It's negation (Ws(U) = Null) is a cheap test we use to screeua out all read-only
transactions.

2. A better test would be that if a certain relation R is updated (i.e. R E Ws(U)) then

all nervous monitors referencing R should be notified.

3. The latter test can be refined to test if the value of the column R.C of a relation
has been updated (i.e. R.C E Ws(U)). Ifso, all monitored queries referencing that
column may have new values. This corresponds to testing if an Iris function has been
updated.

4. If a monitored query retrieves values from a specific row of a relation only, its result
states can change only if that specific row is updated.

When the tuning parameter Nc, the Nervousness Class, is set to a non-zero value, it
specifies that the system shall use screening tests for change detection, thus activating

nervous monitors. The non-zero value of Nc indicates what kind of screening test to use;

ill

the higher value the less careful screening and thus the higher reactivity. We have currently
implemented test 3 only.

If we have an application that requires synchronous initiation it can be necessary to use
nervous monitors to avoid doing expensive tests inside many updating transactions.

The system uses screening tests also for non-nervous monitors as a quick way to screen
out irrelevant updates before doing the full change detection test.

Nervous tracking can be combined with time delays, meaning that the DBMS sometimes
invokes the tracker after a time interval At even if no result change has happened since
the previous notification.

3 Examples

In this section we describe two implemented applications using database monitors. We
discuss how the concept is applied to each of them including settings of tuning parameters.

3.1 Tracking Failure Rates

Figure 1 illustrates a manufacturing database used to keep track of products and parts.
Figure 2 shows how the schema is defined in Iris. Each product is represented by the entity
Product, and each part by the entity Part. The relationship Produces defines which
products are manufactured by which department, and ProductOf defines the products
using a given part. (Iris supports set valued functions).

We make a simplifying assumption that the same organization both produces and maintains
the products. Periodically, when parts are failing, field engineers update the database
reporting the current failure rate for failing parts. Such a change in the failure rate for
some part will cause the entity Failure to be updated. In addition, the relationships
PartFailure and ProductFailure are updated to indicate which part in which product
was failing.

When a part is failing there is a service department that is responsible for servicing the

112

Department
SNumber Name .

~Respo 'beDepart ment

] Pr uces Par ...

Number Name[Produc/
Proc ailure Falr

Rate

Figure 1: A Manufacturing Database

part, indicated by the relationship ResponsibleDepartment.

We have implemented two applications of database monitors for the manufacturing database:

" A service department wants to monitor when the failure rate of some part for which
the department is responsible grows larger than a specified threshold.

" If the failure rate for some part grows very significant, we also notify the producer
of its product.

We call these kind of applications Failure Rate Monitors. The current implementation is
made in directly in C with an X window-based user interface. Future implementation will
use knowledge based mediators [261 containing rules that specify adaptations to be made

when the observed failure rates change significantly.

Figure 3 shows the OSQL queries to be monitored by a given service department and

producing department, respectively. The user enters his/her department name. For ser-

vice departments the query ServiceReport uses the relationship ResponsibleDepartment

113

/* Entities as Iris types */
create type Department(

Number Charstring,
Name Charstring);

create type Product(

Number Integer,
Name Charstring);

create type Failure(

FailureRate Real);
create type Part(

Number Charstring,
Name Charstring);

/* Relationships */

create function ResponsibleDepartment(Part) -> Department;
create function Produces(Department) -> Product;
create function Product0f(Part) -> Product;
create function ProductFailure(Failure) -> Product;
create function PartFailure(Part) -> Failure;

Figure 2: Iris Schema for Parts Database

114

create function ServiceReport(Department d, Integer th) ->

<Charstring prn, Charstring pan, Integer ta> as
select prn,pan,ta

for each Failure f, Part pa, Product pr,
Charstring prn, Charstring pan, Integer ta where

ResponsibleDepartment(pa) = d and
PartFailure(pa) = f and
Rate(f) = ta and
Product(f) = pr and
prn = Name(pr) and
pan = Name(pa) and
th < ta

create function ProducerReport(Department d, Integer th) ->

<Charstring prn, Charstring pan, Integer ta> as
select prn,pan,ta

for each Failure f, Part pa, Product pr,
Charstring prn, Charstring pan, Integer ta where

Produces(d) - pr and
Product(f) -. pr and
PartFailure(pa) - f and
Rate(f) - ta and
prn - Name(pr) and
pan - Name(pa) and
th < ta

Figure 3: Monitored Queries

115

to find the parts serviced by the department. For producing departments the query
ProducerReport uses the relationship Produces to find which products produced by the
department has failing parts. The user also enters a fixed critical failure rate threshold,
so that no part with a failure rate lower than that threshold is reported. Different users
use different thresholds, depending on their responsibilities. For example, the producers
typically use larger thresholds than service engineers.

With a conventional DBMS the application would have to regularly query the database for
every situation that it regards as interesting; with database monitors the DBMS actively
notifies the application when interesting situations happen. Tuning parameters are set so
that the application is not notified too often and only in response to significant change.

We also developed a conventional database update program to report failure rates, called
the Failure Rate Reporter. Customers run a program to report failures of parts and store
the reports in the database. The failure rate reporter is run at fixed time intervals to
calculate the current failure rate as number of reports received for a given part during
the time interval. When failure rates grow too high, service engineers are sent out to the
failing sites to repair the problems. Hopefully, after the repair, the rates will go down,
and not show up as significant failures any more. The implementation of the Failure Rate
Reporter is completely independent of the Failure Rate Monitors; it basically counts failure
reports regularly and stores the calculated failure rate in the database. Figure 4 illustrates
the information flow from two Failure Rate Reporters to Failure Rate Monitors for two
service departments and one producing department. Each box represents a process that
normally runs on a separate workstation. Failure Rate Monitors run on different machines
than the Failure Rate Reporters, and the transmission time between the machines can
be significant. We do not want the Failure Rate Reporter to wait for these transmission
delays. This is an example of an application where the updating transactions should be
autonomous from the monitoring process.

The service department has the following settings of tuning parameters:
Si = False (asynchronous initiation)
Nc = 0 (no nervous Tracking)
AO = 0.05 (report differences larger than 5%)
At = 60s (notify every minute)

The reactivity of the producing department's Failure Rate Monitor can be set significantly
lower:
Si = False (asynchronous initiation)

116

-6At - 3600s

SERVICE AV5 AV%

Figure 4: Information Flow through Monitors

117

Nc = 0 (no nervous Tracking)
AvR = 0.1 (report differences larger than 10%)
At = 3600s (notify every hour)

At is set high because it is conceivable that the producing department is physically located
far from the customer, and the transmission cost can be significant.

3.2 View Object Materialization

Many applications need to manipulate 'objects' stored in persistent databases. Several
object-oriented DBMSs [13, 16, 20] are developed for this purpose. An alternative is the
view object concept [23, 24] where data is stored persistently in a back-end relational
DBMS, and objects are materialized in the applications when data is retrieved from the
DBMS. Views are used to re-configure data so that only relevant data for the application
is materialized in a form adopted to the particular application.

With Object-Oriented DBMSs, the object structure stored in the database is not always
optimal for the application. The OODBMS Iris [10] separates the representation of objects
from their usage, and allows the programmer to specify derived functions to give the right
view of objects for a particular application. However, the object structure retrieved by a
query may not be optimal for every application, and the view object concept can therefore
be applied also to Iris applications.

In particular, we have applied the view object concept to the implementation of database
monitors itself. The implementation uses several system tables, some of which are updated
very seldom. For example, when a monitor is defined (compiled), the system analyzes the
monitored query and stores dependency information in system tables. This is done only
once for each monitored query. The dependency information is traversed when transactions
screen out non-monitored updates. The dependency information is thus updated rarely
but accessed intensively and is therefore a very good candidate for materialization as view
objects. These view objects should be organized for quick traversal of the screening tests.

In this case, it is critical that the view objects do not reference stale data. Thus, since we
use atomic transactions, the view objects need to be flushed at the end of each transaction.
This leads to an inefficiency in the implementation, since the dependency table is used by

118

every updating transaction for the screening test. If a session does more than one commit,
we would have to re-materialize the dependency table in each of the session's transactions.

We may keep the view objects during the entire session by monitoring the state of the
dependency table, and let the tracker invalidate the view-object when the state changes.
Such changes would happen only when a monitor is compiled, which would be very seldom.
Whenever we need to traverse the dependency table, the system would first check if the
view object is invalid, in which case it would be re-materialized. We use synchronous
initiation because we can then test in the client whether the cache is invalidated.

For view materialization of the dependency table we used the following settings of tuning
parameters:

Si = True (synchronous initiation)
Nc = 1 (nervous monitoring)

The nervousness setting indicates that only a screening test is to be used. This is OK
because of the expected very low reactivity, and because we know that almost every change
to the dependency table will cause significant change.

4 Application to Distributed Models

A concept related to the database monitors is the identity connection introduced in [25].
The identity connection defines replicated attributes of relations. For any instance the
connected attributes must eventually be the same, where eventually means that a time
limit is specified indicating that the connection is to be updated regularly. An identity
connection can also have a derivation formula to transform the connected attribute [24].
One may see view materialization mechanisms [3, 15, 20) as a way to implement such
connections.

Database monitors can be seen as a way to specify and implement an identity connection
from persistent data to an application process. With database monitors we specify the
connection from a data attribute specified by a query Q(p) to a process M by
AM =< Q(p),Tr, Av, At, Si, Nc >.

119

The following relationships hold between identity connections and monitor activations:

" The tracker r implements an action to be done when the identity is violated. We thus
do not maintain the connection, but rather inform the process when it is violated.
One may implement replicated attributes using database monitors by a constantly
running process whose tracker just retrieves the monitored data and immediately
stores it in the replicated attribute.

" The time delay At is analogous to the time limit of identity connections. The iden-
tity connection also allows the specification of explicit time points, which can be
implemented by letting the tracker deactivate the monitor.

By specifying the time delay we get non-perfect connection, in the sense that we do
not always guarantee that the connection is fully up to date.

* The change significance Av is an alternative to time delays for specifying non-perfect
connections, relying on data differences rather than time differences.

" The synchronous initiation flag Si allows the implementation of synchronous con-
nections between data and process.

" The nervousness class Nc is an implementation tuning parameter controlling the
efficiency of maintaining the connection.

" Finally, database monitors implement temporary connections because they are valid
only while the monitor is activated during the execution of the connected process.

In the identity connection model an 'event' can cause a connection to re-establish. This
could be implemented by recording the time for the event and then monitoring the recorded
data.

This work is also related to database triggers [1 available in several systems, e.g. Sybase
[8] and HiPac (6, 9]. HiPac has a feature called the coupling mode between a trigger and
a set of actions on the database. The coupling mode controls when a trigger action is
executed relative to when a triggering condition has occurred. With database monitors,
for a given query there are many actions that eventually cause its result state to change;
the monitor compiler analyzes the query to generate a plan for how to deal with these
actions when determining changes in query results. We are not interested in the individual

120

database update actions causing the triggering state change, but rather in query result
changes caused by completed transactions.

Because triggers are action oriented, rather than value change oriented, they connect their
coupling mode to the updating action. Monitors are value oriented, and thus tie the tuning
parameters to a monitor activation in a different process than the updating transactions.
Different monitor activations may have different tuning parameters.

The alerters proposed in [5] can be seen as a database monitor of a boolean expression,
where the user is alerted with a message when the expression becomes true.

5 Summary and Conclusions

We formally defined the semantics of Database Monitors as proposed in [18], as moni-
toring value changes in the result of parameterized database queries as seen by separate
monitoring processes. We showed that the concept can be applied to both relational and
object-oriented DBMSs, with the basic requirement that the DBMS has a non-procedural
query language.

We extended the simple model to include tuning parameters, that the programmer can use
to adjust the invocation frequency or reactivity of trackers.

The tuning parameter Synchronou. Initiation, allows the synchronization of the initiation
of a tracker with the commits of updating transactions. Synchronous initiation can be
slow, but necessary for applications where consistency is required.

The tuning parameters Change Significance and Time Delay make the connection between
data and the monitoring process be non-perfect: These settings make database monitors
underreact so that the tracker is not invoked even though the connection has been invali-
dated.

The tuning parameter Nervousness Class makes the monitor overreact so that the track-
ers gets invoked even though the connection was not invalidated. Nervous monitors are
important for efficiency.

121

As illustrations we gave an elaborate example of how to set tuning parameters for a
database tracking the failure rates of products. We also showed how to use database
monitors for caching database objects in the real memory of a client process.

We showed that a database monitor can be regarded as a connection from the database to
the monitoring process, whose properties are specified by a tuple AM. An important part
of AM is the tracker r, which is an application-provided procedure that the DBMS invokes
when the connection is invalidated. The tracker implements adaptations to be made when
change happens.

