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I. INTRODUCTION

In this report, a method of synthesizing multichannel random processes
with variable temporal and cross-correlation properties is developed. This
synthesis method provides a capability to generate processes for the evaluation of
multichannel detection and estimatio ialgorithi" currently being assessed [1]. In
detection analyses, this program provides a means to assess performance
capability in terms of a receiver operating characteristic (ROC) by allowing for
parametric variations such as signal-to-noise (S/N) and clutter-to-noise (C/N)
ratios, pulse-to-pulse correlation and cross-channel correlation prorerties.

In section II, the vector observation processes of interest are defined
together with their associated correlation matrix. The complex auto- and cross-
correlation functions are considered in section III. These functions are initially
introduced in terms of their quadrature and polar forms. However, in section
II.C , we propose a functional shaping approach which enables these functions to
be considered directly in terms of their correlation parameters. This approach is
the key feature which provides control of the process parameters in the synthesis
procedure. These functional forms, however, do not necessarily satisfy the
properties of correlation functions. In section III.C.4, we discuss important
constraint conditions on the functional parameters which must be imposed to
satisfy these properties. We note, however, that these conditions are necessary,
but not in themselves sufficient, to ensure the proper functional form for
correlation functions. Therefore, care must be used in the parameter selection
process in order to synthesize physically realizable processes.

In section IV, the concept of ergodicity of the correlation functions is
discussed in terms of the temporal and cross-correlation parameters. This
relationship is of critical importance in detection and estimation schemes which
utilize parameter estimation methods. Ergodicity is the condition under which
time-averaged statistics of random processes approximate those obtained by
ensemble averages. This condition is often assumed in estimation and other signal
processing applications. In this section, the ergodicity condition for auto- and
cross-channel correlation functions is derived in terms of fundamental process
parameters. Specifically, analytic expressions are developed for the variance of
the time-averaged correlation functions for discrete, complex processes. These
expressions provide a performance measure which can be used to specify the

! m m m • u m m l mmmm m m mm m mmm • m m m m m ............1



window size of the observation interval required to achieve a specific value of
this variance. A unique aspect of this development is the determination of the
functional dependence of these expressions in terms of the process temporal and
ensemble correlation parameters. In addition, the analytic expressions are
simplified for the general case of complex processes with jointly Gaussian
quadrature components where the usual assumptions associated with a complex
Gaussian process are relaxed.

In section V and VI, we define autoregressive (AR) vector processes and
propose a method for their synthesis in terms of the correlation parameters. This
method provides a generalization of the single channel approach proposed in [2]
to the multivariate case. Finally, in section VII, we illustrate examples of the
synthesized outputs as well as a validation of the ergodicity analysis discussed in
section IV.
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II. THE VECTOR PROCESS DEFINITION

In this report, we will consider the synthesis of vector processes under
hypotheses Ho and H1 , such that

HI: _(n)=I(n)+g (n) + w (n) n = 1,2,...,N

Ho: x(n)= .(n) + w (n) n = 1,2,...,N (2.1)

where IL (n) is a zero mean, wide-sense stationary Jxl received observation vector
consisting of I channels and j (n), £ (n) and N (n) are zero mean, complex
Gaussian random Jxl vector processes describing the signals, non-white
noise(clutter) and white noise, respectively. These vectors are treated here as
uncorrelated with each other. However, methods to correlate I(n) and g(n) could
be used to model physical conditions such as radar multi-path or reverberation.
Furthermore, w(n) is uncorrelated with itself in time, but not across channels, so
that

E [AA =[0] n~k(2)
E [ (n) H(k)] = Rww(0) n=k (2.2)

where Rww(O) is the JxJ correlation matrix of w(n). The vector processes i(n)
and g(n), however, contain an arbitrary correlation in time and between channels.
We will consider the condition where i(n), £(n) and w(n) are jointly wide-sense
stationary processes. The correlation matrix for the observation data expressed
in index ordered form [3] is

HRX IL = E[L,N&I, N ]  (2.3)

where

T
AI,N = [I&T (1) xT (2)...&T (N)] (2.4a)

2T(k) = [x 1 (k) x2 (k)...xJ(k)]. (2.4b)

3



Under the condition of wide-sense stationarity, R., is a Hermitian, positive

semi-definite matrix. We will prove this below. Furthermore, this matrix can be
written in block form as

Rxx(O) Rxx(-) ""Rxx(-N+l)- H H H

Rxx(1) Rxx(O) Rxx(-N+2) H H HB' =~ ( 1)• O . Rxx(N-2)
Bi =

H H H
_xx(N-1I)Rxx(N-2)... Rxx(0) J LRx-+) -+). Rxx()

(2.5)

where

Rxx (I) =E [x (k) xH (k-I)] k = 1,2,...,N
I = 0, + 1,... ± (N-i) (2.6)

H
and the last expression in eq (2.5) results because Rxx(I) = Rxx(-I). It is noted,

H
however, that each block matrix of Rx is not Hermitian; i.e., Rxx (I) * Rxx(I)

for 10. We also note that RM& is block Toeplitz. The superscript B denotes that
RAM is written in block form where each block as defined in eq(2.6) is a JxJ

correlation matrix over the J channels.
We now show that the matrix expressed in eqs(2.3) and (2.5) is positive

semi-definite[4]. Using eq(2.4a) in (2.3), we can express the correlation matrix
as {[_1) [0a(1) 0(2) .. H(N)]

RA } &) (2.7)

where we note the dyadic form of the observation vector process. We now let .
be an arbitrary (non-zero) JNx1 complex valued vector. Define the scaler
random variable y as the inner product of t and 1 ,N so that

4



y = Xl, N. (2.8)

Taking the Hermitian transpose of both sides of eq(2.8) and recognizing that y is
a scaler, we obtainy, H= ,N * (2.9)

Eqs (2.8) and (2.9) can now be used to obtain
E[ 1y12 ] = E[ yy*] (2.1Oa)H

=E[ W1 .11,N -, (2. 10b)

= tH E[ 1X1, N =XI, N] .t(.1c

_-.H Rx~xx t (2. 10d)

where Rx x is the correlation matrix defined in eqs(2.3), (2.5), and (2.7). Since

E[ ly12] > 0 (2.11)
then

tH RX_ 0 (2.12)

so that R,, is positive semi-definite. We note, however, that the correlation
matrix

Rxx(I) = E[ L(k) xH(k-I)] (2.13)

is not Hermitian for I # 0. Thus eq(2.10d) does not hold for Rxx(l). It is the

property that the correlation matrix is expressed in the dyadic form of eq(2.7)

that provides the non-negative quadratic expression noted in eq(2.12). This very

specific structure of the correlation matrix imposes restrictions on the functional

form of the auto- and cross-correlation functions and must be considered in the

functional shaping method described in this report.

5



M. COMPLEX CORRELATION FUNCTION AND SPECTRAL PROPERTIES

In this chapter, we consider the complex auto- and cross-correlation

functions. In section Ill.A, these functions are presented in terms of the in-

phase(I) and quadrature(Q) form. This form will be helpful in developing some

interesting properties of complex auto- and cross-correlation functions not often

addressed in the literature. The polar form of these functions is considered in

section HI.B. This form will enable us to consider correlation functions (and

thus specira through the Fourier transform) with general shapes, subject to

constraint conditions imposed on correlation functions. Furthermore, these

general functions will be expressed in terms of various correlation parameters.

These considerations are discussed in section III.C. In chapter V, these forms of

the correlation function are then used in a method to synthesize Gaussian

autoregressive processes with various spectral shape. In section IlI.D, the spectral

properties associated with complex autocorrelation functions are considered.

Finally, in section HI.E, several properties associated with the even and odd

components of the correlation functions are presented; in addition, some

important properties of narrowband, stationary, bandpass processes are reviewed.

A. In-Phase and Quadrature Component Form

In this section, we. consider the form of the complex auto- and cross

correlation functions in terms of an in-phase(I) and quadrature(Q) form.

Consider the wide-sense stationary, zero-mean, complex Gaussian baseband
process {xi(n)} for channel i expressed in terms of its in-phase and quadrature

components such that

xi(n) = xii(n) + jxiQ(n). (3.A.1)
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For jointly stationary processes, the cross -correlation (i~j) I and

autocorrelation (i=j) function is expressed as

Rif(I) =E[xi(n)xj (n-1)] (3.A.2a)

=E{ [xii(n) + jxiQ(n)][xjl(n-I) - jxjQ(n-I)] I (3.A.2b)

= E[xi[(n)xjI(n-I) 1+ E[xiQ(n)xjQ(n-I)] I

+ j{(E[xiQ(n)xj 1(n-I)] - E[x1i(n)xjQ(n-I)])I (3.A.2c)

= {R~j(I)+Rij ()) Q(ij(1)- R'i?(I) (3.A.2d)

=~~~~~( Ri1 +j ij1 .A.2e)

where
II QQ

RB.(I) =-R J ) -R~ijI) (3.A.3b)

and

Ri () = E[x(n)x(n-)] (3.A.3d)

IQ
Ri (1) =E[x~i(n)xQ(n-I)] (3.A.3e)

Rij (1) =E[xiQ(n)xjl(n-I)] (3.A.3f)

1The subscript j for channel j should not be confused with JFIL

7



We note that the correlation functions in eqs(3.A.3) are real. In section

IHL.E, we will discuss some interesting properties regarding the evenness and

oddness of these functions. For stationary processes, we have the property

Rij(I) = Rgj(-I). (3.A.4)

PROOF

Consider

Rij(nn-I) = Rij(I) = E[xi(n)xj (n-I)] (3.A.5)

and

Rji(n-ln) = Rji(-I) = E[xj(n-I)x i (n)] (3.A.6)

From eq.(3.A.6)

Rji(-I) = E[xi(n)xj (n-I)]. (3.A.7)

The proof follows from the equivalence of the RHS of eqs(3.A.5) and (3.A.7).

The autocorrelation property follows when i=j so that

Rii(I) = Rii(-I). (3.A.8)

We now consider the complex process xi(n) to consist of a signal si(n) plus

an additive disturbance such that
xi(n) = si(n) + ci(n) + wi(n) (3.A.9)

where ci(n) and wi(n) are additive non-white and white noise processes on

channel i, respectively. In section llI.C, we develop functional forms of the

correlation functions for the signal and disturbance processes which will allow

considerable flexibility in modeling these processes. In quadrature component
form si(n) is expressed as

si(n) = sii(n) + jsiQ(n). (3.A.10)

8



For stationary processes, the correlation function for the signal process can

be written using eq(3.A.2e) as

Rsij(I) = R si(1) + JR ij(I) (3.A.11)

where
s II QQ

RA-j)- Rsij(I) + Rsij (1) (3.A.12a)

and
s QI IQ

RQiJ(I) = Rsij(I) - RsQj(I). (3.A. 12b)

The corresponding disturbance correlation function is expressed as
Rdij(I) = Rc.j(I) + Rwj(I) (3.A.13a)

-[R ij(I) + jRcij(I)] + [Rij(I) + jRwij(I)]. (3.A.1 3b)

At I = 0, from eq(3.A.2e)

Rgij(0) = Rgij(0) + jRgij(0) g = s,c,w (3.A.14)

where g is used to denote s,c and w; ie., the signal, non-white and white noise

processes, respectively. However, we also have the definition

Rgij(0)Pgi = gii(Ogjj g = s,c,w (3.A.15)

where Pgij is the complex cross-correlation coefficient for processes (gi) and

(gj}, 0 gii and agjj are the standard deviations associated with each channel

process i and j, respectively, with corresponding variances

9



2
ogii = Rgii(O) g = s,c,w (3.A.16a)

and
2

ogjj = Rgjj(O) g = s,c,w. (3.A.16b)

From eqs.(3.A.14) and (3.A.15), we see that

Rg.i(O) = Re[pgj ]giicjj (3.A.17a)

and

Rgij(0) = In[pgij]agiiajj. (3.A. 17b)

Eqs.(3.A.17a) and (3.A.17b) relate the constants Rgij(0) and Rgi(0) to the cross

correlation coefficient and the channel standard deviations.

Finally, for the autocorrelation function (i=j), Rgii(I) peaks at 1=0. The

cross-correlation function Rgij(I), however, does not, in general, peak at lag zero.

We designate it's peak value as lag 1gij.

B. Polar Form

In polar form, the cross-correlation functions introduced in the previous

section are expressed as

Rg .(I)= {[Rgij(I)] 2 + [Rgij(I)]2}l/ exp.gij(l)] (3.B.la)

= IRgij(I)I expUOgij (I)] g = s,c,w (3.B.lb)

where

0gij(I) = tan-l[Rgij(I)IRij(I. (3.B.2)

10



For the autocorrelation function (i=j), the imaginary part Rii(I) is an odd

function of I (see section Il.E) so that at WO, Ogii(O) = 0. Therefore, Rgii(O) is

real. It is the variance of the zero mean process and represents a measure of the

total power in the corresponding power spectrum. We have designated this
2

quantity for the channel i processes as a 2i [see eq(3.A.16a)].
gii

For the cross-correlation function (ikj), Rgi(1) is not in general odd. Thus

0gij(0) is not necessarily zero. And so, in general, the quantity Rgij(0) is

complex. We will designate this quantity as the complex constant Gij such that

Rgij(0) = Gij = (GA)ij + j(GB)ij (3.B.3)

where G = S,C,W for signal, non-white, and white noise processes, respectively.

Using eqs(3.A.14), (3.A.17) and (3.B.3), we have

Rgij(0) = (GA)ij = Re[Pgij]Ogiiag - (3.B.4a)

and

Rgij(0) = (GB)ij = Im[pgi];gijj. (3.B.4b)

In addition, we also have from eq.(3.A.15) and (3.B.3)

Rgij(0) = Gij = (pgij) ogii ogjj. (3.B.5)

From eqs(3.B.1), (3.B.4a) and (3.B.4b), at 1=0

R gip() = [Rjij(0)] + [R~ij(0)]2 expUO gip()] (3 .B .6a)

- IPgijI 0giiagjexpUe gij(O)]. (3.B.6b)

11



From eqs(3.B.5) and (3.B.6b), we have

Pgij = IPgijIexpUgij(o)] (3.B.7a)

or IpgijI = pgijexp[-jOgij(0)]. 
(3.B.7b)

We can also develop additional relationships involving the phase and
amplitude between Rgij(I) and Rigj(I). Using the same form as eq.(3.B.1) for

Rgji(I),

we have

Rgi(I){ [Rgj(I)] 2 + [Rgji(I)]2 1/ 2 expjgji(I)] (3.B.8a)

= IRgji(I)l expUOgji(I)]. (3.B.8b)

From eq.(3.A.4), we have

Rgij(I) = [Rgji(-I)]*. (3.B.9a)

Using the conjugate property, we have

IRgij(I)i = IRgji(-I)I. (3.B.10)

and
0gij(I) = -gji(I). (3.B. 11)

Eq (3.B.11) implies an odd relationship between 0i (I) and 0gii(I); however,

we emphasize that these phase terms are not in themselves odd functions; ie.,

0gij(I) does not in general equal -0gij(I). In particular, we note that 0gij (0) is not

12

12



necessarily equal to zero. For i=j, however, the relationship Rgii(-I) = [Rgii(I)]

provides us with the expression (see section HI.E.l.a)

0gii( '[) = -0gii(I) (3.B.12)

indicating that the phase function for the autocorrelation function is odd.

C. Correlation Function Shaping Approach

1.) General Development

We now consider modeling the cross-correlation function Rgij(I) with

functional forms that will enable us to obtain generalized distributions for these

functions as well as the autocorrelation function. We express these equations as

Rgij(I) = Kgijf (Lgij, I - Igij)exp{jOgij(I)} I> 0, g=s,c (3.C.1)

where X'gij is defined as the temporal cross-correlation coefficient for ij4j and the

temporal autocorrelation coefficient for i=j. It provides a measure of the

correlation between successive pulses on a given channel(i=j) or between channels
(iNj), and is discussed further in section III.D; Kgij is a real, constant,

normalizing coefficient which will be derived presently; Igij is the lag value at

which the corresponding real function fg(o) has a peak value of unity. We note

that the cross-correlation function does not necessarily peak at lag zero as the
autocorrelation function does; ie. for ij, I gii = 0. The functions f(o) are selected

to specify the shape of the correlation function magnitude and will be considered

13



below. Using I = 0 in eq(3.C.l) together with the definition used in eq(3.B.3), we

have

Rgij(O) = Gj= KgjjfgOtigjj, k-Igjj )110 exP fiOg..(O)). (3.C.2)

Solving eq(3.C.2) for the normalizing coefficient

K~ J= Gi e -() (0) (3.C.3)
g fg(kgij, kIgj) 1 0  igij(O

so that eq(3.C. 1) becomes

Rgjip) = Gif0mgj~ I1gj cxp(j[Og (I)-Og (0)]). (3.C.4a)
fg(Igi. 1gjl 1=0

Also, eq(3.A.4) enables us to obtain
R gji (1) = [R~gij(-I)] *

The normalizing procedure presented above was utilized so that at 1=0, we have
Rgij(O) = Gij = (pgjj)a;gjiigjj as noted in eq.(3.B.5). When the equality in

eq.(3.B.5) is used in the above equations, we obtain

Rg~ip) = gIgj9- gi -1= Ig pj[Oij))Oi (01 (.C.5a)

or from eq(3.B.7b)

14



Rgi() - g( gi' - Igj)Il- exp[jog.J(I)]} g = s,c. (3.C.5b)

Also,

Rgj i (I) = (p g* agii og.fg(xgij, I - IgJ)p
fg(xgij , I -Igij)I1=0 g xp( i[Ogij(I)Ogij(O)])

g = s,c (3.C.5c)

or orIpgij IG gii a gJJ f 9( gij , -- Ig

R gji() = II gi=0 xp[-j[Ogij(-I)]) g = s,c. (3.C.5d)

The last four equations provide us with a useful description of the cross-
correlation function in terms of the cross-correlation coefficient Pgij the

standard deviations aii and ajj of the channel i and j processes, respectively, and
the temporal cross-correlation coefficient, 1gij.

For the autocorrelation function (i=j), we have

IPgiiI = 1 (3.C.6a)

since any given channel process is totally correlated with itself at zero lag. Also,

0gii(O) = 0 (3.C.6b)

since 0 gi(I) is an odd function of I (see section III.E.1.a). Eq(3.C.5b) for the

autocorrelation function now becomes
2

.iifg(Xgii, I)
Rgii(-) = fg(gii' i ) 0xp(j[0gii) (3.C.7)

15



where we again note that 1gij=0 for i=j since the autocorrelation function peaks at

lag zero. Furthermore, since the function fg(.) for the autocorrelation function

has a peak value of unity at 1=0, eq.(3.C.7) reduces to

Rgii(I) = a gfg(IgjjI)exp~jOgii(I)} g=s,c. (3.C.8)

At I = 0, eq.(3.C.8) becomes2
Rgii(O) = agii g-s,c (3.C.9)

which is, as expected, the variance of the zero mean, channel i process. Finally,
we also point out that since Kgij in eq(3.C.3) is a real constant, then, defining

Kgj as

Kgij = Kgij fg(gij, I - Igij)1=0  (3.C.lOa)

eq(3.C.3) enables us to obtain

Kgij = Gij exp(-jgij(O) I (3.C.10b)

= (Pgij)agiicgjjexp[JOgij(0)) . (3.C. lOc)

= Ipgijlogiia gj (3.C.10d)

where eqs(3.C.10c) and (3.C.10d) result from eqs(3.B.5) and (3.B.7b),
respectively. We note that Kgij is also real, although Gij and Pgij are in general

complex.

In the above discussion, we have proposed using functional forms to

characterize the magnitude and phase of the correlation functions. The motivation

for this approach is that it allows us flexibility in modeling random processes

with various correlation and spectral shape. We caution, however that at this

point we have not constrained these functions to meet all the criteria that are
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necessary and sufficient to characterize correlation functions. In fact, determining

all of these conditions in a general formulation is a difficult task. In section

III.C.4, we consider several constraint conditions including the important

condition of positive semi-definiteness of the correlation matrix. In that section,

we show that even for correlation matrices of small dimension, determination of

an analytic solution of the constraint conditions is tedious. However, empirical

methods to control the parameters can be utilized.

