AD-A226 933

L TiLC

Technical Document 1853
July 1990

Literature Survey on
Tools

C. G. Murphy

Science Applications International
Corporation

DTIC

FLECTE!
SEP27 1940

s 8

Approved for public release; distribution is unlimited.

The views and conclusions contained in this report are
those of the contractors and shouid not be interpreted
as representing the official policies, either expressed ar
implied, of the Naval Ocean Systems Center or the
U.S. Government.

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R. M. HILLYER
Commander Technical Director

ADMINISTRATIVE INFORMATION

This report was prepared by Science Applications International Corporation (SAIC), under
contract N66001-87-D-0039 for Code 733 of the Naval Ocean Systems Center.

Released by Under authority of
D. K. Barbour, Head J. A. Roese, Head
Signal Processing Signal and Information
Technology Branch Processing Division

3

LITERATURE SURVEY OF PARALLEL PROCESSING TOOLS

TABLE OF CONTENTS

VOLUME I. - EXECUTIVE SUMMARY, . . ittt it e 1
SeCtion 1. . SUMMATY. .. .0t ittt ittt ittt e ittt e e I-1
1.1, Overview. ... i e e e e I-1
1.2, Software State.ttt i e e I-1
1. 3 COMCUT IO Y . v v ittt ettt et et e I-1
DO D - . ¥ - ¥ - X I-1
1.5. Mapping and Programming........... it I-2
1.6 Resource Contention.iiiiiiiiiin it iiinnneercnaanen, I-2
1 7 Porrability. e e 1-2
1.8. Instrumentation and Performance Measurement.......................... I-3
1.9, Flexibility. .o e 1-3
Section 2. Recommendations....... i e I-3
Section 3. Conclusion. e e 1-4
VOLUME II. - TECHNICAL. ittt i i e e e e e e 11
Section 1.. Overview. e II-1
1.1. Scope and Objectives........ i II-1
1.1.1. Tool Hierarchy. it i e i e e I1-1
1.2, Survey Method. e 11-2
1.3. Document OVeIView.ttt II1-2
Section 2.. Parallel Processing Background................... 11-3
2.1, Software StaTe.ttt I11-3
2.2 COMCUTEBNICY . v vttt ittt et v ettt e e e e e I1-3
2 . LI UAEES . . .ottt i e e e 11-4
2.4, Mapping and Programming........... ...t il I1-4
2.5. Resource Comtentiom.ttt i it i et e 11-5
2.6. Portabildty. e e e II-5
2.7. Instrumentation and Performance Measurement......................... II-5
2.8, Flexibility. ... it i i it i ce s 11-6
2.9, ArchitectUresS. ittt ittt it i e e 11-6
Section 3.. General Parallel Software Survey................covuevrennnen. I1-7
3.1, Algordthms. .. i e e e e e e I11-7
T 5 1.3 7 o P I1-8
I B 4T O I ¥ 3 I < 11-8
I O . -1« 3 1 11-9
3.5, Programming.curiitoneotiranent it i e 1I1-12
3.6. Human Computer Interface........... .. oot 11-15
R O 3 <3 b T ¢ . T3 T N I11-16
O - B 1.7 P 11-17
3.9. Language Extensions.......... ... ettt i I1-19
3.10. Operating System Extensfions....cciitiiiiiiiiiiie .. 11-21
i

—— -

3.11.
3.12.
3.13.
3.14.
3.15.

Languages.......

Architectures. ..
Technology......

Section 4.. Commercial
4.1, Commercial SUPPOT L. ... ittt irnet it in ittt e e e e

Section 5.. Reviews of

wLwuuown

AR RV RV RV RV RV RV RV RV RNV RV RV RV RV ECUEY N RCUE RO R N R, R R R R

omosomeomoooo\lwuaxoxo«mwu\muvbL\L\z\wuwmwo—'wwww

Algorithms.......

. Data Dependency

OpPerating SyStemMS. ittt innr sttt tintte e e,

..

D R T T S I T T T T T T S

Additional References.ovviiitmn e,

Literature Survey..............c.oitiriivennan...

Selected Articles and Information................

.1 Signal Processing Algorithm Environment.......................

Tool........... ... e e e e

1
.2. Systolic Programming Tool..........vvuiivnnennnennneincannnnnns
3

. Parallel Algorithm Implementation.......................

Library..........

.1l. Standard Libraries. ..

Simulation. .
1. Time Cost Model

1. Optimal Mapping

2. Visual Programming. iuiinienuniti
. Mapping..........

..

on Hypercubes............ i,

.2. Novel Mapping for Massive Parallelism............................
.3. Bounds Checking
. Machine Independent Programming
.1. Graphical-Machine Independent Programming.............. e
-2. High Abstraction Programming.................vvueniinnivuninnn..
.3. Tools for Comnection Machine Programming.........................
.4, Object-Oriented

..

Parallel Programming.............................

Genmeral Programming........ i

-1. Scientific Programming Enviromment..............
.2. Data Flow Programming

Human Coaputer Interface... .
.1, Algorithm Animation...... Lo .
.2. Pictorial Mapping.
. Environments.....
.1 Multi-Computer Programming Environment............................
.2. Parallel Programming Tool Requirements...........................
.3. Partitioning for Matrix Multiplication...........................
4. Replay for Debugging..........cvoitininiii i,
. Language EXCensSions. ittt it e
.1. Combined Object
-2. Mathematical LanguUaEe.cuiiirninninnninnnnnne v,

..

Oriented and Concurrent Language.................

3. Parallel Symbolic Lisp.........c..iiiuiiiiiii i,

.10. Operating Systems EXTenSiOonS.......uuuernmunnnunnno ..
.10.1. Memory Management on Massively Parallel Architectures... .. .
.10.2. Parallel Ada?.

..

ii

Section 6.. A Parallel Progvamming Environment for Parallel Signal

ProcessSing. .. i e e e e e II-53
6.1. Tool Enviromment.uitininnitiniot oo ennenennnenneneann.. I1-53
6.2. Parallel Programming Tools..........oovuiuiininunenenenennnnnannnn.. 11-52
6.2.1. Visualization.ottt e e e e I11-53
6.2.2. Tools for Heterogenous Mapping..........coviiiiiiiiiiininninnn.. I1-54
6.2.3. Applications Probing and Design Allocation Tools................. II-5¢4
6.2.4. Modeling and Performance Tuning Tools....... e, I11-55
6.2.5. Comparison of Model and Application Requirements................. I11-55
6.2.6. Parallel Machine Coding Tools.......c.iitiunnunnennnnennannnnnn.. I1-55
6§.3. Algorithm Development. ivttenrrnnennnreneeinennneneenns I1-56
6.4. Requirements for Parallel Processing Tool Environmment.............. I1-56
6.4.1. Ideal Parallel Programming Enviromnment........................... I11-56
6.4.2. Data Decomposition.t 11-57
6.4.3. Control Decomposition.ttt I11-57
6.4.4. Performance Tuning..t i I1-57
Figure 1 Total Enviromment..........oiiuiuiiuurmneinnnnnnennn. . I1-53

LIST OF APPENDICES
Appendix A - Definitions and General References
Appendix B - Survey References
Appendix C - Key Words and Author Alphabetical Listing

Part 1: Key Words
Part 2: Author Alphabetical Listing

Acces=‘con For
NTIS giael
DTI: 7y

Unanns o0 o g J
Juntirioat Con

i
|
|
|

1 Bv_ . .
Dt Spribvﬁﬁifzx“/

Avallovnidisy Cs2as

T Al !‘l‘.d,’or~
Dist ! Special

L

R

———————

1i4

VOLUME I - EXECUTIVE SUMMARY

LITERATURE SURVEY OF PARALIEL PROCESSING TOOLS

LITERATURE SURVEY OF PARALLEL PROCESSING
VOLUME I. - EXECUTIVE SUMMARY

Section 1. Summary

1.1 Overview

This .:terature survey of parallel programming tools, including more than 200
references, is designed to allow continued browsing and probing of different
specific areas of interest. Therefore, the first look at parallel programming
tools is a broad one, where each reference article is briefly described. Key
words (or phrases) were assigned and provided in sorts by author and by assignment
to a hierarchy cf high performance computing technology. This hierarchy ranges
from algorithms through tools environments to architectures and technology. A
table of commercial programming tools is also provided.

At the most focused level, a review is made of articles providing information
which is important to support signal processing parallel tools.

A general discussion of the state-of-the-technology, and definitions and
discussions of key terms, and concepts of parallel computing are also given.

1.2 Software State

Designing and building multiprocessors has proceeded at a dramatic pace; the
development of effective ways to program them generally has not. Yet, software
development is the most critical element in a system’s design. The immense
complexity of parallel computation can only increase our dependency on software.

1.3 Concurrency

The fundamental thesis of parallel computing is that concurrency can be expressed
by users and operated upon by parallel computers to achieve significantly higher
speed than in conventional computers. However, present peak-to-delivered
performance for many applications is too large and too different for varying
modes of concurrency.

1.4 Languages
A programming language cannot be general purpose if only a handful of experts
grasp it and use it effectively. See Shapiro [LANG 4]. The future of parallel

computing depends upon the creation of simple, yet effective parallel-
programming models (reflected in appropriate language designs) that make the

I-1

detail of the underlying architecture transparent to the user.
1.5 Mapping and Programming

There are three parts to matching algorithms to architectures:
Understanding the application and its concurrency
Selection of optimal architecture
Mapping the algorithm to the architecture

It is clear that these two parts must be continually iterated to remain at
optimum performance.

Performance programmers on massively parallel machines must consider several
new elements of machine balance. [Stone] These are:

Processor bandwidth - partition processes among processors
Memory bandwidth - access data in parallel

1/0 bandwidth - rate must sustain full computational power
Communications bandwidth - move data between processes
Synchronization bandwidth - coordinate activity of processes

Multiple purposes - maintain flexibility for multiple parallel processing
modes

1.6 Resource Contention

All parts of th: parallel processor must operate at a reasonable design
efficiency. This be expected by the user. The user, coding (specifying) at the
concurrency level, cannot be required to anticipate that hidden pattern-related
resource coniention degradation can occur in his solution. Networks and memories
should be conflict-free and support parallel synchronization through instruction
level operation. Concurrent processes must be independent of the functional units
and processors used to compute the results.

1 7 Portability

The need for concurrent languages, independent of the computer architecture, is
evident from the literature survey.

In the parallel marketplace there is now very little to no portability between
applications on parallel processors. Each requires mapping the application to
the machine to achieve reasonable performance. Parallel extensions to sequential
languages provided are not supported on other machines. Present language
extensions are too assembly-like, and are very machine oriented and dependent.

I-2

1.8 Instrumentation and Performance Measurement

The user must be provided with highly visual “~ols to understand the operation
of his algorithm on the machine. This will enable the user to express the
concurrency in the problem in other forms to discover better solutions. The user
may be mapping the concurrent algorithm to the machine by using this feedback
but does so at a higher level. Other parallel processor designs may operate less
effectively, but a reasonable level of operation could be expected without
tuning.

1.9 Flexibility

Systems must be adequately robust to allow reprogramming without entire rewrites,
while maintaining reasonable performance. Small changes should not severely
impact the performance, and the user must be able to assume this; otherwise the
maintenance of parallel computer codes will require that the developers be
retained to constantly update them.

Section 2. Recommendations

The literature survey discovered no complete or machine-independent set of
parallel processing tools for signal processing. Academia has made excellent
starts on defini.g the elements of machine-independent programming environments,
but implementations tend to be architecture (processing mode) directed toward
MIMD, SIMD, Dataflow, or special purpose architecture. However, the survev
results can now be analyzed to define the characteristics and possibly the
specifications of a parallel programming environment for signal processing.

A wide diversity of architectures and associated approaches is evident from the
survey. In addition, the rapid pace of change in architectures quickly renders
obsolete many parts of tools. Use extreme care to ensure that machine-dependent
material is not critical to the approach or results. However, this diversity
leads to several common recommendations:

Abstraction at several levels is required

Object-oriented approaches are a common approach to abstraction
Layering of an environment’'s design is necessary to maintain long range
robustness

Use concurrent or parallel functional language without sequential bias

These common elements were recognized as necessary to successful parallel
programming tool environments:

I-3

Visual or graphical programming

Mapping into heterogeneous environments

Control and data partitioning tools

Debugging and performance measurement tools

Architectural modeling tools

Extensions to languages and adaptation of parallel abstract languages
Extensive libraries for each architecture with machine-independent
common user interfaces

Sets of machine dependent tools for use by support specialist in building
the general signal processing environment

The long range view of a parallel programming environment for signal processing
includes the following organization:

Graphical Human Computer Interface
Rapid Prototyping Systems Environment
Scenario Driven Experiment Support
Algorithm analysis, Design, and Performance Evaluation
Parallel Architecture Modeling
Machine Independent Programming and Mapping tools
- performance monitor and debug
language extensions
- operating system extensions
library

Machine Dependent Mapping Tools for each architecture

Section 3. Conclusion

The challenge of the tool building effort will be maintaining machine
independence when developing applications, algorithms, and tool environments.
The rapidly changing architectures force a machine-independent approach in long
range applications. In addition, new architecture requirements may result from
algorithm advances exceeding advances in hardware speed.

Abstraction, layering, and architecture modeling and tracking are essential to
maintain machine independence.

Object-oriented programming in a concurrent language (for example, Concurrent
C++) is needed to ensure that systems designers are freed from building to the
wrong architecture,

A carefully designed set of standards should be evolved which supports a layered
tool environment, along the lines of the 0SI/ISO communication standards.

Section 6 gives a list of near term tools which start the effort on each tool
area. The tool categories are:

1-4

Visualization
Concurrency estimator
Standardization
General Aids
Abstraction
Architectural Model

I-5

VOLDOME II - TECHNICAL

LITERATURE SURVEY OF PARALLEL PROCESSING TOOLS

11

LITERATURE SURVEY OF PARALLEL PROCESSING

VOLUME II. - TECHNICAL

Section 1. Overview
1.1 Scope and Objectives

This survey provides a software tools review for moderate to massive parallel
processing and identifies opportunities to apply these tools to signal processing
applications. The survey covers modern tools which have been reported in the
:terature during the past two years, 1including the full hierarchy of software
develcpment. It first sets the tools scene by drawing out brief ideas on tool,
methods, and information. The survey pinpoints matches then exploring those in
more detail.

1.1.1 Tool Hiexaychy

The levels of the hierarchy include the following:

LEVEL LABEL
Science and Mathematics [Sei)
Numerical Methods [Num]
General Algorithms [Alg]
Libraries [Lib)
General Programming Methods [Prog)
Modeling, simulation, and Analysis tools [Sim)
Application Mapping tools (Map]
Human-computer interface [HCI]
Parallel environment [Env)
Support Utilities and Standards [Sup)
User extensions to Languages [ExtLlang]
User extensions to Operating systems [Ext0S])
Languages and compilers [Lang)
Operating Systems [0S])
Architectures [Arch)
Technology [Tech)

Labels in the square brackets "{...})" are identifying labels used to organize the
material. The effort will concentrate on the middle of the hierarchy, but ideas
from elements outside the control of the user are included in the hierarchy above,
because these may lead to extensions and environment tools. Note that the survey
labeled no references as [Sci] or [Num] because other labels were more appropriate
when those topics were pai.t of the references. For example, McBryan {PROGC 22)
discusses numerical methods but his overall work was better labeled in another
topic (programming).

11-1

1.2 Survey Method

The goal of this survey is to identify the parallel programming tools which can
assist in the difficult task of programming signal processing applications in
parallel architectures. Therefore, the filter used in selection of materials is
to select those which allow rapid prototyping, a supporting data base of test
and evaluation inputs, architecture modeling, parallel algorithm development,
and supporting graphical human interfaces, programmer mapping aids, language
extensions, libraries, and machine mapping. The study also includes software
engineering tools, concurrent algorithms and methods, vendor supplied programming
languages and mapping tools for decomposition, synchronization, load balancing,
and grain control, vendor supplied extensions, debugging and profiling tools,
and operating systems. A letter was sent to pearallel computer suppliers to
receive thejir latest information.

The topics which are prime opportunities for impacting near-term needs for signal
processing activities are covered in more detail. This concentration is,
therefore, on those tools believed to be appropriate to moderately parallel (16 to
84 processors) and massively parallel (above 64 processors) and SIMD machines.
Some reviews were included to give additional breadth.

1.3 Document Overview

Section 2 provides brief statements of some the key issues of parallel
programming. Appendix A provides additional definitions of general parallel.

Sertion 3 provides a very brief review of selected journal articles from th

general parallel survey. Section 4 provides a summary table of materials from
commercial vendors of parallel computers. Section 5 contains short reviews of
articles which could significantly affect the effort. Section 6 provides a

framework for organizing an environment for parallel signal processing development
through rapid prototyping. algorithm development, architecture modeling, and
experimental evaluation. This environment is defined to be consistent with ideas
and information gained through the literature survey.

Appendix A defines terms used in parallel processing. A list of references
identified and filtered from the literature are provided in Appendix B. Appendix
C provides key words and a sorted list by author. These lists give cross

references of key words and an alphabetical 1list of authors to help identify
references which are applicable to more than one level of the hierarchy.

11-2

Section 2. Parallel Processing Background

In this section, we discuss some of the issues which must be addressed in
parallel programming [Murphy]. (References for general text discussions are
given at the end of Appendix A.)

2.1 Software State

The technical challenge of paraliel processing is to provide a massively parallel
computer which can be effectively programmed from a language which refers to the
concurrency in the problem, not the computer architecture. This abstraction must
be possible with only a small loss from the peak speed for any concurrent
expression. This requires the building of parallel processor and languages which
run from a specification level language without mapping.

There are substantial gains toc be realized from parallel processing but these
require careful selection of the proper architecture to match the problem and
changing of the skills of the scientists and engineers who perform the
application. Matching highly structured applications makes possible a large
expansion of problem space, and potentially leads to breakthroughs. Problems
must have significant concurrency which matches available architectures.

Designing and building multiprocessors have proceeded at a dramatic pace, yet
the development of effective ways to program them generally has not. Yer,
software development is the most critical element in a system’'s design. The
immense complexity of parallel computation can only increase our dependency on
software.

The difference in the performances of well mapped (performance programmed) and
abstract tool mapped (convenience programmed) applications is too large. The
peak-to-delivered performance ratio drops rapidly if the application is not
completely matched and mapped to the machine. Several efforts are underway to
solve this problem.

2.2 Concurrency

Nature contains a tremendous amount of concurrency, but it is reduced by the steps
involved in choosing physical models, algorithms, computational methods,
programming, and computer language constraints, combined with hardware
architecture. The fundamental thesis of parallel computing is that concurrency
can be expressed by users and operated upon by parallel computers to achieve
significantly higher speed than in conventional computers. However, present
peak-to-delivered performance for many applications is too large and too different
for varying modes of concurrency.

However, present parallel computer designs only support one or two modes of
operation (forms of concurrency) because a single parallelism mode has been
concentrated upon. For example, highly independent and homogeneous numerical
applications may run well on Architecture 1 and poorly on Architecture 2, but the
opposite performance rating occurs when the application is changed. The concern
is not that this happens, but that the difference in performance between the two
cases is very large. Peak-to-delivered performance for many applications is too
large and too different for varying modes of concurrency.
I1I-3

2.3 Languages

A programming language cannot be general purpose if only a handful of experts
grasp it and use it effectively. The future of parallel computing depends upon
the creation of simple but effective parallel-programming models (reflected in
appropriate language designs) that make the detail of the underlying architecture
transparent to the user. See Shapiro [LANG 4).

Parallel architectures presently lack clear abstraction constraints, leaving
the user to cope with problems of immense complexity at one time.

The safe approach is to use a layered hierarchy and structure to allow
independent work on small portions of a problem. Separation of algorithm design
from architectural considerations is ideal and several approaches for this are
found in the literature survey. Conventional software engineering tools and
techniques approach complex system applications in this manner. Abstraction
constraints aid in vector and systolic programming and are candidates for
concurrency investigations. There are other concurrent methods which require
dividing a problem into cells or volumes corresponding to data or functional
concurrency or into synchronizing (or communicating) tasks. Concurrent paradigms
and languages do exist but are not yet well mapped into widespread machines.

Object-oriented languages are a potential solution to the abstraction problem.

2.4 Mapping and Programming
There are three parts to matching algorithms to architectures:

Understanding the application and its concurrency
Selection of optimal architecture
Mapping the algorithm to the architecture

Both must be performed well to achieve the expected speed up and performance
results. Long-range efforts must continually iterate this process because new
architectures and new algorithms can bring large performance increases.

Some of the details that have to be considered when selecting the computer are
how each computing mode is supported and the tools provided. Details of
supporting architectural features which must be considered are:

Concurrency conservation and loss due to overheads
Processor context switch latency

Memory access latency

Scheduling and mapping difficulty

Control requirements

Data storage and data flow

Communications and the memory access method
Topology

Control and scheduling

Synchronization (Megasynchronizations per second - MSYS)

Performance programmers on massively parallel machines must consider several
new elements of machine balance. [Stone] These are:

Processor bandwidth - partition processes among processors

Memory bandwidth - access data in parallel

1/0 bandwidth - sustain full computational power

Communications bandwidth - move data between processes
Synchronization bandwidth - coordinate activity of processes

Multiple purposes - maintain flexibility for multiple applications modes

2.5 Resource Contention

All parts of the parallel processor must operate at a reasonable design
efficiency and this should be expected by the user. It is inappropriate to
require a user coding at the concurrency level to anticipate that hidden pattern
related resource contention degradation can occur in his solution. Networks and
memories should be conflict-free and support parallel synchronization through
instruction level operation. Concurrent processes must be independent of the
functional units and processors used to compute the results. Instrumentation must
be performed to allow for detection of contention problems because these can be
highly non-linear.

2.6 Portability

The need for concurrent machine independent languages, independent of the
computer architecture, is evident from the literature survey.

There is now very little or no portability between applications on parallel
processors. Each requires that the application must be mapped to the machine in
order to achieve reasonable performance. Other machines will not support parallel
extensions to the sequential languages provided. Present language extensions are
too assembly-like, and are very machine-oriented and dependent. The challenge
is to develop concurrent languages which support, without machine considerations,
the expression of all forms of concurrency. Architects can then implement
computers, machine dependent compiler backends and tools which allow a concurrent
expression to be run on the given architecture.

Many expect that these languages will represent the algorithm in both graphical
and word forms. The capabilities of present workstations and the standardization
of tools such as X-Windows, facilitate this development.

2.7 Instrumentation and Performance Measurement

The user must be provided with highly visual tools to understand the operation
of his algorithm on the machine. Providing this operational look allows the user
to discover better solutions by expressing the concurrency of the problem in
other forms. The user may be mapping the concurrent algorithm to the machine by
using this feedback, but does so at a higher level. Other parallel processor
designs may operate less effectively but a reasonable level of operation could
be expected without tuning.

II-5

In additjon, it is necessary to establish new and different ways to describe a
machine to allow users to effectively evaluate the potential for an applicatioen.
This action is also at the higher level of abstraction. These machine
descriptions must reveal the performance across all modes of processing, not only
on highly structured processing domains. Concurrency can be expressed in other
domains but is seldom supported by existing parallel processors.

2.8 Flexibility

Systems must be sufficiently robust to maintain reasonable performance while
allowing reprogramming without entire rewrites. Small changes should not severely
impact the performance. The user must be able to work with this assumption;
otherwise the maintenance of parallel computer codes will require that the
developers be retained for constant updates. This problem has a parallel with
the large maintenance costs incurred by over reliance on performance programming
in many systems. If this problem cannot be solved, large life cycle costs and
a corresponding reduction in the market for massively parallel computers can be
expected.

A recent paper by Kumar ([KUMAR] demonstrates that the average level of
concurrency in large scientific Fortran benchmark codes {is 500 to 3,500
concurrent actions over the application. This level of concurrency increases
with the size of the application.

[KUMAR] has shown that concurrency in very large problems is quite high. Kumar's
example codes are existing Fortran applications, not specially coded problems
in which direct and expanded concurrency could be expressed.

2.9 Architectures
Additional architecture features may be considered, among them are:

Machine Cycle

Instructions

Addressing Modes

Memory Hierarchy

Coupling (Local to Shared Memory)

Cache Strategy

Secondary Storage and 1/0

Basic Instruction Suite (RISC/CISC Issues)
Functional Unit Adjudication

Micro-task scheduling

[Stone] considers these to be the challenges to a computer architect:

Eliminate the synchronization bottleneck (MSYS)
Reduce overhead for scheduling tasks

Solve the cache coherency problem, or

Find a means of increasing local memory

Map serial programs to parallel programs
}dentify useful parallelism

Avoid inefficient forms of parallelism

I1-6

Section 3. General Parallel Software Survey

Brief descriptions of each article selected for inclusion are given below. Many
parallel references were found but not included because they were redundant,
esoteric, or remote to parallel tool environments. Names of environments or tools
are given in parentheses at the end of each paragraph.

3.1 Algorithms
Signal Processing System Environment

Lager [ALG 1 *]1 gives an overview of a graphically oriented signal processing
system which provides the necessary environment for exploring algorithms to build
systems. This article is limited to sequential systems. Similar displays have
been given in simulation conferences in the past two years.

Purtilo [ALG 2] describes an interprocessor communications support system for
design which allows separation of specification and implementation. (POLYLITH)

Bokhari [ALG 3] gives optimal assignment methods using the sum-bottleneck path
algorithm which allows polynomial time solutions in some cases. Chains or rings
of processors are considered, as well as single host, multiple servers.

Jamieson [ALG 4]2 gives a check list of algorithm characteristics and
architecture characteristics which should be dealt with in a complete system.

Chen [ALG 5 *] uses the data dependence graph as a tool for designing algorithms.
Forest and multistage graphs are included. Regular and semi-regular graphs are
discussed in other papers.

Frieze [ALG 6] provides parallel algorithms for solutions to the quadratic
assignment problem on the DAP.

Engstrom {ALG 7] A systolic array programming system is presented. Notation, C
code production, and high level specification to allow interfacing with others
are stressed.

McCrosky [ALG 8 *] provides a Algorithms for array based computation for fine-
grained SIMD machines.

Stone [ALG 9] Stone shows that the speed of the Connection Machine on one of
the data search methods is due to I/0 bandwidth, not the processing power.

O’Hallaron [ALG 10 *] describes Kalman filter implementation on the WARP.

1l A star (*) indicates that this article
has been reviewed in more detail in the report.

11-7

Alexander [ALG 11] provides multidimensional signal processing methods to optimize
communication overheads.

Lin [ALG 12] parallel gives a matrix inversion method for dynamic communication
restructuring machines.

Arya [ALG 13] provides system modeling combined with notation for data transfers.
This is a tool for algorithm optimization.

Fox [ALGl 14] gives hypercube algorithms for matrix manipulations. Code for this
set is available from Fox in C.

Feng [ALG 15] gives communicating sequential processes to develop the alternative
construct, thus enabling a process to non-deterministically select one
communication among many. These processes were implemented on the BB & N
Butterfly.

Armstrong [ALG 16] describes multiple algorithm methods for one-dimensional FFTs
for Convex computers.

Swarztrauber [ALG 17] gives both vector multiprocessor and hypercube FFT
algorithms. Eight existing FFTs are reviewed.

[ALG 18] is the cover of a special issue of IEEE Transactions on Computers on
parallel and distributed algorithms.

3.2 Library

Dongarra [LIB 1] shows how to interpret the results of the LINPACK benchmark
from the LINPACK library.

Sneiling [LIB 2] compares several libraries on supercomputers.
Hammarling [LIB 3} reviews the NAG Library on supercomputers.
3.3 Simulation

Ammar [SIM 1 *] shows a method for deriving the time cost of parallel
computation, defines classifications of computing structures, and derives an
approach to the time cost of each.

Bain [SIM 2] describes Hypersim, a parallel performance simulator for
architecture decision making for the Sun and iPSC.

Yoder [SIM 3] compares the simulation of SIMD and a VLSI processor arrays. A
word recognition case is used as the application.

Ramamoorthy [SIM 4] provides a set of rules with which to incrementally expand a
system and maintain logical correctness. Petri nets are used with the rules to
verify logical properties.

Yaw (SIM 5] gives a method of computing the cycle time of concurrent systems
modeled by a restricted set of Petri nets.
II1-8

Chung [SIM 6] develops parallel execution schemes for a Petri net model of a
task.

i Krauss [SIM 7] presents formal verification of a computer program using labeled
Petri nets.

Stotts [SIM 8 *] gives parallel flow graphs (PFG) with visual and hierarchical
properties, using a Petri net.

Hura [SIM 9] describes an environment called PNSOFT used for Petri net modeling.

—— e — —

Bray [SIM 10] gives a description of a tools set, including concurrency detection
tools, architecture modeling, and optimization of architectures to match the
concurrency in the algorithm.

3.4 Mapping

Nicol [MAP 1] uses the elliptical partial differential equation to study the
relationship of problem partitioning parameters, determining values to achieve
optimal speed up.

¥ruskal [MAP 2] gives a series cof definitions of granularity and attempts to
define two forms: (1) natural, based on the time between required
r synchronizations; and(2) architectural, based on the communications overhead.

McDowell [MAP 3] shows that reachable program states grow exponentially with
‘ the number of tasks. A virtual state is used to merge a set of related reachable
~ states, allowing the static analysis of parallel programs for concurrency.

Berman [MAP 4] presents a solution to the problem of mapping when there are
topological mismatches and the number of processors required by the algorithm
exceeds the number available.

Cherkassky [MAP 5 *] uses two matrix algorithms to demonstrate one way to
optimize balance between communications and computation overheads. Two matrix
algorithms are used to demonstrate the approach. Parallel gaussian elimination
is also demonstrated.

Moreno [MAP 6] gives & method of partitioning algorithms for application in
systolic arrays.

Kumar (MAP 7) gives a general method to reduce bandwidth requirements by mapping
two-dimensional arrays into one-dimensional arrays.

Reddy [MAP 8] reduces the links to needed for I/0 in hypercube architectures
when I/0 i{s embedded in each node,

Dubois [MAP 9] separates parallel computing into throughput-oriented and speed
up-oriented approaches. He also discusses synchronization issues in
multiprocessors.

1I1-9

|

Wu [MAP 10] gives an automatic scheduling and synchronization tool for hypercube
architectures using a macro data flow graph.

Muhlenbein [MAP 11 *] shows the evolution approach to parallel programming.
Parallel programming is shown to be reduced to the graph partitioning problem,
which is solved through a biologically-based evolution approach. The example
used is the traveling salesman problem.

Bailey [MAP 12] Cover, Proceedings of the 1988 International Conference on
Parallel Programming.

Kim [MAP 13] uses a heuristic method to provide a graph representation of a
parallel computation, the merges the parallel computation to produce optimized
computation and communications costs.

McDowell [MAP 14] detects anomalies in parallel programs using static analyzer
methods. McDowell uses a state graph called the Concurrency History Craph as a
visual indicator of the concurrency history.

Greenbaum [MAP 15] analyzes execution and waiting time due to processor
synchronization. Less restrictive forms of barrier synchronization are proposed
for certain granularities.

Stout [MAP 16) gives problems of mapping between various types of architectures.

Vision algorithms are the subject used. Mesh, hypercube, mesh-of-trees, pyramid,
and Parallel Random Access Machines (PRAMs) are considered.

[MAP 17] Cover, Supercomputing ‘88.
Martin [MAP 18] gives an overview of mapping.

Fox [MAP 19] Cover, Third Conference On Hypercube Concurrent Computers And
Applications.

Fox [MAP 20) gives communications algorithms which map neural network simulations
on the hypercube.

Fox [MAP 21] gives neural network methods of load balancing and scheduling on
the hypercube.

Salmon [MAP 22] develops the method of scattered decomposition as a tool to show
the load imbalance.

Pettey [MAP 23] discusses minimizing communications and memory utilitization in
process placement mapping. The NP-complete problem is approached by heuristic
and the method of simulated annealing is discussed as one solution.

Livingston [MAP 24) considers the problem of distributing resource units to
processors in a hypercube to meet performance requirements.

Ercal [MAP 25) gives a method of task allocation by recursive minicut bi-
partitioning.

I11-10

Chen [MAP 26] studies topology mismatch between the algorithm and the machine.
The average path length is to be minimized but the problem is NP-complete.
Approximation algorithms are used to find good mapping in specific cases. A
greedy mapping strategy is analyzed.

