Maintenance Management of U.S. Army Railroad Networks—
The RAILER System: Demonstration of System Setup at Hunter AAF, GA

by

R.W. Harris
D.R. Uzarski

The RAILER system of railroad maintenance management is a decision support tool for Army installation Directorates of Engineering and Housing. It can be used to analyze and evaluate track segments, determine and prioritize work needs, develop annual and long-range work plans, estimate maintenance and repair costs, and develop budgets.

As part of the Facilities Engineering Applications Program, RAILER version 2.0 was demonstrated at Fort Stewart, GA, and its neighboring installation, Hunter Army Airfield (AAF). This report documents the Hunter AAF demonstration.

The data collection process was demonstrated, including segment inventory and track inspection. New track inspection procedures were tested and verified to be better than those previously used. In all, the Hunter AAF demonstration complemented the Fort Stewart test and showed that RAILER version 2.0 is ready to release for general implementation on domestic Army installations.
The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official indorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR
Title and Subtitle:
Maintenance Management of U.S. Army Railroad Networks—The RAILER System: Demonstration of System Setup at Hunter AAF, GA

Authors:
Richard W. Harris and Donald R. Uzarski

Performing Organization Name(S) and Address(es):
U.S. Army Construction Engineering Research Laboratory (USACERL)
2902 Newmark Drive, PO Box 4005
Champaign, IL 61824-4005

Sponsoring/Monitoring Agency Name(S) and Address(es):
US Army Engineering Housing & Support Center
ATTN: CEHSC-FB-P
Ft. Belvoir, VA 22060

Abstract:
The RAILER system of railroad maintenance management is a decision support tool for Army installation Directorates of Engineering and Housing. It can be used to analyze and evaluate track segments, determine and prioritize work needs, develop annual and long-range work plans, estimate maintenance and repair costs, and develop budgets.

As part of the Facilities Engineering Applications Program, RAILER version 2.0 was demonstrated at Fort Stewart, GA, and its neighboring installation, Hunter Army Airfield (AAF). This report documents the Hunter AAF demonstration.

The data collection process was demonstrated, including segment inventory and track inspection. New track inspection procedures were tested and verified to be better than those previously used. In all, the Hunter AAF demonstration complemented the Fort Stewart test and showed that RAILER version 2.0 is ready to release for general implementation on domestic Army installations.
FOREWORD

This report documents a demonstration conducted for the U.S. Army Engineering and Housing Support Center (USAEHSC) under Facilities Engineering Applications Program (FEAP), Project F58 "Railroad Track Maintenance Management System (RAILER)." The work was conducted by the U.S. Army Construction Engineering Research Laboratory (USACERL), Engineering and Materials Division (EM). The USAEHSC Technical Monitor was Robert Williams, CEHSC-FB-P. His support is greatly appreciated.

The support and cooperation of the personnel at Hunter AAF were crucial to the success of this demonstration: the Facility Engineer (FE), Jerry Bridges, and members of the FE staff including Grady Collet, Albert Myles, and Debbie Sharpe. Assistance in the field and office was provided by J. Borse, D. Brown, F. Calabrese, J. Crowder, and S. Wagers. The USACERL technical editor was D.P. Mann, Information Management Office.

Dr. Paul A. Howdyshell is Acting Chief of USACERL-EM. COL Everett R. Thomas is Commander and Director of USACERL, and Dr. L.R. Shaffer is Technical Director.
CONTENTS

SF 298 .. 1
FOREWORD ... 2
LIST OF TABLES AND FIGURES 4

1 INTRODUCTION .. 5
 Background ...
 Objective ...
 Approach ...
 Scope ..
 Mode of Technology Transfer

2 FIELD WORK .. 7
 Office Preparation
 Site Vists ...

3 DATA LOADING AND PROCESSING 24
 Data Entry ...
 Data Verification and Processing

4 SYSTEM TURNOVER TO INSTALLATION PERSONNEL 26

5 CONCLUSIONS AND RECOMMENDATIONS 27

REFERENCES ... 27

APPENDIX A: Final Segmented Maps 28
APPENDIX B: RAILER Reports 31

DISTRIBUTION

Accession For
MTIS GRA&I
DTIC TAB
Unannounced
Justification

By
Distribution/
Availability Codes
Dist Avail and/or
Special

A-1
TABLES

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Office Preparation Activities and Time Required</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Hunter AAF Segmentation</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Field Activities and Times</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Data Entry and Verification Times</td>
<td>24</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stationing Using Hand Measuring Wheel</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Completed Inventory Form</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Tie Inspection Form Used During Second Trip (#1 of 7)</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Vegetation Inspection Form Used During Second Trip (#2 of 7)</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Rail Inspection Form Used During Second Trip (#3 of 7)</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Tie Plates, Rail Fastenings and Joints Inspection Form Used During Second Trip (#4 of 7)</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Roadway and Ballast Inspection Form Used During Second Trip (#5 of 7)</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>Road and Rail Crossings Inspection Form Used During Second Trip (#6 of 7)</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>Drainage Structures Inspection Form Used During Second Trip (#7 of 7)</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>Turnouts Inspection Form (same for second and third trips)</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>Project Level Track Inspection Form Used During Third Trip (#1 of 2)</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>Project Level Track Inspection Form Used During Third Trip (#2 of 2)</td>
<td>23</td>
</tr>
<tr>
<td>A1</td>
<td>Hunter Army Airfield South (Ordnance Area) Trackage Segmenting</td>
<td>28</td>
</tr>
<tr>
<td>A2</td>
<td>Hunter Army Airfield SPUR 5807 Trackage Segmenting</td>
<td>29</td>
</tr>
<tr>
<td>A3</td>
<td>Hunter Army Airfield SPUR 5794 Trackage Segmenting</td>
<td>30</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

Background

The RAILER system of railroad maintenance management is one of a family of Engineered Management Systems (EMS) being developed by the U.S. Army Corps of Engineers to support Army installation Directorates of Engineering and Housing (DEHs) in managing maintenance and repair (M&R) of their facilities. The RAILER system is a decision support tool that can be used, in part, to analyze and evaluate track segments, determine and prioritize work needs, develop annual and long-range work plans, estimate maintenance and repair costs, and develop budgets. The system can help the DEH make maintenance decisions and schedule M&R as needed to meet mission requirements at the least possible cost.