2. The Autocorrelation Function

In this section, we consider the special cases of the Gaussian, exponential

and sinc shaped autocorrelation functions using the form denoted in eq(3.C.8).

a. The Gaussian Shaped Autocorrelation Function

In this special case, we consider autocorrelation functions with Gaussian

shaped magnitudes for the signal and clutter processes such that (dropping the

subscript i notation for convenience)

N 12 (3.C 2 la)
fs(xs,I)=(s) = exp[- 2N2AST2I2 (3.C. Ia)

and

fc(Xc,,) = (XV)12 = exp[- 2x2 .2T212 (3.C.1 lb)

where

,g = exp[-2n2gT2] g = s,c (3.C.12)

and X g is a real constant such that 0 <. Xg <. 1 and T is the sample period. In
2

section III.D, we show that gg with g=s,c is the variance of the Gaussian spectra
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associated with the signal(g=s) or non-white noise(g=c). Using these equations in

eq(3.C.8) provides2 2 (~2
Rs(I) = 2 f(,)expUOs(I)] = a s (Xs) expUOs(I)] I > 0 (3.C.13a)

and 2 2( 2
Rc(I) = c2 f(Oc)expUOc(I)] = c2 (X) expUOc(I)] I > 0. (3.C.13b)

Using eq(3.C.13b) in (3.A.13a) for i=j, we obtain

2 (1 2 2
Rd(I) = 2 (XC) expUOc(I)] + a2 8(I) I >0 (3.C.13c)

where d denotes the entire disturbance process consisting of non-white plus white

noise and the white noise autocorrelation function has been expressed in terms of
the Kronecker delta function, 8(I). Eqs(3.C.13a) and (3.C.13b) indicate that Xg is

a measure of the correlation magnitude between consecutive samples [2] of the
process on channel i. This is determined by considering that the magnitude of

Rg(I) at I = 1 is decreased by the factor Xg as compared to the magnitude at I = 0;

ie.
IRg(l)I = Xg Rg(O). (3.C.14)

The relationship Rg(-I) = [Rg(l)]* where g=s,c provides the appropriate

value of the autocorrelation function at negative lag values.

b. The Exponential Shaped Autocorrelation Function

In the case of the exponential shaped autocorrelation function, we have

fssI) = (a)III (3.C. 1 5a)

and
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fc-,)= (%")III (3.C. 15b)

And so, eqs(3.C.8) and (3.A.13a) enable us to obtain

R5(I) a 2 (X)III epO( (3.C. 16a)

and

Rd(I) a 2J. (Xc)1It expUec(I)] + a~ 2 (I). (3.C. 16b)

c. The Sinc Shaped Autocorrelation Function

In this case, the shaping function for the autocorrelation function is

expressed as

=sXs, s[2ic(1-X)l (3.C.1I6c)

so that
2 sin[2n(1-Xs)I]R5(I) = a [ 27(l -X)II e XpljOS(I) (3.C. I6d)

d. Normalizatiort by the White Noise Vaiac

If the expressions in the first equality of eqs(3.C.13a) and (3.C.13c) are
2

normalized by the white noise variance aw we have

r5(I) ! 2 = (SNR)f5(Xs,I) expUO5(I)] (3.C. 17a)

Ow

and

rd(I) = 2 =(CNR)fc(X~c,I) expUOc(I)] + 8(1) (3.C.1l7b)
law

where
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SNR = s / 2  
(3.C. 1 8a)

and
CNR = 22 (3.C.18b)

Eqs.(3.C.17a) and (3.C.1Th) are equivalent to those suggested in [2].

e. Polar Form with a Dopler Shift

The expression for the correlation functions can be modified using a linear

phase shift term to explicitly account for a Doppler center frequency. In this case,

eqs.(3.C.13a) and (3.C.13c) can be expressed as

2
Rs() = os fs(ks, I)expUOs(I)]expU2irfsl T] (3.C.19a)

and

Rd(I) = 2fc(Xc,I)expUOc(I)exp[j 2 ndfcI T] + aw 8(I) (3.C.19b)

where f. and fc are the signal and clutter Doppler center frequencies,

respectively.

3. The Cross-Correlation Function

We will now consider the special cases of Gaussian, exponential and sinc

shaped cross-correlation functions. In section HI.C.4, constraint equations -Jill be

developed in order to control the positive semi-definiteness of the appropriate

correlation matrices.
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a. Gaussian Shaped Cross-Correlation Function

In this special case, we consider cross-correlation functions with Gaussian

shaped magnitudes for the signal and non-white noise processes using eqs(3.C.5a).

Consider the functional form

fg(Xgij, I-Igij) = (Xgij)(I-Igij) 2  g=s,c (3.C.20)

where (see section III.D)

xgij = exp[- 2g 2jT2, (3.1.21)

and 0 < X, gj< 1. Using eq(3.C.20), the normalizing terms in the denominators

of eqs(3.C.5) become
2

fg(Zgij, 1-1gij)A1= 0 = (Xgij)lgij g=s,c. (3.C.22)

Using eqs(3.C.20) and (3.C.22) in eqs(3.C.5a) and (3.C.5b), we obtain
(Pgij)Ogiiagjj (tZgj)(I' lgij)2

Rgij(I) - 2 exp [0g.j(I)-0gj(0)])
(Xgij)12gij

g = s,c (3.C.23a)

IPgijjlygiigjj(;Lgij)(l'lgij)2

( gij lgij

g = s,c. (3.C.23b)

Also

(Pgji)Ogiaigjj()gj
i)( gji)2

Rgji(I) = 2 Cxp [j[0gji(I)-gji(0)])

(Xgji )gji

g = s,c (3.C.23c)
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Ipgji l giifgii( gji)(I'gji) 2 (JOgj(I))
12 cx~ ~ji()

(Xgji )gji

g = s,c. (3.C.23d)

Eq(3.C.23a) implies that Xgij is a measure of the correlation magnitude between

consecutive samples (but delayed by lag Igij) across channels i and j. This is

determined by noting that IRgij(I)I decreases by the factor 2Xgij at I = Igij+ 1 as

compared to the magnitude value at I = Igij; ie.

IRgij(Igij ± 1)l = Xgij IRgij(Igij)I. (3.C.24)

Examination of eq(3.C.23a) indicates that at I = 0, we obtain the desired
result that Rgij(O) = (pgjj)agii;gjj. We also note that at I = Igij

(Pgij)a gii (gii

Rgij(Igij) = 2 exp j[0gij(Igij)-0gij(0)]} (3.C.25a)

(g gii
= 2 exp{i~gij(Igij) }  

(3.C.25b)2 ggij ggi

Eq(3.C.25b) indicates that as )Xgij approaches zero, the correlation function

would increase significantly if Ipgij I were not controlled. In section HI.C.4, we
2

will show that we must at least restrict IpgjI such that Ipgiji < (Xgij)lgij in order

to satisfy one condition of cross-correlation functions. However, we will also

show that this condition is necessary, but not sufficient, to properly shape the

cross-correlation function.

We now consider that from eqs(3.A.4) and (3.C.23a)
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R gji (1) = [Rgij(-I)] * (3 .C.26a)

- ij j 2 ijexp ( -j [e gij(-I)-e gij(O)]

(Xgjj) gij

g=s,c. (3.C.26b)

We can now show that

Pgij P gji (3.C.27a)

gjj 1 gjj (3.C.27b)

=,i x gjj (3.C.27c)

0 gij() = O0gjj(-I) g = s,c. (3.C.27d)

Eq.(3..C.27d) was proven in eq.(3.B. 11). From eq.(3.A.4), we have at 1=0,

R gij(0) = [R gjj(0)]*. (3.C.28)

Using eqs.(3.C.23a) and (3.C.23c) in eq(3.C.28), the equality in eq(3.C.27a)

follows directly. We now consider the absolute values

I i(Ii2 = jpgjiiajj j 11j)2 i)2  (3 .C.29a)

and
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2 I gji -) jjI iCr iagj 0 g. .) 2(Igj ) (3 .C.29b)

Igj) =(;Xgjj) 2(19 jj)

where we have used the equality, IpgijI12 = lPgjil2. Usinlg the equality expressed in

eq(3.B.l10), we now obtain

(g)21gi 2 21 2
(;Lgij) gii (,gj P gj i

Eq.(3.C.30) must be satisfied at all values of 1. At I I i

22

;gj)21'+1 = 2 )g j g=s,c (3.C.31a)

while at 1 -1 )21 i

22

(xg . 2(1 gij +1gji) 2 2)g* i g=s~c. (3.C.31b)

Noting the inverse relationship expressed by the RHS of eqs.(3.C.31a) and

(3.C.31b), we have
2 2

(Xgjj) 2(Igij+1 Igji)2 = (;Lg. .y2(igij+ gj1)3C.2

Since 0 < )Xgij9 )Xgji 5 1, eq.(3.C.32) can only be satisfied if
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'gjj = 1 gjji g=s,c. (3.C.33)

Using eq.(3.C.33) in eq.(3.C.30), it follows that

'gjj = Xgji g=s~c. (3.C.34)

b. Exponential Shaped Cross-Correlation Function

In the case of cross-correlation functions with an exponentially shaped

magnitude, we have

fg(X-gij, 11Igjj) = (Xg..)I1-1gj g=s,c (3.C.35)

where 0: k gij 5 1. At 1=0, we have

_g;gj -ii~ = = IXj)1 ij I g=sj~c. (3.C.36)

Using these results in eq.(3.C.5a), we have

R gji) - (Pgij )O;gi xygn 0.gj) I-ijI A. jeil)(gjo]

g = s'c. (3.C.37a)

Again, using eq(3.A.4)

(Pg. jj*agiiag j' )I+tg**I
R gji(I) = ( g ij i eCp t-[Ogij(-I)-(Ogij(O)]

g = s'c. (3.C.37b)
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c. The Sinc Shaped Cross-Correlation Function

In this case, the shaping function for the cross-correlation function is

expressed as sin[22 (1-Xgij)I- Ig1ijl

fg[xgij' (1'1gij)] - [2(l.gij)II igij] g = s,c. (3.C.38)

At I = 0, we have
sin[2(1-Agi( gj)gi(j]

fg[gij, (I-Igij)]Il=0 - [2x(1. gij)lgijI g = s,c. (3.C.39)

so that

i[2x(1 A-gij) -Igij I.

Rgij(I) = [sin[2r(-gij)'gij1 1 expUOgi(I)]

L[27c(l'X gij )Igij]

g = s,c. (3.C.40)

d. Multichannel Doppler Processes
If a baseband signal gi(n) on channel i is considered to have a Doppler

center frequency fgi' we can express this process as

gi(n) = [gij(n) + jgiQ(n)) expU21cfgi nT] (3.C.41)

where T is the pulse repetition period. The cross-correlation function is therefore

Rgij (nn-I) = E[gi(n)gj (n-I)] (3.C.42a)

= E [ [gii(n) + jgiQ(n)][gji(n-I) - jgjQ(n-I)] I
SexpU2fginT~exp[-j27cfg-(n-I)T] (3.C.42b)
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- E [ [gii(n)gji(n-I)] + [giQ(n)gjQ(n-I)]

+ j[giQ(n)gjI(n-I)] - gii(n)gjQ(n-I)])
- expU22nfgi nT]exp[-j 2 fgj(n-I)T]. (3.C.42c)

For joint-stationary conditions on the random processes contained in the

expectation operation,

Rgij(nn-l) = [Rgij(I)+ jRgij(I)]expj27[(fgi-fg)nT + fg.IT] I. (3.C.43)

We note that this cross-correlation function is not time independent for

fgi#fgj due to the term involving the frequency difference in the exponential.

Thus, the processes are not jointly stationary. This situation would result, for

example, when processing data from two or more radar systems operating at

different center frequencies. However, since the time dependent term is

deterministic, it can be removed in the pre-processing. This is achieved by

selection of a reference channel and frequency multiplying the other channel

signals so that the resulting Dopplers are all equal to that of the reference. The

proper mixing terms are obtained as follows. First, consider the Doppler

frequency on channel i expressed as

2vfoifg- c 
(3.C.44)

where v is the object velocity, foi is the channel i carrier frequency and c is the

velocity of light. We therefore have the relation between channels i and j, such

that

fgi- f_- 2v (3.C.45)
foi - f- c
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If we select channel i as the reference channel so that fgi= fgR and foi = fOR

where fgR is the Doppler on the reference channel and foR is the reference

channel carrier frequency, we have[foR]
fgR ] L fgj J 1,2,...,J. (3.C.46)

And so, if each channel j is frequency multiplied by its appropriate factor
(foR/foj), all of the Dopplers will be equal and eq(3.C.43) reduces to

R. i(I) = [Rgi(I) + jRgi(1)]expj2gIT]. (3.C.47)

g Aij Aii Bj .()exU7fg9T

This result depends only on lag I and therefore satisfies the stationarity condition.

The preprocessing proposed here, of course, would be performed subsequent to

processing stages which might utilize the raw Doppler information contained on

each channel.

The corresponding polar functional expression for eq(3.C.5a) is

Rgi.(l =i gj -i Igij)
Rg(1) = fg(QgPgjI - Igjj) I vXp{j[Ogij(I)l)expOi2 xfgRI T). (3.C.48)
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4.) Constraint Conditions For Correlation Functions

In this section, we discuss the constraints that must be imposed on the

parameters of the functional forms discussed in the previous sections to ensure

that these functions have the appropriate form for correlation functions. These

conditions are discussed in the next two subsections. In III.4.a, we develop

general constraint conditions while in I.4.b, the condition of positive semi-

definite correlation matrices is considered. As noted in section II, the

multichannel correlation matrix is Hermitian and positive semi-definite for

stationary processes. The expressions, developed in eqs(3.C.5a) through

(3.C.5d), are contained as the elements of the multichannel correlation matrix,

Rx. Therefore, we must ensure that this matrix, when using elements obtained

from these equations, satisfies the condition of positive semi-definiteness; ie. a

matrix for which all eigenvalues are non-negative or all subminor matrices of

R., have a non-negative determinant [12,131. These conditions will impose

constraints on the terms Pgij' ,gXij' i ii and Igij.

a. General Constraint Conditions

Several important constraints can be developed in a straightforward

manner by generalizing a discussion noted in [5]; ie., with the real constant a, we

consider

E~xinl)ax~~l ] * ,

E[Ixi(n+I)+axj(n) = E[ [xi(n+l)+axj(n)][x i (n+I) + axj (n)]} (3.C.49a)

= E[xi(n+l)x i (n+l)]+ aE[xj(n)x i (n+l)]

+ aE[xi(n+l)x j (n)] + a2E[xj(n)xj (n)] (3.C.49b)
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= Rii(O) +a[Rji(-I) + Rij(I)] + a 2 Rjj(O) (3.C.49c)
= Rii(0) +a[Rj(I) + Rij(I)] + a 2 Rjj(O) (3.C.49d)

so that

E[Ixi(n+)+axj(n)I 2] = Rii(O) + 2aRe(Rij(I) } + a 2 Rjj(O). (3.C.49e)

The above quadratic is nonnegative for any a; therefore, its discriminant is

nonpositive so that from eq(3.C.49e)

[Re [Rij(I)]2 < Rii(O)Rjj(0). (3.C.50a)

Likewise, interchanging i and j in eq. (3.C.49a), we obtain

[Re{Rji(I)]2 < Rii(O)Rjj(O). (3.C.50b)

Since the geometric mean of two numbers does not exceed their arithmetic mean,

we also have
2Re(Rij(I))I < Rii(O) + Rjj(O) (3.C.51a)

and
21Re[Rji(I))I < Rii(O) + Rjj(O). (3.C.51b)

Alternative expressions can be obtained from eq.(3.C.49c) such that

[Rij(I) + Rji(-I)]2 < 4Rii(O)Rjj(O) (3.C.52a)

and
[Rji(I) + Rij(-I)]2 < 4Rii(O)Rjj(O). (3.C.52b)

We will now consider the specific example of the Gaussian cross-

correlation function and demonstrate how the above equations are utilized to

constrain the function parameters. Using the real constant defined by eq.(3.C.10c)

in eqs.(3.C.23a) and (3.C.26b), we obtain

Kgj() gij)(igij)2

R 2 exp g (1)] (3.C.53a)

gij)gij3
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and

Rg .(I) = K gij i(.gj)(I+Iglj )2 epj 4).(3.C.53b)gj( 12 ex[ij~~I]
Xgij)gij

Inserting eqs(3.C.53a) and (3.C.53b) in constraint eq(3.C.52a)

(X ) 2 --expUegij(I)I

K gij(7.gjj)" ij )2 2x~eiiI] 2 2
+ r - x[jBlj()1 4(;gjjigjj* (3.C.54)

Noting that (-I + I gij) 2 = (I - I gj )2, we have

4(Kg~j)2(xgj)2(1lgjj)2  2[6gj() <a. 2 .23C5a

so that from eq(3.C.l0d),

The most stringent condition for this constraint equation occurs when I = 'gij' ,so

that

'Pg. .12 < (Xi) i (3.C.56a)1j coS2[Ogij(Igij)
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Taking the positive square root of both sides of this equation, we have the

constraint
2

lpgj I < (Xgii) gij 3C5b

IcostO gij(Igij)].

The result expressed by eq(3.C.56b) provides a constraint for IpgijI which

is upper bound. It represents one of several conditions that must be satisfied by

complex correlation functions.

Although the constraint procedure presented above is utilized in order to

bound the constant parameters to those values which will provide the proper

form of correlation matrices, it should be noted that they are necessary, but not

sufficient conditions. In the next section, we will discuss the constraint of positive

semi-definite correlation matrices and show that they lead to additional constraint

conditions which are also not in themselves sufficient.

b. Conditions for Positive Semi-Definiteness

In this section, we consider conditions for positive semi-definiteness of the

correlation matrix described in eq(2.5). By considering a specific example of

this correlation matrix, it is shown that additional relationships exist among the

parameters leading to further constraint equations. However, as we will show,

with appropriate adjustment of the parameters, positive semi-definiteness can be

achieved. The principal motivation for satisfying this constraint is two-fold.

First, we are further restricting these arbitrary functional forms to conform to

the proper shapes of correlation functions. Second, we are satisfying a condition

for physical realizability. In section V, we discuss a method for the synthesis of

multichannel AR processes which insures that the positive semi-definiteness
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constraint is maintained. The most direct method, however, would be a

determination of the eigenvalues through a singular value decomposition (SVD).

EXAMPLE
In this example, a 4x4 correlation matrix R_. for a two channel process

will be considered. The Gaussian shaped distribution will be used for both the

auto- and cross- correlation functions so that (dropping the g=s,c notation)

Rkk(l) =2 ( 2
( (Xkk)12 expUOkk()] k = ij (3.C.57a)

Ri()=IP-iCTiio J(XiJ) ( l 'lij ) 2

Ri(j)2 expej~ij(I)] (3.C.57b)

.j)12
RjiP) Ilaii~iijki)('~'ij)2.(.C5c

2(j(IiUjl rxp[-jOij(-I)l. (3.C.57c1

(Xij)'Iij

Using these relations in the 4x4 correlation matrix and simplifying for real

correlation functions, we have
R l l (O) R 12 (0) Rll(1) R12 (1)

R2 1(0) R2 2 (0) R2 1(1) R2 2 (1)
RZ- Rll(-1) R 12 (-1) Rll(O) R12 (0) (3.C.58a)

R2 1(-1) R2 2 (-1) R2 1(0) R2 2 (0)

-- 2 2 X' 1 C 1 C 2 ) 2 1 - 2 1 1 2 -
011 ' P1216110122 11 11lIP11102 k22 2

P 12 1011022 022 P12 1 11 10 2 2 (; ) 1+212 02222

02 X 1+21 122
S111 1 P12 1011('2 2 (11 2 G11 'P12 1011022

1_2112a2 2

IP12 101122 ()12) 222122 P12 1011*22 'g22

(3.C.58b)
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As noted above, all subminor matrices must be non-negative for positive

semi-definiteness. In this section, we will consider a few of the required

constraint equations by requiring the determinants of the four principal minors in

eq(3.C.58b) to be positive. After considerable algebraic manipulation of these

determinants, we obtain the inequalities
2 (3.C.59a)

11l22 [ 1 - IP1212] >0 (3.C.59b)
4- 1P2 2

(2 2 T2 2 [ " (%11 )2 -A 1 IP1 2 12 } >0 (3.C.59c)4 2

f1122'-C-A21P1212 + BIP 1 2 14 } 0 (3.C.59d)

where

Al = 1 +K2 -2(%llI)KI (3.C.60a)

(%12)(1-2112)
2

K1 = 2 =(%12 )1"2 112 (3.C.60b)

(X12) 12
2 2

A2 = 2 + [K1+K2] - 2(Xl l+%22)[Kl+K2]

+ 2(X 1)(),2 2 )[ 1+ (71 2 ) 2 ] (3.C.60c)

K2 = 2 - (X12)1+2112 (3.C.60d)
22 =4(%,12)112

B = 1 - 2()1 2 )2 + (q12)4  (3.C.60e)

C = (X1 1 ) 2 + (,22)2 _ ()L11)2( 22)2. (3.C.60f)

Eqs(3.C.59a) and (3.C.59b) are always satisfied since G2  is positive and

IP 1 2 12< 1. In Appendix E, we show that

34



A 1 > 1 - (%1 1 )2 > 0 (3.C.61a)

0 < B < I (3.C.61b)

0 < C< 1. (3.C.61c)
Since 011 and 022 are also positive, then eq(3.C.59c) is satisfied when

1 - (X11) 2

IP1212 < A1  . (3.C.62)

Using eq(3.C.61a) in eq(3.C.62), we note that the condition I P 1 2 1 < 1 is

maintained. Eq(3.C.56d) is satisfied when

A2 1Pl212 - B IP12 14 < 1 - C (3.C.64a)

or
IP1212 [A2 - BIP 1212] < 1 - C. (3.C.64b)

Eq(3.C.64a) can also be expressed as

B Ip1214 - A2 1P1 2 12 + (1 - C) > 0. (3.C.64c)

Since this quadratic is non-negative for any 1P1212, its discriminant is non-

positive so that

(A2 ) < 4B(1-C). (3.C.64d)

The inequalities in eqs(3.C.62) and (3.C.64a) through (3.C.64c) can always be

achieved for sufficiently small values of I P 12 1. This will be an important

control parameter in the process synthesis procedure. We now consider several

examples using the above constraints.

CASE1
In this case, we consider the parameters X12 = X1 = X2 2 and 112 0 so that

from eqs(3.C.60a) through (3.C.60f)

K1 =K 2 =X 1 2 =ll (3.C.65a)
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A1 = 1 - (%11)2  (3.C.65b)

B =1 - 2(X1 1)2 + (, 1 1 )4 (3.C.65c)

A2 = 2 + 2(X11)2 - 8(XI1 1 )2 + 2(Xj,1)2 [1 + (XI1 1 )2]

= 2[1 - 2(;X1 1)2 + (Xl 1 )4 ]

=2B (3.C.65d)

C = 2(X1 1 )2 - (X11)4. (3.C.65e)

In this case, eq(3.C.62) is always satisfied since it reduces to
Ip12 1 < 1 (3.C.66)

while eq(3.C.64a) becomes
2BIp 1 212 - BIpl214 < 1 - 2(XI1 )2 + (XI1 )4 = B (3.C.67)

so that
21p 12 12 - Ip1 2 14 < 1. (3.C.68)

This equation is also satisfied for IP 121 < 1 so that the constraint equations

dicussed here are satisfied for all values of Ip 121. This condition is observed in

Table 3.1 which shows the values of the 4x4, 3x3 and 2x2 principal minor
determinants of eq(3.C.58b), respectively. In the special case where 'P1 21=1 and

'a 1=a 22 , both processes become identical. In particular, when X 12 =x 1 1=X2 2 =

0, we have the case of two identical white noise processes.

