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I. INTRODUCTION

In this report, a method of synthesizing multichannel random processes
with variable temporal and cross-correlation properties is developed. This
synthesis method provides a capability to generate processes for the evaluation of
multichannel detection and estimatio /'aIgoﬁﬁi‘g currently being assessed [1]. In
detection analyses, this program provides a means to assess performance
capability in terms of a receiver operating characteristic (ROC) by allowing for
parametric variations such as signal-to-noise (S/N) and clutter-to-noise (C/N)
ratios, pulse-to-pulse correlation and cross-channel correlation prorerties.

In section II, the vector observation processes of interest are defined
together with their associated correlation matrix. The complex auto- and cross-
correlation functions are considered in section III. These functions are initially
introduced in terms of their quadrature and polar forms. However, in section
II.C, we propose a functional shaping approach which enables these functions to
be considered directly in terms of their correlation parameters. This approach is
the key feature which provides control of the process parameters in the synthesis
procedure. These functional forms, however, do not necessarily satisfy the
properties of correlation functions. In section III.C.4, we discuss important
constraint conditions on the functional parameters which must be imposed to
satisfy these properties. We note, however, that these conditions are necessary,
but not in themselves sufficient, to ensure the proper functional form for
correlation functions. Therefore, care must be used in the parameter selection
process in order to synthesize physically realizable processes.

In section IV, the concept of ergodicity of the correlation functions is
discussed in terms of the temporal and cross-correlation parameters. This
relationship is of critical importance in detection and estimation schemes which
utilize parameter estimation methods. Ergodicity is the condition under which
time-averaged statistics of random processes approximate those obtained by
ensemble averages. This condition is often assumed in estimation and other signal
processing applications. In this section, the ergodicity condition for auto- and
cross-channel correlation functions is derived in terms of fundamental process
parameters. Specifically, analytic expressions are developed for the variance of
the time-averaged correlation functions for discrete, complex processes. These
expressions provide a performance measure which can be used to specify the
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window size of the observation interval required to achieve a specific value of
this variance. A unique aspect of this development is the determination of the
functional dependence of these expressions in terms of the process temporal and
ensemble correlation parameters. In addition, the analytic expressions are
simplified for the general case of complex processes with jointly Gaussian
quadrature components where the usual assumptions associated with a complex
Gaussian process are relaxed.

In section V and VI, we define autoregressive (AR) vector processes and
propose a method for their synthesis in terms of the correlation parameters. This
method provides a generalization of the single channel approach proposed in [2]
to the multivariate case. Finally, in section VII, we illustrate examples of the
synthesized outputs as well as a validation of the ergodicity analysis discussed in
section I'V.




II. THE VECTOR PROCESS DEFINITION

In this report, we will consider the synthesis of vector processes under
hypotheses H, and Hy, such that

Hi: x(m=s)+cm)+w(n) n=172,..N
Ho: x(n)=c¢c)+w((n) n=1.2..,N .1

where X (n) is a zero mean, wide-sense stationary Jx1 received observation vector
consisting of J channels and § (n), ¢ (n) and w (n) are zero mean, complex
Gaussian random Jx1 vector processes describing the signals, non-white
noise(clutter) and white noise, respectively. These vectors are treated here as
uncorrelated with each other. However, methods to correlate s(n) and ¢(n) could
be used to model physical conditions such as radar multi-path or reverberation.
Furthermore, w(n) is uncorrelated with itself in time, but not across channels, so
that

_ (0] n#k _
Elw @ wH®I =R (0) nek @2)

where Ry, (0) is the JxJ correlation matrix of w(n). The vector processes g(n)

and ¢(n), however, contain an arbitrary correlation in time and between channels.
We will consider the condition where g(n), ¢(n) and w(n) are jointly wide-sense
stationary processes. The correlation matrix for the observation data expressed
in index ordered form [3] is '

Rs & = EIE, n&1 ) @3
where

3in=GTM 5T @).5T )] (2.42)

5T = [x,(K) xp(K)-.X; W), | (2.40)




Under the condition of wide-sense stationarity, Ry, is a Hermitian, positive

semi-definite matrix. We will prove this below. Furthermore, this matrix can be
written in block form as

T Rex(©@ Ryy(-1) . R N+ [ Rilx(o) &p‘lx(l) fo(N-l)-
B | Rax(D Rex@ - -Ry(N42) | Rilx('l) Rgx(o) ---Rilx (N-2)
RM_ ses - R
H H H
_Rxx(N-l)Rxx(N-2) Rxx(O) - -Rxx('N+l)Rxx('N+2) Rxx(o) 4
2.5)
where
Rxx () =E [x (k) xH (k-1)] k=1.2,..N
| =0, +1,...2(N-1) (2.6)

H
and the last expression in eq (2.5) results because Rxx(l) = Rxx(")- It is noted,

' H
however, that each block matrix of Rxx is not Hermitian; i.e., Rxx (I} # Rxx(|)

for |#0. We also note that Rxx is block Toeplitz. The superscript B denotes that
Rxx is written in block form where each block as defined in eq(2.6) is a JxJ
correlation matrix over the J channels.

We now show that the matrix expressed in eqs(2.3) and (2.5) is positive
semi-definite[4]. Using eq(2.4a) in (2.3), we can express the correlation matrix
as

21 lxH(1) gH()...xHN)]
_ x(2)
Ryx =E : 2.7
x(N)
where we note the dyadic form of the observation vector process. We now let &

be an arbitrary (non-zero) JNx1 complex valued vector. Define the scaler
random variable y as the inner product of £ and X, N So that




y= §H XN (2.8)

Taking the Hermitian transpose of both sides of eq(2.8) and recognizing that y is
a scaler, we obtain

H
y' =xinE (2.9)
Eqgs (2.8) and (2.9) can now be used to obtain
E[ lyl2] = E[ yy™ . (2.10a)
= E[ EH 3 NE NS (2.10b)
H
=EHE[ ) nx1NI € (2.10c)
= gH Rz_x_ E (2.10d)
where R& is the correlation matrix defined in eqs(2.3), (2.5), and (2.7). Since
E[ lyl2] >0 (2.11)
then
EHR:; & >0 2.12)

so that Ry is positive semi-definite. We note, however, that the correlation
matrix

Ryx(1) = E[ x(k) xH(k-D)] | (2.13)

is not Hermitian for | # 0. Thus eq(2.10d) does not hold for Ryx(l). It is the

property that the correlation matrix is expressed in the dyadic form of eq(2.7)
that provides the non-negative quadratic expression noted in eq(2.12). This very
specific structure of the correlation matrix imposes restrictions on the functional
form of the auto- and cross-correlation functions and must be considered in the
functional shaping method described in this report.




III. COMPLEX CORRELATION FUNCTION AND SPECTRAL PROPERTIES

In this chapter, we consider the complex auto- and cross-correlation
functions. In section III.A, these functions are presented in terms of the in-
phase(I) and quadrature(Q) form. This form will be helpful in developing some
interesting properties of complex auto- and cross-correlation functions not often
addressed in the literature. The polar form of these functions is considered in
section III.B. This form will enable us to consider correlation functions (and
thus specira through the Fourier transform) with general shapes, subject to
constraint conditions imposed on correlation functions. Furthermore, these
general functions will be expressed in terms of various correlation parameters.
These considerations are discussed in section III.C. In chapter V, these forms of
the correlation function are then used in a method to synthesize Gaussian
autoregressive processes with various spectral shape. In section III.D, the spectral
properties associated with complex autocorrelation functions are considered.
Finally, in section IILE, several properties associated with the even and odd
components of the correlation functions are presented; in addition, some
important properties of narrowband, stationary, bandpass processes are reviewed.
A. In-Phase and Quadrature Component Form

In this section, we consider the form of the complex auto- and cross
correlation functions in terms of an in-phase(I) and quadrature(Q) form.
Consider the wide-sense stationary, zero-mean, complex Gaussian baseband

process {x;(n)} for channel i expressed in terms of its in-phase and quadrature

components such that

xj(n) = xjy(n) + jxiQ(n). (3.A.1)




For jointly stationary processes, the cross-correlation (i#j)! and

autocorrelation (i=j) function is expressed as

Rij(l) = E[xi(n)x;(n-l)]

= E{[xji(n) + jxiqm](xji(n-) - jxjqn-Hl}
= {Elxjym)xj(n-h I+ Elxjqm)xjqn-H]}

+ j{Elxjomxji(n-D] - E[xji(m)x;q(n-H]}

= (R + R0 +5(RF () - R D)

=Rp;;() + Ry ()
where 1
RAij(I) = Ru(l) + R?JQ(D
RBij(I) = R%I(l) - RIijQ(l)
and 1
R;;(1) = Elxj(mxji(n-)]
R%Q(l) = E[xiQ(n)XjQ(n-D]
I
Rj; () = Elxigmxjq(a-h]
RinI(l) = E[xiQ(n)XjI(n-l)]

1The subscript j for channel j should not be confused with V-1,
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(3.A.2a)
(3.A.2b)

(3.A2c)
(3.A.2d)

(3.A2¢)

(3.A.33)

(3.A.3b)

(3.A3¢)
(3.A.3d)
(3.A3e)
(3.A.3f)




We note that the correlation functions in eqs(3.A.3) are real. In section
IILLE, we will discuss some interesting properties regarding the evenness and

oddness of these functions. For stationary processes, we have the property

%
Rij(l) = Rji(-l). (3.A4)
PROOF
Consider
%

Rij(n,n-l) = Rij(l) = E[xi(n)xj (n-N] (3.A.5)

and
%
Rji(n-l,n) = Rji(~l) = E[xj(n-l)xi (n)] (3.A.6)

From eq.(3.A.6)
* *
Rji(-l) = E[xi(n)xj (n-D]. (3.A.7)

The proof follows from the equivalence of the RHS of eqs(3.A.5) and (3.A.7).
The autocorrelation property follows when i=j so that

R;i(D = R;(-l). (3.A.8)

We now consider the complex process x;(n) to consist of a signal s;(n) plus

an additive disturbance such that

xj(n) = sj(n) + cj(n) + w;(n) (3.A.9)
where cj(n) and w;j(n) are additive non-white and white noise processes on
channel i, respectively. In section III.C, we develop functional forms of the
correlation functions for the signal and disturbance processes which will allow

considerable flexibility in modeling these processes. In quadrature component
form s;(n) is expressed as

si(n) = sif(n) + jsiQm). (3.A.10)




For stationary processes, the correlation function for the signal process can
be written using eq(3.A.2¢e) as

Rs() = Rj\ij(l) + szBij(') (3.A.11)
where

Ri\ij(l) = Rilij(l) + RSij?a) (3.A.12a)
and

R;ij(l) = Rgi;(l) . Rffj(l). (3.A.12b)
The corresponding disturbance correlation function is expressed as

Rg;() = Rey( + Ry () (3.A.13a)
= [RcAij(I) + jR%ij(l)] + [inj(l) + jRgij(l)]. (3.A.13b)

At | =0, from eq(3.A.2e)
RS . =
Rgij(o) =R Aij(o) + JRBij(O) g =5,C,W (3.A.14)

where g is used to denote s,c and w; ie., the signal, non-white and white noise
processes, respectively. However, we also have the definition

Rgi'(O)A
ii%gjj

pgij = g =8,C,W (3.A.15)

where pgij is the complex cross-correlation coefficient for processes {g;} and

{gj}, ogii and ngj are the standard deviations associated with each channel

process i and j, respectively, with corresponding variances




2

Ggii = Rgii(o) g =s,C,W (3.A.16a)
and
2
cgjj = joj(O) g = S,C,W. (3.A.16b)
From egs.(3.A. 14) and (3.A.15), we see that
Au(o) Re[Pgu]"gu i (3.A.17a)
and
BIJ(O) Im[pgu]og“ i (3.A.17b)

Egs.(3.A.17a) and (3.A.17b) relate the constants Riij(O) and R1g3ij(0) to the cross

correlation coefficient and the channel standard deviations.
Finally, for the autocorrelation function (i=j), Rgii(l) peaks at 1=0. The

cross-correlation function Rgij(l)’ however, does not, in general, peak at lag zero.