Bell [MAP 27] discusses data partitioning.

Kruatrachue [MAP 28] gives an automatic technique for determining the grain sizes
in a parallel program. Optimal execution requires solution to grains sizing and
scheduling. Grainpacking is used to get optimal results.

Ramanujam [MAP 29) applies simulated annealing to avoid the local minimum trap
problem.

[MAP 30] Cover, Proceedings Supercomputing '88.

Kramer [MAP 31] discusses process assignment in distributed memory parallel
computers. A robustness measure is introduced for hypercube machines and
SUPRENUM. The result shows that optimal mapping is important to the hypercube
but that simple mapping schemes give nearly optimal results in the SUPRENUM.

Musciano [MAP 32] discusses medium grain dynamic scheduling and the SPOC
environment implemented in Simultaneous Pascal.

Weiss [MAP 33] gives dynamic scheduling for DOALL-1loops and FORK-JOINS to support
the output of parallelizing Fortran preprocessors.

Peir [MAP 34] approaches linear recurrences and how to minimize their impact on
multiprocessor systems. A new method, minimum distance, is used to create totally
independent computations from linear recurrences.

[MAP 35] Cover, Proceedings of 1988 International Conference on Parallel
Processing.

Missirlis [MAP 36] discuss the successive over-relaxation (SOR) method on
asynchronous multiprocessors.

Kapenga [MAP 37) gives an adaptive scheme for task partitioning on MIMD machines.
Many serial adaptive procedures are directly translated into parallel versions.
A high level set of macros was developed and used over the Argonne macro package.

Bisiani [MAP 38] describes Aguora a system for multilanguage parallel
applications for heterogenous machines. The system uses shared memory abstraction
to program across different machines.

Colin [MAP 39] presents a method for task allocation on distributed memory
machines using a graph model to show dependencies. A virtual parallel machine
is introduced with infinite processor count and has a complete connection graph.

Rosenburg ([MAP 40} describes a software behavior simulation for a new SIMD

architecture. Mapping between massively parallel SIMD machines and vector
architecture was exploited to provide architectures guidance and high level

II-11

software development before construction. BLITZEN is an evolution of the NASA
MPP. Very high peformance simulations were achieved using the mapping form SIMD
to vector architectures.

deJong [MAP 41] describes a mapping tool which verifies matrix bounds through
symbolic operations, providing additional abstraction for the user.

Katsef [MAP 42] gives a data partitioning method for implementing an assembler
on a message passing multiprocessor system. The author supplies other methods
for partitioning program text and sharing global information.

3.5 Programming

Gokhale [PROG 1] A data flow language, PS. Globally referenced user-defined data
types are defined and then modules are described. Each module is a side-effect
free function. Values are assigned by use of definitions which equate a variables
name to an expression. No control constructs are allowed. The author analyzes
data dependencies and synthesizes order of execution. C is generated but other
code may be required to complete the application.

Purtilo [PROG 2] see [ALG 2]

Browne [PROG 3 *] has developed a unified approach to parallel programming. CODE
is an architecture-independent programming tool which allows graphical
programming using Computational Units and Dependency Relations. Computational
units have a functionality and a firing rule. Dependency relations are used to
compose the computational units into a parallel computational structure. An
architecturally dependant translator (TOAD) is used to map to specific machines.
Constraint dependencies are also supported.

Neves [PROG 4] provides a commentary on the problems of parallel programming
and the lack of fulfillment of promise of software tools.

DeMarco {PROG 5] discusses four signs of change in parallel processing: data flow
methods for systems representation, reusable components, object-oriented
languages, and parallel architectures.

Cavano [PROG 6] identifies future costs of software as the driving force in
systems.

Cavano [(PROG 7] gives a list of short falls in parallel software tools.

Russell [PROG 8] describes a plan for using expert systems to program parallel
computers.

Fox [PROG 0] gives categories of coarse grain architectures and three approaches
to programming: user provides whole program, user prepares large grain, and user
prepares fine grain objects. In the whole program case, C is identified as
difficult to automatically decompose because of use of pointers; for large-grain
objects Fox has developed annealing and neural network methods of allocation and
decomposition, but there is no tool to help the user: all of it is hand embedded.
Smalltalk and C++ are reported as having some promise, when object-oriented and

11-12

virtual machine techniques are wused. Fine grain objects are likened t. VLSI
methods of design. Fox reports California Institute of Technology work on MIMD
generalizations of C* programs from the Connection Machine. Gluing compilers are
used to build the code grain.

Chandy [PROG 10 *] describes UNITY, a specification notation and proof system
for parallel programming, and suggests that hardware architects build computers
which effectively execute functional code. Functional, logic, and sequential
programming advantages are briefly mentioned.

Sobek [PROG 11 *] gives additional CODE material (See Browne [PROG 3]) on the
constraint specification.

Nicol [PROG 12] gives relationships on grid size, stencil type, partitioning
strategy, processor execution time, and communication network type. Effects of
communication and synchronization overheads are included. Optimal speedup is
the goal for PDEs.

Chandy {PROG 13] (Description of UNITY continued.) This article describes stages
and the tool required for each: general strategy and restriction of class of
solutions, considering architectural issues to rule out more solutions, and
designing programs in a series of refinement steps.

Sabot [PROG 14] is a book about archirectural independent programming using
parallel relations. This is implemented on the Connection Machine.

Hudak [PROG 15] provides a general overview of functional programming. In
functional programming the specification and the implementation are separate
components. Para-functional programming is a rapid prototyping method. It is

functional in that the results of a program operation are to be expressed
declaratively, with no state or imperative constructs. Several views of an object
(operational and functional) are needed (ParAlfl).

Hudak (PROG 16] see Hudak [PROG 15].

Fox [PROG 17] Proceedings Cover.

Kallstrom [PROGC 18) Three parallel computers are compared for ease of programming
and performance. The traveling salesman problem was the test. Computers were:
iPSC in C). a network of Transputers (in Occam), and Sequent Ba.ance (in C).

Hey [PROG 19] discusses the reconfigurable interconnection of Transputers. Load
balancing and communication overheads are the discussion points.

[PROG 20) Cover, 1988 International Conference On Computer Languages.
Bagrodia [PROG 21 *] discusses programming on the Connection Machine and a
language, SC, an enhancement of C, which adds data types and primitives to

develop parallel programs. UNITY is the basis for the primitives. A data parallel
programming style is supported.

11-13

McBryan [FROG 22) reviews PDE solutions for the Connection Machine.

Bershad [PROG 23 *) describes PRESTO, an object-oriented parallel programming
environment. Pre-defined cbject types, threads and synchronizing nbjects, are
given to simplify programming and allow multiple threads to cooperate. PRESTO
is written in C++.

Brandes [PROG 24) gives a knowledge-based parallelization tool.

Zima [PROG 25) describes SUPERB: a SUPRENUM parallelization tool. Important
classes of numerical algorithms hav 1 knowledge base to support their use.

Percus [PROG 26) discusses parallel software development on MIMD machines using
as an example random number generators for Monte Carlo simulators.

Storey [PROG 27] gives the monitor synchronization concept for defining the
highest level of parallelism possible in parallel algorithm design. Concepts
are for MIMD machines.

Karp [PROG 28] gives two styles: fork-join and single program, multiple data. A
general overview of the state of the parallel programming, including taxonomy,
software synchronization issues. The author concludes that the present state is a
sorry one.

Polvchronopoulos [PROG 29) gives schemes for parallelization of arbitrarily
nested loops.

Oldehoeft [PROG 30] describes a prototype applicative language, Streams, and
iteration in a single assignment language (SISAL). SISAL is derived from a
dataflow language (VAL). An intermediate language is used to separate machine
dependencies from SISAL. Applicative languages are declarative, i.e., a set of
function definitions. Only data dependencies constrain the evaluation order,
giving a higher concurrency.

[PROG 31] Cover, Supercomputing, lst International Conference, Athens.

Solchenbach [PROG 32) gives parallel multigrid methods for SUPRENUM. SUPRENUM
has mapping libraries for processors and communications librarjes for data
exchange. Multigrid methods use iteration between coarse and fine blocks of
nodes to extend the accuracy and speed of numerical computations.

Dongarra [PROG 33 *)describes SCHEDULE and a transportable linear algebra based
library. SCHEDULE is a programming environment for explicit programming of MIMD
parallel computers.

Jayasimha [PROG 34) uses Markov chains to estimate completion times in barrier
synchronization. Implementation algorithms are given for barrier synchronization.

Francis [PROG 35] describes parallel invocation and cessation of processes. The
author provides a programming model of multiple simultaneous executing threads
which share a single program’s code and data space. A parallel procedure call
is used to introduce and coordinate parallelism.

11-14

Eisenstadter ([PROG 36] examines locality of reference in MIMD svymbolic
computations. Significant gains are seen if locality can be increased.

Weihl [PROG 37] analyzes the level of concurrency obtained in distributed
systems, especially transaction systems, when one uses abstract data types, for
example, in the presence of commutation between operations. Concern is placed
on system integrity features such a reliability and fault tolerance.

Bastani [PROG 38] advocates breaking systems into components of four classes:
abstract data types, functional, interface, and control. Two methods of use of
abstract data types are described.

Martin {[PRCG 39] describes a system for parallel procedure calls and models them
as network processes. Currenftly designed in C and C++. A parallel procedure
executes a procedure in n different address spaces in parallel.

Parkinsor [PROG 40] evaluates the cost of summation operator in a wide range of
contexts, demonstrating that simple extrapolations from small number cases have
little relevance to the many processor case.

Terrano [PROG 41) developed a compiler for distributed memory reconfigurable
architectures, using programmer directives to program, partition, map, and
automatically generate communications code.

Preiss [PROG 42] gives a semi-static dataflow method which partitions programs
into a collection 2f data flow graphs. A dynamic method of splicing data flow
graphs is used to dynamically create operating con‘exts.

McGregor (PROG 43) is the introduction to a special issue of the Communications of
the ACM.

3.6 Human Computer Interface

Yau [HCI 1; discusses issues of visual languages and major features and the
impact on software development from three aspects: software visualization,
iconic representation, and graphical grammars.

Krishnamoorthy {HCI 2] proposes graphics primitives for algorithm animation.

Tomboulian {HCI 3) describes a graphical programming environment for the Navier
Stokes computer.

Gannon [HCI 4] describes an interactive software tool for optimizing execution on
vector-multiprocessors and which support organization and analysis of large
application codes. Memcry hierarchy problems are identified, a database of global
data dependencies is provided and performance is estimated. (SIGMA)

Myers (HCI 5] provides a survey of user-interface development tools. A concise
table with both commercial and experimental tools is given.

Bailey |[HCI 6) describes Voyeur, an application-specific, graphical views
programming tool. Three views are used: Icon, Simulator, and Vector.

11-15

Brown [HCI1 7 *] describes a large number of algorithm animation applications.
Many authors cite this reference because of its completeness and many
illustrations.

Hsai [HCI 8) uses pictorial programming instead of instrumentation of code to
begin the visualization and animation process. Called Pictorial Transformations
(PT), the graphics are converted into tuples (like association pairs in Lisp).
Both scenes and films are produced to view the underlying process operations in
the programmed algorithms.

3.7 Environments

Bisiani [ENV 1] describes a tool which is a planner for coordinating other tools,
allowing the optimum sequence to be followed. The tool is intended to handle
tedious and error-prone jobs in software development. Elements include: (1) model
of program, (2) high level descriptions to be semi-automatically transformed
into low level programs, (3) automation of sequence of tool use This tool is
added to the UNIX environment (Marvel).

Dart [ENV 2] provides a taxonomy of software development tools. This is separated
into

language-centered, based on one language

structure-oriented, allows the user to directly manipulate structures
toolkit environments, language independent tasks, and

method based, based on a development method

Three tables give a sampling of these.

Reeves [ENV 3 *] describes a programming environment for parallel multiprocessors
using Parallel Pascal and stressing system integrity features. NASA‘'s MPP, an
SIMD machine, is the target architecture. The multicomputer is also considered.

Carle [ENV 4] describes the R, scientific programming environment, which is
intended for scientific Fortran support of large codes. Automatic parallelization
and vectorization are considered. Editors, execution monitors, and optimization
are included. (PFC and PTOOL)

Smith [ENV 5] gives Fortran parallelizing tools to aid microtasking of
Fortran-based vector supercomputers, including a parallelizer, a static analyzer,
and a dynamic debugger. (PAT)

Guarna [ENV 6] describes a support environment for large scientific programs using
X-Windows and NFS. Interactive compilation and optimization, integrated editors
and compilers, and portability are emphasized. Other managers are compared in a
table. (Faust)

Appelbe [ENV 7] (see Smith (ENV 5] provides a parallel programming toolkit
including a concurrency history graph, which educates as it automates. Cray
microtasking is supported. (START/PAT)

[ENV 8] Cover, Supercomputing '88.

1I-16

Guarna [ENV 9] (see [ENV 6)) describes an integrated setting for software
development. (Faust)

Ertel [ENV 10] describes the Intel iPSC/2 programming environment.

Parasoft [ENV 11] describes the CrOS operating system, CUBIX version of UNIX for
the hypercube, Plotix graphical capabilities, MOOSE asynchronous operating system,
debugger, and PC-CUBE, an education simulator.

Peinze [ENV 12] describes tools for the SUPRENUM machine including the
architecture, runtime environment, and tools. The explicit and implicit methods
which support both the program development tools automatic vectorizer,
communication libraries, mapping library, and make scripts. Program verification
includes a simulator and a debugger. The program evaluation component provides
graphics I/0, process visualization (time, statistical, or dynamic maps), and
profiling analysis to the subroutine level.

Dongarra [ENV 13 *] describes SCHEDULE, a standard user interface to several
shared memory parallel machines. Fortran is supported with calls to SCHEDULE to
enforce large grain data dependencies of the algorithm. Machine dependencies are
hidden from the programmer and are internal to SCHEDULE.

Pratt [ENV 14] describes a scientific programming environment with extended
Fortran, a configuration environment for setting up runs on parallel processors,
and a run-time environment for monitoring and controlling program execution.

Dongarra [ENV 15 *] describes SCHEDULE.

Pike [ENV 16]) describes in terms of communication channels a concurrent window
system with interfaces. Complex programs are assembled from small self-contained
units which use these channels. The window system may run recursively to
implement sub-windows. This is a Windows software tool.

3.8 Support

Lopriore [SUP 1] describes tools for monitoring program behavior. A user
interface has been defined for program debugging, program performance evaluation,
and program structure analysis. These tools support many common debugging
techniques, performance indices, and structure statistics.

Martin ([SUP 2] gives a general method to evalute the performance of a
supercomputer system.

Gupta [SUP 3] uses a trace compiler embedded in the debugger to evaluate VLIW
computers.

Mills [SUP 4] describes a three-part debugger for the DADO tree computer. A
network server, a window manager, and a parallel debugger are provided.

Reeves [SUP 5] gives a method for measuring the performance of the MPP on data
permutations, FFIs, convolutions, and arbitrary data mappings. The impact of
the high level language is also measured.

11-17

Hough [SUP 6] uses animated patterns to explore debugging. Patterns of data and
control flow are used to verify fine grain, tightly coupled processes.
(Belvedere)

Burkhart [SUP 7 #] presents monitoring tools for debugging and performance
measurement. Tools are: breakpoint monitors, mailbox monitor for synchronization,
and bus monitor for bus load.

Callahan [SUP 8] describes a collection of 100 loops used to check vectorizirg
compiler preprocessors.

Eager [SUP 9] analyzes the compromises between speedup and efficiency in parallel
systems. Contention, communication, and structure are given as reasons for
inefficiencies of processor idle time. The average parallelism of the software is
given as the primary factor in the tradeoff.

Pan [SUP 10] describes the Concurrent debugger for the Intel iPSC.

Bohm [SUP 11] is concerned with monitoring and performance comparison in
realistic application areas. Models and measures are addressed for execution on
a data [low machine.

Flower [SUP 12] gives software utilities for writing parallel code and porting
sequential code. [See PLOTIX and CUBIX discussion by Parasoft. (Comfort)]

McGuire {SUP 13] develops a method for measuring the concurrency in a workload.
The effect of this concurrency is related to system performance for the Alliant
FX/8.

So [SUP 14} presents a quick way to evaluate the performance of parallel
programs. A multiprocessor scheduling model is & set of identical processing
elements, and units of computation as task Task marking and task tracing are
supported to achieve this result. A speed up analyzer is also described. (SPAN)

Allen [SUP 15] attacks the problem of nondeterminism during debugging. A
nondeterminism detector is provided as a debugging tool.

Feo [SUP 16) analyzes th-: complexity and structure of the Livermore Loops.

GCriffin [SUP 17] gives a parallel processing simulator, a window/mouse based
debugging tool, and a set of realtime display routines to develop a parallel
process debugger. 1Interface in made to the Sun dbxtool.

Bremmerl [SUP 18 *) presents a layered model to describe debugging, performance
analysis, and visualization of multiprocessors and program execution.

Goldberg [SUP 19] represents distributed sequential processes as clones. The
Transparent Process Cloning tool keeps the clones of a process mutually
consistent. The tool has been used as a load scheduling method.

Kumar [SUP 20] gives a method for extracting general currency from large
scientific codes. The concurrency is shown to be far larger than expected for a
specific mode or type of parallelism.

I11-18

Whelan [SUP 21 *] provides optimal decomposition methods for matrices as the
matrix changes in dimension. Shared memory multiprocessors are considered.

Miller [ST'P 22 *] zi.2s5 a debugging method which allows for incremental tracing.
The Parallel Program Debugger (PPD) is directed toward shared memory macl.incs.
Inter-procedural and data flows are analyzed using PPD.

Stone [SUP 23) describes speculative reply, a method of debugging, which creates a
concurrency map, and allows investigation through back-up of the process.

McCreary [SUP 24) developed a graph method which automatically determines grain
size for problem partitioning. A DRAM (distributed random access model) is used
to allow the inclusion of communication costs.

Cheng [SUP 25] provides a knowledge-based system for parallel programming. The
method is programming language-independent. The interprocess communications are
the target of the method, because the individual processes are sequential and
handled by normal methods. Distributed Event Based Language (DEBL) is a
specification level language allowing automatic execution of debugging, along
with the program itself, in the distributed environment.

3.9 Language Extensions

Gehani [EXTLANG 1 *] describes two examples using Concurrent C, an upward-
compatible C language. C++ is integrated with Concurrent C to provide data
abstraction and concurrent programming.

Carlton [EXTLANG 2) describes a parallel Prolog implementation which uses AND
parallelism across a network.

Shibayama [EXTLANG 3] gives transformation rules for concurrent object systems
made up of computational agents capable of concurrent execution and message
passing. The author also explores methods of splitting and merging concurrent
objects.

Stevenson [EXTLANG 4] gives a compiler based system for analyzing sequential
programs for concurrency. Data groupings, operations, communications, and control
flow are the subjects of the analysis.

Chen [EXTLANG 5] describes a mathematical notation language to address
programmability and performance of parallel machin:s. The language (Crystal)
expresses concurrency without unseen sequential dependencies. The algorithm
designer is responsible for the amount of currency, but the language allows for
concurrency to be easily expressed.

Grossman [EXTLANG 6 *] describes a language system for scientific engineering,
and mathematical application programming. Textbook mathematical expressions are
used. The syntax i{s like technical English. The screen editor supports four cases
of English, Greek, and math symbols.

II-19

wholey [EXTLANG 7] presents Connection Machine Lips. Objects, similar to arrays
or hash tables, called xappings, are used to express concurrency. CM Lisp is
embedded in Common Lisp. The author claims the CM Lisp is suitable for other
computes, such as, NON-VON and Ultracomputer.

Fisher [EXTLANG 8] provides an abstraction mechanism for SIMD machines allowing
powerful code optimization techniques to be applied. Fisher claims that this
compiler produces code of hand-crafted quality.

Ruppelt [EXTLANG 9] describes the principles of automatic transformation system
which transform specifications into parallel programs for the SUPRENUM. PDEs are
supported with vectors, matrices, domains, and grids at a high level of
abstraction. (SUSPENSE)

Halstead [EXTLANG 10 *] defines futures, a symbolic parallel programming method
and the Multilisp language. The highly data dependent sequence of operations inr
symbolic processing is supported by these constructs. (Multilisp)

Felten (EXTLANG 11] describes Coherent Parallel C, a concurrent language which
provides a parallel programming model with one entire process for each data
object. Transparent task assignments are made by the system. Communication calls
are not seen at the user level. CPC runs on the NCUBE. (CPC)

Dally [EXTLANG 12] defines a Smalltalk-based language for concurrent object
oriented programming. Distributed objects, locks, and synchronization support
is provided. The language is for fine-grain parallel computers. (CST)

Rosing [EXTLANG 13] describes a C-based distributed memory parallel processor
language. Interprocess communication and process control are primary concerns of
the development. The user defines a virtual machire intc which data structures
are distributed. C++ was used to develop a prototype of this language. (DINO)

wolfe [EXTLANG 14] discusses synchronization schemes for multiprocessors,
including data dependence, removal of synchronization points, random
synchronization, pipelining, barrier synchronization, and critical sections.

[EXTLANG 15) Cover of ESOP 86 European Symposium on Programming held in
Saarbrucken.

Triolet [EXTLANG 16) addresses automatic parallelization of Fortran programs
with procedure calls. The author provides a method for paralleizing CALL
statements.

Zorn [EXTLANG 17] discusses the extension required to parallelize Common Lisp
and compares this to thc requirements for parallelizing other concurrent Lisp
ystems {s given including Spur Lisp.

Allen [EXTLANG 18] describes the IBM parallel compiler used in 3090 Vector
facilities.

Callahan {EXTLANG 19] provides an approach to implicitly programming distributed
memory parallel computers. The language describes distribution of shared array

1I1-20

elements in the parallel computer.

Mehrotra [EXTLANG 20] describes a block-structured language for multiprocessor
programming. Array arithmetic, forall loops, and accumulation operators are
provided for fine-grained concurrency. An applicative or functional procedure
invocation is used for coarse grain compiler assistance. (BLAZE)

3.10 Operating System Extensions

Chen [EXTOS 1 *] presents a dynamic memory management system which tracks
dependencies and improves speedup using on-the-fly sorting of data elements.

Beck [EXTOS 2] shows how Sequent extended UNIX single-process programming models
to support parallelism, including extensions to C, Fortran, and their assemblers
and linkers to provide declaration and intializing of shared data. The author
also discusses run-time support for shared memory initialization, expansion and
heap management and provides a parallel multitasking model for C++.

Ellis [EXTOS 3) gives method for dynamic storage allocation for shared memory
multiprocessors, providing four algorithms each for a different granularity. The
author describes the conducted experiments to compare the performance of the 4
schemes.

Wolfstahl [EXTOS 4] provides special system calls to support mapping of processes
to processors. Mapping directives are used to signal forthcoming changes in
communications patterns and occurrence of mapping related events.

Bain [EXTOS 5] describes Interwork II, the iPSC concurrent workbench.
Tolle [EXTOS 6] describes UNIX utilitjies for the NCUBE.

Angus [EXTOS 7] describes Fortran CUBIX, an 1/0 facility of the CrOS for
hypercubes.

Schwan [EXTOS 8] describes an operating system construct to implement
communication graphs linking multiple tasks of a parallel prograa. Global
services are also provided by the construct. (Topologies)

Gait [EXTOS 9] gives a process scheduler which adaptively controls a two-tier
system moving processes between local memories using a shared bus.

Schroder [EXTOS 10] describes a decentralized and distributed operating system
in an MIMD environment for process execution and communications support. This
system operates on top of SUPRENUM. (PEACE)

Stevenson [EXTOS 11) analyzes the problems associated with distributing many

virtual processes across a multiprocessor, and discusses the issues which must be
resolved for operating systems.

LeBlanc (EXTOS 12] describes controlling set of processes which interact to
execute a function. This paper discusses processes not completely parallel, but

I11-21

which must be partially ordered to proceed in parallel. A balanced binary tree
structure is used to organize the execution, which was implemented on the BB &
N Butterfly.

Malony [EXTOS 13] describes a message-passing facility for shared memory
multiprocessors, implemented in a portable C library. (MPF)

Vornberger [EXTOS 14] describes a method used to process Prolog programs on a
network of personal computers. The author discusses TERM, AND and OR forms of
parallelism.

Rahgozar [EXTOS 15) describes & distributed data base system which increases
parallel processing efficiency by means of semantic information of transactions
and data.

Garg [EXTOS 16) defines two constructs which support high level specification
of distributed systems: the handshake and the unit. Handshake is a remote
procedure call for multiple parties. The unit construct provides synchronization
and call restrictions on the handshake. These are part of a formal model, which
can be automatically analyzed, called Synchronous Token based Communicating State
(STOCS). Addition of these constructs to C to allow concurrent programming are
given. (ConC)

Fleckenstein [EXTOS 17] describes a utility for make which operates on multiple
workstations to achieve significant speedup and ease of operation. The version of
the UNIX make tool controls compilation and linkage of a number of programs across
a network.

Baalbergen [EXTOS 18] gives his version of parallel make and gives an analysis of
performance. The target is multiple processor systems.

3.11 Languages
DiNitto [LANG 1) discusses future programming languages, basing projections on
areas of past under-accomplishments in languages despite project goals and

extensive research.

Perrott [LANG 2] describes an array and vector language which is architecture
independent. (Actus)

Tripathi [LANG 3] describes an object oriented concurrent language and inter-
object communication support. Concurrency and synchronization between objects
have been the focus. (SINA)

Sharpiro ([LANG 4] provides an overview of Concurrent Prolog, a parallel logic
oriented language. (Concurrent Prolog)

Baldwin [LANG 5] describes a parallel constraint language. The constraint
languages are special case of predicate calculus methods and are based on
abstract systems of constraints, such as logic programming. (Consul)

Tick [LANG 6] compares parallel logic programming architectures, both derived

11-22

from Prolog. The author compares the speed of developing OR- and AND- logic
programs,

Clark {LANG 7] describes a paraliel Prolog language. (Parlog)

Yamazaki ([LANG 8] explores object-oriented programming at the low level
(operational units and registers) and high level (interacting processors).

Hansen [LANG 9] presents a Communicating Sequential Processes (CSP) and Pascal
based language for parallel programs. Concurrent agents communicate through
unbuffered channels. The language is written for the Encore Multimax. (CSP)

Karp [LANG 10] compares Fortran languages for these computers: Alliant FX/8, BB &
N Butterfly., Cray X-MP, ELXSI 6400, Encore Multimax, Flex/32, IBM 3080/VF, Intel
iPSC/2, and Sequent Balance.

Celernter [LANG 11) discusses issues in parallel languages. This article is the
introduction to a special issue of Computer on parallel languages.

Mundie [LANG 12 *] discusses parallel processing in Ada, concentrating on the
real time enviromment and Ada’'s tasking model.

Goldman [LANG 13) describes a multiprocessing Lisp designed for multiprocessors,
which supports medium-grain parallelism, explicit parallelism, and run on a
shared memory space multiprocessor. (QLisp)

Polychronopoulos [LANG 14) describes compiler optimizations and their impacts
on architecture design. Automatic detection of parallelism is the concern.
Barrier synchronization is identified as one of the serious sources of runtime
overhead.

Guzzi [{LANG 15] describes Fortran for the vector multiprocessor Cedar computer.

Girkar [LANG 16] describes methods of identifying data dependencies for use in
automatically wvectorizing and ©parallelizing by compilers. A program
transformation called loop spreading is used to execute adjacent loops with
interloop dependencies.

Welch [LANG 17) describes occam as a language for the Transputer, and shows how
the language supports abstraction, structuring, and information hiding.

Clapp [LANG 18] gives a demonstration of Ada operations on a hypercube. The paper
concentrates on the runtime system required for a machine independent support of
Ada. The author also describes implementation of this system on the hypercube.

DeForest ([LANG 19] describes a tagged demand driven dataflow model of parallel
computation and how it runs on the hypercube. The declarative language Lucid is
also presented. (Lucid)

Lake [LANG 20] reviews the approaches to parallel languages taken in Fortran
77, SISAL, occam, Fortran 8X, and concurrent Prolog.

11-23

Jordan [LANG 21) addresses the need to direct the activity of a large number of
processes and the structure of parallel languages for large-scale computers.
(Force)

Ahuja [LANG 22] describes the distributed language Linda, the demands for its use,
programming methods, and the Linda kernal. (Linda)

Whiteside [LANG 23 #] gives the results of a Linda experiment on a Local Area
Network of Digital Equipment Corporation VAXs. A matrix multiplication '‘master’’
is given. Several computational examples are analyzed.

Lunberg [LANG 24) gives a parallel Ada system on an MIMD multiprocessor. A single
unmodified Ada program with a number of tasks executes in parallel on different
processors, transparent to the programmer. The run-time system controls
allocation and migration of the tasks.

watson [LANG 25] provides a strong argument for using inherently concurrent
languages for parallel problem solving. He advocates a real 1life problen
specification which is declarative.

[LANG 26] is the cover of the Institution of Electrical Engineers (IEE)
specialist seminar on design and application of parallel digital processors.

3.12 Operating Systems

Bradley ([0S 1] describes a flexible operating system experiment testbed for
hypercube machines. The testbed was designed to investigate communication
paradigms, task scheduling, global virtual memory, heterogeneous system resources,
and peripheral management. (Picasso)

Krumme (0S 2) describes the NCUBE operating system, debugging support,
communications, and design. The debugger provides a top-level view of the
progress of a computation over time.

Salmon [0S 3] describes a multitasking operating system (MOOSE) for the hypercube
used to research both load balancing and the decomposition of irregular and
dynamic problems. (MOOSE)

Pierce [0S 4] describes the NX/2 operating system for iPSC/2. (NX/2)

3.13 Architectures

Dinning [ARCH 1] surveys methods of synchronization of MIMD parallel computers.
Computers covered are: BB & N Butterfly, Cedar, HEP, HM®p, Sequent, Transputer

and the Ultracomputer.

McBryan (ARCH 2) reviews parallel computer architectures for computational
science, concentrating on PDE solutions.

Snyder [ARCH 3] gives a classification scheme extending Flynn's classical one.
Categories are: von Neumann, packed von Neumann, SIMD with no addressability
(MPP, Connection Machine, and systolic arrays), SIMD multigauge (splitting

11.24

multipath), addressable SIMD (Illiac IV and CM/2), VLIW, MIMD multigauge, and
MIMD parallel (Ultracomputer and Cosmic Cube).

Casavant [ARCH 4) i{s a panel announcement listing architects and programming
tool builders of reconfigurable parallel computers.

Martin [ARCH 5] addresses the general issues of building a performance benchmark
for vector and parallel computers.

Hack [ARCH 6] discusses the teraflop computer and the lack of direction toward
general purpose computing, which could realize large parallel speed increases.
The author discusses potential limitations of speedup for general purpose
computing.

Hwang |[ARCH 7) surveys supercomputing architectures, including the state of
software tools.

Harp [ARCH 8] describes the reconfigurable Transputer project and its
architecture.

Bronnenberg [ARCH 9] describes an architecture built to support object-oriented
parallel processing. An associated language, (POOL and DOOM), is also described.

Treleaven [ARCH 10) describes commercially available architectures and explores
their potential applications.

3.14 Technology

Bell (TECH 1] discusses the new forms of computing becoming available due to
highly parallel machines.

3.15 Additional References
As this survey went to press IEEE’s Computer released a special issue on

Visualization in Computing. The following articles are the latest references in
visual programming:

Ambler, A.L.and Burnett, M.M., '‘Influence of Visual Technology on the
Evolution of Language Environments,'’ pp.9-22.

Roman, G., and Fox, K.C., '‘'A Declarative Approach to Visualizing
Concurrent Computations,’' pp.25-36.

Lehr, T., et al., ‘‘Visualizing Performance Debugging,’'’ pp.38-51.

Kramer, J., Magee, J., and Ng, K., ''Graphical Configuration Programming, '’
Pp.53-65.

All are from Computer, Vol. 22, No. 10, October 1989,

11-25

Section 4. Commercial Literature Survey

4,1 Commercial Support

Table 4-A lists commercially developed parallel programming tools. These were

received in response
information.
COMPUTER /COMPANY

_ Gesellschaft Fur
Numerische Supperrechner
MBH SUPRENUM

Helios/Distributed

a letter

TOOL/AREA

The Filter/
Graphical

The Dynamic Map/
Graphical

The Statistical Map/
Graphical

Automatic Vectorizer/
Algorithm

Automatic parallelizer

Communications Library

Mapping Library

Make

Fortran (Automatic
Vectorizor)

Helios AMPP

11-26

requesting parallel processing

tool

DESCRIPTION

Filtered process data
reporting

Displays activities of a

distributed application

Generates a final

evaluation of the
process data & displiays
some statistics on the
performance of a

distributed APF.