An interesting area for further research is to generalize the concept into connections be-
tween arbitrary 'active' knowledge based modules, or active mediators [26]. Each active
mediator would have its internal state recorded in a database,. a language to access the
internal state, and support for monitoring value changes of externally accessed data, simi-
lar to active objects in MACE [21] and KNO [11]. Promising techniques for programming
such active mediators include rule based techniques [4, 12], and constraint based languages
[14, 17, 19].

The concept could be extended by providing a more powerful monitor specification lan-
guage. For example it should be possible to monitor increases and decreases of values over
some time period.

Other future work include improvements to the implementation of database monitors, and
tools for performance tuning of monitoring applications.

ACKNOWLEDGEMENTS:

I wish to thank prof. Gio Wiederhold and Abbas Rafili for helpful discussions. Comments
from Reed Letsinger, Steven Rosenberg, and Keith Hall helped improve the paper.

References

[1] M.Astrahan et al: System R: A Relational Approach to Database Management, Trans-
actions on Database Systems, 1 (2), June 1976.

122

[2] D.Beech: A Foundation for Evolution from Relational to Object Databases, Advances
in Database Technology - EDBT '88, Lecture Notes in Computer Science, Springer-
Verlag, 1988, pp251-270.

[3] J.A.Blakeley, P.A.Larson, F.W.Tompa: Efficiently Updating Materialized Views,
Proc. SIGMOD, Washington D.C., 1986, pp61-71.

[4] Brownston,L., Farell,R., Kant,E., Martin,N.: Programming Expert Systems in OPS5,
Addison-Wesley, Reading, Mass., 1985.

[5] O.P.Buneman, E.K.Clemons: Efficiently Monitoring Relational Databases, A CM
Transactions on Database Systems 4, 3 (sept. 1979), pp368-382.

[6] D.R.McCarthy, U.Dayal: The Architecture of an Active Database Management Sys-
tem, Proc. SIGMOD, Portland, Oregon, 1989, pp.215-224.

[7] D.D.Chamberlin et. al.: Support for Repetitive Transactions and Ad Hoc Queries in
System R, Transactions On Database Systems, vol. 6, no. 1, March 1981, pp.70-94.

[8] M.Darnovsky, J.Bowman: Transact-SQL User's Guide, Sybase, Inc., 2910 Seventh
Street, Berkeley, CA 94710, 1988.

(9] U.Dayal, A.P.Buchmann, D.R.McCarthy: Rules Are Objects Too: A Knowledge
Model For An Active, Object-Oriented Database System, Advances in Object-Oriented
Database Systems, 2nd Intl. Workshop on Object-Oriented Database Systems, Sept.
1988, pp1 2 9 -14 3 .

[10] D.H.Fishman, J.Annevelink, E.Chow, T.Connors, J.W.Davis, W.Hasan, C.G.Hoch,
W.Kent, S.Leichner, P.Lyngbaek, B.Mahbod, M.A.Neimat, T.Risch, M.C.Shan,
W.K.Wiikinson: Overview of the Iris DBMS, in W.Kim, F.H.Lochovsky: Object-
Oriented Concepts, Databases, and Applications, ACM Press, 1989.

[11] L.Gasser, C.Braganza, N.Herman: Implementing Distributed Al Systems Using
MACE, in A.H.Bond, L.Gasser: Readings in Distributed Artificial Intelligence, Mor-
gan Kaufmann Publishers, Inc., San Mateo, California, 1988, pp.445-450

[12] Hanson,E.N.: An Initial Report on the Design of Ariel, in SIGMOD RECORD: Special
Issue on Rule Management and Processing in Ezpert Database Systems, Vol.18, No.3,
Sept.1989.

123

[13] W.Kim, N.Chou, J.Garza: Integrating an Object-Oriented Programming System with
a Database System, Proc. OOPSLA, sept 1988, pp.142-152.

[141 Wm Leler: Constraint Programming Languages: Their Specification and Generation,
Addison-Wesley Publishing Company, 1988

[151 B.Lindsay, L.Haas, C.Mohan, H.Pirahesh, P.Wilms: A Snapshot Differential Refresh
Algorithm, Proc. SIGMOD, Washington D.C., 1986, pp53-60.

[16] D.Maier, J.Stein: Development of an Object-Oriented DBMS, proc. OOPSLA, Sept
1986, pp.4 7 2 -4 8 2 .

[17] M.Morgenstern: Active Databases as a Paradigm for Enhanced Computing Environ-
ments, 9th VLDB Conf., Florence, 1983, pp34-42.

[18] T.Risch: Monitoring Database Objects, Proc. 15th Conf. on Very Large Databases
(Amsterdam, Holland), 1989, 445-453.

[19] G.L.Steele Jr., G.J.Sussman: CONSTRAINTS - A Language for Expressing Almost-
Hierarchical Descriptions, Artificial Intelligence 14, 1980, pp.1 -3 9 .

[201 M.Stonebraker: The Design of POSTGRES, Proc. ACM SIGMOD Conf., Washing-
ton, D.C., 1986, pp340-355.

[211 D.Tsichritzis, E.Fiume, S.Gibbs, O.Nierstrasz: KNOs: KNowledge Acquisition, Dis-
semination, and Manipulation Objects, A CM Transactions on Office Information Sys-
tems, vol 5, no 4, pp.96-112, 1987.

[22] R.Washington, B.Hayes-Roth: Input Data Management in Real-Time AI Systems,
11th Intl. Joint Conf. on Artificial Intelligence, 1989, pp.250-255.

[23] G.Wiederhold: Views, objects, and databases, IEEE Computer 19(12) 1986, pp.3 7-44 .

[24] G.Wiederhold: Connections, in G.Wiederhold, T.Barsalou, S.Chaudhury: Managing
Objects in a Relational Framework, Stanford Computer Science Report No.STAN-CS-
89-1245, 1989.

[25] Wiederhold, G., Qian, X.: "Modeling Asynchrony in Distributed Databases" / 3rd
Intl. Conf. on Data Engineering, Los Angeles, CA, Feb. 3-5, 1987, pp.246-250.

[26] G.Wiederhold: The Architecture of Future Information Systems. In this research re-
port.

124

Management of Complex Structural
Engineering Objects in a Relational Framework*

Kincho H. Law! Thierry Barsaloul and Gio Wiederhold §

February 12, 1990

ABSTRACT

To structure the development of an integrated building design environment, the global
representation of the design data may best be organized in terms of hierarchies of
objects. In structural engineering design, we deal with large sets of independent but
interrelated objects. These objects are specified by data. For an engineering design
database, the system must be able not only to manage effectively the design data,
but also to model the objects composing the design. The database management
system therefore needs to have some knowledge of the intended use of the data, and
must provide an abstraction mechanism to represent and manipulate objects. Much
recent research in engine,-ring databases focuses on ob Jct management for specific
tasks but gives little attention to the sharability of the underlying information. This
paper describes an architecture for the management of complex engineering objects
in a sharable, relational framework. Potential application of this approach to object
management for structural engineering analysis and design is discussed.

*An earlier version of this paper has been accepted for publication in the Journal of Engineering
with Computers

tDepartment of Civil Engineering, Stanford University, Stanford, CA 94305
ISection on Medical Informatics, Stanford University, Stanford, CA 94305
IDepartment of Computer Science, Stanford University, Stanford, CA 94305

125

1 Introduction

In building design, we deal with large sets of independent but interrelated objects.
These objects are specified by data. The data items describe the physical components
(for example, columns, beams, slabs) and the topological aspects of the design (for ex-
ample, member and joint connectivities). The design data need to be stored, retrieved,
manipulated, and updated, during all phases of analysis, design, and construction of
the project. An efficient data management system becomes an indispensable tool for
an effective integrated computer aided analysis and design system.

Using a database to store and describe engineering data offers many benefits [293.
Some of these benefits include:

" Ability to store and access data independent of its use, so that the data can be
shared among the participants

" Ability to represent relationships among the data, so that dependencies are
documented

" Control of data redundancy, so that consistency is enhanced

" Management of data consistency and integrity, so that multiple users can access
information simultaneously

" Enhanced development of application software by separating data management
function

" Support of file manipulation and report generation for ad hoc inquiry

To maximize these benefits, a database management system needs to have some
knowledge of the intended use of the data. That is, the formal structure or model
used for organizing the data must be capable of depicting the relationships among
the data and must facilitate the maintenance of these relationships. Furthermore, the
structure should be sufficiently flexible to allow a variety of design sequences and to
aid an engineer to understand the design.

Traditional relational database systems provide many interesting features for man-
aging data; among them are the capabilities of set-oriented access, query optimization
and declarative languages. More important, from the user point of view, the relational
model is completely independent of how data are physically organized. The relational
model presents data items as records (tuples) which are organized in 2-dimensional
tables (relations), and provides manipulation languages (relational calculus and alge-
bra) to combine and reorganize the tables or relations for processing. The relational
approach is simple and effective, particularly for business data processing. However,
a "semantic" gap exists between the relational data model and engineering design
applications. The relationships among the data items describing an engineering de-
sign are often complex. The lack of a layered abstraction mechanism in the relational
model makes it inadequate for defining the semantics of applications and for main-
taining the interdependencies of related data items. Furthermore, the traditional

126

set-oriented relational structure does not support well the engineering views of the
data. The engineering users have to supply all the intentional semantics in order to
exploit the data.

Object-orientation is an active focus of engiLeering database research. Object-
oriented data models have been proposed to increase the modeling capability, to
provide richer expressive concepts and to incorporate some semantics about engineer-
ing data. The main objective here is to reduce the semantic gap between complex
engineering design process and the data storage supporting the process. In such a
process, an engineer often approaches the design in terms of the components (objects)
that comprise the design, and the operations (methods) that manipulate the com-
ponents. A database system that supports the object-oriented nature of the design
process can certainly enhance the interactions between the engineers and the system.

It should be noted that an object-oriented data model does not necessarily im-
ply that the object-oriented paradigm need to be explicitly implemented inside the
database system. In engineering modeling and design, the information that an ob-
ject represents is often shared by various applications having different views of the
data. Data sharing is therefore as important as object-oriented access. Storing ob-
jects (explicitly) in object format is not desirable, particularly if the objects are to be
shared [31]. We therefore propose an approach, based on the structural data model,
that permits object-oriented access to information stored in a relational database;
information which in turn can be shared among different applications [2, 5, 6, 24]. In
this paper, we discuss the application of this model for the management of complex
structural engineering objects in a relational framework.

This paper is organized as follows: The needs of a structural engineering database
system are discussed in Section 2. The structural data model is briefly reviewed in
Section 3. In Section 4, we present the principles and motivation of an object-oriented
system (PENGUIN), its architecture, and some structural engineering examples. In
Section 5, we discuss the use of view-objects foi modeling design abstractions. In
Section 6, we conclude this paper with a summary of the expected benefits of our
approach for engineering design applications.

2 Abstractions in Structural Engineering

Practical engineering tasks have too many relevant facets to be intellectually repre-
sented through a single abstraction process. Manageability of an application can be
achieved by decomposing the model into several hierarchies of abstractions. In gen-
eral, an aspect of a building and its design can be described as a collection of objects
or concepts organized hierarchically [12, 14, 15, 18, 22, 25, 27]. The description of a
design project grows as it evolves. During the design, additional attributes may be
added to the description of existing entitites; similarly, aggregated entities can be de-
composed into their constituents. That is, during design, information is added to the
hierarchy by refinement in a top-down manner or by aggregation in a bottom-up se-
quence. The concept of abstraction provides a means for defining complex structures
as well as the semantic information about the data. Powell and Bhateja have defined

127

some requirements for an abstraction model in structural engineering application [25]

* The model must support several applications.

" The model should be in terms of well-defined entities, relationships and depen-
dencies.

" The model must support the creation of abstractions for real structures; that is,
it must allow all relevant features of a structure to be represented. In addition,
the concepts used in the model should be familiar to the users.

* The model should allow the level of details to be increased as the design of the

structure is progressively refined.

" The model should be able to represent structures of various types.

A structural engineering database system must be capable of supporting such an
abstraction model.

Choosing a good data model to represent design data and processes is a major step
towards the development of an integrated structural design system. A data model
is a collection of well-defined concepts that help the database designer to consider

and express the static properties (such as objects, attributes and relationships) and

the dynamic properties (such as operations and their relationships) of data intensive

applications [101. In addition to enhancing the database design process, a data model

must also provide the integrity rules to ensure consistency among the entities.
A relationship is a logical binding between entities. There are three basic types

of relationships that are commonly used: association, aggregation and generaliza-

tion. Association relates two or more independent objects as a merged object, whose

function is to represent the many-to-many relationships among the independent ob-
jects. Association can be used to describe multiple "member of" relationships be-

tween member objects and a merged object. Aggregation combines lower level objects
into a higher level composite object. In general, aggregation is useful for modeling

part-component hierarchies and representing "part of" relationships. Generalization

relates a class of individual objects of similar types to a higher level generic object.