Developed at the U.S. Army Construction Engineering Research Laboratory (USACERL), RAILER includes field procedures for collecting data and a computer program for storing, retrieving, and processing the information to aid maintenance management decisions. While an interim version of RAILER1 (1.0) had been successfully tested at several sites, the current version (2.0) included several modifications and additional capabilities that had not been demonstrated within a DEH organization. For example, the track inspection procedures2 had been enhanced to capture all of the track defects specified in the new Army Track Maintenance Standards.3 The inventory procedures had also been revised as a result of further research and feedback.4 Another enhancement to RAILER version 2.0 was the development of customized maintenance policies. To support these changes and enhancements, and to provide a more user-friendly interface, the RAILER software had also been greatly revised for version 2.0.

To test the applicability and usability of these new procedures and software, Fort Stewart, GA, was chosen as a demonstration site for RAILER version 2.0.5 The proximity of Hunter Army Airfield (AAF) and the interaction between the DEH staffs at the two installations made it desirable to include Hunter AAF in the demonstration. This implementation was conducted as part of the FY87 Facilities Engineering Applications Program (FEAP).

3 Technical Manual (TM) 5-628, Railroad Track Standards (Headquarters, Department of the Army [HQDA], October 1988).
Objective

The threefold objective of this FEAP demonstration was to:

1. Implement RAILER's data collection procedures and computer program, including recent improvements suggested by experience with the FEAP site at Fort Stewart, GA.*

2. Test the ability of the computer software and management procedures to work together in providing maintenance management decision support. In the field, these activities include inventory, inspection, and maintenance policy establishment. On the computer, they include data entry, analysis, and report generation.

3. Establish a working implementation of RAILER version 2.0 to permit an effective, practical evaluation of RAILER by both the prospective users and system developers.

Approach

USACERL personnel fully implemented RAILER version 2.0 at Hunter AAF with assistance of the installation DEH. The Hunter AAF network is fairly small (about 4 track miles total), and so was useful for testing the applicability of RAILER procedures to this size installation. The demonstration followed an approach similar to what a private contractor would probably use for other installations with relatively small track networks. This approach aided USACERL and USAEHSC in developing guidelines for future contract implementations of RAILER at other sites.

During this FEAP, USACERL collected data on RAILER's performance and users' reactions. This feedback was used to improve the system, both during the ongoing implementation and after the FEAP was complete.

Scope

This report describes the implementation and system turnover of RAILER version 2.0 at Hunter AAF. It does not include a history of use by base personnel or support by USACERL.

Mode of Technology Transfer

Interest in RAILER appears to be growing, and several more implementations are currently planned. These efforts will be performed by private contractors or base personnel under the guidance of USAEHSC. In either case, the installation personnel will receive training in RAILER use. USACERL and USAEHSC are jointly developing a standard course. A RAILER support center is also planned for follow-on assistance to installations and maintenance of the RAILER software. The most likely candidate for providing support services would be the extension service of a qualified public university.

* Brown and UzarSKI.
The field work associated with implementing RAILER includes stationing and segmenting the installation railroad network, and collecting data which is later entered into the computer. Stationing establishes a location referencing system for each track in the network. The track segment is the maintenance management unit within RAILER; segmentation is concerned with dividing each track into one or more track segments. Most of the data collection effort is devoted to inventory and inspection data; traffic, installation, work history, and maintenance policy data are also collected. The stationing and segmenting was done on one trip (June 10, 1987). The inventory, installation and traffic information, and part of the inspection data were collected on a second trip (July 13-17, 1987). The inspection was completed and maintenance policy gathered during a third visit (July 25-29, 1988). Work history information was not gathered for this implementation. The system was turned over to installation personnel on a fourth trip (January 19, 1989). The number of trips is due to coordination of this FEAP with the one at Fort Stewart. It is expected that a contractor would make fewer trips, and that each one would be a larger effort. This would keep total hours of effort about the same, but would reduce travel costs.

Procedures for stationing, segmenting, and collecting inventory data are documented elsewhere as are the detailed inspection procedures implemented. Procedures for collecting other data elements are documented for an earlier version of RAILER. The effective and efficient use of all these procedures requires some office preparation before going to the field.

Office Preparation

Office preparation includes becoming familiar with the track network layout (including identifying all tracks and estimating their lengths), establishing a preliminary track segmentation (and component identification), acquiring and organizing supplies, and developing a work plan to be followed in the field. Table 1 lists the specific tasks and times required for them. While all these functions were performed by engineers, some, such as supply preparation, could be done by technical assistants. All of these activities require information about the installation network. In the case of Hunter AAF, this information was not readily available to USACERL. Information obtained from a Military Traffic Management Command Traffic Engineering Agency (MTMC-TEA) Installation Transportation System Capability Study only provided information for a portion of the track network at Hunter AAF (i.e., the part that would be used in event of mobilization). It was suspected that more track was on base. A trip to Fort Stewart, which is located only about 40 miles from Hunter AAF, was planned. A 1-day information trip was made to Hunter AAF on June 10, 1987 to collect installation maps and verbal information from the Hunter AAF personnel.

7 Uzarski, Plotkin, and Brown (August 1988).
8 Uzarski, Brown, Harris, and Plotkin.
9 Uzarski, Plotkin, and Brown (September 1988).
Table 1
Office Preparation Activities and Time Required

<table>
<thead>
<tr>
<th>Activity</th>
<th>Manhours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track Segmentation:</td>
<td></td>
</tr>
<tr>
<td>Reviewing Maps</td>
<td>5</td>
</tr>
<tr>
<td>Reviewing Segmentation, Curve ID, and Turnout ID assignments</td>
<td>2</td>
</tr>
<tr>
<td>Drawing Segmented Track Diagrams</td>
<td>8</td>
</tr>
<tr>
<td>Supply Preparation:</td>
<td></td>
</tr>
<tr>
<td>Organizing Station Plates</td>
<td>5</td>
</tr>
<tr>
<td>Acquiring and Packing Supplies</td>
<td>3</td>
</tr>
<tr>
<td>Reproducing and Packing Data Forms</td>
<td>1</td>
</tr>
<tr>
<td>Work Plan Preparation:</td>
<td></td>
</tr>
<tr>
<td>Formulating Plan</td>
<td>4</td>
</tr>
<tr>
<td>Communicating with Staff at Meeting (two people)</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
</tr>
</tbody>
</table>

Track Segmentation

USACERL personnel segmented the trackage during the June 10, 1987 site visit using the maps provided (Table 2). This information was taken back to USACERL for a continuation of the office preparation before the bulk of the field work was accomplished.