We designate it's peak value as lag Igij'

B. Polar Form
In polar form, the cross-correlation functions introduced in the previous

section are expressed as

1
Rg;;(0 = {[RA 1 + R, (I)]} explj6g; (D] (3.B.12)
='Rgij(')' exp[iegij(l)] g=S,CW (3.B.1b)
where
g = tan”RE (/RZ O] (3.B.2)

10




For the autocorrelation function (i=j), the imaginary part R%ii(l) is an odd
function of | (see section IIL.E) so that at =0, Ogii(O) = 0. Therefore, Rgii(o) is

real. It is the variance of the zero mean process and represents a measure of the

total power in the corresponding power spectrum. We have designated this

quantity for the channel i processes as 02 [see eq(3.A.16a)].

For the cross-correlation function (i%j), RBij(l) is not in general odd. Thus

0 gij(O) is not necessarily zero. And so, in general, the quantity Rgij(O) is
complex. We will designate this quantity as the complex constant Gij such that

Rgij(o) = Gij =(G A)ij + j(GB)ij (3.B.3)

where G = S,C,W for signal, non-white, and white noise processes, respectively.
Using eqs(3 A.14), (3.A.17) and (3.B.3), we have

AlJ(0) (Gp)jj = Relpg;log, 0 (3.B.4a)
and
BU(O) (Gp);; -Im[PglJ] g0 i (3.B.4b)
In addition, we also have from eq.(3.A.15) and (3.B.3)
Rgij(o) = Gij = (pgij) Ogii cgjj' (3.B.5)
From eqs(3.B.1), (3.B.4a) and (3.B.4b), at |=0
R, (0 = |RE .17 + [RE..02 "> expli,. .0 3.B.6
gij( ) = [RAij( )] +[ BU( )] exp(j gij( ‘)] (3.B.6a)
= ngijl cgiiogjjexp[iegij(O)]. (3.B.6b)

11




From eqs(3.B.5) and (3.B.6b), we have

Pgii = lpgij|exp[j9gij(0)] (3.B.7a)
or
lpgijl = pgijexp{-Jegij(O)]. (3.B.7b)

We can also develop additional relationships involving the phase and
amplitude between Rgij(l) and joi(l)' Using the same form as eq.(3.B.1) for

we have
2 21112
Rg; ()= {IRE ;01" + RE 01"} expliog ;) (3.B.8a)
= Ijoi(l)l exp[iegji(l)]. (3.B.8b)
From eq.(3.A.4), we have
*
Rg;;() = Rg (D" (3.B.92)

Using the conjugate property, we have

IRgij(l)l = 'sti(")l' (3.B.10)
and
egij(l) = ‘egji(")' | (3.B.11)

Eq (3.B.11) implies an odd relationship between egij (I) and Ogji(l); however,
we emphasize that these phase terms are not in themselves odd functions; ie.,

egij(l) does not in general equal -Ogij(-l). In particular, we note that Ggij(O) is not

12




necessarily equal to zero. For i=j, however, the relationship Rgii(-l) = [Rgii(l)]*

provides us with the expression (see section IIL.E.1.a)

Ogii(-l) = -Ogii(l) (3.B.12)

indicating that the phase function for the autocorrelation function is odd.
C. Correlation Function Shaping Approach

1.) General Development

We now consider modeling the cross-correlation function Rgij(l) with

functional forms that will enable us to obtain generalized distributions for these

functions as well as the autocorrelation function. We express these equations as

R = Kgif (gio |-l dexplig D} 120, g=sc 3.C.1)

where xgij is defined as the temporal cross-correlation coefficient for i#j and the

temporal autocorrelation coefficient for i=j. It provides a measure of the

correlation between successive pulses on a given channel(i=j) or between channels
(i%j), and is discussed further in section III.D; Kgij is a real, constant,

normalizing coefficient which will be derived presently; Igij is the lag value at
which the corresponding real function fg(-) has a peak value of unity. We note

that the cross-correlation function does not necessarily peak at lag zero as the
autocorrelation function does; ie. for i=j, Igii = 0. The functions f(+) are selected

to specify the shape of the correlation function magnitude and will be considered

13




below. Using | = 0 in eq(3.C.1) together with the definition used in eq(3.B.3), we
have

Rg;;(0) = Gij = Kg;ifg(hg;o 'gij)||=o°"p{j°gij(°)}' 3.C2)
Solving eq(3.C.2) for the normalizing coefficient
Gu .
Kgij o )I cxp{-Jegij(O)} (3.C.3)
g8\ 8ij’ 811 =0
so that eq(3.C.1) becomes

Gijfg(Ag;p Hgsy)
iy I“ exp j[0g;; (-0, O)1}. (3.C.4a)

fg(rgypr Hgii=0
Also, eq(3.A.4) enables us to obtain
*®

%

Rg;;(0 =

gij)

- exp(-i[Bg; ()-8, (1. (3.C.4b)
fylhg;p "'sij)||=o i Bij

The normalizing procedure presented above was utilized so that at =0, we have
Rgij(o) = Gij = (pgij)cgiiagjj as noted in eq.(3.B.5). When the equality in

eq.(3.B.5) is used in the above equations, we obtain

(Pgij)"gii"sjjfg(’"gij' I-lg;)
A

Rgij(l) = cxp{jlegij(l)-egij(o)]} (3.C.5a)

fg(

gij | lgi'I=0

g=s,C
or from eq(3.B.7b)

14




Ipg..I05..04..fo(Ag.., | -15..)
£i; 9gii%gii's g | g .
Rg,.() = S “| chxp{J[egi.(D]} g=sc. (3.C.5b)

Also,
*
(Pg:..) Os..04..fo(Ag.., -l - 15..)
R, ()= —ubil Bii8 8" Bij o e (b6, 0))
8ji fo(hgior | -y ) B~ 8
ghgi ' “'gii'1=0
g=s,C (3.C.5¢)
or
Po::104..04..f0(Ag.., -l = I5..)
Rg.() = Bij Sii Bjj% 8ij ] exp{-j[0g.(N}| g=sec. (3.C54)
ji fohose, |- 1ol ij
g\ gij’ " '8ij’ =0

The last four equations provide us with a useful description of the cross-
correlation function in terms of the cross-correlation coefficient p gij’ the

standard deviations oj; and oj; of the channel i and j processes, respectively, and
the temporal cross-correlation coefficient, )'gij’

For the autocorrelation function (i=j), we have

lpgiil =1 (3.C.6a)
since any given channel process is totally correlated with itself at zero lag. Also,

egii(O) =0 (3.C.6b)
since egii(') is an odd function of | (see section III.E.l.a). Eq(3.C.5b) for the

autocorrelation function now becomes

2
Ogiifgg; D

Rg..(D= exp{j[Bg..(D1} G3.C.7

fghgy., | )||=0
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where we again note that lgij=0 for i=j since the autocorrelation function peaks at
lag zero. Furthermore, since the function fg(-) for the autocorrelation function

has a peak value of unity at [=0, eq.(3.C.7) reduces to

2 .
Rgii(l) =0 giifg(lgii,l)exp{ Jegii(l)} g=s,C. (3.C.8)

At | =0, eq.(3.C.8) becomes

2
Rgii(o) = Ggii g=s,C (3.C.9

which is, as expected, the variance of the zero mean, channel i process. Finally,
we also point out that since Kgij in eq(3.C.3) is a real constant, then, defining

Kg.. as
i
Kgij =Ky folheyp - Igij)||=0 (3.C.10a)

eq(3.C.3) enables us to obtain

Kgij = Gij exp{-jegij(O)} ' (3.C.10b)
= (pgij)cgiiogjjexp{-jegij(O)}. (3.C.10¢c)
= 'pgijlcgiicgjj (3.C.10d)

where eqs(3.C.10c) and (3.C.10d) result from eqs(3.B.5) and (3.B.7b),
respectively. We note that Kgij is also real, although G;; and pgij are in general
complex.

In the above discussion, we have proposed using functional forms to
characterize the magnitude and phase of the correlation functions. The motivation
for this approach is that it allows us flexibility in modeling random processes
with various correlation and spectral shape. We caution, however that at this

point we have not constrained these functions to meet all the criteria that are
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necessary and sufficient to characterize correlation functions. In fact, determining
all of these conditions in a general formulation is a difficult task. In section
III.C.4, we consider several constraint conditions including the important
condition of positive semi-definiteness of the correlation matrix. In that section,
we show that even for correlation matrices of small dimension, determination of
an analytic solution of the constraint conditions is tedious. However, empirical

methods to control the parameters can be utilized.

2. The Autocorrelation Function

In this section, we consider the special cases of the Gaussian, exponential
and sinc shaped autocorrelation functions using the form denoted in eq(3.C.8).
a. The Gaussian Shaped Autocorrelation Function

In this special case, we consider autocorrelation functions with Gaussian
shaped magnitudes for the signal and clutter processes such that (dropping the

subscript i notation for convenience)

2 2
fo(hsl} = (hg)| = expl- 202 T22] (3.C.11a)
and
2 2
fehe) = ) = expl- 202 T22] (3.C.11b)
where
kg = exp[-21t2u§T2] g=58,.C (3.C.12)

and kg is a real constant such that 0 < }.g < 1 and T is the sample period. In

section III.D, we show that p.z with g=s,c is the variance of the Gaussian spectra
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associated with the signal(g=s) or non-white noise(g=c). Using these equations in

eq(3.C.8) provides
2
Ry(l) = 0'82 f(Ag.)exp[i8s(N)] = og (7«.8)l exp(jog(D] 120 (3.C.13a)
and
2
Re() = og f(Ac.Dexp[i0.(D] = 0‘2: (Zc)I exp[jocD] 1>0. (3.C.13b)

Using eq(3.C.13b) in (3.A.13a) for i=j, we obtain

Ry() = o> ) explio)] + a2 8() 120 (3.C.13¢c)

where d denotes the entire disturbance process consisting of non-white plus white

noise and the white noise autocorrelation function has been expressed in terms of
the Kronecker delta function, 8(). Eqs(3.C.13a) and (3.C.13b) indicate that Xg is

a measure of the correlation magnitude between consecutive samples [2] of the
process on channel i. This is determined by considering that the magnitude of

Rg(l) at | = 1 is decreased by the factor Xg as compared to the magnitude at | = 0;
ie.
IRg(1)l = A4 Ry(0). (3.C.14)
The relationship Rg(-l) = [Rg(l)]* where g=s,c provides the appropriate
value of the autocorrelation function at negative lag values.
b. The Exponential Shaped Autocorrelation Function

In the case of the exponential shaped autocorrelation function, we have

fo(hg ) = ! (3.C.152)

and
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fo(he) = AN (3.C.15b)
And so, eqs(3.C.8) and (3.A.13a) enatle us to obtain

2 .
Rs() = o (i)l expligg(h) (3.C.16a)
and
2 . 2
R4qh =0, (kc)III exp[joc(] + o, 8(). (3.C.16b)
c. The Sinc Shaped A lation Function
In this case, the shaping function for the autocorrelation function is
expressed as
sin[27(1-Ag)l]
so that

2 sin[2m(1-A )] _ ,
Ri() = o RrOAI exp[)es(l)].' - (3.C.16d)

ization by the White Noi
If the expressions in the first equality of eqs(3.C.13a) and (3.C.13c) are

normalized by the white noise variance ¢ ,,, we have

Rs() :
rg() = —5— = (SNR)fg(As,) exp[i65(D] (3.C.17a)

Ow

and

Rq() : |
ra() = —5— = (CNR)fo(Ac) expli6c(h] + 8() (3.C.17b)

Ow

where

19




2, 2
SNR = O / Ow (3.C.18a)

Eqgs.(3.C.17a) and (3.C.17b) are equivalent to those suggested in [2].
e. Polar Form with a Doppler Shift

The expression for the correlation functions can be modified using a linear
phase shift term to explicitly account for a Doppler center frequency. In this case,
egs.(3.C.13a) and (3.C.13c) can be expressed as

Ry() = oz f5(Ag, Dexpli0(hlexplj2nf,l T] (3.C.19a)

and
Rq(h = ogfc(}.c,l)exp[jec(l)]exp[jancl T] + c%v o) (3.C.19b)

where fg and f, are the signal and clutter Doppler center frequencies,

respectively.