The constituent objects are considered specializations of the generic object. Gen-
eralization is useful for modeling alternatives and representing "is a" relationships.

These three basic relationship types, in particular aggregation and generalization, are
supported by many semantic data models and have been widely used in computer

aided building design research [8, 14, 15, 19, 21, 22]. A joint can be represented as an

association of several structural elements (such as beams and columns) and connect-
ing plates, and carries some information about the connectors to be used. A staircase

is an aggregation of many similar parts. A concept "beams" is a generalization of a
variety of members supporting gravity loads.

These three relationships impose certain existential dependency among the object

entities. For example, the joint information is only meaningful while the referencing

beams and plates are part of the design. As another example, assuming that the

128

entities "BEAM" and "COLUMN" are specializations of a generic entity "STRUC-
TURAL ELEMENT", existence of a "BEAM" or "COLUMN" instance requires that a
correponding instance also exists in the generic entity "STRUCTURAL ELEMENT".
When an instance is deleted from the generic entity "STRUCTURAL ELEMENT",
corrective measure should be taken to remove the corresponding instance in a special-
ized entity "BEAM" or "COLUMN"; as a result, consistency between the generic and
the specialized entities can be maintained in the database. Dependency constraints
of these three types of relationships have been examined in details [3, 9, 11, 23, 26].

Besides association, aggregation and generalization, other relationships, such as
"connected to", "supported by" (or "supporting"), "influence" and "determinants",
have received considerable interests in building design applications [1, 13, 18, 25].
While incorporating these types of relationship into a data model is desirable, de-
pendencies among the entities participating in these relationships have not yet been
formally defined. For instance, when a supporting element is removed from a struc-
ture, corrective measures should be imposed on the objects that it supports. On the
other hand, removing a supported element, from the data management point of view,
should have little effect on the corresponding supporting object. It is important for a
database management system to ensure consistency among the building design data,
and to reflect appropriately the semantic relationships among them.

To be general, a database must support all design activities, in addition to cap-
turing the semantic knowledge of the data. For each activity, an engineer works with
specific application abstraction of the building, rather than with a complete physical
description. For example, in the analysis of a building structure, an engineer is pri-
marily interested in the building frame in terms of the center line of the members,
their physical properties and the stiffness of the connections. Other information, such
as room spaces and wall partitions, can be ignored. The database system needs to
support various abstract views of the information pertaining to a specific domain.
The ability to support multiple views for satisfying the requirements of different ap-
plications is also an important aspect of an engineering data model.

3 The Structural Data Model

The goal in selecting a semantic data model is to represent directly in an easily
manipulable form as many of the objects and their relationships of interest as possible.
The structural data model that we use in this study is an extension of the relational
model [16, 30]. Relations are used to capture the data about objects and their parts.
The structural data model augments the relational model by capturing the knowledge
about the constraints and dependencies among the relations in the database. This
section reviews briefly the structural data model. For more detailed description of
this data model, the reader is referred to References [3, 5, 16, 30].

The primitives of the structural data model are the relations and the connections
formalizing relationships among the relations. The connection between two relations
R1 and R 2 is defined over a subset of their attributes X and X2 with common domains.
Two tuples, ti E R1 and t E R 2 , are connected if and only if the connecting

129

attributes in t1 and t2 match. There &re three basic types of connections, namely
ownership, reference, and subset connectiens. These connections are used to define
the relationships between the relations tA to specify the dependency constraints
between them.

BUILDING STRUCTURAL ELEMENTS COLUMN

I FLOOR IWALL

SPACE GIRDER

FOUNDATION SLAB

ROOF BEAM

OWNERSHIP CONNECTION

REFERENCE CONNECTION

•) SUBSET CONNECTION

Figure 1: Composition of a Building Structure using the Structural Model

An ownership connection between an owner relation R, and an owned relation
R2 is useful for representing "part-component" or aggregation type of relationship.
As an example, Figure 1 shows the composition of a building structure consisting
of a few simple entities. The basic components of a building structure include the
descriptions of structural elements, floor, foundation. roof, space, etc.. The compo-
nents exist if and only if the building exists. This owner-component relationship is
best represented using the ownership connection. This connection type specifies the
following constraints:

1. Every tuple in R 2 must be connected to an owning tuple in R 1 .

2. Deletion of an owning tuple in R, requires deletion of all tuples connected to
that tuple in R 2 .

130

The ownership connectio.- describes the dependency of multiple owned tuples on a
single owner tuple.

A reference connection between a primary (referencing) relation R1 and a foreign
(referenced) relation R 2 is useful for representing the notion of abstraction. Referring
to the example shown in Figure 1, an architectural space, which may be an office,
elevator opening, mechanical room etc., locates on (or references) a floor. The floor
cannot be removed without first removing the spaces defined on that floor. This
connection type specifies the following constraints:

1. Every tuple in R1 must either be connected to a referenced tuple in R 2 or have
null values for its attributes X1 .

2. Deletion of a tuple in R 2 requires either deletion of its referencing tuples in
R 1, assignment of null values to attributes X, of all the referencing tuples in
R1, or assignment of new valid values to attributes X, of all referencing tuples
corresponding to an existing tuple in R 2.

The reference connection describes the dependency of multiple primary tuples on the
same foreign tuple. The reference connection can be used to refer to concepts which
further describe a set of related entities. It should be noted that association can
be modeled with a combination of ownership and reference connections [32]. As an
example, in a steel frame structure, a joint connection is associated with the structural
elements through one or more connectors (see IFigure 3).

A subset connection between a general relation R, and a subset relation R 2 is
useful for representing alternatives or "is a" type relationship. Generalization (and
its inverse, specialization) can be modeled using the subset connection. For the
example shown in Figure 1, a structural element can either be a column, a beam, a
wall, or a slab. Furthermore, a beam can be generalized to be either a main girder or
a joist (secondary beam). Deleting a specific instance in the generic class of structural
element must delete the corresponding instance existing in the subclass. The subset
connection specifies the following constraints:

1. Every tuple in R 2 must be connected to one tuple in R1 .

2. Deletion of a tuple in R, requires deletion of the connected tuple in R2 .

The subset connection links general classes to their subclasses and describes the de-
pendency of a single tuple in a subset on a single general tuple.

Besides supporting the three basic relationships of aggregation, generalization
and association, the connections can also be used to define relationships such as
"connected-to" and "supported-by", that are useful in engineering application. In
the "supported-by" or "supporting" relationship, the supporting entity should not be
removed unless all its supported entities no longer exist. For example, when a wall
is removed from a design, the openings, such as windows and doors, located inside
that wall have to be removed also. As another example, a column should not be
removed unless the references from the components such as walls, beams, slabs that

131

EXTWALL INT.WALL

I ALL COLUrMN

OPENING
I_ _ SLAB GIRDER

MISC WINDOW DOOR
SI_ I l ' - I_ JOIST

m 7
Figure 2: An Example of "Supporting" and "Supported-by" Relationships Imple-
mented Through Structural Connections

the column supports no longer exist. This dependency property can be modeled using
the reference connection as shown in Figure 2.

One application of the "connected-to" relationship in structural engineering is for
the description of a joint connecting structural elements. As an example, we can
represent a joint connection that is described in an interactive modeling system for
the design of steel framed structure (Steelcad) [28] : "The connected members and
the joint are logically linked in the database:

* If a joint is removed, then the previously connected members are automatically
restored, as they were before the connection was defined.

* If a member is removed, then all connections that it has with other members
are also removed and the other members reappear accordingly."

As shown in Figure 3, this description of a joint can be modeled using the three basic
connection types. We assume that a joint connection may consist of one or more
connectors. Each connector references a structural member and a connecting element.
That is, deleting a connector does not affect the connecting members. On the other
hand, if a structural member or a connecting plate is removed, the connectors are
also removed.

4 An Object Management System in a Relational
Framework

In the previous section, we have briefly discussed the structural data model and
its three formal connection types. We have shown that the model can be used to

132

STRUCTURAL ELEMENTS CONNECTING PLATE

JOINT CONNECTOR t
WELDED CONNECTION BOLTED CONNECTION

I :7 I I

Figure 3: Definition of a Joint Connection

represent various relationships that are useful in structural engineering applications.
In this section, we describe an architecture, based on the structural data model,
for the management of complex objects in a relational framework and a prototype
implementation of that approach in the PENGUIN system. In addition to its ability to
capture the semantic relationships among the entities, PENGUIN can handle multiple
views of design data and multiple representations of design objects.

4.1 General Principles

The object-oriented paradigm has gained much attention in computer aided design in
recent years; it offers many advantages over traditional relational data model. Object-
oriented systems help managing related data having complex structure by combining
them into objects. The use of objects permits the user to manipulate the data at
a higher level of abstraction. However, storing objects poses a problem when these
objects are to be shared by multiple engineering design tasks. The amount of infor-
mation pertaining to an object grow as each design task requires different information
about the object. As a design progresses, an object may become too complex to be
efficiently managed. The benefits of understandability and naturalness of having ob-
jects are lost [31]. Besides the problem of object sharing, object-oriented systems do
not provide those indispensable features of DBMSs such as file management struc-
tures and concurrency control. Processing of queries involing large and complex sets
of data is also not well supported by object-oriented systems.

Another approach is to store the objects explicitly in a relational database. In
engineering application, we deal with entities that are more complex than single
tuples or sets of homogeneous tuples. Quite frequently, an object is a hierarchical
group of tuples comprising of a single root titple that defines the object, and one
or more dependent tuples that further describe the object's properties. Because of
normalization theory, these dependent tuples reside in one or more relations distinct
from the relation containing the root tuple. Even if such a structure is easily expressed
relationally (through joins), it cannot be manipulated as a single entity. We need to

133

make such structures explicity known to the system. Furthermore, as noted earlier,
different users require different views of the information included in an object. Update
anomalies and problems of redundancy would arise if the objects corresponding to the
different views were to be stored as such lattice. Last but not least, changes to the
set of classes and to the inheritance can be made quite frequently at various stages
of a design project. If the objects were explicitly stored, the schema would have to
be changed accordingly.

Our approach is therefore to define and manipulate complex objects that are
constructed from base relations. Our prototype implementation, PENGUIN, keeps
a relational database system as its underlying data repository. Indeed, we believe
that the relational model should be extended rather than replaced. The relational
model has become a de facto standard and thus some degree of upward compatibility
should be kept between the relational format and any next-generation data model.
We augment the relational model with the structural data model. The PENGUIN
system uses the structural model together with the traditional data schema to define
the object schema. The idea is not to store the objects directly in persistent form
but rather to store their description, which are used later to instantiate objects as
needed.

4.2 Architecture

Both the concepts of view and object are intended to provide a better level of abstrac-
tion, bringing together related elements, which may be of different types, into one
unit. For example, to display a building frame, we bring together structural entities,
such as beams, columns and connections. The architecture for combining the concepts
of views and objects has been initially proposed by Wiederhold [31]. A set of base
relations serve as the persistent database and contain all the data needed to create
any specific view or object. We then extract the data corresponding to a view-object
from a relational database system and assemble the data into object instances based
on the definition of the object template specified in terms of the connections of the
structural data model [2, 5, 6, 7]. Multiple layers of view-objects can be defined so
that a view-object can be expressed in terms of other view-objects and can be shared
by other view-objects. Figure 4 summarized this notion of multiple object layers and
their interaction with the underlying set of relations.

A prototype system (PENGUIN) for this object-based architecture is being imple-
mented by Barsalou [4]. The schematic diagram of the PENGUIN system architecture
is shown in Figure 5. The system architecture consists of three basic components: an
object (template) generator, an object instantiator and an object decomposer. Each
view-object is defined by an object template. The object ge Aerator maps relations
into object templates where each template can invoke join (combining two relations
through shared attributes) and projection (restricting the set of attributes of a rela-
tion) operations on the base relations. To define an object template, we first select a
pivot relation from a set of base relations. The key of the pivot relation corresponds
to the primary object key. Further data is related to this object by following the
connections of the structural data model. By organizing an object template around a

134

Object-network

Object-network Object-network Object-network

Viw View-objects View c s

Rea
database

Figure 4: Multiple View-Objects and Object Networks for Sharing Information Stored
in a Relational Database

pivot relation, each object instance can be uniquely identified by the value of the key
of its pivot relation. The relations that are connected to the pivot relation through
structural connections become potential candidate relations to be included in the ob-
ject template. Once the pivot relation is specified, PENGUIN automatically derives
a set of candidate relations from the connections of the structural data model. Sec-
ondary relations and their attributes (including those of the pivot relation) can then
be selected from the set of candidate relations. Once an object template is defined,
data access functions are derived to facilitate the data retrieval process. Related
templates can be grouped together to form an object network, identifying a specific
object view of the relational database. The whole process is knowledge-driven, using
the semantics of the database structure as defined by the connections of the structural
data model.