In addition to track segments, two other track components—turnouts and curves—are given identification (ID) numbers within RAILER. These numbers were also assigned during the segmentation process according to established RAILER procedures.11

After the network was segmented, track diagrams that included segment, turnout, and curve numbers were made up for use in the field (see Appendix A).

11 Uraszki, Plotkin, and Brown (August 1988).
Table 2
Hunter AAF Segmentation

<table>
<thead>
<tr>
<th>Track Number</th>
<th>Number of Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>5794</td>
<td>5</td>
</tr>
<tr>
<td>5807</td>
<td>5</td>
</tr>
</tbody>
</table>

Supplies

The supplies taken to Hunter AAF were based on expected work, network size, and crew size. The equipment required for track inspection is documented elsewhere. Additional equipment included stationing materials (hammer, measuring wheel, nails, and station plates), and equipment for comfort of field personnel (insect repellent, sun screen, gloves, and coolers for food and drinks). A number of RAILER forms are required for data collection; these were taken to Hunter AAF, along with pencils and note paper, with some allowance for wastage. In general, about twice as many forms as needed were taken.

Installing station plates at 200 ft intervals along the track is an important part of RAILER implementation. To make this job easier in the field, the plates were organized by track number in the office before going to the field; each track’s station plates were strung in order on a separate wire. Experience at Fort Stewart indicated that this approach saved much time and effort in the field.

12 Uzarski, Brown, Harris, and Plotkin.
* 1 ft = 0.3048 m.
13 Brown and Uzarski.
Work Plan

The implementation at Hunter AAF was a small scale field effort. Most of the field work was done by a crew of two, with some followup by a single person. The planning and scheduling of work was very flexible and informal, as is appropriate for this size project. The actual work is discussed below.

Site Visits

As discussed previously, the field work entailed four site visits to Hunter AAF. Table 3 summarizes the various activities during the visits and the time required for each task.

Table 3
Field Activities and Times

<table>
<thead>
<tr>
<th>Activity</th>
<th>Manhours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationing</td>
<td>16</td>
</tr>
<tr>
<td>Track Segment Inventory</td>
<td>24</td>
</tr>
<tr>
<td>Track Segment Inspection</td>
<td>40</td>
</tr>
<tr>
<td>Traffic</td>
<td>1</td>
</tr>
<tr>
<td>Installation Information</td>
<td>1</td>
</tr>
<tr>
<td>Maintenance Policy</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
</tr>
</tbody>
</table>

As stated earlier, the first visit to Hunter AAF was a 1-day trip, made during a visit to the nearby Fort Stewart, for reconnaissance and segmenting the network. Most of the field data were gathered on the second and third trips. On the third trip, only part of the time was spent gathering field data; the rest was spent at Fort Stewart gathering maintenance policy data that was used for both installations. The fourth visit was a 1-day detour from Fort Stewart to turn the system over to installation personnel.

Most workdays began at 0700 hours and ended at 1730 hours, though some were longer. On the first and second trips, there were two workers. On the third trip there was a single worker. The fourth trip was again made by two workers.

Stationing

The stationing was performed by using a hand-held measuring wheel (Figure 1). A crew of two performed the stationing on the first visit. Station locations were marked at 200 ft intervals on the rail web with paint. The station plates were not available during the first trip, so they were placed during the inventory phase of the second trip. During the stationing process, it is often desirable to note the location
of inventory items, both in a field notebook and by writing locations on the rail web with paint. This was not done at Hunter AAF, and inventory was slowed greatly. During the inventory process, it was necessary to measure the stations of various inventory items, such as culverts and switch points of turnouts. This separate effort during the inventory process takes much longer than stopping to record these locations during stationing. It is recommended strongly that future implementations follow the procedure of noting inventory locations, both on paper and on the rail web, during the segmenting process.

Segmenting

The track segments, identified in the maps provided by Hunter AAF personnel during the first visit, were field validated during the stationing process. No changes were required in the segments or in the turnout and curve identification. The time required to accomplish this field validation is included in the stationing time.

Inventory

Figure 2 is an example of a completed inventory field data form used at Hunter AAF. The inventory data were collected by a two-person crew. The inventory process consists of collecting and recording physical characteristics of the track and related structures that are relatively permanent. These include beginning and end locations, rail weight, tie size and spacing, and many others. Crew members collected this data by walking the track and observing and recording the information. A single pass by a crew of two was sufficient to gather this information, and it was validated by reviewing the inventory notes during breaks and at the day's end.

Figure 1. Stationing using hand measuring wheel.
Figure 2. Completed inventory form.
Inspection

The inspection was done mainly during the second visit, with some final work on the third. After the second visit, the inspection forms were revised for more efficient inspection. These changes were due to experience gained at Fort Stewart and the previous trip to Hunter AAF. Inspection went much faster during the third visit, due to the improved inspection forms. The number of passes to inspect a segment fully was reduced from four or five for a single inspector to two passes for a single inspector, which reduced overall inspection effort by about 50 percent. The speed of passes stayed roughly the same at about 1000 ft/hour (0.2 mph), but still depended on track condition. Only a relatively small part of the Hunter AAF network was inspected using the new procedures, so more verification is needed, but the improvement is clear.

Figures 3 through 12 are completed examples of the inspection forms used at Hunter AAF. Figures 3 through 10 were used during the first part of the inspection effort (second visit); Figures 11 and 12 are the improved forms used during the second inspection effort (third visit).