Automatically transforms
existing Fortran 77
codes using a vectorizor

Parallelizing sequential
programs

Facilitates programming
and testing of grid-
based problems

Mapping of processes

Provides comfortable
environment to initiate
runs on simulator or

SUPRENUM hgrdvare

Assembler macro pre-
softwvare Limited
processor for

programming in high-
level macro notation
(includes 30+ macros &

Butterfly/BB & N

iPsc/2
nte

VP (Vector Processors)
Series/Star

Iechnologies. Inc.

DAP (Distributed Array

Math advantage
Butterfly Fortran
Butterfly LISP
Butterfly Ada
Butterfly C

VECLIB

ability to «create new

macros)

Industry standard
subroutine Library with
200+ frequently used
mathematical algorithms

Math function; library
extensive library of
arithmetic functions
that can be called from
a Fortran program

BLAS

\Y e c t [} r
pnultiplication,
division, scaling
Transcendentals: SIN,
COS, EN, EXP

Gather, scatter
(versions: single.
double, complex,
integer)

DECON (Concurrent debugger)

VAST-2 Fortran vectorizor

User Software Libr.cy:
Numeric Software
LINPACK
SPARSEPACK
FISHPACK
SUPRENUM

NAVIER

Arithmetic Control
Processor (ACP)
macros

Hardware, processing

11-27

Linear equations
Sparse matrices
3-d fast poisson solve

Special communication
subroutines

Fluid dynamics code
which solve NAVIER-

STOKES equations

1) Vector arithmetic:
clear, fill, Star add,
subtract, multiply,
divide, square root,
square signed square

2) Multiple-operation
arithmetic (vector
multiple and add)

COMPUTER /COMPANY

Processor)/Actjve Memory
Technology (AMT)

Scalable Parallel
Supercomputer (SPS-2)

Myrias Computer Corp.

Horizon Tera Computer

Company

FLEX/32 Multicomputer
Syvstem/

Flexible Computer Corp.

FPS M64 Serlies

Eloating Point Systems

TOOL/AREA

DESCRIPTION

capabilities, applications,

technical reports

PARDO programming model

MPF
MPC

G System

Myrias UNIX

Future Supercomputer
- 1993 (MIMD)

Weitek Floating Point
Library

QTC Scientific Floating
Point Library

Programming and Operating
Environments:

CNIX System V

Concurrency Simulator
under UNIX System V

Multicomputing Multi-
tasking Operating System
(MMOS)

Concurrent C

Concurrent Fortran

Ada

Concurrency Simulator

Debugging Tool

Program Development

Software (PDS)
Optimizing Fortran 77

11-28

Used as extension

to Fortran & C to
express parallelism in
applications

Myrias parallel Fortran
Myrias parallel C

Target language for the
compliers

Automatic parallelizing
compilers Forcran and C

Sequential or concurrent
operating environment

Simulated MMOS
concurrent operating
environment

Concurrent operating
environment

Computing Surface/

Yeiko

IBM

ir-1/
International
Parallel Machines

Cogent Research XTM
Parallel Computing
Environment

Cogent

Trace/300 Series
Multiflow Compute

TOOL/AREA CRIPTION

Compiler

Optimizing C Compiler
Overlay Linker

Object Librarian
Interactive Debugger
Math Library

Development Environment:
Meiko 0S
VMS
SUN 0S
Standard editors and utilities:
Fortran 77
(o

Pascal

Parallel Fortran

Architecture
Linda Programming A parallel programming
Environment environment

Developing Paralilel Versions:
C++
Fortran

Trace Compiler:

Fortran

c

Pascal
Common LISP
Ada

Enhanced Math Libraries

1/0 Libraries

String Manipulation Libraries

UNIX System Call Libraries
VMS-Compatible System Call Library

TRACE/UNIX:
Compilers
Libraries
Debuggers

11-29

co R

Computer System
Architects/
uter Ch

The Connection Machine/
CM-2

Thinking Machine
NCUBE
NCUBE

Fortran 77

ORYX Super
Signal Processor

ORYX

E & S Parallel Programming
Environment (ESPRE)
Evans & Suthexland

TOOL/AREA RESCRIPTION

Profiles
Source Code Management Tools

Transputer-based
Parallel Processing
Products

Express System Parallel operating

(Added to existing environment
operating system)
c
Fortran
Parallel Source Level
Debugger
Parallel Performance
Monitor
Runs on a variety of
parallel computers
C* Assembly language of
Paris CM-2
*LISP
FORTRAN
CM-LISP

Hypercube Supercomputing

Axlis

system

c
Graphics/four

UNIX-like operating

Graphic Flowgraph Editor

Flowgraph Compiler

Loader

Parallel FORTRAN
compiler directives

SCHEDULE 1library
C Thread library

Manual Methods

Automatic Methods Compiler Optimization
ES/FORTRAN compiler
Math libraries

parallel algorithms

with

Support Perf. tuning (gprof)

I11-30

COMPUTER /COMPANY

Compiler

Operating System

Library

11-31

DESCRIPTION

Debugging (gdb)
Parallel program
building (make)

ES/FORTRAN

ANS1 std. with VAX
extensions

Multiple pipeline
optimization
PCF parallel programming
directives

ESIX

IMSL, NAG, P-STAT, MATH
ADVANTAGE, ELSPACK,
UNPACK, BLAS, LAPACK

FFT

Section 5. Reviews of Selected Articles and Information
Articles identified with a * are reviewed in this section.
5.1 Algorithms

Lager is reviewed to provide an overall concept for a graphically-oriented
signal processing algorithm development environment. Chen is reviewed because
of the importance of data dependencies to parallel programming, and the
foundation he provides for building data dependency tools. McCroskey's work
matches immediate SIMD programming requirements. O’'Hallaron gives an
implementation of a Kalman filter on the Warp.

ignal ocessi o m vironme

Lager [Lager, D. L. and Asevedo, S.G., ''SIG - A General-Purpose Signal
Processing Program,’'’' Proc. IEEE, Vol. 75, No.9, September 1987, pp. 1322-
1332. [ALG 1}

SIG 1is an enviromment which supports the use of several signal processing
methods with a given application.

The functions of SIG are

simulation and reading of signals for input to the system
arithmetic and scaling operations on the signals
correlations, time-frequency transformations

model coefficients

curve sitting and plotting

generation of text files for reporting

The key to efficient use is a dual mode user interface for either expert or
casual users. The user menu is programmable and new functions may be easily
added. The user interface supports starting new programs under its control,
and operating system commands can be given to the system. A database is used
to store text files and parameters. Databases for time signals, frequency
spectra, real and complex coefficients are stored is another database.

The components of SIG are

command processor
data base
parameter file
menu package

help software
graphics software
user interface
signal processing
user commands
user software

A command summary, given on pages 1328 and 1329, gives a wide variety of

I11-32

supported commands.

SIG has been widely distributed and coples are available from the Natiomal
Energy Software Center, Argonne National Laboratory and from Techni-Soft,
Livermore, CA.

The usefulness of SIG to the parallel processing tool environment is that a
similar set of functions is needed for algorithm development. Additions must
be made to allow for the interaction with parallel architecture models but SIG
or a similar environment is a useful sequential starting point.

ata ende
Chen, G.H., and Chern, M., '‘Designing Parallel Algorithms from Forests and
Multistage Graphs,’’ Proc. The Twelfth Annual International Computer Softvare

& Applications Conference, Chicago, October 5-7, 1988, Editor: G.J.Knafl, pp
292-298. [ALG 5]

Chen gives a three-stage process for designing parallel algorithms, expressing
the dependencies using a data dependency graph (DDG). The three stages are:
finding a solution method, constructing a data dependency graph, and designing
the algorithm from the dependency graph. The DDG is essential for detecting
parallelism and Chen has identified four classes: forest, multistage, regular,
and semi-regular. Data dependency graphs are constructed from nodes and arcs.
Nodes represent each intermediate value and arcs represent the dependencies.
Trees representing a root with other nodes having a single input are common
in parallel processing. Stages occur in recurrent equations and dynamic
programming algorithms.

A forest is a graph containing several disjoint trees. A multistage DDG made
up of multiple disjoint stages. Chen shows how these are mapped into shared
memory, linear arrays, multiple linear arrays, and two-dimensional arrays
using the DDG, and also shows an approach to computing identical intermediate
values.

The design of a parallel processing tool set requires that data dependencies
be understood and supported through node-arc formulations and approaches such
as Chen's.

3.1.2 Systolic Programming Tool

McCrosky, C., ‘‘Realizing the Parallelism of Array-Based Computation,’’
Parallel Computing,Vol. 10, pp. 29-43, 1989. [ALG 8)

McCrosky provides array operations for SIMD machines and describes algorithms,
and finds the relationship of communications and parallelism to be an
important part of algorithm development. Array data structures and operations
provide an abstraction constraint which allows a concise statement of the
algorithm. Arrays correspond to many data structures in the problem.
Parallelism is naturally expressed through arrays. Three methods are given for
using parallel processors: smart compllers for automatic detection of
parallelism in existing languages, use of explicitly programmed parallelism,
and new languages with semantics which allow the expression of parallelism.

I11-33

McCrosky concludes that a new generation of languages are necessary for highly
parallel machines.

2.1.3 Parallel Algorithm Implementation

O'Hallsron, D.R. and Radhakisan, S.B., ‘'‘Parallel Implementation of a Kalman
Filter on the Warp Computer,’’ Proceedings of the 1988 International
Conference on Parallel Processing Algorithms and Applications Vol. 1III,
Pennsylvania State University Press,August 15-19, 1988, pp. 108-11. [ALG 10)

Matrix multiplications, triangularization, coordinate transformation, and
Jacobian transformations are used to develop a parallel Kalman filter
algorithm. The Warp computer is used for the processing. The Warp is a linear
array of processors is suited to the Kalman filters compute-intensive nature.
A directed acyclic graph (DAG) 1is used to express the algorithm, and an
associated table gives the computational requirements for each operation.
Nodes and arcs are labeled with data items and represent the precedence
relation. These DAGs are convenient ways to express linear systolic array,
data flow, and shared memory MIMD problems. The mapping to the Warp uses a
topological ordering where each operation is assigned to Warp cell in the
precedence sequence. The cells receive the results of the processor ahead of
it, performs its operation, and sends the results to the following cell. Data
is stored locally when possible, but is shifted along through the cells when
global access is required. Mapping was not optimal, no attempt was made to
exploit all the parallelism, and only six cells of the Warp were used. One-
half the sample time was consumed by restarting the computation from the Sun
controller for each sample.

5.2 Library
5.2.1 Standard libraries
Snelling, D.F. and Hoffman, G., '‘A Comparative Study of Libraries for

Parallel Processing,’’' Parallel Computing, 8,pp. 255-66, 1988. [LIB_02]

Snelling reviews existing libraries on parallel supercomputers. Snelling
believes that Fortran has inherently sequential bias and that constructs such
as COMMON and DATA lead to poor parallel programming. He identifies occam,
Ada, Concurrent Pascal, and SISAL as parallel 1languages for scientific
applications. Data control, debug effects, hardware affinity and
complexity/ease of use are the evaluation terms. All libraries have TEST-AND-
SET operations which allow for intertask synchronization. Cray, 1BM, ETA, FPS
T-Series, and Snelling’s portable library (SPLIB) are reviewed.

Data control 1s identified as the most impocrtant aspect of parallel
programming. Five types of Fortran data control are given: private, invariant,
result, reduction, and message.

Debug effects are exacerbated in parallel programming because of the
difficulty in analyzing debug dumps. Effects are grouped into stampede,
bystander, deadlock, irreproducibility, and Heisenberg. The stampede effect is
to the inability of a single process to stop all others when an error is

11-34

encountered. The bystander effect when one process corrupts another processes’s
data space. The deadlock effect occurs when synchronization errors cause all
processors to stop or trade synchronization signals without progressing. The
irreproducibility effect is due to the non-deterministic nature of parellel
programs. This may be proper because round off differences can result in different
answers, using different proper paths through the problem. The Heisenburg effect
is the impact of debugging instrumentation or diagnostics on the results, creating
error through perturbation of the operational environment.

Hardware affinity of libraries is the change in library structure or content due
to the hardware architecture or the architectural history. Complexity and ease of
use issues are a measure of the number of paths into the library, number of
parameters of subroutines or arrays, the number of memory levels, and the number
of altered lines of code required to convert a parallelization of a simple
program.

Standard Parallel Library (SPLIB) is built on constructs of processes, barriers,
channels, and shared matrices. A process is a sequence of independent operations,
a barrier is a form of synchronization which allows a set of processes to complete
together. Channels provide synchronous communication between processes and the
shared matrix provides communication between processes and a large globally-
shared memory. Access to the SPLIB is through Fortran 77 subroutine calls.

5.3 Simulation
3 Time Cos ode

Ammar, R.A. and Qin, B., ‘'‘A Technique to Derive the Detailed Time Costs of
Parallel Computation,’’ Proceedings Computer Software & Applications
Conference, 5-7 October, 1988, Chicago. COMPSAC '88 pp. 113-119, 1988.
[SIM_01]

Ammar develops computation structure models which are used to derive the time
costs of parallel processing. Five categories are defined and described using
directed graphs for control and dats flow. The time costs for each is
determined. To apply the method, a parallel computation is recursively reduced
to a sequential one using combinations of the five categories of parallel
structure. The method requires expansion to include varying numbers of
processors, contention, execution overhead and environment.

2.3.2 Visual Programming

Stotts, P.D., ‘''The PFG Language: Visual Programming for Concurrent
Computation,’’ Proceedings of the 1988 Internmational Conference on Parallel
Processing Algorithms and Applications Vol. III, Pennsylvania State University
Press, Aug 15-19, 1988, [SIM_08]

Stotts describes Parallel Flow Graphics (PFG) which allows expression of
concurrent, time-dependent computations. Timed Petri nets and hierarchical
graphs are the basis for the semantics. Each syntactic structure has a direct
translation into a portion of a timed Petr{ net model from which, concurrent

I1I1-35

properties can be analyzed. Visual programming with bit-mapped graphics and
icons are used. The PFG is a convenient way for the user to specify the
mathematical model of an algorithm. Both static and dynamic program analysis
through execution of the hierarchical Petri net model is used. A formalism
called the Hierarchical Graph (HG) software system model which represents
time-dependent systems (software and hardware). Three models are used: data
model, static program model, control flow model.

The data model wuses graphs of structure and interrelationships among
collections of data to be transformed by the computation under study. The
static program model is a representation of operations on data a set of non-
overlapping blocks. Operations within each block are sequential. Each has its
own local data area and may be data copied in or out as required. Complete
determination of operations that alter data 1is supported. The control flow
model expresses the possible parallel execution threads of a concurrent
computation. A thread is a sequence of basic blocks form the static program
model. The control flow model is a timed Petri net interpretation.

The graphical set of icons include a base down triangle for concurrercy
branching, a half-circle for a non-deterministic branch, a base up triangle
for join, and a rectangle for a sequential block. The block has an associated
data transformation which is entered, displayed, or modified by clicking on
the icon. Each arc connecting the icons is labeled and 1is governed by
constraints Timing information is handled by associating durations with
blocks. Primitives are primitive (sequential) or parallel. A recursive method
is imposed to reduce parallel operations to a timed primitive one for time
estimating purposes. Minimum and maximum timed modes are derived through path
analysis of the concurrent reachability tree during the time analysis.

Uses of PFG include the dual timing, detecting improper accesses of shared
data, and detecting deadlocks. The system is developed on the Sun Workstation
and languages such as Ada and Modula-2 are also possible in the PFG
environment. Executable code 1is generated after analysis by the Petri net
method.

5.4 Mapping
2.4.1 Optimal Mapping on Hypercubes
Cherkasky, V., and Smith, R., '‘Efficient Map Program and Implementation of

Matrix Algorithms on a Hypercube," Journal of Supercomputing, 2, pp.7-27
(1988). [MAPOS) .

Cherkasky 1is concerned with the optimal speed up for parallel matrix
operations on hypercube architectures (specifically NCUBE). The overhead costs
of communications and computation are the parameters he controls. The maximum
number of processors for optimal solution 1is the target and the authors
considered square matrices only. A toroidal mesh topology is the decomposition
target. A matrix/submatrix partitioning notation is used. Matrix
multiplication is performed (A X B = C) wherein each node holds a portion
of A, B, and C. Communications require orthogonal movement of A and B and
computation of C. Cherakassy's algorithm has reduced the communication time

I11-36

over that of Fox [ALGC 14). The reason cited is that only one complete circuit of
the toroid is necessary for A and B to pass though a given node. Cherakassy also
examines Caussian elimination. In the analytical models as the submatrix size n
increases the arithmetic increases by O(n®) for both Caussian elimination and
matrix multiplication. In comparing the two algorithms the complexity of
considering communications tradeoffs and computational size is exposed.

A ove v

Muhlenbein, M. G., Gorges-Schleuter, M. and Kramer, 0., '‘New Solutions to the
Mapping Problem of Parallel Systems: The Evolution Approach,"” Parallel
Computing, &4, pp.269-79,(1987). [MAP 11)

This article contends that massively parallel machines are better understood
by models derived from the natural sciences. Simulation of these models is
best done by <he massively parallel computer. The programming model is for
SUPRENUM. The model presented is evolutionary, that is, based on a model of
evolution. The mapping problem presented here is the graph representation
consisting of process set and a communications matrix. The process structure
has both static and a dynamic components. For the dynamic case the
communication matrix must be created during the runtime. The process set is
partitioned into clusters, clusters are then randomly assigned to processors.
Evolutionary theory is applied through a three-step process: replication,
mutation, and selection. The processor mapping is in terms of creation,
randomization, and selection. Applications are made to graph partitioning and
the traveling salesman problems and results are rated as surprisingly good.
The method is a form of data level parallelism programming.

5. 4.3 Bounds Chec

de Jong, V.J., '‘'Symbolic Bounds Checking in a Matrix Language,'’ Proc. 1988
Int. Conf. on Parsllel Processing, Vol. III, Penn State University Press,
Pp.73-80, Aug 88 [MAP 41)

de Jong describes a symbolic range checking tool which generates run time
restrictions on {input variables. APL, SAS/IML, and MATLAB are given as
interpreted matrix languages. These lack performance because they are not
compiled but are very useful in rapid prototyping. One of the requirements of
matrix languages 1is that the user should be isolated from matrix notation
problems, and associated type checking and dimension bound checking issues. de
Jong pgives facilities that should be provided to the wuser - input
restrictions, error recovery, help, and database interfaces. de Jong developed
CONDUCTOR, a statistical software matrix language allowing experienced
technical users to avoid matrix notation issues. He takes advantage of the
simplified language structures necessary to express matrices to define a
symbolic approach to checking ranges. The imposed restrictions are: index
variables are not reassigned inside conditional statements and index
expressing are monotone increasing or decreasing. The matrix language syntax
is given.

5.5 Machine Independent Programming
11-37

hical- ende

Browne, J.C., Azam, M., and Sobek, S., ‘'‘CODE: A Unified Approach to Parallel
Programming,’'’' IEEE Software, pp.10-18, July 1989. [PROGO3]

and

Sobek, S., Azam, M., and Browne, J.C., '‘Architecture and lLanguage Independent
Parallel Programming: A Feasibility Demonstration,’'’ Proceedings of the 1988
International Conference on Parallel Processing Algorithms and Applications
Vol. III, Pennsylvania State University Press, Aug 15-19, 1988. [PROG 11)

The goal of this University of Texas at Austin team is to unify approaches to
parallelism to provide portability and higher abstraction level programming.
Conventional languages are extended to handle parallelism on shared memory
computers. Operations for synchronization are added: Lock, wunlock, and
semaphores. Dependencies are resolved by regulation of access. Message passing
mechanisms are used for partitioned memory architectures. The Computation-
oriented Display environment is a graphical programming system which allows
the user to define computational wunits and dependency relations. The
computational unit defines the functionality and firing control. Functionality
is the transformation on the input set to the output set. Firing rules specify
the states of input dependencies which allow the unit to ex.cute. The
Dependency relations compose the computational wunits into a parallel
structure. Dependency types in CODE are data, demand, mutual exclusion, and
control.

Architectural independence is a key goal of the CODE system. This is achieved
by the following:

Separating dependency specification from computational unit
specification

Separating firing rule specification from functionality specification
Raising the abstraction level at which dependencies and firing rules
are specified

CODE is a version of generalized dependency graphs. Each graph node represents
a computational unit or a subgraph. Each arc represents a dependency.
Languages used to specify computational units are Ada, C, Fortran, and Pascal.
Firing rules are predicated on the state of the computation. Programming is
graphical: creation of nodes and arcs and with support for windows allowing
detailed information to be associated with the node or arc. The steps in
programming are

Draw dependency graph

Fill in forms to define dependencies among computational units

Fill in forms to define degree of parallelism and functional code of
the computational units

Specify firing rules

Invoke CODE to create a machine independent program specification

11-38

The functional code is entered in a sequential form and CODE generates the
necessary headers and expands it to the degree of parallelism specified.

When it is ready to run a machine dependent translator i{s used to generate
code for a given architecture. The translators generate code to implement
communication and synchronization among computational units. These translators
have been created for The Sequent Balance, Digital Equipment Corporation’'s VAX
clusters, Intel hypercube, and Cray XMP. Code {s implemented on the Sun in C,
and uses SunView (TM of Sun Microsystems) graphics.

2.2.2 High Abstraction Programming

Chandy, M.C., and° Misra, J., ‘‘Architecture Independent Programming,'’
Proceedings: Third International Conference on Supercomputing, Supercomputing
‘88, Vol., II1, pp.345-351, 1988. [PROG 10]

Chandy advocates that the programmer should be able to choose the programming
style best suited to the development of correct maintainable programs and
design for machines best suited to the selected approach. Functional languages
should be developed by the programmer and the computer architects should
develop machines which run the languages effectively. Programming notation
should provide machine independent forks, joins, and messages. This avoids the
explicit representations in a given architecture. Note that MIMD and SIMD
architectures do not necessarily support the same parallel constructs. UNITY
is a specification notation, a programming notation and a proof system.

UNITY was developed to maximize flexibility {n language, architectures, and
compilers; to optimize portability and efficiency; and to resolve the
conflicts between these goals. Language standardization is not likely, so a
variety of languages are anticipated. Likewise architectures have immense
diversity. Compllers for parallel systems cannot be standardized because
programming methods are too immature to incorporate. Portability is needed
because of the rapid flux of architectures. Efficiency and associated
performance are critical to the use of parallel computers and the use of
machine dependent primitives. Chandy offers a design method to resolve the
conflicts between these goals. Stages in his design are general strategy,
architectural issues, and machine tailoring. They are supported with a
specification notation, programming notation, and a proof theory.

2.25.3 Tools for Conpection Machine Programming

Bagrodia, R., and Chandy, K.M., ‘'‘Programming The Connection Machine,'’
Proceedings: 1988 Intl. Conference on Computer Languages, Miami IEEE Computer
Society, Oct 9-13, 1988, pp. 50-57. [PROG 21]

The authors describe a language called SC which makes it easier to write
programs for the Connection Machine (CM). SC is based on the UNITY approach
(See [PROG 10] above.) and is an enhancement to C, adding data types and
primitives to develop parallel programs. The purpose is to make programming
easier, supporting MIMD in addition to <¢he SIMD mode of the CM, adding
machine-dependent programing to obtain final efficiencies. The UNITY based
notation is compiled into C* and executed on the CM. Primitives and data

11-39

v

structures common to scientific programming are supported (arrays, sets of
indices, and lists). The primitives defined operate on the SC declaration type
index-set. The operational primitive classes are: reduction - binary operation
on a set of operands, parallel computation - (par) which operates on a set of
statements, sequence - to handle non independent operations, and equations -
the central form of expression.

5.5.4 Object-Oriented Parallel Programming

Bershad, B.N., Lasowska, E.D., and Levy, H.M., ''PRESTO: A System for Object
Oriented Parallel Programming,’'' Software Pract. and Exp. 18(3), pp.713-32,
Aug 88. [PROG 23] .

Bershad describes an object-oriented programming environment for
multiprocessors, using a set of predefined object types to simplify parallel
programming under Dynix on Sequent Balance and Symmetry computers. C++ is the
language used. He observes that object-oriented programming makes it easier to
understand distributed systems programming. Problem decomposition and run-
time synchronization are details described by an object model. Each object
performs a small part of the problem and maintains its own consistency
checking. Efficient concurrency and synchronization mechanisms can be worked
out and supplied to the user in a higher level of abstraction. PRESTO allows
redefining the primitives to avoid limiting the user to a particular paradigm
of programming. Several «classes are provided to support the parallel
programmer in using the constructs of threads and synchronization. Threads are
created or started. Synchronization constructs are relinquishing locks, non-
relinquishing locks, monitors and condition variables, and atomic integers.

A run-time library system supports PRESTO to map user threads onto physical
processors and to provide access to a global shared memory where objects

reside. A single scheduler object keeps track of all threads which are
runnable but not yet running and to prevent duplicate running on different
processors. Migration of threads {s possible. Costs of threads and

synchronization are provided.

5.6 General Programming

2.6.1 Scientific Programming Environment
Dongarra, J.J., and Sorensen, D.C., '‘'A Portable Environment for Developing

Parallel FORTRAN Programs," Parallel Computing, 5, pp.175-86, 1987. [ENV 13)

Dongarra, J.J., SCHEDULE: Tools for Developing and Analyzing Parallel fortran
Programs, Argonne National Laboratory, TM# 86, Nov. 1986. [FNV 15)

Dongarra, J.J., et al., '‘Programming Methodology and Performance Issues for
Advanced Computer Architectures,’'’ Parallel Computing, 8, pp. 41-58, 1988,
[PROG_33]

Dongarra surveys the techniques of programming computers with advanced
architectures and presents the SCHEDULE programming environment. He emphasizes
that conversion of existing algorithms and invention of new algorithms must be

11-40

supported; and that the compromise of performance without portability has
tempted many architects and programmers of parallel machines. Dongarra gives
two approaches.

The first approach is recasting algorithms in terms of high-level wmodules
(e.g., the Basic Linear Algebra (BLAS) routines), and coding in high 1level
modules allowing the user to avoid the tedium and errors of machine-dependent
coding to gain performance.

The second approach is use of a standard {nterface to exploit the parallel
capabilities of machines with multiple processors through explicit parallel
programming. A large grain control flow form of coding is presented.

Modularization by encapsulation of basic matrix and vector operations into a
set of high level modules provides improved clarity, potability, and ease of
maintenance, making feasible high performance and portability across a large
number of machines. The BLAS are given as an example, now in their 16th year
and third level (Level 2 is vector-matrix and level 3 is matrix-matrix).
Standardization 1s given as one of the i{mportant contributions of BLAS.
LINPACK was originally coded in level 1 BLAS but performance was improved
through level 2 BLAS. The level 3 version now allows multiple vector processor
operations.

Explicit parallel programming of low-level detail has been successful but has
limited portability. Dongarra reports that the tools which require multiple
parallelism and dynamic allocation to be less than adequate. The range of
extensions provided by computer vendors is highly architecturally-dependent.
The available synchronization, automatic loop parallelism and process
initiation with widely varying costs (as much as six orders of magnitude)
point to the immaturity of the industry. SCHEDULE is a package which allows
for portability calls of Fortran parallel programs. Machine dependencies are
hidden within SCHEDULE, possibly requiring difficult mapping, but providing
portable applications code.

Dongarra uses the term execution dependency for assertions made by the user
about the order in which operations are to occur. The execution dependency is
expressed in a control flow graph. Large-grain control flow dependencies must
be understood by the programmer for successful programming. A SCHEDULE program
consists of processes and the control flow graph. SCHEDULE provides a
mechanism for expressing the executlon dependencies and the processes, leaving
the user to determine the correctness. In partitioning the problem data, is
separated into local and global. SCHEDULE suprorts both static and dynamic
graphs.

The SCHEDULE environment includes goals for debugging and performance
monitoring. Some potential errors are avoided because explicit scheduling is
not a part of SCHEDULE. SCHEDULE is used by first developing and debugging a
sequential version on a conventional computer. A triangular matrix solution is
given as an example. SCHEDULE is now implemented on multivector processors and
implementation on hypercube machines {s contemplated. The NCUBE implementation
uses one master node to control the dependency graph operations.

11-41

at ow

Preiss, B.R., and Hamacher, V.C., ‘‘Semi-static Dat flow,’’ Proc. 1988 Int.
Conf., on Parallel Processing, Penn State University Press, Vol. III Aug 88,
PP.127-134. [PROG 42]

Preiss describes a data flow programming method which allows both static and
dynamic execution. Method used is dynamic data flow graph splicing: creating
new contexts and moving data tokens between processes. Activity templates are
used to represent static dataflow programs. Dynamic data flow requires
multiply-linked activity templates. Program graphs are not re-entrant for the
static case, but the dynamic case allows reentry and loop unraveling. A
context is a small to medium grain process which evaluates an activity graph.
This concept is extended in dynamic dataflow to include conditional statements
which modify the context. Communication channels are used for transfer >f data
into and out of the context. The Preiss approach dynamically splices the data
flow graph in four phases to allow for function invocation. The four phases
are: context generation, parameter passing, concurrent execution, and result
passing Preiss demonstrates sequential iteration using the method. Prograwms
(written in occam) were used to measure performance parameters for matrix
multivlication, fast Fourier transform, Cholesky decomposition, and zongruence
transformations.

5.7 Human Computer Interface
7 orjithm ma n

Brown, M.H., ‘‘Exploring Algorithms Using Balsa II,’'‘’ Computer, May 1988,
pp.lu-36. [HCI 7]

Craphical representation of programs as they are running (or were run) provide
useful insight into the algorithm. A more complete understanding of the algorithm
is possible. Brown presents an extensive collection of algorithm animations which
allow the program to be controlled during simulation as well as changing the way
information on the running process is presented to the developer. In Balsa-II,
the user watches through several viewing modes. The view location, size, zoom
level, pan direction, and point of observation can be adjusted as the algorithm
proceeds. A scripting facility which records the wuser’s actions is also
available. Balsa-II is a programmer’s tool with facilities for controlling
execution, managing display, and scripting.

There are three phases in using Balsa-II:

(1) splitting the program into the components of algcrithm, input
generators, and views which present the animation,

(2) iomplementing each component (e.g., annotating the algorithm to mark
an interesting event), and

(3) setting up the Balsa-II by 4{dentifying the views and input
© generators to be 'used by textural names.

11-42

Significant programming skill and knowledge may be required to instrument an
algorithm so this is a programmer’'s tool which provides a user’'s view.

During operation, pull-down menus provide user control. Views such as sticks
provide a bar graph of parameters vs. time or dots which spatially illustrate
the operational distribution. The partition tree view provides an execution
graph. The H-bars show convergence. A history function compares the same view
at different points in time. An adjacency matrix view provides the data
distribution over matrix values. Dialog boxes provide textural information on
the runs.

Programming to use Balsa-II involves inserting event markers and defining the
parameters which control how the event is to be animated. Controls for both
the algorithm and the input generator are defined; event and selection routing
are also set up. Balsa-II uses adapters to transform the views to be
presented.

Payoffs of visualization are significant. Balsa-II is now a sequential system
tool, but it presents a good model for parallel algorithm analysis.

7 Pictoria a n

Hsia, Y. and Ambler, A.L., '‘Programming through Pictorial Transformations, '’
Proc. 1988 Int. Conf. on Parallel Processing, Vol. III, Penn State University
Press, pp.10-16, Aug. 1988. [HCI 8]

This vpaper describes wusing wvisual representation of data structure and
manipulating the data structure to develop program algorithms. Pictorial
Transformation (PT) is a combination of graphical programming and processing
visualization. The user develops both a picture and a film (sequence of
pictures). The process of building these is captured and recorded as films.
Control is exercised through a selection path and a selection condition set.
The initial situation must be defined and is changed using predicates during
the film process.