The object instantiator provides nonprocedural access to the actual object in-
stances. The instantiator performs all the operations for information retrieval and
manipulation that are necessary to instantiate and display an object template. A
declarative query specifies the template of interest. Combining the database-access
function and the specific selection criteria, the system automatically generates the
relational query and transmits it to the relational database system, which in turn
transmits back the set of matching relational tuples. The retrieved tuples are assem-

135

OBJECT INTERFACE
Application J

ProgramsObject Generator

Knowledge- Obec

Based Interface Object Instantiator

SystemsGraphic Controller H JJ

UserObject Decomposer
Interface

Figure 5: PENGUIN's Architecture: An Object Layer on Top of a Relational DBMS

bled into the desired object instances, based on the semantics defined in the object
template.

The object decomposer maps the object instances back to the base relations. This
component is invoked when changes to some object instances need to be made per-
sistent at the database level. An object is generated by collapsing (potentially) many
tuples from several relations. Similarly, one update operation on an object may result
in a number of update operations on several base relations. Dependency constraints
are enforced to ensure the database consistency. These actions are based on the
integrity rules imposed by the connections of the structural data model. Since the
object templates are defined using join operations on the database relations, we are
then facing the well-known problem of updating relational databases through views
involving multiple relations [17]. Updating through views is inherently ambiguous, as
a change made to the view can translate into different modifications to the underly-
ing database. Keller has shown that, using the structural semantics of the database,
one can enumerate such ambiguities, and that one can choose a specific translator at
view-definition time [20]. Because of the analogy between relational views and PEN-
GUIN's object templates, Keller's algorithm applies to our approach. When creating
a new object template, a simple dialogue, the content of which depends on the struc-
ture of the object template, allows the user to select one of the semantically valid
translators. The chosen translator is then stored as part of the template definition.
When an object instance is modified, the object decomposer will use this information
to resolve any ambiguity completely and to update the database correctly [5].

136

4.3 An Example

7 BM_3 8
MEMBER

5 BM-.2 6

BEAM COLUMN 0 0 0
COL_3 COL_4

3 BMI 4

COL,1 COL2 GEOMPROP NODE

1 2
77 77

Relation Member Relation Beam
MemberID Type ... BeamID Design N-ID1 N.ID2 ...

BM.1 Beam ... BM-1 W24X76 3 4 ...
BM.2 Beam ... BM-2 W24X68 5 6 ...
BM_3 Beam ... BM-3 W24X68 7 8
COL.1 Column ... Relation Column
COL.2 Column ... Column.ID Design N.ID1 N.ID2 ...

COL3 Column ... COL.1 W14X82 1 3 ...
COL.4 Column ...
COL5 Column ... 2 4 ...COL-5 Column COL-J W14X61 3 5 ...COL.4 W14X61 4 6 ...

COL-5 W14X53 5 7 ...
COLA W14X53 6 8

Relation Node Relation Geom..Prop
NODE.ID X Y Z ... Design S A I ...
1 0.0 0.0 30.0 ... W24X76 176 22.4 2100 ...
2 30.0 0.0 30.0 .. , W24X68 154 20.1 1830 ...
3 0.0 12.0 30.0 ... W14X53 77.8 15.6 541 ...
4 30.0 12.0 30.0 ... W14X61 92.2 17.9 640 ...
5 0.0 24.0 30.0 ... W14X82 12.3 24.1 882 ...

6 30.0 24.0 30.0 ...
7 0.0 36.0 30.0 ...
8 30.0 36.0 30.0 ...

Figure 6: A Set of Base Relations for a Simple Frame Structure

We now illustrate the construction of an object network using the PENGUIN system
with a simple structural engineering example. Figure 6 shows a set of base relations
and their connections that describe a simple frame structure. As shown in Figure 7,
the relations and the connections are specified using PENGUIN's graphical interface.
To create a complex "MEMBER OBJECT", we define a template organized around
the pivot relation "MEMBER" in the underlying database. Each instance of the
"MEMBER OBJECT" is thus uniquely identified by the key attribute values of the
pivot relation "MEMBER". Once the pivot relation has been specified, a candidate

137

graph containing the valid relations is derived and is converted into a candidate tree
where the root is the pivot relation and all other nodes are secondary relations that
can be included in the object template. The candidate relations for the "MEMBER
OBJECT" template are shown in Figure 8.

* File Edit Page Shades Colors Structures Setups Debug Windows

-0 Structural Model of Frame

D- Member

column;

Geom-Properes
Nods

Lst View of Frame

Components
Goom-Propertles
Member
Nods

Figure 7: Defining an Object Template Using PENGUIN's Graphical Interface

Once the candidate tree is established, the user can specify any number of sec-
ondary relations and their attributes to be included in the object template. For
example, we can include the information about beam members as shown in Figure 9
and define it as "BEAM OBJECT". Based on this information, the system automat-
ically derives the database access function, the linkage of the various data elements
within the object, and the compulsory attributes that are required for performing
join operations on the selected relations. Such a view-object can now be exploited
by engineering applications. For example, the query (retrieve BEAM-OBJECT
with Member-ld - 'BM-I') would fetch the view object instance displayed in

138

10 Candidate Tree of Relations

Node

column
€u4oa-Properties

Node
beamI

Geon-Properties

Figure 8: The Candidate Tree of an Object Template Generated by PENGUIN

Structure of Object Beam-Object El

iliin
Geo-Properties

Figure 9: Definition of a View-Object for Beams

Now, let us assume that a substructure-component definition and the correspond-
ing relations have been entered as shown in Figure 11. We can then create an ob-
ject template "SUBSTRUCTURE OBJECT" with the pivot relation "SUBSTRUC-
TURE". As shown in Figure 12, this newly created object template can be inserted
into an object network by simply connecting it to other object templates previously
defined (thereby updating the object schema.) Since the object-network connections
are abstracted from the underlying database structural connections, the relationships
ar. explicitly carried over to the object layer and can be used to provide inheritance
of attributes among the templates.

5 View-Objects and Design Abstractions

As the design process progresses from conceptualization to design, the way to repre-
sent the design is constantly changing. For an integrated design system to be effective,
the database system must be able to accomodate the "growth" of the design. As men-
tioned earlier, the data model must support a wide variety of design representations,
sharing the same information in the engineering model. In addition, the data model
must allow dynamic changes of the object schema, reflecting the evolutionary process
of design, and must be able to minimize database reorganization. The view-object
facility described in the previous section allows the engineer to select the object infor-
mation pertinent to a design task and to ignore the irrelevant details. Furthermore,
the separation of the object schema and the database schema can facilitate schema

139

N-IDI: 3
X: 0.0

BEAM-OBJECr Instance Y: 12.0
Z: 30.0

Member-ID: BM-1

Type: Beam Design: W24X76
S: 176

N-ID2: 4 A: 22.4
1: 2100

Figure 10: An Instance of the View-Object BEAM-OBJECT

evolution during the design process.
An abstraction view of a building and its components is not unique. An engineer

abstracts a specific view of design to focus on a particular task. As an example, an
hierarchical decomposition of a building structure is shown in Figure 13(a). As shown
in Figure 13(b), for design purposes, a floor composed of beams (including girders and
joists), slabs, columns can be conveniently treated as objects. For analysis purposes,
a building frame composed of girders and columns is defined as shown in Figure
13(c). We see here two multiple design views sharing the same information. Fo- the
respective views, the attributes of a shared entity are not the same. For the description
of a floor plan, only the location and orientation of the columns are important. For
frame analysis, however, the location, the dimension and the properties of the columns
are needed.

By allowing the user to select any number of secondary relations for inclusion, an
object can be specified to any level of details that is desired. For example, in the
earlier analysis stage, a floor may be treated as the basic component entity but may
be expanded to include other subcomponents such as beams and slabs at a later stage
of the design; an object schema can be changed dynamically as the design evolves.
Hence, the complexity of a design can be managed by suppressing the irrelevant details
as necessary. Furthermore, the description of an entity can be refined as needed.

In Figure 13(c), the entity "FRAME" is composed of subentities "GIRDER"
and "COLUMN". However, removing a "FRAME" instance does not necessarily
imply that all its constituent components be deleted as well. As shown in Figure
13(d), an alternative may be to augment the "FRAME" object with the auxiliary
relations "FRAME GIRDER" and "FRAME COLUMN", which reference relations
"GRIDER" and "COLUMN", respectively, and are owned by relation "FRAME".
This new structure provides an associative relationship such that removing a "FRAME"
instance does not affect the base relations "COLUMN" and "GIRDER"; however, a
column cannot be deleted as long as a structural frame containing that column exists.
A similar view can be created for the abstract entity "FLOOR". It should be empha-

140

Relation Substructure

7 BM3 8 Subid Description
Structure ...

COL-5 COL6 SUB3 Sub-1 ...

Sub.2
5 BM.2 6 SUB_4 Sub.3 ...

Sub_4
COL_3 COL_4 SUB.2

3 BMI 4 Relation Components
Comp.ID ... Parent-ID

L BMCO1 ... Sub-1
CL.I C0L2 SUI COLA ... Sub.1

1 2 COL-2 ... Sub.1
77 7 BM.2 ... Sub..2

STRUCTUREFRAME COL.3 ... Sub.2
COLA ... Sub_2
BM3 ... Sub.3
COL.5 ... Sub.3

SUBSTRUCTURE COMPONENTS COL'6 ... Sub.3

Sub..3 ... Sub_4

Sub.4 ... Structure
Sub_] ... Structure

Figure 11: A Set of Base Relations for the Definition of Substructures

sized that modifications made to an individual object template does not necessarily
lead to modification of a higher level object. Conversely, modifications of the object
network do not affect the definition of the base relations.

6 Summary and Discussion

In this paper, we have examined the potential applications of the structural data
model in structural engineering. The connections of the structural data model prop-
erly define the various relationships, and their constraints and dependencies that are
of interest to researchers in computer aided building design. Besides being an effective
database design tool, the structural data model can serve as the basis for the devel-
opment of an object interface to a relational database system, supporting multiple
object views. The architecture of an object management system has also been briefly
described. The application of this object model for structural analysis and design has
been discussed.

Many advantages of this view-object approach can be identified:

e It provides multiple views of the stored information that is relevant to an engi-
neering model or design

141

File Edit Page Shndes Colors Structures Setups Debug Windows

Structural Model of Building

I I-A L7771
Substructure Component

M! Object Network of Buliding ..].

Member-Object Substructure-Object

Figure 12: Inserting a New Object Template into an Object Network Using PENGUIN

" It provides a mechanism for storing objects, independent of one specific view or
application

" It eliminates the data redundancy since the information about an object is
shared but not duplicated

" It maintains integrity of the data for a given object based on the structural
constraints that are specified by the connections

" It supports growth of a design because of the logical independence between the
object definitions and the database schema.

The key benefit of the view-object interface to a relational system, besides information
sharing, is that any new attributes and/or relations added to the underlying database
do not affect the object definitions. Conversely, changes in the definition of any objects
do not affect the schema of the underlying database. In other words, the architecture
is sufficiently flexible to allow growth as design evolves.

142

BUILDING FLOOR

FLOOR FRAME FOUNDATION COLUMN BEAM SLAB

GIRDER JOIST

(a) A Hierarchical Decomposition of (b) Decomposition of a Floor Entity
a Building for Design Purpose

FRAME FRAME

COLUMN GIRDER FRAME COLUMN FRAME GIRDER

COLUMN GIRDER
F I

(c) Decomposition of a Frame Entity (d) Alternative Definition of a
for Analysis Purpose Frame Entity

Figure 13: Multiple Views and Representations of Design Objects

7 Acknowledgment

The work by Dr. Thierry Barsalou and Professor Gio Wiederhold is supported by the
National Library of Medicine under Grant R01-LM04836, DARPA under Contract
N39-84-C-0211 for Knowledge Base Management System, and Digital Equipment
Corporation under the Quantum project. The work by Professor Kincho H. Law is
supported by the Center for Integrated Facility Engineering at Stanford University.

References

[1] Ackroyd, M.H.; Fenves, S.J.; McGuire W. (1988) Computerized LRFD Specifi-
cation. National Steel Construction Conference.