Traffic Information

Traffic information was obtained from the Installation Transportation Office (ITO) during the third visit to Hunter AAF. The information was gathered through an interview with the ITO director. This information has several potential uses within RAILER, such as prioritizing track segments, structural evaluation, and predicting track deterioration. Only a few car types are used at Hunter AAF, and traffic is quite infrequent. The tracks for the bulk fuel storage yard are occasionally (once every several years) subjected to a trainload of tanker cars (about 150 cars). The other yards tracks see two or three movements a year with lightly loaded cars, rarely with heavy cars. The track to the ordnance area is used only every several years, and handles a load of 20 to 50 box cars when used. Individual car weights were not available. The traffic pattern was made using the data available. The car weights were assumed, somewhat conservatively, to be maximum Gross Vehicle Weight (GVW).

Installation Information

Installation information was obtained from installation personnel and drawings. The nearest commercial yard was the CSX yard in Savannah, GA.

Maintenance Policy Data

A maintenance policy specifies required work actions (if any), and associated costs for those actions, for each defect type/track category combination. Since the DEH at Hunter AAF is subordinate to the Fort Stewart DEH, the policy for Fort Stewart was adopted for Hunter AAF with the approval of Hunter AAF maintenance personnel. The creation of the Fort Stewart policy is documented in the Fort Stewart FEAP report.

Brown and Uzarski.

Brown and Uzarski.
<table>
<thead>
<tr>
<th>TRACK SEGMENT</th>
<th>CONSECUTIVE DEFECTIVE TIES</th>
<th>ALL JOINTS OR MORE DEFECTIVE</th>
<th>AVERAGE SPACING PER RAIL >22 in.</th>
<th>ROTATED OR SKEWED TIES</th>
<th>MISSING/ BUNCHIED/BADLY SKEWED TIES (tie spacing along either rail>48in)</th>
<th>TOTAL DEFECTIVE TIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check if no defect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>183</td>
</tr>
<tr>
<td>COMMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check if no defect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check if no defect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163</td>
</tr>
<tr>
<td>COMMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Tie inspection form used during second trip (#1 of 7).
RAILER II INSPECTION
VEGETATION

DATE: 7/5/87
INSPECTOR: J.R.

<table>
<thead>
<tr>
<th>TRACK SEGMENT</th>
<th>DEFECTS</th>
<th>LOCATION</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Defects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Insufficient, where needed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Growing in Ballast</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prevents Track inspection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interferes with Wading</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interferes with Visibility of Signs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brushes Sides of Rolling Stock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interferes with Trains or Track Vehicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presents a Fire Hazard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>No Defects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insufficient, where needed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Growing in Ballast</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prevents Track inspection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interferes with Wading</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interferes with Visibility of Signs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brushes Sides of Rolling Stock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interferes with Trains or Track Vehicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presents a Fire Hazard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>No Defects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insufficient, where needed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Growing in Ballast</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prevents Track inspection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interferes with Wading</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interferes with Visibility of Signs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brushes Sides of Rolling Stock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interferes with Trains or Track Vehicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presents a Fire Hazard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Vegetation inspection form used during second trip (#2 of 7).
RAIL DEFECT TYPES

<table>
<thead>
<tr>
<th>TRACK SEGMENT</th>
<th>DATE</th>
<th>LOCATION (STATION)</th>
<th>RAIL (LEFT OR RIGHT)</th>
<th>DEFECT TYPE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>580701</td>
<td>L 6+27</td>
<td>6+27</td>
<td>L</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>580701</td>
<td>L 6+60</td>
<td>6+60</td>
<td>L</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>L 4+80</td>
<td>4+80</td>
<td>L</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>L 20+00</td>
<td>20+00</td>
<td>L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>R 40+40</td>
<td>40+40</td>
<td>R</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

RAIL DEFECT TYPES

0 = No Rail Defects In Segment
1 = Bolt Hole Crack
2 = Broken Base
3 = Corroded Base
4 = Complete Break
5 = Crushed Head
6 = Defective Weld
7 = End Ball (>1/4")
8 = Flaw - Compound
9 = Flaw - Transverse
10 = Fracture - Dovetail
11 = Fracture - Engine Burn
12 = Head/Web Separation
13 = Piped Rail
14 = Split Head - Horizontal
15 = Split Head - Vertical
16 = Split Web
17 = Torch Cut
18 = Wear - Side (>1/2")
19 = Wear - Vertical (>1/2")
20 = Overhear
21 = Shelling
22 = Corrugation
23 = Chip/Dent In Head
24 = Engine Burn
25 = Flashing
26 = Rail Weight Insufficient for Mission
27 = Rail Less Than 13 Feet Long

Figure 5. Rail inspection form used during second trip (#3 of 7).
RAILJtER Ht INSPECTION DATE: 7/15/87
TIE PLATE, RAIL FASTENERS AND JOINTS INSPECTOR: #6

<table>
<thead>
<tr>
<th>TRACK SEGMENT #</th>
<th>COMPONENTS</th>
<th>IMPROPER SIZE/TYPE</th>
<th>FLAMECUT/ALTERED</th>
<th>MISSING/INSUFFICIENT NUMBER</th>
<th>CRACKED/BROKEN</th>
<th>IMPROPERLY INSTALLED OR LOOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Occurrences Total</td>
<td>Occurrences Total</td>
<td>Occurrences Total</td>
<td>Occurrences Total</td>
<td>Occurrences Total</td>
</tr>
<tr>
<td>101 Tie Plates 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check if no defects</td>
<td></td>
<td>Splices + 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joint Bars</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compromises Bars</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rail Anchors + 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gage Rode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Joint Bolts Missing or Broken for a Rail End</td>
<td>Occurrences Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102 Tie Plates 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check if no defects</td>
<td></td>
<td>Splices + 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joint Bars</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compromises Bars</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rail Anchors + 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gage Rode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Joint Bolts Missing or Broken for a Rail End</td>
<td>Occurrences Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103 Tie Plates 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check if no defects</td>
<td></td>
<td>Splices + 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joint Bars</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compromises Bars</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rail Anchors + 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gage Rode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Joint Bolts Missing or Broken for a Rail End</td>
<td>Occurrences Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* See reverse for Splicing and Rail Anchor Patterns.
1 If defect extends continuously over significant track length, place "X" under "Occurrence" and in "COMMENTS" enter the beginning and ending station locations, along with defect type.