5.8 Environments

5.8.1 Multi-Computer Programming Environment
Reeves, A.P., '‘Programming Environments for Highly Parallel Multi-Computer, '’

The Third Conference on Hypercube Concurrent Computers & Applications - Vol.
I, California Institute of Technology, Jan. 1988 pp. 458-467. [ENV 3]

Reeves analyzes the difficulty in developing a programming enviromment due to
the wide range of different programming paradigms, even on the same
architecture. The requirements are for environments which provide for fault
tolerance, dynamic load balancing, dynamic algorithm selection, and automatic
task decomposition and allocation.

3others point to the need to comwbine small grain into large grain for
multiprocessor use.

I11-43

Parallel Pascal on the Massively Parallel Processor (MPP) is the high level
programming language that is the basis for the programming environment
described in this article. It includes parallel expressions and array
allocation across processors. There are three additional «classes of
operations: data reduction, data permutation, and data broadcast. Reeves
mentions the Gibbs framework for scientific programming in which each idea is
captured in a single module, called a chapter. The first chapter gives the
algorithm, the second the grid structure, the third the numerical method, etc.
For parallel programming, primitives are more efficient than compiled
operations, and each architecture type has different synchronization support.
Primitives are (1) shared memory machines using semaphores, forks and joins,
(2) message passing machines using send, and receive, and (3) vector machines
using loops. These primitives are closely related to the machine architectures
to obtain maximum efficiency. The combination of parallel scientific
programming for SIMD machines requires permuta*ion and data mapping
primitives, using complex index expressions to replace program loops. The data
structures must also be mapped to the size of the processor array.

Reeves classifies problems as trivial, SIMD, and complex. Trivial class
problems have a high degree of parallelism with no requirement for
communication. SIMD are those for which efficient solutions are known. The
complex class consists of problems which have irregular interactions between
processing units, requiring load balancing and scheduling.

The SIMD programming enviromment includes support for the following:

Parallel expressions - array data types

Parallel data declaration - to specify the memory in which the array
should reside

Permutation function - shift, rotate, and transpose

Reduction functions - maximum, minimum, sum and product, plus boolean
functions any and all

Distribution functions - implicit distribution of scalars to arrays

(expand)
Sub-array Selection - select row or column
Conditional Execution - '‘where-do-otherwise'’

Reeves reports implementation on multicomputers as well as the MPP, and
discusses additional extensions for vector indexing, concurrent partitioned
program paths, global data permutations, local data permutations, and sparse
matrix handling.

2.8.2 Parallel Programming Tool Requirements

Bremmerl, T., '‘An Integrated and Portable Tool Environment for Parallel
Computers,'' Proceedings of the 1988 International Conference on Parallel
Processing: Algorithms and Applications, Vol. III, Pennsylvania State
University Press, Aug 15-19, 1988, pp.50-53. [SUP18)

The tool environment Multiprocessor Monitoring System (MMS) provides
debugging, performance analysis, and visualization of program execution. It is

II-44

portable and expandable to various architectures and supports several
abstraction levels. A hierarchical layered model for tool environments is
presented in the paper.

Bremmerl remarks that almost all parallel processors have a host/target
environment which is well supported with programming languages, compilers, and
linkers on the conventional host. The missing components are debuggers and
performance measuring tools. Those which are available are not integrated into
the programming enviromment, which forces monitoring to be a very low level of
abstraction. Those tools typically focus on instrumentation techniques and
synchronization concepts. The programming interest provides source code
instrumentation, operating system instrumentation, and runtime instrumentation
forcing a batch mode of operation and self-effects of the instrumentation on
the running problem. Also the tools are machine or at best architecture class
dependent.

Requirements for a tool are

(1) Window based concurrent debugger
Display and modify states of programs running on multiprocessor
Specification of complex predicates about dynamic execution
Control of breakpoints end tracing

(2) Performance analyzer for optimizing concurrent programs
Provide information on efficiency of communications between
processes activation of processes

Access to variables

Access to operating system
Recording or scripting these
Help identify bottlenecks

(3) Visualization of processes and operations
Graphical view of execution
Flow of communication
Display complex data types
View of control and data flow

The tool must be interactive and controlled by the user. Monitoring must be at
all levels: hardware, operatin; system, object code, and hybrid. The
abstraction level must vary from language to assembly. Portability to other
architectures is necessary.

The design is layered, much like a communications system. For example,
monitors might evaluate predicates about control flow, data flow, concurrency
object (tasks, mailboxes, semaphores) and combinations of these. This monitor
can be applied a the hardware, software or a combination.

The initial target for the tool set {s the Intel iPSC, but the host is the VAX
under Ultrix.

I11-45

8 artitioni i u ion

Whelan, M., Gao, G.R., Yum, T.K., ''Optimal Decomposition of Matrix
Multiplication on Multiprocessor Architectures,'’ Proceedings of the 1988
International Conference on Parallel Processing: Algorithms and Applications,
Vol. III, Pennsylvania State University Press, Aug 15-19, 1988, pp.181-185.
(SUP 21}

Whelan addresses the appropriate grain size for parallel tasks and the
allocation to optimize a parallel system. A decomposition method is used for
matrix multiplication since it is a typical benchmark in parallel systems. The
regular iterative nature of matrices is used to decompose the matrix operation
into tasks. An analytical model of cost of computation and communication
results. An architectural model is used for multiprocessors which includes
times to transfer data elements, fetching code, cache organization, and cache
size. A simple model of decomposition relates computational and communication
requirements to the number of MM matrices used in the decomposition as shown
in the table below:

TABLE OF DECOMPOSITION MODELS

Processor Compute Time Communicate Time
1. Uniprocessor M3 T* M2 Ty
2. M Processors(l per column) M2 T (1+M) Mz Ty
3 M2 Processors M T* 2 M3 1

Where t* is a compute time and Ty is a communication time for the
multiprocessor.

In decomposition, submatricies are used and the mcdels applied to determine
efficiency. The optimum partitioning for a given processor can be found by
varying the regions of the partition. Whelan describes methods of
communications overlap effects and optimizing to the partition sizes. A curve
is shown which allows communications computing tradecffs to be made.

4 Repla o bu
Miller, B.P., Choi, J., '‘A Mechanism for Efficient Debugging of Parallel
Programs,’'’ Proc. SIGPLAN ’'88 Conference on Programming Language Design and

Implementation, Atlanta, June 22-24, 1988, pp.135-144. [SUP 22)

Miller and Choi describe the speculative replay approach, which approach
allows the reconstruction of the behavior of a program from histories of its
individual processes. Known time dependencies between events in different
processes are used to break the processes into dependency blocks. A
concurrency map history is constructed. Known dependencies are preserved and
compared to the replay. If a mismatch occurs then the process backs up and an

I11-46

alternative ordering is used to create a match. Additional dependencies allow
added levels of detail. A shared queue example is presented.

5.9 Language Extensions
5.9 e e e

Gehari, N.H., and Roome, W.,D., ‘'‘Concurrent C++: Concurrent Programming with
Class(es),'' Software Pract. and Exp., 18(12), pp.1157-77,Dec 1988. [EXT LANG
1]

Two upward compatible supersets of C are described - Concurrent C and C++ -
which provide data abstraction and parallel programming facilities. Concurrent
C++ is an integrated language combining the two. Integration issues are given
in the paper.

C++ provides the class for data abstraction, with specification and body
components. All information needed by user for use and by the compiler to
allocate class objects is included in the specification. The body contains
functions declared in the class specification. There are private and public
components of a class: private class components are data items and functions
which implement class objects which are not accessible by the user; public
class components are data items, constructors, destructors, member functions
or operators, and friend functions. The public components make up the user
interface.

Concurrent C consists of processes, which are a set of components that execute
in parallel. Facilities are provided for declaring and creating processes,
process synchronization and interaction, process termination and abortion,
priority specification and waiting for multiple events. Transactions are used
for process interaction, and are classified as services called by other
processes. Synchronous transactions block and asynchronous transactions are
non-blocking.

The two supersets of C are orthogonal, the benefits of object oriented C++ can
be gained for Concurrent C when the two are integrated. Classes can be used to
ensure that the protocol for interacting with a process is properly observed
and that implementation details are hidden form the user. Gehani gives an
example of a disk driver where the multiple use of the driver is hidden from
the user and the multiple disks in the system are supported without inputting
multiple versions of the driver. In a second example, the Concurrent C window
manager provides multiple virtual terminals. Concurrent C++ is used to
increase the robustness of the window function by the addition of classes.

The two languages are separate preprocessors for C. A complile time option selects
whether or not Concurrent C or Concurrent C++ are used. Ther merger of the two
languages should make it possible to use data abstraction along with concurrent
programming facilities. A goal is to have the same flavor or representation to
the user.

In the merged version the following data abstractions extend the concurrent
environment:

11-47

Class variables can be used in process bodies
Class types can be used for transaction and process argument types
and as transaction return-value types

Reference types can be used for transaction and process argument
types (in shared memory implementations)

Class names can be used as a type with a class keyword and process
names can be used as a type

Classes and processes are both abstraction facilities. Processes can be used
to implement some of the same objects as classes, albeit with reduced
efficiency. Classes are more efficient when concurrency is not required
because of a smaller overhead.

5.9, 2 Mathematical Lapguage

Grossman, F., Klerer, R.J., and Klerer, M., '‘'A Language for High-Level
Programming of Mathematical Applications,’’' Proceedings: 1988 Intl. Conference
on Computer Languages,

Miami IEEE Computer Society, Oct 9-13, 1988, pp.31-40. [EXT LANG 6]

The AUTOMATED PROGRAMMER is intended to reduce the effort in programming
scientific and engineering applications. The notation is modeled after
textbook mathematical representation. Self-documentation is used to aid in
reducing error. English Greek, and two cases of math are provided. Matrix
arithmetic is accomplished by using standard textbook notation.

Instead of Fortran calls to functions, this language provides a facility for
using mathematical notation to express problems and compile them for solution.
A full screen editor is used and frequent symbols for integration, summation,
product series, square root, etc. are provided by function keys. Variable may
by named or represented by Greek symbols. A syntax is supported for English-
like statement for control of program flow and for reads, writes, printing,
etc. Superscript operations on matrices are supported (superscript t for
transpose, superscript -1 for inverse, superscript n to multiply a matrix by
itself n times, etc.

The automated programmer works through translation into Fortran and creation
of program modules from libraries. The DOS operating system is used on the PC
or PS/2 environment,

2.9.3 Parallel Symbolic Lisp

Halstead, R.H., '‘Parallel Symbolic Computing,’’ Computer, August 1986, pp.35-
43. [EXT LANG 10]

Halstead gives a review of parallel symbolic programming. The spectrum of

programs has numeric programs at one end and symbolic at the other. The
differences suggest different approaches to parallel processing.

I11-48

Numeric Programs are characterized by

Function is to deliver numbers to an ALU to calculate a result.
Generally has a data independent flow of control, arithmetic is
emphasized.

Same sequence of operations are performed no matter what the values
of the operands are.

Matrices and vectors are common data structures.

Programming tools include automatically parallelizing compilers and
languages featuring explicit parallelism following a communicating
sequential process model.

Symbolic programs are characterized by

Programs emphasize the rearrangement of data. (To the degree that
when data is changed it is called a ‘‘side effect.’’)

Principle function of a symbolic program is the reorganization of a
set of data so that the relevant information in it is more useful or
easier to extract.

Sequence of operations is often data dependent.
No simple operation style (abstraction constraint) such as found in
numeric programs.

Applications include sorting, compiling, database, symbolic algebra,
expert systems, and AI.

Concurrency is found in recursion on composite data structures such
as trees, lists, and sets.

The concurrent language developed by Halstead is Multilisp. Multiisp is a
version of Scheme (a public domain Lisp system) having extensions which allow
the programmer to express concurrent execution. Scheme differs form other Lisp
systems because it has lexical scoping to promote modularity and a privileged
class of procedures which may be passed as arguments, returned as values,
stored in data structures, and treated as other kinds of wvalues. Multilisp
includes side-effect primitives for changing values and altering the data
structure, this feature requires additional control to ensure deterministic
execution. However, the default 1is sequential execution. The (future X)
construct is used to invoke concurrent operation. With future command a future
is returned as a place holder for the value of X and a task is created to
concurrently evaluate X. When the value is ready the value of X replaces the
future at X. Any task needing the future'’s value is suspended until the future
is resolved. Lazy evaluation, where expressions are not computed until they
are requested, is accomplished by a delay primitive. The future construct
creates a data flow architecture-like style. Much of the value of future {s in
the ease of gluing of programs together for concurrent execution.

5.10 Operating Systems Extensions

11-49

0 e v

Chen, M.C. and Jacquemin, M., ‘'‘Footprints of Dependency: Towards Dynamic
Memory Management for Massively Parallel Structures,'’ Proceedings: Third
International Conference on Supercomputing - Supercomputing’88, Vol. 1II,
Editor: Kartashev, pp.486-494. [EXT OS 1)

This paper explores the techniques for increasing performance on the
Connection Machine by recording data dependencies during execution and
dynamically sorting portions of the data elements according to dependencies.
Dependencies may cause load unbalance, cache inefficiencies, page misses,
extra communication, or other execute efficiencies. Chen believes that the
amount of dependencies is an inverse measure of the parallelism of the
algorithm. Both code and data must be distributed among processors. (For SIMD
machines the same code is distributed to all.)

Chen attempts a dynamic data allocation method for static data dependency
graphs. Key to the method is the recognition that dependencies act to spread
data out in time across the computer, so one solution would be to assign data
according to the time epoch in which they are needed.

The author classifies parallel problems based on dependency and regularity
(systolic).

Problems which are easily addressed in parallel fall into three classes:

Few to no dependencies and highly regular (called embarrassingly
parallel or trivial by some)

Significant local dependencies but with a high regularity
Few dependencies but irregular with little or no structure

Two other classes are more difficult:

Signi€i~ant Aependencies but no known structure
Significant dependencies with a dynamic structure

Chen’'s method applies to the first of these. In these cases, optimization of
cache and secondary storage systems used by the parallel processor is needed.
Anti-dependent (non-assigned) data are distributed by association with the
processor. Chen uses dynamic (on-the-fly) sorting to keep the system finely
tuned and upgraded to maintain optimal operation, which is feasible because
sorting is very efficient on the Connection Machine. Significant speedup gains
are reported for example problems.

2.10.2 Parallel Ada?

Mundie, D.A. and Fisher, D.A., ‘'‘Parallel Processing in Ada,'’ Computer,
August 1986, pp.20-25. [LANG 11}

Mundie presents an overview of Ada’'s microtasking model. Ada provides high-
level mechanisms for task creation and synchronization which are machine

11-50

independent and operating system independent. (Model is defined as the
relation between the program structure and the multiple virtual processors on
which the model will be implemented.) The tasking model for Ada is based upon
macro-tasking by process-level models. Synchronization of tasks is the
fundamental issue in concurrent programming of this type, it is required both
as a mechanism for mutual exclusion, preventing multiple processes from
accessing the same computer resource simultaneously and for data exchange,
preventing transmission prior to receiving process being ready. Ada avoids
difficulty and complexity of programming and maintaining semaphores and
signals, provides structured primitives for task synchronization and multiway
waiting, and also allows for a compromise between shared and message-passing
memory-based machines. The compromise works because synchronization is
implicit and can be implemented efficiently on both types of processors.

Shared aemory, the most effective method, is difficult to extend to widely-
dispersed, loosely-coupled systems. Message-based systems have adequate local
memory for wide dispersal, but the performance penalty is substantial when
compared to shared memory. In Ada the implicit synchronization allows multiple
access with restrictions that allow for loosely coupled systems. Updating is
guaranteed only at synchronization points, allowing the shared wvariable to
exist in several memories, with copies being passed back and forth only during
rendezvous.

The usefulness of Ada as a tool in parallel programming is limited principally
because restrictions in tasking make parallel programming unnecessarily
difficult. These restrictions are

Calling tasks must name the task whose entries they are calling
Entries must be declared in the task that accepts them, and

The select statement, wused to perform multiple simultaneous
rendezvous, does not allow mixed or multiple calls

0 jstribute 1

Ahuja, S., Carriero, N., and Gelernter, D., ‘'‘'Linda and Friends, '’ Computer,
August 1986, pp.26-34. [LANG] 22

Ahuja describes the language Linda. In parallel programming the programmer is
concerned with many points and their relationships in computational time-
space. The Linda language attempts to make the parallel programming process
easier by eliminating much of the programmer’s concern about coupling between
processes. Actions are taken through replication in addition to the normal
partitioning found in other concurrent languages.

The Goals of Linda are to meet the needs of programmers. These are
(1) A machine-independent and portable programming vehicle
A high 1level programming model without idiosyncratic system

calls to support a particular variant of message-passing,
memory sharing or SIMD computer

I11-51

Must run on a range of architectures from one language
Must be able to communicate about parallel algorithms allowing
growth of knowledge of methods

Tools must be suited to user needs not the architecture’'s

(2) A programming tool that eliminates dealing with spatial and temporal
relationships among parallel processes:

No coupling require for knowledge of other processes existence
No response is necessary before the sending process proceeds
with its actions.

(3) A programming tool that allows tasks to be dynamically distributed
at runtime:

More available concurrent tasks than the processors can use
Providing the even distribution needed for good speedup. A
dynamic scheduling is needed because static mapping may be
impossible.

(4) A programming tool that can be implemented efficiently on existing
hardware:

The language must run on the appropriate class of computers.
Run-time systems and overating systems that defeat the
strengths of the language must be present.

Linda uses a distributed data structure, called the tuple, to achieve much of
its power. Actions are read, add, and remove and a logical name is used.
Revising tuples requires removal, revision and reinsertion. This ensures that
many processes can share access. Tuples are coarse-grained and access to them
can be efficient on loosely coupled architectures.

In Linda the program i{s replicated as many times as there are processors and
all processors attempt to work over a distributed data structure (tuple
space). The worker programs ignore each other in this process. The advantages
which accrue are

Transparent scaling
Elimination of context switching
Dynamic load balancing

Mixed partitioning is used when programs cannot be cast into a pure replicaced
form.

11-52

Section 6. A Parallel Programming Environment for Parallel Signal
Processing

6.1 Tool Environment

Figure 6-1 gives an overview of a ‘‘total environment’'' as defined from the
literature survey.

Humgr {omguter
interioce

Repic Prototyping System [xpev{menl Algorbhm Anclysis. Porolie! Computer
Sysiems Desm;_n aond Test Design. ond Architecture
Environment Support Periprmance Mogeing
Lvoluotion
Mochine independent Mapping Toois
Performance Monitor ong Dedug
Longuage Extensions
Operoting System Exlensions
Librory
MOC Mine Mochine Machine
Depengent Depencent Dependent
Modprng Mooping Mopping

/ Machine A \j / Mackeme B8 \ / Machine C \

6.2 Parallel Programming Tools

6.2.1 Visvalization

Visualization tools allow the user to observe the concurrency in the language
and machine 1level code. Visualization 1is necessary to debug parallel
algorithms and code, allowing observation of sequential bottlenecks and
overloaded processors and network links. Adjustment of the algorithm and the

11-53

code is provided immediate feedback to the operation. G. Fox [Fox 3] describes
the methodology used by a graduate student, who developed a very fast-sorting
algorithm. The student used visualization followed by continuous iteration of
observation and rework.

Architecture simulators and instrumented architectures are needed to provide
visual feedback to the programmer on the operation of the machine on the
concurrent code. To identify bottlenecks such instrumentation should provide
the lengths of all queues in the system.

VWork in animation of sequential programming techniques should be transferred
to concurrent software engineering tools. One example is the work of Brown
[(HCI 7] in his Balsa II environment. By annotating and splitting code into
components (algorithm, input generators, and views to present animated
pictures), the Balsa Il systems provide algorithm animation displays. These
displays are used to track dynamic and abstract processes, providing
visualization needed to refine and debug algorithms. Similar tools are
especially necessary for parallel programming, debugging, and advancing
algorithm development.

ol or Heterogenous Mappi

Network research on distributed systems has led to development of several
operating system approaches: Mach, CRONUS, and ISIS are distributed operating
systems. Ada, Linda, and ANSpec are languages which support parallel
distributed programming (with the support of an underlying parallel real time
support system). Tools such as automatic microtasking (spreading of processes
across several identical MIMD machines) and automatic vector identification
and processing are the most advanced at this time. Such tools work best with
hardware assistance. For example, the Cray Y-MP has added memory functional
support which allows a new microtasking compiler to more easily spread its
work across the eight processors.

A icatio atio

The importance of understanding the application cannot be overemphasized.
Tools which allow the user analyze code for the concurrency expressed in it
would be very valuable. A concurrent code analysis tool acts upon high level
specification or source code or on the output of a parallelization precompiler
and produces directed graphs, much as that done by the front end of a standard
language compiler. Analysis engines for different ideal modes of parallelism
are used to pass over these graphs and produce a histogram result which
identifies the levels of concurrency of different parallel types expressed in
the compiied code. Such a tool of this nature would allow the user to identify
the requirement for parallel types, allow the recoding of sequential elements
and tuning of performance, provide estimates of performance on real
implementations of the ideal architectures. In fact such a tool is necessary
if the result is to be flexible and programmable. In addition, the tool is
needed for the allocation of functions and algorithms to parallel processing
modes and supporting architectures. Sequential bottlenecks in many parallel
architectures can be identified by this tool. The characteristic performance
evaluation process allows each architecture to be used in its best mode.

1I-54

£.2.6 Modeling and Performance Tuning Tools

The output of the concurrent code analyzer and the allocation to processors is
a design with each function spread into parallel processes characterized by a
uniform processing mode. These processing modes are used to match those
available on the parallel system. The system building process now requires
that these processes be tied with the proper synchronization and data
transfers to perform the application. The high-level tool necessary for this
binding is a modeling tool which simulates each mode in the architecture. The
user can define performance parameters by rule insertion. The application
system is described by the object-oriented connection of icons representing
the computing architectures and networks. The tool models system resources and
processes, computes performance parameters, and is capable of monitoring the
actual distributed system.

6 omparison d e t

The code application analyzer produces numerics on the degree to which the
required processes fit the architecture in the system performance levels
either from the 1ideal architecture (computing mode) or from actual
architectures (distributed system). A graph of operations is generated by
automatically generating a PERT program. A coarse model is used for each mode
of processing allowing coarse-level tuning. The process follows that used in
VLSI circuit engineering. The processors in the system are considered parts,
as though they were from the parts catalog. Models of their operations are
used in the initial simulation until the design stabilizes. Then more refined
models are used and more detail added to the processing definitions.

Para achi d

After a candidate overall system design is reached, detailed coding for the
actual machines can be performed. This code is fed back into the concurrent
code analysis tool and allocations and process sequence graphs reverified for
function and performance. This system engineering approach allows new
architectures to be evaluated and also allows measurement and evaluation of
the impact of changes in requirements. In addition, incremental and phased
development of systems using mixtures of codes represented by high level
models of their future implementation and new parallel codes. Care should be
taken to provide a hierarchy with machine independent, architecture type, and
machine-specific layers.

These tools are very similar in approach and levels of complexity to those
used in VLST circuit design computer-aided engineering. The difference of a
more complex input is offset by adding the concurrent code analyzer tool. Note
the assumption that the outcome of the system design results in the proper
code, control, and data granularity for operation within the constraints of
the network and its controlling operating system or language.

The detailed coding of each process in the application should be allowed in
different languages. The best concurrent expression of a process is in a
concurrent language without artificial constraints caused by sequential
languages and the use of extensions. Because there is no standard concurrent

II-55

language programming which is common to each architecture and its specialized
mode of operation, the user must be able to use available languages on the
machines in his repertoire. The network design must provide interfaces to
languages already developed for the processor. Examples of these languages
are

C * and *Lisp (Connection Machine)

Fortran (BB & N Butterfly)

Signal processing macros (Warp)

Occam (Transputer based parallel processors)

Ada (Alliant)

Pacific Sierra preprocessors for Fortran (Cray)

6.3 Algorithm Development

Algorithm development and tuning are among the crucial elements of parallel
application development. The largest gains are to be found Iin the discovery of
nev algorithms which express concurrency. Hardware and software development
follow thereafter. The pgains provided by the struggle to program parallel
machines will be overshadowed by insightful algorithms which provide a
concurrent view of the application. However, one cannot rely upon timely
progress and the state of mind necessary for development cannot be attained,
without attempting to perform the parallel application. Abstraction,
portability, fault tolerance, recovery, tools for wvisualization of code
processes, and configuration management are needed.

The need for abstracticr is noted as a desirable feature bur the need to
understand the architecture when programming remains a necessity. The goal is
to at least isolate the system developers and signal processing users frcm the
details of the parallel architecture, leaving machine specific coding to a
team of specialists. Tools for debugging, run profiling, instrumentation
display in three-dimensional graphics, and retracing operations in {ixed
sequence are needed. Results must be deterministic in the debugging mode with
software and hardware paths made repeatable.

The hardware design should include the concept of instrumented architectures
to display profiling and debugging results, including all queues, functional
unit wutilitization, switch wutilitization, memory accesses and patterns,
feedback of concurrency destroying processes, and serial ©bottlenecks.
Instrumented architectures meeting these criteria must be provided with no
overhead to the parallel process under computation. A hardware design similar
to the serial diagnostics chain provided by some systems could be easily
implemented to independently (orthogonally) present machine performance
information on a monitor window.

6.4 Requirements for Parallel Processing Tool Environment

6.4,1 I1degl Parallel Programming Environment

The user must be able to express the problem in terms of natural independent
processes (unrelated to processors!) which best represent the concurrency
available. Advocates of the conventional processor strategy are hopeful that
combining, chunking, or gluing compilers will be forthcoming, because these

I11-56

can automatically convert natural level concurrency into coarse grain
processor code (See [Fox]}).

‘* The major issue is that of partitioning a problem into many processes that
can be executed in parallel on an MIMD computer. For & small number of
processors, say two to four processors, this problem is not a significant one
because the parallelism available is not significant. For several processors,
say sixteen or thirty-two, the problem is extremely difficult. Programs
without & specific iterative structure are seldom so compl x that they have
sixteen to thirty-two distinct sub-processes. Programs with an iterative
structure are likely to be better suited to SIMD computers and execute with
somewhat lower efficiency on MIMD computers because of resource allocation and
synchronization overhead. (From [Stone])’’

4 Data Decompo [o}

Data decomposition inte an even distribution across the computer is used when
the calculation is based on a large static data structure and the amount of
work is abour the same for each data element. Even small differences in the
computational load may result in idle walting of many processors. A small
fraction of this waiting can significantly impact the overall speed up.
Amdahl’'s law is mever beaten, only avoided by careful balancing and scheduling
and by 1increasing the size of the parallel computation. Data decomposition is
tyvically applied to highly structured numerical computations.

6.4 3 Control Decomposjtion

At the other extreme is the decomposition required when data structures are
irregular and control is unpredictable because each portion has widely varying
run times. Control decomposition can be any of the following types:

Manager-worker

Large graln pipelines
distributed blackboards
Functional

In the manager-worker control, a manager node is programmed to maintain a
global data structure, monitor and track subprograms, and assign tasks to
workers. Worker nodes request work when finished performing their indicated
tasks.

Large grain pipelines are organized around stages which receive data from the
previous stage in the pipe, operate on the data using a coarse grain code or
systolic arrav approach, and pass the resulting data to the next stage.

Functional decomposition i{s the matching of the functions and communication

organization of the algorithm by physical 1location of processors and
communication lines.

§.4.4 Performance Tuning
The 1issues of performance tuning are load balance, communication ratio

11-57

(granularity), sequential bottlenecks, and synchronization.

load balance is the degree to which all processors remain active during the
progress of the application.

Communications yatio is the ratio of communication time to computation time
(Code granularity). Bicause the weak link in many parallel machines is the
communication between processors it 1is important that the overhead of
compunication does not cause processors to be idle waiting. The smaller the
ratio the coarser the code granularity and the higher the efficiency and
performance.

Sequential bottlenecks are points in the computation where all processors have
to wait for a single processor (or other part of the system, e.g. the network)

(Control granularity). Any bottleneck dramatically impacts performance in
parallel systems.

Synchronization is required when processes must come together and coordinate
their activities. The use of mega synchronizations per second as a rating is
advocated by [Stone].

(1) Load balance improvement techniques

Decrease and make grairn size more uniform
Dynamically redistribute data structures or tasks
Redistribution of static data structures

Increase degree of multiprocessing per node

(2) Communication/computation ratio improvement techniques

Increase grain size
Restructure for fewer but larger messages
Combine multiple logical messages into & singie message

(3) Sequential bottleneck improvement techniques

Modify or reorder algorithm to overlap sequential code with other
computations
Spread work of overloaded processors among several processors

(4) Synchronization improvement techniques
Send needed values as soon as possible
Reorder or modify algorithm to eliminate synchronization where not
needed

The key to the approach to MIMD mapping 1is recognizing the conflict between
load balancing, that is, requiring decreased wuniform grains, and
communication/computation ratio minimization, that 1is, requiring fewer and
larger grains and messages. The solution to this dilemma is the gluing
compiler, where grains of the smallest sizes are programmed and compiled to
the intermediate stage. The intermediate compiler structure is in Directed
Acyclic Graphs or DAG form where independent code blocks and their

11-58

relationships are developed and stored. The gluing compiler then forms the
correct sizes for mapping the architecture. At this level of the compiler a
standard parallel computer intermediate form could be defined which would
allow each manufacturer to produce his own back-end. This standard would allow
application and library software vendors the same target. Users would then be
able to write their applications in the most concurrent possible form, then
adapt and compile that code for a series of different parallel machines,
preserving their effort on the science, numerical methods, algorithms, and
specification-level language work. Portability could be achieved in this
manner. The gluing compiler optimizes for a particular machine by aggregating
together the small code blocks into the proper sizes and grains necessary for

good operation on the selected machine. '

I1-59

Appendix A - Definitions and General References

Appendix A - Definitions and General References

These basic definitions define most of the terms of parallel supercomputers. These references
were used to develop these definitions: [Stone], [Desrochers]), and [Fox].

Actor - A processor which consists of operations, firing rules, and associated objects and
states. (in programming)

Algorithmic overhead - The overhead associated in dividing a problem into parallel parts,
such as the extra calculations performed at each processor which are not necessary in the
sequential algorithm.

Amdahl’'s Lav - The maximum speedup attainable by an algorithm and its implementation on a
computer is dominated by its sequential components. Performance will be dominated by the
amount of work which must be done for the slowest mode of execution in the gpplication. (See
[Maretin] and Martin [ARCHS].

Balance - When processor, memory, interconnection network, synchronization, an I1/0 bandwidth
are arranged so that no one of them strongly dominates the system throughput.

Barrier synchronization - Halting a set of processes until every process in the associated
set has completed.

Breakeven point - The number of processors required in a multiprocessor to match the
performance of a single processor of the same power.

Chunks{ze - The number of iterations or operations to be grouped as a single task to increase
task code grain size or granularity.

Coarse-grain parallelism - Parallel execution in which the amount of computation is manv
times larger than the overhead and communication expended per task.

Conflict - The condition which exists when two or more operations require the same system
resource, such as functional unit, memory bank, or network port.

Contention - The interference among tasks competing for the same resource resulting in idle
task waiting.

Context switch - The process of saving the state of one task and restoring another task, thus
changing the execution from one task to another.

Critical Section - A section of a program which may be executed by only one process at a
time.

Data flow - The sequence of processes and data transmissions to be performed on a data set.

Deadlock - The state which exists when parallel processing elements wait for events which
never occur,

do par - A program statement that permits iterations of a loop to be executed in parallel.

do seq - A program statement that forces iterations of a loop to be sequential.

A-1

Domain - A set of objects or data which define the scope of a problem. A set of grid points
or a set of bodies are examples of domains. Domains are split into grains, granules and
members.

Domain decomposition - The division of domains into parts, one grain per processor or memory.

Domain of processing - A mode of processing, for example, highly structured numeric
computation.

Efficiency - The speedup per node.

Explicit parasllelism - Parallelism that is purposely constructed from sections of a program
and defined in detail.

Fine-grain parallelism - Typically refers to SIMD single-bit control granularity. (See
granularity discussion at end of this Section).

Grain - A subdivision of a domain to be handled by a single node. Code, Control, and Data
grain 2re the different types of grain. (See discussion at the end of this Section).

Grain size - The number or length of fundamental entities or members in a grain.