143

[2] Barsalou, T. (1987) An Object-Based Interface to a Relational Database System.
Technical Report KSL-87-41, Knowledge Systems Laboratory, Stanford Univer-
sity.

13] Barsaiou, T.; Wiederhold, G. (1987) Applying a Semantic Model to an Immunol-
ogy Database. The Eleventh Symposium on Computer Applications in Medical
Care, IEEE Computer Society, pages 871-877.

[4] Barsalou, T. (1988) An Object-Based Architecture for Biomedical Expert
Database Systems. The Twelfth Symposium on Computer Applications in Med-
ical Care, IEEE Computer Society, pages 572-578.

[5] Barsalou, T. (1990) Deriving View Objects from Relational Databases. PhD
Thesis (under preparation), Medical Information Sciences Program, Stanford
University.

[6] Barsalou, T.; Wiederhold, G. (1989) Knowledge-directed mediation between ap-
plication objects and base data. Proceedings of the Working Conference on Data
and Knowledge Base Integration, University of Keele, England.

[7] Barsalou, T.; Wiederhold, G. (1989) Knowledge-based mapping of relations into
objects. (Submitted for Publication) Computer Aided Design.

[8] Bjork, B.-C. (1989) Basic Structure of a Proposed Building Product Model.
Computer Aided De.,ign 21:71-78.

19] Blaha, M.R.; Premerlani, W.J.; Rumbaugh, J.E. (1988) Relational Database
Design using an Object-Oriented Methodology. Communications of the ACM,
31(4):414-427.

[10] Brodie, M.L. (1982) On the Development of Data Models. In: On Conceptual
Modeling (Eds. M.L. Brodie, J. Mylopoulos and J.W. Schmidt). Springer-Verlag,
pages 19-48.

[11] Brodie, M.L. (1983) Association: A Database Abstraction for Semantic Mod-
elling. In: Entity-Relationship Approach to Information Modeling and Analysis
(Ed. P.P. Chen). Elsevier Science Publishers, pages 577-602.

[12] Bryant, D.A.; Dains, R.B. (1977) Models of Buildings in Computers: Three
Useful Abstractions. IF, 8(2):9-14.

[13] Darwiche, A.; Levitt, R.E.; Hayes-Roth, B. (1988) OARPLAN: Generating
Project Plans by Reasoning about Objects, Actions and Resources. The Jour-
nal of Artificial Intelligence in Engineering Design, Analysis and Manufacturing,
2(3):169-181.

[14] Eastman, C.M. (1978) The Representation of Design Problems and Maintenance
of Their Structure. IFIPS Working Conference on Application of AI and PR to
CAD, IFIP, pages 1-23.

144

[15] Eastman, C.M. (1988) Automatic Composition in Design. Design Theory '88
(Eds. Newsome, S.L., W.R. Spillers and S. Finger). 1988 NSF Grantee Workshop
on Design Theory and Methodology.

[16] ElMasri, R.; Wiederhold, G. (1979) Database Model Integration Using the Struc-
tural Model. Proceedings of the ACM-SIGMOD Conference, pages 191-198.

[17] Furtado, A.L.; Casanova, M.A. (1985) Updating Relational Views In: Query
Processing in Database Systems (Eds. W. Kim, D.S. Reiner and D.S. Batory).
Springer-Verlag, New York, NY.

[18] Garrett Jr., J.H.; Breslin, J.; Basten, J. (1988) An Object-Oriented Model for
Building Design and Construction. Extended Abstract, Department of Civil En-
gineering, University of Illinois, Urbana, Illinois.

[19] Garrett Jr., J.H.; Basten, J.; Breslin, J.; Andersen, T. (1989) An Object-Oriented
Model for Building Design and Construction. Computer Utilization in Structural
Engineering, Structures Congress, ASCE, pages 332-341.

[20] Keller, A.M. (1986) The Role of Semantics in Translating View Updates. IEEE
Computer, 19(1):63-73.

[21] Lavakare, A.; Howard, H.C. (1989) Structural Steel Framing Data Model. Tech-
nical Report 12, Center for Integrated Facility Engineering, Stanford University.

[22] Law, K.H.; Jouaneh, M.K. (1986) Data Modeling for Building Design. Fourth
Conference on Computing in Civil Engineering, ASCE, pages 21-36.

[23] Law, K.H.; Jouaneh, M.K.; Spooner, D.L. (1987) Abstraction Database Concept
for Engineering Modeling. Engineering with Computers, 2:79-94.

[241 Law, K.H.; Barsalou, T. (1989) Applying a Semantic Structural Model for Engi-
neering Design. ASME International Conference on Computers in Engineering,
Anaheim, CA, pages 61-66.

[25] Powell, G.H.; Bhateja, R. (1988) Database Design for Computer Integrated
Structural Engineering. Engineering with Computers, 4(3):135-144.

[26] Smith, J.M.; Smith, D.C.P. (1977) Database Abstraction: Aggregation and Gen-
eralization. ACM TODS, 2:105-133.

[27] Spillers, W.R.; Newsome, S. (1988) Design Theory: A Model for Conceptual
Design. Design Theory '88 (Eds. Newsome, S.L., W.R. Spillers and S. Finger)
1988 NSF Grantee Workshop on Design Theory and Methodology.

[28] STEELCAD (1989), Cadex Ltd.

[29] Vernadat, F.B. (1984) A Commented and Indexed Bibliography on Data Struc-
turing and Data Management in CAD/CAM : 1970 to Mid-1983. National Re-
search Council of Canada, Technical Report 23373.

145

[30] Wiederhold, G.; ElMasri, R. (1980) The Structural Model for Database Design.
Entity-relationship Approach to System Analysis and Design. North-Holland,
pages 237-257.

[31] Wiederhold, G. (1986) Views, Objects, and Databases. IEEE Computer,
19(12):37-44.

[32] Wiederhold, G. (1989) Connections. In: Managing Objects in a Relational
Framework. Technical Report STAN-CS-89-1245, Department of Computer Sci-
ence, Stanford University.

146

Prescribing Inner/Outer Joins for Instantiating Objects
from Relational Databases through Views

Byung Suk Lee Gio Wiederhold
Electrical Engineering Computer Science
Stanford University Stanford University

Abstract

When objects are instantiated from normalized relational databases through views, outer joins
may be needed to prevent information loss. This paper develops a mechanism for prescribing
inner/outer joins from the semantics of a system model. A view is defined by a complex query,
and has additional features for resolving the mismatch between program objects and database
relations. Some object attributes allow null values to prevent loss of instances due to nonmatch-
ing tuples of join operations. This mandates outer joins for some of the join operations in the
complex query. Using a structural data model, we can minimize the number of outer joins by
exploiting the cardinality constraints of connections, so that the query can be processed more
efficiently. To present our ideas, we first describe the system model in terms of object type
model, data model, and query model and secondly, describe the development of an algorithm
for classifying edges into inner join edges and outer join edges.

1 Introduction

One of the major research issues these days is to integrate object-oriented programs with databases
so that applications working in object-oriented environment can have shared, concurrent accesses
to persistent storage. Roughly there have been two alternative approaches. One is to use object-
oriented model uniformly for applications and persistent storage [1, 2, 3]. The other is to use
object-oriented model for applications and relational model for storage [4, 5]. In this approach,
the system is configured as a front-end system with an object-oriented model and conventional
relational databases as back-end storage. Objects are instantiated by evaluating complex queries
to databases. Our approach belongs to this category but has a bit different perspective, view-object
[6].

View-object concept was first proposed by Wiederhold [6] as an effective tool for merging the
concepts of database views and program objects. Views interface between two different paradigms
- objects and relations - by retrieving object instances in the form of nested tuples from a set
of relations. Subsequently Cohen (71 implemented a slightly modified concept of Wiederhold's
view-object in Prolog domain using hierarchical data model. Barsalou et al. [8] implemented a
view-object generator in Lisp domain using a relational database. Our view-object concept has the
advantage of being able to use existing databases1 with effective sharing and concurrency control.
However, an open question is the performance of a mixed paradigm system.

When objects are instantiated from a set of normalized relations by evaluating complex queries,
outer joins 2 [9] may be needed to prevent information loss. The typical case is when we instantiate

I We cannot throw away relational databases in a decade. Remember that the IMS hierarchical data model is still
prevalent now when we call the relational model 'conventional'.

2Precisely speaking, these are left outer joins.

147

objects which allow null values for some of their attributes. For example, an object of type Employee
may allow null values for its department, salary, and children attributes. Instantiating objects
generally involves joining over multiple normalized relations. Therefore, allowing null values for
object attributes mandates retrieving the tuples of a relation that do not have matching tuples on
the joined relations. To achieve this, we need to execute outer joins. However, outer joins are more
costly than inner joins and should be avoided if possible.

The current state-of-art is that query optimization with outer joins has been neglected since
outer joins are not directly available in relational languages. Even if outer joins are available, they
must be specified manually by programmers. Our principle is to derive most semantics for deciding
on outer joins from the system model to minimize the overhead on a human programmer. We
thus identify exploitable semantics from the application and database model such as object type,
database schema, and query structure. It is the objective of this paper to present a mechanism for
deciding whether to perform the joins of a complex query as inner joins or outer joins.

We assume the programmer defining object types declares an attribute as deliberately allowing
a null value by attaching a null-allowed option to the attribute. This is equivalent to specifying the
constraint of 'minimum cardinality = 0' on the attribute3 . Attributes without null-allowed options
are prohibited from having null values. That is, attributes have null-forbidden options by default.
These are mapped to so called -nodes of a query graph. A -node is a relation occurrence restricted
by a selection condition 'A 6 null' where A is a set of relation attributes mapped from an object
attribute. On the other hand, the null-allowed option is mapped to so called +edges of a query
graph. A +edge is a 'prescription' for evaluating the edge by an outer join, unless it is overridden
by the decision on an inner join from the semantics of data model.

It turns out a join cardinality constraint (JCC) is important for this purpose. A JCC is a concept
generalized from the connection cardinality constraint of a structural model [11, 15], extended to
incorporate non-connection joins. A structural model is essentially a relational model, augmented
with connections to incorporate interrelational integrity constraints into the data model. We assume
the information about these connections is stored in a system table called a connection catalog. In
fact, this table provides almost all the JCC values for a complex query. A query has additional
structure for resolving the mismatch betwe-, program objects and database relations. We restrict
queries to select-project-join expressions d do not yet support recursive queries. A query is
translated into a query graph before being processed. Our query graph model is similar to that
used by Finkelstein (10], but peculiar in that ours distinguishes joins into connection joins, equijoins,
and general joins.

Following this introduction, we first describe the system model in the order of object type
model, data model, and query model in Sections 2, 3, and 4, respectively. Our object type model
is similar to that of 02 [14] and supports a subset of the attribute type constructors available in
02. The data model is based on the structural model with extended connection cardinalities [15].
In the query model, we extend the concept of pivots from Barsalou et al.'s work [8] to incorporate
so called abstract pivots. Then in Section 5, we develop a mechanism for prescribing inner/outer
joins from the semantics available in these models. Specifically we first develop a mechanism for
mapping null-allowed options on object attributes to +edges and null-forbidden options to -nodes
of the query graph. Secondly, we generalize the cardinality constraint available from the structural
model to the join cardinality constraint, and finally we develop the algorithm for classifying edges
into inner join edges and outer join edges based on these results. It is followed by a conclusion in
Section %.

'Many commercial tools for building object-oriented system applications, KEE for example, actually have this

option.

148

2 Object Type Model

An object type is defined as a tuple of attributes, i.e., Type O[A1 , A 2 ,... ,X 1 ,X 2 ,...] where 0 is
the type name, A, is a simple attribute, and Xi is a complex attribute.

An attribute is described in Backus-Naur Form as follows. ({ } denotes a set and [] denotes a
tuple.)

attribute == simple attribute I complex attribute
simple attribute == internal attribute I reference attribute
complex attribute == [attribute, attribute, .--] I {[attribute, attribute, .]

A simple (or atomic) attribute defines a subobject by itself and has no subobject of itself. The
subobject defined by a simple attribute is either internal or external to the object. An internal
attribute has a primitive data type such as string, integer, etc., while an external (or reference)
attribute has another object type name as its data type. We assume the value of a reference
attribute is retrieved as the identifier (id) of the referenced object.

A complex attribute defines a subobject by embedding its type definition internally as part of
the object type. The type of a complex attribute is a tuple or a set of tuples. A tuple defines a
collection of attributes with different data types while a set defines a collection of attributes with
identical data type. For each object and its subobjects defined by complex attributes, we associate
value-oriented object id's that are retrieved from databases.