Figure 6. Tie plates, rail fastenings and joints inspection form used during second trip (#4 of 7).
RAILER II INSPECTION
ROADWAY AND BALLAST

DATE: 1/5/87
INSPECTOR:

<table>
<thead>
<tr>
<th>TRACK SEGMENT</th>
<th>ITEM</th>
<th>Hazardous to Train Movement</th>
<th>Not Hazardous</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Ballast/Subgrade Pumicing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check if no defects</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insufficient Ballast</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erosion of Embankment and Cut Slopes</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Embankment Sliding or Slippage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potential Slope Stability Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Settlement at Approaches to Bridges</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washouts Under the Track</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent of Dirty or Poorly Draining Ballast to Hearsel 10%: 30

COMMENT:

<table>
<thead>
<tr>
<th>TRACK SEGMENT</th>
<th>ITEM</th>
<th>Hazardous to Train Movement</th>
<th>Not Hazardous</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>Ballast/Subgrade Pumicing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check if no defects</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insufficient Ballast</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erosion of Embankment and Cut Slopes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Embankment Sliding or Slippage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potential Slope Stability Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Settlement at Approaches to Bridges</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washouts Under the Track</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent of Dirty or Poorly Draining Ballast to Hearsel 10%: 10

COMMENT:

Figure 7. Roadway and ballast inspection form used during second trip (#5 of 7).
RAIDER II INSPECTION
ROAD AND RAIL CROSSINGS

<table>
<thead>
<tr>
<th>TRACK SEQUENCE</th>
<th>TYPE</th>
<th>ROAD/NAME OR CROSSING SEGMENT</th>
<th>MINIMUM FLANGE WAY DEPTHS</th>
<th>FOULING FLANGE WAY WIDTHS</th>
<th>OCCURRENCES OF RELATED TRACK MATERIAL DEFECTS (RAIL CROSSING ONLY)</th>
<th>SIGNS AND SIGNALS INOPERATIONAL OR OBSCURED OR MISSING</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>ROAD RAIL</td>
<td>DOUGLAS</td>
<td>0.1</td>
<td>2.0</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>901</td>
<td>ROAD RAIL</td>
<td>LOADING LANE</td>
<td>0.25</td>
<td>3.0</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>902</td>
<td>ROAD RAIL</td>
<td>LOADING LANE</td>
<td>0.25</td>
<td>3.0</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Includes improper size/type/position, chipped/worn/bent/cracked/broken/Corroded/Altered (including name out), loose and missing.

Figure 8. Road and rail crossings inspection form used during second trip (#6 of 7).
<table>
<thead>
<tr>
<th>TRACK SEGMENT</th>
<th>LOCATION (NEAREST 100' STATION)</th>
<th>STRUCTURE TYPE</th>
<th>STRUCTURE CONDITION</th>
<th>INSUFFICIENT SIZE FOR MAX WATER FLOW</th>
<th>WATER FLOW OBSTRUCTED OR INADEQUATE</th>
<th>HAZARD TO PERSONNEL</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>901 4+00</td>
<td>Culvert</td>
<td>S U</td>
<td>Y Y</td>
<td>Y M</td>
<td>Y M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1102 22+00</td>
<td>Culvert</td>
<td>S U</td>
<td>Y Y</td>
<td>Y M</td>
<td>Y M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exemples are Culvert, Drain, Storm Sewer, and Drop Inlet

Figure 9. Drainage structures inspection form used during second trip (#7 of 7).
Figure 10. Turnouts inspection form (same for second and third trips).
Figure 11. Project Level Track inspection form used during third trip (#1 of 2).
Figure 12. Project level track inspection form used during third trip (#2 of 2).
3 DATA LOADING AND PROCESSING

The data loading and processing required several steps. First, all data collected at Hunter AAF was entered into the computer. Then RAILER information reports were run to check against the original field forms for missing/erroneous data. After the information was verified and errors corrected, the reports were run again. Some of these reports are presented in Appendix B. The computer work was done on an IBM-PC AT with a 20 M hard disk. The data was entered and verified by an engineer, but it could have been done by a trained technical assistant or data entry specialist.

Data Entry

The database for Hunter AAF was created using an option in the RAILER program. The data was then transferred from the paper forms to the computer using the RAILER data entry procedures. Because the program continued to evolve throughout the time data was collected, the data entry screens did not always match the original data collection forms. In particular, because of changes made to the inspection procedures between the second and third site visits the data collected during the first visit was in a much different format from the program screens. To help make the information easier to enter, the data on the old forms was translated onto the new forms before entry into the computer. This extra step greatly eased the burden of the data entry person. Since future implementations will not require this task, the time required for inspection data entry should drop by 20 to 50 percent. The data entry speed for Hunter AAF was similar to that of Fort Stewart. Table 4 contains the data entry time for Hunter AAF.

Table 4
Data Entry and Verification Times

Note: Approximately 50% of time was for data entry, 50% for verification

<table>
<thead>
<tr>
<th>Information Area</th>
<th>Workhours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Information</td>
<td>1</td>
</tr>
<tr>
<td>Track Segment Inventory</td>
<td>14</td>
</tr>
<tr>
<td>Track Segment Inspection</td>
<td>16</td>
</tr>
<tr>
<td>Maintenance Policy (used Fort Stewart’s)</td>
<td>1</td>
</tr>
<tr>
<td>Traffic</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
</tr>
</tbody>
</table>
Data Verification and Processing

After the data was loaded, the following RAILER information reports were run:

- Installation Network Information
- Track Segment Inventory Information
- Track Segment Inspection Information
- Traffic Information Report

These reports were compared with the data collection form to check for errors in the data entry. Some mistakes made in the field were detected in this phase as well, usually, minor oversights such as a tie count of 212 ties per 200 ft, instead of 112 ties per 200 ft. After the corrections were made, the reports were run again and verified. Estimating the time for this procedure is difficult because, in this effort, the data correction phase was combined with the system development task of checking and verifying RAILER algorithms. The Fort Stewart FEAP test reported a time of 3 hours.\(^6\) A reasonable estimate for the time required for checking and verifying the Hunter AAF database would probably be 1 to 3 hours.

When the database was correct, key reports were generated (Appendix B). The installation information and segment inventory information reports describe the relatively permanent features of the track network. The inspection condition comparison compares the current inspection to the U.S. Army track standards,\(^7\) providing a fairly objective assessment of track condition and operational status of each track segment. The condition comparison report has three different levels of detail. The comparison in Appendix B is at the middle level of detail (comparison by inspection type).