3. The Cross-Correlation Function

We will now consider the special cases of Gaussian, exponential and sinc
shaped cross-correlation functions. In section III.C.4, constraint equations *ill be
developed in order to control the positive semi-definiteness of the appropriate

correlation matrices.
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a. Gaussian Shaped Cross-Correlation Function

In this special case, we consider cross-correlation functions with Gaussian
shaped magnitudes for the signal and non-white noise processes using eqs(3.C.5a).
Consider the functional form

dg.) = l-lg..)2 -
fo(A ij,| 'gij) = (xgij)( gif) g=s,C (3.C.20)
where (see section II1.D)
= - 2 2 2 '
kgij exp[- 2x ugijT ] (3.2.21)
and 0 <A gijs 1. Using eq(3.C.20), the normalizing terms in the denominators
of eqs(3.C.5) become
2
- = .. o=
fylhgy ! lgij)||=0 (hg;)'gij g=sxc. (3.C.22)

Using eqs(3.C.20) and (3.C.22) in eqs(3.C.5a) and (3.C.5b), we obtain
2
l-ls..
(Pg;)0g;;;iMg;)"'8iy)

Re;;0 = 2 expj[0g;;(0-0g,,(0)])
(Ag;:)'8ij
g=sC (3.C.23a)
= == —expljog, )
O‘gij)lgij
g =s.C. (3.C.23b)
Also
Pg;og;0g;ihei) 80
Re;i(D = 7 exp j[8g;()-Og,,(O))
( 8ji) gj
g=5C (3.C23C)
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)2

I-g..
ngjilogiiogjj(kgji)( g .
= cxp[Jegjl(l)}

2
(hgi)'gii
g =s,C. (3.C.23d)

Eq(3.C.23a) implies that )‘gij is a measure of the correlation magnitude between
consecutive samples (but delayed by lag Igij) across channels i and j. This is

determined by noting that |Rgij(l)| decreases by the factor }'gij atl= Igij +1 as
compared to the magnitude value at | = Igij; ie.

IRgij(lgij + D= xgij 'Rgij('gij)" (3.C.24)

Examination of eq(3.C.23a) indicates that at | = 0, we obtain the desired
result that Rgij(o) = (pgij)cgiiogﬁ. We also note that at | = Igij

(pg..)o ..0g..
_ T8ij” i &jj .
Rgij(lgij) = ‘2 exp{J[egij(lgij)-egij(O)]} (3.C.25a)
(g3 sij
Ipo..l10,..0,..
_ T8ij 8ii &jj .
= . )|2.. exp{jegij(lgij)} (3.C.25b)
(Ag;;) ij
Eq(3.C.25b) indicates that as )‘gij approaches zero, the correlation function

would increase significantly if ngijl were not controlled. In section II1.C.4, we

2
will show that we must 3t _least restrict ngijl such that lp gijI < O‘gij)l gij in order

to satisfy one condition of cross-correlation functions. However, we will also
show that this condition is necessary, but not sufficient, to properly shape the
cross-correlation function.

We now consider that from eqs(3.A.4) and (3.C.23a)
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Rg; (0= [Rgij(-l)]* (3.C.26a)

)(|+| )

(pgu) &ii 8]_1( gij Bij

Ongip)ei
g=s,C. (3.C.26b)
We can now show that
%

pgij =0 g (3.C.27a)

'glj = -l gji (3.C.27b)

lglj lgjl (3.C.27¢)

Ogij(l) = -egji(-l) g =s.C. (3.C.27d)

Proof
Eq.(3.C.27d) was proven in eq.(3.B.11). From eq.(3.A.4), we have at |=0,

Rg;(0) = [joi(O)]*. (3.C.28)

Using eqs.(3.C.23a) and (3.C.23c) in eq(3.C.28), the equality in eq(3.C.27a)

follows directly. We now consider the absolute values

(kgu)z(l lglj)

2 (3.C.29a)

'pglj gii gjj

and
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262 2(1+lg )
lpgu gii gjj(lg_]l)

IR,..(-hi% = (3.C.29b)
g
d (lgji)z(lgji)

where we have used the equality, ngijl2 = ngjilz. Using the equality expressed in

€q(3.B.10), we now obtain

(3.C.30)
(xg )z'gq (xgp)z'gp
Eq.(3.C.30) must be satisfied at all values of |. At| = lgij’
2
21 ..
2 (A-g ) gji
(ngi)z('gij+l.gji) = _.Il_2 | g=s,C (3.C.31a)
while at | = -|
2
2l ..
2 (Ag.)"gij
(}»gij)z(lgij"'lgji) = —“—2- g=s,C. (3.C.31b)
(g gji
&ji

Noting the inverse relationship expressed by the RHS of eqs.(3.C.31a) and
(3.C.31b), we have

g )2 2.+ 1y..)2
(lgij)2(|81]+ 3]1) =(lgji) 2('glj+ lg_u) . (3.C.32)

Since 0 < }‘gij’ A'gji <1, eq.(3.C.32) can only be satisfied if
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Igij = -lgji g=s,C. (3.C.33)

Using eq.(3.C.33) in eq.(3.C.30), it follows that

}‘gij = xgji g=s,C. (3.C.34)

b. Exponential Shaped Cross-Correlation Function
In the case of cross-correlation functions with an exponentially shaped

magnitude, we have
- li-l,,.. _
fg(k ces Hgij) = O‘gij) 8ij g=s,c (3.C.35)

where 0 < A'gij < 1. Atl=0, we have

- llg. .| =
fg(hg;; "'gij)'|=o‘("gij) 8ij g=s,C. - (cC39

Using these results in eq.(3.C.5a), we have

(Pg::)0g..Cg..(A ..)ll'lgi~|
Rg::() = Sij Sii Bij Sij Y exp{j[Bg;.(1-8..(0)])
j .| ij "8y
g =s.C. (3.C.37a)
Again, using eq(3.A.4)
(Pg:)*Cg..0g..(A ..)h""gi-l
Rg. () = Bij Sii Bjj Bif U exp(-j[0g;.(-)-8:.(0)])
ji .| ij R

g=sC. (3.C.37b) |
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c. The Sinc Shaped Cross-Correlation Function

In this case, the shaping function for the cross-correlation function is

expressed as | |
sin[2r(1-A,. )M - |g..1]
folhg:., (Hg: )] = Bii_ i g =Ss.c. (3.C.38)
ij 8 [2u(1-xgij)|| "sijI]
At | =0, we have
sin[21t(l-kgi.)l ..]
- j 8ij -

so that
sin[zn(l-xgij)ll ; Igijh
ng..log..cg.
ij - &ii [2u(1-xgij)|| -|gij|]
Rg;i(D = sin{2n(1 kg g, expljOg;; (D]
2r(i-Ag,)

gij!
g =s,C. (3.C.40)
d. Multichannel Doppler Processes

If a baseband signal g;(n) on channel i is considered to have a Doppler
center frequency fgi’ we can express this process as

gi(n) = {gj1(n) + jg;Q(n)}exp(j2nfy.nT] (3.C.41)

where T is the pulse repetition period. The cross-correlation function is therefore

%*
Rgij(n,n-l) = E[gj(n)g; (n-)] (3.C.42a)

= E{ [gi1(m) + jgiQ(ml(gjitn-D - jgj(n-DI}
. exp[j21tfgin1']exp[-j21tfgj(n-I)T] (3.C.42b)
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= E{[giim)gj(n-N] + [giQ(m)gjQ(-N]
+ jgiQ(m)g;1m-D] - gitmgjQn-Hi}
. exp[j21cfginT]exp[-j21cfgj(n-I)T]. (3.C420)
For joint-stationary conditions on the random processes contained in the
expectation operation,

Rg;mn-) = RE.() + jkgij(l)]exp (j2nlEg; g nT + £ IT]). (3.C.43)

ij
We note that this cross-correlation function is not time independent for

fgiaéfgj due to the term involving the frequency difference in the exponential.

Thus, the processes are not jointly stationary. This situation would result, for
example, when processing data from two or more radar systems operating at
different center frequencies. However, since the time dependent term is
deterministic, it can be removed in the pre-processing. This is achieved by
selection of a reference channel and frequency multiplying the other channel
signals so that the resulting Dopplers are all equal to that of the reference. The
proper mixing terms are obtained as follows. First, consider the Doppler

frequency on channel i expressed as

2vfoi

fgi =" (3.C44)

where v is the object velocity, f,; is the channel i carrier frequency and c is the

velocity of light. We therefore have the relation between channels i and j, such

that

f§12v

foj ry

“"h
[~

o"h
[~

(3.C.45)
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If we select channel i as the reference channel so that fg =f

&R
where ng is the Doppler on the reference channel and f, oR is the reference

channel carrier frequency, we have

ng [foj ] ng ]= 1,2,...,]. (3-C.46)

And so, if each channel j is frequency multiplied by its appropriate factor
(foR/foj), all of the Dopplers will be equal and eq(3.C.43) reduces to

Rg;() = R 0+ iR i Olexpli2nfy ] (3.C.47)

This result depends only on lag | and therefore satisfies the stationarity condition.
The preprocessing proposed here, of course, would be performed subsequent to
processing stages which might utilize the raw Doppler information contained on
each channel.