CASE2
We first note in [] of Table 3.1 that when X11=X22=1, but X12<1, even the

small value of IP12 1=0.0001 causes the determinant D4 to go negative. In this

case, we make a small reduction in the temporal correlation coefficients from
unity and observe the effect on the range of permissable values of X12 . Consider

x11= ) 2 2 = 0.95, IP12 1 = 0.0001 and 112 = 2. From eq(3.C.60f), C = 0.99049 so

that eqs(3.C.62) and (3.C.64a) become, respectively
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1P12 12 < 0.0975/A 1  (3.C.69)

and
A2 1p 12 12 - BIp 12 14 < 9.506x 10-3 . (3.C.70)

Using IP1212 = lxl0 "8 and eq(3.C.60a) in (3.C.69), we obtain

22.09751
A1 = 1 + K - 2(.95)K 1 _5 l 9.75x10 6 . (3.C.71)

Since K1 = (X12) "3 , then, solving for X1 2 yields

(Xi2)- 6 - 2(.95)(1 2)"3  (X12)"6 < 9.75x10 6  (3.C.72)

or

(X12)6 > 1.0256x10 "7  (3.C.73)

so that

(X12) > 0.0685. (3.C.74)

This result agrees with the 3x3 determinant D3 of eq(3.C.58b) in n3 of Table

3.1; ie., D3 goes negative for X12 < 0.0685. The more stringent condition,

however, is expressed by eq(3.C.70). For X12<0.3, A2 -(.X12)- 6 and IP1214 - 0

so that eq(3.C.70) can be approximated as

(,12) -6 IP1212 < 9.506x 10 3  (3.C.75a)

or

(X12) 6 > 1.05196x10"6  (3.C.75b)

so that
X12 2! 0.1008479 (3.C.75c)

which agrees with the value where D4 in n3 goes negative.
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The significant result of this case, however, is observed by first noting that from

eq(3.C.75), we have
IP121 _< .0975(X12) 3 .  (3.C.76)

We note, however, that from the previously developed constraint eq(3.C.56b)
with 112 = 2, we have the inequality

IP121 < (X12) 4 .  (3.C.77)

Therefore, when X12 < .0975, eq(3.C.77) is more restrictive than eq(3.C.76).

However, when X12 > .0975 eq (3.C.76) is the more stringent condition. This

case illustrates that neither constraint is sufficient to guarantee that the functionals

will have the proper form for correlation functions. In the absence of such a

sufficient condition, the proceedure will be to utilize the more stringent

condition; ie., positive definiteness or eq(3.C.53b) recognizing, of course, that

either of these two conditions may not be sufficient. As noted previously, an

SVD method appears to be an efficient means to check positive semi-definiteness.

A recent correspondence on this topic appears in [13].

This case also illustrates that as the individual channel processes each

become more uncorrelated(ie., more whitened), they can also become less
correlated with each other as noted by the small value of X12. It is significant to

note that although X1 1 and X2 2 were lowered by a relatively small amount(ie.,

from unity to 0.95), the value of X12 could be lowered significantly, provided

IP121 is low. Examination of Nj and F] in Table 3.1, however, also indicates that

the lower bound on X12 is highly dependent upon IP121.
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01l21 'll Z22 X12 D 4 D3 D2 112

0.0 1.0 1.0 1.0 0 0 36.0 2.0

0.1 0 0 35.6

Wl 0.5 0 0 27.0

0.9 0 0 6.8

1.0 0 0 0.0

n2 0.0 1.0 1.0 0.99 0 0 36.0

0.0001 -1.0x10 8  0 36.0

0.0001 0.95 0.95 0.90 12.32 31.59 36.0

0.20 12.12 31.54

0.11 5.04 29.7

0.10 -0.59 28.35

0.070 -97.6 4.07

0.069 -107.6 1.59

0.068 -118.6 -1.16

0.0001 0.90 0.90 0.999 46.79 61.56

0.30 46.77 61.55

0.10 33.87 58.33

0.09 22.46 55.47

0.08 -2.56 49.21

0.07 -64.24 34.04

0.06 -230.7 -7.85

Table 3.1 Computed values for the principal minor determinants of the

4x4 correlation matrix R,,.
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'P121 111 )-22 X'12 D4 D3 D2 112

0.9 0.95 0.95 0.990 1.59 4.30 6.83 2.0

0.980 0.92 2.68
n5 0.970 0.083 0.43

0.969 0.0003 0.169

0.968 -0,082 -0.10

0.9 0.9 0.9 0.970 1.149 1.647

6 0.966 0.135 0.943

0.965 -0.131 -0.188

0.001 0.1 0.1 1.0 1270.2 320.7

F7] 0.50 220.4 174.9

0.54 45.7 150.6

0.55 -1,5x!O 4 144.3

I 0.0 0.0 1.0

Table 3.1 (contin.)
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D. Spectra for Complex Correlation Functions

1. General Relationships

The power spectral density Pii(f) of the continuous random process xi(t) is

defined as the Fourier transform of its autocorrelation function such that
00

Pii(f) = fRii()exp(-j2nfl)dr (3.D.1)
-@0

while for the discrete processes x(n), we use the discrete Fourier transform
0o

Pii(f) = T IRi(I)exp(-j2flT) (3.D.2)
1=-00

1
where Pii(f) is assumed to be bandlimited to T Hz, and is periodic in

1

frequency with period I Hz.

The cross-power spectrum Pij(f) of two processes xi(.) and xj(.) is

similarly expressed in terms of the cross-correlation functions such that for

continuous processes
00

Pij(f) = JRij(,r)exp(-j2xf,)dr (3.D.3)
-00

while for the discrete processes
00

Pij(f) = T YRij(I)exp(-j2n-fIT). (3.D.4)
1=.00

Using the continuous time version of eq (3.A.8); i.e.

Rii(t) = Rii(-,r) (3.D.5)

in eq (3.D.1), we have
00

Pii(f) = {i(-)exp(-j2fr)d (3.D.6a)

-00
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00

fi (ri)exp(02xfr)dr = [Pii(f)] (3.D.6b)
-00

where the last equality results by changing the variable r to -,r and appropriately

changing the direction of the integration. Similarly, using eq (3.D.5) in eq

(3.D.2) provides the discrete time version as

Pii(f) = T (3 i(-I)exp(-j2,IT) (.D.7a)

=-o2 *
- T Rii()exp(+j2nfT) = [Pii(f)]*. (3.D.7b)

Equations (3.D.6b) and (3.D.7b) indicate that the autospectra are real. Since, in

general

Rij() 4 NO(-) (3.D.ga)

and

Rij('r) 4 Rij(-'r) (3.D.gb)

the cross-spectra is, in general, complex. From the Fourier inversion formula,

we have
00

Rii() = fPii(exp(j2 f r)df (3.D.9a)
-00

and
00

Rij(T) = JPij(f)exp(j2nfT)df (3.D.9b)
-00
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for continuous time processes; the inverse discrete time Fourier transform yields
1

Rii(I) = fPii(f)exp(j2xflT)df (3.D.10a)

and 1

Rij(I) = fPij (f)exp(02xflT)df. (3.D.10b)

At 'r - 0, eqs (3.D.9a) and (3.D.9b) become
00

Rii(O) = P ii(f)df (3.D.1 la)
-00

and
cc

Rij (O) = fPij(f)di (3.D.1 lb)
-00

for continuous time processes; for 1--0, eqs (3.D.10a) and (3.D.10b) become
1

Ri i(O) = JPii(f)df (3.D. 1 2a)

and
1

Rij (O) - lPij(f)df (3.D. 12b)

iT

for discerte time processes.
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2. Quadrature Component Form

We now consider the continuous complex autocorrelation function in terms

of its cpiadrature components, such that

Ri~)= RAii( ) + jRB..('t). (3.D.13)

Using eq (3.D. 13) in eq (3.1).1), we have
00 0

Pii(f) = RAi(r)exp(-j2nf'r)d'r + j fRBii ('r)exp(-j2xft)dr. (3.D.14)

-00 
-W0

But since RAii(t) is even and RBii(T) is odd (see section llh.E.1.a), eq (3.D.14)

becomes
00 00

Pil(f) = JRAii(r)cos(2Kf'r)d'r + JRBii('r)sn(27rfr)d't (3.D.15a)
-00 -100

=Pif)+ P~if (3.D.15b)

P~) ( f

Pg.. ( f)
LL

Fig. 3IDA Even and odd components of the power spectral density
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Eq(3.D.15b) indicates that the autospectrum is real, as noted previously.

Since the first integral is an even function and the second is odd, the resulting

summation will, in general, distort the spectrum about f=O as shown in
Fig.(3.D.1). In the case where PBii(f) = 0, the spectrum is even. This results

when RBii(T)=O, so that Rii(-t) is real.

3. Spectral Distribution Using the Functional Shaping Method

We now present a discussion which will help to clarify the role of the

temporal correlation coefficient Xii introduced in section ILI.C to shape the

autocorrelation function.

a. Spectrum of the Gaussian Shaped Autocorrelation Function

In this case, we consider a real autocorrelation function for a continuous-

time process on channel i. The form of equation (3.C.Ila) together with that of

eq(3.C.12) is used with the subscript notation g dropped. Specifically,
Oii(T) = 0 (3.D.16a)

and

f(kii~r) = X2 = exp (-2222) (3.D.16b)

where

Xii = exp(-2x2j42). (3.D.17)

With these expressions
2 2

Rii() = asiiexp(-22 iit 2 ) (3.D. 18)
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is a real, Gaussian shaped autocorrelation function. Taking the derivative of

eq(3.D. 1) with respect to f and eq(3.D.9a) with repect to r, we have
00

Pii(f) = [-J2xrRii(r)]exp(-j2irfT)d (3.D.19a)
-00

and
00

Rii(t) fJU22TPii(f)]exp(+j2irft)df. (3.D.19b)
-00

Therefore,

Pii(f) F.T -j2xrRii(,) (3.D.20a)

and
ki(r Tj2xfPii(f) (3.D.20b)*FT

where F.T denotes the Fourier transform pair. Taking the derivative of

eq(3.D.18) with respect to r

422
i 4x2 ,ii±r Rii(t) (3.D.21)

so that from eq. (3.D.20b)

F.T 2 2j27fPii(t_ ) -4x 7L2i Rii(t). (3.D.22)

2Dividing both sides of (3.D.22) by -j2 cii yields

2 Pii( FT .j2rxRii(r). (3.D.23)
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Using eq. (3.D.20a) and eq.(3.D.23)

Pii(f) = - i f 'j (3.D.24)

Solving this equation for Pii(f), we obtain

Pif P.. Pi(0)exp(- f2I2 ) (3.D.25)

2

where it is now observed that g 2iis the variance of the Gaussian power spectral

density function. Eq(3.D.25) indicates that the real, Gaussian autocorrelation

function results in a symmetric, Gaussian power spectral density (PSD).

For the discrete time case, r--+IT where T is the sample period, so that

Rii(I) = 2 iexp(-22 2 T212) (3.D.26a)

Y 2 1,2  (3.D.26b)
si 11 i

and the last equation results from eq(3.D.17). Also, from eq(3.D.17), we see that
2

as the variance of the power spectrum ±ii ranges from zero to infinity, Xii goes

from one to zero, repectively. Figure 3.D.2 shows the functional plot of Rii(I)

and Pii(f) for Oh£:s1. For Xii =0, Rii(I) is a delta function 8 (I) and Pii(f) is a

white noise spectrum. When Xi = 1, Rii(I) denotes the case of total temporal

correlation with a line spectrum for Pii(f). For Xii ranging from zero to unity,

all values of temporal correlation are obtained. Thus, Xii is a measure of the

temporal correlation between consecutive samples of the random processes [2].
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RU) P-(t)

-3 -2 -1 0 1 2 3A 0 f

a.
RPU(f)

* 0

-3 -2 -1 0 1 2 3 A 0 "

b.

RE(J) mPE(f)

- p p - p p

43-2 -10 1 2 3A, 0 f

C.

Fig 3.D.2 Functional plot of Rii(I) and Pii(I) for a.) Xi=l b.) OXliil c.)Xii-.
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b. Spectrum of the Exponential Shaped Autocorrelation Function

In this section, we consider a real exponential autocorrelation function for

a continuous time process on channel i. For this case, we have

Oii(t) = 0 (3.D.27a)

f(kii ' ) = Xji 1 = exp(-2niryi I ) (3.D.27b)

where

=ii = exp(-2rii). (3.D.28)

With these expressions, we have
2

Rii(T) = o s iexp(-2yii I r I) (3.D.29)

The power spectral density is determined by considering Rii( ) as the

superposition of two functions such that
2 X 2 -(Rii~)= s ii 'iiu (,r) + ,as ii 'ii u-)(..0

where u(r) is the unit step function. And so, the power spectral density is

expressed as
00

Pii(f) = as iiexp(-2niit)expO27r fd)dt

0
0

fs iiexp(-2nrii r)exp(2irft)dt (3.D.3 la)

-00

2 2
's ii +s ii 3D 1b

- (2nyii) + j(2tf) + (2 7tyi i) - j(27cf) (3.D.31b)
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2
2asii(2yii)

(2 yii) 2 + (2af)2  (3.D.31c)

The peak value of this function occurs at f=O so that
2

Pii(O) (3.D.32)

Also
2

Pi 2iii 
(3.D.33)

so that the 3-dB down points occur at f = yii in the exponential case. The

inflection point of Pii(f) occurs at f = -T-
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E. Special Properties of Complex Correlation Functions

1. Even and Odd Components

a. Single Channel Case

In this section we develop some interesting and useful properties of

complex auto- and cross-correlation functions. We consider the complex,

stationary, baseband random process

x(n) = xi(n) + jxQ(n) (3.E.l.1)

where we have dropped the channel subscript notation for convenience. The

complex autocorrelation function is obtained from eq. (3.A.2e) as

R(I) = RA(I) + jRB(I) (3.E.1.2)

where

RA(I) = R11(I) + RQQ(I) (3.E.1.3a)

RB(I) = RQI(I) - RIQ(I) (3.E.X.3b)

and

RII(I) = E[xi(n)xi(n-I)] RQQ(I) = E[xQ(n)xQ(n-I)] (3.E.1.3c)

RIQ(I) = E[xi(n)xQ(n-g)] RQI(I) = E[xQ(n)xi(n-I)] (3.E.1.3d)

The prime intent of this section is to consider some conditions under which we

may satisfy the special properties

RIQ(I) =- RQI(I) (3.E.1.4)

and
IRII(I) = RQQ(I) I  (3.E.1.5)
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These equations are satisfied when x(n) is a wide-sense stationary

narrowband process[see Section III.E.2a]. In this section, we show that
eq(3.E.1.4) is satisfied in general, when RIQ(I) and RQI(I) are both odd functions.

For stationary processes, we have the following properties:

Rii(I) = Rii(-I) (3.E.1.6)

and

Rij(I) = Rji(-I) . (3.E.1.7)

Substituting eq(3.E.1.2) into (3.E.1.6), we have (dropping the subscript i)

RA(I) + jRB(I) = RA(-I) - jRB(-I). (3.E.1.8)

Equating real and imaginary terms
RA(I) = RA(-I) (3.E.1.9)

and
RB(I) = -RB(-I) (3.E.1.10)

indicating that RA(I) and RB(I) are even and odd, respectively. Also, applying

eq(3.E.1.6) to R11(I) and RQQ(I), we have
Rja(1) = Rn(-l) = Rna(-l) (3.E.1. 11a)

and

RQQ(I) = RQQ(-I) = RQQ(-I) (3.E.l.1 lb)

where the last equality results because these functions are real. Thus, R11(I) and

RQQ(I) are even functions of I. Applying eq(3.E.1.7) to RIQ(I) and RQI(I), we have

RIQ(I) = RQI(-I) = RQI(-I) (3.E. 1.12)

where again, RQI(I) is real.
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We note at this point that although R1 (I) and RQQ(I) have been shown to be

even functions, no similar conclusion can be made at this point about RIQ(I) and

RQI(I). However, expressing RQI(I) in terms of its even and odd components, we

obtain

RQI(I) - R I(I) + R16(I). (3.E.1.13)

Eq.(3.E.1.12) can now be written as

RIQ(I) = RQI(-I) - RQI(-I) + R I(- ) .  (3.E.1.14)

From the property of even and odd functions

RIQ(I) = RQI(I) - RQI(I). (3.E.1.15)

Solving for RQI(I) in eq.(3.E.l.13) and substituting into eq(3.E.1.15), we have
RIQ(I) = RI(I) - [RQI(I)- R(I)] (3.E.1.16a)

=-RQI(I) + 2Re(1). (3.E.1.16b)

A similar equation is obtained by solving for RQI(I) in eq.(3.E.1.13) so that

eq.(3.E.1.15) becomes

RIQ(I) = RQI(I) - 2RI(I). (3.E.l.17)

These last two equations show ,ie explicit dependence of RIQ(I) on the evenness

and oddness of RQI(I). These equations indicate that when RQI(I) has no even

component (ie., when it is an odd function),

RIQ(I) = -RQI(I) for RQI(I) = RQI(I). (3.E.1.18)

On the other hand, when RQI(I) has no odd component (ie. when it is an even

function),

RIQ(I) = +RQI(I) for RQI(I) = ReI(I). (3.E.1.19)
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These last two equations can be substituted into eq.(3.E.1.3b) to obtain the

extreme values of RB(I); ie.,

[2RQI(I) RQI(I) " RQI(1)
RB(I)" RQI( R ) M (3.E. 1.20)

Thus, the degree of eveness or oddness of RQ1(I) [or RIQ(I)] controls the

imaginary part of the correlation function, RB(I). For RQ1(I) totally even, RB(I) -

0, so that R(I) is real. In this case, the spectrum is even. As RQI(I) becomes

progressively odd, the RB(I) term increases with the result that the spectrum

becomes distorted about the carrier frequency.

At this point, we note that eqs.(3.E.1.16b) and (3.E.1.17) were developed

without imposing any restrictions on the process (x(n)} other than wide-sense

stationarity. It can be shown, however, that for narrowband, wide-sense

stationary bandpass processes, eq.(3.E.1.18) results. This is discussed in section

mH.E.2.a. Apparently, the narrowband restriction is a special case which yields an

odd RQx(I) function.

b. Multichannel Case

In this section, we consider several properties of the complex cross-

correlation function between the two processes xi(n) and xj(n) where

xi(n) = xii(n) + jxiQ(n) (3.E.1.21a)

and

xj(n) = xjx(n) + jxjQ(n). (3.E.1.21b)

Assuming wide-sense joint stationarity, the complex cross-correlation function is

obtained from eq(3.A.2e) as

Ri(I) = RAij(I) + jRBij(l) (3.E.1.22)

54



where
II QQRA..(I) = RII(I) + Ri (I) (3.E. 1.23a)

Q1JI

RB..i(I) = Ri () -Rij (1) (3 .E. 1.23b)

and

Rij(1) = E[x11(n)xj 1(n-I)] (3 .E. 1.24a)

R1j (1) =E[xiQ(n)xjQ(n-I)] (3.E.l .24b)

Rij (I) =E[xj(n)xjQ(n-I)] (3 .E. 1.24c)

QIR1i (1) =E[xiQ(n)xjl(n-I)] (3.E. 1.24d)

Under the stationarity conditions assumed here, we have the relation

NO~() = Rji(-I). (3.E.1.25)

Substituting eq(3.E.1.22) into eq(3.E.1.25) enables us to obtain
RA..(1) = RA..(-l) (3 .E. 1.26a)

and
RB..(I) = -RB..(-I). (3.E.1 .26b)

Applying eq(3.E.1.25) to the real functions in eqs(3.E.1.24), we have

Rij (1) = Rji(-I) (3.E.l .27a)

QQ QQRij (1) = RJ (4I) (3.E.1 .2Th)

IQ QI
Ri (1) = Rj (4I) (3 .. 1.27c)

QI IQRi (1) = Rj~ (-1). (3.E.1 .27d)
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2. Narrowband Bandpass Processes

a. Single Channel Case
We now consider a real, narrowband, bandpass process ni(t) such that

ni(t) = Re[xi(t)expOj2lfcit)] (3.E.2.1)

where xi(t) is the complex baseband process previously defined in eq(3.A.l) as

xi(t) = xii(t) + jxiQ(t). (3 .E.2.2)

The quantities xi(t) and xiQ(t) are the real-valued low pass quadrature

components. Using eq(3.E.2.2) in (3.E.2.1), the process ni(t) can be expressed in

canonical form as

ni(t) = xil(t)cos( 2lnfcit) - xiQ(t)sin( 2 nfcit). (3.E.2.3)

Taking the Hilbert transform of eq(3.E.2.3) and recognizing that the quadrature

components are low pass, we obtain

ft~)= xii(t)sin(22nfcit) + xiQ(t)cos( 22tfcit). (3.E.2.4)

Eqs(3.E.2.3) and (3.E.2.4) can now be used to solve for the quadrature

components resulting in

xil(t) = ni(t)cos(2rfcit) + ni(t)sin(27rfcit) (3 .E.2.5a)

and
xiQ(t) = ni(t)cos(2nfcit) - ni(t)sin(2lrfcit). (3.E.2.5b)

In this section, we will determine relationships between the auto- and cross-
correlation functions of the quadrature components of the process xi(t) under the
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assumption that ni(t) is stationary. In this case the correlation function of ni(t) is
Rnini(r) while the power spectral density is Snini(f) centered about ± fci.