\(^6\) Brown and Uzarski.

\(^7\) Technical Manual (TM) 5-628, *Railroad Track Standards* (Headquarters, Department of the Army [HQDA], October 1988).
4 SYSTEM TURNOVER TO INSTALLATION PERSONNEL

There are three main objectives to system turnover: (1) to install a working copy of RAILER and the installation database onto the computer that will be used for running RAILER, (2) to show installation personnel what has been done in the implementation process and how it will benefit them, and (3) to train the personnel who will be using the system.

The system turnover at Hunter AAF was somewhat challenging in that extensive personnel reorganization took place at Hunter AAF during the course of the FEAP. Personnel left and arrived, and many changed job functions. When the USACERL team arrived to turn over the database, personnel at Hunter AAF were still in a period of adjustment and it was unclear who would be responsible for RAILER's use at the installation. The most likely users had not yet been informed about RAILER or the work that USACERL personnel had done.

However, when the responsible individuals were identified, the installation personnel were very cooperative and the turnover was successful. Meetings were held with the facility engineer, Jerry Bridges; the track foreman, Grady Collet; and the computer programmer, Debbie Sharpe. RAILER was installed on a computer in the office, and personnel were briefed on the RAILER program and its usefulness. Informal instruction was provided on system use; formal training for installation personnel is being planned, probably through the extension services of a qualified public university. Overall, the people who were briefed and instructed were interested in RAILER and showed a desire to make it function well and provide long-term benefits.

While it is not within the scope of this report to document the long-term use of RAILER at Hunter AAF, it is expected that the long-term success of the project will require support for the installation personnel. This support is being planned through a support center and/or a RAILER users' group.
RAILER version 2.0 was implemented successfully at Hunter AAF as part of the FY88 FEAP. Installation personnel were interested in the system and wished to make the project a long-term success as well.

The data collection process was demonstrated, including segment inventory and track inspection. New track inspection procedures were verified to be improvements over those used at Fort Stewart and in the early phases of collection at Hunter AAF. The structured inspection procedures eased the burden on the inspectors' memory, leaving them more time to concentrate on spotting defects. The procedures are quite good for project-level type inspection, but are still too labor-intensive for network-level management. The network-level procedures being developed at USACERL are aimed at reducing the effort needed to evaluate the track. Less detail and the addition of sampling techniques should reduce the required time without sacrificing safety. The project-level inspections would then be performed only on those segments scheduled for maintenance in the near future.

A crew size of one or two was sufficient to perform the procedures. A third member increases efficiency in some procedures, but is probably not justified for an installation of this size. The stationing and inventory can both be accomplished in a single pass by two crew members. The inspection can be completed in a single pass by two crew members as well, though they may choose to use more than one pass in some situations, such as when the track is in very poor condition and inspection effort per foot of track rises. The other tasks, such as gathering installation network, traffic, and policy information, can be gathered by a single person working with installation personnel and/or installation records. If two crew members are on site, the best allocation of resources is probably to divide the tasks and have each crew member gather information separately.

The implementation at Hunter AAF complemented the implementation at Fort Stewart and showed that RAILER is workable. As a result of these experiences, it is recommended that RAILER version 2.0 be released for general implementation on domestic Army installations. It is also recommended that the applicability of RAILER version 2.0 to other potential users be investigated.

REFERENCES

Technical Manual (TM) 5-628, Railroad Track Standards (Headquarters, Department of the Army [HQDA], October 1988).

APPENDIX A:
Final Segmented Maps

HUNTER ARMY AIRFIELD
SOUTH (ORDNANCE AREA) TRACKAGE SEGMENTING
Pg 1 of 3

NOT TO SCALE

SEGMENT #'s IN ()

Figure A1. Hunter Army Airfield South (Ordnance Area) Trackage Segmenting.
Figure A2. Hunter Army Airfield SPUR 5807 Trackage Segmenting.
Figure A3. Hunter Army Airfield SPUR 5794 Trackage Segmenting.
APPENDIX B: RAILER Reports

RAILER

05/17/1989

TRACK SEGMENT INVENTORY INFORMATION REPORT

INSTALLATION #: 00000

PRIMARY INSTALLATION NUMBER:

SEGMENT IDENTIFICATION

<table>
<thead>
<tr>
<th>Track Segment #</th>
<th>Begin/End Track Location</th>
<th>Track Length (feet)</th>
<th>Category</th>
<th>Track Use</th>
<th>Track Rank</th>
<th>Construction Code/Preceding Track Segment #</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>0+88</td>
<td>1038</td>
<td>B</td>
<td>LOADING</td>
<td>P</td>
<td>580701</td>
</tr>
</tbody>
</table>

Comments:

TRACK STRUCTURE

RAIL

<table>
<thead>
<tr>
<th>Track Segment #</th>
<th>Begin Location (station)</th>
<th>End Location (station)</th>
<th>Length (feet)</th>
<th>Weight (lbs/yd)</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>0+88</td>
<td>1+26</td>
<td>2076</td>
<td>85</td>
<td></td>
</tr>
</tbody>
</table>

FASTENINGS

<table>
<thead>
<tr>
<th>Tie Plate Length (in)</th>
<th>Shoulder</th>
<th>Rail Anchors</th>
<th>Gauge Rods</th>
<th>Cross Section (in x in)</th>
<th>Spacing (in)</th>
<th>Support Depth (in)</th>
<th>Material</th>
<th>Support Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00</td>
<td>SS</td>
<td>Y</td>
<td>Y</td>
<td>6X8</td>
<td>20.51</td>
<td>WOOD</td>
<td>WOOD</td>
<td>CRUSHED STONE</td>
</tr>
</tbody>
</table>

Comments:

CURVES

<table>
<thead>
<tr>
<th>Track Segment #</th>
<th>Curve ID #</th>
<th>Curvature (degrees)</th>
<th>Required Superelavation (inches)</th>
<th>Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>1C9</td>
<td>16.10</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Comments:
Grade Crossings