Given an object type 0 and its attribute so, it is not clear whether we should allow a null
value for so. To resolve this ambiguity, we require a programmer to declare null-allowed options on
object attributes that should allow null values. For example, the following type is defined to retrieve
programmers even if they have no managers or no assigned projects. Note, without null-allowed
options, it is not clear whether we want 'a programmer and a manager' or a 'programmer with a
manager'.

Example 1 Type Programmer
[name: string, dept: Department, salary: integer null-allowed,

manager: Employee null-allowed,
project: { [title: string, sponsor: string null-allowed,

leader: string null-allowed, dept: Department,
task: string null-allowed I } null-allowed

0

Null-allowed options on object attributes lead to retrieving null values from databases. There are
two sources of null values from a database: from null values in a tuple, or from non-matching
tuples. Inner joins can have the first source only, while outer joins can have both. In our model,
we support both sources of null values and, therefore, use outer joins for null-allowed options.

Here we introduce two concepts derived from the object type: Oset and Ochain, which are
important to facilitate mapping objects to relations.

Definition 1 (Oset) Given an object type 0, Oset(O) is defined as the set whose elements are
the object defined by 0 and all of its subobjects. The subobjects are recursively defined by nested
complex attributes.

For example, Oset(Programmer) = {Programmer, Project).

149

Definition 2 (Ochain) Given an object type O[Ai, A2 , ,X1, X2,.-., the chain of object-subobject
relations from 0 to an attribute so, denoted by Ochain(O, so) is defined as

Ochain(0, o) -- 0.01..' -.O .o. (1)

Here, 0 is an object of type 0; 01, - ,0,, are the subobjects of O0 recursively defined at each
level of nesting, i.e., Oi is a subobject of 0i-1, and so is a subobject (0,,+1) of 0,, if 8o is a complex
attribute or a simple attribute of 0,, if so is a simple attribute. (We assume there is no ambiguity
of attribute names.)

For example, Ochain(Programmer, title) = Programmer.project.title and Ochain(Programmer,
project) = Prograrnmer.project.

3 Data Model

In this section, we describe how the structural data model, in particular the cardinality constraints
of connections are used in our model. Connections in a structural model make it possible to describe
entities in a more object-oriented manner than when we have relations only [12, 13].

Figure 1 shows the structural diagram of our sample database. Each connection is described by
(From-att)Name(To-Att). Note some connections have non-default caxdinality constraints declared
by a database designer. For example, the [1,200] attached to Emp(works-for)Dept expresses the
constraint 'For every department, there must exist at least one employee and can exist at most 200
employees.'

A structural model consists of seven relation types (entity relations, foreign entity relations, nest
relations, associative relations, lexicons, subrelations, derived relations) and four connection types
(ownership connection, reference connection, subset connection, identity connection). Relations are
those of a relational model and take on roles depending on the connections to other relations.

In our model, we use the first three types of connections, i.e., ownership, reference, subset
connections. (The identity connection describes derived and distributed data.) Given two relations
R1 and R 2 , a connection from A1 g R, to A2 g R 2 satisfies the following condition.

" Ownership connection: R1 .A1 = Key(R 1) A R2.A 2 C Key(R 2) A R1 .A1 = R 2 .A2

* Reference connection: R 2.A 2 = Key(R 2) A (R 1 .A1 = null V R1.A1 = R 2.A 2)

" Subset connecction: R 1.A 1 = Key(R 1) A R 2 .A2 = Key(R 2) A R 1 .A = R2.A2

We augment these three types of connections with a general type of connection. It is defined for non-
connection joins to retain cardinality constraints but no update constraints. We make cardinality
constraints explicit by attaching a pair of minimum and maximum cardinalities to them. This was
suggested by El-Masri et al. in [15] and can be regarded as a mechanism for describing domain
knowledge. These extended cardinalities may be explicitly specified by a database designer, or use
default values.

The symbols and default cardinality constraints (DCC) of these four types of connections are
as shown below.

Type Symbol DCC
from to

Ownership -, [1,1] [0,oo
Reference >- [0,0o] [0,1]
Subset -- [1,1] [0,1]
General l'- I0,oo] [0,oo]

(name) subdivision-of

E - Division

oe#has-emp#(ssn) (ssn)managed-by(manager) D -(parent
I~p- Ol~m)hsem#ss(ssn) [(dept) / (name)

eng-is-a works-for dept-is-a
(ssn) \ssn) (nae) (name)

,led-by Dp
Engineer- (leader) 11/e name)

(ssn) j admin-by
(engineer) [0,1) [0,20] (dept)

works-on Proj ect S
SEng-Skill (mp) -)sponsor)funded-by(name)

(skill) proj#) (proj#)

had-by ,5 [1,50 worked-by pa s - t i t l e

(c od e) [0 ,/1 (proj) (proj#)

FAT Proj -Assign IProj -Title

Figure 1: The structural diagram of a sample database

For our purpose, we interpret the extended cardinality constraints as join cardinality constraints,
that is, as the minumum and maximum number of matching tuples in the joined relation given a
tuple of one relation 4. A more rigorous discussion will appear in Section 5.2.

We assume the system keeps a so called connection catalog as part of its data dictionary.

Definition 3 (Connection catalog) A connection catalog (CC) is a table containing the descrip-
tion of connections, i.e., a connection catalog is a relation whose attributes are connection name,
connection type, from-relation, from-attributes, to-relation, to-attribitues, minimum cardinality,
maximum cardinality, inverse minimum cardinality, and inverse maximum cardinality.

Note a connection catalog may contain the cardinality constraints of equijoins or general joins under
the type 'General' in addition to those of connection joins.

Example 2 (Connection catalog) The connection catalog of a sample database shown in Fig-
ure 1 contains the following entries. We show only the portion needed in this paper.

4 Their semantics of constraining updates for maintaining integrity is not important here.

151

Name Type From-Rel From-Att To-Rel To-Att M 1 2 M 12 in2 1 M 21

eng-is-a subset Engineer ssn Emp ssn 1 1 0 1
works-on ownership Engineer ssn Proj-Assign emp 0 5* 1 1
worked-by ownership Project proj# Proj-Assign proj 10 50* 1 1
has-title reference Project proj# Proj-Title proj# 0 1 1* 1.

funded-by reference Project sponsor Sponsor name 0 1 0 00
led-by reference Project leader Emp ssn 0 1 0 1*

admin-by reference Project dept Dept name 1* 1 0 20*
works-for reference Emp dept Dept name 0 1 1* 200*
dept-is-a subset Dept name Division name 1 1 0 1
can-be-a general Division name Sponsor name 0 1* 0 1*

where M1 2, M12 are the minimum, maximum cardinalities, and in2 1 , M 2 1 are the inverse of them.
The *-e- values are non-default values explicitly declared by a designer. 0

4 Query Model

This section describes the models of query and query graph, and discusses eliminating cycles from
a query graph without affecting the result.

4.1 Query

Our query model supports impedance matching5 between objects and normalized relations, as well
as retrieving objects from a set of relations. Impedance matching in turn has two aspects: semantic
matching and structural matching. To achieve semantic matching, we introduce the concept of an
abstract pivot. An abstract pivot defines a virtual relation occurrence whose semantics directly
matches that of an object type. For example, we want to instantiate type ProjectLeader from the
sample database shown in Figure 1. We cannot find any relation that provides the instances of
ProjectLeader directly. However, an inner join between Emp and Project over the connection led-
by materializes "an employee who is leading a project" and thus matches the semantics of the type
ProjectLeader. In this case the join expression defines an abstract pivot of a virtual ProjectLeader.

Structural matching maps object attributes to relation attributes. We restrict the queries to
select-project-join expressions. A join expression is a conjunction of join predicates. Each join
(predicate) is either a connection join, an equijoin, or a general join. A connection join is an
equijoin but includes semantics such as update/cardinality constraints. We limit equijoins to those
that are not defined over connections. A general join is neither a connection join nor an equijoin.

We evaluate outer joins as left outer joins. They are not symmetric in general so that the order
of join operands is important. To emphasize this, we say a join is performed from one operand to
another operand whenever necessary.

Figure 2 shows the functional structure of a query for mapping between objects and relations.

Definition 4 (Query) A query for instantiating an object type 0 is a triplet (JS, AMF, PD)
where

1. JS (join set) is a set of joins between two restricted relation occurrences where

5A counter term of impedance mismatching used by Maier and Bancilhon [16, 17].

152

r Query Graph

Pivot Desc iption oin Set 'SYMBOLS:pt "consists -of

PMF 1.r So = {Ocain} \ 1: 1 mappin8

; i 1-1 ---- 0generates

Pivot Set Oset ____defines

Type 0 Object Instances

AMF = Attribute Mapping Function Ochain = Object Chain

PMF = Pivot Mapping Function Oset = Object Set.

Sr = set of relation attributes So = Set of object attributes

Figure 2: Mapping between objects and relations

* a restricted relation occurrence is a relation name subscripted with an integer and re-
stricted by a selection expression. The subscript distinguishes different occurrences of
the same relation in the query.

* a join is a connection join, an equijoin, or a general join.

That is, JS = { ARi t N %SI WE{ CJ, EJ, GJ }}
where Ri and Si denote the i-th and j-th occurrence of a relation R an 4 S respectively, fi and
fi are selection condition expressions such that Attr(fi) g R and Attr(fi) g S, respectively6 ,
ind CJ, EJ, GJ denote a connection join, equijoin, and general join, respectively.

2. AMF (attribute mapping function) is a one-to-one mapping between object attributes and
relation attributes. That is,

AMF: &o +11 S'.
where S. = {Ochain(O, so)so E Attr(O)} and S,. = {fR.AIR is a relation name A A C

Attr(R)}. Ochain(O, s0) was defined in Definition 2.

3. PD (pivot description) is a pair (PMF, PS) where

(a) PS (pivot set) is the set of pivots. A pivot is either a base pivot or an abstract pivot. A
base pivot is a relation occurrence whose key is ma.. A to the id of an element of Oset
(see Definition 1). An abstract pivot is defined by an ordered pair (rb, PJS) where rb is

a base pivot and PJS (pivot join set) is a subset of join set needed to define a virtual
relation occurrence. A PJS must satisfy the following properties.

" PJS C JS.

" All relation occurrences in PJS are connected by inner joins.

eAttr(t) denotes the set of attributes appearing in 0 where ' can be an expression, relation schema, object type,
etc. 153

* A PJS contains one and only one base pivot (rb) whose key is used as the key of the
virtual relation occurrence.

(b) PMF (pivot mapping function) is a one-to-one mapping between PS and Oset. For every
element of Oset, there exists one and only one pivot whose key is mapped to the id of
the element.

As mentioned in Section 2, we associate value-oriented object id's with an object and its complex
subobjects. These id's are invisible in the type definition and their mappings to relation attributes
are not explicitly specified in the AMF. Rather these mappings are deduced from the information
stored in PD by the following algorithm.

Algorithm 1 (Mapping object id's to pivots)
Input: Object type (0), Pivot description (PD)
Output: Mappings between object id's and relation attributes
Procedure:

For each p E PS begin
If p is a base pivot

then add Ochain(O, PMF(p)).id 4 p.Key(p) to AMF.
else /* p is an abstract pivot */ begin

Find the base pivot rb of p.
Add Ochain(O, PMF(p)).id- rb.Key(rb) to AMF.

end.
end.

As a special case of defining AMF, if an object attribute so is mapped to a relation attribute
A which defines a connection join from Rl, R to af3 Sj, then so can be mapped to either Rj.A or
Sj.A. Our mechanism retrieves the same set of object instances in either case. We choose RP.A in
the following example.

Example 3 The query for instantiating the Programmer type shown in Example 1 is as follows.

1. JS ={ Engineer1 (works-on) 6job = "*programming*" Proj-Assignl, Engineer1 (eng-is-a)

Empl, Empi (works-for) Dept,, Dept, (dept-is-a) Division1 , Proj-Assign1 (worked-by) Projecti,
Project1 (has-title) Proj-Titlel, Project, (funded-by) Sponsor,, Proj'ct1 (led-by) Emp 2 }

2. AMF = { Programmer.name - Empl.name, Programmer.dept - Empl.dept, Programmer.salary
Empl.salary, Programmer.manager .-. Division .manager, Prograxmmer.Project.title -.

Proj-Titlel .title, Programmer.Projectsponsor *-, Sponsor1 .name, Programmer.Projectleader
-. Emp2.name, Programmer.Project.dept '-. Projectl.dept, Programmer.Project.task ,. Proj-

Assigni.task }

3. PS = f Programmeri, Projecti I
where Project, is a base pivot and Programmer1 is an abstract pivot defined by
(Engineer,, {Engineer, (works-on) ajob = ,,progra-mming,,Proj-Assign1 }).