Dropping the redundant subscript i notation, we consider the Hilbert transform of

n(t) as
00

7Ct f t .% (3.E.2.6)

-00

The cross-correlation function RNIO() is expressed as

RrA(t) = E[n(t)n(t-)l. (3.E.2.7)

Substituting eq (3.E.2.6) into (3.E.2.7)

Rn~Cr) = {E fn(t)n(X) d] (3.E.2.8)

Interchanging the expectation and integration

A 1 f E[n(t)n(X)d (3.E.2.9)nn(') = 7CJ t-,r-X .. 29
-00

Assuming wide-sense stationarity on the bndpass process,

Rnn(t-X.)=Efn(t)n(X.)] (3.E.2.10)

so that
001 C Rnrn(t'X)

RA J t.t-X) CIL (3.E.2.1 1)
-00

Now let = t -X so that d=- da and
-00

RA f R n a (-da) (3.E.2.12a)

57



1C fRIrx da (3.E.2. 12b)

-00

00

1 jRn(a) da =f.()(3.E.2.12c)

Similarly,
=A(r E[An(t)n(t-r)] (3.E.2. 13a)

00

E- nQ%)n(t-T) dX(3.E.2. 13b)

XE n(Xt ) (.E213)
-00

-00

Let a = x-t+- so that dX = da an
-00

1C Rf (a A t~ (3.E.2.14d)

-00

and so noting the equality of eqs(3.E.2.12c) and (3.E.2.14)

R A r) =-RAC) (3.E.2. 15)

Also, at r = 0 the function Rnn(a)/a is odd so that

RA()=0 (3.E.2. 16)
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We now consider the correlation functions associated with the quadrature

components defined in eq(3.E.2.5a) and (3.E.2.5b)

11

tir = E[xij(t)xij(t-r)] (3.E.2. 17a)

=E[n(t)a(t-'r)]cos(2Kfct)cos[2lcfc(t-T)]

" E[i'I(t)n(t-'t)]sin(27nfct)cos[2irfc(t-r)]

[A Ent)Ai(t_'r)]Sin(22rfCt)Sin[27rfC(t_- )]. ( E2 b

Let
A =2icfct (3.E.2. 18a)

B = 2nfc(t-,) (3 .E.2. 18b)

Using the identities

cos(A - B) = cosAcosB + sinAsinB (3 .E.2. 18c)

sin(A - B) = sinAcosB - cosAsinB (3.E.2.18d)

we obtain
cos(2lrfct)cos[27cfc(t-r)I cos(2lrfcx) - siflAsiflB (3 .E.2. 18e)

cos(27rfct)sin[2irfC(t-tr)] =cosAsinB (3 .E.2. 180)

sin(27rfCt)cos[21d'c(t-tr)I sin.AcosB (3 .E.2. 18g)

sin(27cfCt)sin[ 21nfC(t'tr)I siflAsiflB (3 .E.2. 18h)

Using these relations and eqs(3.E.2.14) and (3.E.2.15) in (3.E.2.18b)

=1ir Rm(r)[cos(2nfc'r) - sinAsinB]

_-ktn(@)cosAsinB + i.(t)sinAcosB

+ R(r)sinAsinB (3 .E.2. 19a)

-RM()[cos(27fct)-sinAsinB]

+ kM(r)[sinAcosB-cosAsinB]
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+ RM(@)sinAsinB (3.E.2. 19b)

-Rnn(@)[cos(22nfc')-siflAsifB]

" mn(t)sin(2irfc't)

" RM(r)[sin~inB] (3.E.2.19c)

In Appendix B, we show that

R r)= + Rm~r) (3 .E.2.20)

so that
if

Rji(t) = Rnn(t)COS(2pfct)

+ Apii@r)sifl(2lrfct) (3.E.2.21)

Sim ilarly, R i~ r n ( C c s 2 f T

+ ftim@)sifl(27rfct) (3.E.2.22)

so that
II QQRli%?t) = R ii (Tr). (3.E.2.23)

We now consider
IQR~i (r) = E[n1(t)nQ(t-tr)] (3.E.2.24a)
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= E[n(t)ft(t-4)cos(2nfct)cos[21cfc(t-4)]

+ [f(t)A (tt)]Sin(2rfCt)CoS[27fC(tt)]
- E[n(t)n(t4,)cos(21nfct)sifl[27rfc(t4,)]

A
- E[fl(t)n(t-,)]sil(27fct)sin[27nfc(tt)]

(3 .E.2.24b)
= RnA()cosAcosB + Raf(r)sinAcosB

-RnnCr)cosAsinB - R~(sin.AsinB (3.E.2.24c)

= Rn~n(t)cosAcosB + Rn()sinAcosB

-Rn()cosAsinB - RA ()sinAsinB (3.E.2.24d)

where eq(3.E.2.20) was used to in the second term above. From eqs.(3.E.2.12c)

and (3.E.2.14)
RA~)=-~nr (3 .E.2.25a)

RA~~~ (3.E.2.25b)

so that

Rj (r) = R.(r)[sinAcosB - cosAsinB]

- Am()[cosAcosB + sinAsinB] (3.E.2.26a)

= R.(Cr)sin(A - B) - k.( )cos(A - B) (3.E.2.26b)

= Rnn(@)sil(22rfc) - A. 1 (T)cos(2irfcr). (3.E.2.26c)

Similarly,

R11 (r) =Rnn1 (')sii1(2nfc~r) - kp( 1@)cos(27tfc't) (3.E.2.27d)

so that__ _ _ _ _ _ _ _

IQ QRji (r) = R~t.(3 .E.2.27e)
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We also note that since Rnn(T) is even and knn(T) is odd, then
IQ

eq(3.E.2.26c) indicates that Rii (T) is odd. It was noted at the end of section

mI.E.l.a, that the narrowband process is a special case which results in odd cross-
IQ QI

correlation quadrature components Rii () and Q ().

b. Multichannel Case

We now consider two real, narrowband, bandas processes ni(t) and nj(t)

defined in eq(3.E.2.1) and develop properties similar to those developed in the
previous section. Specifically, we will determine relationships between the cross-
correlation functions of the quadrature components involving xi(t) and xj(t); ie.,

11 QQ QI IQ
Rij(T), Rij (T), R I(T) and Rij (T). The bandpass processes are expressed as

ni(t) = Re[xi(t)exp(j2rfcit)] (3.E.2.28a)

and
ni(t) = Re[xj(t)exp02.,cjt)]. (3.E.2.28b)

In section III.C.3.c, however, we suggested that each channel process can be
translated to a common reference frequency fcR. And so, fci and fc in

(3.E.2.41) can be replaced with fcR. Eqs(3.E.2.28) can then be expressed as

ni(t) = Re[xi(t)exp(j 2 -fcRt)] (3.E.2.28c)

and

ni(t) = Re[xj(t)exp(j 2lfcRt)]. (3.E.2.28d)

Using the quadrature form for xi(t) and xj(t) expressed in eq(3.A.1), we obtain

the canonical forms for the above equations as

ni(t) = xil(t)cos(2lrfcRt) - XiQ(t)sin( 27rfcRt) (3.E.2.28e)

and
nj(t) = xji(t)cos( 2 nfcRt) - jQ(t)sin(2 7rfcRt). (3.E.2.28f)
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The Hilbert transform of nj(t) is expressed as
CO

j(t) 7 X d. (3.E.2.29)

-00

Assuming wide-sense joint stationarity between the two bandpass processes, the
cross-correlation function RniA (r) is expressed as

Rni = () = E[ni(t)ij(t-t)]. (3.E.2.30)
nj

Substituting eq (3.E.2.29) into (3.E.2.30)

Interchanging the expectation and integration

00oEni(t)nj(X')]"

Rn1 - t-Ex dX (3.E.2.32)

We now consider,

Rnin.(t-4 ) = E[ni(t)nj(x.)] (3 .E.2.33)

so that

Rnin(t'4 )
Rninj(t) = ni t-njX)d (3.E.2.33)

1-OO

Now let a = t - X so that d)x = -da and

63



-0"

(-da)f (3 .E.2.35a)
00

7Cf a-'r
-.00

I r I - d-- (3 .E.2.35c)

-00

nij=) (3.E.2.35d)

Similarly,
RnA.nj(r) E EE~ni (-) (3 .E.2.36a)

-E fk ni(k~ij(t-tr) dUj (3.E.2.36b)

-00k

00

f ~~.Xtt (3.E.2.36d)

-100

00

RnnL%-+dA, (3 .E.2.37a)
-00

- nfljj)e (3.E.2.37b)
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From eqs(3.E.2.35d) and (3.E.2.37b), we have

We now consider the cross-correlation functions associated with the quadrature
components of the xi(t) and xj(t) processes defined in eqs(3.E.2.5a) and

(3.E.2.5b). First, consider

Rij() = E[xi(t)xjl(t-tr)]. (3.E.2.39)

Using eqs(3.E.2.28e) and (3.E.2.28f) and the corresponding Hilbert transforms,

we solve for

xjj[(t) = ni(t)cos( 2nfcRt) + ni(t)sin(27rfcRt) (3.E.2.40a)

and
XiQ (t) = ni(t)cos(2'xfcRt) - ni(t)sin( 2 7rfcRtQ. (3.E.2.40b)

Using eq(3.E.2.40a) and the corresponding equation for xj 1(t) in eq(3.E.2.39), we

obtain

Rj(,r) = E[ni(t)nj(t-,r)]cos( 27nfc Rt)cos[ 27cfc R(t-,t)]

" E[ni t)j (t-'t)]cos(2rfcit)sin[27rfcR(t-'t)]

" E ni(t)nj(t- r)]sin(27cfc Rt)cos[2fc R(t-, )]

+ En~~~J~/) nj R ~t)sin[2fc (t-'01. (3 .E.2.4 1)

We now define

A = 27cfcRt (3 .E.2.42a)
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and
B = 2fcR~-r)'(3 .E.2.42b)

Let us recall the identities

cos(A - B) = cosAcosB + sinAsinB (3 .E.2.42c)

sin(A - B) = sinAcosB - cosAsinB. (3 .E.2.42d)

Using eq(3.E.2.42C), we have

cos(27rfckt)cos[ 27rfcR(t-tr)] = cos(2irfcRr) - sin~sinB. (3 .E.2.42e)

From the identities defined above,

cos(27rfcRt)sin[ 2 rfcR(t-r)] = cosAsinB (3.E.2.42f)

sin(2irfcRt)cos[ 2irfcR(t-tr)] = sinAcosB (3 .E.2.42g)

sin(21nfcRt)sin[27rfcR(t-T)] = sinAsinB. (3 .E.2.42h)

Eq(3.E.2.41) can now be written

Rij@) = Rnin.@T)[cos( 27nfCR') - siAsixiB]

+ Rn A ('r)cosAsinBinj
" Rftn.@j(,)sinAcosB

" R~n.@()sinAsinB (3.E.2.43a)
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-Rn n ()[cos( 2 nfc r)- sinAsinBI

" Aninj (t)[sinAcosB - cosAsinBI

+ R.AnA('r)sinAsinB (3 .E.2.43b)
nj

where we have used eqs(3.E.2.35d) and (3.E.2.37b) to obtain (3.E.2.43b). In

Appendix A, we show that

Rf-*()=R--T (3 .E.2.44)

Using this equation and the identity expressed in eq(3.E.2.42d),

Ri~)= Ri ,co(ncr Aninji (r)sin(2lrfcRT). (3.E.2.45)

Similarly, using the relation sin(A-B) = -sin(B-A), we obtain

Ruj (r = Rninj(tr)cos( 27tfcRr)+ Rninf(t)sin(27rcRt) (3 .E.2.46)

so that
HI QQ

Next, we consider

R -. (rc) = E[xij(t)xjQ(t-'r)I. (3.E.2.48)

Using eqs(3.E.2.40a) and the j channel equivalent of eq(3.E.2.40b) in (3.E.2.48),

we obtain
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@) = E[ni(t)ftj(t-'r)Icos(2rfc~t)cos[2IfcR(t-'t)I

+ E[n j[n

- E[ni(t)nj(t-'r)]sin(21d'ckt)sn[21rfcR(t-'T)]

-RnAj~('r)cosAcosB + RA4.@siAcs

- Rn.n.(tc)cosAsinB - RA (.@)SinASinB(3E24b

= RnA .('r)cosAcosB + Rn.n.('C)sinAcosB
- Rninj(-r)cosAsinB - RA (.@)SinASinB(3E24)

where eq(3.E.2.44) was used in the second termn above. Using eqs.(3.E.2.35d) and

(3.E.2.37b) in (3.E.2.49c)

R9 @ () =Rnin.(t)[sin.Ac.osB - cosAsinB]

-Aninj(@)[cosAcosB + sinAsinB] (3 .E.2.50a)

-Rn.(.@)sin(A - B) - Aninj(r)cos(A - B) (3.E.2.50b)

-Rninj(t)5in(
2 xfcR'r) - Aninj( r)cos(22tfcj). (3.E.2.50c)

Similarly,

IQR1j (r) = E[xiQ(t)xjl(t-'r)] (3.E.2.5 la)

+E[ni(t)nj(t-'r)]csn(22nfcRt)s[21cR(t4')]

-E[ni(t)nj(t-'t)] sin(22dcRt)sn[2 nfcR(t-'x)] (3 .E.2.5 1b)
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= RA n@,)ccAcosB + RA A.@)cosAsinB

-n..('r)sinAcosB - Rn A (x)sinAsinB (3.E.2.51c)

=RA n(T)cosAcosB + Rn.n.(,r)cosAsinB

-Rn.n.(r)sinAcosB - Rn A (@)sinAsinB (3.E.2.51d)

An-n..( r)[cosAcosB + sinAsinB]

-n R~(,)[sinAcosB - cosAsinB] (3.E.2.51e)

ifninj(@)cos(27rfcRt) - Rnin(t)sin(2lrfcR ) (3 .E .2.51 f)

so that__ _ _ _ _ _ _ _

Qj I () (3 .E.2.52)
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IV. ERGODICITY OF THE CORRELATION FUNCTIONS
A. Ergodicity of the Autocorrelation Function

Ergodicity is the condition which enables time-averaged statistics of

random processes to approximate those obtained by ensemble averages. This

condition is often assumed in estimation and other signal processing applications.

The ensemble autocorrelation function is defined as the expectation of lagged

products of a given process when averaged over an ensemble of realizations. If

the time-averaged autocorrelation function obtained from a single realization

approximates this function, the process is called autocorrelation ergodic. In this

section, we derive the functional dependence of ergodicity on the correlation

parameters defined in section III.C. Consider the time-averaged estimate of the

autocorrelation function expressed ast
I N,

iiT(1'N ) = 2N+l Y xi(n)xi (n - I). (4.A.1)
n=-N

The variance of AiiT(I,N) at each lag I is expressed as

Vii(I,N) - E { [liiiT(I,N) - E[fiiT(I,N)]][,iiT(I,N) - E[fiiT(I,N)]] } (4.A.2a)

= E[AiiT(I,N)AiiT(l,N)] - E[liiT(I,N)]E[ftiiT(I,N)]. (4.A.2b)

In Appendix B, it is shown that

t In section VII.C, we will consider alternate forms of the estimator which are used in
practice. These forms will involve the biased and unbiased time-averaged correlation
function estimators using limited data samples. The final expressions for the
variance of the correlation function differ [7] as will be noted (Appendix B). The
motivation for using the definition of eq(4.A.1) is that it will provide mathematical
convenience in the discussion to follow. In addition, we will develop expressions
which will reduce to those expressed in the literature for the special case of real
processes [6].
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Vii(I,N) = N1 - k 1]Co(k) (4.A.3a)

and for ergodicity of the autocorrelation function, we must maintain the

condition

urnV~(IN)= rn 1 2N[ Ikil
N-boo ViN l 2N+ 1 k 1  

- 2N+1] Coo (k,I) = 0 (4.A.3b)

where
COO(k~I) =E[ ( 0(n,I) - E[O(n,I)] I 4*(n-k I) - E[O*(n-k,I)] I](4.A.4a)

=E[O(n,I)o *(n-k,I)] - [f:J]O*nk)

- E[O(n,I)]E[O * (n-k,I)] + E[O(n,l)]E[O (n-k,I)] (4.A.4b)
=ROO(k,I) - E[l(,I)IE[O (n-k,I)] (4.A.4c)

with

0(n,l) =xi(n)xi (n - I)(4A.5a)

and
R 00 (k,I) = E[O(n,I)0*(n - k,I)]. (4.A.5b)

From eq(4.A.5a)
E[O(n,I)] = Rii(I) (4.A.6a)

and

E[O*(n-k,I)] = R*~(I) (4.A.6b)

so that from eq(4.A.4c)
Coo(kI) = Ro~(k,I) - IRii(I)I2. (4.A.7)

And so, eq(4.A.3a) becomes

I 2NF IkI
Vii(I,N) = 2N+ XNj I N+i [ROO (k,) - Rii()I] (4.A.8)
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We now consider,
ROO(k,I) = E[O(n,1)0*(n - k,I)] (4.A.9a)

=E[xi(n)xi (n - I)xi (n - k)xi(n - I - k)]. (4.A.9b)

For processes with zero-mean, jointly stationary Gaussian quadrature components
xiI(n) and xiQ(n), eq(4.A.9b) can be expressed as [see Appendix H]

ROO~~k~l* =*~inx n-1]~i n-kx~ )

R~~(,I)+ E[xi(n)xi (n - I)]E[xi (n -k)x(n - I - k)]

+ E[xi(n)xi(n - I - k)]E[x1 (n - I)xi (n - k)]. (4.A.l0a)

= Rii(I)Rii(l) + Rii(k)Rii(k) + Fii(I,k) (4.A.lIOb)

= IRii(I)I2 + IRii(k)12 + Fii(I,k) (4.A.l0c)

where

Fii(I,k) = E[xi(n)xi(n - I - k)]E[xi (n - I)xi (n -k)]. (4.A.l11)

Using eq(4.A.l0c) in (4.A.8), we have

1 2NJ 1 IkI 1 [Ii~)2
Vii(I,N) = 2N+J N1 II~) + Fii(I,k)]. (4.A.12)

We note that the functional dependence of Vii(I,N) on I is due to the

function Fii(Ik). In Appendix C, we show that only the s-eal part of Fii(I,k)

contributes to the summation in eq(4.A.12), so that
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Vi1(I,N) - I _1N( 1 1 [IRii(k)I2 + Re[(F11(,k))] (4.A.13a)
2N+1 k---21

and the ergodicity condition becomes

lrn Vid,N)= lun 1 , 2N[ Ik [IRii(k)I2 +Re{F,(Ik)}] = 0.
N-i+oo N ) 2 N+l1 k2~~j -N+1

1 + 1-

(4.A. 13b)

For real processes
Fii(I,k) = E[xi(n)xi(n - I - k)]E[xi(n - I)xi(n - k)] (4.A.14a)

= Rii(k + I)Rii(k - 1) (4.A. 14b)

= RiI+ k)Rii(I - k) (4.A.14c)

and eq(4.A.13b) reduces to the discrete time form of eq(1 1-54) in [6]. For a

specific value of N, the variance expressed by the LHS of eq(4.A.13a) can now be

written as

Vii(I,N) =Eii(N) + Lii(l,N) (4.A.15)

where

Eii(N) I 2N+ 2N J 1 Rii(k)I2. (4A. 16a)

and
1 2NF IkI1Lii(I,N) = N+1 = - 2N+iJ Re{Fii(I,k)). (4.A.16b)

In Appendix C, it is also shown that

Re[ Fii(Ilk)) = [R~..(I + k)~ iI- k) + RDii(I + k)RDii(I - k)] (4.A. 17)

where
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RCii(a) - RQ(a) (4.A.18a)

and
RD.(a) = RI IQ ( 1

11 (a) + Ri (a). (4.A.18b)

It is also noted that if the associated bandpass process for this basband

process is stationary and nar rowbnd then eqs(3.E.2.23) and (3.E.2.28) of

section HlI.E.2.a hold, and Fii(I,k) is zero. And so, the expression for Vii(I,N)

becomes independent of I and reduces to
1 2N Ikl 2

Vii(lN) = Eii(N) = 2N+1 7- 1 - 2N+1J Rii(k)2 (4.A.19)

Using the functional form for the exponential shaped autocorrelation

function, we have2
Rii(k) = aii (Xi)Ikl expU0ii(k)] (4.A.20)

so that

IRii(k)I2 =ii (Xii)21kl. (4.A.21)

Using eq(4.A.21) in (4.A.19), the autocorrelation ergodic property holds

provided

S Ei(N)= lrn 1 2N 1  2k ] W 4 (Xi i)21k , =0 (4.A.22)
N-+oo N- 2 k2N1v

is true where 0 < Xii < 1. Thus, the form of eq(4.A.20) enables us to express the

2
variance as a function of Xii and aii. We now consider two limiting values for

X'i using eq(4.A.22).
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CASEI High Temporal Correlation and Negligable Fii(I,k)

When Xi = 1, the LHS of eq(4.A.22) reduces to

lim. Eii(N)1 k-2N 1 IkI 1 4 (4.A.23a)
N--oo N-oe 2N+1 2N+lj 1'

4 4
= iai 2N -il 2N IkiHi 2N lira k2N 2Ikl (4.A.23b)

N.40 2N+1 kN-oo2N+ k=N 2N+1(42

4

lim 4N+l n i _Ik (4.A.23c)N+oL2N+1 'aii 2 i
N-ooN,- (2N+1)1-2N

4 2N(2N+l) 4 4
ffi 2 #0. - lim aii = aii : 0 (4.A.23d)

N-,oo (2N+1) 2  ~ I

Eq(4.A.23d) indicates that for total temporal correlation (ie., i=l), the process

is not ergodic.

CASE 2 Low Temporal Correlation and Negligable Fii(,k)

When Xii - 0, non-negligeable terms occur only at k = 0, so that

eq(4.A.19) reduces to

lim Eii(N) = lira 4i =0. (4.A.24)
N-+o N-+o[H ai=0

Thus, ergodicity holds and time averages may provide good results for

sufficiently high values of N.

In Fig 4.A.la, we plot Eii(NT) expressed in eq(4.A.22) as a function of Xii

where 0 < X-ii < 1 for the total number of sample observations NT=2N+1 ranging
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Fig 4.A.1 Variance of the time-averaged exponentially shaped autocorrelation
function plotted versus a.) kii and b.) NT for the case where Fii(lk)=O.
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from 100 to 10,000. In Fig 4.A.lb, we plot Eii(NT) as a function of NT for

specific values of Xii. We again emphasize that in these cases, that Fii(I,k) is

negligible. For Fii(,k) # 0, Vii(.) is a function of I. The I dependence also

occurs when estimating with limited data (see Section VII). Fig.4.A.1 provides a

measure of the variance of the time-averaged autocorrelation function in terms of

the temporal correlation for specific sample integration sizes. Specifically, Fig

4.A.lb provides two important features. First, it reveals the convergence limit of

Eii(N) as N approaches large values. Second, it provides a performance measure

which indicates the required sample size to obtain a specific value for the

variance of the autocorrelation function. As this figure shows, as X-ii approaches

unity (ie., high temporal correlation), the sample size requirement increases

significantly. In sectionVII.C, we will consider Eii(N) using autoregressive

processes. For these processes, we utilize the autocorrelation function for AR

processes in eq(4.A.19).
Finally, we note that for stationary processes with Xii 4= 1, there exists a

value of Notkii) such that for NT > No(,ii) ergodicity of the autocorrelation

function approximately holds; ie., for ii < 1, there is a number of required

sample observations No(Xii) such that for

NT > No(.i) (4.A.25a)

there is an e such that
Vii(I) < E (4.A.25b)

where NT is the total number of sample observations and e is arbitrarily small.