The corresponding polar functional expression for eq(3.C.5a) is

lpgulcguogu g(lgu gu)
fgOhgip! - lgiphi=0

Rg;i(h = exp(jl0g;, D exp(2nfyp] T). (3.C48)

81_]
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4.) Constraint Conditions For Correlation Functions

In this section, we discuss the constraints that must be imposed on the
parameters of the functional forms discussed in the previous sections to ensure
that these functions have the appropriate form for correlation functions. These
conditions are discussed in the next two subsections. In III.4.a, we develop
general constraint conditions while in IIL.4.b, the condition of positive semi-
definite correlation matrices is considered. As noted in section II, the
multichannel correlation matrix is Hermitian and positive semi-definite for

stationary processes. The expressions, developed in eqs(3.C.5a) through
(3.C.5d), are contained as the elements of the multichannel correlation matrix,

Ryx. Therefore, we must ensure that this matrix, when using elements obtained

from these equations, satisfies the condition of positive semi-definiteness; ie. a
matrix for which all eigenvalues are non-negative or all subminor matrices of

Ru have a non-negative determinant [12,13]. These conditions will impose

constraints on the terms pgij’ )"gij’ A 2

gij Ogi» and |

&ij
a. General Constraint Conditions

Several important constraints can be developed in a straightforward
manner by generalizing a discussion noted in [5]; ie., with the real constant o, we

consider

E[lxi(n+l)+an(n)|2] = E[[xi(n+l)-+(IXj(n)][x: (n+l) + ax;(n)]} (3.C.49a)
= E[xi(n+l)x;(n+l)]+ aE[xj(n)x;(n+l)]

+ aE[xi(n+I)x;(n)] + a2E[Xj(n)x;(n)] (3.C.49b)
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= R;i(0) +a[R;;(-)) + R;j(D] + a2R;(0) (3.C.49c)

= R;i(0) m[R:i(l) + Rij(l)] + aZRjj(O) (3.C.494)
so that
E[Ixi(n+l)+axj(n)|2] = R;;(0) + 2aRe{Rij(I)} + aszj(O). (3.C.49¢)

The above quadratic is nonnegative for any «; therefore, its discriminant is
nonpositive so that from eq(3.C.49¢)
[Re(R;;(D12 < Rj;(O)R;i(0). (3.C.50a)

Likewise, interchanging i and j in eq. (3.C.49a), we obtain
[Re{R;i(D]2 < R;(O)R};(0). (3.C.500)

Since the geometric mean of two numbers does not exceed their arithmetic mean,
we also have

2IRe(R;;(O} < R;i(0) + R;;(0) ~ (3.C5la)
and _
2IRe{R;i(0} < R;i(0) + R;;(0). (3.C.51b)
Alternative expressions can be obtained from eq.(3.C.49c) such that
[R;;() + Rji(-D]2 < 4R;i(O)R;j(0) (3.C.52a)
and
[Rj;(1) + Rjj(-D]2 < 4R;;(O)R;;(0). (3.C.52b)

We will now consider the specific example of the Gaussian cross-
correlation function and demonstrate how the above equations are utilized to
constrain the function parameters. Using the real constant defined by eq.(3.C.10c)
in eqs.(3.C.23a) and (3.C.26b), we obtain

-,,..)2
R,..() = Kgijo‘gij)( g._,) j0g..(l (3.C53
(Ag;i'gij
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and

811( gl_])(l Igl.l)2
joi(l) = 2 exp[-jegij(-l)]. (3.C.53b)

( xgij) 8ij
Inserting eqs(3.C.53a) and (3.C.53b) in constraint eq(3.C.52a)

2
Kg..(hg.)(Hlgi)
£ij" 8ij 1)
—— 2 expﬁegijd)]

i) gi
-1+l
Kguo‘gu)( &ij

(A
)2 2

. 2 2
- expl-0g,,()] | < 404,05 (3.C.54)
(A )'811
Noting that (-|+I )2=(|-Igij)2, we have
2
4(Ky. Y2(Ag, )2(Hg;0)
Bij "gij O LosZ[e SOE 402 zu (3.C.552)
(hg; g
so that from eq(3.C. IOd)
1P g1 2(Ag. )2 (g )
o " cos2[Ogij(l)]5 1. (3.C.55b)

The most stringent condition for this constraint equation occurs when | = Igij , SO

that

2|
5 ( 311) gij

lpg..I° < .
Pgu - °°s2[egij(lgij)]

(3.C.56a)
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Taking the positive square root of both sides of this equation, we have the

constraint
2

(lgij)'gij

pgijl s |cos[9 ( )]l .
gij " &ij

The result expressed by eq(3.C.56b) provides a constraint for lp gijI which

! (3.C.56b)

is upper bound. It represents one of several conditions that must be satisfied by
complex correlation functions.

Although the constraint procedure presented above is utilized in order to
bound the constant parameters to those values which will provide the proper
form of correlation matrices, it should be noted that they are necessary, but not
sufficient conditions. In the next section, we will discuss the constraint of positive
semi-definite correlation matrices and show that they lead to additional constraint

conditions which are also not in themselves sufficient.

b. Conditions for Positive Semi-Definiteness

In this section, we consider conditions for positive semi-definiteness of the
correlation matrix described in eq(2.5). By considering a specific example of
this correlation matrix, it is shown that additional relationships exist among the
parameters leading to further constraint equations. However, as we will show,
with appropriate adjustment of the parameters, positive semi-definiteness can be
achieved. The principal motivation for satisfying this constraint is two-fold.
First, we are further restricting these arbitrary functional forms to conform to
the proper shapes of correlation functions. Second, we are satisfying a condition
for physical realizability. In section V, we discuss a method for the synthesis of

multichannel AR processes which insures that the positive semi-definiteness
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constraint is maintained. The most direct method, however, would be a

determination of the eigenvalues through a singular value decomposition (SVD).

EXAMPLE

In this example, a 4x4 correlation matrix Ry, for a two channel process

will be considered. The Gaussian shaped distribution will be used for both the

auto- and cross- correlation functions so that (dropping the g=s,c notation)
Ryx() = oik g expligD] K = i (3.C.57a)
|pi-|ciiojjo.ij)(|-|ij)2
Rjjh) = — ) explj8;(1)] (3.C.57b)
il
2
Ip;:l65:6:3( ..)(|+|ij)
Rji(l) = ——— )‘“2 expl-8;(-1]. (3.C.57¢)
i)'

Using these relations in the 4x4 correlation matrix and simplifying for real

correlati_on functions, we nave
R11(0) Ry2(0) Ry1(1) Ry2(1)

R21(0) R22(0) Rp1(1) Rpa(1)

Ryy = 3.C.58
23X | Ry1(-1) Ry2(-1) R11(0) R12(0) ( 2
L R21(-1) Rp2(-1) R1(0) R22(0)
= 2 2 1-21., 7]
%1 1P121611%,2 0134y, 1P1510170,, (Ayp) 77712
iP121911%22 °§2 1P121611555 (A 5) L2l ";2*22
| "il"u '912'“11"22‘112’“2'12 "il 1P121011%2;
[ 1P12107185,(Ay5) 1-2l; °§2"22 1P121011%;2 °§2 -
(3.C.58b)
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As noted above, all subminor matrices must be non-negative for positive

semi-definiteness. In this section, we will consider a few of the required
constraint equations by requiring the determinants of the four principal minors in
eq(3.C.58b) to be positive. After considerable algebraic manipulation of these

determinants, we obtain the inequalities
2

611 20 (3.C.59a)
°§1<’§2[1 - 1p12121 20 (3.C.59b)
4 2
6,,0,,{1- (A11)2 -A1Ip1212} 20 (3.C.59¢)
o) 62 (1-C-A 2 + B 4; >0 3.C.59d
1102211 -C-A21p121¢ + Blp1217} 2 (3.C.59d)
where
A1=1+ K% -2(AM 1K1 (3.C.60a)
1-2119)2 |
("1 1-2l
Ky = > =012 12 (3.C.60b)

(7\.12)|12
2 2
Ay =2 +[K +K,] - 2(A11+A0)[K1+K2]

+ 200 DA 1+ )21 (3.C.60c)
(l+2l12)2
A
K, = 12 = (! 212 (3.C.60d)
1912
B=1-2019)%+(Ap)? (3.C.60¢)
C=11)? + 0% - 20002 (3.C.60f)

Eqs(3.C.59a) and (3.C.59b) are always satisfied since 0211 is positive and
Ip12I2_<_ 1. In Appendix E, we show that
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A;21-0220 (3.C.61a)

0<Bg<l1 (3.C.61b)
0<Cx<l1. (3.C.61c)
Since 611 and 69 are also positive, then eq(3.C.59c¢) is satisfied when
2
1-(A11)
P s —5—. 3.C.62
P12 =74, ( )

Using eq(3.C.61a) in eq(3.C.62), we note that the condition |p12I2 <1is

maintained. Eq(3.C.56d) is satisfied when
Aglp12i2 -Blpyait<1-C (3.C.64a)

or
Ip122 [Ag -Bipjol2]<1-C. (3.C.64b)

Eq(3.C.64a) can also be expressed as
Blpol4 - Ajlp1ai2 +(1-C) > 0. (3.C.64¢)

Since this quadratic is non-negative for any Ip12I2, its discriminant is non-

positive so that
(A9)? < 4B(1-C). (3.C.64d)

The inequalities in eqs(3.C.62) and (3.C.64a) through (3.C.64c) can always be
achieved for sufficiently small values of |p;,|. This will be an important
control parameter in the process synthesis procedure. We now consider several

examples using the above constraints.

CASE 1
In this case, we consider the parameters A19 = A11 = A99 and |{2=0 so that

from eqs(3.C.60a) through (3.C.60f)
K1 =Ky=A1p=211 (3.C.65a)
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Ay =1-Qp? (3.C.65b)
B=1-211)%+ A D* (3.C.65c)
Ag =2+2(A11)? - 8(A11)2 + 200 D20 + (A1)
=2[1-2A1 )2 + A\ D]

=2B (3.C.65d)

C=201?- A4 (3.C.65¢)
In this case, eq(3.C.62) is always satisfied since it reduces to

Ipygl<1 (3.C.66)
while eq(3.C.64a) becomes

2Blp;52 - Blp 514 < 1-2(; )2+ (A )* =B (3.C.67)
so that '

2lp 52 -Ipyoit < 1. (3.C.68)

This equation is also satisfied for Ip19l < 1 so that the constraint equations

dicussed here are satisfied for all values of Ipj5l. This condition is observed in

Table 3.1 which shows the values of the 4x4, 3x3 and 2x2 principal minor
determinants of eq(3.C.58b), respectively. In the special case where Ipy,l=1 and

G11=07,, both processes become identical. In particular, when A5=A{{=hy, =

0, we have the case of two identical white noise processes.

CASE 2
We first note in | 2| of Table 3.1 that when A;=A,5=1, but A;,<1, even the

small value of Ip,1=0.0001 causes the determinant D, to go negative. In this

case, we make a small reduction in the temporal correlation coefficients from
unity and observe the effect on the range of permissable values of )‘12' Consider

X11= kzz =0.95, Ip12l = 0.0001 and I12 = 2. From eq(3.C.60f), C = 0.99049 so
that eqs(3.C.62) and (3.C.64a) become, respectively |
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Ipy512 < 0.0975/A; (3.C.69)

and
Ajlp122 - Blpqol4 < 9.506x 10-3. (3.C.70)

Using Ip1512 = 1x10-8 and eq(3.C.60a) in (3.C.69), we obtain

2 0975
A1 =1+K5 -2(95K1 < =9.75x106. 3.C.71
1 1-2(9K1<7 108 X 3.C.71)

Since K1 = (A19)-3, then, solving for A, , yields

(A12)70 - 2(.95)(A12)3 ~ (A12)"6 < 9.75x106 (3.C.72)
or

(A12)0 > 1.0256x10-7 (3.C.73)
so that

(A12) 2 0.0685. (3.C.74)

This result agrees with the 3x3 determinant D3 of eq(3.C.58b) in |3| of Table
3.1; ie., D3 goes negative for A19<0.0685. The more stringent condition,

however, is expressed by eq(3.C.70). For A12<0.3, Ay =(A12)0 and Ip1214 = 0
so that eq(3.C.70) can be approximated as

(A12)70 Ip1212 < 9.506x 10-3 (3.C.75a)
or

(A12)0 > 1.05196x10°6 (3.C.75b)
so that

A15 > 0.1008479 (3.C.75¢)

which agrees with the value where D, in | 3| goes negative.
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The significant result of this case, however, is observed by first noting that from
eq(3.C.75), we have

Ip12l < 0975(A12)3. (3.C.76)
We note, however, that from the previously developed constraint eq(3.C.56b)
with I} = 2, we have the inequality

Ip1al < A19)4. (3.C.77)

Therefore, when A2 < .0975, eq(3.C.77) is more restrictive than eq(3.C.76).
However, when Aj9 > .0975 eq (3.C.76) is the more stringent condition. This

case illustrates that peither constraint is sufficient to guarantee that the functionals
will have the proper form for correlation functions. In the absence of such a
sufficient condition, the proceedure” will be to utilize the more stringent
condition; ie., positive definiteness or eq(3.C.53b) recognizing, of course, that
either of these two conditions may not be sufficient. As noted previously, an
SVD method appears to be an efficient means to check positive semi-definiteness.
A recent correspondence on this topic appears in [13].