Cranularity

Tne concept of grain describes program attributes which can be used effectively by each
parallel machine category [Murphy). The forms of grain are the following:

(1) Code Grain - the size of code segments capable of being run wich
communications and synchronization overhead remaining insignificant

(2) Control Grain - the degree, number, and flexibility of instructions which can
be run in a given parallel machine cycle

(3) Data Grain - the relative association of data elements with each other which
can be treated within the parallel machine

Code grain varies through the levels of the following sizes:

Coarse - More than 100 instructions

Large (or Medium) - approximately 100 instructions
Natural - around 10 instructions

Cycle - a single floating point instruction

Fine - 1-bit operations

The most general purpose machine would be able to handle all code grain size equally
effectively. When MIMD machines are being used, the term coarse grain typically refers to
coarse code grain.

Control grain varies from fine (one-bit) for SIMD machines, to Massive (N, the number of

independently-controllable, computational-functional units in a fully synchronized, conflict
free, and latency buffered parallel machine). The most general purpose machine would handle

A-2

all control grains equally well, with '‘massive’’ being ideal. When SIMD machines are being
discussed the term ‘‘fine grain’'’ refers to control grain. Note that SIMD machines require
coarse grain typically refers to coarse code grain.

Control grain varies from fine (one-bit) for SIMD machines, to Massive (N, the number of
independently-controllable, computational-functional units in a fully synchronized, conflict
free, and latency buffered parallel machine). The most general purpose machine would handle
all control grains equally well, with ‘‘massive’’ being ideal. When SIMD machines are being
discussed the term '‘fine grain'’ refers to control grain. Note that SIMD machines require
coaunit. Typically the same as the grain.

Hypercube - The method of interconnection that treats individual processors as nodes of a
multidimensional cube.

Implicit parallelism - The parallelism that is embedded in the normal structure of a program
Inhomogeneous Problem - Problems with domains in which members are of different types.

Interprocessor communication - The transmission of data and control information between
multiple processors.

Irregular problem - A problem concerunit. Typically the same as the grain.

Hypercube - The method of interconnection that treats individual processors as nodes of a
multidimensional cube.

Implicit parallelism - The parallelism that is embedded in the normal structure of a progran
Inhomogeneous Problem - Problems with domains in which members are of different types.

Interprocessor communication - The transmission of data and control information between
multiple processors.

Irregular problem - A problem concerors and their local memories, with a communications
network providing control and data flow between the computers.

Multigrid method - The solution to partial differential equations in which a coarse grid is
used to obtain an improved solution on a finer grid. Iterations among a hierarchy of coarse
and fine grids can reduce error.

Multiprocessor - A parallel computer which is composed of multiple processors, shared memory,
and facilities for their interaction and cooperation.

Nearest-neighbor interconnection - An interconnection structure that connects each processor
to its nearest four neighbors in a rectangular grid.

Node - The elements of a parallel processor (processor and/or memory, and switch) located
at the vertices of the interconnection system.

Overhead - Total overhead is the performance difference between linear speedup and that
achieved by N processors. Overhead is due to algorithmic, software, load balancing,
communication, scheduling, and context switching.

Recurrence relation - The relation in which items in a sequence are expressed in term of
previous items in the sequence.

Scalar - An operation which manipulates individual data elements, completing each operation
before starting any part of another.

Serial time - The time taken to execute an algorithm on a serial (single processor) computer.
Shared memory - A common memory in a multiprocessor which allows each processor to access
memory locations of any other processors, typically through a memory access (using an

interconnection network) to communicate between processes.

Small (Fine) grain size - Processors with memories around 1000 bytes per processing node,
tyvpically SIMD 1-bit operation; another definition is decomposition into small groupings.

Speedup - The ratio of time required to execute an efficient serial algorithm to the time
required to execute a parallel version of the algorithm on a number of processors identical
to the single processor. Often plotted as a function of the number of processors.

Svnchronization - An operation in which two or more processes exchange information to
coordinate their activities.

Utilictization - The fraction of a system’s total resources that is being used.

Virtual concurrent processing - The support of more nodes in the problem set up than in the
computer hardware.

General References

‘Fox] Fox, G.C., et al., Solving Problems on Concurrent Processors, Volume I, General
Techniques and Regular Proolems,'’ Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[Stone)] Stone, H.S., High-Performance Computer-Architecture, Addison-Wesley, 1987.
Pg. 383

[Martin] J.L. Martin, '‘Mapping Applications to Architectures,’’ Conference Proceedings:
Supercomputing ‘87, Volume I Industrial Systems, Prototype Architectures, and Supercomputer
Projects, 1987, pg. 475. Editors, L.P Kartashev and S.I. Kartashev, International
Supercomputing Institute, St. Petersberg, Fla. 1,87.

[Desrochers] Desrochers, G.R., Principles of Parallel and Multiprocessing, Intertext
Publications, McGraw-Hill Book Co., New York, 1987.

A-4

[Murphy] Murphy C.G., Specialized Parallel Processor, Research Consortium, Inc., Minneapolis,
MN, 1989.

-and-

Mapping Applications to Architectures, Research Consortium, Inc., Minneapolis, MN, 1989.

{Kumar] '‘', M. Measuring Parallelism in Computation-Intensive Scientific/Engineering
Applications,’’ 1EEE Trans. on Computers, 37(%), pp. 1088-98, Sep 88 (This is [SUP 20 .)

APPENDIX B

SURVEY REFERENCES

11-801
gusL '61-Si bny 85344 AJISIFA L) IEIS F|USAJASULIY
111 T Y0A su0 | w2y (ddy pue syl {406y Buiss320.4d 12119484 VO IIUIIIHUOY J8U0) I0UIIUL QUL I O s0U | pad20I¢d
22)nchuo) daep ay) U0 4IY})4 LEW|EN § 4O *duy J@)18484

1861 320 13 Ja3ndwo)
Apnys ase) ¥ 15389G839Q abae) 30 BujAiang 318484

(6861) £y-62 o1 Bujindwo) 13) 10484
uo|19Incko) PIseg-Aelly §o ws|12)1840g) BujZ|\eay

134
QU641 “61-5L ISNBNY 111 §8aud A)|8sdAjUn 11§ o juea)Asuuagd
Bu|$532044 |9)16J9d U " jUO] Ul gEal 04
waisAs BujueB0ag 2}1038AS 4305 eyL

(8861) 29-1st 13 Bujindwo) 13110404
108632044 ARJisy UB UO WD |QOSd Ul jesy J0) SWA)) J08\Y

29288 IVSAN0D 069§y ggst ‘4990330 L-§ 23U243ju0) SUO|IDD| |ddy 3 340R))OS Jaynckuo) s6U)PII0I¢
sydesy ab6eIS 1NN PuUe §359404 WU swy) joBly 13))940¢ Sujub)eag

sl L9y 1-2Q. Bujandwodsadng 32d
sl jJoB Y 13]19404 jO S3IN83)

%9 ver 25-89 (g s121ndwo) uo “euesl 3331
bujindwo) PaINgiaisig pue *paujadid 12119404 U} I)Qoid Buguojdjysed

(ggsl) 15-12y S
6uy 1ndwo) PAINGLIISIQ T 1311004 404 \euanof
syl js0b)y 13119484 BudA30104d J0) SIUIIOI AT

tor 2w
*¥°0 ‘HONV1IVH.O

6 2W)
‘$'d ‘IN0LS

9 2W)
*3 *AnS0NdM

2 oW
“¥°0 ‘WouisINI

9 9W)
‘wy ‘323l

s 9wl
WY ‘NN

vy 9w}

WY ‘nos3iuve
(c 2wl

NS ‘Luva0e

@ awm
‘N'e ‘ovliund

196} das 25 (6)82 3331 :s6ujp3ar0ld (L 9w
we6014 buyss204g Jeubys asoding \8aaud) V--91S *1'Q ‘uaavd
(g864) Arajdos 4andwod 3331 0
opue} 10 G861 "AON §9. BujIndwodsadng a3A0)°
1v0 34 (#) WA WINSIINAS WNNOS
nn NONLIW

B-1

182
$534d AJ)SIIAJUN 1815 BIUBA)ABIARG
1 *10A G861 ‘6L-§i 3Sn6NY BUJESID0IJ 13]1048d LU IDIIIJUCY |BUCHIRUIIIL] 6L F9BUIPIINIG
SaUYOEY || |9484 BNOUOIYIS §O Awouoxe) ¥

(gesl) 66-21Y Y3 Bujinduo) a1 vied
Sl 408y nIN PUe B4} IUDIN IJUGNI0SIDg 8INIINIJYIIY AN

68 ¢ 2€-99 W 4930y
$4056230.4 2119494 JO) SPOYIIN UO}ISIJUOIYIUAS O Adasng ¥

88 20 9491 -59% 21 923)ncwo) Lo “susJsi 3331

(nss) (9 23ds) swyl|ioBly PN aIe|Q Pue 13]|8484
g64) 0l2-264 [9 Buj ko) 12 |949¢
$,144 20583201g- 43)NK

(gu6l) £€-S1Y 2 6u) indwodsadng jo JRuINOP
8,144 |OUOJSUIIQ -2UD IJUGWI0}IId YB|N AIIA 03 yoeouidy wy)js08)y- |3\ ¥

9
11 "10A §961 ‘61-SI 1Sn6nY Bu(SS3I0id [9]|848d 40 23UIIJUO] }PUO)INLIILY gPs) SBUIPIIIY
4SD U} 19NJIBU0D IA|I0ULIY Y PIT) |IUIT YL O UO|IEN|BAT IIUNIO0)I3d PuUe Wyl 408y Asowdy paieys ¥

(1861) [$ 971} Y Sujndwo) 13))e4ed
uajIed (I INK XjII0N C 2Qn3JadAy ® Uo Wy} |J0B)Y X)JyeN

(Qgg61) 21-11 A3a)30s J1aInckeo) 3338
0pue 10 gE6L ‘Si-71 “AON g9, 6ujindwodsadng :sbu|PIIICIG
YOUIqIon U0 JIAIQ Wyl | 1081y 3| |vieg

09y
11 *10A 889 BujIndwodsadng - 6uyINdWOIIAANG UG 3MIIFJUC) JEUOLIBUIINU] PILYL (S6UPIII0IY
$3INJINILS UCH JEIUNUOT I jweuAQ Y (M wyl(s0bly UOJBIIALL X)J30N (3)1040¢ ¥

12-92
9861 ‘61-6L BNV $5219 AVISIIAIUN IMIS SJUSAASUNIG
111 “10A 5u0}382) |ddy pus Swyljs06)y BuYSSII0IG 13)19198d U0 I3UII2JU0) |BU0)IVUIAIUY GRAL 4B JO SEU|PIIIDIY
Sy} J06)Y BUYSSII0Ig |RUBLS |OUO|SUMIP -})NKW JO UO|IBIUMD \de| Ay} 03 yIeosddy nay ¥

£ Wyl
°7 ‘¥30ANS

1z wluv)
‘¥'0 ‘mvauad

{1 wuv}
‘v ‘ominnlo

.1 2W)

s 2wl

“N'd ‘¥I0NVEIZINWNS

(91 2wl
P ‘ONONLSHUY

153 2w}
‘n ‘o3
(v 9W)
*2°9 ‘x04

[({8:11]
'S ‘vawv

21 9wl
A ‘any

1 9w

‘3R Cu3IoNVNIY

B-2

423nvhwo)
Bujwwe 16034 2§5)3U313§ JO) JUMMOI|AUS |9D)ID8I4

1861 AOK 194

19%-95% @841 'usP ABOJOuYdaL §O AN [ISU] P{UI04}19)
I "|OA SUO|3@2§(ddy § $13)NAW0) JUIIINIUO) JGNIIIAAR U0 2IUIIJU0) PIIYL Y)Y
$3085330ud- 13104 13116484 AJyByn oy SJuMICSAUY Oujue b0y

4861 AON 8t J2)nchao)
(AWOUOX® |) 8IUMNAIS |AUT JUDO)|IAIQ BJEN) j05
9861 Aon €24 dsen3 405 3334
$}00f 3)0UIPIOC) O} (OO} ¥
(ggal) 0L-6% 8 BujInduo) ja)vanyg
RIJAIIAQ NI YV (@) 1vaeyg

Y2

11 “10A - @Q61 2INd{Isul Bujinduwodsadng Jeuo(JeUII U
11 19A 9861 Oujindwodsadng

bu(INRuOII2NS VO JUOT U] SBUIPIIN0IS

6ur yncdus) j2jjesed 03 yowosddy Paludjs0-133{Q0 UY WOOQ

121-221 8861 "USP ABOYOUYII)L O IINY|ITUL BHUI0)))

§ “ oA SU0Y 1824 \ddy 3 S4\NdWO] URIINIUOT 2QNISIAN UO IJUIIIJU0) PIYYL YL

123(0ud 49 indsues) 3)qeunb|juoIday - CPOLd 129{044 Jjide3

: 2861 320 a1 -85y [(1]§ 19 333) s6upaI0I4
82401233 {42uyY
493ncku0312dNS YA BUYEEII0IY |3))10I8¢ PITUSApDY

(686)) S1-192 11} Bu) Inckeo) 13118499
Bu) Induo) 13})8I8d I50dung. JRIINY JO IB|WOSd IYL uQ

£-69¢ i 2@ BujIndeodiadng
SIINIIBL{YIIY puR SU0} 19D} 10dY CUD)IMN)IBAY IJGNI0 a9

49248« IVSAMOD 06@3414T gUsl ‘4340130 2-§ 32U12jU0) §UOY I8})Ody § dien) 05 J23nduo] s6u)paddosy
0431nU0) QWiN JO/PUS QWIS 21Q9inby §u0ddy WO IIRISIY bui68920sd 12]1010¢ 10w} 230X}

Tesermeveanaae Aevrerenemenne D et T T

{y AN3)
¥ ‘lva

£ An3)
“4°¥ "$IAI

{Z a3l
‘v °s ‘Luvg

11 An3)
» “Invs)e

(ot Wuy)
*3°¢ ‘waviian

16 v}
L P E

(e wauvl
‘9°r ‘duvn

W wwvit
°N ‘onww

9 Wiwv)
e ‘uivm
{< Wouv)

b M A 19T

{y Wiy}
*1°1 ‘amvavsy)

B R R L D L L T

Ilvg 9vd (#) 10A

W3NS 1 1904/ TYNnor

B-3

BUolL ‘61-Sh asnbny 111 §%34d AV1812AJUN 2I93S B|UGA | ABIed
BuissdI0id |3)€4¥g WO “jua) " @R8L “I04d
JuSuRI0 S jAu3 BujuumiBoid 13]1018g 2 9308)d LI}

(1961) 99-ssi [4 BujInckuo) |3)18494
Swe1B0sq NYEIN0J 12119494 Bu|dO}3AQ JO) JAMUOIjAL] d1qeliod Y

wel
11 CVOA - 9960 NS Buy 3nduo3i3dng JEU0Y JeULdU]
$1 °)10A QU6) 6u j ynchu0 33dNS

Iy An3)
‘AL “Lived

(€1 An3)
TeTP ‘VEuvONOG

SuiIndwod.adng LD Juo) U] SBUIPIID0I4 21 An3)
WWNIYAIS Uo BujwsueBosd JUIIINII0) JO) 8)100) % ‘3zNIdd
guol AJenuep ABOjouyId| jO 3INY,INN] 9jus0) i 1®)
*1 10A SU0|1ED|1ddy ¥ $421NdU0) JUISINIG) qNIIIdAN U0 FIUIIFHU0) PIINS [(YW.UE)]
(S0ND) U0|1940010] 13088489 - $3)nAU0))| 10494 JO} U0 jAu) Bujuue sB0g 2)Qeliod ¥ Jj080.04:
€16 BU6L uUSP ABOOouUYdd) JO AINI|ISUL BUI0H|)eD
[" {OA SU01182}|ddy ¥ $12INdW0) JUIJIINIU0) aqnisadiy Lo I3UISIJUO) PIINL AL {04 AN3)
AJJAIINPOId Jmuwi60Id 2/3Sd) BU)IUWI]Y JO) JUAI0I AU "a ‘13183
(9861) o1-f 413308 121ncdwo) 3331
OpueiiG 9864 ‘Gi-71 “AON 8. BujINdWodsadng :60UIPIII0I4 t6 AN3)
$U0} 10| 1ddy 245} IUILIS 13119484 BujuesBO.g S0) JuOIjALY uy:isnvd VA ‘vnuvmd
(g361) A3a 20§ saincwod 333 {9 AN}
opuUBYI0 886 ‘Gi-TL TACN 89 Bu | Ineodsadng 66U PIII0IY M
68 \0r 8%-62 dsen)jos 3331 (2 An3}
117100] Bujue16014-13) 10484 ¥ (194/3.03§ ‘8 *30134dv
69 1°r 12-02 aaenyjos 33 (9 AN3)
6ujwR1601d 12)1940q 4O} U0 |AU] PaI0IBI U] vy ey ‘YA ‘wav)
29-8$
gBeL ‘6i-GL BNy ssasg Alssaaun aans URA | ASULag
111 °10A Suc}102})ddy pue Swy) | 106}y BUISSIN0IG 12119194 U0 IIIIHLO) JRUO|ITULIIUE GU6I 2yl §0 sBuPeadniyg {s AN}
1001 WIS E6Y BULT})3) 10484 NYYIB0 IAIIVINUL Uy -- ivd A OINNIAEY T N ‘HAINS
3iva 39vd (#) 0A WINS 1 18Nd/ TYNINOE
Jun BOWANY

B-4

9861 bny £y-9¢ 493nchi0)
buj o) 2} joqQuAs o) |eieyg

(6961) 82-61] Buj3ndwo) Ja))esed
Sun Bnig 13])8104 OJU} SUO|IED|)13dS PIILI|I0-333[Q0 13AI] YBIN JO LOC|IGEICBUSJL D) ISw0INY

"
Il "10A @41 ‘6L-Si Isnbny BUISSI0I 12110404 VO IIUIIIHU0) JEUOHINUIIIU] BRI SOUIPIIT0IY

Swe.60.d QMIS Uj UO|ISI|wjId0 JPO) Pus LOC|IBIjuUNum)

95-Sy m 19, BujIindwodsadng
bujuwe s601g 13) 19404 9180 JOJ ¢$1] UGUO) JO 1II|B|Q ¥ dSIT UJYIeN L0})INAN)

139
8861 ‘CL-6 150 A3a120S J2Indwo) 331 (WM
8360N6URY J33NAO) U0 3 IIJU0Y *JIUL gPsL 8BUjPIII0I4
U0} 18d| |ddy 182)1wIyIeN O Bu e 604g |3A2T-yBiN 40) abenbue) ¥y

219 Q861 "uer ABojouydraj j0 AINJLISU| BjUI0})|9)
§ C10A S0} 1edfddy g $13INAW0) JUIINU0) IPNDIIAAN UD IMBIIJUOY PAINL)
9P0Y 19)1948d JUB1D4)43 0) U0YIA}II83Q |PUC|IUN) WOJY 11018AI)

965 9861 "uer ABOjouUYIdL JO AINYJIBU| B|UI0) |)8)
1 “)J0A SUO|IED | |ddy § 8431NAW0) JUISINI0D IGNIIedAY LD IIIIIJU0) PIIYL L
Swe.Boid)9) 048y JO) WNIO) |EIjUOUE] ¥

CPI) 14N - GESL LIS 13|A20)]
1] S431NAW0) U081 3ININY O weiBauyd
V3poW Bujinduo) ja)|81ed PISEE-139(Q0 U U} U IBLIo e s) weulo. g

89 320 YRVt Qoo ‘de) 3§ "32@14 dsen)j0§
($3)559)) Y1 |n Ouuwe 1604d JUIIINIU0Y ee) IWDINI0)

65y
6861 1ds 4 P4 w2 1sAs Bujindwo) xIN3sSN
WIISAS MOPUIA JUIIININ0) ¥
98 AON ‘guE K AJ01810Q8Y (eUO| 18N AM0BIY

WWe1601d U100 JI))018Y BULIAIRUY PUR 6u|TD0}3AIQ 4O} $)00) B |NPIYIS

3iva I%vd (#) 0A

((TRCITANYE)]
“ucu ‘Ovaisive

16 vV 1x3)
MCTRRFNE VPt]
{8 oV 1x3)

‘v ‘wINsi4

1 v (x3)
“$ ‘A30mA

{9 9wV 1x3)
*4 ‘NvnsSSO¥9

tg oavY 1x3)
M O"NIND

{y onv1 1x3)
*3°0 "NOSNIAILS

(€ 9nvY 1x3)
*3 ‘vAvVAVEINS
{1 oV 143)
INVH 9

(91 Anl)

‘8 ‘Ind

(S1 An3)
“ecr ‘vaavonoa

B-5

w619})9J8d PUe Yijn WIisAs B0)0Id pAING|I8iQ VY

(L361) 19-66€ [9 6ujindwo) 13118484
BujuwueiB0ag 215 43Ud|0§ Joy sbenbuet 9))0184 ¥ abenbus] IZVI8 L

(ggol) 69-151 2z 6ujandwodsadng o Jeusnof
8108833040 - |} |NiW AJowdy PAINQIJIISIQ 40} e iB01q Buj) o)

18 W 232949 69)19 -426u}sds
SUYLY - IIIIIJUO) |BUCTIRUIINUL 18| Buj ynhuo212dng
BU|§83304d- | 1IN 10} WAIEAS S1SA|PUY NYNId Y} }O NI |AIBAQ UY

68 Inr 6y-1Yy asenyjos 3331
ds}) ands uj SuOLEUAIN] BuBII0ID) I \NM

98 249N 68)J3p-136ujads (UayINiqlees)
60 w8 16014 U0 W |soduAs UeadoN] 98 d0SI
B{19] 94NPIJ0IG JO IUISII4 u) weIB.0d NYULNOS JO U0} IRT))I)(eIed 3 Jew0 Ny

99 Y219k Ba)aaA-J3bu | sds (UIIRE | YINIQIEES)
Bujuwe J601d4 UC WN|SOGUAS UGIDCING (9g dOS3I

P4 R 1Y denipos 3331
$d00] JURIINII0T JO) UCHINTJUOIYIAS 2088330ad} 3 1N

219 9861 uer ABO)jouUYIIL JO INI|IBU| BjUI0)}19)
§ C10A SU0)ISd}(ddy J SIAINKAN0] JUILIINI0) NISAY UC I IIJU0) PN WL
$2|Qwex) pue Aseumng :ONIQ

v§y 8861 “uer ABO)OuyII) ;O 3IN))ISU) BjUI0}})8)
| "10A SUO§}IeI|jddy § S133xh0) JUIIINIU0Y PNIIAAN UC IIIIIJU0) PAIYE YR
150 U Bu e 604 JUIIINIUCY PIJUI|I0-II[QD

099 HU6L “uer ABOJOUYDI| JO AINJJISUL #jUI04})10)
1 ©10A SU0J192) |ddy § I3 IN0) JUBIINILOT AGNIIAAAN LD IIIIFU0) PAIYL L
2 19} 19404 JUIIIY)

‘M ‘N017VD

t02 oav1 1x3)
*d ‘Va10uNIM

(61 SavY 1X3)
*Q ‘nvWv1IV)

g4 onvy 1x3l
4 ‘N3NY

@i oY 1x3)
‘8 W0l

{91 ouvY 1x3)
‘¥ ‘4301

(sL ONVY 1x3)

(4031p3) ‘8 ‘)3INI00N

(3L 9uvY 1x3l
‘% “3470n

{§4 ONYY 1X3)
‘W "ONISON

(21 SuvY 1x3)
PA "ATwa

(L oV 1x3)
A3 ‘n

B-6

210120 Y2V Bu)EEeg-3096SIW MIN Ue 0} waisAs bujjesadp PIING}AIS|Q ¥ 30VId *3 ‘¥3008NIS

i -
§11 *10A g9, BujInduwoliadng - 6u}INdWI43dNg WO ISP JU0) |BUO|IFUIRIUE PIINL :sBu|pPIa044d 16 SO ix3)
0u185220.4d- |} |y PAUOY|Y|II8G 0} JRNNPIYIS Jaj) on) sajidepy Uy r ‘v
09S¢ BU61 "uefr ABojouysa) jo NI ISU] BjUI0, | 19) _
1 "|OA suojiudyddy 3 $131ndwo) JUISINIU0) GNIJAdAN UD ITUIIIJUOT PHIYL LI g SO 1x3)
423N0) - |3 |NW JO) $20855IN |9U0} 10 INdW0) - «$319010401w N ‘NS
82
gu6t Adenuer Abojouydag o INI|ISU] BI04) 19) _
*1 JoA suojied|jddy 3 $423n0W0) JUISIN0D AGNIJAdAY UO FIUIIIJUOY PIYL 2 SO 1x3)
UOJ IO UMD || PUB UO|I|UYHIG XTAND NVELEODS *2°1 ‘siony
259
guol Atenuer ABOIOUY3aL JO NI ejuiog|1e] _
*1 J0A suojled||ddy 3 84930 JUISINIU0) 2QNI43dAY UO PIUIIIHUOT PIYL {9 SO 1x3)
SIPNNIIN NINN IBNON §O WO 0) ¥ *a ‘3703
958
o6l Arenuer ABojouysaj jO Indjisul SjuIc; 103 _
1 10A suo |83} |ddy 3 $423ndwW0) JUIIINOVO) 2gn243dAN U0 #UIIIJU0) PIINL (g SO ix3)
1141001 BujueiBoud WIINN0) L] p ¥ VT 1Y) ‘1A ‘nive
(6861) 05-5Y o1 6u)Inco) 13)|wied {y 0 1x3)
yIeosddy Jjweuig ¥ 1308523014} 3)N 0) sweaBolq (3] |esed Bujddey *A WVLISION
(g861) $Y-508 [$273% _
buyuwe 16014 (9]19404 UO JBUINOF (8U0}ISLIIIUY (g SO 1x3}
U0 1820) |Y Asowan |3]|vieg JO) smy)}08\Y *$°3 ‘sin3d
6861 4w 259 3Jenl405 3331 (2 SO 1x3}
19poR 8393044 Bujume.Bolg 12]1W.84 ¥ ‘8 ‘13
96-99Y -
111 “10A 98, 6u 3o 1XINS - mc..:.gu._un!m U0 IIURIIJUO) |SL0EIRUIU| PIINL 1s6UPIIIO LY {1 SO 1x3)
SN YIIY 1) 10489 AJaassuN 40} Juuwebeuly AIOWdN I JWRUAQ SPIUNO | :AJUdpuUIdRQ §O 03U} Id3004 *3°M ‘NaNd
155 ssemijos 3331 (12 oW1 1x3)
3iva 39vd (#) WA WINS 11904/ Tvnanod

B-7

U0)82} 4 | 2ads 3.en)j0S pus saBenBus) jensja

Q861 s 9sh-SE1 @\ w2 3sAs BujIndwo) XINISN
AYON 12]19484 jO LO|INIUINI |dej pue uBjeag

6864 das 06-5801 (6)2€ NIV 34} JO SUD|IEI jUNMMO)
81001 XIND §O UOJINIIXN]Y |3 |849d J0) 3duds awey |9qO)T ¥ Bujs)

26 8864 ‘£1-6 350 A¥2}30S Jandwod 331 |jweiN
sa6enbue JaINdwo] UG I2UIIIJU0) | IU] BBLL 86U IPIII0I¢
SWIISAS JUIIINIUOY SO BIA}IGM|Id UOHIEI |LNMMO) |3ADT-YO N

f6
wel '’ 61-SL ¥snbny 111 88339 AJ)SIAAjUN 10§ BUSA ARG
BuSSII0Sg)I)|048g VO “JUC) °JU] g6l 044
1043u0) AU224n2U0) PIINGIISLA JO UCLINZ (W} IdO JO) |esododyg ¥

799

111 *)0A g8, BuU)INCWODIadNS - Bu)INAWOIIIANG U0 IJDIIJUO) |QUO|ISUIIUL PIjYL 8BU|PIIIVIG

RI0NIIY s3iy 1620] 8 L0 B0)0i4 (B} \euRg

[17]
8861 ‘61-S) ISNBNY (] $634d AJISIIAJUN WIS SJURAJASUIIG
BUISSII0Id 12])9484 U0 “JU0D) “JU| GEAL 044
840882204d|))Ny Asowal PIJeys 405 AX)|JIN Bujssed aBeseay 3)|QUIIOg ¥ tidw

19
961 ‘61-SL ISNBRY (1] $83ud AV SIdALUN INIS FjURA ARG
6UI§$II03d 19])048g U0 "HUD) U] GUAL "0J44
19110489 U) $355320.4 64} IOUIPI00) 1)043U0) PROJ)

258

*$°S ‘Mwa

(8t so ix3)

*6°3 ‘N3ou3ewve
24 so 1x3)

3 ‘NI3ASHIIV

(91 0 1x3)
"N°A ‘oY)

() so 1x3l
‘n ‘Wv200HvE

(94 S0 1x3)
‘0 ‘¥3243ANN0A

(€4 SO 1x3)
‘'Y ‘ANOTIVM

(21 so 1x3)
*P°L ‘onvie)

101 "10A 98, BujIndwodsadng - BuINAWOIIIANG UD IJUIIIJUCY (U0} ISUIAIUY PIIYL :8Bupaadosg fLL SO ix3)
$UO| 300§ |ddy 42)3NC0IIAANG 344 |IUI|IS 40) UB|SIQ IbeNBUE) WALSAS U} UO|IBIIP)BU0) *2°0 ‘NOSNIAILS
20%
Il ")0A - g6l I3 pasuf BuyIndwodiadng Jeuo|Isusdiu]
11 "10A gusl Oujincwodiadng
641 INA023dNS U0 HUO) *JU] B6L)PIIIG oy S0 1x3)
iva Fvd (#) 0A WINS 1 18Nd/ WNENOP

..