The ergodicity condition results since Vii(I) is monotonically decreasing.

However, as noted above, for values of Xii close to unity, NT may be extremely

large in order to reduce the variance to a required value. Finally, for ,ii=l,

ergodicity no longer holds.
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B. Ergodicity of the Cross-Correlation Function

For the cross-correlation function, lagged products between two processes

are averaged over an ensemble of realizations. In this case, we consider wide-

sense jointly stationary processes xi(n) and xj(n) such that

P(n,I) = xi(n) xj (n - I). (4.B.1)

The autocorrelation function for 1(n) is expressed as

Rpp(k,I) = E[13(n)p3*(n - k)]. (4.B.2)

From eq(4.B.1)

E[j3(n,I)] = Rij(I) (4.B.3a)

E[13*(n - k,I)] = Rij(I). (4.B.3b)

Using the same form as eq(4.A.4c)

Cpp(k,I) = Rptp(k,I) - E[f3(n,I)] E[f3*(n - k,I)] (4.B.4a)

= R131 (k,I) - IRij(1)12. (4.B.4b)

The variance of the time-averaged cross-correlation function is therefore

expressed as

Vi)(9N) = 1 2i [ 1 1kI 1  (4.B.5)21+1 k=-2N 2NlC

For ergodicity of the cross-correlation function, we must maintain the condition

1 2NI Ik.
lim Vij(IN) = lim 2N+1 1 - 2N+l= C(kI)=0. (4.B.6)

N-+oo N-+oo k-2
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Using eq(4.B.4b) in (4.B.5), we have

Vij(,N) 1 2N[I - IkI 1 [Rop(k) - 1R (I)12](.B7=2N+l 1ki N+ 1] J~ 4B7

We now consider

RP(k,) = E[1(n,I)0*(n - kI)] (4.B.8a)

=Exi(n)x (n - I)xi (n - k)xj(n - I - k)] (4.B.8b)

so that eq(4.B.5) becomes

Vifi(,N) 1N N I 1 2N+
k2NNL

1E[xi(n)xj (n - I)xi (n - k)xj(n - I - k)] - IRij(I)IL] 1. (4.0)

For processes with zero-mean, jointly stationary, Gaussian quadrature
components, eq(4.B.8b) can be expressed as (see Appendix H)

Rp(k,l) = E[xi(n)x. (n - I)]E[x. (n-kxn-I-k)

+ E[xi(n)xi (n - k)]E[xj (n - I)xj(n - I - k)]

E[xi(n)xj(n - I - k)]E[x. n I)xi (n-k](4.B.l0a)

= Rif(i)Rif(I) + Rii(k)Rjj(k) + Fif(Ik) (4.B.10b)

= IRj~(l)I2+ Rii(k)Rj(k) + Fif(I,k) (4.B.l0c)

where
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Fij(Ik) = E[xi(n)xj(n - I - k)]E[xj (n - I)xi (n - k)]. (4.B.1 1)

Using eq(4.B.10c) in (4.B.7), we obtain

Vii(I,N) V1 2N+ [R1i(k)Rjj(k + Fij(lk)]. (4.B.12)

In Appendix D, we show that the summation in eq(4.B.12) over positive

and negative values cancels the imaginary terms in Rii(k)Rjj(k) and Fif(ilk), so

1 2N ~--IkI 1*Vif(iN) - 2N+1 k=N [1 1 Re[Rii(k)Rjj(k) + Fij(ik)]. (4.B.13)

We note that the term Re[Fi(ilk)] will contribute a dependence of Vij(iN) upon
cross-correlation terms such as IPijl. The ergodicity condition expressed by

eq(4.B.6) now reduces to

1 2N[ IkI 1 R
N-oo N-oo N+ 2N 1  2N+l Re[Rii(k)Rjj(k) + Fijik)] = 0.

(4.B.14)

In Appendix D, it is also noted that for each of these real terms, their values at
positive k equals those at negative k, so that

Vij( 1 N) = 1 2N I - 2N+I] {2Re[Rii(k)Rjj(k) + Fij(I'k)]

-[Rii(O)Rjj(O) + Fij(i,0)]). (4.B.15)
The term at k=O is subtracted so that it is not counted twice. Finally, it is also
shown (see Appendix D) that if the corresponding bandpass processes are jointly
stationary and narrowband, then Fij(Ik)=O so that

Vij(IN) = Eij(N) (4.B.16a)
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where

E1 () = 1 2NI 2Nl]*(4B 1b
-2N+lj Re[Rii(k)Rjj(k)]. (4.B.16b)

We now consider the functional dependence of eq(4.B.16) on the coL'relation
parameters.

CASE 1 High Temporal Correlation and Negligable Fij(tik)

Using the Gaussian shaped functional form of eq(3.C.13a) for the
autocorrelation functions, eq(4.B.16b) becomes

22°~ii 2 =I._kl 1 i)k2(kj)k2 .

Vij(I'N) = Eij(N)f - i k_ 2N+1

cos [Oii(k) - Ojj(k)] (4.B.17)

For high temporal correlation on the i and j processes, Xii z jj -- 1. In
this case, large values of N are required to reduce Vij(IN). For totaI temporal
correlation on both channels (ie., .ii=,jj=l) and real correlation functions [so
that Oii(k)=Ojj(k)=O and the spectra are even], the LHS of eq(4.B.14) simplifies

to

22
2ij 2N IkI

lim Eij(N) = lim i(i)k 2 (XJJ)k2  (4.B.18a)
N-+oo N--oo 2N+1 k -

22 22

2N 2N IkI (4.B.18b)
N-m,. 2N+ I k=f-N (1)- N-- 2N+l k=6N 2N+ 1
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= . 4N+1 22 , r2N(2N+1) 2 2 (4.B.18c)NJI 2+'JC~aiiN-*ooL (2N+1) 2 Jiiajj

22 22 22
2ii. 2 2 22 2 #0.(4.B.18d)liiI - iijj = Yiiajj 0.

Eq(4.B.18d) indicates that in the case of LqW temporal correlation, the cross-
correlation function does not maintain the ergodicity condition.

CA'ES2 Low Temporal Correlation and Negligable Fij(ik)

In this case, we consider processes i and j with low temporal correlation so
that Xii = kjj = 0. If Fij(lk)=O, eq(4.B.16b) applies. Again, considering real,

Gaussian correlation functions, we have
22°i~j2NJ Ikl 1Xik2( 2

lim Eij(N) = lir- 2 l()k jj)k2. (4.B.19)
N-+oo N-*oo k2N 2Lk-2

For small Xii and Xjj, only the k = O term is significant so that

22°Iii(Ijj

lim Eij(N) = lim 2N+= = 0' (4.B.20)
N-+oo N )oo

Ergodicity holds for this case so that time averages may provide good
results for sufficiently high values of N. This condition will also be maintained
provided either Xii or Xjj is sufficiently small. However, larger values of N will
be.required to reduce Eij(N) to a specified value.

CASE 3 Non-Negligable Fij(ik)
In this case, Re[Fij(Ik)] contributes to Vij(IN) in eq(4.B.13). Eq(D.8b) in

Appendix D expresses this function in terms of the correlation functions of the
quadrature terms. In general, these terms describe the dependence of Vij(.) upon

lag I as well as the cross-correlation between the ith and jh processes.
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V. MLTICHANNEL AUTOREGRESSIVE PROCESS MODELS

A. DEFINITION OF THE AR PROCESS
In this analysis, the multichannel observation processes obtained under

hypotheses Hi with i = 0, 1 are assumed to be generated by multichannel
autoregressive processes. The multichannel Jxl vector process x (nIHi) with
i=O,1 is expressed as

Mi H
A(nlHi) = - 7 A Mi(kIHi)2(n-k) + ll(nIHi) i = 0,1 (5.1)

k=1

H
where AMi(klHi) is the kth JxJ matrix coefficient for an AR process of model

order Mi. We note that it is expressed in terms of the Hermitian operation for
notational convenience, but is not treated here as a Hermitian matrix. The vector

.q(n) is a Jxl white noise driving vector which, in general, has an arbitrary
correlation across the J channels so that

=110] it 0
E[u(n)(n I) Ruu(0) (5.2)

Ruu (0) - [Xf] is the JxJ covariance matrix of the vector process U(n) and may

have off-diagonal components. Since V (n) is uncorrelated in time, but retains an
arbitrary correlation across channels, then with wide-sense joint stationarity of
the channel processes assumed, we can consider

u (n)=Cy (n) (5.3)

where the J x J matrix C is a constant matrix. This matrix gives rise to the
channel correlation on U (n). The vector . (n) is a Gaussian white noise vector
uncorrelated in time and across channels such that

f[o] #0
E[X(n)3vH(n I)-D v I = . (5.4)
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The elements of the diagonal matrix Dv are the variance terms associated with the
white noise driving term on each channel. And so, from eq (5.3) we can obtain
the zero-lag correlation matrix (assuming wide-sense stationarity)

Run (0) =f E [U1 (n) u H(n)] =- [1~f] (5.5a)

= E [Cy (n) y H(n) CH] (5.5b)
= CDVCH (5.5c)

We could assume unit variance on all elements of Dv without loss of generality so
that Dv = I. The significance of this discussion is that the correlation matrix
Run(O) is a constant matrix associated with the white noise driving term U (n).
The correlation between the channel elements of I (n) gives rise to the off-
diagonal terms in Run(O). Since Run (0) expressed in eq (5.5) is Hermitiant,
positive semi-defimite, we could also perform an LDLH decomposition such that

Run(O) = LuDuLuH (5.6)

where Lu is unit diagonal lower triangular. Solving for Du, we obtain

Du= LuIRuu (0) (Lu- )H (5.7a)

= E [Lu-lu (n) uH (n) (Lu- 1)H ] (5.7b)

= E L7, (n) I_ H (n)] (5.7c)

where
z (n) = Lu- I u (n) (5.8)

so that , (n) is a J x 1 vector containing uncorrelated elements. It represents an
underlying process of the multichannel AR process which can be viewed as a
"spatially-causal" white noise driving term. Since Lu-1 is also lower triangular
unit diagonal, it is invertible so that from eq (5.8)

t It is noted that in general the correlation matrix Ruu () is not Hermitian

for 1*0.
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Iu (n) = Lu z, (n) (5.9)

Eq (5.9) indicates that i (n) , originally defined in eq (5.3) , could identically be
generated by the z (n) process through the transformation matrix Lu; i.e. eq (5.1)
can be written in the equivalent form

x(nlHi) = - AMi(klHi)A(n-k) + Lu(Hi)z(nlHi) i = 0,1 (5.10)

k=l

where Lu (Hi) denotes the specific matrix Lu under hypothesis Hi. In [1 ], a two
stage multichannel prediction error filter is considered which uses estimates of

H
the AMi(kIHi) coefficients to obtain an approximation of U (n) in the first stage

and an estimate of Lu-1 to obtain an approximation of the temporally and spatially
uncorrelated process z (nlHi).

B. THE YULE-WALKER EQUATION
H

The relationship between the matrix coefficients AM(k), the covarince

matrix [If] of the forward AR driving noise vector and the known correlation
matrix RX from eq(2.3) can be expressed 12] as

H -Ai~iRx] = I[[7_] [0] ...[10]) (5.11)

where

H H H H
AM = [I AM(l) AM(2) ... AM(M)]. (5.12a)

and
[If] = Eu(n)uH(n)] (5.12b)

The matrix [ Au] is the reversed order correlation matrix of [RU]; i.e., the
correlation matrix obtained with the time order of the vector Xl, N from eq(2.4b)
reversed. The corresponding equations for the stationary, backward AR process
is expressed as

DH-
=W1 ( [0]...[0] [1b]H) (5.13)

85



where
BH H H

&= [BM(M) ... BM(1) I] (5.14)

and [1b] is the covariance matrix of the backward AR driving noise vector.
Eqs(5.1 1) and (5.13) are the augmented forms of the multichannel Yule-Walker
equations.
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VI. PROCESS SYNTHESIS

A. General Procedure

In this section, we discuss the synthesis procedure used to generate wide-

sense stationary, multichannel autoregressive processes with Gaussian statistics.

The Jxl vectors s(n) and g(n) defined in eq(2.1) are generated as distinct,

multichannel AR processes for the ig,-al and non-white noise, respectively,

although each channel will be an ARMA process [16,17,10]. They are controlled

individually using the scheme shown in Fig 6.A.1 which is similar to that

suggested in [2] for scalar process synthesis. In this paper, the synthesis

procedure is generalized to consider multichannel vector processes in which we

are able to control the variance and temporal correlation on each channel, the

cross-channel correlation as well as the signal-to-noise (S/N) and clutter-to-noise

(C/N) ratios.
SIGNAL 1(n)

s a-s Hs(Z)

H, (nI)CLUTER = s(n)+g(n; + w(n)
It Yc He(z) + (nI-j0) = c(n)+w(n)

Yw(n)

Figure 6.A.1

In section m.C, we discussed a method to shape the magnitude and phase of

correlation functions with various functional forms. Once these correlation

functions have been determined to obtain a desired spectral shape, the Yule-

Walker equation presented in section IV can be used to determine the AR

coefficients for the process with a model order chosen to fit the desired spectrum
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within certain tolerance specifications. In the procedure used here, correlation
functions for the signal and non-white noise are specified separately using Rsij(i)

and Rcij(I), respectively. The autoregressive PSD which would result from these

coefficients provides a fit to the desired spectrum. Alternatively, when these

coefficients are used in the AR equation, we are able to generate processes which

provide a fit to the doesred spectrum in a MMSE sense. Specifically, the

following procedure is used to generate the AR time sequenced values:

(1) the desired shapes of the autocorrelation and cross-correlation values are
obtained using the f(.) functions by the methods of section mI.C.

(2) the order of the AR process (for synthesis) is selected based upon a
specified tolerance for fitting the desired spectrum.

(3) the values of Rsii(I) and Rcii(I) form the signal and clutter correlation

matrix elements designated as RU and Rcc, respectively.
(4) the multichannel Yule-Walker equations are solved using the Levinson-

Wiggins-Robinson recursion [15] to determine the matrix coefficients

AH [fH
Ag (k) and [Zf]g for k = 1, 2, ...,Mg; i.e.,

H H
Ag [RgI g [ f] [O]...[0]) g=s,c (6.A.1)

where
H H H H

Ag = [I Ag (1) Ag (2)...Ag (Mg)] g = s'c (6.A.2)

H
Sgg = E[_n,n.MgIn.Mg] g = s,c (6.A.3a)

T

i_,n-Mg [gT(n) gT(n'.l)...gT(n'Mg)] g = s,c (6.A.3b)
H H[Zfig = ELg(n)lUi (n)] = [I.f]g g = s,c (6.A.4)

T 9 g g
ug(n) [u1(n) u2(n) ...uj(n)] g = s,c (6.A.5)
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H

(5) the values of Ag (k) are now used in the generation of s(n) and Q(n) via the

equation

g(n) = - A H (k)g(n-k) + ug(n) g = s,c (6.A.6)

Hwhere Mg is the order of the signal model, Ag (k) is the matrix coefficient of the

process g(n) and ug(n) is a white noise driving vector with covariance matrix

[Iflg. The vectors ug(n) and A(n) are generated using
u~g(n) ff Cgvig(n) g = s,c (6.A.7a)

and
A(n) = Cwvw(n) (6.A.7b)

where Vg(n) g=s,c and V~w(n) are white noise vectors with unit variance on each

channel. Using eqs(6.A.7), we obtain

Rw419 = ELu(n)wH (n)] = E[Cwvwy-(n)yX(n)Cg ] =.' (6.A.8b)

Using
H H

Rww(O) = E[~~~-w E[Yz(n) [w(n) wnCl (..b

E[xg(n)yg (n)] = Evw(n)yw(n)] = I (6.A.9)

where I is a JxJ identity matrix, eqs(6.A.8) can be written as

[_,flg g g g = CgCg g = s,c (6.A.10a)

and
H H H

Rww(0) f CwELyw(n)yw(n)]Cw = CwCw (6.A.10b)
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Eqs(6.A.10) indicate that Cg and Cw can be obtained by the Cholesky
decomposition of [1f]g and Rww(O), respectively. The vectors Us(n), lMc(n) and

w(n) in Fig 6.A.1 are therefore controlled to be zero-mean, Gaussian white noise
vectors uncorrelated in time but with an arbitrary correlation across channels;
ie.,

H [0] 140
E~ja(n)4a (n-0)] = g , 6A 1

IRW~O)MEIfg 1=0 g=sc(..1

E[-(n)wH(n'l)] = [0] 1=0 (6.A.12)

In general, the matrices [Zf]g and Rww(O) have off-diagonal components.

The functions Hs (z) and Hc (z) are the model filter transfer functions for the

synthesis of the signal and clutter processes, respectively.

EXAMPE
In this example, we consider the synthesis of a real, single channel AR

process of order two using real, Gaussian shaped correlation functions. The

correlation function is therefore expressed as

RS(I) = as( )12 . (6.A.13)

The Yule-Walker equation for this case is

R(0) R(1) R(2) 1 u

R(-1) R(0) R(1) a(l) = 0 (6.A.14)

R(-2) R(-1) R(0) t a(2) 0
2.

where a is the variance of the white noise driving term of the associated AR

process. Using the functional form of eq(6.A.13) in (6.A.14) and solving for the

coefficients, we have (dropping the script s notation)

90



a()=R(2)R(-I) -R(1)R(0)- 2
a(l) R(0)R(0) - R(1)R(-) X (X2 + 1) (6.A.15)

R(1)R(1) - R(2)R(0) 2

a(2) R(0)R(0) - R(1)R(-1) X 2 (6.A.16)

2
a = R(O) + a(1)R(+l) + a(2)R(+2) (6.A.17a)

2 22-2 2 6
=--; - sXs2(X s + I) + ;s s  (6.A.17b)

2 24 6]s21 s - s +

=;2[l- X2-X4+X 6(6.A.17c)

We now consider the effect of these results when used in the AR equation

(6.A.6); ie.,

s(n) = - a(1)s(n-1) - a(2)s(n-2) + u(n). (6.A.18)

Using eqs(6.A.15) and (6.A.16) in (6.A.18), we have

s(n) = %(X2 + 1)s(n-1) - X2s(n-2) + u(n) (6.A.19)

2
where the white noise driving term u(n) has the variance ;u . We note from

eq(6.A.13) that as Xs approaches zero, the correlation function approaches a delta
2

function with variance as . Therefore, s(n) is expected to be an uncorrelated

2white noise process with variance as . Examination of eq(6.A.19) indicates that

s(n) is approaching the white noise process u(n) for small Xs since the AR

coefficients are becoming vanishingly small. In addition, eq(6.A.17c) indicates

that the variance of u(n) is approximated by that of s(n) as required. We

therefore have a method for process synthesis that allows one to control the

variance and temporal correlation over a wide range of values. Furtheremore,
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for a specific a s , the variance of the synthesized processes will remain fixed

independent of the choice of %s*

B. Alternate Approach

We could characterize the observation processes x(nlHi) defined in eq(2.1)
as multichannel AR processes under each hypothesis. We would then have

Mi H
x(nIHi) = - 7 A Mi(kIHi)x(n-k) + U(nIHi) i = 0,1 (6.B.1)

k=1
H

where Mi , AMi(kIHi) and u (nIHi) denote the model order, the matrix coefficients

and the white noise driving term under each hypothesis, respectively. Eq (6.B.1)
could be utilized to generate the processes under each hypothesis using
predetermined values for the coefficients. This approach is useful in the
diagnostics of parameter estimation algorithms; i.e., one could validate that the
estimates of the coefficients converge to the known preassigned model
coefficients as well as assess the convergence rate and final error variance. This
approach, however, does not allow control over the variations of the signal-to-
noise (S/N) and/or signal-to-clutter (S/C) ratios for parametric performance
evaluations.

C. Complex Processes with Jointly Gaussian Quadrature Components

In this section, we discuss the conditions which enable us to control the
Gaussian statistics of the synthesized processes. We accomplish this through the
white noise driving vectors, qg(n) and vg(n) in eq(6.A.7). Initially, we present
the constraints on the quadrature correlation functions associated with vg(n) in

order to obtain conventional complex Gaussian processes. Next, we relax these
constraints in order to synthesize the more general case of complex processes
which contain correlated Gaussian quadrature components.