This case also illustrates that as the individual channel processes each

become more uncorrelated(ie., more whitened), they can also become less
correlated with each other as noted by the small value of Aj9. It is significant to

note that although A1 and A99 were lowered by a relatively small amount(ie.,
from unity to 0.95), the value of A1 could be lowered significantly, provided
Ip12! is low. Examination of |3| and E| in Table 3.1, however, also indicates that
the lower bound on A1 is highly dependent upon lp12l.
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lp12| Xl 1 ),22 112 Dy D3 Dy l12
00 10 1.0 1.0 0 0 360 20
0.1 0 0 35.6
0.5 0 0 27.0
0.9 0 0 6.8
1.0 0 0 0.0
2] 00 1.0 1.0 099 0 0 36.0
0.0001 -1.0x10% 0 36,0
0.0001 0.95 0.95 090 1232 3159 36.0
020 1212 31.54
0.11 504 297
010 -0.59 2835
0070 -97.6  4.07
0069 -107.6  1.59
0068 -1186  -1.16
0.0001 0.90 0.90 0999 4679 61.56
030 4677 6155
(4] 0.10 3387 5833
009 2246 5547
0.08 256 4921
007  -6424 34.04
006 -2307 -7.85

Table 3.1 Computed values for the principal minor determinants of the
4x4 correlation matrix Ry.
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Ip1al  Aqy Ay A2 Dy D3 Dy 12
09 095 0.95 0.990 159 430 6.83 20
0.980 092 268
5] 0.970 0.083 0.43
0.969 0.0003 0.169
0,968 0082 -0.10
0.9 0.9 0.9 0.970 1.149  1.647
[6] 0.966 0.135 0.943
0,965 0,131 _-0.188
0.001 0.1 0.1 1.0 12702  320.7
0.50 2204 174.9
0.54 457 1506
0.55 -1.5x10"4_144.3
0.0 0.0 1.0

Table 3.1 (contin.)

40




D. Spectra for Complex Correlation Functions

1. General Relationships
The power spectral density P;;(f) of the continuous random process x;(t) is

defined as the Fourier transform of its autocorrelation function such that

P;i(f) = J’ Rj;(v)exp(-j2nfr)dt (3.D.1)
while for the discrete processes x(n), we use the discrete Fourier transform
Pi® =T D Ri(Dexp(-2nflT) (3.D.2)

where P;;(f) is assumed to be bandlimited to + 15 T Hz, and is periodic in
frequency with period %Hz.
The cross-power spectrum Pij(f) of two processes x;(*) and xJ-(-) is

similarly expressed in terms of the cross-correlation functions such that for

continuous processes
P;ih) = J’ Rjj(v)exp(-j2nfr)dt (3.D.3)
while for the discrete processes
00
Pi® =T Y Ri(Dexp(-j2nfiT). A (3.D.4)
J=-00 .

Using the continuous time version of eq (3.A.8); i.e.

*
Rji(®) = Ri:(-7) (3.D.5)
in eq (3.D.1), we have
]
Pii(H = J'Rﬁ(-x)exp(-jzuft)dt (3.D.62)
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= J Ri(Dexp(i2ntr)dt = [Py(H)]* (3.D.6b)

where the last equality results by changing the variable 7 to -t and appropriately
changing the direction of the integration. Similarly, using eq (3.D.5) in eq
(3.D.2) provides the discrete time version as

%
P;iHO=T ZRii(-l)exp(-jZRﬂT) (3.D.7a)
%
=T ZRii(l)exp(+j21tﬂT) = [P;(H)]*. (3.D.7b)
l=-00
Equations (3.D.6b) and (3.D.7b) indicate that the autospectra are real. Since, in
general
*

R;i() > Rij(°|) (3.D.8a)

and
%*

Rjj(m > Rij(-t) (3.D.8b)
the cross-spectra is, in general, complex. From the Fourier inversion formula,
we have

Rji(1) = j Pji(Dexp(j2rfr)df (3.D.9a)
and
Rjj(v) = I Pjj(Dexp(i2nfr)df (3.D.9b)
=00
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for continuous time processes; the inverse discrete time Fourier transform yields
1

2T
Rii() = [Pii(DexpG2nfiT)df (3.D.10a)
1
2T
and
1
2T
Ry;() = J‘ Pjj(Dexp(j2rfIT)df. (3.D.10b)
1
7T
At T =0, egs (3.D.9a) and (3.D.9b) become
R;;(0) = J’ Py;(Ddf | (3.D.11a)
and
R;;(0) = J‘ Pjj(Ddi (3.D.11b)
for continuous tinlle processes; for =0, eqs (3.D.10a) and (3.D.10b) become
2T
R;;(0) = J’ Py;(H)df (3.D.12a)
1
2T
and ,
2T
R;;(0) = f Pji(F)df (3.D.12b)
1
2T

for discerte time processes.
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2. Quadrature Component Form
We now consider the continuous complex autocorrelation function in terms

of its quadrature coniponents, such that

Rjj® =R Aﬁ('c) + jRBii(t). (3.D.13)
Using eq (3.D.13) in eq (3.D.1), we have
P;i(f) = ]:R Aii(‘r)exp(-jant)dt +]j TRBii(t)exp(-jmt&)d‘t. (3.D.14)
But since ;Aii(t) is even and RBii('c).oios odd (see section III.E.1.a), eq (3.D.14)
becomes
P;i(f) = ]?R Aii(t)cos(Z:tf‘t)d‘r + OJ?RBii('r)sin(ant)dt (3.D.15a)
= i’ Aii(f) + PBii(f) (3.D.15b)

Pi(f)

Fig. 3.D.1 Even and odd components of the power spectral density
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Eq(3.D.15b) indicates that the autospectrum is real, as noted previously.
Since the first integral is an even function and the second is odd, the resulting

summation will, in general, distort the spectrum about f=0 as shown in
Fig.(3.D.1). In the case where PBii(f) = (, the spectrum is even. This results

when RBii('r)=O, so that R;;(7) is real.

3. Spectral Distribution Using the Functional Shaping Method

We now present a discussion which will help to clarify the role of the
temporal correlation coefficient A;; introduced in section III.C to shape the
autocorrelation function.
a. Spectrum of the Gaussian Shaped Autocorrelation Function

In this case, we consider a real autocorrelation function for a continuous-
time process on channel i. The form of equation (3.C.11a) together with that of
eq(3.C.12) is used with the subscript notation g dropped. Specifically,

0;i(v)=0 (3.D.16a)

and
2
fAjiT) = A = exp (-2n2ui2ir2) | (3.D.16b)
where
2

Ajj = exp(-2r2u). (3.D.17)

With these expressions
2 2,22
R;i(7) = Csiiexp(-21t BT ) (3.D.18)
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is a real, Gaussian shaped autocorrelation function. Taking the derivative of

eq(3.D.1) with respect to f and eq(3.D.9a) with repect to 1, we have

Pyi(h) = J‘ [j2rtR;;(t)]exp(-j2nfr)dt (3.D.192)
and

R;i(1) = j [i2nfP;(f)lexp(+j2rfr)df. (3.D.19b)
Therefore,

. F.T .

Pii() o, -i2rTRi(T) (3.D.20a)
and

. F.T .

Rii(?) ., J2wfP;i(f) (3.D.20b)
where <—> denotes the Fourier transform péir. Taking the derivative of

€q(3.D.18) with respect to ©

: 2
Rjj(7) = - 4n2 pit Ryi(v) - @Day
50 that from eq. (3.D.20b)

. F.T 2
j2rfPy(H , 4r2pt Ryj(v). (3.D.22)
Dividing both sides of (3.D.22) by -j2my, yields
f FT .
- [—2- Piif) o, -§2rTRyi(%). (3.D.23)
Hi
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Using eq. (3.D.20a) and eq.(3.D.23)

Pyi(f) = - —fz— P;(D). (3.D.24)
Hij

Solving this equation for P;;(f), we obtain

2
Pii(0) = P(O)exp(- 2/213;) (3.D.25)
where it is now observed that uizi is the variance of the Gaussian power spectral

density function. Eq(3.D.25) indicates that the real, Gaussian autocorrelation
function results in a symmetric, Gaussian power spectral density (PSD).

For the discrete time case, T—IT where T is the sample period, so that

2 2

Rji(1) = 0. exp(-2n2p;;T22) (3.D.26a)
= o2 22
=0g.h (3.D.26b)

and the last equation results from eq(3.D.17). Also, from eq(3.D.17), we see that

as the variance of the power spectrum p,; ranges from zero to infinity, Ajj goes

from one to zero, repectively. Figure 3.D.2 shows the functional plot of Rj;(l)
and P;i(f) for O<Aii<1. For Ay =0, R;i(l) is a delta function 8 () and Pj;(f) is a
white noise spectrum. When A;; = 1, R;i(I) denotes the case of total temporal
correlation with a line spectrum for P;;(f). For A;; ranging from zero to unity,

all values of temporal correlation are obtained. Thus, A;; is a measure of the

- temporal correlation between consecutive samples of the random processes [2].

47




Py ()

a.
R..(0)
u Py
° + g
® o
® [ )
3 2 -1 0 1 2 31 o
b.
RE(D Pu(t)
¢
. 2 > . —. o L
3 2 1 0 1 2 3R o
c.

Fig 3.D.2 Functional plot of Ry;(l) and Pji(l) for a.) Aji=1 b.) O<Ay;<1 C.)A;;=0.
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b. Spectrum of the Exponential Shaped Autocorrelation Function
In this section, we consider a real exponential autocorrelation function for

a continuous time process on channel i. For this case, we have

0;i(t)=0 (3.D.27a)

£Aj;,T) = Aii' | = exp(-2ny;51t1) (3.D.27b)
where

Aii = exp(-2ry;;). (3.D.28)
With these expressions, we have

R;i(m) = ogiiexp(-Zn'yii 1Tl1) (3.D.29)

The power spectral density is determined by considering R;;(t) as the

superposition of two functions such that
2 .7 2 .1
Rji(7) = o Aju(T) + O A u(-1) (3.D.30)

where u(?) is the unit step function. And so, the power spectral density is

expressed as
2 .
Pii(f) = |o iiexp(-21wii't)exp()21tft)d’c
0
0
+ Joziiexp(-ZmnirkxpGZﬁt)dt (3.D31a)
2 2
= atl + Ll (3.D.31b
= @ryip +i@2rD) * @y - j2nh) -D-31b)
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2
20, ii(21l.'yii)

= . (3.D.31¢)
(2ry;)? + (2x)2
The peak value of this function occurs at f=0 so that
2
Isii
P;;(0) = ﬁ; . (3.D.32)
Also
2
Sii
PiiCtii) = 2y (3.D.33)

so that the 3-dB down points occur at f = ¥;; in the exponential case. The

inflection point of P;;(f) occurs at f = 'yﬁ%z.
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E. Special Properties of Complex Correlation Functions
1. Even and Odd Components
a. Single Channel Case
In this section we develop some interesting and useful properties of
complex auto- and cross-correlation functions. We consider the complex,

stationary, baseband random process

x(n) = xj(n) + ij(n) (3.E.1.1)

where we have dropped the channel subscript notation for convenience. The

complex autocorrelation function is obtained from eq. (3.A.2¢) as

R() =R () +jRB() (3.E.1.2)
where _

RA() =Ry(l) + Roq(® (3.E.1.3a)

Rp() =R - RIQ(I) (3.E.1.3b)
and

Ry() = E[xl(n)xl(n-l)] Roo() = E[xQ(n)xQ(n-l)] (3.E.1.3¢)
Riq() = E[xm)xq(n-g)] Roi(D) = E[xqm)xi(n-D | (3.E.1.3d)
The prime intent of this section is to consider some conditions under which we

may satisfy the speéial properties

RioM) = - Rgi(D (3.E.1.4)

and
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These equations are satisfied when x(n) is a wide-sense stationary

narrowband process[see Section III.LE.2a]. In this section, we show that
eq(3.E.1.4) is satisfied in general, when RIQ(I) and RQI(I) are both odd functions.