<table>
<thead>
<tr>
<th>Track Segment #/Road Name or Crossing Identity</th>
<th>Centerline Location (station)</th>
<th>Road Crossing ID #</th>
<th>Crossing Length (feet)</th>
<th>Crossing Type</th>
<th>Protection</th>
<th>Bolted Joints</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>4+51</td>
<td>30.0</td>
<td>AC</td>
<td>SIGNS</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>DOUGLAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>901</td>
<td>6+56</td>
<td>20.0</td>
<td>AC</td>
<td>NONE</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>LOADING LANE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CLEARANCE RESTRICTIONS AND RELATED FACILITIES

<table>
<thead>
<tr>
<th>Track Segment #/Type</th>
<th>Begin/End Location (station)</th>
<th>Obstruction and/or Facility Type (Center)</th>
<th>Vert Number</th>
<th>Restriction Measurement (feet)</th>
<th># of Box Car Positions For Docks or Tangent Track Lengths For Ramps</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>5+80</td>
<td>DOCK</td>
<td></td>
<td>7.30</td>
<td></td>
</tr>
<tr>
<td>BOTH</td>
<td>10+46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments: Measurement from inside of near rail head

Drainage Structures

<table>
<thead>
<tr>
<th>Track Segment #</th>
<th>Centerline Location</th>
<th>Type</th>
<th>Size (inches)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>4+51</td>
<td>PIPE</td>
<td>24</td>
<td>CONCRETE</td>
</tr>
</tbody>
</table>

Comments:

<table>
<thead>
<tr>
<th>Track Segment #</th>
<th>Centerline Location</th>
<th>Type</th>
<th>Size (inches)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>6+87</td>
<td>PIPE</td>
<td>12</td>
<td>METAL</td>
</tr>
</tbody>
</table>

Comments:

<table>
<thead>
<tr>
<th>Track Segment #</th>
<th>Centerline Location</th>
<th>Type</th>
<th>Size (inches)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>8+86</td>
<td>PIPE</td>
<td>12</td>
<td>METAL</td>
</tr>
</tbody>
</table>

Comments:
Report Criteria: Condition Comparison by Inspection Type Report for Track Segment(s): 901, 902.

<table>
<thead>
<tr>
<th>TRACK SEGMENT #</th>
<th>OPERATION</th>
<th>5 MP SPEED LIMIT</th>
<th>10 MPH SPEED LIMIT</th>
<th>FULL COMPLIANCE</th>
<th>DEFECT</th>
<th>FLANGEWAY MEA</th>
<th>RAIL & JOINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>TIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FLANGEWAY MEA</td>
<td>RAIL & JOINTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRACK COMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VEGETATION</td>
<td></td>
</tr>
<tr>
<td>902</td>
<td>TIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FLANGEWAY MEA</td>
<td>RAIL & JOINTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRACK COMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TURNOUT GEOM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TURNOUTS</td>
<td></td>
</tr>
</tbody>
</table>
USACERL DISTRIBUTION

Chief of Engineers
ATTN: CEHEC-IM-LH (2)
ATTN: CEHEC-IM-LP (2)
ATTN: CECC-P
ATTN: CECC-W
ATTN: CECC-W-O
ATTN: CECC-W-P
ATTN: CECC-W-RR
ATTN: CEMP
ATTN: CEMP-C
ATTN: CEMP-E
ATTN: CERD
ATTN: CERD-L
ATTN: CERD-C
ATTN: CERD-M
ATTN: CER-M
ATTN: DAEN-ZCE
ATTN: DAEN-ZCH
ATTN: DAEN-ZCM
ATTN: DAEN-ZCC

CEHSC
ATTN: CEHSC-TC 22060
ATTN: DEIS IB 79906
ATTN: CEHSC-FB-P 22060

US Army Europe
ATTN: AEAD-FE
ATTN: AEAD-ODC3
V Corps
ATTN: DESH (11)
VII Corps
ATTN: DESH (16)

AMC - Day, Inst., & Serv.
ARRAT COM 07801
Aberdeen proving Ground 21005
Jefferson Proving Ground 47250
Fort Monroe 07003
Lackland Army Depot 17201
Pueblo Army Depot 81008
Red River Army Depot 75507
Redstone Arsenal 35509
Rock Island Arsenal 41299
Savannah Army Depot 61074
Sharpe Army Depot 95531
San Luis Army Depot 14541
Toehill Army Depot 54074
Waterloo Arsenal 12189

DIA ATTN: JLM-W 22304
DNA ATTN: NADS 20305

Fort Belvoir, VA
ATTN: Australian Liaison Officer 22060
ATTN: Waste Resource Center 22060
ATTN: Engr Studies Center 22060
ATTN: Engr Topographic Lab 22060
ATTN: ATDA-TF 5W 22060
ATTN: CECR 22060

CECRL ATTN: Library 01755
CEWES ATTN: Library 39180

Champlin AFB, FL 32101
Champlin AFB, FL 32101

Tuscaloosa AFB, AL 35403
AFES/Engineering & Service Lab

FORSCOM
ATTN: FORSCOM Engineer, ATTN: Spc Des. 15071
ATTN: Facilities Engineer
Fort Bragg 28007
Fort Campbell 40223
Fort Carson 80913
Fort Devens 01453
Fort Drum 13601
Fort Gillem 30050
Fort Hood 76544
Fort Sam Houston 78234
Fort Lewis 98433
Fort McCoy 46560
Fort George G. Meade 20755
Fort Ord 93094
Fort Picket 23824
Fort Polk 71659
Fort Richardson 99505
Fort Riley 66442
Fort Sill 73503
Fort Steward 31314
Fort Weatherly 99703

Military Diet of Washington
ATTN: DEH
Cameroon Station (3) 22314
Fort Lesly J. McNair 20319
Fort Myer 72211

Military Traffic Mgmt Command
Falls Church 20115
Oakland Army Base 94626
Bayonne 07002
Sunny Point MST 28461

TRADOC (19)
HQ. TRADOC, ATTN: ATTN-DEH 22651
ATTN: DEH
Fort Belvoir 22060
Fort Benning 31903
Fort Bliss 79915
Fort Chaffee 72905
Fort Eustis 23604
Fort Gordon 30905
Fort Jackson 29207
Fort Knox 40121
Fort Leavenworth 66027
Fort Lee 22801
Fort McClellan 36205
Fort Rucker 36362
Fort Bliss 79916