Let us now consider expressing vg(n) and Cg in eq(6.A.7) using their

quadrature components so that (dropping the g subscript)
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y-(n) = y.1(n) + j yQ(n) (6.C. La)

and
C = C1 +JCQ. (6.C. ib)

Using these expressions in (6.A.7), we obtain

=~n Cy-(n) (6.C.2a)
= C, + j CQ] [yi(n) + j YQ(n)] (6.C.2b)
=[Cly1(n) - CQyQ(n)] + j [C~y1 (n) + CyQ(n)] (6.C.2c)

so that
jj1(n) = C1j 1(n) - CQyQ(n) (6.C.3a)

IIQ(n) = C~y1,(n) + C1X-Q(n). (6.C.3b)

We now have

Ru-u(O) =E[~I(n)ILT(n)] (6.C.4a)

[ClyT T T T (..b
= E{ [ 1~(n) - CQYQ(n)] [y.i (n)C1 - YQWnCQ]I 6..b

+ T Q T QI T IQ T
=C 1RV,(O)C+ CQRw (O)CQ - CQR;(O)Cj - C1Rv(O)CQ (6.C.4c)

Similarly,

R uu(0) = ELukQ(n)u4(n)] (6.C.5a)

=E[CyT T T T
= E{ C I(n) + ClyQ(n)] Lyj (n)CQ + yj (n)Cfi1 (6.C.5b)

II T QI T IQ T QQ T
= CQRv(O)CQ + CIR~v(O)CQ + CQR ;(O)CI + C1RII (O)CI (6.C.5c)

Ru(O) = E[u1(n)u (n)] (6.C.6a)
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= Ef [Cgxy(n) - Cy(n)] [yj(fl)CQ + y~nCiI (6.C.6b)

= C1RVV(O)CQ - CeR(O)CQ + CiR'V(O)C7i - COZRVV(O)C7I (6.C.6c)

RQ,(O) = EhiuQ(n)uJ(n)] (6.C.7a)

= E f [Cn~!1(n) + CAQ(n)] [xi (n)C1 - y n)Cc;] I(6.C.7b)

= CRel)C + C1RQ'(O)C1 - CQRv~(O)CQ - C1R (O)CQ. (6.C.7c)

In the special case where

R. (O) = R?(O) = (6.C.8a)

R (O) = R~v(O) = 0 (6.C.8b)

and Iis the identity matrix, we have

4 =(0 C1C1 + 1 CQCQ (6.C.9a)

=~ (0 1CQCQ + 1 C 16 (6.C.9b)

R Qu(0) 2 2 Cj Q J1C (6.C.9c)

Rlu'(0) = -2CQCI -2'CICQ (6.C.9d)

so that
R:U~(O) = R (0 (6.C. l0a)

and
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IQ QI%u-(0) Ruu0) (6.C.10b)

In the further restricted case where CQ--O (which occurs when the correlation

functions in the Yule-Walker equation are real)

IQ? QIR(= - Ruu(0) = [0]. (6.C.11)

The conditions expressed by eqs(6.C.10a) and (6.C.10b) are those required
to ensure that the magnitude of the complex process u(n) is Gaussian. We note

that these conditions result when eqs(6.C.8a) and (6.C.8b) hold; ie., when the
2

white noise driving vector v(n) has variances of av /2 on each channel quadrature

component and the quadrature components on each channel are uncorrelated. In

this special case, eq(6.A.8b) is maintained; ie.,

E[x(n)yH(n)] = Dv = I. (6.C.12)

If we generalize this case so that v(n) has an arbitrary variance on each channel

quadrature component as well as an arbitrary correlation between the Gaussian

quadrature components on each channel, the resulting u(n) is a more generally

distributed process. We also note that eq(6.C.12) can continue to be satisfied by

maintaining the relations

R.,(0) = RvI(0) (6.C.13a)

and
nI QQly(0) + Rvv (0) = I. (6.C.13b)

This can be seen by noting that
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E[(nxMn) =E{[~(n +T TE[y~~yH~)]= ILx~n +jyQ(n)] [y1 (n) - j XQ (f)] I(6.C.14a)
Hn riQQii QI I

= [Rvv(Ou,+ R v() + j [Rvv(0) - RvvO] (6.C.14b)

Substituting eqs(6.C.13) into (6.C.14b) yields (6.C.12). We emphasize that

eqs(6.C.13a) and (6.C.13b) provide a more general condition than eqs(6.C.8a)

and (6. C. 8b); ie., the quadrature components are now able to be implemented

with an arbitrary cross-correlation.

The arbitrary correlation on the quadrature components of y_(n) could be

obtained using

[11(n)] =G RQn](6.IC. 15)

where
E[ .(np(n)] = [0] (6.C. 16a)

E[1nT T I
EE()2j (n)] = E[gQ(n)y (n)] I L I (6.C.16b)

We now consider

I[qIT Ti

[R YQo (6.C.17c)
() y, () LOW )

where eac eeetieq6C1)isaJJdaolmtixUine(6.C.15b)

thrugh(6..16) i t ( S o (6..17a

96



Ryly 1 GGT RR Q1 (O) = G E{[P~~Q ] G (6.C.18a)

1 i (6.C.18b)

so that

r Iz ) =GGT. (6.C.19)
4I() i (0)12

The matrices on the LHS of eq(6.C.19) can be constrained to satisfy

eqs(6.C.13a) and (6.C.13b) without loss of generality. In addition, they could be

specified using functional forms similar to eqs(3.C.5) and (3.C.8). The diagonal

form of these matrices implies that correlation only exists between the quadrature
components of yg(n) g=s,c on a given channel and not across channels.

Therefore, for channels i=1,2,...J, we would use
I Q I QIQ IIRi (0) = Rii(0) = IPii I aYii aii i = 1,2,...J (6.C.20)

where ai and a are the standard deviations of the quadrature components on

channel i. The variances on each channel are subject to the constraint
(2i + (21 ) - 1 i = 1,2,...,J. (6.C.21)

Also,
11 2

Rii(0) = (2ii)n i = 1,2,...,J (6.C.22a)

and
R1ii(0) -- (a2) i = 1,2,...J. (6.C.22b)

Finally, eq(6.C.19) can be solved via the Cholesky decomposition to obtain G and
eq(6.C.15) implemented to generate vi(n) and y.Q(n) with variable correlation.
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VII. SYNTHESIS RESULTS

A. Single Channel Case

In this section, we utilize the AR process synthesis procedure described in

section VI to generate single channel autoregressive processes of order two.

Using the Yule-Walker equation, two AR coefficients are obtained which, when

substituted into the scaler form of eq(6.A.6), provides the required signal

processes. For the processes shown in Figs 7.A.1 through 7.A.8, the real,

Gaussian autocorrelation function was used. We note that an AR(2) process has

an exponential autocorrelation function. In this case, we are generating processes

which provide a 'fit' to the Gaussian autocorrelation function in a MMSE sense.

We also note that in this case, the AR coefficients will be real. However, the

processes s(n) generated by eq(6.A.6) are complex since u(n) is complex. Also,

the resulting spectra will be even.

In Fig 7.A.1, we show the amplitude of the real part of the signal process
with order two using a temporal correlation coefficient of X=0.99 and variances

2
(is ranging from 2.0 to 8.0. We note the variation in the amplitudes of each plot

as the variance changes. In Fig 7.A.2, we show the amplitude of the real part of
2

the signal using a variance a2--4.0 In this case, however, we demonstrate the

effect of varying the temporal correlation coeffient Xs from 0.1 to 0.9999. We

note that Figs 7.A.2a through 7.A.2c are plotted for 100 samples, while
Fig.7.A.2d uses 200 samples. These figures illustrate the effect of Xs in

controlling the sample-to-sample correlation. It is apparent that as X approaches

unity, we are approaching the case of total correlation sample-to-sample;
however, as Xs goes to zero, the process becomes white. It is worth noting, at this
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time, that the imaginary component follows the same behavior. Recognizing that

the sigmal phase is expressed as
Os(n) = tan-lI sq (n) ] 7A1

{sin] (7.A. 1)

then, as I approaches unity, 6s(n) approaches a constant since sx(n) and sQ(n)

are appoaching constant values within a single trial. On the other hand, as ks

approaches zero, Os(n) is random in time since si(n) and sq(n) exhibit random

behavior. The important point to be made here is that the parameter Xs controls

the amplitude correlation as well as the phase coherence of the process. This

capability will be utilized to demonstrate coherent integration gain in detection

performance evaluations.

In Fig 7A.3, we show results for three separate trials of the real part of the
2

signal process for I s = 0.9999 and = - 4.0 over 200 time samples. The point to

be noted here is the randomness associated with the initial amplitude (and phase

via the previous discussion). As noted, however, after the initial amplitude is

selected at random, the remaining samples are highly correlated within each trial

as governed by the high value of the temporal correlation coefficient. This

feature will enable us to model processes such as Swerling fluctuating signals[14]

in radar applications, for example.

Fig 7.A.4 shows the results of the model fitting procedure. The dotted

curves plot the correlation functions predetermined by the functional shaping

method. The solid curves are plots of the correlation funcion calculated using

10,000 samples of the process over 40 lag values. Figs 7.A.4a, 7.A.4b and

7.A.4c are plots for Xs = 0.95, 0.8, and 1.0, respectively. We first note the effect

of XS on the correlation function; ie. as Xs transitions from unity to zero, the

correlation function ranges from that of a slowly varying function of the lag
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value to that of a delta function. Next, we note from Figs 7.A.4a and 7.A.4b that

the plots of the AR process of order two provide a fit to the predetermined

correlation function. This is a result of the fact that it would require an AR

process of infmite order to model the Gaussian correlation process exactly.

These plots illustrate that the processes generated here are an approximation to

those of the predetermined correlation function. In fact, they are the processes

that fit the known model in a MMSE sense. In Fig 7.A.5, we show the

autoregressive power spectral density (ARPSD) which is obtained using the AR

coefficients obtained from the Yule-Walker equation. Fig 7.A.6 is the

corresponding power spectral density (PSD) determined using a zero-filled 64

point FFT of the calculated correlation functions plotted in Fig 7.A.4. The plots

for Figs 7.A.6a and 7.A.6b, show even spectra; however, we also note the dual

peaks associated with the poles of the AR(2) model. The obvious point to be
noted here is the behavior of the spectra for various values of X; ie. as ks ranges

from unity to zero, the spectra transitions from its peaked behavior to the broad

distribution associated with white noise processes. It is also interesting to note
that as X decreases, the pronounced pole positions are diminished as shown in

Fig 7.A.6c. This is a result of the fact that the AR coefficients are becoming

vanishingly small as noted by eqs(6.A.9) and (6.A.10).

In Figs 7.A.7 and 7.A.8, we show plots of the autocorrelation function and

power spectral density, respectively, again using 10,000 samples of the same

signal process, but in the presence of unit variance additive white noise. We note

that the correlation functions in Fig 7.A.7 overlay the corresponding functions

shown in Fig 7.A.4 except that at lag zero, they have increased by a unit value

due to the uncorrelated noise process. A comparison of Figs 7.A.6 and 7.A.8

shows the increased levels due to the additive noise.
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B. Multichannel Case

In this section, we consider the generation of a two channel vector process

using the AR synthesis approach described in section VI. In this case, the

multichannel Yule-Walker equation is solved for the forward AR matrix

coefficients and the forward driving white noise covariance matrix. These

matrices are used in eq(6.A.6) and (6.A.7) for process generation. We limit the

results shown here to the case of real, Gaussian correlation functions. In sections

VII.C and VII.D, we will quantitatively assess the ergodicity considerations

developed in section IV. In this section, however, we will note several qualitative

indications of the dependence of ergodicity on the correlation parameters.

Table 7.B.1 contains the parameters used in the auto- and cross-correlation

functions described in eqs(3.C.13a) and (3.C.23b). The resulting values are then

used in the correlation matrix of the multichannel Yule-Walker equation to solve

for the coefficients C and A(k) k = 1,2. The resulting AR coefficient matrices

are listed in Table 7.B.2. We will discuss these quantities later to gain further

insight into the process generation procedure.

Figs 7.B.1 through 7.B.4 contain the results for processes with high
temporal correlation on each channel. In Fig 7.B.1, Xii = 0.9999 on both
channels with Ip 121--0.95. In Figs 7.B.2 through 7.B.4, Xii = 0.95 on both

channels, while the cross-correlation coefficient JP12 1 ranges from 0.99 to 0.0.

Figs 7.B.la and 7.B.lb show 200 sample observations of the synthesized

processes for channels 1 and 2, respectively, for one realization. A second

realization is shown in Figs 7.B.lc and 7.B.ld. A visual inspection of these two

trials reveals the relatively high degree of cross-correlation between the two
channels controlled by iP121=0.95. Figs 7.B.le and 7.B.lf show the

corresponding ensemble averaged autocorrelation functions calculated using
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2 2RFig. order 011 022 IP121 Xll X2 2  X12  112 R 12 (O)

7.B.1 AR(2) 4 4 0.95 0.9999 0.9999 0.9999 0 3.8

7.B.2 AR(2) 4 4 0.99 0.95 0.95 0.95 0 3.96

7.B.3 AR(2) 4 4 0.5 0.95 0.95 0.95 0 2.0

7.B.4 AR(2) 4 4 0.0 0.95 0.95 arbitrary* 0 0.0

7.B.5 AR(2) 4 4 0.0 0.80 0.80 arbitrary* 0 0.0

7.B.6 AR(2) 4 4 0.0 0.40 0.40 arbitrary* 0 0.0

7.B.7 AR(2) 4 4 0.99 0.10 0.10 0.10 0 3.96

7.B.8 AR(2) 4 4 0.30 0.10 0.10 0.97 0 1.2

7.B.9 AR(2) 4 4 0.10 0.10 0.10 0.20 0 0.4

7.B.10 AR(2) 4 4 0.50 0.95 0.10 0.97 0 2.0

7.B.11 AR(2) 4 1 0.40 0.95 0.10 0.97 4 0.8

7.B.12 AR(4) 4 1 0.30 0.95 0.10 0.97 4 0.6

Table 7.B.1

* Examination of eq(3.C.23b) indicates that for IP12 1 =0, the value of )"12 is arbitrary.
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1,000 trials. We note that in Fig 7.B.lf, the experimentally obtained cross-

correlation function evaluated for lag zero fell somewhat below the process

variance of 4. The reason for this will be explained below. An overlay of six

realizations of the corresponding time-averaged, biased, autocorrelation function

for each channel is shown in Figs 7.B.lg and 7.B.lh, respectively. In these plots

10,000 time sample observations were used to estimate the functions over 64 lag

values. Figs 7.B.li and 7.B.lj show the temporal- averaged and ensemble

averaged cross-correlation functions, respectively. Inspection of plots g and h

indicates that the six realizations of the estimated time-averaged autocorrelation

functions, each based on 10,000 time observations, vary considerably from trial-

to-trial. This implies that the variance of the time-averaged autocorrelation

functions is large. Likewise, this same behavior is noted for the time averaged

cross-correlation function in plot i. These results provide an indication that

ergodicity cannot be assumed to hold in this case even though the number of
observations NT is as high as 10,000; ie., the estimates of the auto- and cross-

correlation functions obtained by time averaging over a single realization will, in

general, differ considerably from the ensemble averaged value when the temporal
correlation coefficients X i are high.

In Fig 7.B.2, the cross-correlation coefficient is increased slightly to 0.99

while the temporal correlation coefficients are reduced to 0.95 on both channels.

Fig 7.B.2 shows the same data displays as Fig 7.B.1. We note in plots a and b,

that both channel processes have become more uncorrelated in time as evidenced

by their more rapid temporal fluctuation. However, we also note the high cross-

correlation between the channel processes; ie., both waveforms are nearly

identical (note the scale change on the plots a and b). This high correlation
results from the high value of 1p 121=0.99. Again, plots e and f show the
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ensemble averaged autocorrelation functions for each channel. Six realizations of

the corresponding time-averaged autocorrelation functions shown in plots g and h

show a significant decrease in the variance of these functions as compared to the

previous figure. Likewise the six realizations of the time-averaged cross-

correlation function in plot i also show a reduction in their variance.

In Fig 7.B.3 and 7.B.4, the temporal correlation coefficients are held at

0.95 as in 7.B.2; however, the cross-correlation coefficient is reduced to 0.5 and

0.0, respectively. In each of these figures, plots a and b show a single realization

of 200 sample observations. An overlay of six corresponding temporally-

averaged autocorrelation functions, based on 10,000 time sample observations

each, is shown in plots c and d. Six trials of the temporal-averaged cross-

correlation function are shown in plot e, while the corresponding ensemble

averaged result, based on 10,000 realizations, is shown in plot f. A visual

comparison of the temporally-averaged autocorrelation functions in Figs

7.B.2g,h, 7.B.3c,d and 7.B.4c,d indicates that the variance associated with these
plots appears to remain constant. Again, we note that X 11 and X22 have

remained constant, although IP 121 has changed significantly. Close examination

of the scale levels for the temporally averaged cross-correlation functions among

these figures indicates that the variance of this function has not changed. We will

discuss this point further in section VII.D.

The cross-correlation coefficient is held at zero in Figs 7.B.5 and 7.B.6,

while the temporal correlation coefficients are decreased to 0.8 and 0.4,

respectively. Plots a and b for Figs 7.B.4, 7.B.5 and 7.B.6 show the effect of the

decreasing temporal correlation; ie., the processes are becoming more whitened
as ,ii decreases. The resulting autocorrelation functions shown in plots c and d

for these cases also reflect this trend by approaching a delta function as -ii
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decreases. Close examination of plot e in each of these figures provides some
indication that the variance of the cross-correlation function decreases as X, 1 and

X22 decrease.

In Figs 7.B.7 through 7.B.12, similar plots are shown. Fig 7.B.7 shows the

case of two noisy processes which are highly correlated. In Fig 7.B.8, the
temporal cross-correlation coefficient X12 is raised to 0.97. The value of 1P1 2I

was lowered to 0.3 in order to satisfy the positive semi-definiteness constraint

condition. We note that in the expanded view of the cross-correlation function

displayed in Fig 7.B.8f, the resulting estimated values at these lags remain high

out to the lag value of 2. Beyond I = 2, however, the cross-correlation function

drops significantly. This result will be discussed later. Fig 7.B.10 shows the

interesting result obtained when the noisy signal on channel 2 is required to be

correlated with the high temporally correlated channel 1 process. Fig 7.B.10c

shows an overlay of the two distributions shown in plots a and b. As this figure

indicates, the noisy channel 2 process appears as a modulation on the channel 1

process. It is also noted that the autocorrelation functions for each channel have

maxima and minima which occur at the same lag values. In addition, an

interesting peak occurs at the third lag value in plot e. We will consider this

later.

Finally, we consider the results shown in Figs 7.B.11 and 7.B.12, where
112 is specified to be 4. In these figures, we use AR(2) and AR(4) processes,

respectively. Plots a and b in each figure show 200 samples of the processes. As

in the previous case, the difference in temporal correlation on each channel is

noted. The overlay in Fig 7.B.1 lc shows the effect of the distinct variances on

each channel as well as the moderate amount of cross-correlation. Six

realizations of the corresponding autocorrelation functions are shown in plots d
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and e for Fig 7.B. 11 and plots c and d for Fig 7.B.12. The cross-correlation

functions (six realizations) are displayed in the last two plots in each figure for 64

and 8 lag values, respectively. We note that in Fig 7,B.1 1g, the cross-correlation
function peaks at a lag value of 112 - 2 rather than I12 = 4. In Fig 7.B.12f,

however, we note that for the AR(4) process, the cross-correlation function does
peak at 112 -4. We also mention that in the case of the AR(4) process described

in Fig 7.B.12, the parameter IP1 21 had to be lowered to the value of 0.3. This

was necessary to maintain the positive semi-definiteness requirement. Finally, in

plots c and d for Fig 7.B.12, we again note that the maxima and minima occur at

the same lag values. In addition, we note that for this AR(4) process, the peak

values of the channel 2 autocorrelation function follow the shape of the channel 1

autocorrelation function. The rapid decrease in this function between the peak

values is a measure of the 'noisy' channel 2 process. The periodic peak values,

however, are a measure of the correlation on this channel resulting from its
moderate degree of cross-correlation (ie., 1p 121=0.3) with the high temporally

correlated channel 1 process.

Considerable insight into the process generation scheme can be obtained by

examining the coefficients in Table 7.B.2 which were determined from a solution

of the Yule-Walker equation. For Fig 7.B.1, we first note that the white noise

driving covariance matrix C has very low values compared to those in the A(1)

and A(2) matrices. This will cause the resulting processes to be highly dependent

upon the past data samples with minimal dependence upon the driving white noise

vector. This increases the temporal correlation on the channel processes. In

addition, the c1 1 and c2 1 elements of this matrix are approximately equal, while

c 44 is much smaller. This will cause the elements of the vector U(n) in eq(7.A.7)

to be nearly identical, thus contributing to the high cross-correlation. We again
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point out that in this case of high temporal correlation, the C matrix has small

values. This will cause the variance of the white noise driving term to be small.

If the overall variance of the process is required to be large, the synthesis process

must be operated over a long initial transient period to allow the processes to

reach sufficient magnitude. For this case, only 2,000 initial samples were

generated before saving. This quantity was not sufficient and thus the low values

shown in Fig 7.B.lf resulted.

In Fig 7.B.2, the cll and c2 1 elements are again nearly equal and much

greater than c44 so that the very high cross-correlation is obtained. We note,

however, that all the C matrix elements have increased as compared to the

previous case. This will cause the additive white noise driving variance to have a

more significant effect on the resulting process. As a result, temporal correlation

on each channel will decrease as expected since the X,11 and k 2 values have been

decreased.
In Figs 7.B.4, we note that only c11 and c44 are non-zero. This will cause

the vector u(n) to have totally uncorrelated elements, thus providing no cross-

correlation as required since 1P 121=0. Examination of these elements for

Figs7.B.4 through 7.B.8 shows the increasing significance of the white noise

driving term relative to the past values; ie., the C matrix eventually begins to

weight the white noise vector v(n) higher than the A(k) k=1,2 matrices weight the

past samples. Thus, the temporal correlation decreases.
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Fig. A(1) A(2) C
[.1 -1.98 4.54x10 4 -0.984 -4.54x11 [0.0051 0.07.B. 1]

4.54x 4  -1.98 -4.54x104 -0.984 0.0049 0.0015 J

7.B.2 -1.81 -3.6x1-6 1 [0.903 -3.8x10-6  [0.269 0.01
0.0 -1.81 ] [ 0.0 0.903 0 0.266 0.038]

.. -1.795 -0.03131 0.903 -6.23x10-3 1 [0.265 0.0 1
-0.0313 -1.795 J [-6.23xlO- 3 0.903 ] 0.066 0.257j

[-1.81 0.0 [0.903 0.0 0.269 0.0
0.0 -1.81 0.0 0.903 [ 0.0 0.2691

7.B. 0.922 0.0
0.0 -1.31 0.0 0.64 0.0 0.922

[ -O464 0.0 [0.16 0.0 1 F1.81 0.0]
7.B.6 0.0 -0.464 [0.0 0.16 [0.0 1.81

F -0.101 4.84x10-7 -0.01 -2.9xxo-]8  1.99 0.0 1
7.B.7 L4.78x10.7 -0.101 -2.9x10-8 -0.01 1 1.970.281

o 0.072 -0.3341 [0.183 -0.311 1.82 0.0
7.B.8 -0.334 0.072 J -0.31 0.184] [0.74 0.166

S[-0.099 -0.0101 F0.099 -0.0191 [1.989 0.01
7.B.9 -0.010 -0.099] [-0.019 0.099 10.195 1.980

[-1.792-0.0311] [0.9174 -0.02921 [0.261 0.01
7.B.10 -0.801 0.257 J 0.0166 0.3545 [0.521 1.519

[-1.632-0.1491 [0.789-0.1541 [0.213 0.01
7.B.11 -0.782 0.162 [ 0.545 0.321 1 [0.639 0.6081

7..1 -3.093 -0.04181 [3.974 -0.03861 [0.0665 0.0 1
7.B.12 -4.053 0.283 1 -8.2604 0.4039 [ 0.5798 0.5834J

A(3) A(4)
[-2.573 -0.371 [2.9.038 41
-6.797 0.4123 J. 2.085 0.452J

Table 7.B.2
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For the matrix elements corresponding to the Fig 7.B.8 results, we make

the following observations. First, the relatively high values of the C matrix

elements compared to the A(k) matrices again provides emphasis on the white

noise driving term. Second, the relatively high and equal off-diagonal elements

of the two A(k) matrices provides high cross-correlation with respect to the two
past sample values. This result is controlled by the high value of %12 =0.97.