For stationary processes, we have the following properties:
%
Rji(D =Ry (-D (3.E.1.6)

and
sx%
Rij(l) = Rji(-l) . (3.E.1.7)

Substituting eq(3.E.1.2) into (3.E.1.6), we have (dropping the subscript i)

RA() +jRB() =RA(-) - JRB(-D. (3.E.1.8)
Equating real and imaginary terms
Rao(D=RA(CD (3.E.1.9)
and
Rg() =-Rp(-l) (3.E.1.10)

indicating that R A(I) and Rg(l) are even and odd, respectively. Also, applying
eq(3.E.1.6) to Ry(l) and RQQ(I), we have
Ry(l) = Ryg(-D) = Ry(-)) (3.E.111a)

and

Roo® = Rag(h =Rag(h (3.E.1.11b)

where the last equality results because these functions are real. Thus, Ry(l) and
RQQ(I) are even functions of |. Applying eq(3.E.1.7) to RIQ(I) and RQI(I), we have

Rig® = Ry(-) = Rgy(-) BE.L12)
where again, RQI(I) is real.
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We note at this point that although Ry(l) and RQQ(l) have been shown to be
even functions, no similar conclusion can be made at this point about RIQ(I) and
Rqi(). However, expressing Rqy(D) in terms of its even and odd components, we

obtain
Rai(h) = RG; () + R, (). (3.E.1.13)

Eq.(3.E.1.12) can now be written as
Ri() = Rp(-D) = Rgy(-D) + RQy(-D. (3.E.1.14)

From the property of even and odd functions
Rig() = Rgy(h - Roy (). (3.E.1.15)

Solving for Rgl(l) in eq.(3.E.1.13) and substituting into eq(3.E.1.15), we have
Rig() = RGy() - Rgy() - RGy(h] (3.E.1.16a)

= -Ray(h) + 2R (). (3.E.1.16b)

A similar equation is obtained by solving for R%I(I) in eq.(3.E.1.13) so that
eq.(3.E.1.15) becomes

Riq) = Rey(h - 2RY;(D. (3.E.1.17)

These last two equations show .1e explicit dependence of RIQ(I) on the evenness

and oddness of RQl(l). These equations indicate that when RQI(I) has no even

component (ie., when it is an odd function),
Riq() =-Rgy()  for Rey(l) = R (D). (3.E.L18)
On the other hand, when RQI(I) has no odd component (ie. when it is an even

function),
Rig() = +Rqy()  for Rey(l) = Rgy (D). (3.E.1.19)
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These last two equations can be substituted into eq.(3.E.1.3b) to obtain the
extreme values of Rg(l); ie.,

Ro)  Ror(h) = Rgy(h
Rp() =

. (3.E.1.20)
0 Rai() = R .

Thus, the degree of eveness or oddness of RQI(I) [or RIQ(I)] controls the
imaginary part of the correlation function, Rg(l). For RQI(I) totally even, Rg(l) =
0, so that R(l) is real. In this case, the spectrum is even. As RQI(I) becomes

progressively odd, the Rg(l) term increases with the result that the spectrum

becomes distorted about the carrier frequency.

At this point, we note that eqs.(3.E.1.16b) and (3.E.1.17) were developed
without imposing any restrictions on the process {x(n)} other than wide-sense
stationarity. It can be shown, however, that for narrowband, wide-sense
stationary bandpass processes, €q.(3.E.1.18) results. This is discussed in section
III.LE.2.a. Apparently, the narrowband restriction is a special case which yields an
odd RQI(I) function.

b. Multichannel Case

In this section, we consider several properties of the complex cross-
correlation function between the two processes x;(n) and xj(n) where

xi(n) = xjy(n) + jxio(n) (3.E.1.21a)

and
xj(n) = le(n) + jij(n). (3.E.1.21b)

Assuming wide-sense joint stationarity, the complex cross-correlation function is
obtained from eq(3.A.2e) as

Rjj® =Ra;(M + iRp,() (3.E.1.22)
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where

II
Ra () =Ry + Ry () (3.E.1.23a)
I I
RBij(I) = R% o - Ri?(l) (3.E.1.23b)
and 1
Rij(l) = E[xil(n)le(n-l)] (3.E.1.24a)
R%Q(l) = E[xiQ(n)ij(n-l)] (3.E.1.24b)
I
Ri?(l) = E[xil(n)ij(n-I)] (3.E.1.24¢)
1
R% = E[xiQ(n)xJ-I(n-I)] (3.E.1.244d)
Under the stationarity conditions assumed here, we have the relation
%*
Rij(l) = Rji('l)‘ (3.E.1.25)
Substituting eq(3.E.1.22) into eq(3.E.1.25) enables us to obtain
Ra..(D =Rp..(-D (3.E.1.26a)
ij ji
and
RBij(l) = -RBji(-I). (3.E.1.26b)
Applyinglfq(&E. %I .25) to the real functions in eqs(3.E.1.24), we have
Rij(l) = Rji('l) (3.E.1.27a)
Ry () =R3 ) (3.E.1.27b)
I
Rix () = R3\ () (3.E.1.27¢)
I
R () = Ry (. (E127d)
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2. Narrowband Bandpass Processes

a. Single Channel Case
We now consider 2 real, narrowband, bandpass process nj(t) such that

nj(t) = Re[xi(t)exp(iancit)] (3.E.2.1)
where x;(t) is the complex baseband process previously defined in eq(3.A.1) as

xi(1) = xj(t) + xiQ(®). 3.E2.2)

The quantities x;;(t) and xiQ(t) are the real-valued low pass quadrature

components. Using eq(3.E.2.2) in (3.E.2.1), the process nj(t) can be expressed in

canonical form as

nj(t) = xjf(t)cos2nf;t) - xig(sin(2nfeit). (3.E.2.3)

Taking the Hilbert transform of eq(3.E.2.3) and recognizing that the quadrature

components are low pass, we obtain

() = xi(Dsin(2rfe;t) + xjq(t)cos(2nfe;t). (3.E.2.4)

Eqs(3.E.2.3) and (3.E.2.4) can now be used to solve for the quadrature

components resulting in

xi(t) = nj(t)cos(2nfe;t) + Ri(t)sin(2nfe;t) (3.E.2.53)

and
xiQ(®) = fj(t)cos(2nf;t) - ny(t)sin(2xft). (3.E.2.5b)

In this section, we will determine relationships between the auto- and cross-
correlation functions of the quadrature components of the process x;(t) under the
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assumption that n;(t) is stationary. In this case the correlation function of nj(t) is

Rnini(") while the power spectral density is Snini(f) centered about + f;..

1

Dropping the redundant subscript i notation, we consider the Hilbert transform of

n(t) as

n()——jw

The cross-correlation function RyQ(7) is expressed as
Rpf(T) = E[n()At-1)].
Substituting eq (3.E.2.6) into (3.E.2.7)

n(t)n 7»
Roa(®) = J ek
Interchanging the expectation and integration

0= [l

«O0

Assuming wide-sense stationarity on the bandpass process,

Rpn(t-A)=E[n(t)n(A)]
so that

Now let o =t - A so that dA = - da and

Rnn )

RAM® =7 J
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(3.E.2.7)

(3.E.2.8)

(3.E.2.9)

(3.E.2.10)

(3.E.2.11)

(3.E.2.12a)




Similarly,

Ra_ (%) = E[A(t)n(t-1)]
1 oongMngt-‘c}
n J t-A dA

1 (E[n(A)n(t-t)]
T A 9

-00

[

ajl—-

Leta = A-t+t sothatdA =do and

©0

Ran(®)

Ra,(® =1l-; f T-a 9% = ﬁm(t)

-00

and so noting the equality of eqs(3.E.2.12c) and (3.E.2.14)

Rnﬁ(‘t) =- R;\m(r).
Also, at T = 0 the function Ryn(0)/0 is odd so that

R4, (0) =0.
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(3.E.2.12b)

(3.E.2.12¢)

(3.E.2.13a)

(3.E.2.13b)

(3.E.2.13¢)

(3.E.2.134)

(3.E.2.14)

(3.E.2.15)

(3.E.2.16)




We now consider the correlation functions associated with the quadrature
components defined in eq(3.E.2.5a) and (3.E.2.5b)

Rg('c) = E[xj(®)x;z(t-1)] (3.E.2.17a)
= E[n(t)n(t-t)]cos(2nf t)cos[2nf(t-T)]
+ E[n(0fi(t-t)lcos(2rf t)sin{2nf(t-1)]
+ E[D(t)n(t-1)]sin(2nf t)cos[2nf(t-T)]

+ E[(t)fi(t-1))sin(2nf ot)sin[2nf . (t-T)]. (3.E.2.17b)
Let
A =2xf.t (3.E.2.18a)
B = 2rnf.(t-T) (3.E.2.18b)
Using the identities
cos(A - B) = cosAcosB + sinAsinB (3.E.2.18¢)
sin(A - B) = sinAcosB - cosAsinB (3.E.2.18d)
we obtain
cos(2nf t)cos[2nf(t-T)] = cos(2nf.T) - sinAsinB (3.E.2.18¢e)
cos(2nf t)sin[2rf(t-T)] = cosAsinB (3.E.2.18f)
sin(2nf t)cos[2nf(t-T)] = sinAcosB (3.E.2.18g)
sin(2ref t)sin[2nf(t-T)] = sinAsinB (3.E.2.18h)

Using these relllations and eqs(3.E.2.14) and (3.E.2.15) in (3.E.2.18b)
R;;(T) = Rpp(t)[cos(2nfT) - sinAsinB]
R n(t)cosAsinB + R (t)sinAcosB
+ RAA(T)sinAsinB (3.E.2.19a)
= Rppn(v)[cos(2nf T)-sinAsinB]
+ ﬁm(t)[sinAcosB-cosAsinB]
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+ R4{AA(T)sinAsinB
= Rpn(t)[cos(2rf,T)-sinAsinB]
+ Rpn(D)sin(2nf:7)
+ RAA(T)[sinAsinB]
In Appendix B, we show that

RAA(T) =+ Ryp()

so that
Rg(t) = Rpn(?)cos(2pf 1)
+ R (sin(2rf,7)
Similarly,
R%Q(‘c) = Rpn(t)cos(2nef.T)
+ Ry (t)sin(2nf,T)
so that

R.g(‘t) = R%Q(t).