4. PMF = { Programmer +-+ Programmer1 , Project +-+ Project1 }

From PS and PMF, we can deduce, using Algorithm 1,
f Programmer.id +. Engineerl.ssn, Programmer.project.id - Projecti.proj# I.

These are added to the AMF. 0
154

4.2 Query Graph

A query graph is constructed from the join set (JS) part of a query.

Definition 5 (Query Graph) A query graph (QG) is a directed connected graph (V, E) where

" V(QG) denotes a set of vertices. Each vertex v E V(QG) is represented by a triplet (7r, r, f)
and represents a node r labeled with f and 7r, where r is a relation occurrence, f is a selection
condition expression on r, and 7r is the set of attributes that are projected from r.

" E(QG) denotes a set of directed labeled edges. Each edge e E E(QG) is represented by an
ordered pair (vi, vi), and represents a set of joins denoted by Jset(e). Each edge is labeled as
one or a conjunction of the followings:

1. A connection name for a connection join.

2. A join predicate, i.e., attr, 0 attr2 , for an equijon or a general join, where 0 E {=, $,>
,,<,<}1.

Frequently we say 'a join between two nodes vi and v2 ', the precise definition of which is

VI D V2 -- NuW2(ayrI M a2r 2)

Example 4 The query graphs of type Programmer and type InternalSponsor are shown in Figure 3.
The definition of type InternalSponsor is as follows.

Type InternalSponsor /* an internal division sponsoring a project */
E name: string,
project: f[title: string, fund: string,

period: string null-allowed 3} null-allowed I

In Figure 3, nodes surrounded by double lines are base pivots, and those surrounded by dotted
line are abstract pivots. The + labels, '1/0' types on edges and '(attr # null)' on nodes are not
relevant here but shown for later use. Note Example b includes a general type of edge. 0

4.3 Eliminating (Directed) Cycles from a Query Graph

A query graph containing cycles can be transformed to an equivalent one without cycles. We discuss
undirected cycles first and apply the result to (directed) cycles.

Definition 6 (Undirected cycle) An undirected cycle in a query graph represents a cyclic join
expression for retrieving the instances that satisfy all join expressions (N,, 's) in vl N412 v2 N423

". vn-t I .-. ,, V, N, 1 V . That is, it retrieves

{(tl.Il,t 2.A 2, " ,t-,.7r,)lVi E [1,2,-.. ,n - 1](t, E f,,ri A ti 4i,i+i ti+1) A tn n.1 ti}

Note, since we are using relation occurrnces instead of relations themselves in our query model,
'cycles' are defined at the relation instance level, not at the schema level. Therefore, from Defini-
tion 6, we can conclude that all the edges of an undirected cycle in a query graph must be evaluated
by inner joins.

Example 5 Figure 4 shows a cycle in the query graph of type DBDProjLeader with the semantics
of 'An exmployee of the database department leading projects that are administered by the database
department', whose type definition is as follows155

SProgrammer.
ssn} {name,salary,dept}

works-for Deptl dept-is-a_ =eng-is-a"

.1i works-on (dept # null) +/0 name}

*Proj-Assi~n worked-b fuddbponsorl

j ob="*programming*" ftitle}...... I = Pr -T t e)

has-title-- rjTte
(title 5 null)

a. Programmer

InternaiSponsor.
* {fundperiod} title}

nane} ./1 .S onsor i (e . Proj-titlelDiOvisionl S ro ooo l
f7 fujided-by has-title

n "" ame--nane .unded-by (fund $ null) (title $ n'Q')

b. InternalSponsor

Figure 3: Query graphs of type Programmer and InternalSponsor

Type DBDProjLeader
[name: string, salary: integer null-allowed, manager: Employee,
project: {[title: string null-allowed }]

0

We observed, but have not proved, that an undirected cycle in a query graph defines an abstract
pivot. An important property of an abstract pivot node is that all it& edges are inner join edges.

Note, if we were to perform an outer join for Empi (led-by-1) Project, for example, then we retrieve
employees not necessarily leading a project, thus violating the above definition of DBDProjLeader.

Sometimes a query graph may have (directed) cycles in it. Since all edges in a cycle are evaluated
by inner joins and inner joins are commutative, we can eliminate these cycles by reversing the
direction of an edge in a cycle without affecting the query result. Therefore, for further discussions,
we assume a query graph is acyclic without loss of generality.

5 Prescribing Inner/Outer Joins for Edges

In this section we develop a mechanism for deciding whether to perform inner or outer joins for
evaluating the joins in a query graph. First we describe an algorithm for mapping null-allowed and

null-forbidden options on object attributes to +edges and -nodes, respectively. Then we discuss the
join cardinality constraint rigorously and derive the the decision rule for inner/outer join. Finally,
we describe an edge typing algorithm.

156

DBDProjLeader.
I{ssn name, salary} manager}

Empl Deptl " eti- .IIion

name= "Database" (manager null)

" works-for -k t dept-i s-a (mii° nl

l1ed-by ./I .JI }administered-by tte
- {} i +/0 ro-Titlel

f rojectl has-title

Figure 4: Query graph of DBDProjLeader

Our strategy is to first designate +edges without regard to the'join cardinality constraints, and
then reduce the number to a minimum by converting as many +edges as possible to inn-- ;oins.
The rationale for this is that queries with inner joins are more efficient to process than those with
outer joins.

5.1 Mapping Null-allowed/forbidden Options to +Edges/-Nodes

In our model, an attribute with a null-allowed option has the following semantics.

Definition 7 (Semantics of null-allowed/forbidden option) If an attribute so of an object
type 0 has a null-allowed/forbidden option then, given the id of O, in Ochain(O,so) = O01..-..On.so,

" so is allowed/forbidden to be null if so is a simple attribute.

" s0 .id is allowed/forbidden to be null if so is a complex attribute.

Example 6 Given the Programmer type of Example 1, having a null-allowed/forbidden option
on manager is interpreted as 'given a Programmer.id, manager is allowed/forbidden to be null'
because manager is a simple attribute. On the other hand, having a null-allowed/forbidden option
on project is interpreted as 'given a Programmer. id, project.id is allowed/forbidden to be null'
because project is a complex attribute. 3

Provided with this semantics, the algorithm for mapping a null-allowed/forbidden option on so
to +edges/-nodes is given below. We need the AMF and PD parts of a query here. Note the JS
part was used for constructing a query graph.

We define a concept of no-null relation attribute first.

Definition 8 (no-null relation attribute) An attribute A of a relation R is called a no-null
relation attribute if and only is it satisfies one or more of the following conditions.

" A E Key(R), i.e., A is a key attribute.

" A is prohibited from having a null value by schema definition.

" A is prohibited from having a null value by structural cardinality constraint, i.e. A is an
attribute of a join which has an entry t in 1te connection catalog and t.m12 > 0.

That is, A cannot have a null value by these semantic constraints.

Algorithm 2 (Mapping null-allowed/forbidden options to +edges/-nodes)
Input: query graph (QG), query (Q), object type (0)
Output: a query graph (QG+) with +edges and -nodes
Procedure: For each object attribute (so) of type 0 begin

1. Find Ochain(O, so) = Ooi."- .O,.so -- Qo,n.so.

2. rp.Key(rp) := AMF(Qon.id).

If so is a simple attribute then r,.A := AMF(10,n.s0)
else /* If so is a complex attribute */r,.Key(r.) = AMF(Q0,n.so.id).
If so is null-allowed then go to 4.

3. If so is a simple attribute and A is not a no-null relation attribute
then f, := f, A (A $ null). Stop. /* If 8o is a complex attribute then A - Key(r.) which is
a no-null relation attribute. */

4. If so is a simple attribute and at least one element of {AMF-1 (ai)Jai E ir.} does not have a
null-allowed option then stop.

5. Find all directed paths-1 =_fp(vp, v.) Ivp E (7ppip) , v. _(,- s fo), A C7
where p(vp, v,) denotes a path, i.e., the set of nodes, from vp to v,.

6. For each p(vp, V') E AP begin

(a) If p(vp, v.) contains only one node /* No join */ then stop.

(b) Starting from v., traverse p(vp, v.) in reverse direction until we find the first node Vq

whose 7rq 3 {}. If not found then vq := vp.

(c) Label all edges of p(vq, v.) as +edges.

(d) If PMF(On) is an abstract pivot then begin

i. Find its PJS - Second(PMF(O,)). /* Second returns the second element. */
ii. If -,((vq, Succ(vq)) E PJS) then stop. /* Succ returns the successor node. */

iii. Starting from v., traverse p(vq, v.) in forward direction until we find the first node
Ssuch that -,((V',Succ(v')) E PJS). If not found then v' := v..

iv. Remove + labels from all edges of p(vq, vq).

end

end

ene.

That is, first identify the base pivot (rp) of On and the relation occurrrence (r,, called target node)
providing the instances of so in Step 1 and Step 2. Then in Step 3, if so has no null-allowed option
and it is mapped to a relation attribute (A) which may have null values, then restrict the target
node with 'A 0 null' and stop. Note Step 3 does not apply to a complex attribute because a
complex attribute is always mapped to a key attribute of a relation. A key attribute is a no-null
relation attribute by Defintion 8. On the other hand, if so has a null-allowed option, check in Step
4 if it is mapped to the relation attribute of alggde (vi) whost . rojected attributes (iri) are all

mapped to null-allowed object attributes. If so, find all paths from the base pivot (rp) to the target
node (r.) in Step 5. Then, in Step 6, find a subpath of each path (p(Vq, v.)) such that all nodes
(vi) between vq and v. have empty projection sets (irj's), and label the edges with +. In case the
pivot is an abstract pivot (Step 6-d), all edges in the abstract pivot must be inner join edges by
definition and, therefore, their + labels are removed.

Example 7 The +edges of the Programmer and InternalSponsor types are shown in Figure 3.
Illustrating this for the Programmer example, attributes name, dept, project.title, project.dept
do not have null-allowed options while salary, manager, project, project.sponsor, project.leader,
project.task do (see Example 1). First, pivots are AMF(Programmer.id) = Engineer1 .ssn and
AMF(Programmer.project.id) = Project1 .proj# (See Example 3) in Line 1 and Line 2.

Those without null-allowed options are handled in Line 3. We assume, for this example, name
is prohibited from having a null value by the database schema and, therfore not add 'name # null'
to the Empl node. For dept, we add 'dept 5 null' to Empi node. Likewise, we add 'title # null' to
Proj-Title node. project.dept cannot have a null value because it defines a connection admin-by
and its minimum cardinality constraint is greater than 0 (see Example 2). Therefore we do not add
'dept 6 null' to Project1 node.

Those with null-allowed options are handled in Lines 4, 5, and 6. For the simple attribute man-
ager, AMF(Programmer.manager) = Division1 .manager. Since manager is the only one attribute
projected from the Division1 node, it does not stop at Line 4. We find a directed path { Empi,
Dept,, Division1 } in Line 5. The edges on its subpath { Empl, Dept,, Division1 } are labeled +
in Lines 6-b and 6-c. PMF(Programmer) = Programmer1 is an abstract pivot (see Example 3).
Since no node on the subpath is in the abstract pivot, no + label is removed in line 6-d. For
salary, it stops at Line 4 because salary is an attribute of Emp, node and the dept attribute of
the node is mapped to an object attribute with no null-allowed option. For the complex attribute
project, AMF(Programmer.project.id) = Project.proj# in Lines 1 and 2. Line 4 does not apply.
In Line 5, we find a path { Engineer1 , Proj-Assignl, Project1 }. In Line 6-b, we find a subpath {
Proj-Assigni, Project, }. Its edge is labeled + and not removed in Line 6-d because the nodes are
not in the same abstract pivot Programmer1 .

The mapping for other attributes can be verified in the same way. 0

5.2 Join Cardinality Constraint

As mentioned, join cardinality constraint (JCC) is a concept generalized from the connection car-
dinality constraint of a structural model. It turns out the connection catalog (CC) is the main
source of information for determining the JCC of a join.

Definition 9 (Join cardinality constraint) Given a join from a node v, to another node v2,
the join cardinality constraint is defined as the pair [min, max]. The value of min is the minimum
possible number of matching tuples of o2 for each tuple of v1.

The rule for determining the value of min is as follows.

Rule 1 (The min of a join) Given a join from a node v, - (rl, rl, fl) to another node v2 a
(r 2,r 2,f 2), let R and S be the relation names of r, and r2, respectively, and X C Attr(R) and
Y C Attr(S) be the sets of join attributes.

1 If f2 # empty then min := 0
2 else if an entry t exists in the CC
3 then if t.From-Rel = R

159

4 then if t.type = 'reference' and t.m12 = 0 and
f2 contains a predicate 'X # [null, null, ... , nulll'

5 then min :=1
6 else min :=t.m2
7 else /* t.From-Rel = S */rain := t.m21
8 else min := 0.