Third, the value IP121=0.3 has a significant effect on the c2 1 element. It is near

the uppermost value for the cross-correlation coefficient that can be obtained

under the constraint condition of positive semi-definiteness. The result is that the

white noise vector is provided a moderately high cross-correlation. This case can

be contrasted with the coefficients for Fig 7.B.9. In this case, the low value of
,12--0.2 and IP121=0.1 causes the off-diagonal elements in the A(k) matrices and

the c2 1 to decrease significantly.
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C. The Autocorrelation Function Ergodicity Results

In this section, we will evaluate the ergodicity of the autocorrelation

function. This will be accomplished by evaluating the variance of the time-

averaged autocorrelation function as determined by its ergodic series. In section

IV.A, we developed the expression described by eq(4.A.15). In that case, the
time-averaged autocorrelation function RiiT(I) was estimated using eq(4.A.1). In

practice, however, we use expressions such as the estimator

1 NT--1
M n7xi(n)x (n-I) 0 <1 <NT-1

n=0O

AiiT(I,NT) = (7.C.1)
1NT-Ill-i

M xi(n)xi(n-III) -(NT-1) <1 < 0.
n--0

For M = NT , we obtain the biased estimator while for M = NT - I, we have the

unbiad estimator. In Appendix B, we derive the expression for the variance of

the biased estimator and obtain

VBii(I,NT) = NL N-, II +IkI Co (kI) (7.C.2a)
T k=-(NT-iI-1) "

1 NT-Ill-1
1_NT__ [ [1 II+TI [IRii(k)12 + Re{Fii(I,k))] (7.C.2b)ff T k=-(NT-1l1-1) " N

In the case where Fii(I,k)--0, the form of eq(7.C.2b) indicates that VBii(I)

decreases as a function of lag I. This results from the decreasing number of

positive terms in the summation as well as the decrease in the first bracketed term

134



as lag I increases. This is to be contrasted with the form of eq(4.A.18) where the

variance at each lag value was determined using the same number of sample

values. As a result, eq(4.A.18) provided a constant variance independent of I
when Fii(I,k)--O. Finally, in [7] it is noted that the variance of the unbiased

estimator may increase as a function of I since this variance expression has the
1

term NT 1 111 before the summation.

In this section, we will consider the special case of the real, exponentially

shaped autocorrelation function, and synthesize an AR(1) process. The real

AR(1) process also has an exponential autocorrelation function expressed as

RAR(k) = RAR(O) [-a(l)]Ikl (7.C.3a)
= 2R [-a(l)] (7.C.3b)

where
2

RA(0 1-a2( ) 2  
(7.C.4)

RARP AR

2 C2ar
and u , a(1) and a are the white noise driving variance, the AR(1) parameter,

and the variance of the AR(1) process, respectively. Eq(7.C.4) follows from the

Yule-Walker equation where

2au = RAR(O) + a(l)RAR(-l) (7.C.5a)

= F2 a2 (1) o2 (7.C.5b)AR AR

= [2 a2(1)]. (7.C.5c)
1AR a
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With
-a(l) =XAR (7.C.6)

we have

R (k) = [AR] k l. (7.C.7)

Therefore, in this special case, the AR(1) autocorrelation function is equivalent to

the autocorrelation function used in the correlation matrix of the Yule-Walker

eq(6.A.1). In section IV, the functional form of the autocorrelation function

expressed by eq(4.A.19) was used in eq(4.A.18). We note that this

autocorrelation function is the function to which the synthesized processes are

providing a best 'fit'. If, however, we are attempting to validate an analytic

expression for eq(4.A.18) or eq(7.C.2b) using the synthesized AR processes, we

must use the form for the AR autocorrelation function in this expression rather

than the functional form which we are attempting to 'fit'. In general, the AR

autocorrelation functions are a rather complicated function of the AR

parameters[11]. In the case of the AR(l) process, however, we use eq(7.C.7) in
(7.C.2b). We also note that in the case where Rii(a) is real, the in-phase and

quadrature components of the synthesized outputs are uncorrelated (see Appendix

F) so that

QI IQRi(a) = Rii (a) = 0 all a. (7.C.8)

In Appendix F, we also show that in this case

11 QQRii(a) = R ii(a) all a (7.C.9a)
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and at a = 0

Rii(O) = Rii(0) fiii / 2. (7.C.9b)

Using these equations in eqs(4.A.17a) and (4.A.17b), we have
Re(Fii(I,k)) = 0 all I,k. (7.C.10)

From eq(7.C.7), eq(7.C.2b) becomes

NT-Ill-i17Cla

VBii(INT) N k-NT-11- [I - IIIk] IRii(k)12  (7.C.1 a)

NT-Ill-i
S- II+IkIAR (XAR) 2 1k  (7.C.1 lb)

NT k=-(NT-II1I) NT J

Eq(7.C.1 lb) is an analytic expression for the variance of the time-averaged

autocorrelation function of the AR(1) process considered in this case. We now

consider the expression used to calculate this variance with the synthesized data.
Consider NR realizations of the random process xi(n). Let each realization be

indexed by the integer a; a=-,2,...,NR. Corresponding to the realization with

index a, let AiiTb(I,NT[a) be the biased, time-averaged cross-correlation function

estimate using NT observation samples. The sample variance of the time-averaged

cross-correlation function estimates is computed from NR realizations using the

expression NR

Var[AiiTb(I,NT):NR] = NR- NR iiiTb(INTja)- iiTb(I9NRIa)I2 (7.C.12)
a=1

where
1 NR

AiiTb(INRIa) = 1 liiTb(lNTj" (7.C.13)
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In Fig 7.C.1, the maximum value of VBii(INT), which occurs at 1=0, is

plotted (solid curves) as a function of Xj=XAR for NT =100 and NT =1000 using

the analytic expression of eq(7.C.11b). The corresponding sample variances of

the time-averaged autocorrelation function estimates computed by eq(7.C.12) at

lag zero using the synthesized data processes are also plotted (.) on this curve.

These values were computed using NR realizations of the autocorrelation function

estimates. For NT =100, NR=lOOOO was used while for NT =1000, the number

of realizations was reduced to NR= 1,000.

14-

12- 2 N7X 100 low

10-

max VBi,(,) IA

1.2-

1.0

0.2

0.1 0.3 0. 0.7 0.JI10 LU

Fig 7.C.1 Maximum variance of the time-averaged exponentially shaped
2

autocorrelation function versus Xii with 0j2=4; analytical(-) and computed(s).
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Table 7.C.1 contains the parameters used in the process synthesis procedure
as well as the values of NT and NR for the sample variance calculation. In these

2
cases, the variance of the process aii was held fixed at 4 while Xii was varied

from 0.1 to 0.99.

Figs 7.C.2 through 7.C.1 1 show the results for these variances based on the

computed values of eq(7.C.12) and the analytic expression of eq(7.C.11b). In

plot a of Fig 7.C.2, we show six realizations of the biased, time-averaged
autocorrelation function plotted over 64 lag values using NT=100 time samples.

The corresponding ensemble averaged result is shown in plot b using NR=10,000.

The sample variance of the biased time-averaged autocorrelation function plotted
in a is displayed in c. These values were computed using eq(7.C.12) with

NR=10,000. The corresponding analytic calculation using eq(7.C.11b) is shown

in plot d. In plot e, we show the corresponding sample variance using the

unbiased estimate of the autocorrelation function. As noted previously, the

variance of the biased autocorrelation function decreases with I while that for the

unbiased function may increase. This behavior is illustrated in plots c, d and e

and is also noted in Fig 5.12 of ref [7]. In plots f, g, h and i, we show the

ensemble averaged quadrature correlation functions estimated from the
synthesized process using NR=10,000. Examination of these plots validates

eqs(7.C.8), (7.C.9a) and (7.C.9b) recognizing that a finite number of realizations

were used in the computations.

In Figs 7.C.3 through 7.C.6, we show results similar to those described in

Fig 7.C.2 (although the unbiased variance is no longer considered). In Fig 7.C.7
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Fig. 2N

7.C.2 4.0 0.1 100 10,000

7.C.3 0.5

7.C.4 0.7

7.C.5 0.9

7.C.6 0.99

7.C.7 0.1 1000 1000

7.C.8 0.5

7.C.9 0.7

7.C.10 0.9

7.C. 11 0.99

Table 7.C.1
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through 7.C. 11, we show the results corresponding to plots a, b, c and d in the

previous figures using NT=l000 and NR=1000.

A comparison of plot a in each of these figures graphically illustrates the

increase in the variance of the time-averaged autocorrelation function as Xii

approaches unity. In addition, a comparison of the figures corresponding to a

specific value of Xii shows the decrease in this variance as NT increases. The

plots shown in Fig 7.C.1 summarize the results shown in these figures.
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a b

.. 7- - - -

0 o aq 3 40 m3 70 S 0
Lnt

Fig 7.C.2 Time-av~mffad aUtOCOrmlaion futnction and its variance for X- 0.1 and
(Y 2,-4 a.) biased RT(<1 (6 trials) using NT-100 b.) ensemble averaged RE(l) using

10,000 realizations c.) sample varane of the biasd RT(1) d.) analytical variane
of biased RT( 0 e.) sample variance of the unbiased RT(i) .
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D. The Cross-Correlation Function Ergodicity Results

In this section, we will ftaluate the ergodicity of the cross-correlation

function. This will be accomplished by evaluating the variance of the time-

averaged cross-correlation function as determined by its ergodic series. In

Section IV.B, we developed the expression for the variance described by

eq(4.B.13). In this section, we will consider an expression for the variance of the

biased, time-averaged cross-correlation function estimator using limited data.

Following a similar discussion as presented in Section VII.C, eq(4.B.13) is

modified for the biased estimator such that

I 1 NT-Ill-IVBii(IN) N 1~ - T IRe[Rii(k)Rjj(k) + Fij(ik)]. (7.D.1)
KTk=-(NrIII1-1)1

We will now consider the case of a two channel AR(1) process with real

correlation functions. Table 7.D.1 lists the parameters used in the synthesis

procedure of section VI. Table 7.D.2 lists the A(1) and C matrices used in the

AR process synthesis equation expressed by eqs(6.B.5) and (6.B.6). We note that

in each of the A(l) matrices

-a, ' (7.D.2a)

and
_a22 = 22 (7.D.2b)

while

a 12 = a21 = 0. (7.D.2c)
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We also note that the cross-correlation between the process is controlled by

the elements of the C matrices; ie., for high correlation, the c1  and C21 elements

become nearly equal while C22 diminishes. For low correlation, the c21 element

diminishes. From eqs(7.D.2), each channel process is an AR(1) process such that

RI l(k) = o211I (,11) [k  (7.D.3a)

and
2 IkI (7.D.3b)R22(k) = 022 (,22) (

As in the previous section, we can show (see Section VI.C and Appendix G) that

when Rij(k) is real, the in-phase and quadrature components of the synthesized

outputs are uncorrelated so that

(a) = Rij (a) = 0. (7.D.4)

We also show that in the case where

II QQRij(a) = Rij (a) (7.D.5)

so that Fij(ik)=0, eq(7.D.1) can be written as

1 NT- 1 1 2_ 2 Iki (7.D.6)

VBij(IN) = NT - N'T "fo11 ( 1 1) 022 (122)
k=-(NT-Ill-1)

In Fig 7.D.1, the peak value of VBij(I) which occurs at 1=0 is plotted (solid

curves) as a function of XAR=kl 1 =122 for NT = 100 and NT = 1000 using the

analytic expression of eq(7.D.6) and a21= a2 2 =4. The corresponding peak
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values of the sample variances of the time-averaged cross-correlation function

estimates computed using the synthesized data processes are also plotted (x) on
this curve. These values were computed using NR realizations of the functions.

For NT = 100, NR = 10,000 was used while for NT = 1000, the number of

realizations was reduced to NR = 1,000. The sample variances based on NR

realizations of the time-averaged cross-correlation function estimates are

computed using the expression
NR (

Var[iijTb(I,NT):NRI -NO.1 IlIijTb(I,NTa) - ijTb(I,NRIa)12  (7.D.7)

where
NR

aijTb(INRIa) I 1 ijTb(I,NTa ) .  (7.D.8)
Tb R 1C_ I JbIN k )

and AijTb(I,NRIc) is the biased, time-averaged, cross-correlation function for

realization a.

Figs 7.D.2 through 7.D.10 show the results for these variances based on the

computed values of eq(7.D.7) and the analytic expression of eq(7.D.6). Table

7.D.1 contains the parameters used in the process synthesis procedure. In these
2 2cases, the variance of the processes a1 land a2 2 was held fixed at 4 while Xl1 and

X22 were varied from 0.1 to 0.99. The cross-correlation coefficient IP12 1 had

values of 0.99, 0.5 and 0.0. Table 7.D.2 contains the A(l) and C coefficients. As

noted previously, the off diagonal terms of the A(1) coefficients are negligible.
We also note that as the temporal correlation coefficients Xii increase, the

diagonal elements of A(1) increase; whereas, changes in IPij' affect the c21 and

c22 elements of C.
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Fig. 51 1  " 2 2  )-l )22 )12 IP121 NT NR 112

7.D.2 4 4 0.1 0.1 0.1 0.99 100 1000 0

7.D.3 0.50

7.D.4 0.00

7.D.5 0.5 0.5 0.5 0.99

7.D.6 0.50

7.D.7 0.00

7.D.8 0.9 0.9 0.9 0.99

7.D.9 0.50

7.D.10 0.00

Table 7.D.1

Fig. A(1) C

7.D.2 -0 1 4.7x 10 7  1.9 9 0.0 ]

0.o0.0 1.99 0.1

7.D. 10. [010.9951.2
7.D.4 [. 0.0] [1.99 0.0]

70.0 -0.1 0.0 1.99

7.. 050.01 1.732 0.01
70.0 -0.5 [1.715 0.244

7.. -0.5 0.0' 1.732 0.01
7.D.6 0.0 -0 .5 J [0.866 1.50

Table 7.D.2
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Fig. A(l) C

[ -0.5 0.01 1.732 0.0

7.D.7 0.0 -0.5 0.0 1.732

o-0.9 0.01 0.872 0.01
7.D.8 0.0 -0.9 [0.863 0.123

r.0.9 0.01 0.872 0.0
7M..9 1.0.0 -0.9 J 0.436 0.755J

[-0.9 0.01 0.872 0.0 1
7.D.10 0.0 -0.9] [ 0.0 0.872.1

Table 7.D.2 (contin.)

16-

14-

12- 2 NirP 1OOJ 10

10-

1.4-

1.2-
maxVBij(') t-

0-
Nr, 00

0.61

0.41

0..U 1.

Fig 7.D.1 Maximum variance of the time-avemged exponentially shaped
2 2

CrOS-correlation function with OI=U22=4; analytic (-) and computed (.).
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Appendix A

In this Appendix, we prove that

RnAfori =j and ij (A.1)

where the symbol A in this discussion refers to the Hilbert tranform. Consider

=n, r E[ni(t)nj(t- )] (A.2a)
nj

00

f F ,1(t)n(X) t,- X(.b

1 ErnLtnjJ~ (A.2c)

But

00

E n EX UY(A.3b)

-00

1 Rnin( Wx)
do (A.3c)

X f t-o

Let

and
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(A.4b)

so that
00

rn______
E[Ani(t)nj ())] =--) J (A.5a)

knn(t-%) = ftninj(a). (A.5b)

Using eq(A.5b) in (A.2c), we have

00

if A1 nin.(cz) (-da) (A.6a)

00

Anini(X) da(A.6b)

=Anin.@) = Rnjn (A.6c)

These results also hold when i = j.
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Appendix B

In this appendix, we derive the expression for the variance of liiT(I,N)

expressed by eq(4.A.3a). Consider the time averaged estimate of the

autocorrelation function; ie.,

1 N,

kiiT(' N ) = 2N+1 Y xi(n)xi (n-I) (B.1)
n=-N

where the symbol A in this discussion designates the quantity a2 an estimate. Let

0(n,I) = xi(n)x i (n - I) (B.2)

Assuming stationarity, the covariance of 4(n,I) can be expressed as

C (k,I) - E[ [ 0(n,I)-E[4(n,I)] } { *(n-k,I) - E[ *(n-k,I)] }] (B.3a)

= E[O(n,I)* (n-k,I)] - E[O(n,I)]E[O*(n-k,I)]

- E[O(n,I)]E[O*(n-k,I)] + E[O(n,I)]E[O*(n-k,I)] (B.3b)

= RO(k,I) - E[O(n,I)]E[O*(n-k,I)] (B.3c)

where

Ro(k,I) = E[ (n,I)o*(n - k,I)]. (B.4)

Assuming stationarity, we have from eq(B.2),

E[O(n,I)] = Rii(I) (B.5a)

and

E[O*(n-k,I)] = Rii(I) (B.5b)
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so that

COO(kI) = ROO(kI) - I,1)2(B.6a)

=E[xi(n)xi (n - I)xi (n - k)xi, I - k)] -IRii(I)I". (B.6b)

Now consider the variance of the complex estimate kiiT(I,N) which can be

expressed as

Vii(I,N) = E [ [AiiT(t,N)-E[AiiT(I,N)I [kii* 1,N)-E[kii*(1,N)]I (B.7a)

= E[AiiT(I,N)ftiiT(*N)] - E[AiiT(tN)]E[kii*(IN)]. (B.7b)

Using eq(B.1), we have

11iT(')kiiT(') 2 1 xi(n)xi (n - I)xi (p)xi(p - 1) (B.8)T ~(2N+1) 2n=-N p=-N

so that

lIT' ii NIT = (2N 1)Y, E[xi(n)xi (n-I)xi (p)xi(p-1)]. (B.9)
(2N1)n=-N p=-N

Also, from eq(B.1)

E~ti(,N)] 1R (B.10)
E[AiT = (2N+1) i Ri(I)

n=-N

so that

E[~iT IN ]E ftiT(,N ]I N N*
=~iTIN)EAi 2~ 1: Rii(I)Rii(I). (B.1 la)TO (2N+1)2 n=-N p=-N

1 N N Ri11.(. b
2 1 1~ ~I) 2 1Blb(2N+1) n=-N p=-N
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Using eqs(B.9) and (B -11b) in (B.7b), we obtain

11 11~2N N* *-
Vii(I,N) {E[x1(n)xi (n - l)xi (P)xj(P -1 I) (11

(2N+i'), n=-N p=-N1Ii() 2

(B.12)

Using eq(B.6b) in eq(B.-12)

1 N N
V~(,)=2 1 COO(n - p,I) (B.13a)

(2N+1) n=-N p=-N

1 2N
(2N1) ~[2N + 1 - IkI] COO(k,I) (B.13b)

1 2N l Iki k,1.(B1c
=(2N+1) X: [i - -2N+1lC~kI) B1c

k=-2N
We now derive an alternate expression for the variance of ftiiT(I,N) using

the bise time-averaged autocorrelation function. In this case, we use eq(7.C. 1)
with M=NT so that eq(B.8) becomes for positive and negativeI

1 NT-1-i NT-1-1
Aiim(I,NT)ii* (NT) 2 1 xi(n)x i (n-I)xi (p)xi(p-I)Th NT n=-O p=O

0O51:5NT-l1 (B.14a)

1 NT-III-lNT-tII-l**
2-, Y x i (n)xi(n-III)xi(p)xi (p-Ill)

NT n-- p=O

_(NT-l)I !51 0 (B.14b)

so that
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E[fiT. (I,N T)i* I1,NT) 1= 12 NT-I- NT-I-i (nIx *px~-)

Th NT n=0O p=O

0O51:5NT -1 (B.15a)

1 ±. NT-I11lNT-III-i **
2 Y, E[xi (n)xi(n-III)xi(p)xi (p-1ll)]

NT n-- p=0

-(Nrl) I1: 0 (B.15b)

Also,

E[AiiTh (1,NT)] = 1NTI-ii) 0:15N-1 (B.16a)

n0

1 NT-Ill-i1
= NT' n= Rii(I) -(NT-i) 1 50- (B.16b)

so that

E[AiiTh(INT)]E[ftii* (,NT)I

I 1 NT-1-i NT-I-i1
-2 Y, Y IRii(I)I 0:51I:5 NT (B.17a)

NT n=-O p=0O

= 2 Y, NYl- NT I ii12 -(NT-i) I 0. (B.i7b)
NT n- p=0O

Using eqs(B.i5) and (B.i7) in the expression

VB.INT) --w E[AiiTb(I,NT)Aii* (1 ,NT) - E[AiiTb(I,NT)E[iTh(I,NT)]