We now consider

Rii (%) = Elny(Ong(t-0)]
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(3.E.2.19b)

(3.E.2.19¢)

(3.E.2.20)

(3.E.2.21)

(3.E.2.22)

(3.E.2.23)

(3.E.2.24a)




= E[n())A(t-1)]cos(2nf t)cos[2nf . (t-T)]
+ E[A(t)f(t-1)]sin(2nf t)cos[2nef(t-T)]
- E[n(t)n(t-t)Jcos(2nf t)sin[2nf(t-T)]
- E[A())n(t-7)]sin(2nf t)sin[ 2nf o (t-T)]

(3.E.2.24b)

= l%ﬁ(‘l:)cosAcosB + R{fi(t)sinAcosB
-Rpn(t)cosAsinB - RA (T)sinAsinB (3.E.2.24¢)

= Rnﬁ(‘r)cosAcosB + Ry (t)sinAcosB
-Rpn(t)cosAsinB - RA_(T)sinAsinB (3.E.2.24d)

where eq(3.E.2.20) was used to in the second term above. From egs.(3.E.2.12¢)
and (3.E.2.14)

R A = - Ryn(@) (3.E.2.25a)
Ra (D) = Rpp(@) (3.E.2.25b)
so that
R:?(") = Rpn(?)[sinAcosB - cosAsinB]

- R (VcosAcosB + sinAsinB] (3.E.2.262)
= Ry (t)sin(A - B) - R, (t)cos(A - B) (3.E.2.26b)
= Ry (v)sin(2f,7) - Ry (t)cos(2rf ). (3.E.2.26¢c)

Similarly,
-R§ (%) = Ry (¥sin(2nf,t) - Ry (tcos(2nt,0) (3.E.2.27d)
so that
Ri(7) = - R 5 (2). (3.E.2.27¢)
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We also note that since Rp,(T) is even and ﬁnn(t) is odd, then
I
eq(3.E.2.26¢) indicates that Ri?(r) is odd. It was noted at the end of section

ITL.E.1.a, that the narrowband process is a special case which results in odd cross-

I I
correlation quadrature components Ri?(t) and R?i ().

b. Multichannel Case

We now consider two real, narrowband, bandpass processes n;(t) and nj(t)

defined in eq(3.E.2.1) and develop properties similar to those developed in the

previous section. Specifically, we will determine relationships between the cross-
correlation functions of the quadrature components involving x;(t) and xJ-(t); ie.,

Rg(t), R%Q(t), R%I(‘c) and Rli?('t). The bandpass processes are expressed as
nj(t) = Re[xj(t)exp(j2nf;t)] (3.E.2.28a)

and
ni(t) = Re[xj-(t)exp(iZijt)]. (3.E.2.28b)

In section III.C.3.c, however, we suggested that each channel process can be
translated to a common reference frequency fcp. And so, f¢. and fCj in

(3.E.2.41) can be replaced with fCR’ Egs(3.E.2.28) can then be expressed as

nj(t) = Re[xi(t)exp(ianCRt)]A (3.E.2.28¢)

and
n(t) = Re[xJ-(t)exp(j2nfth)]. (3.E.2.28d)

Using the quadrature form for x;(t) and Xj(t) expressed in eq(3.A.1), we obtain
the canonical forms for the above equations as

nj(t) = xj(t)cos(Zrfcpt) - Xjot)sin(2rf pt) (3.E.2.28¢)

and
nj(t) = le(t)cos(21cfth) - XjQ(t)sin(anth). (3.E.2.28f)
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The Hilbert transform of nj(t) 1s expressed as
n;i(A)
fi(t) = J A (3.E.2.29)

Assuming wide-sense joint stationarity between the two bandpass processes, the
cross-correlation function Rn,ﬁ_(t) is expressed as
17)

Rphi(® = Eln;(t)nj(t- 7). (3.E.2.30)
Substituting eq (3.E.2.29) into (3 E.2.30)
nj(nj(A)
A N |
Rnih; (9 = f Y (3.E2.31)

Interchanging the expectation and integration

( Elni(On;(V)]
Rnln (1)-— J ey dA. (3.E.2.32)
We now consider,
Rninj(t-},) = E[ni(t)nj(x)] (3.E.2.33)
so that
| [ Ry (th)
Ry () = J — o d. (3.E.2.34)

Now leta =t - A so that dA = -da and
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Rpn (@)
Ry (® ‘EJ e (-da) (3.E.2.35a)
L J o 2.35

== | —gx—da (3.E.2.35b)

(R (@)

_ 1 [ Ron®
= J i dat (3.E.2.35¢)
= 'ﬁninj(“)~ (3.E.2.35d)

Similarly,

Rfini(® = E[fj()n;(t-7)] (3.E.2.36a)

A)n;(t-
J n‘( )n( 9 i (3.E.2.36b)

E[ny(A)n;(t-
-1 j o t_);l(t O (3.E.2.36¢)

{ “R (). t+1:)
== J (3.E.2.36d)

Let a = A-t+t so that dA =da and eq(3.E.2.36d) becomes
”Rn.n.(a)

Rijin,(® -1 J — i —do (3.E.2.37a)
= ﬁninj(")- (3.E.2.37b)
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From eqs(3.E.2.35d) and (3.E.2.37b), we have

iﬁj(‘f) = -Rﬁinj(‘r). (3.E.2.38)

We now consider the cross-correlation functions associated with the quadrature
components of the x;(t) and Xj(t) processes defined in eqs(3.E.2.5a) and

(3.E.2.5b). First, consider

Ryi(®) = Elxig(Omjp(t-0)l (3.E.2.39)

Using eqs(3.E.2.28¢) and (3.E.2.28f) and the corresponding Hilbert transforms,

we solve for

xj(t) = nj(t)cos(2nfept) + Ni(D)sin(2nf, (3.E.2.40a)

RY
and |
xjQ(®) = Rj(t)cos@nfcpt) - ni(Dsin(2nfcpt). ~ (3.E.240b)

Using eq(3.E.2.40a) and the corresponding equation for xJ-I(t) in eq(3.E.2.39), we

obtain

Ryj(%) = Elninj(t-D)lcos(2te  ticos{2nfc. (-0
+ E[ni(t)ﬁj(t-'t)]cos(ZRfCRt)sin[21tfcR(t-1:)]
+ E[ﬁi(t)nj(t-t)]sin(21tfth)cos[21tfcR(t-‘c)]
+ E[fj(t)(t-7)]sin(2nf, posinl2mfe, D). (3.E.2.41)

We now define
A= 21tfth (3.E.2.42a)
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and
B= 21rfcR(t-1:). (3.E.2.42b)

Let us recall the identities

cos(A - B) = cosAcosB + sinAsinB (3.E.2.42¢)
sin(A - B) = sinAcosB - cosAsinB. (3.E.2.42d)

Using eq(3.E.2.42C), we have

cos(21tfth)cos[21tfcR(t-'c)] = cos(2nf R 7T) - sinAsinB. (3.E.2.42¢)

From the identities defined above,

cos(21cfth)sin[21cfcR(t-';)] = cosAsinB A (3.E.2.42f)
sin(21tfth)cos[21cfcR(t-‘t)] = sinAcosB (3.E.2.42g)
sin(21tfth)sin[21tfcR(t-t)] = sinAsinB. (3.E.2.42h)

Eq(3.E.2.41) can now be written

I .
Rij('t) = Rninj('c)[cos(anCR‘c) - sinAsinB]
+ Rniﬁj('t)cosAsinB
+ Rﬁinj('t)sinAcosB
+ Rﬁ,ﬁ,('t)sinAsinB (3.E.2.43a)
1)
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= Rpyq,(0{cos(2nf, 1) - sinAsin]
+ ﬁninj(t)[sinAcosB - cosAsinB]
+ Aiﬁj(t)sinAsinB (3.E.2.43b)

where we have used eqs(3.E.2.35d) and (3.E.2.37b) to obtain (3.E.2.43b). In
Appendix A, we show that

RA:() = Ry, (0 . (3.E.2.44)

Using this equation and the identity expressed in eq(3.E.2.42d),

Rg('t) = Ryn (Dcosmfcp ﬁninj(‘r)sin(anth). (3.E.2.45)

Similarly, using the relation sin(A-B) = -sin(B-A), we obtain

R%Q(‘c) = Rninj(t)cos(ZNfCR'_c)-l- ﬁninj(‘c)sin(anCRt) (3.E.2.46)
so that
Rg('t) = R%Q(*c). (3.E.247)

Next, we consider

R:jQ(‘t) = E[xji()x;qt-1)]. (3.E.2.48)

Using eqs(3.E.2.40a) and the j channel equivalent of eq(3.E.2.40b) in (3.E.2.48),
we obtain
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R;?(t) = Elnj(®)flj(t-0)lcos(2nf g t)cos( 2nfp (t-1)]
+ E[B;()j(t-0)Isin(2nf o ticos[ 2nf e (+-1)]
- Eln;(0)nj(t-1)]cos(2nfep Dsin{2nfcp (t-1)]
- E[f(t)nj(t-0)]sin(2nfep Dsin[ 2nfep (1))

(3.E.2.49a)

= Rniﬁj('t)cosAcosB + Rﬁiﬁj('t)smAcosB
- Rninj(t)cosAsmB - Rﬁinj(t)smAsmB (3.E.2.49b)

= Rniﬁj('r)cosAcosB + Rninj('t)sinAcosB
- Rninj('t)cosAsinB - Rﬁinj(t)sinAsinB (3.E.2.49¢)

where eq(3.E.2.44) was used in the second term above. Using eqs.(3.E.2.35d) and
(3.E.2.37b) in (3.E.2.49¢)

I .
Rin ()= Rninj(t)[sinAcosB - cosAsinB]

- ﬁninj('c)[cosAcosB + sinAsinB] (3.E.2.502)
= Rpyn,(0)sin(A - B) - ﬁninj(t)cos(A -B) (3.E.2.50b)
= Ry, (Osin(2nfcp ) - ﬁninj(r)cos(ancR'c). (3.E.2.50c)

Similarly,
Ri?(z) = Elxjq(®)xj(t-0)] (3.E.2.51a)

= E[ﬁi(t)nj(t-‘c)]cos(21:fth)cos[21r:fcR(t-‘r)] |

+ E[ﬁi(t)ﬁj(t-t)]cos(21thRt)sin[21chR(t-t)]

- Elnj(t)nj(t-)]sin(2nfop ticos[ 2t (1))

- Elnj(0)n;(t-0)]sin(2nfcp Dsin2nf o (1)) (3.E.2.51b)
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= Rﬁinj(t)ccsAcosB + Rﬁiﬁj('c)cosAsinB
- Rninj('t)sinAcosB - Rniﬁj(t)sinAsinB

= Rﬁinj(*c)cosAcosB + Rninj(t)cosAsinB
- Rninj('t)sinAcosB - Rniﬁj(‘t)sinAsinB

= llinj('r)[cosAcosB + sinAsinB]
- Rninj('r)[sinAcosB - cosAsinB]

= ﬁninj(c)cosanfth) - Ryyn,(Dsin(2rcp 0
so that

R () = - R (0).
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IV. ERGODICITY OF THE CORRELATION FUNCTIONS
A. Ergodicity of the Autocorrelation Function

Ergodicity is the condition which enables time-averaged statistics of
random processes to approximate those obtained by ensemble averages. This
condition is often assumed in estimation and other signal processing applications.
The ensemble autocorrelation function is defined as the expectation of lagged
products of a given process when averaged over an ensemble of realizations. If
the time-averaged autocorrelation function obtained from a single realization
approximates this function, the process is called autocorrelation ergodic. In this
section, we derive the functional dependence of ergodicity on the correlation
parameters defined in section III.C. Consider the time-averaged estimate of the

autocorrelation function expressed ast

L1 X *
RipWN) =507 T xi(m)x; (@ - ). 4.A.1)

n=-

The variance of ﬁiiT(I,N) at each lég | is expressed as

ViiN) = E{ [R;ip (V) - BRI Rjip 0N - ERpa N1} (4.A.20)
= E[R;:(N)R;70.N)] - E[R;i (N)IER;7 (LN . (4.A.2b)