NAVFA
ATTN: Division Offices (11)
ATTN: Facilities Engr Cmd (9)
ATTN: Naval Public Works Center (9)
ATTN: Naval Civil Engr Lab (3)
ATTN: Naval Combat Systems Ctr 43043

US Government Printing Office 20401
Receiving/Depository Section (2)

Defense Technical Info Center 22304
ATTN: DTIC-FAB (2)

157
8/90
EMC Team Distribution

Chief of Engineers 30514
ATTN: CEMFP-ZA
ATTN: CEMFP-Z24 (2)
ATTN: DAEN-ZCP

CEHSC
ATTN: CEMFP-PF

US Army Engineer District
New York 10278
ATTN: Chief, Design Br
Philadelphia 15222
ATTN: Chief, ORPCO
ATTN: Chief, Bag Div
Philadelphia 19100
ATTN: Chief, HAPEN-D
Baltimore 21203
ATTN: Chief, Bag Div
Norfolk 23510
ATTN: Chief, NAODE-3
Huntington 25701
ATTN: Chief, ORNED-O
Washington 20001
ATTN: Chief, SAWE3-D
Charleston 29402
ATTN: Chief, Bag Div
Savannah 31402
ATTN: Chief, SASAS-L
Jacksonville 32212
ATTN: Cowan Branch
Melvin 36652
ATTN: Chief, SAMEN-D
ATTN: Chief, SAMES-T
ATTN: Chief, SAMEN-C
Nashville 37202
ATTN: Chief, ORNED-F
Memphis 38109
ATTN: Chief, Cowar Div
ATTN: Chief, LM1ED-D

Vicksburg 35910
ATTN: Chief, Bag Div
Louisville 40201
ATTN: Chief, Bag Div
Davenport 52812
ATTN: Chief, NCRED-T
St. Paul 55101
ATTN: Chief, ED-D
ATTN: Chief, NCRED-TI
Rock Island 61204
ATTN: Chief, NCRED-O
St. Louis 63101
ATTN: Chief, ED-D
Kansas City 66101
ATTN: Chief, Bag Div
Omaha 68102
ATTN: Chief, Bag Div
New Orleans 70110
ATTN: Chief, LM1ED-O
Little Rock 72203
ATTN: Chief, Bag Div
Tulsa 74121
ATTN: Chief, Bag Div
Pt. Worth 76102
ATTN: Chief, SWPED-D

Galveston
ATTN: Chief, SWGAS-L 77553
ATTN: Chief, SWGOD-C 77553
ATTN: Chief, SWGOD-DC 77559
Albuquerque 87105
ATTN: Chief, Bag Div
Los Angeles 90051
ATTN: Chief, SPLED-F

San Francisco 94105
ATTN: Chief, Bag Div
Sacramento 95814
ATTN: Chief, SPLED-D
ATTN: Chief, SPLED-C
Per East 94001
ATTN: POLED-L
Portland 97228
ATTN: Ogoach Bag Br
ATTN: Chief, PM-1
ATTN: Chief, EN-DB-4T
Sanibel 93154
ATTN: Chief, NPSRD
ATTN: Chief, NP3EN-PM
ATTN: Chief, EN-DB-4T
Wells Wills 97352
ATTN: Chief, Bag Div
Alexandria 96156
ATTN: NAPE0-Q-M

US Army Engineer Division
New England 02154
ATTN: Chief, NEDRD-T
ATTN: Laboratory
ATTN: Chief, NEDCD
North Atlantic 10071
ATTN: Chief, NADCD-T
South Atlantic
ATTN: Laboratory 30000
ATTN: Chief, NADE3M-TC 30101
ATTN: Chief, SADEN-TS 30101
Hampton 39607
ATTN: Chief, NORDD-C3
ATTN: Chief, NORDD-M
ATTN: Chief, NORDD-SR
Lower Mississippi 96100
ATTN: Chief, LM1ED-D
Ohio River
ATTN: Laboratory 42227
ATTN: Chief, Bag Div 45201
Missouri River
ATTN: Chief, MRRED-G 610101
ATTN: Laboratory 61012
Soutwestem 75202
ATTN: Laboratory
ATTN: Chief, SWO BD-MA
ATTN: Chief, SWO BD-T0
South Pacific 94904
ATTN: Laboratory
ATTN: Pacific Offices 96102
ATTN: Chief, Bag Div
ATTN: FMAS Branch
ATTN: POLED-D
North Pacific
ATTN: Materials Lab 97060
ATTN: Chief, Bag Div 97208

Tf US Army 09407
ATTN: AETM-AR-MG-SH
HQ, Combined Field Army (ROK/US)
ATTN: CPAR-TH 96150

US Army Foreign Sci. & Tech Div
ATTN: Chief, Bag Div
ATTN: POLED-D

USA ARMCOM 07801
ATTN: DRDA-LCA-OK
HQ, USAMRICD 21701
ATTN: SORD-PLC

West Point, NY 10996
ATTN: Dept of Mechanics
ATTN: Library

Pt. Baland, VA 22060
ATTN: Learning Research Center

Pt. Beaival, GA 31905
ATTN: ATZEEUL-BO
ATTN: ATZEE-9H-8

Pt. Lasersworth, KS 66027
ATTN: ATZLCA-3A

Pt. Lee, VA 23801
ATTN: ASNSAC-D (2)

Pt. McPherson, GA 30330
ATTN: APEN-CO

Pt. Monroe, VA 23651
ATTN: ATEN-AO
ATTN: ATEN-PH-MI
ATTN: ATEN-FN (2)

Pt. Richardson, AK 99205
ATTN: AFVR-06-8

Rocky Mountain Arsenal 80022
ATTN: BRAHMA-CD-FPE

USAWRES 91180
ATTN: C2Structures
ATTN: Sci & Performen Lab

Naval Facilities Eng Command 23332
ATTN: Code 3003

COMMANDER (CODE 3686) 91133
Naval Weapons Center

Little Rock AR 72209
ATTN: 514/DEER

Building Research Board 20418
Dept of Transportation Library 20590

Transportation Research Board 20418