(B.18)

we obtain
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NT-I-i NT-I-i1
VBii(I,NT) 7, 7, [ E[xi(n)x. (n-I~x px~-) - IRii(1)I1

NT n-- )x (=O(-)]

for 0O 1I NT -1 (B.19a)

-1NT-III-lNT-I1t-l 1i() 2
2-~~~ E[x, (n)xi(n-III)xi(p)xi*(p-Ill)] - Ii()2

NT n-g p=0O

for -(NT-) I 1O5 . (B.19b)

Using eq(B.6b) in (B.19)

I NT-I-i NT-I-i
VBii(INT) W2 Y, COO(n - p,I) 0 I NT -1 (B.20a)

NT n=0O p=O

=1NT-IlI-iNT-ltI-l*

I C O(n - p,11I) -(NT-i): I 0. (B.20b)
NT n=O p=0O

We now let k n -p where

-(NT -11):5k:5NT -I-I for 0!51I5NT -1 (B.21a)

-(NT -III -1):5k 5NT -I111- 1 for -(NT-) I O. 0 (B.21b)

We also note that eq(B.21b) is'equivalent to eq(B.21a) for all I so that

I NTI-1-
VBii(lNT) W 1 : [NT - III - IkI] C O(kI) 0:5I:5 NT -1 (B.22a)

NT k=-(NT-tII-1)
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NT-111-I
I [NT - III - IkI] C;O(klll) -(NT-1) < < 0. (B.22b)k=-(NT-I1-I)

However, for negative lag 1, we have

C (kll1) = Co (kj) (B.23)

so that after dividing the bracketed factor by one of the NT terms in the

denominator

Bi(T) = NT k='(NT-I1-[ CO(kI) (B.24)

for both positive and negative values of I. In Appendix C, we show that the
imaginary terms in C O(k,I) cancel when summed over positive and negative

values of k so that

NT-111 1 I1I+Ikl]VBii(I1NT) NT -i l J ReICO(kI). (B.25)

T=8NT k=-(NT-0Il NT I
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Appendix C
In this appendix, we consider the term Fii(I,k) in eq(4.A. 11); ie.,

Fii(I,k) = E[xi(n)xi(n - I - k)]E[xi (n - I)xi (n -k)]. (C. 1)

Expressing the process xi(n) in terms of its quadrature components

E[xi(n)xi(n - I - k)] =

E Ef [xi(n) + jxiQ(n)] [xiI(n - I - k) + jxiQ(n - I - k)] I(C.2a)
SRii(I +k) - RQ(I + k)}I + j{[Ri 91(1+k) +R!9(1 + k)} (C.2b)

and

E[xi (n - I)xi (n - k)]=

E E{ [xii(n - 1) - jxiQ(n - 1)] [xil(n - k) - jxiQ(n - k)] }(C.3a)
- Rii(k - 1) - RQk- 1)1 -jRii(k - 1) + R!9(k - 1) (C.3b)

But

Rik-1= iiI - )(C.4a)

R i )(k- =Rri(I -k) (C.4b)

Rii (k-I1) =R!(1 4 ) (C.4c)

Ptj( )=R111- k) (C.4d)

so that eq(C.3b) becomes
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E[x i (n - I)xi (n - k)] =

SQQQIQ
S{Ri(I - k)- Ri - k)} -j{RQI( - k) + Ri (I- k)}. (C.5)

Substituting eqs(C.2b) and (C.5) into (C.1), we obtain

Fiiilk RI QQFii(Ik) = Rii(I + k) - Rii(I + k)}{RIi(I - k) - RiQ(I - k)}

+ [R9I(I + k)+ R!9(1 + ) RQI(I - k)Q+ R!9(1 - k)

-j f R-i(I + k) - RiQ(1 + k)} tRi1(I- k)+ Ri (I - k)}

+j [Ri(I - k) - R (1 - k)} (R91( + k) + I + k)}. (C.6)

When the function Fii(l,k) is used in eq(4.A.12), and the limit as N-,oo is taken, it

contributes the additional term in the summation

Li-(l) = urn 2N - 2N+l1 Fii(lk). (C.7)

N--*0*0 k2 2

By examination of eq(C.6), we note that the imaginary terms in eq(C.7)
sum to zero. This can be seen by first noting that Fii(I,k) is real for k=O. We also

note that imaginary terms evaluated with negative values of k serve to cancel the

corresponding imaginary terms for positive values of k. And so, only the real
part of the function Fii(I,k) contributes to the function Lii(I). Therefore,

• 1 2N r Ii

Lii(") = I*"! I - -+J Re(Fii(lIk)). (C.8)
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Examination of the real terms in eq(C.6) indicate that identical terms are

contributed by each positive and negative k value so that eq(C.8) can also be

written

I 2N F IkIl
Li()2N [ -k 2N+I {2Re { Fii(I,k)1 - Fii(I,0)1. (C.9)

The term Fii(I,0) is subtracted in the above equation so that it is not counted

twice. If we now define

II QQRcii Rii(c) - Rii (cc) (C.1Oa)

and
QI IQRDii(at) = Ri9I(a ) + Rii i(a) (C.10b)

eq(C.8) becomes
1 2NFkl

Li(l)- lim2 1 I - 2N-Il Re{Fii(lk)} (C.1.1-)N--* 2N + l k=2 Nl

- lim 1 2N Ik!
Nil* 2N+1 'I, 1 2N+1 [R C ii(I + k)Rcii(l - k)

+ RDii(I + k)RDii(I - k)] (C.1lb)

If the corresponding bandpass processes are stationary and narrowband,

then (see Section Il.E.2.a),

R1I(c) = RigQ(a) (C.12a)

and
R~i~o" ,IQ

R"1 i(a) = -R(a). (C.12b)
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Using eqs(C.12a) and (C.12b) in (C.6), we obtain

Fii(I,k) = 0. (C.13)

In this case, eq(4.A.13b) becomes

Vi =N 1i TN[ -+l IRi(k)I 2  (C.14)
N- oo 2N+1 k=-2N
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Appendix D

In this appendix, we consider the terms Fi(Ik) and Rii(k)Rjj(k) in

eq(4.B.10c). Consider,

Fij(l,k) = E[xi(n)xj(n - I - k)]E[xj (n - I)xi (n - k)]. (D.1)

Expressing the processes xi(n) and xj(n) in quadrature form, we have

E[xi(n)xj(n - I - k)] =

SE{ [xii(n) + jxiQ(n)][xjl(n - I - k) + jxjQ(n - I - k)]} (D.2a)

= {Ri(I + k) -R iQ(I + k)} +j R91( + k)+ R!(' + k)} (D.2b)

and

E[xj (n - I)xi (n - k)] =

= E { [xjI(n - I) - jxjQ(n - I)] [xii(n - k) - jxiQ(n - k)] } (D.3a)
i QQIQ

= {Rji(k - I) - Rji (k - 1) R (k - 1) + (k - 1)} (D.3b)

But
Rji(k. - )= Rij(I - k)  (D.4a)

QQ Q
Rji (k -1) = Ri (- k) (D.4b)

ji(k - 1) = Rij (I - k) (D.4c)

I) R 1I(I -k) (D.4d)

so that eq(D.3b) becomes
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Ejxj (n - I)xi (n - k)] =

= {Rj(I - k) - 0(1- k) -j {R 1 (I - k) + R( - k)}. (D.5)

Substituting eqs(D.2b) and (D.5) into (D.1), we have

11 QQ 11 QQ

Fifi~k) = Rjj(I + k) - R ij ( + k)} Rij(i - k) - R i (I - k)}
IQ RQI(IIQ

+RQI(I + k) + Rij(1 + k) } 9( - k) + Rj( )

-j {Rij(I + k) - RQ(I + k) {R9'(I - k) + R!9(1 - k)

+j { R1(I - k) - R9Q(I- k)} R91(I + k) + R!9(I + k)}. (D.6)

When the function Fij(Ik) is used in eq(4.B.14), it contributes the additional term

in the summation

I 2N[ IkI [

Lij(1) = lirm1+1 k=.{2 1 2N+I Fij(i 'k). (D.7)
N__.oo2Nl 

A

As in the case for Lii(0) expressed by eq(C.7), the imaginary terms in eq(D.6)

cancel in the summation of eq(D.7). Therefore, only the real part of Fij (,k)

contributes to the term Vij(I,N) so that

1 2N[ W 1
Lii(I) = llm2N+I k 2N+l RetFii(I,k)}. (D.8)N_+oo2Nx k=- .- 2 N+1

Examination of the real terms in eq(D.6) indicate that identical terms are

contributed by each positive and negative k value so that eq(D.8) becomes
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1 2N r klLif(I) li ~r2N+l k~ [,01 - 2N+1] { 2Re IFj(I,k)) - Fij(1,O)1 (D.9)

The term F1i(I,O) is subtracted in the above equation so that it is not counted

twice. We now consider the second term in eq(4.B.l1Oc); ie.,

Rii(k)Rjj(k) = EI~xi(n)xi (n - k)]E[xj (n - I~jn- I - k)]. (D.10)

Now

EI~xi(n)xi (n - k)] =

E E{ [xi(n) + jxiQ(fl)] [xiI(fl k) - jxiQ(fl k)] II(D.1 la)
II QQQI Q

= Rii(k) + R i(k)}I + j tfR91(k) - R!9(k)~ (D.llb)

and

*~j( ~j~ )

=Ef [xjl(n - 1) - jxjQ(n - I)I[xjI(n - I - k) + jxjQ(n - I - k)] (D.12a)

R (k + jj k) RA k) RA(k)(D.12b)

And so

II I QQRiik)Rj~= Rlilik) + R i()RA()+ R (k)

Q1 IQQ Q IQ

-jLJJ (k+R (k 9I( k)-% (k)}.
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Consider the imaginary terms
11I QI QQ QI II IQIm [ Rii(k)Rjj(k) - -j Rii(k)Rjj (k) -j R i (k)Rj' (k) + j Rjj(k)Rjj (k)

QQ IQ II Q1 QQ QI+j Rii (k)Rjj (k)+ + j Rj(k)Rii (k)

II IQ QQ IQ
Rjj(k)Rii (k) - Rjj (k)Rii (k) (D.14)

We now recall that

II II
Rii(k) = Rii(-k) (D.15a)

QQ QQ(D.15b)Rii (k)=Ri

QI IQ
Rii (k) = Rii (-k) (D.15c)

IQ QI
Ri1(k) = RQ (-k) (D.15d)

with equivalent expressions for the j channel processes. When Rii(k)Rjj(k) is

used in the summation of eq(4.B.12), we recognize that the terms in eq(D.14)

will cancel when the positive and negative k values are determined. For example,
II IQ

the first term in this equation becomes -j Rii(k)Rjj (k) when k is negative. This

term will cancel the third term in the equation for k positive. Similarly, the

other terms cancel. A similar argument can be used to determine that the real

terms in eq(D.13) for negative k equal those for positive k.

Finally, we note that if the corresponding bandass processes are jointly

stationary and narrowband, then (see Section III.E.2.b),
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Ri~)=Rj(a) (D. 16a)

and

Ri (a) = -R!9 (a). (D. 16b)

Using these equations in eq(D.6), we obtain

Fif(I~k) = 0. (D.17)

In this case, eq(4.B. 13) becomes

Vij(IN) = 1 k=2N 2N+1] *eRikRjk (D.18)
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Appendix E

In this appendix, we verify several of the equations noted in section

m.C.4.b. From eq(3.C.60a)

A1 - 1 +K 2 - 2(q 1 )K1  (E.la)

= 1 + Kl[K1 - 2111]. (E.lb)

Taking the partial derivative of A1 with respect to K1, we have
aKI = 2K1 -"2)-1 

(E.2a)

and
a 2 A- +2. (E.2b)

aK2

Eq(E.2a) and the positive value of eq(E.2b) indicates that A1 has a minimum

value atK 1 =X 1 1 , so that
Al > I + % 21-2 2 (E.3a)

2 2

2! 1 - (1il) 2 .  (E.3b)

Since 0< ) 1 : i1, we have

Al 2! 1 - (q11) 2 > 0 (E.4)

so that eq(3.C.61a) is verified. From eq(3.C.60e)

B -1 - 2()L12) 2 + (%12)4  (E.5a)

= [ - (O12)2]2 . (E.5b)

Since 0< X1 1:51, then 0 Bl<. From eq(3.C.60f)
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2 22

RI 1' - )62212 + (XI 1)2 (X22)2  (E.6b)

so that OLkC:1.
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Appendix F

In this appendix, we validate eqs(7.C.8) and (7.C.9) of section VII.

Consider the complex single channel i AR process of order M

M
xi(n) = : a * a(k)xi(n - k) + u(n). (F. 1)

k=1

Expressed in quadratic form, we have

xi(n) =xil(n) + j xiQ(n) (F.2a)

YM [a1 ~k) + j ak) [xil(n-k) + j xicQ(n-k)] + u,(n) + JuQ(n) (F.2b)

M
= - [a 1(k)xil(n-k) + aQ(k)xiQ(n-k)] + u,(n)

k=1

- J{ [al(k)xiQ(n-k) - a Q(k)xl(n-k)] + u Q(n} (F.2c)

so that
M

xi(n) 7, - [a(k)xii(n-k) + aQ(k)xiQ(n-k)] + u1(n) (F.3a)
k=1
M

xiQ(fl) = - [a,(k)xiQ(n-k) - aQ(k)xil(n-k)] + uQ(n). (F.3b)
k=1

In general, xii(n) and xiQ(n) will be correlated for aQ(k) 0 since they

both contain terms involving xi 1(n-k) and xiQ(n-k). However, for a Q(k)=O,

eqs(F.3a) and (F.3b) reduce to
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M
xi[(n) = - 7, ai(k)xii(n-k) + ui(n) (F.4a)

k=1
M

XiQ(n) = - 7 ai(k)xiQ(n-k) + uQ(n). (F.4b)
k=1

In this case, xil(n) and XiQ(n) are uncorrelated provided their white noise

driving terms are uncorrelated. In the process synthesis procedure described in

Section VI, a(k) will be real when the correlation function is specified to be real.
And so, a =0and

Ri (k) = Ri~iI(k) =f 0. (F.5)

From eqs(F.4a) and (F.4b), we also note that both quadrature components are AR

processes with the same coefficients and equal white noise driving variances.

Therefore,

U1 QQ
Ri(k) = Rii (k). (F.6)

We also note that in the simulation process described in section VI, we first
2.

solve for the white variance term u in the Yule-Walker equation. We then

divide this quantity by 1/2 and apply this variance to each quadrature component

of the white noise driving term. At kfO, we therefore expect to obtain the result

2
IIQ

Ri (O) = R ii (0) =(F.7)
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Appendix G

In this appendix, we validate eqs(7.D.4) and (7.D.5) of Section VII.

Consider the complex two channel AR process of order M

M
(n) = - AH(k)a&(n-k) + u(n) (G.1)

k=1

Expressed in quadratic form, we have

=Ln ijj(n) + j z(n) (G.2a)
M
I [AI(k, + jAQ(k)]H[x1 (n-k) + j A(n-k)] + llI(n) + juMQ(n) (G.2b)

k=1
M T T
1: - AJ (k) - jAQ(k)]II(n-k) + jz(n-k)] + uj(n) + juQ(n) (G.2c)

k=1

M T T
I [A I (k)2L1(n-k) + AQ(k)xQ(n-k)] + iIn

k=1

M T T (.d
- j{ ~[A I (k)z(n-k) - AQ(k)ILj(n-k)] + UtQ(n)}(2d

k=1

so that

& )= - 7, [A Ik~(n + AQ(k)j(n-k)] + ul(n) (G.3a)
k=1

.xQ(n) = - 1: [A I (k)z(n-k) - AQ(k)11j(n-k)] + uQ(n) (G.3b)
k=1
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T
In general, i(n) and zQ(n) will be correlated for AQ(k) # 0 since they both

T
contain terms involving xi(n-k) and z(n-k). However, for AQ(k) - 0, eqs(G.3a)

and (G.3b) reduce to

MAT
S- AI A(k)xi(n-k) + ui(n) (G.4a)

k=1

M T
zQ(n)-- Y AT (k).aQ(n-k)+ uQ(n) (G.4b)

k=1

Written in expanded form, the two channel processes become

1 [xu(n)] M al l (k) a21(k) xu(n-k)]+1 juU(n)] (G.5a)xin=Lx2I(n)j=-k=la12(l) a22(k) j x~~ ~+u21(n)](.a

and

[XlQ(n)] M aIIx((k) xxQ(n-k)" Q(n)n " k)]+[UI
Lx2Q(n)I k= L a12(k) a22(k) LX2 Q(k U2Q(n)

In the process synthesis procedure described in Section VI.A and VI.B, the

quadrature components of the white noise driving vectors are all uncorrelated.

Therefore,

RI(k) = R?2(k) = 0. (G.6)

We also note from eqs(G.5a) and (G.5b) that the vector processes 1 (n) and

AQ(n) are AR processes which have identical parameters. We therefore have
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R11(k) = R 11 (k) (G7a)

11 QQ (.b
R2-2(k) = R 2 2 (k) (.b

and

R12(k) = R12 (k). (G.7c)

These results validate eqs(7.D.4) and (7.D.5).
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Appendix H

In this appendix, we validate eq(4.A.l0c). Consider eq(4.A.9b) expressed

as

R#~(k,I) = E[xi(n)xi (n - I)xi (n -k)xi(n -I -k)]. (H.1)

Consider
xi(n) = xi(n) + j xiQ(n). (H.2)

Using eq(H.2) in (H.1), we obtain

R,#(kI) E E{ [xil(n) + j xiQ(fl)] [xiI(fl-) - j xiQ(fl-I)]

*[xij(n-k) - j xiQ(fl-k)][xiI(fl-k) + j xiQ(fl-k)] } (H.3a)

.[xil(n-k)xij(n-I-k)+xiQ(n-k)xiQ(n-I-k)+jxil(n-k)xiQ(n-I-k)

=E[xi(n)xij(n- I)xij(n-k)xi(n-I -k)] + E[xiQ(n)xiQ(n-I)x~i(n-k)x~i(n-I-k)]

+ E[x~i(n)x~i(n-I)xiQ(n-k)xiQ(n-I -k)] + E[xiQ(n)xiQ(n-I)xiQ(n-k)xiQ(n-I-k)]

- E[xiQ(n)xi(n-I)xil(n-k)xiQ(n-I-k)] + E[x~i(n)xiQ(n-I)x~i(n-k)xiQ(n-I-k)I

+ E[xiQ(n)x~i(n-I)xiQ(n-k)x~i(n-I-k)I - E[x~i(n)xiQ(n-I)xiQ(n-k)x~i(n-I-k)]

+j~i~~ilnIxjn- i~--k)] - jE[x~i(n)xi(n-I)xiQ(n-k)xij(n-I -k)]

+iE[xiQ(n)xiQ(n-I)xil(n-k)xiQ(n--k)] - jE[xiQ(n)xiQ(n-I)xiQ(n-k)x[(n-I-k)]

+j~i~~i~-~i~-~i~--) + jExQnxlnIxi~-~i~--)

-j~i~~i~-~i~-~i~--) - j E[x~i(n)xiQ(n-I)xiQ(n-k)xiQ(n-I-k)]

(H.3c)

For Gaussian, zero-mean quadrature components, eq(H.3c) can be expressed as

(dropping the i subscript)
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2 2R.#(k,I) = Rjg(I) + R11(k) + R11(I + k)R11(k - 1)

+ P.Q(I)R 1 (I) + RQ21(k) + RQI(I + k)RQ1(k - 1)

2
+ R1 (I)RQ(I) + RIQ(k) + RIQ(I + k)R1Q(k - 1)

2 (,+2

- RQ1(I)R1Q(I) - RQ1(k)R1Q(k) - RQ(I + k)R11(k - 1)
2

+ RIQ(I) + R][[(k)RQ(k) + R1Q(I + k)RQ1(k - 1)

2
+ RQI(I) + RQ(k)R 1 (k) + RQI(I + k)R1Q(k - 1)

- RIQ(I)RQ1(I) - R1Q(k)RQ1(k) - R11(I + k)RQQ(k - 1)

+j I R11(I)R1Q(I) + R]l(k)RIQ(k) + RIQ(I + k)R11(k - 1))

-i I Ru(I)RQI(I) + R1Q(k)RII(k) + R11(I + k)R1Q(k - 1))

+j f R4 (I)R1 QQ) + RQI(k)RQQ(k) + RQI+ k)RZQ1(k - 1))

-j ( RQ(I)RQ(I) + RQQ(k)RQ1(k) + RQJ(I + k)RQQ(k - 1))

+j {RQ1(I)RuI(I) + RQI(k)RII(k) + RQI(I + k)R11(k - 1) 1

+j {RQ(I)RQQ(I) + RQ(k)RQ(k) + RQ(I + k)RIQ(k - 1)

-j f R1Q(I)R11(I) + RII(k)RQ1(k) + R11(I + k)RQ1(k -1))1
-j ( R1Q(I)RQQ(I) + R1Q(k)RQQ(k) + RIQ(I + k)RQQ(k - 1) }.(H.4)

where we note that the first two terms in each parenthesis for the imaginary

terms cancel. Since

R(I) - (R11(I) + RQQ(I)] + j [RQ1(I) - R1Q(I)] (H.5)
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then
2 2 2 2+IR)1 - ~)_2Q()RQI 1IR(1)1 2 -- R2I)+ 2R1I(I)RQQ(I)) + ()+ RQi(k)- 2RQ(I)RIQ(I) + RIQ(I)

(H.6)

and similarly for IR(k,I)12 so that

ROO(k,I) = IRii(I)I2 + IRii(k)I2 + Fii(I,k) (H.7)

where

Fii(l&k) R {RiII + k) - RqQ(I + k)}{ [R(- k) - RiQl ( - k,)}
IQR {QI -,I k)

+ I Rii( + k) + Rii(I + k) R9i(I - k) + R1ii (

-j f R(I + k) - RiQ(l + k)) {RiiI(l - k),+ R0i - k)
+j [ II _  RqQ( - k) RiQI( + k) + RiI(I + k)} (H.8)

f~i 0k -1 1,R11(I

as noted in eq(C.8b) of Appendix C.
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