B-8

ggol ‘S1-6 150 A13)20s 42indeo) 331 1S IM
SabenBu@] 421NAW0] U0 2IUIIIJU0) S1IU] 2961 S80UIPIIICI4
sabunbue] BujuweiB0id U SUOIINNINQG BIMING

49 SS3ud LM Oujuwe 16014 1UIIINNI0]) PAUILI0 {0
840307 Bujsf) 6u|jMEsIB0I¢g JUIIIN0)

1! Aypsiaajun NS SJUBA JARRIDG
65533044 1219184 U0 IJDIIJLOY GELL ~2044d
SUO0 | JPUI0 BUeS | |B(J032{d YBnoJy) BujmeesBoid

gusL Aew 95-91 423nduo)
1§ esieg Buysn swyi {40y Bujsoidnl

6Y-9y
ggalL ‘4L-SL By §834d Ayisdaajun 108 BIUeA JASUUI4
11 "10A sun))92) jddy pue swy) | 108y BU)SEII0Ld)3 |0Ied U0 3URIIJUOY |EU0|IUIVE GUSL W 0 88U PIII0IY
snajA 183jydeln Bujsn sweiBoid 1219404 Bujbbngag

6g uer £2-Si)9 dson3jos 3331
A3AINg pue LD|IINPOIIU] :18100) PIJINL -

451
11 C1OA - gEbL aImpIsu) Hu) INAWOD13dNG JBU0 | JBUIIJUY
Il “)OA 8R6L Bu j yncwods3dng
6ujandwodsadng wo juol " sbupaalrosgd
ubysag weiboag 12))9.84 0) (00t ¥ TWIIBAS BB} By

82-29

gusl ‘61-S) Bny $834d AY)SIALUN 18IS BjUSAIATIIRg

11 °10A suo) 302} jddy pue swy) | 406)y 6uj§5I01g 13]19404 WO 22U2133U0) |BU0JIRUIIV] GUSL YL JO s0upIIVIY4
12INCW0Y) §3301S-JIJAEN Y} J0) JUMA0L ALY 6ujue i803d |NSIA ¥

6gsL unf £1-50¢ (9)6t *32dx3 § °IWId BN} 08

O §JRujuY Wyl jJ0Bly 4O})00} weabouyg

228
861 ‘S1-6 120 A13320s 43 indwo) I3 (we M

(1 onv)
*y's ‘0111010

(1 2uvt}
wNov

g)
14 LSk

12 108)
“4°M ‘anoNe

9 1w
1w ‘A3NVE

1S 108
‘v e ‘Suiaae

£y 104}
“0 ‘NONNYD

€ 12w)
°S ‘NVIWI0NMOL

12 1)

*$ W ANANOONYMHS | ¥X

sa6enbue) S91ndu0] U IS JU0T “JIUL GB6L ;88uipaad0I¢d [b }]
tva vd (#) 0A WINS 110N/ Whnor
ERINRY yon LNy

B-9

68 65-1S daenijos 3331
ds§) u) BuissadnLd (3))8ae¢ :dsj D

936 Ony $2-02 J493ncw0)
opy U} BujE8A0IY |3})0aey¢

9864 Gny 91-24 Ja3nahuo)
WS} 12} 10484 Buj3®d)3Isaw0g

9861 93§ 19-28 dJjenyjos 33131
81391910 NVUINO] 1218484 2| jO UOE|IedNO) ¥

“43du3l § *Iwig dien) 0§
P240F JO UOJIBIUIWS () JOSSIII0F-)3) ¥

8861 unr 26-648 (9)61

£8%

gL onv)
‘¥ ‘nvngi09

{2t owvil
‘¥°0 “30me
(1 onvil
‘0 ‘83193139
(01 9xvI)
"NV ‘v

{6 ouvi)
‘8¢ ‘NISNVN

111 “10A 98, BuyIndw03adng - BujINAWODIIANS UO IDUIIIJUO) JEU0JINUIIU] PIjYL :eBUPIIIG 9 98V}
d6enbus PIUI[40-123({Q0 US 10y WE|(2]]048d 124D 1-yBiN PUe -AO) *3 ‘1Xvivwva

(88s1) 2641 @ Bu} 133u)8u3
a4eM)jog UO "suSI| 333 2 ouvY)
suojledyjddy 83| pue 901uvd VN xavid
o8 nr 08-12 asendjos 3331 9 oavy)
$24N32331Yd4y BuUWE I6054-I(60T (I} [0J8g Onj Bujiedwo) ‘3 WMt
68 \nr 69-29 dismyjos 3334 (s onvi)
A66N6UBY JU|BLISWO])3 |84y ¥ .)NEUO) *q ‘ningwve
986\ Bny 85-9y 13 ncki0) {y onv1)
V0day $5348044 ¥ :80)04d JUIIINI0) *3 ‘Ouldvis
6861 194 952 -552 (£)63 *43du3 3 13044 dieA}j0S £ owvl)
YNIS 260n6URY BU e 1601d JUIIINIUO) PIAUILI0-129{Q0 YD O UO|IeJuad |du| Uy M M TICTITTY
92-02 1 18, Bujindwodaadng (2 onv)
sabenbue) Jai3ndwodsadng N ‘1108834

691
31vo 39vd (#) 0A L LR VAL T) v

¥Ou 1NV

B-10

W8 |2) 10404 SudLeY] JO) SUO|IeZjw)id) 49) dwo)

105833044 1831610 3119494)0 UD)IND) Jddy pue uBsag i

6861 6ny 008-29 (961 *4adx3 3 *3844-a.0n})OS
10883304d}))N |8 JIdN) US UO WIISAS BpY () |0.ed ¥

264 (9881) 4334205 1a3ncdwo) 3331
opuUB)0 gU6L “AoN gg, BujIndwodaadng
NJONIIN B34y 1€20] @ WO Bujindwodsadng .0) epuj) Bujsn

9964 Bny "%-92 43)nduo)
spudj4j pue spuy

(gesl) 0y-1§] Bujychuoy Ja)|waed

§40652204d§ 3 |1 40} 83da3u0) I6enbUe] BujuueIB0I¢
(gg61) 2 og 3} YUYIIBU | Jewaoju]
BuU§832044)3} |0484 4O abenbue)

28y 9861 "uer A60)0uydIL JO 1N JIBU] BjUI0, |19
| “)10A $SUOjI@d|)ddy § $43INCAN0] JUIIINIU0D IGNIIAdAN VO IJUBIIJUOD PIINL L
no) praddy

807-66f BU6L “uSr ABOJOUYI3L JO INT{ISUL 8|UI0}|)e)
1 “)10A SU0|)e2} \ddy § $J9INANOT JUIIINIUCY IQNIIAdAN UD IXDIIJUC) PINL YL
agnasadiy v uo epy

) gLl 9861 "uer ABojouydal Jo NI JISU] BjUI04))
1 ")OA SUO3ed)|ddy 3 SsaINAL0) JUILINIL0) IGNIJadAN UG FDUISIJUO) PIYL WYL
6ujI2au|Bu] 12 NdSUeI] 0) YIe0Iddy weddQ UY

i (g9s1) A1ajd0s s3i3ndwo) 3331
0pUR)J0 G841 “AON 88, Bujindwodsadng
843)ndwodsadng 404 Sanse| Buj)jdwo)

”n"i (9861) A19)1305 433ndwol 3331
opuUB|I0 Yol “AON gg, Bujindwodsadng
$122)01Q NYYIN0S 13119484 PUS JOJIIA JIYIO PUB NYNLNO4 J0PI)

98 Isnbny 166 (9)2€ ‘s13incdw0) uo “suely 3331

¥3A00°

(92 onv)
*1 ‘Sslemn

(g2 owv1)

‘v u ‘301s31Iun

(22 onv1)
S ‘wrimv

(12 onv1)
*1°M ‘Nvauor
(o2 9mv1)
s ‘awn

(61 9nv1)
"0 ‘15380420

91 9xvl)
WU ‘davD)

sy vl
*Hd ‘NN

(91 owv1)
"N ‘uvaul9

1S1 onv)
QM 1

(91 Sav)

*0"d ‘SOWIDAONONNIA W0J

nnnnnnnnnnnnnnnn

B-11

(1861) 85-61Y Y
6uiIndwo’ PIINGLIIIS|Q PUe |3))048d O JSUINOP
4NN JYIIY)3)04rg OJu} Sy 0By)})eJseg Oujddey uQ

(6961) 95-S1S 9
6u)induo) PAING| 1810 PUs 13))1840g 4O JsULnNOP
w9 i601d 1))948d JO B§8AELY I)I8IS JO) WYY |JOB)Y 19I}I0id ¥

(gusl) 809-96€ 3 6ujyndwodaadng O (eusNOP
A)j49)NUeig JO WO JION YY) WO

(gess) 02%-%0Y 4
Sujinduo] PaINQLIs|Q § 13118484 O (eusnOr
anpaads Jow|ido pus 2an3IRI YUY (2] 10aeg ‘a2|S WI|QOI¢

(ggoL) 12-90y $ bujinduo) paINg}JIsia
pue 13) 18484 jO JSUINOP
dnpaads jow)1do pus ‘aun3IDIIYIIY 13} 10404 ‘ITLS W)QOI¢

62§
11 C10A - 8861 2In3jasuj Bujindwodaadng J8U0jIeUIIU]
11 *10A goot Oujpindwoliadng
Bujyrcwodrsadng O juo) U] SBUPIIN0IY
J N0 iadng pus A0aq)Y OYN WL

(9964) 99-562 [6uj o) 12 1984
6u}§832049d |2) 9489 40) 62}494Q}) O ApNi§ aAa)isJedwo) ¥

28 wr 233949 B0)113A-1abuy uds
SUIYIY - IJUIIIJUO) |RUOEICUIAJUY 38| BuyInduoIsIdng
U0} ISUS (AKX UY I RIGWNDE NIVANDY W)

{y avi)
‘4 ‘nvmaide

15 dvw)
*3°2 “N13n00u
12 dww)

*d*d "wasnux

{1 dwwd
“A°d ‘00N

{1 dww)
‘Ng ‘001

€ a1}
°$ ‘oI Vevimivi

(X Th}]
“4°0 ‘NI Nans

(W 1R)]
‘P ‘vauvonoo

99-10
9861 114dy SL-LL UOQS|) ‘UDJIEPUND4 LRIYIQINY AyL 33 62 onvY)
Aydoso)jyd 318443 dbenbuey 1 ‘nosiwn
9061 11ady -1 UOGS)) ‘UO)INPUNO) LEWRAQING BY) 33 192 Suv))
3ivQ 39vd (#) 0A W3NS 118nNd/ TWNNNOP

B-12

45-9$
9861 “61-S1 BNy 85344 AJ|SJIIALUN I10IS B |USA ASUII¢

111 "10A Suojiea)|ddy pus swy) 0B)Y BUIEEII0Ig 1))8I0g U0 IIUIIIHUOD JRUO|IEUIAIU] GP61 YD O EBu)PII0L4 [{TRC)]
S 1boud J3])048gd U} S2101S SNOjewouy BURI A *3°3 N0
9-t
gU6L ‘61-SI BNy ESasd A)§RIdAjun) 33838 BLBAJASANY
111 *10A Bu0jed) jddy pus Suk)) | 1061V BUISE3I04g 13]1)19I8g U0 IIUIIIJUO) 18UO|IBUIAIU] QR6L Y HO SBuU|PIII0I4 (g4 dww)
83411333 J4IIY J0852204d}))Ny LOd} UO| I8 INCc) 1) |BI8g Bujddey 03 yIeosddy 184D ¥ r's ‘Mix
BE6L ‘61-Si By 88aig A3|SJaajun 31815 BjUBA|ABuLg 2L o)
161 "10A Su0}38I} |ddy
Pus By} |08y BU|SEIINIJ 9] 18I8¢ UG IIUIIIJUOY |SUOC|IBUIIIU| QE6L YL 40 8BU|PIIT0IY (J031P3) “N°¢ ‘adlive’
(1861) aL-692 v Bujinduo) 13)ese4 (L dvul
yoeouddy UOJINJ0AY 3yl :ewdIBAS 12]]10404 jO WI|QOIg Bujddey Iy} O3 BuUO|IN)Og NN I T EN
(ge64) 78 3,4 14 Bu) Indwo3sadng 4o |eusnop 01 dww)
$IIN1IY YOIy aqnIJadAN J0) PIY BujumesBoig ¥ “A'M ‘A
90 P4 [12 433ncw0) (6 dwi)
$40553204d 1 |NW Uj BUJIIPI0 JUIAT PUS IDUIIIYCD “UDINZ JUDIYIUAS *a ‘sioeng
(34
§S34d A)|BIaALUN 181 BJUSAASUIIG
1 "10A QQ61 ‘61-S1 3snBny BuSSaI0ud 219484 U0 IDUIIIJUO) |8UO|ISUIIU] GE6L :8BUIPIII0IG 3 o)

sagnaJsadAy uy Bujppage3 0/1

-6§
$3314 AJISIIAIU 181S BjURAASUNId

N1V ‘10090

1 “10A @860 ‘6L-S) dsnBny Bujssadoig 19119494 UO 23UIIFJUO) |PUCHIGUIINU| GE6| :8BUIPIIIOI4 W dwi)
9u0) 30} (ddy pus SARLLY PUO|SUMN|Q-IUQ S0} BABIIY I})01EAS |PUCIBUIMN|Q Onf Bujddey 4" XA "y
8534d AI§SIIALUN 18IS BJUBA JASUIY

1 T10A 9861 ‘61-S1 IsnOnyY BuySSIN0Ig 12119094 VO IJUI:2JUO) 1SU0YIRUIIUL @S| 86U}PIII0IY {9 daww)
84043y 21103645 Joj swyljlobly Xjaiey jO Bujuojljiing pIseq-ydess NP ‘ON3N0M
(8864) 22-2 2 Bujindwodsadng jo yeusnop (s dvw)
agn2.1adAn @ uo Syl ja0b |y X}Jiey §O LO|IBIUII |du] pus Bujddey U)543 A CANSSYININD

1vQ 39vd (8) 0A YIS 11804/ IVNENOF
AT BONinY

B-13

012 @961 "uer ABOlOUYII| JO NI|IBU] BjUI0)||9)
1 "1OA 5U01100}|ddy T $43INAWD) JUIIINOUV0) GNIISAAN VO IJIIIJUO) PIIYL YL
BujuO | 3J0d|@ INI{ULN IA|BINIIY AQ AGNIIadAN @ O} UD UO|INI0) Y Y89}

222 $06L "uer ABOjouYdIL JO INI|INU] B)UICH|)8)
I ")0A su0}ied)|ddy § $42INC0) JUIIINIUCY IGNIIIAAN U 3JUIIIJU0) PIjyl YL
S.12)nAw0] IQNIIAdAN U} 33IIN083Y BuINGII81Q

252 Q6L "uer ABojouUYId) O INI|ISU] B)UI0)||e)
1 “)OA !.B_unu__&.\] $433nchi0) JUIIINDU0) aQNIIadAN U0 DI JU0D PUYL AL
535532049 190484 JO JUNNIIE |4 |P) BI04

612 9861 "uer ABojouyldl jO NI |ISU| S|us04|1e)
1 ")JOA SU0} 102} |ddy § $12INCA0D JUIIINIU0]) IQNDIIIGAN U0 JIUIIDJU0D PIiyY Ay
U0 | 1| 50N023Q PIIIIINIS YL SO BiSA|BUY (eI IBEIyIeY ¥

192 9861 "usr ABOjOUYII| JO INYISU| BUI0}|)9)
1 *10A SuU0}3821)ddy § S4IINCAN0) JUBIINII0) IQNIIIdAN U0 22UIIIJUO) PI YL YL
RIONIIN (SININ § YIIA SWI Q04 SHOU0IYIUAS A}35007) Bujoues iR Peo)

ga61 Asenuer ABO0UYII]L JO NI JINU] P|UI0))8
*1 JOA SU0}E||ddy § $42INANO) JUIIINIU0) IGNIIAdAN LD IIUIIIJU0) P YL
CCUIRISAD Y)Y UL IR INWIS NJONIIN (8UNAN J0) Gyl |JoB|y IqnIsadAy

0864 “uBP ABOLOUYII) JO AINL|ISU] FJUI0)| |8
1 “)10A Su0j)ed}jddy § $12INCA0) JUIIINIL0D) IGNIIAdAN UO IIIIIJU0) PIINL YL

(2861) (93 1-28, Bujindwodsadng :imd
SIUNIIIIJYIIY 40) Su0)IeI | (ddy Bujddey

1861 “2ul "3 In31Isu) 6uyIndwodsadng JEUO}IBUIU|
601 INAWOIIAANG LD IIIIIJU0) |FU0 | JRUIIJU] PUOIRS 56UIPIIL0IY LB, BujINdNDIsadng

...

(52 dvi)
*4 ‘Wil

{92 dww)
W "NOLSONIALY

{£2 4w
"3°3 ‘Ad113d

(22 aw)
"t NOMIYS

(2 Jani)
*3°9 ‘n03

(02 davul
*3°9 ‘%04

161 dww)
(4034P3) 9 ‘N04
{8 daww)

VP ‘uiiuvM

L dw)
4"V AMSVIWVR®

9961 b0y $6-286 (8)9¢ 3331 sbujpaadosd {94 dvm)
SIINIIIYIIY 3] (010g 0F Swy)jI0B)y VOIA Bujddey *4'0 ‘1N01S
(6861) ”"-¢ (1] 6ujInduo) 12} eued ts1 dawm)
$105532040|) jNi4 UO $1600 WO |I8T UDIYIUAS ‘v ‘wvenided

3iva 39vd (#) WA W3NS 1 18Nd/ WWNINOr

B-14

I "10A 8061 ‘61-Si IsnBNy Bu|88a0J4 129404 U0 IIUIIIJUO) |OUO|IEUIIU] PRAL SBuIPII0IY

(1864) 20K - 562 $ Bujinduo) 1a) 8.4

SWd) 8AS JOBE3303d-) |NM U0 SPOYIIN IA[10IN] (0] |RJeg Bujnpayds

88244 A)isiaajun 9815 BlUsAjABUIaY

e
9861 ‘6L-Si Isbny (] §534d A)1S1dA4UN) IS BJUSAARMIDY

(9C dvw)
“WH ‘SIINISSIN

(€ dww)

(4031P3) V' 4 ‘SO0ju8

BUISSAI0IY |I)|10JE4 UC *JUOD “IU] gE6) 2044 {95 dww)
8108823030} 3)N 405 SIDBIINIIY BUjUO)) |II8G 04 POYIIN ¥ S8IUBIS|(Q WN|U | *%e ‘si3d
191
10 "10A Q861 ‘61-SI 3SNBNY Bu|$83304d 13119494 UO IXUIIIJUO) |UOYISUINIUT FRSL 8BUIPIII0IY (€€ dvw)
Swesbolgd 13))028g 20} JuIbeURY Asowan pue BujINPIYIS I jeeudg ‘M 'SSIN
991
11 "10A 861 “61-St 1snBny Bujss$a0sg 12119494 U 32UII3)U0T |BUOHISUIAIUL GU6L SBUIPIIVOIY 28 dawv)
BUiB82204d |3))048g I3S0dUNg (0IUI J0) SNSE) PIULEID-UN|PIY JO Bu) INPIYIS DjWeUAQ JUI 1D})3] ‘C°V ‘OnvidsnM
(68/9861) s2-£12 6 Bujinduo) 12))18184 Uug dw
40853201d} 3)y Paseq-268ssay U} 826330415 Bujddey "0 ‘wivuy
115 "10A g9, BuyIndwodsadng - BujIndwodrsadng (o€ dvw)
U0 I3UIIjU0) 8UO|IBUIANUL PIYL 88U PIIOIY *V ‘AINSYLNVY
129 11 °10A g9, BujINwodIadng - Bu}INAWOII2ANG U0 IIUIIIJU0) [RUOIIBUINIUY PILYL 8BUIPIIIIG (62 dwN)
Bu))83y paje|nuis AQ UO|IEI0))Y yEuy P MYENMVMYY
ou uer [S Y4 dsenyjos 3331 (82 dvw)
Buis$33044 13)1848¢ JO) UOCYIBUINIIIIG BTYS UjRIY "8 ‘INMIVEIVNAN
g61) 6Ly 1-29, 6ujInduodaadng :3ng Uz ol
Sweib01g I15IUdyIS)90S5 3B40) jo Bu)SSIN0IG (3| |0ieg 40 Juamabeusy 818Q ‘r ‘138
002 9961 "uer A60JOUYIIL JO INI|ISU| 8jUI0})|e)

1 "10A $SU0j1E)}|ddy § $1INAW) JUILINI0Y QNIIAAN UD IDIIIJUO) PJI YL Ay} 192 dww)
Qn2iediy 8 J0j ABI1esIS Bujdden Pajua|I0-ydesy y %A ‘K3

31va 39vd (#) A W3NS 11804/ TYnanor
ERIREY BON LY

B-15

BU6L ‘6L-4) BNy ss5a1g AJysiaajun 2181S BjusAjAsuudd

111 °JOA su0|3ed() ddy pus Swyl 06 Y BuyESID0Id 13]1910G VO A2UIIIHUO) (LD ISUINIUL GUSL BYI §O sBupaddoiyg

2491308 || " oA J3A0)

06-90§ 9UsL "uer ABojouyda) jOo 2INIJIBUY BjUI0}§18)
1 *10A SUO|19D4)ddy 3 843IN0) JUIIINIU0Y IQNIIAAAR U0 IIUIIIJU0]) PINL)
wa)sAs Bujiesadg 2/xN YL

96-160 Q6L “uer ABOJOUYIDY JO AINI|IBU] B|UI0,})9)
} “10A SU0}i8))jddy 3 $13Indwo) JUIIINDU0) IGNIIIdAR UO IDUBIIHUOT PIjNL)
SIQNIIdAN 40} WaisAS BujIeIad) bujyse - }3)N ¥ :ISO0M

1€ 9861 “uer ABOJOUYIIL JO IINJJINI| BjUI0}18)
1 “10A SU0}|}9I))ddy § §41Ndu0] JUIIINIU0Y) IQNIIIdAN UG IJIBIIHU0) PIIYL MY}
@ edg Bu)Iesadg XIVdHIS 4L

99¢ U861 "uUer ABOJOUYIIL SO INIJISU| BjUI04})8)
1 "JOA Su0§ eI} |ddy ¥ $42)NCwO] JUIIINDUOT IGNIISdAN LD IIUIIIJU0) PIIYL W)L
ub)saQ SwWIisAs BujIesadg AQNIJadAN Uy UMW} JIAdNG LY 088844

99 @0 NVIdDIS “J044
J|QUISSY 12)|046d ® Juamd|c| 0) BujuO)I|IIeg 8)8Q Buysn

111 "10A ‘8531d AY|SIaAjun 31815 BjUBAAsuiay
6UySSII0Id 13]19184 U0 IDUIIIJUO) GPsL “I044d
6enbus] x 410 8 Uj BujyIIy) PUNOR US| BUI|Q I) JOQUAS

69 6ny 95-612L (Wl *43du3 3 "Ie44 3ienyjog
U0)NWIS JO) SIINIIAIFYIIY JOIIIA OJUC WS|[3)1948d QWIS BA|ssey Bujddey
18y

111 °10A 88, Bujinduwodaadng - HuINAWCIIAANG UC 22U IIJUC) (RUCLIRUIIIUL PILYL SBUIPIIIIY
WaisAS PaINGIaIsiQ 18NIIA ® LD 8388} BujIed0))Y

g9 Ony $Y-0%6 (8)¢ 843 ndwo) Lo “suesy 33|
SU YO SNOIUIB0IIaAY JO Bujue 6044 |3) |PI0g F0ENBUS))) 1NN

(ggs1) 5Z-112 Y} Bujindwo) j3)10aeg
Ez:;om-(g_g_:u..ba xs@} ~>_unl_u(—O S—uﬂn.-u-—-u.t v

{1 90ud)
(J03iP3) SI5WUS’

{y sol)
*d ‘Duile

I so)
*F NOMIVS

2 so}
MO IR]

{1 so)

*%°Q ‘A3ravee
129 dvN)

“d*N '4354V2
1y dwwl

"r°A "9n0F 30

(0 avW)

*8°F “Ju3aM350M
(o€ davwl

o S A 1) ¥

(95 dwwl

‘¥ ‘Invisie

€ dw)
A LTS

B-16

31vQ 30vd (#) 0A

gusl ‘6iL-SL ysnbny 111 BEIud Ay SIALLy, 23838 B jUeA JASUIId

BuissI304d)2) 19304 L0 THuOd AUl U6l "2044 (24 208d)
dnpaads ew)idg pus ‘2un32331 1424y 19110404 ‘84S WI|QOI4 “4°q ‘001N
08
gO61 '61-S) BN $531d AV)BIIANUN 18IS B) ISR NARRDY
111 “10A suo|ie3| (ddy pue oyl | 1081y BujsEI0I4 19119484 UG INIIIIJU0) 1000 19UI U] U861 W) jO sBu paad0id (1L 90ud)
BuU e 1604g 12) 9484 Judpuadipu| dbenbue) pue 3NIINY NIV *s ‘23908
1941
11} "10A B9 Bu yndwodaedns - Buj INdUODSAANG WO AU IIJU0D Jouo | IeuULalUl PIlYY 166uLPIII0I4 (o} 90udl
CALINN) OUjuwe i60Ig JUSpUIdApU) NI YV W CAGNVNHD
20598, IVSAWOD 069334) G861 1130320 L-§ ¥WIIIju0) su0(103} |ddy 3 346R3)0S Je indwo) s8ujpaad0Id (6 90ud)
2230) JUILINDOU0Y IO} JUdO }3A30 diEn)jO§ U} SaINsE] °3°9 ‘x0d
90£08. J¥SdMO) 0B8e24Y) §U61 *Jaqo3d0 £-§ WIIU0) su0| 193§ |ddy 3 349n)40S J3INdWO) 88u|paadoid {8 9S0ud})
6U}SEAI044 13119484 40} SINEB] Juduio | aAdQ #4813 50S Y ‘1assnu
00598, JVSINOD ©882|Y4) 8961 '13Q0330 2-§ dWRAIIHU0) suo 183} |ddy 3 48R} 0§ J2IndWO) sBupaadoid
Bu| 6832044 (9| |9s94 40} Janss] SjuadojaAdqg d48M) 0§ 2 %0ud}
NI YIIY 1d)18e0d bujdey sanss| dJen) 0§ *é°0 ‘OMvAVd
66288 JVSANDD ob682)y] gEsl ‘49q03I20 2-S 225313)u0) SUO) IR} (ddy J IINIHOS 1) S8UIPINI0 I (9 9084}
6uU}E63I04d |I)1048g 40} SINES| SIUIND0 |2AI] dION) 0§ *d°P ‘ONVAVY
e86L oM £6-26 asenyjos 3331 1S 90ud}
AJAIIIU] UY :IJEA3JOS 13)19.84 WO *1 ‘0ouwWig
(gg61) 1} Alajo0s 433ndwo) 3331
opue 10 gBSL ‘RL-71 TAON B8, bu) Indwodsadng 5BUIPII0IG ty 90ud)
UB}5a(Q 348npIRH Pue Aydos0) jyd Bujwe 16014 :pI0IssQ Bum049 AN ‘S3AM
68 \nr gL-0t asenyjos 3331 € 20ud)
fujwwe 6014 13119494 03 Y290sddy PIjjjun ¥ :3p0) *3°r ‘3w0ue
9L
J11 *)10A g9 BujIndwodsdng - Bu} INBW0I3ANS U IIIIJU0) JBLO}HIFLI] PINL 136U padd0Ig 11 90ud)
26unbue] MO B10Q 19AFY YB|H AJ3A B U) Bujuue 18044 “‘8°M ‘3 Wwna0d
3ivg 39vd (#) YA WINS 11804/ YWNOP
ERIRNY BON LY

B-17

bupuw 160.1g J91)018d PIIUI|I0 139(Q0 JO) WIIRAS ¥ 0ISINd

(68/9461L) 924 [Bujindeo) |3)|eieg
8108523049 9£¢ 9 U0 UCHIN|OS IO SIUJYIUN UOHIINM0) ay)

15-08
g6t ‘KL-6 120 A1ajros JaIndwo) 33| jweyn

‘N0 ‘OvNsuis

(22 90ud)
V0 ‘uvauedm

$26un6UEY JIINCMWD) LU0 2IUIIIJU0Y " JIu] GRAL 86UPIId0I¢ (12 20ud)
4NN U0 |IFM0) YL Bujwesboag ‘¥ "viaowove
QUel ‘C1-6 130 A13y20s 423ndwo) 33] |we i (02 920ud}
SI6uNbUE Y 2IINCAN0) U0 IIUIIHHUD] T JIU] gRol 8BupIadoug .

SLL PE6lL "uer ABOJOUYdd| s IINIJISU] BJUI0)|)8)
| *10A SUCLIB)||ddy § SJIINCAD] JUIIIND0Y IGNIIedAR O IIIIIJU0) PIYL Yy 164 208d)
J)3ndsuRa] Y in 613853204 d 19) 0484 19D1004g¢ OrY A
88 wer 2Z-ii dJemyj08 3331 (91 90ud])
84310 |3} 1000gd Iy Bujwee.Bolig “w ‘MOEIS VIV
gUoL 110N 32j3udig (21 208d)
WD)QOId J8)nBIY PU” SINDIUYIIY |9IIUIT | *10A SI0EEID0Ld JLUIJINIL0] U0 W |QOiyg BujA)CS *3°9 ‘x04
9861 Bny 0£-09 423 chwo) (91 20u4)
Bu|uwe 1601g |SUO} 3NN -84 ‘d ‘avanm

19-9S d4un1)05 3331
ROH Y)Y W0J4 IByA Y} (Sl 9%u4)
5up1040das oUjUARIBOIg |FUO|IJUN}RIeg Bu)I0|dx] *d ‘avanm
[*)'71) 58944 1IN 3y} (vt 90u4)
19p0N uoj 3w W *3 ‘Jo8vs

7"s

gUsl “f1-6 120 A13)205 JaIndwo) 331 juwe N
$26UNbUR) 19INAWN) VO IIUIIIJU0T)V gUsL SBupaadoug (g1 90ud)
$49)0) [3)|040g Bujummibosg ‘NN ‘AGNYNI

49t
3tva IUvd (8) 0A ¥INS118Nd/ Tvnanor

ERFRYY BOHLNY

B-18

A
|
[

31180 2JNPad0ig |}10404d O UOEISN|EA] LY ‘¥ ‘S1ouvesd

16
961 ‘6L-GL ISNBNY ||| 8521gd A1ISIAJUN 18IS BjUSAASULIY
BUISS3I01d 19) 19489 L0 °JUOY U @I “I0U¢ (Y5 20ud]
$2|QU|J6A UC|IRIJUOIYIUAS OF S8IIDY |9))0484 “N°Q ‘YNNISVAVS
(g861) 9s-1y e BujInduo) 13})19184 I£5 20ud)

$aN13) {424V JAINAWO) PIJUBAPY JO) BINSE| IOUBNI0}I34 PUS ABO |0poylay Bujumm Boag ‘Pt ‘Yasvonoo

Bajiap-Jabupads ‘2g61 UNP ‘suayly °*juo) -uluj 3| :BujIndwodsadng {2€ 90¥d)
U0} 38| |ddy PUs SIINIDII|YIIY X)) -NINIYANS WO V0| ISJUIWI (| iSPOYIaN PIIBJI NG 13)18JI8¢g X ‘NIVeNINI0S

8 wr 239249 Bu})aA-4abuyjsds (1€ 90ud)
SUYIY - IIIIIJU0) U IBUIIIU] 38} BujIncduodsadng (J634PI) S1ASNON
0s-29 sJen3jos 333 fog 90ud)
J0852202d - |} 1N AJOWdl PIIBYS @ LO WS |)3 |8Jug BA|I8I | ddy “¥'8 143083030
68 das }3°24% (6)85 ‘$43Inchuo) U “euesy 3338 (62 90ud)
SWI)BAS 108823044)2]]1048d 9)838-2040) UO WS} |2]))9448¢ dOO) EUOISUINIP)Y NN BujZ}l}in *0°3 ‘SOWDIONONNIA W0
4864 Aen 25-£Y 42 3ndwo) (92 904}
ws|)3}1)8184 J0) Sujuweibosgd "NV ‘duv)-
(6861) 62-122 oL SujInduo) 3] 10404 42 9%0ud)
6u w9 16014 JOSEII0IG- 11| JO) WHIPRIed ¥ Gyl |s08)y 2}18) 0N *s ‘AONOLS
(6861) 26-12Y 9
BuiIncduo) PAINQLIISIE PUe 13118484 JO JeuInof (92 90ud}
$J0$S32044d 19) |948d QMIN JO) $10)8I3UID JIGUNN WOpLEY °3°0 ‘SMuid
(8861) e 9 6ujindwo) 13) 18404 (S2 9204}
UO|10Z)13)1918d GMIS/OWIN 243I0W0INY-WdS J0) 00 ¥ :B8IANS ‘dTM ‘Il
418 unr 239339 69133A- 436Uy uds
SUYIY - IIIIJUO) |BUO|IRUIIIUY I8E Bujirchod. adng (92 90ud)
JUAWU0 S jAU) Buuwe 16014 ® U} 1001 UO|IBZ})R)|VIed PISER-IBDI|N0UY LS JO U) 8« |0y *1 'SIONVAS
g9 by 26-L1L (CMT *du3 3 "313844 dsen3j05 {£2 90ud)
Jiva 39vd (#) 0A W3NS 110Nd/ IvRwnor

B-19

QUL Adenuur ABojouyda) o IINjIBU| BjUI0}))0)
"1 10A su0j}edj|ddy § $4IINCMO) JUSHINIUC) SGNIIIAN UC IIUIIIHU0T PIINYL
6u | |IPON IIUNI0IBd BWIIBAS 19))RI04 J0) J0)0Nu|S IGNOAdAY ¥ we|IadAy

6L1-E1198: JVSAMD) 0893 1Yd BR6L “43Q0II0 2-§ IUIIHUO) SU0 |18} \ddy § Jen]jos JaIndwo) S8uIPII0I¢
300} 10INN0) 1] [958 SO 9180) Jwy) PI|§8II0 YN BAJ42Q O3 MNbIUYIA) ¥

69 d35%9-2904 6)2% MOV 3y} JO SUO|IBIJUNUAIO) UO|IINPOJIY] °*P3I
Bujesa02d}) e 40) 3soddng

88 6y "-224 1 $534d AJ1S2A1UN 31815 8JUSAASUag
BuyS85330.44d |3)(848¢ U IIIIIJUO) GE6) 044

N0 018G I]19)S (s

69 das 21-5904 (6)2¢ MIV 243 JO SUO| I8 jUNuMO)

843 3nAN0) |3} 818d JOj PO INGINRYG 0) 58§ IBPI|NOUy (9NN YIIY LS Bujsh

861) 8- $ Sujandwo) 12)jeseg
12)ndw0) 13)|ea8d Bujsn JO 812306y JOUO| 30T |UeBIQ

6%y

QU6L ‘6L-SL ISNBNY (1] $53.d AJ1BIAJUN 18IS BjURAJASULIY
6U)§SII0IG 1))0404 UO °JU0) "JU] GE6I "J0Jg¢
919 2inpII0ig |I|010d 04 WIIBAS ¥ (DdUVd

i861 320 119 J3)nchu0)
SW3ISAS 13) 00y pus PAINQ|4181Q J0) SIUU0dNO) adA| 938Q ¥1IWIISQY JUIYD)I