That is, if V2 has been restricted by a non-empty selection condition, we cannot guarantee the
existence of matching tuples whatever the constraints from the CC may be and, therefore, rin -

0 (Line 1). Otherwise min is read from the connection catalog (CC) depending on the direction of
the join (M 1 2 or M 2 1) (Line 2 - 7). As an exception (Line 4 - 5), min becomes 1 if the condition
of Line 4 is satisfied. A reference connection from v, to v2 may have null values of join attributes
(X) in vi. This causes the default M12 to be 0. But, if these null values are removed by the
selection condition X 0 [null, null, --. , null], then X cannot have a null value and, therefore min
:- 1. The selection condition may not be a part of the query but have been added by mapping a
null-forbidden option to a -node.

Example 8 The min of Dept1 (works-for) Emp, is 1 because Emp, is not restricted and M21 = 1
is read from the CC shown in Example 2 (Line 7). On the other hand, the min of Dept, (works-for)

asalary>50,000 EMP 1 is 0 because EMP 1 has been restricted (Line 1). The min of Dept, (zip = zip)
Emp, is 0 because there is no entry decribing this non-connection join in the CC (Line 8). 0

As we have seen from Example 3, a single join composes an edge in most cases. However,
to be complete, we have to consider cases in which a single edge represents a set of joins, i.e., a
conjunctive join. In these cases, the min's are determined by Rule 1 respectively and combined
into a single value (minc) according to the following theorem.

Theorem 1 (Combined min of an edge) Given au edge e (vl, v2) which represents a set of
p joins whose min's are ai, i = 1,2,- ,p, the combined min of e, denoted by minc, is computed
as follows.

minc = MAX ai - (p- 1)k,0) (2)

where k is the cardinality of v2 and MAX is a function returning the maximum value of its argu-
ments.

The proof of this theorem appears in Appendix A.

Example 9 Given a conjunctive join expression Dept, (works-for) A (zip = zip) Empl, where
(works-for) is a connection join and (zip = zip) is an equijoin, assuming k = 40,

minc = MAX(1 + 0 - (2- 1)40,0) = MAX(-39,0) = 0.
Note the min of Dept] (zip = zip) Empi is 0 because CC does not have an entry for it. To
show an example of selecting the first term of MAX, let's imagine the minimum cardinality of
Dept, (works-for) Emp, is 30 in the CC and the same for Dept1 (zip = zip) Emp1

7 . Then,
minc = MAX(30 + 30 - (2 - 1)40,0) = MAX(20, 0) = 20. 0

From now on, 'min' denotes 'minc' unless stated otherwise.

'For example, this can be derived from a domain constraint like "All employees must live in the same zip code
area as their departments."

160

5.3 'I/O' Edge Classification

Provided with Algorithm 2 and Theorem 1 with Rule 1, we are ready to derive the mechanism for
classifying edges into type 'I/O' for inner/outer join.

We discussed min for two nodes only ((vl, v2)) so far, not considering the effect of joins along
edges descending from v2. To consider this effect, we introduce the concepts of an effectively
restricted node and effective min.

Definition 10 (Effectively restricted node) A node vi E V(QG) is called an effectively re-
stricted node if and only if there exists at least one edge (vi,vi) E E(QG) that is evaluated by an
inner join, and minii = 0 or vi is an effectively restricted node. In particular we say, even if min
> 0 according to Rule 1, the effective min becomes 0 if vj is an effectively restricted node.

Note a node is acutally restricted if its selection condition expression (f) is not empty. This effect
has already been considered in Rule 1 to derive min = 0 and is excluded from the definition of
effective restriction.

This definition is recursive and implies the inheritance of effective restriction over inner join
edges as follows.

Theorem 2 (Inheritance of effective restriction) Given an edge (vi, vi) E E(QG), if vi has
no child and minii = 0, then vi and its ancestors axe all effectively restricted as long as there is an
'inner join path' from vi to those ancestors.

Proof 1 Certainly vi is effectively restricted according to Definition 10. Consider a chain of nodes
from one of vi's ancestors (v.) to vi, (v.,... ,vi), such that all edges on the chain are evaluated by
inner joins. Then, by applying Definition 10 repeatedly, Pred(vi), Pred(Pred(vi)), -.- , Pred(Pred(
•.. (vi))) - v. all become effectively restricted. Q.E.D.

Before stating the rule of inner/outer join, we introduce the principle of minimial outer joins.
As mentioned, an outer join is prescribed by a +edge. However, if v2 is not an effectively restricted
node and min > 0, then the effective min > 0 and, therefore, the results of an inner join and an
outer join are the same. In this case, the prescription of outer join is overridden and the +edge is
evaluated by an inner join.

Rule 2 (Inner/Outer join) Given an edge e =_ (vi,v 2) of a query graph QG and its min, the
edge is evaluated by either an inner join or an outer join according to the following rule.

If min > 0 and v2 is not effectively restricted, i.e., effective min > 0,
then use an inner join
else if c is a +edge then use an outer join

else use an inner join.

A Based on these discussions, we give here an algorithm for classifying edges into type 'I' for inner

joins and '0' for outer joins. We use Rule 2 as a subprocedure returning 'I' or '0'. QG+ is assumed
to be an acyclic graph.

Algorithm 3 (Edge typing)
Input: Query graph (QG+) with +edges and -nodes, Connection catalog (CC), Object type (0)
Output: Query graph (QGt) with edges typed into 'I/O' for inner/outer join

Procedure Main:
la If PMF(O) is a base pivot then v := PMr9)

lb else v := First(PMF(O)). /* Find the base pivot *1
1c Call Edge-Type(v).

Procedure Edge-Type(vi: node)
2a T := ,{vj(vj,,vj) E E(QG)}. /* Children of vi */
2b For each vj E V begin
2c if vi has no child /* Therefore, not effectively restricted */ then begin
2d L := Rule 2(vi, vi). /* Apply Rule 2 to (vi,vi). */
2e If L = 'I' and minij = 0 then designate vi as 'effectively restricted'.
2f end else begin
2g Edge-Type(vj).
2h L := Rule 2(vi, vj).

2i If L = 'I' and vj is 'effectively restricted'
2j then designate vi as 'effectively restricted'.
2k end
21 end.

Example 10 Edges typed with 'I/O' are shown in Figure 3. Starting from the Engineeri node,
Edge-Type is called recursively until we hit the Division1 node which has no child. Then in Lines
2c - 2f, Rule 2(Deptl, Division1) returns 'I' because min = 1 > 0 although the edge was labeled
+ (see Example 7). Dept, is not designated as 'effectively restricted' because min > 0 . Next in
Lines 2f - 2k, Rule 2(Empl, Dept,) returns 'I' because min > 0 (Emp, has been restricted with
'dept 5 null' in Example 7. Therefore min = 1 according to Lines 4 - 5 of Rule 1.) and Dept, is
not effectively restricted although the edge was labeled +. Emp , is not designated as 'effectively
restricted' because Dept, is not 'effectively restricted'.

We leave it up to the reader to verify the rest. 3

6 Conclusion

In this paper, we developed a mechanism for automatically prescribing inner/outer joins for the
joins of a complex query used to instantiate objects from a relational database. The major criteria
for deciding on inner join or outer join are null-allowed options on object attributes and minimum
join cardinalities derived from the connection cardinality constraints of a structural data model.
We began with describing the system model in the order of object type model, data model, and
query model. The null-allowed options of object types provide the semantics for outer joins, making
it possible to prescribe outer joins for a maximal subset of edges in a query graph. Then the join
cardinality constraints provide the semantics of effective min > 0, making it possible to override
the prescriptions with inner joins for more efficient processing.

The overall algorithm developed in this paper can be summarized as follows. First, compile the
stored 0 into Oset and {Ochain(0, so)Iso E Attr(O)}. Second, construct the query graph (QG)
of the query Q according to Definition 5 and map object id's to pivots using Algorithm 1. Third,
map null-allowed and null-forbidden options on object attributes of 0 to +edges and -nodes of the
QG, respectively, using Algorithm 2, producing QG+. Fourth, derive the minimum join cardinality
constraint for each edge of the QG+. Finally, type the edges of the QG+ into 'I' for inner join and
'0' for outer join using Algorithm 3, producing QG t .

162

APPENDIX

A Proof of Theorem 1

Let {J,J 2,.- ,Jp} denote the set of p joins of the edge e, and mi,i = 1,2,--. ,p be the combined

min of the first i joins. Given a tuple of v1, let 1, 42,-'' , Oi denote the sets of matching tuples in

v2 for Ji, J2,-'-, J, respectively, and ti be their intersection, i.e., ti = l 01 Cn ... n 4.

1. Base case (p = 2):
2 a,+a2-k if(a,+a 2)>k
0 otherwise

M2 = 0 holds true if and only if t2 -_ 01 n02 is empty. On the other hand, t2 cannot be

empty if a, + a2 > k, and it can be easily seen the miminum possible cardinality of t2 in

this case occurs when 01 and 02 overlaps minimum and the number of minimum-overlapping

tuples is a2 - (k - al) = al + a2 - k.

2. Induction step: By the same reasoning as above for i > 2, having obtained ra.. 1, mi is

obtained as -I+a -k if(m _l+a)>k

0 otherwise

3. Conclusion: From 1 and 2, we can conclude

f-2fa,-(p -1)k if EP =jai > (p-1)k
0 otherwise

Rewriting this,

minc =_p = MAX ai - (p- 1)k, 0)

Q.E.D.

Acknowledgement

We give special thanks to Tore Risch, HP Science Center at Stanford, and our colleagues in the

KSYS group, Peter Rathmann, Thierry Barmalou, and Dallan Quass. Discussions with them greatly

helped us in many steps of the work. This work was performed as part of the KBMS project,

supported by DARPA Contract No. N00039-84-C-02111.

References

(1] Maier, D., Stein, J., "Development of an Object-Oriented DBMS," Proceesgins of OOPSLA,

September 1986, pp. 472 - 482.

(21 Ford, S., et al., "Zeitgeist: Database Support for Object-Oriented Programming," Interna-

tional Workshop on Object-Oriented Database Systems, 1988, pp. 23 - 42.

131 Kim, W., Chou, N., Garza, J., "Integrating an Object-Oriented Programming System with a

Database System," Proceesings of OOPSLdeptember 1988, pp. 142 - 152.

[4] Fishman, D., et al., "Iris: An Object-Oriented Database Management System," ACM Trans.
on Office Information Systems, Vol.5, No.1, January 1987, pp. 48 - 69.

[5] Stonebraker, M., Rowe, L., "The Design of POSTGRES," Proceedings of ACM SIGMOD,
1986, pp. 340 - 354.

[6] Wiederhold, G., "Views, Objects, and Datbases", IEEE Computer, December 1986, pp. 37-44.

[7] Cohen, B., " Views and Objects in OBI: A Prolog-based View-Object-Oriented Database",
SRI, TR.PRRL-88-TR-005, March 1988.

[8] Barsalou, T., Wiederhold, G., "Knowledge-based Mapping of Relations into Objects," The
International Journal of Artificial Intelligence in Engineering, Computational Mechanics Publ.,
UK, 1989.

[9] Date, C., "The Outer Join," Proceedings of the Second International Conference on Databases,
Cambridge, Britain, September 1983.

[10] Finkelstein, S., "Common Expression Analysis in Database Applications," the Proceedings of
ACM SIGMOD, 1982.

[11] Wiederhold, G. "Database Design (2nd ed.)," Chapter 7, Mc-Graw Hill, Inc., 1983.

[12] Hull, R., King, R., "Semantic Data Modelling: Survey, Applications, and Research Issues,"
ACM Computing Survey, Vol.19, No.3, September 1987, pp. 243.

[13] Wiederhold, G., Baxsalou, T., Chaudhuri, S., "Managing Objects in a Relational Framework,"
Stanford Technical report CS-89-1245, Stanford University, January 1989.

[14] Bancilhon, F., et al., "The Design and Implementation of 02, an Object-Oriented Database
System," in 'Advances in Object-Oriented Database Systems,' Springer-Verlag, September
1988.

[15] EI-Masri R., Wiederhold, G., "Properties of Relationships and their Representation," AFIPS
Conference Proceedings, Vol. 49, 1980.

[16] Bancilhon, F., "Object-Oriented Database Systems," Invited lecture, 7th ACM SIGART-
SIGMOD-SIGACT Symposium on Principles of Database Systems., Austin, Texas, March
1988.

[17] Maier, D., "Why Isn't There an Object-Or.ented Data Model?," Proceedings of the IFIP 11th
World Computer Congres, San Francisco, California, September 1989.

164