6861 +dv 28-6%72 @
21 SAS 3 abenbue) BujwumeiBOld U “SUSI| WOV
$3dA| €100 129415QY J40) |01JUOD ADUSIINIUO) 40 |NPOY :53|3Jad04g A))Ijm0ly }820)

[473
QU6 ‘61-S1 ISNONY [11 $534d AJ1B4IAjUN 1ELS BjUSAASUIRG
BuUYSSII0IG)91]194¥g UO “JUO] "JU| QUL “I0J44
UO|AOINGWO) I| 1OQUAS 12119484 OMIM U} U133y §O A3} 1930) Bujyjo)dun)

£99
BH6L “6L-SL ISNBNY | I] 55349 A11943A4UN 21815 BjueA|Asuuag

12 wis)
“1°A ‘nive

[uis)
‘v ¥ ‘uvny

£y [904d)
*Q°f ‘w093¥9M

{2y 90¥4)
‘48 ‘Ssidue

(1Y 90ud)
*3°V ‘OnvauiL

10y 50ud}
*Q "NOSNINNVE

(65 90ud)
‘8 ‘nliuve

(85 2084)
°4 ‘Invisve

{2¢ 90ud)
WL TF)

{9¢ %0ud)
"A ‘310viSnist3

6u§$52301g 12))940g UO "HUC) “JU| GRAL *044 {Ss 90ud)
va I0vd (#) 0A W3NS 11804/ TWHNOF
ERTY R WO ANY

B-20

421 du0] Buj Inpayds adesy @ Ag Uc|Ie2jUeBlody apo) Buibdnqag ‘¥ ‘viam
(2061) %1-29 } 8ujIndwodiadng jo jeusnop 2 ans)
U0j3234)Q pue snye)s uoyienjea3 L STY¥T P J23nckuodsadng “r ‘niiam
6861 Aey 09-25y (S)el *43du3 § “2e4q asemyjos 1 ans)
0IAUS BujINERay § 6uyB6ngag wei6049 ® 40, U010} 4)2eds I8y s0 U Josn ¢ *Y *3¥018407
Uo|Ssas Jaisod - gg. Buyincuodaadng 104 Mis)
YRIGYI0N 89,3333 14Iuy Jaandeo) ay; ‘0 ‘Aves
iy
P96l ‘§1-6 3190 Ajagd0s s2indwo) 33 oty
Sabenbue} 1a1ndwo) wo 213ju0) " laug ggel 166U P04 (6 uis}
3 isAjouy pue Buj 1apon I2M-44334 404 abBeyouy 48R 40S UdA(IQ-NUIY y :4405Kd ‘$°9 ‘vanm
8961 ‘41-Sy Bny §%d4q A}isiaajun 21815 BN Asuning
11 *joa L JRUETRT %] PUS Swnj) 106y Bujssa2044 12)18484 U0 33U2Idju0) 19U04310usd)up gysy 1 jo sBujpaadouy {8 NIS)
UG 38 30) U5 INNI0) 10) Bu) .boag 19N3)A 3banbusy 54 LT *Q°d ‘sin0is
F39)
I8 "10a @B8L ‘ol-St isnbny Buissaraiy 19119184 U0 3243535003 Jeus)Ivusalul gesy 86UIPIII0IG U wis)
538530044 12))9anyg 40 UO}IND a3 1owi04 ay3 404 PoYlaN o juiad y ‘9°y .nm..-txn
W2
$S34d Ay siaajun 91035 o usA) Asuuag
1 "10A 8861 ‘61-5) asnbny BU}95330.g)])0uug WO 33U2434u0) 18UO)I0UII Uy 9961 :e6upaIdoay {9 wMis)
19N 14294 ® Uy sawayas Uo§Indng ja)jeueg WA Oww)
08789: Jvsaw0d obwdjy) 8061 ‘23qoia0 4 INRII4uc] SUO(1ed| (ddy ¢ 40N 405 1310 $6U|PIIIIG s wis)
SWsAs JuIINdU0) 40y sanbjuyra uoprenieay P04 494 U0 BUO|EUIFX] ‘A ‘nvs
4698 J¥SdW0)d o6edyy) 284t ‘aagorag 4-S 3 133u09 $U0} 392 \doy 4813 ,05 43)ndwo)y s6UPIa0Ig iy M)
821845 JUaanu0) u) $356320.44 Buowy u0)3deua3u] 211242 Joy sany 18aaudg 53y * AN L NODNYMY Y
6861 das 9-6921 (6)8¢ $423nduo) uo “suesy 3331 € wis)
§24N1233 1424y 1319494 onf wo WIISAS L0} jUBOIRY Plion ® 4o wojiejrmg ‘YW "¥3Q04
14.%3
1vg 30v4 (8) A 34511904/ Yynanoe
3 oW LNY

-<l

¥

U6l Asenuer ABojouydag jo LI TR VTN JIVET.FRRT 3

"I 10A 8uo}3ed))ddy 3 89 ncwo) IIINN0) 3gn34adAy U0 33uIIdjuo) [XTT'Y 124 ans) :
1i0jw0) Uy Bujwes 18034 |3) |wing °r ‘wanon |
e .M
48 unf 933349 Be)3ap-sabuyuds .
SUWIYIY - 3ouI1dju0] [LE TRL VNT JUTTRRY T} Guj induod sadng {1} ons)
SaUsyIeN)3))eueg ;0 WojIen)eAl UMI0} 434 J0) 8)00, ‘Ad°Y ‘nuoe ;
£20
9841 Asenuer Abajouyray $0 ANY(IGU| Squsoygie]
*1 JOA suoj3ed;)ddy 3 8431ndw0) Jud1induo) GN21adAy wo A3 3u0) [X117 {0} d4nS) _
JouLe i60.4g 2/3541 40} 4388nQaq Waianoue) y ‘WA ‘nve
68 Yoy 22Y-80Y (£)9f 842)ndwo3 WO “suesy 3331 {6 ansi
BI85 12)1000g u) Auajd))s) anssap drpaads *71°0 ‘na9v3
(8g61) 86 4121208 431ncdkwo) 333} i
OPUS)I0 G861 ‘QL-yI "AON Pg. BujINAWDIsadng 286U} pa9I0I¢ {8 ansl
$3)NS5 puR yns 1524 ¥ 1ssa) o) Bujaja032ap “0 “mvaviiva ‘
6861 Aen 1%-522 to)gg $133ndwo) WO “Gues(333¢ {2 ansi o~
a0l jal3 10853204y})Ny 8 U} $)005 JuawainswaN 2ouew.io)sag "N luvizene ?._
o2}
1174
8861 ‘61-S4 IsABRY 1) 55214 Adjssaajun amis SjUeA JAsuiag
6u}s3a301g 19))0484 wo THU0]) CJUL gRaL *2044 19 ans)
U0 iendwo) ja)\euey Alybyn J0y 4366nqaQ PALUa}s0-uIYYug 19119284 @ ;0 adAjo30ayg i343p3A)29 ‘Y'Y NONON
192
$834d Alysaanjun aims SjuBA JAsuuag
I °10A ggsiL ‘6L-51 ImnbBny bu|§522044 12118484 WO I2uasaju0) Vauo | 18Ul Ul ggst ssbupaanoig (S ans)
408832019 13} 1840y A)ongssay @ ;o BI04 139 IYI Bujinsedy ug ‘d’¥Y ‘S$3A3
11%4
111 °10A 89, 6ujindwodiadng - 6uyindwossadns uo FUI3ju0) (BUo|IeUIIUL Py 186uypaddosg iy ans)
43)ni0) 121 1018d OQYQ P43 J04 o jaug bu|bbngag ¥ “3°8 ST w
(24]
1t "0 g8, g..:ﬂ.&ugogm = Buy Indwo 3 1 3ANS Uo 2UdI4u0) 19U0 g Jouadjug PajyL "-g—vsuo..s s ans)
jiva I0vd (#) 0n WINS 1 18Nd/ Ywnanor
Jun YO LY

11} Ssaid A1saaajun 1NS 9§UBA jAssg

6u(853204d 19118484 WO dIJU0) PP 04 112 ans)
$2an3231JYOIY J0653203d) 3 \NK O woj3e3) 1) 3N Xj4ieN JO U0yl |soM0Iaq Jewq3d0 B VRE
gy dis 86-9801 (6)i% ssncuo) uo “sussl 3331 (02 dns)
suo | 182} |ddy Bujlaau}Bul/ajhjiudlls g_guc_.s_:.:ﬁﬁu U wsjjajleseg Bujansedn N ‘et
92
9861 ‘6L-SL isnbny 111 $83id A3jsi3agun NS SJUBA JARRID4
BuySS30.d 1] 18J04 UO ju0] UL GB6L c204d {61 ans)

Swe1601d PAINGE4ILQ 4O Juadbouey peo o) 1004 ¥ 16UJUO LY 8832044 Judsedsuedy *4°¥ ‘24360102

£-0
g6t ‘61-G4 By 8334 AV813A LU 10AS SUEALASUIIY
111 “)10A U0 | 303} Jddy pus sy} §Job)y Buyss3d0Ld 1311%168d U0 2IUIIIJUCY (EUD|IBUIUL G861 YD 40 sBUIPIII0I4 gy dns)
812)ndw0) 139384 JO) JUMAIO JjAUF |00} 21qeis0d pue PIBIBIJU) WY *1°Y “Tudmds
e 14 06-64614 (4311} *du3 § 33804 2Jm) 0§ 21 ans)
. 836822044)9]10404d Joj 13BBNQIQ ¥V ‘w°r ‘Wil
(ggoL) $9-191 2 6ujInduo) 19))0.84 (94 ans)
$0007 2J0MIaA}T) o AJjxa |0 13))1804 pus Jeuojieyncwo) Jo osAjouy Uy *“1°r ‘034
(Y43
996} ‘61-Sh IsnbNY (1] $83d Arjssdajun 381§ SJUBA JABuag
Bu|§523014 12119284 UO " JU0) ‘U] QELL "2044q sy ansl
upyoey AJowdy Paieys & uO NYVULNOH SuiB8ngRq ‘¥t ‘Unw
1%
961 ‘sl-Si ISNONY 1) 8834 A}J§SIAJUN INOIS BJUBAJASLAIDG
Bujs5a304d 121194084 U0 °juoy "IV GELL *0i¢4 14 ans)
Sweib01g 13)|940d JO) IPTA\BUY dnpaads y ‘% ‘oS

11']
B4t ‘aL-St isnboy 11} $53Md AY}SIIALUN IJEIS EHUEA)ASULIG

Bu|S52301d 1) 19484 UC "Juo) UL GR6L T04d gy ans)
108532034 -} 1JNK ® U} A2I1IN2U0) O APNyS PIseg- JUINIINENIN ¥ e ‘NIOM
e
......................... ;
3va I9vd (#) 0A " N3N 11804/ TYNenof

B-23

68 dag 10Li-1601 ta)2¢g HIV 34} §0 Bu0jIE3|Lw0)
Bujisauibuy pus ANB105 U) SIINAWO) IO} Idg YBiN jo sanyng ey,

€8, Jvsa0d 0883jy3 gUSL ‘4aqad0 £-§ IIesIjuc) I [Koyv) Suoj3udy|ddy pue asenljos 4aindwo) s8u | paaznig

69 das v9-8201 (8)2¢ WOV 341 40 8U0| I3 jumm)
SWei6044 paingjiisg buybbngaq pus BujA;y2ads J0) abenbue) Paseq-3bpanouy v 1830

69 das 9-€101 (6)2¢ HOY 34 0 SuO} I8 jurumo)
Sus.48014 P2INQ}II81Q BuYBENGIQ Pus Bujdjydeds 404 311S V1919 40 Lo IN WL} I} Jewodny

£5-5N 8861 *92-22 aunr sjue)yy
.co:.!teo:»: pug ub}sag abenbue 60 1um@ 160204 LO FMAIF4UGT @G, NYTIdTIS 2044

Apnys ase) ¢ 838532044 JUIIIN0) Bujbbngag

r-SLL 98 NV1491S *d0ay
S8 6044 13)1049g jo bu66nqag U3424)43 4oy wsjusyay y

...

{10 WIN)
9 ‘138

n
43a0)°

(2 ans)

‘$°U-A ‘An3nd

(92 ans}
°d ‘AuvINIow

(52 ans)
‘Wr ImoLs

122 ans)
M I Y D)

B-24

EY - B SR

—

MVDR-1LST-001 ROCO
31 JANUARY 1990

APPENDIX C - KEY WORDS AND AUTHOR ALPHABETICAL LISTING
Part 1: Key Words

Part 2: Author Alphabetical Listing

APPENDIX C - KEY WORDS AND AUTHOR ALPHABETICAL LISTING

Part 1: Key Words and Topics

Author/Label

Primary Topic

Supporting Topics

Lager
[ALG 1)

Purtilo
{ALG 2]

Bokhari
[ALG 3)

Jamieson
{ALG 4]

Chen

[ALG 5]
Frieze
{ALG 6]

Engstrom
fALG 7]

McCrosky
[ALG 8]

Stone

AT~ NY
[Auu 2

O'Hallaron
[ALG 10}

Alexander
[ALG 11)

Lin
{ALG 12)

Arya
[ALG 13]

Gen. Purp. Signal
Processing

Design Method

Module Assignment

Mapping Parameters

Data Dependency Graph

quadratic assignment

Systolic Development Tools

Array Manipulation

Parallel Database Query

Kalman Filer

Multidimensional (N-D)
signal processing

Matrix Inversion

Performance Estimator
Tool

Customizable processing,
analysis, & display;
Library of operations;
Separate specification
from implementation;
Communication structure
support

Separate specification
from implementation,
communication structure
support

Multiple structure

Algorithm/architecture
relationships

Parallel algorithm
design, forest and
multi-stages

DAP SIMD

Executable notation,
intermediate language

SIMD aigorithms, data
structures

Data level parallelism

Warp computer

State space model,
linear
infinitive state machine

Dynamic comnunication
structure, target for
reconfigurable multi-
processes

Algorithm efficiency on
varying interconnection
architectures prior to
code

Author/Label

Primary Topic

Supporting Topics

Fox
[ALG 14}

Feng
(ALG 15]

Armstrong
[ALG 16)

Swarztrauber
[ALG 17)
[ALG 18}

Dinning
'ARCH 1’

McBrvan
[ARCH 7,
Snvder

"ARCH 3

Casavant
TARCH &

Martin
"ARCH 5

Hach
"ARCH 6

Hwang
[ARCH 7]

Harp
{ARCH 8]

Bronnenberg
(ARCH 9]

Treleaven
[ARCH 10]

Bisiani
[ENV 1]

Dart
[ENV 2]

Matrix algorithm-
multiplication

Communicating Sequential
Processes

High Performance One-D
FFTIS,; Matched Vector

Multiprocessor FFTS
Cover of Special Issue on
Parallel Algrorichms
Methods survey

Review of state-of-art
in parallel architecture
Taxonomy

Panel on reconfigurable
architecture

Performance evaluation
General purpose parallel
computing

Supercomputing architecture
review

ESPRIT Project 1085-

Symbolic/object-oriented
machine DQOOM

Review of state-of-art
in paraliel architecture

Tool Coordination Tool

Environment Review

Hypercube

Communication and
synchronization

Hypercube

MMD Swvnchronizatior

Reconfigurable
Transputer

Planner to sequence
tools/shell developer

Language, structure,
toolkit, & method
environments,
environment list

Author/label

Primary Topic

Supporting Topics

Jreves
[ENV 3!

Carle
[ENV 4]
Smith
TENV 57
Guarna

CENV 60

Appelbe
BNV 7

Dongarra
(ENV 132

Pratt
(ENV 14

Dongarra
[ENV 15]

Pike
interfaces

[ENV 16]

Gehani

SIMD Programming
Environment

Scientific multiprocessor
env. (RM)

Parallelizing Assistant
Tool (PAT)

Edit, debug & tune

env. (FAUST)
Parallelizing Assistant
Tool (PAT)

Cover: Proceedings Super-
computing ‘88

(Faust)

. PSC,/2

Parasofc:

Concurrent Programming

Parallel FORTRAN

Scientific parallel
programming

SCHEDULE

concurrent windows

Concurrent C++

Parallel Pascal, MPP,
Scientific programming

Fortran development and
maintenance, loop
analysis

Fortran developmen:,
loop analysis

X-window & UNIX, proiec-
manager & dacabase,
Fortran & C

Fortran 8X. dependerc-
graphs, Crav

Window manager, loop
restructuring

Multiple users, file
access, wWOrkstation

Hvpercube CS, NI, :
(Types for parallel
PLOTIX) (CGraphics:
MOOSE, (Asyn. Cp. Svs.»

SUPRENUM, vector node
parallel programming
mwake librarv (mappirg &
communications

SCHEDULE, portabilicy,
hiding machine
dependence

UNIX, Virtual Machine,
multiple target machines

communications

Two supersets of C with

Author/Label

Primary Topic

Supporting Topics

[EXT.LANG

Carlton

(EXT.LANG

Shibayama
(T

TEX

Stevenson

"EXT.LANG.

Halstead

ENT.LANG.

Felten

(EXT . LANG.

Dally

(EXT.LANG.

Rosing

[EXT LANG.

.LANG.

1]

Distributed Prolog

2:parallelism

m

16°

11;

13]

Object-based Parallel
Computing

Analysis of Sequential
Prog to Determine
Concurrency

Functional Language

English Language for
Math Program

Connection Machine Lisp

SIMD Optimization

Object-oriented Specifi-
cation parallel prog.

Futures, Symbolic Computing

Coherent Parallel C

Object-oriented Concurrent

Programming

Modified C for Distributed

Memory Mach.

data abstraction and
parallel programming

Message passing for AND

Transformational rules,
merging & splitting
concurrent objects

Compliler optimization
methods-discover data
grouping, operations,
communications, control
flow

Mathematical notation’
lambda calculus paral.el
program optimization

Matrix arithmecic

Fine-grained, data-
oriented stvle xappings
(arrays/hash tables?

Abstraction of
communication, compiler

PDE spec. language,
SUPRENUM

Multilisp

Data parallel model,
elimination of domain
boundary checks,
transparent process
distribution, hypercube

CST (parallel Smalltalk
-80) distributed objects
(state us dist. across
many nodes)

Better process and
communication control

Author, Label

Primary Topic

Supporting Topics

Wolfe

[EXT.LANG. 14)

[EXT.LANG. 15]

Triolet
[EXT.LANG. 16]
Zorn
(EXT.LANG. 17
Allen

"EXT LANG. 18]

Callahan
TEXT.LANG. 19
passing

TEXT.OS. 1

TEXT.OS.

ro

Ellis
TEXT.0S. 3°

Wolfstahl
"EXT.0S. 4!

:Bain
[EXT.0S. 5]

Tolle
[EXT.0S. 6]

Angus
[EXT.0Z. 7]

Schwan

Synchronization in
Multiprocessor

Cover: ESOP 86 European
Symposium on Programming

March 86 Saarbrucken

Parallelization with CALLS
present

Extension to Common Lisp-
Spur Lisp

IBM Parallel Fortran
Translator

Dist. Mem. Compiler Issues

Block Structur-d Scientific

Large job turnaround on

shared memory machine

Restructuring compiler
Multiprocessing
extensions

3090/VF

Virtual machine,
efficient message

Array arithmetic,

Language abstrations for portability

Dynamic Memory Management

Parallel Operating System
Support

Dynamic Storage Allocation

System Calls (mapping
directive)

Concurrent Programming
Toolkit

UNIX Utilies
Parallel 1/0 Facility
(C & FORTRAN)

Arbitrary Communication

c-7

Data dependency historv,
connection machine
Extensions to UNIX
process model language
extension, runtime
library, ADA & CTT,
sequent balance

Global shared memory

Signal changes in

communication structure
or occurance of mapping-
related events

Intel IPSC

NCUBE

Hypercube

Global Function, Intel

Author/Label

Primary Topic

Supporting Topics

[EXT.0S. 8]
Gait
|EXT.0S. 9]
Schroder
[EXT.0S. 10]
Stevenson
[EXT.0S. 11)
LeBlanc
(EXT.0S. 12]
Malony

[EXT 0S. 13]
Vomberger
{EXT.0S 14
Rahgoza

[EXT 0S5. 13}
Garg

"EXT 0S. 16

Fleckenstein
[EXTOS 17)

Baalbergen
| EXTOS 18!

Yau
[HCI 1]

Krishnamoorthy
[HCT 2]

Tomboulian
[HCI 3]
Gannon

[HCI 4]

Myers
(HCI 5]

Graphs

Scheduling in a 2-tier
Memory Hierarchy

Process Execution and

Communication Environmment

System Language Design

Set of Cooperating
Processors
Message passing facility

Parallel Prolog on LAN

Semantic Language of
transactions

Comm. Primatives

parallel make

parallel make

Visual Languages

Algorithm Animation

Schematic Programming

Program Restructuring

Tools for User-Interface

Shared & distributed
memory combined

SUPRENUM

Distribution of virtual
programs and large
arrays Holistic merge of
op. syst. & language

Balanced binary tree
Portable C Library
Async multiprocessor
arch.

Distributed data,
concurrency control

mechanisms

Analyzer of comm.
structure Concurrent C

Visualization, Software
specifications

Graphics primatives
Graphical editor,
visualization, validirty

checks

Performance predictor &
statistics, pop-down !

User-interface survey
Tools

Author/Label

Primary Topic

Supporting Toplcs

Bailey
[HCT 6]

Brown
[HCI 7]

Hsai
[HCI 8}

DiNitto
[LANG 1)

Perrott
[LANG 2]

Tripathi
[LANG 3.

Shapiro
[LANG &)

Baldwin
[LANG 57

Tick
[LANG 6]

Clark
[LANG 7]

Yamazaki
[LANG 8]
Hansen

[LANG 9]

Karp
[LANG 10]

Graphical Views

Algorithm Animator

pictorial programming

Next Century Languages

Array and Vector
Process Pascal

Object-oriented Langugage
SINA

Process-oriented Language

Concurrent Prolog

Parallel Constraint Language

Parallel Logic Programming
Architecture

PARLOG

Object-oriented Language

Communicating Sequential
Processor

Parallel FORTRAN dialects
12)

Icon, Vector, Simulator
Views

Executive monitor with
graphical 1/0

visualization and
animation through tuples
with both scenes and
films

Inertia of dusty deck
software; very high
level languages

Optimizing compiler

Concurrent and
distributed programming
data abstraction,
concurrency,
synchronization, inter-
object communication:
inheritance
reuseability, delegation

Data flow synchroniza-
tion, guarded-command
indeterminancy control

Implicit parallelism via
compilerConsul

Prolog based

Systems programming &
object-oriented
programming applications

High to low level
parallelism small-talk
80 virtual machine

Concurrent agents
w/comm.
via unbuffered channels

Alliant FX/8, BB&N
Butterfly Cray X-MD,
Elxsi 6400, Encore

Author/Label

Primary Topic

Supporting Topics

Gelernter
Parallel
[LANG 11)

Mundie
[LANG 12)

Goldman
[LANG 13}

Polychronopoulos

[LANG 14
Guzzi
[LANG 15)

Girkar
[LANG 16)

Welch
"LANG 17)

Clapp
[LANG 18]

DeForest
[LANG 19]
Lake

[LANG 20)

Jordan
[LANG 21)

Ahuja
[LANG 22]

Whiteside
(LANG 23)

Lunberg
[LANG 24)

Watson
[LANG 25)

Compiler vs. Language Issues

Ada Parallel Processing

Qlisp-parallel lisp

Compiler Optimization

FORTRAN-Vector & Parallel
Compilers
Transputer/Occam
Ada on a Hypercube

ow

Declarative Language

Language & model of
computation

Language concepts
Linda

Linda

parallel Ada real time

system

concurrent language

Cc-10

Multimax, Flex 32, IBM
3090-VF, Intel iPSC,
Sequent Balance

CSP, Occam, Ada,

Lisp, Concurrent Prolog,
Functional

Ada tasking model

Futures, spawn

Barrier sync., data
dependencies, run-time
dependence

Multiprocessor & vector

Data dependencies

Abstraction, structuring
& information hiding
n-time system

Hypercube Lucid
- uentia anguage

Force task assignment
structural, non-
sequential methods

Tuple space

LAN supercomputing

MIMD multiprocessar
task execution scheme

Author/Label

Primary Topic

Supporting Topics

[LANG 26)

Dongarra
(LIB 1)

Snelling
[LIB 2]

Hammarling
[LIB 3]

Nicol
{MAP 1)

Kruskal
[MAP 2]}

McDowell
[MAP 3]

Berman
(MAP &)

Cherkassky
[MAP 5]

Moreno

[MAP 6]

Kumar
(MAP 7]

Reddy

[MAP 8)
Dubois
(MAP 9]

Wu
[MAP 10)

Muhlenbein

Cover of IEE seminar on
parallel processing

LINPACK

Parallel Library

NAG Library

Speed up

Granularicy

Static Analysis

Parallel Algorithms

Matrix Operation

Partitioning Algorithms
into Systolic Arrays

Systolic Mapping

Mapping I/0

Synchronization

Scheduling and
Synchronization

Evolution Approach

c-11

LAPACK matrix-matrix

Data control, debug
effects, hardware
affinity, complexity
(ease of use), issuer of
libraries, (SPLIB by
Snelling portable
parallel library

Linear algebra routines
Problem size and optimal
speedup (dup)
Definitions (many)
Program Analysis
Mapping into parallel
architecture

Hypercube

Coalescing, cut &

pile, decomposition into
systolic arrays

Mapping 2-d systolic
arrays into 1-d arrays,

improved matrix

Rypercube

Event ordering on
multiprocessor

Hypercube programming
aid

Assignment problem

Author/Label Primary Topic Supporting Topics
[MAP 11) SUPRENUM, competition,
cooperation-better
results than known
heuristics
.Bailey Cover: 88 Proc.
{MAP 12) Int. Conf. on
Parallel Processing
Vol. II
Kim Architectural Graph representation
[MAP 13) Independence mapping linear clusters
McDowell Static Anaysis Concurrency history
{MAP 14] graph, all possible
parallel states
Greenbaum Synchronization Costs Barrier vs. free forms
[MAP 15]
Stout Vision Algorithm Mapping to parallel
[MAP 16] architectures variations
among architectures
. Cover: Proceedings
[MAP 17] Supercomputing '87
.Martin Session Summary State-of-art in mapping
{MAP 18]
.Fox Cover: Third Conf.
(MAP 19] on Hypercube Concurrent
Computers and
Applications
Fox Neural Network Modeling Hypercube
[MAP 20] Algorithm
Fox Load Balancing Neural networks
[{MAP 21) (simulated annealing)
Salmon Scattered Decomposition Costs and speedup
[MAP 22] possible
Pettey Simulated Annealing Process Placement
[MAP 23)
Livingstone Reference Distribution Hypercube
[MAP 24] Methods
Ercal Task Allocation Recursive minicut

Cc-12

Author/Label

Primary Topic

Supporting Topics

[MAP 25]

Chen
[MAP 26]

Bell
[MAP 27)

Kruatrachue

[MAP 28]

Ramanujam
"MAP 29]

[MAP 30]

Kramer
[MAP 31}

Musciano
(MAP 32
Weiss
[MAP 33;
Peir

[MAP 34

iMAP 35}
Missirlis
[MAP 36]

Kapenga
[MAP 37]

Graph-oriented mapping

Data Parallelism

Automatic Grain Size
Determinations

Task Allocation
Cover: Proceedings
Supercomputing '88
Task Allocation

Task Allocation
Dynamic Scheduling

Loop Allocation
Dynamic Scheduling

Recurrence Programming

Cover: Proceedings 1988
Int. Conf. on Parallel
Processing Vol. I.

PDE Programming

Task Allocation

C-13

bipartitioning,
hypercube

Approximation algorithms
Creedy mapping, hypercube

Data management
independent large block
partitioning

Conflict between load
balancing and
communications
miniturization grain
packing with schedule
optimizer.

Simulated annealing

Comparison of optimum
with random solution

Simultaneous PASCAL
thread management
profile

DOALL FORK-JOIN

Partitioning recurrences

linear recurrence
minimum distance method
totally independent
computation

Successive over relation
(SOR)

Adaptive task
partitioning - MIMD high
level macros portable,
to MIMD 2-.d integration
method

— g o — e

Author/Label

Primary Topic

Supporting Topics

Bisiani
[MAP 38)

Colin
[MAP 39}

Rosenberg
[MAP 40)

deJong
[MAP 41)

Katsef
[MAP 42]

Bradley
[0S 1)

Krumme
[0s 2]

Salmon
[0S 3)

:Pierce
[0S &)

Gokhale
analysis,
{PROG 1]

Purtilo

[PROG <]

Browne

portability,

[PROG 3]

Neves
[PROG 4]

Multilanguage
Task Allocarion

SIMD simulation
matrix bounds
data partitioning
Picasen

SIMPLEX

MOOSE
NX/2

Data Flow Language

Environment Design System

Computer Oriented Display

Environment

Parallel Programming

C-14

(Agora) heterogeneous
machine shared memory
abstractions

Graph model dependency
graph, virtual
distributed system

SIMD to vector mapping
BLITZEN machine for NASA

symbolic bounds checking
and correction

message passing machine
assembler

Hypercube operatine
system

NCUBE hypercube
operating
system

Hypercube operating
system

Hypercube operating
system

Data dependency
data flow language
Communication structure

provided from specifi-
cation

Abstraction,

visual programming,
computation units,
dependency relations,
independence from
architecture

Problems of mapping vs
computer developers
claims

Author/Label

Primary Topic

Supporting Topics

DeMarco
[{PROG 5]

Cavano
[PROG 6]

Cavano
[PROG 7)

Russell
[PROG 8]

Fox
[PROG 9]

Chandy
{PROG 10}

Sobek
interface,
{PROG 11]

Nicol
[PROG 12]

Chandy
[PROG 13]

Sabot
[PROG 14)

Hudak

[PROG 15]

Hudak
[PROG 16])

Parallel Programming

Parallel Programming
Parallel Programming

Parallel Programming

Parallel Programming

Architectural Independence

Architectural Independence

Speedup

Speedup

Paralation Model

Functional Programming

See [PROGC 15]

C-15

Data flow, reusability,
object oriented,

No "systems" approach to
parallel

No "systems" approach to
parallel

Scheme for rewoarking of
existing FORTRAN;
diagram of environment

Grain control, loosely
synchronous close;
virtual machine; neutral
simulated annealing
decomposition

Specification notation,
UNITY, functional vs.
imperative programming
vs. logic

CODE graphical
encapsulation strategy

Relation between problem
size and architecture

Cost of storage &
communications, time,
space

Parallel relation,
algorithm description
data structure (1) and
operator (3)

Separate specification
and implementations
*parafunctional
programming”,
declarative program
execution, algorithm
dependent, "ParaAlfl"

Author/Label

Primary Topic

Supporting Topics

Fox
[PROG 17)

Kallstrom
(Occam)
[PROG 18]

Hey
[PROC 19}

[PROG 20)

Bagrodia
{ PROG 21

McBryan
[PROG 22}

Bershad
[PROG 23]

Brandes
[PROG 24]

Zima
[PROG 25)

Percus
[PROG 26)

Parallel Algorithms

Parallel Programming

Reconfigurable Parallel
Program

Cover: 88 Int. Conf. on
Computer Language

Parallel Programming

PDE Parallel Programming

Object Oriented Parallel
Programming

Parallel Programming

Parallel Programming

Parallel Algorithm

C-16

Hypercube matrix, FFT,
Monte Carlo, sorting,
Scalar products, etc.

iPSC’s transputers &
balance (¢c) - review

of environments, division of

execution, data sharing,
synchronization of events

Transputers - extracting
parallelism, geomerric
pParallelism (data
distributed), algometric
parallelism, control
grain, load balancing/
communication overload

Enhanced C for the CM
(SC) derived from UNITY.
data parallel stvle
(SIMD or MIMD),
primative & data
structures

SOR, multigrid conjugate
gradient

PRESTO, predefined object
types: threads, synchroni-
zation objects, written in
C++ Sequent Dynix, run
time system

Parallelization tool/
knowledge based

Semi-automatic
parallelization for
SUPRENUM multigrid

Random number generator

Author/Label

Primary Topic

Supporting Topics

Storey
[PROG 27])

Karp
and
[PROG 28]

Polychronopoulos

[PROG 29]

Oldenhoeft
{PROG 30)

[PROG 31]

Solchenbach
PDE
[PROG 32]

Dongarra
[PROG 33)
Jayasimha

{PROG 34

Francis
[PROG 35]

Eisenstadter
[PROG 36]

Weihl
[PROG 37)

Bastani

[PROG 38)

Martin
[PROG 39]

Parallel Programming

Parallel Programming

Vector Programming

Functional Programming

Cover: lst Int. Conf.
of Supercomputing -
Athens, Greece

PDE

Parallel Environment

Parallel Programming

Procedure Calls

locality of Reference

Abstract Data Types

Parallel components

Parallel procedure calls

C~-17

Monitor synchronization,
highest level
concurrency, algorithm
design

Two styles: Fork-Join

simple program multiple
data

Scheme for arbitrarily
nested loops

Applicative, functional
definitions, data
dependencies constrain
evaluation, streams &
interation in a single
assignment language
(SISAL)

Multigrid methods for
SUPRENUM

Transportable numerical
software SCHEDULE

package (environment)

Performance estimatioun
for synchronization

Parallelism programming
systems medium grain

Software optimization

Atomic actions

Abstract data type,
functional, {nterface,
control server, client

UNIX

Author/Label Primary Topilc Supporting Topics

Parkinson Speedup Computation costs in

[PROG 401 pultiprocessor summation
operator, global
operator

Terrano parallel compiler distributed memory

[PROG 41] multiprocessor -
reconfigurable

Preiss dataflow partitioning data flow graphs

{PROG 42)

.McGregor Comm. ACM Special Issue

[Prog 43]

Ammar Speedup Time cost, 5 categories

TSIM 1) of parallel structures

“Bain HyperSim Simulation of hyvpercubes

TSIM 20 on hypercubes

Yoder Word Recognition SIMD & Array

architecture

1SIM 3

Ramamoorthy

TSIM 45

Yaw
[SIM 5]

Chung
[SIM 6]

Krauss
[SIM 7]

Stotts
[SIM 8]
Hura

[SIM 9]

Bray
[SIM 10]

optimization

Lopriore
(SUP 1)

Petri Nets

Petri Nets

Petri Nets

Petri Nets

Execution Scematics

Petri net environment

concurrency detection

" User interface for

debugging & weasurement

c-18

word recognition,
parallel algorithms
Simulation method
Cvcle time simulartion
Task simulation

Process net

Parallel Flow Graphics
(PFG), graphical
programming, petri nets
PNSOFT

architecture modeling
architecture

Block-oriented languages

Author/Label

Primary Topic

Supporting Topics

Martin
[SUP 2]
Gupta

[SUP 3]
Mills

[SUP 4]
Reeves
"SUP 5

Hough
'SUP 6

Pan
“SUP 10

Bohm
'SUP 11°

:Flower
[SUP 12

McGuire
{SUP 13}

So
[SUP 14)

Allen
[Sup 15]

Feo
[SUP 16}

Performance Evaluation

Symbolic Debugging of
Parallel Code

Debugger for tree-oriented
parallel computer
Performance Meas. through

fundamental algorithms

Pattern-oriented Debugger

Monitoring Facilitier

Speedup and Efficiency
Measures
Concurrent Debugger (DECON)

Performance Evaluation

CrOS Toolset (Comfort)

Concurrency Measurement

Speedup Analyzer

Fortran Developer

Parallel Complexity

C-19

Practices of
supercomputer
performance evaluation

Trace scheduling
compiler
/debugger

Network server, window
manager, parallel
debugger

High-level language
impacts

Interprocessor control
and data flow patterns
time-stamped event
stream

Multiprocessing losses,
performance measure tool

Vectorizing compiler

(160
Fortran Loops)

PSC /2, C & FORTRAN,
lost messages

Single assignment, da:a
flow

Communications, UNIX,
PLOTIX, NDB, Hvpercube,
NCUBE

Cache Miss »"‘ects,
FX/8

Nondeterminism

Livermore Loops

Author/Label

Primary Topic

Supporting Topics

Griffin
(SUP 17]

Bemmerl
[SUP 18)

Goldberg
protocol
ISUP 19}

Bell
(TECH 1]

Fortran Analyzer & Debugge:

Visualization, Debugging,
Performance Analysis

Concurrently Executing

Processes

Concurrency detection

Concurrency Measurement

Matrix decomposition

Debugging and incremental
Tracing

Graph partitioning
Machine independent
Parallel programming
Dehbugging via reply

Future of high performance
computing

C-20

GRAY-X-MP Multitasking
library syntax

Portable tool design,
integration into
prograzming environment,
multi-architecture

Load management,

For transparent process
cloning

Large Fortran codes

large Numerical Programs

Shared memory machines

Parallel Program
(PPG)

Automatic grain size

DRAM model of machines

Speculative reply
concurrency map

APPENDIX C = KEY WORDS AND AUTEOR ALPHABETICAL LISTING

Part 2: Author Alphabetical Listing

Cc-21

Author/Label

Primary Topic

Supporting Topics

Ahuja
[LANG 22}

Alexander
[ALG 11]

Allen
[EXT.LANG.

Allen
fSUP 15)

Ammar
[SIM 1)

Angus
[EXT 0. 7!

Appelbe
[ENV 7

Armstrong
{ALG 16

Baalbergen
(EXTOS 18!

Bagrodia
{PROG 21)

Bailey
[HCT 6]

Bain
(EXT.0S. 5]

Bain
[SIM 2]

Baldwin
[LANG 5]

18]

Linda

Multidimensional (N-D)
Signal processing

IBM Parallel Fortran
Translator

Fortran Developer
Speedup

Parallel 1/0 Facility
(C & FORTRAN)

Parallelizing Assistant
Tool (PAT)

High Performance One-D
FFTS; Matched Vector

Performance Estimator
Tool

Parallel make

Parallel Programming

Graphical Views

Concurrent Programming
Toolkit

HyperSim

Parallel Constraint Language

c=-22

Tuple space

State space model,
linear
infinitive state machine

3090/VF

Nondeterminism

Time cost, 5 categories
of parallel structures

Hypercube

Fortran 8X, dependency
graphs. Cray

Algorithm efficiency on
varying interconnection
architectures prior to
code

Enhanced C for the CM
(SC) derived from UNITY,
data parallel style
(SIMD or MIMD),
primative & data
structures

Icon, Vector, Simulator
Views

Intel IPSC
Simulation of hypercubes
on hypercubes

Implicit parallelism via
compilerConsul

Author,/Label

Primary Topic

Supporting Topics

Bastani
[PROG 38]

Beck
[EXT.0S. 2]

Bell
[MAP 27)

Kruatrachue
[MAP 28}

Bell
[TECH 1)

Bemmerl
[SUP 18]

Berman
[(MAP 4]

Bershad
[PROG 23]

Bisiani
[ENV 1]

Bisiani
[MAP 38)

Bohm
{SUP 11])

Bokhari
[ALG 3)

Bradley
[0S 1)

Parallel components

Parallel Operating System

Support

Data Parallelism

Automatic Grain Size
Determinations

Future of high performance
computing

Visualization, Debugging,
Performance Analysis

Parallel Algorithms

Object Oriented Parallel

Programming

Tool Coordination Tool

Multilanguage

Performance Evaluation

Module Assignment

Picasso

c=-23

Abstract data type,
functional, interface,
control server, client

Extensions to UNIX
process model language
extension, runtime
library, ADA & CTT,
sequent balance

Data management
independent large block
partitioning

Conflict between load
balancing and
communications
miniturization grain
packing with schedule
optimizer.

Portable tool design,
integration into
programming environment,
multi-architecture

Mapping into parallel
architecture

PRESTO, predefined
object types: threads,
synchronization objects
written in C++ Sequent
Dynix, run time system

Planner to sequence
tools/shell developer

(Agora) heterogeneous
machine shared memory
abstractions

Single assignment, data
flow

Multiple structure

Hypercube operating
system

Author/Label Primary Topic Supporting Topics
Brandes Parallel Programming Parallelization tool/
{PROG 24] knowledge based

Bray Concurrency detection Architecture modeling

[SIM 10) architecture

optimization

Bronnenberg Symbolic/object-oriented

[ARCH 9] machine DOQOM

Brown Algorithm Animator Executive monitor with

(HC1 7} graphical 1/0

Browne Computer Oriented Display Abstraction,

portability,

[PROG 3) Environment Visual programming,
computation units,
dependency relations,
independence from
architecture

Burkhart Monitoring Facilitier Multiprocessing losses

{ste 7] performance measure tool

Callahan Dist. Mem. Compiler Issues Virtual machine,

[EXT.LANG. 19) efficient message

passing

Callahan Test Suite Vectorizing compiler
(100

[SUP 8! Fortran Loops)

Carle Scientific multiprocessor Fortran development and

[ENV 4) env. (RM) maintenance, loop
analysis

Carlton Distributed Prolog Message passing for AND

(EXT.LANG. 2] parallelism

Casavant Panel on reconfigurable

(ARCH 4) architecture

Cavano Parallel Programming No "systems" approach to

[PROG 6] parallel

Cavano Parallel Programming No "systems" approach to

[PROG 7] parallel

Chandy Architectural Independence Specification notation,

C-24

Author/Label

Primary Topic

Supporting Topics

[PROG 10)

Chandy
[PROG 13]

Chen
[ALG 5]

Chen
[EXT.LANG. 5)
Chen

[EXT.0S. 1)
Chen

[MAP 26]

Cheng
[SUP 25]

Cherkassky
[MAP 5]

Chung
[SIM 6]

Clapp
{LANG 18]

Clark
[LANG 7)

Colin
[MAP 39]

Dally
[EXT.LANG. 12]

Dart

Speedup

Data Dependency Graph

Functional Language

Dynamic Memory Management

Graph-oriented mapping

Machine independent
parallel programming
Matrix Operation
Petri Nets

Ada on a Hypercube

PARLOG

Task Allocation

Object-oriented Concurrent
Programming

Environment Review

C-25

UNITY, functional vs.
imperative programming
vs. logic

Cost of storage &
communications, time,
space

Parallel algorithm

design, forest, and
multistages

Mathematical notation/
lambda calculus parallel
program optimization
Data dependency history,
Connection machine
Approximation algorithms
Creedy mapping, hypecube

DRAM model of machines

Hypercube

Task simulation

- e tem

Systems programming &
object-oriented
programming applications

Graph model dependency
graph, virtual
distributed system

CST (parallel Small talk
-80) distributed objects
(state us dist. across
many nodes)

Language, structure,

Author/Label

Primary Topic

Supporting Topics

[ENV 2]

DeForest
[LANG 19)

delJong
[MAP 41]

DeMarco

[PROG 5]

DiNitto
[LANG 1}

Dinning
[ARCH 1]
Dongarra
[ENV 13]
Dongarra

[ENV 15]

Dongarra
{LIB 1]

Dongarra
{PROG 33]
Dubois
(MAP 9)

Eager
[SUP 9]

Eisenstadter

[PROG 36]

Ellis

[EXT.0S. 3)

Engstrom
[ALG 7]

Ercal

Hyperflow
Declarative Language

Matrix bounds

Parallel Programming

Next Century Languages

Methods survey

Parallel FORTRAN

SCHEDULE

LINPACK

Parallel Environment

Synchronization

Speedup and Efficiency
Measures

Locality of Reference
Dynamic Storage Allocation
Systolic Development Tools

Task Allocation

C-26

toolkit, & method
environments,
environment list

Hypercube Lucid

Nonseguential language

Symbolic bounds checking
and correction

Data flow, reusability,

object oriented,

Inertia of dusty deck
software; very high
level languages

MMD Synchronization
SCHEDULE, portabilitv,

hiding machine
dependence

LAPACK matrix-matrix

Transportable numerical
software SCHEDULE
package (environment)
Event ordering on multi-

Processor

Software optimization
Global shared memory
Executable notation,

intermediate language

Recursive minicut

Author/Label

Primary Topic

Supporting Topics

[MAP 25)
Ertel
[ENV 10)

Felten
[EXT.LANG. 11}

Feng
[ALG 15]

Feo
{SUP 16}

Fisher
[EXT.LANG. 8]

Fleckenstein
[EXTOS 17]

Flower
[SUP 12]
Fox

[ALG 14]

Fox
[MAP 20)

Fox
[MAP 21)]

Fox
[PROG 9]

Fox
[PROG 17]

Francis
[PROG 35]

Frieze
[ALG 6]

PSC/2

Coherent Parallel C

Communicating Sequential
Processes

Parallel Complexity

SIMD Optimization

Parallel make

Cr0S Toolset (Comfort)

Matrix algorithm-
multiplication

Neural Network Modeling
Algorithm

Load Balancing

Parallel Programming

Parallel Algorithms

Procedure Calls

Quadratic assignment

C-27

bipartitioning,
hypercube

Multiple users, file
access, workstation

Data parallel model,
elimination of domain
boundary checks,
transparent process
distribution, hypercube

Communication and
synchronization

Livermore Loops

Abstraction of
communication, compiler

Communications, UNIX,
PLOTIX, NDB, Hypercube,
NCUBE

Hypercube

Hypercube

Neural networks
(simulated annealing)

Grain control, loosely
synchronous close;
virtual machine; neutral
simulated annealing
decomposition

Hypercube matrix, FFT,
donte Carlo, sorting,
Scalar products, etc.

Parallelism programming
systems medium grain

DAP SIMD

Author/Label

Primary Topic

Supporting Topics

Gait
[EXT.O0S. 9)

Gannon
[HCI &)

Garg
(EXT.0S. 16]

Gehani

[EXT.LANG. 1]

Gelernter
Parallel
[{LANG 11]

Girkar
{LANG 16}
Gokhale
analvsis,
[PROG 1)
Goldberg
[SUP 19)
Goldman
[LANG 13}

Greenbaum
(MAP 15)

Griffin
[SUP 17]

Grossman
[EXT.LANG. 6]

Guarna
[ENV 6]
Guarna

(ENV 9]

Gupta

Scheduling in a 2-tier
Memory Hierarchy
Program Restructuring

Comm. Primatives

Concurrent C++

Compiler vs. Language Issues

Compilers

Date Flow Language
Concurrently Executing
Processor
Qlisp-parallel lisp
Synchronization Costs
Fortran Analyzer & Debugger
English Language for
Math Program

Edit, debug & tune
env. (FAUST)

(Fuust)

Symbolic Debugging of

c-28

Shared & distributed
memory combined

Performance predictor &
statistics, pop-down !

Analyzer of comm.
structure Concurrent C

Two supersets of C with
data abstraction and
parallel programming

CSP, Occam, Ada,

Lisp, Concurrent Prolog,
Functional

Data dependencies

Data dependency

data flow language

Load management,
protocol

for transparent process

cloning

Futures, spawn

Barrier vs. free forms
CRAY-X-MP multitasking
library syntax

Matrix arithmetic
X-window & UNIX, project
manager & database,
Fortran & C

Window manager, loop
restructuring

Trace scheduling
compiler

Author/Label

Primary Topic

Supporting Topics

[SUP 3]

Guzzi
[LANG 15)

Hach
[ARCH 6]

Halstead
[EXT.LANG. 10}

Hammarling
[LIB 3)

Hansen
{LANG 9]

Harp
[ARCH 8]

Hey
{PROG 19]

Hough
(SUP 6;

Hsai
[HCI 8]

Hudak
[PROG 15)

Hudak
[PROG 16]

Hura
[SIM 9]

Parallel Code

FORTRAN-Vector & Parallel
General purpose parallel
computing

Futures, Symbolic Computing

NAG Library

Communicating Sequential
Processor

ESPRIT Project 1085-

Reconfigurable Parallel
Program

Pattern-oriented Debugger

Pictorial programming

Functional Programming

See [PROG 15]

Petri net environment

Cc=-29

/debugger

Multiprocessor & vector

Multilisp

Linear algebra routines

Concurrent agents
w/comm.
via unbuffered channels

Reconfigurable
Transputer

Transputers - extracting
parallelism, geomectric
parallelism (data
distributed), algometric
parallelism, control
grain, load balancing/
communication overload

Interprocessor control
and data flow patterns
time-stamped event
stream

Visualization and
animation through tuples
with both scenes and
films

Separate specification
and implementations
"parafunctional
programming"”,
declarative program
execution, algorithm
dependent, "ParaAlfl"

PNSOFT

Author/Label

Primary Topic

Supporting Topics

Rwang
[ARCH 7)

Jamieson
[ALG 4]

Jayasimha
[PROG 34)

Jordan
[LANG 21)

Kallstrom
(Occam)
[PROG 18!

Kapenga
[MaP 37}

Karp
[LANG 10]

Karp
and
[PROG 28)

Katsef
(MAP 42]

Kim
[MAP 13)

Kramer
[MAP 31)

Krauss
[SIM 7]

Supercomputing architecture

review

Mapping Parameters

Parallel Programming

Language concepts

Parallel Programming

Task Allocation

Parallel FORTRAN dialects

(12)

Parallel Programming

Data partitioning

Architectural
Independence

Task Allocation

Petri Nets

c=30

Algorithm/architecture
relationships

Performance estimation
for synchronization

Force task assignment
structural, non-
sequential methods

IPSC’s transputer

& balance (¢) ~ review
of environments,
division of execution,
data sharing,
synchronization of
events

Adaptive task
partitioning - MIMD high
level macros portable.
to MIMD 2-d integration
method

Alliant FX/8, BBR&N
Butterfly Cray X-MD,
Elxsi 6400, Encore
Multimax, Flex 32, IBM
3090-VF, Intel iPscC,
Sequent Balance

Two styles: fork-join

Simple program multiple
data

Message passing machine
assembler

Graph representation
mapping linear clusters

Comparison of optimum
with random solution

Process net

Author/Label

Primary Topic

Supporting Topics

Krishnamoorthy

[HCI 2}
Krumme
(0§ 2]

Kruskal
[MAP 2]

Kumar
[MAP 7]
Kumar
iSUP 20]

Kumar
[SUP 20}

Lager
fALG 1)

Lake
[LANG 20]

LeBlanc
[EXT.O0S. 12;

Lin
[ALG 12]

Livingstone
[MAP 24)

Lopriore
[SUP 1)

Lunberg
[LANG 24)

Malony
[EXT.0S. 13]

Algorithm Animation

SIMPLEX

Granularity

Systolic Mapping

Concurrency Measurement
Concurrency detection

Gen. Purp. Signal
Processing

Language & model of
computation

Set of Cooperating
Processors

Matrix Inversion

Reference Distribution
Methods

User interface for
debugging & measurement

Parallel Ada realtime
system

Message passing facility

c-31

Graphics primatives

NCUBE hypercube
operating
system

Definitions (many)

Mapping 2-d systolic
arrays into 1-d arrays,
improved matrix

Large Numerical Programs

Large Fortran codes

Customizable processing,
analysis, & display;
Library of operations;
Separate specification
from implementation;
Communication structure
support

Balanced binary tree

Dynamic communication
structure, target for
re-configurable multi-
processes

Hypercube
Block-oriented languages
MIMD multiprocessor

task execution scheme

Portable C Library

Author/Label

Primary Topic

Supporting Topics

Martin
[ARCH 5]

Martin
[PROG 39)

Martin
[SUP 2)
McBryan

[ARCH 2]

McBryan
[PROG 22)

McCreary
[sup 24

McCrosky
[ALG 8

McDowell
Map 3,

McDowell
[MAP 14
McGuire
[SUP 13:

Mehrotra
[EXT.LANG. 20

Miller
Debugger
[SUP 22)
Mills
ISUP 4]
Missirlis
[MAP 36
Moreno

[MAP 6]

Muhlenbein

Performance evaluation

Parallel procedure calls

Performance Evaluation

Review of state-of-art
in parallel architecture
PDE Parallel Programming
Graph partitioning

Array Manipulation

Static Analysis

Static Anaysis

Concurrency Measurement

Block Structured Scientific

UN1L

Practices of
supercomputer
performance evaluation

SOR, mulrigrid conjugare
gradient

automatic grain size
SIMD algorithms, data
structures

Program Analysis
Concurrency historv
graph. all possible
parallel states

Cache Miss effects,
FX/8

Array arithmetic,

Language abstrations for portabilircy

Debugging and incremental

Tracing

Debugger for tree-oriented

parallel computer

PDE Programming

Partitioning Algorithms
into Systolic Arrays

Evolution Approach

C=-32

Parellel Program

(PPG)

Network server, window
manager, parallel

debugger

Successive over relation
(SOR)

Coalescing, cut &
pile, decomposition into
systolic arrays

Assignment problem

Author/Label

Primary Topic

Supporting Topics

{MAP 11]

Mundie
{LANG 12]

Musciano
[MAP 32)
Myers
{HCI 5)
Neves
"PROG &
Nicol
‘MAP 17

Nicol
"PROG 12

O'Hallaron
TALG 100

Oldenhoef:
[PEJG 20

Pan
{SUP 10)

Parkinson
[PROG 40!

Peir

[MAP 34)

Ada Parallel Processing

Task Allocation
Dynamic Scheduling

Tools for User-Interface

Parallel Programming

Speed up

Speedup

Kalman Filer

Functional Programming

Concurrent Debugger (DECON)

Speedup

Recurrence Programming

Cc=33

SUPRENUM, competition,
cooperation-better
results than known
heuristics

Ada tasking model

Simultaneous PASCAL
thnead management
profile

User-interface survey
Tools

Problems of mapping vs
computer developers
claims

Problem size and opzimal
speedup (dup)

Relation between probler
size and architecture

Warp computer

Arplicative, functicnal
definitions, dat:z
dependencies constrain
evaluation, streams &
interation in a single
assignment language
(SISAL)

PSC /2, C & FORTRAN,
lost messages

Computation costs in
multiprocessor summation
operator, global
operator

Partitioning recurrences

Linear recurrence
minimum distance method
totally independent
computation

Author/Label

Primary Topic

Supporting Topics

Percus
[PROG 26)

Perrott
[LANG 2)

Pettey
[MAP 23]

Pienze
[ENV 12)

Pierce
‘0S8 4

Pike

interfaces

CENV 16T
Polvchronopoulos
TLANG -«
Polvchronopoulos

TPROG 29

Prat:

NVOoleS

Preiss
"PROG 42

Purtilo
CALG 2,

Purtilo

[PROG 2]

Rahgoza
[EXT.0S. 15]

Ramamoorthy
[SIM &)

Parallel Algorithm
Array and Vector
Process Pascal

Simulated Annealing

Concurrent Programming

NX/2

Concurrent windows

Compiler Optimization

Vector Programming
Scientific parallel
programming

NDataflow partitioning

Design Method

Environment Design System

Semantic Language of
transactions

Petri Nets

C-34

Randomr number generator

Optimizing compiler

Process Placement

SUPRENUM, vector node
parallel programming
make library (mapping &
communications

Hypercube operating
system

Communications

Barrier sync., data
dependencies, run-time
dependence

Scheme for arbitraril.
nested loops

UNIX, Virtual Machine.
multiple target machines

pataflow graphs

Separate specification
from implementation,
communication structure
support

Communication structure

Provided from specifi-
cation

Distributed data,
concurrency control

mechanisms

Simulation method

Author/Label

Frimary Topic

Supporting Topics

Ramanujam
[MAP 29]

Reddy
[MAP 8]

Reeves
[ENV 3]

Reeves
[SUP 5)

Rosenberg
(MAP 40])

Rosing

[EXT.LANG.

Ruppelt

(EXT. LANG.

Russell

'PROG 8,

Sabot
"PROG 14°

Salmon
IMAP 22

Salmon
{0S 3}

Schroder

13

(el

(EXT.0S. 10)

Task Allocation
Mapping 1/0
SIMD Programming

Environment

Performance Meas. through
fundamental algorithms

SIMD simulation
Modified C for Distributed
Memory Mach.

Object-oriented Specifi-
cation parallel prog.

Parallel Programming

Paralation Model

Scattered Decomposition

MOOSE

Process Execution and
Communication Environmment

Simulated annealing
Hypercube
Parallel Pascal, MPP,

Scientific programming

High-level language
impacts

SIMD to vector mapping
BLITZEN machine for NASA

Better process and
communication control

PDE spec. language,
SUPRENUM

Scheme for re-working of

Existing FORTRAN;
diagram of environment

Parallel relation,
algorithm description
data structure (1) and
operator (3)

Costs and speedup
possible

Hypercube operating
system

SUPRENUM

Author/Label

Primary Topic

Supporting Topics

Schwan
[EXT.0S. 8)

Shapiro
[LANG 4]

Shibayama
[EXT.LANG. 3]

Smith
[ENV 5]

Snelling
[LIB 2]

Snyder
[ARCH 3]

So
“SUP 14

Scbek
interface,
[PROG 11

Solchenbach
PDE
[PROG 32]

Stevenson
[EXT.LANG. 4]

Stevenson
[EXT.0S. 11]

Stone
[ALG 9]

Stone

Arbitrary Communication
Graphs

Process-oriented Language

oncurrent (]

Object-based Parallel
Computing

Parallelizing Assistant
Tool (PAT)

Parallel Library

Taxonomy

Speedup Analyzer

Architectural Independence

PDE

Analysis cf Sequential
Prog. to Determine
Concurrency

System Language Design

Parallel Database Query

Debugging via reply

C=36

Global Function, Intel

Data flow synchroniza-
tion, guarded-command
indeterminancy control

Transformational rules,
merging & splitting
concurrent objects

Fortran development,
loop analysis

Data control, debug
effects, hardware
affinity, complexity
(ease of use), issuer of
libraries, (SPLIB by
Snelling portable
parallel library

CODE graphical
Encapsulation strategy
Multigrid methods for
SUPRENUM

Compliler optimization
methods-discover data
grouping, operations,
communications, control
flow

Distriburion of virtual
programs and large
arrays Holistic merge of

op. syst. & language

Data level parallelism

Speculative reply

Author/Label

Primary Topic

Supporting Topics

(SUP 32]

Storey
[PROG 27]

Stotts
[SIM 8)

Stout
[MAP 16}

Swarztrauber
[ALG 17]
Terrano
[PROG 41]
Tick

[LANG 6]

Tolle
[EXT.0S. 61

Tomboulian
fHCI 3}
Treleaven

[ARCH 10]

Triolet
[EXT.LANG. 16]

Tripathi
[LANG 3]

Vomberger
[EXT.O0S. 14)

Watson
[LANG 25])

Parallel Programming

Execution Scematics

Vision Algorithm

Multiprocessor FFIS

Parallel compiler

Parallel Logic Programming
Architecture

UNIX Utilies

Schematic Programming

Review of state-of-art
in parallel architecture

Parallelization with CALLS
present

Object-oriented Langugage
S1NA

Parallel Prolog on LAN

Concurrent language

c-37

concurrency map

Monitor synchronization,
highest level
concurrency, algorithm
design

Parallel Flow Graphics
(PFG), graphical
programming, petri nets

Mapping to parallel
architectures variations
among architectures

Hypercube

Distributed memory
multiprocessor -
reconfigurable

Prolog based

NCUBE

Graphical editor,
visualization, validity
checks

Restructuring compiler

Concurrent and
distributed programming
data abstraction,
concurrency,
synchronization,
interobject communication;
inheritance reuseability,
delegation

Async multiprocessor
arch.

Author/Label

Primary Topic

Supporting Topics

Weihl
[PROG 37]

Weiss
[MAP 33)

Welch
[LANG 17)

Whelan
[SUP 21

Whiteside
[LANG 23]

Wholey
[EXT.LANG. 7]

Wolfe

[EXT.LANG. 14!

Wolfstahl
{EXT.0S. 43

Wu
[{MAP 10j

Yamazaki
[LANG 8)
Yau

[HCI 1]

Yaw
[SIM 5]

Yoder

architecture
[SIM 3]

Zima
[PROG 25]

Zorn

Abstract Data Types
Loop Allocation
Dynamic Scheduling
Transputer/Occam

Matrix decomposition
Linda

Connection Machine Lisp
Synchronization in

Multiprocessor

System Calls (mapping
directive)

Scheduling and
Synchronization

Object-oriented Language

Visual Languages
Petri Nets

Word Recognition

Parallel Programming

Extension to Common Lisp-

C-38

Atomic actions
DOALL FORK-JOIN
Abstraction, structuring

& information hiding

Shared memory machine

LAN supercomputing

Fine-grained, data-
oriented style xappings
(arrays/hash tables)

Large job turnaround on

Shared memory machir._s

Signal changes in

communication structure
or occurance of mapping-
related events

Hypercube programming
aid

High to low level
parallelism small-talk
80 virtual machine

Visualization, Software
specifications

Cycle time simulation

SIMD & Array

Word recognition,
parallel algorithms

Semi -automatic
parallelization for
SUPRENUM multigrid

Multiprocessing

Author/Label Primary Topic Supporting Topics

[EXT.LANG. 17]) Spur Lisp Extensions

c-39

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Pubtlcupomngbumn'ovml ot [] |] age 1 hour per g the time for] ,m . Qat Q and
and ,u\d Aewing the of anmmmwmuwwmmﬁawmam ofthis
mmmmwmmnm 10 Ne and Reports, 1215 Jeflerson Davis Highway. Sulte 1204, Mmqlon VA 22202-4302.
and 10 the OMce of Management and Budget, Pape noanona(wmmL gton. DC 20603
1. AGENCY USE ONLY (Leave bieniy 2 REPORT DATE 3. REPOAT TYPE AND DATES COVERED
July 1990

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

LITERATURE SURVEY ON TOOLS C: N66001-87-D-0039

8 AUTHOA(S)
C. G. Murphy

7 PERFORMING ORGANIZATION NAME(S) AND ADORESS{ES)
Science Applications International Corporation
10240 Sorrento Valley Road , Suite 202
San Diego, CA 92121

8. PERFORMING ORGANIZATION
REPORT NUMBER

9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSI(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
Naval Ocean Systems Center
NOSC TD 1853

San Diego, CA 92152-5000

11 SUPPLEMENTARY NOTES

122 DISTRIBUTION/AVAILABILITY STATEMENT 12b DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13 ABSTRACT (Maxamum 200 words)

This literature survey of parallel programming tools, including more than 200 references, is designed to allow continued
browsing and probing of different specific areas of interest. Therefore, the first look at parallel programming tools is a broad
one, where each reference article is briefly described. Key words (or phrases) were assigned and provided in sorts by author
and by assignment to a hierarchy of high performance computing technology. This hierarchy ranges from algorithms
through tools environments to architectures and technology. A table of commercial programming tools is also provided.

16, NUMBER OF PAGES
143

14 SUBJECT TERMS

multiprocessor paraliel programming aigorithm

signal processing 16, PRIGE GOOE

NSN 7540-01-280-8800

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSFICATION 20 UMITATION OF ABSTRACT
OF REPORT OF Tras PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT
Sandard form 208

SUPPLEMENTARY

INFORMATION

DA 226 933

NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CALIFORNIA 92152-5000

& A /“'.J /A(
24 September 1990

NOSC Technical Document 1853
Literature Survey of Parallel Processing Tools

By C. G. Murphy, Science Applications International Corporation
Dated July 1990

Literature Change

1. Replace the covers of NOSC TD 1853 mailed to you on 14 September 1990.

Technical Document 1853
July 1990

Literature Survey of
Parallel Processing Tools

C. G. Murphy

Science Applicaticns international
Corporation

Approved for public release; distribution is unlimited.

The views and conclusions contained in this report are
those of the contractors and should not be interpreted as
representing the official policies, either expressed or
impiied, of the Naval Ocean Systems Cent=r ¢, ke W1 <
Government.

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R. M. HILLYER
Commander Technical Director

ADMINISTRATIVE INFORMATION

Thus report was preparz2c bv Science Applications International Corporation (SAIC), under
contract N66001-87-I2-0039 for Code 733 of the Naval Ocean Systeras Center.

Releasec by Under authority of
D. K. Barbour. Head J. A. Roese, Head
Signal Processing Signal and Information
Technology Branch Processing Division

A

Approved for public release; distribution is uniimited.

The views and conclusions contained in this report are those of the contractors
and should noat be in*erpreted as represeniing the official pofiri=< enner
express=d or inphed, ot the Naval Ocean Systems Center or the U.S.
Government