In Appendix B, it is shown that

t In section VIL.C, we will consider alternate forms of the estimator which are used in
practice. These forms will involve the biased and unbiased time-averaged correlation
function estimators using limited data samples. The final expressions for the
variance of the correlation function differ [7] as will be noted (Appendix B). The
motivation for using the definition of eq(4.A.1) is that it will provide mathematical
convenience in the discussion to follow. In addition, we will develop expressions
which will reduce to those expressed in the literature for the special case of real
processes [6].
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VN =5 3 |1 l"—]c k| 4A3
iWN) =2neT S - 2N+ CoptkD (4.A.32)

and for ergodicity of the autocorrelation function, we must maintain the

condition

. 1 =N N[ Ikl ]
lim Vi:(N) = 1 1 - 5| Cpp(k,l) = 0 4.A3b
gm Vii(lN) = lim 78+ 5 2N+1 | Copte.D ( )

where

Copk.D = E[{o@.) - E{o(,h1} {¢*(n-k.}) - E[*(n-k,)1} ] (4.A.42)
= E[¢(n.h¢ *(@-k,)] - E[¢¢:,DIE[$*(n-k,D]

- E[o(n,H]E[¢"(n-k,))] + E[¢(n,DIE[6*(n-k,})] (4.A.4b)
=Ryok.D) - E{o(n,)IE[¢" (n-k,])] (4.A4c)
with
e
o(n,l) = xi(n)xi n-1) (4.A.5a)
and
Rook.) = E$p@mDo™(m - kD). | (4.A.5b)
From eq(4.A.5a)
E{6(n,)] = Ry;(1) (4.A.6a)
and
%
E[¢*(n-k,))] = Ry;()) (4.A.6b)
so that from eq(4.A.4c)
Coo(kD) = Ryg(k.h - IRji(DI. 4.A7)
And so, eq(4.A.3a) becomes
' 1 2N Ikl 2
Vil N) = 357 k=;_;2N[1 - 3N+ +1] [Ryok.D - IRi(DI*) (4.A.8)
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We now consider,
Rop(k.)) = E[o(n,D)0*(n - k)] (4.A.9a)

= E[xi(n)x:(n - I)x:(n - k)xj(n - | - k)]. (4.A.9b)

For processes with zero-mean, jointly stationary Gaussian quadrature components
Xjp(n) and xiQ(n), eq(4.A.9b) can be expressed as [see Appendix H]

R¢¢(k,l) = E[xi(n)x; (n- I)]E[x: (n - k)xi(n - | - k)]

+ E[xi(n)x:(n - k)]E[x: (n-Dxijn-1-k)]

+ E[xj(n)x;(n - | - k)]E[x:(n - I)x;'t (n - k)]. (4.A.10a)
* *
= R;j(OR;;() + Ryj(®)R;:(K) + Fii(Lk) (4.A.10b)
= RzI% + IRy &)1 + FLk) (4.A.10c)
where
t *
Fii(1k) = Elxj@xj(n - | - KIE[x; @ - x; (@ - K)]. (4.A.11)

Using eq(4.A.10c) in (4.A.8), we have
1 2N Ikl 2
Vii(lN) = 557 k=>_:2N[1 - N +1] [IR;;()I* + Fy;0.k)]. (4.A.12)
We note that the functional dependence of Vj;j(I,N) on | is due to the

function Fjj(Lk). In Appendix C, we show that only the :eal part of F;;(1,k)

contributes to the summation in eq(4.A.12), so that
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2N
Vii(I.N)ﬁk:%N[l - 2'131‘11] [IR;®)? +Re(F0k)}]  (4.A.13a)

and the ergodicity condition becomes

i 1 W K ] 2 . _
aim Vii(hN) = lim 5037 32N[1 - 2N+1] [IR;;()l* +Re{Fj(Lk)}] =o0.

(4.A.13b)
For real processes
Fjj(Lk) = E[xj()xj(n - | - K)]E[x{(n - Dxj(n - k)] (4.A.14a)
= Rjjk + DRjjk - ) (4.A.14b)
= Rjj(l + KR;;(l - k) (4.A.14c)

and eq(4.A.13b) reduces to the discrete time form of eq(11-54) in [6]. For a
specific value of N, the variance expressed by the LHS of eq(4.A.13a) can now be

written as

Vii(LN) = E;;(N) + L;;(I,N) (4.A.15)
where

1 2N Ikl 2

EiN) = 701 T - aNe IR;;)I4. (4.A.16a)

and
1 2N Ikl
In Appendix C, it is also shown that
Re(Fiji(Lk)} = [Rc,(1 + WRC;,(1 - K) + Rp(l + KR (1 - k)] (4.A.17)

where
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Ry (@) = = Rij(@) - R3 (@) (4.A.182)

and

QI

RDii(a) = Rii I

(o) + Ry; (). (4.A.18b)

It is also noted that if the associated bandpass process for this baseband

process is stationary and parrowband, then eqs(3.E.2.23) and (3.E.2.28) of
section IIILE.2.a hold, and F;j;(1,k) is zero. And so, the expression for V;;(I,N)

becomes independent of | and reduces to
Vis(LN) = Eiy(N) = s ) 1 - oK ] IR;; kl2 4.A.19
i) = Ei(N) =337 BT - ane | i) - (4.A.19)

Using the functional form for the exponential shaped autocorrelation

function, we have

R;i(k) = °i2i 'K expli0;;(K)] o (4.A.20)
so that :
IRy )12 = o‘i‘i ()21, 4.A.21)

Using eq(4.A.21) in (4.A.19), the autocorrelation ergodic property holds

provided
.1 _ 2N Ikl oIkl _
N i) = M 2N k}m[ L- 2N+1] o;; (Aii) (4.A.22)

is true where 0 < Aj; < 1. Thus, the form of eq(4.A.20) enables us to express the

: . 2 . .
variance as a function of A;; and 0;;. We now consider two limiting values for

A;; using eq(4.A.22).
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CASE 1 High Temporal Correlation and Negligable Fj;(l,k)

When A;; = 1, the LHS of eq(4.A.22) reduces to

lim E li L £ [l Ikl ] 4 (4.A.23
N—oo i) = NTL 2N+1 kgg'zN T 2N+1]| Vii A.23a)
°4 64 2N
. i ii Ikl
lim 4.A.23b
N_)oo 2N+1 k—zﬁls N—)oo 2N+1 k=-2N 2N+1 ( )
04
4N+1]| 4 ii 2N
= lim [ ]0-- - lim Ik 4.A.23
Nosoo LZN+1] 711 N7 00 (2N+1)2 k=-2N ( c)
4 Ng2N+lz 4
=20 - oF #0. 4.A.23d
i - N—)oo (2N+l)2 n # ( )

Eq(4.A.23d) indicates that for total temporal correlation (ie., A;j=1), the process

is not ergodic.
CASE 2 Low Temporal Correlation and Negligable F;;(1.k)

When A;; = 0, non-negligeable terms occur only at k = 0, so that
eq(4.A.19) reduces to
1 | 4
lim E;;(N) = lim [ ]o-~ = (. 4.A.24
Jim Eji(N) = im | oNe+1 i (4.A.24)

Thus, ergodicity holds and time averages may provide good results for

sufficiently high values of N.
In Fig 4.A.1a, we plot E;;(Ny) expressed in eq(4.A.22) as a function of Aii

where 0 < A;; < 1 for the total number of sample observations Ny=2N+1 ranging
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14 - 0}21-'-‘

0.6 — 100

0.2 _

)).
[4)

Fig 4.A.1 Variance of the time-averaged exponentially shaped autocorrelation
function plotted versus a.) ;; and b.) N for the case where Fi;(1,k)=0.
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from 100 to 10,000. In Fig 4.A.1b, we plot E;;(NT) as a function of Ny for
specific values of A;;. We again emphasize that in these cases, that Fjj(l,k) is

negligible. For Fjj(1,k) # 0, V;;(*) is a function of |. The | dependence also

occurs when estimating with limited data (see Section VII). Fig.4.A.1 provides a
measure of the variance of the time-averaged autocorrelation function in terms of
the temporal correlation for specific sample integration sizes. Specifically, Fig
4.A.1b provides two important features. First, it reveals the convergence limit of

E;j(N) as N approaches large values. Second, it provides a performance measure

which indicates the required sample size to obtain a specific value for the
variance of the autocorrelation function. As this figure shows, as A;j approaches

unity (ie., high temporal correlation), the sample size requirement increases
significantly. In sectionVIL.C, we will consider E;j(N) using autoregressive
processes. For these processes, we utilize the autocorrelation function for AR

processes in eq(4.A.19). o
Finally, we note that for stationary processes with A;j # 1, there exists a

value of NyiA;j) such that for Ny > Ny(A;;) ergodicity of the autocorrelation
function approximately holds; ie., for A;; < 1, there is a number of required
sample observations Ng(A;;) such that for

Nt > Ng(Aj5) (4.A.252)
there is an € such that

V;ilh <€ (4.A.25b)
where Nt is the total number of sample observations and € is arbitrarily small.
The ergodicity condition results since Vj;(l) is monotonically decreasing.
However, as noted above, for values of A;; close to unity, Ny may be extremely

large in order to reduce the variance to a required value. Finally, for Aji=1,

ergodicity no longer holds.
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B. Ergodicity of the Cross-Correlation Function
For the cross-correlation function, lagged products between two processes

are averaged over an ensemble of realizations. In this case, we consider wide-
sense jointly stationary processes x;(n) and xj(n) such that

B(n,l) = x;(n) x;(n - ). (4.B.1)

The autocorrelation function for B(n) is expressed as

Rpp(k.) = EB@B @ - k]. (4B.2)
From eq(4.B.1)

E[B(n,D] = R;;() (4.B.3a)
E[R*(n-kD] = R;j(l). (4.B.3b)

Using the same form as eq(4.A 4c)

Cpp(k.h) = Rgp(k.D) - E[B@.D] E[B* (@ - k] (4B.4a)
= Rpp(k) - R()I. (4.B.4b)
The variance of the time-averaged cross-correlation function is therefore
expressed as
VilN) = 5= 3 |1 &]c K, 4B.S
0N = oNaT Sl - o) CBRGKD: (4.B.5)

For ergodicity of the cross-correlation function, we must maintain the condition

. .1 2N e ]
lim Vi N) = 1 1 - Cga(k.) = 0. 4B.6
am Vij(lN) = lim o937 St - 2ne1) OpplksD (4.8.6)
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Using eq(4.B.4b) in (4.B.5), we have

2N
Vit = 5T kgm[l ° 21'313',1] Rap(k.l) - Rji(HI). 4B.7)

We now consider

Rgp(k.D = ERm)B*( - k1) (4.B.8a)
= E[xi(n)x;(n - I)x:(n - k)xj(n -1-Kk)] (4.B.8b)

so that eq(4.B.5) becomes

1 2N Ikl
Vi N) = 3841 kg;m[l - 2N+1] .
{E[xi(n)x; (n - I)x:(n -K)xj@ - 1 - 1) - |Rij(l)|2] }. (4B.9)

For processes with zero-mean, jointly stationary, Gaussian quadrature
components, eq(4.B.8b) can be expressed as (see Appendix H)

RBB(k") = E[xi(n)x;(n - |)]E[x: (n - k)x_i(n -1-K)]

+ E[xi(n)x: (n- k)]E[x;(n - |)Xj(n -1-k)]

+ E[Xi(n)Xj(n -l- k)]E[x;(n - I)x:(n -k)] (4.B.10a)
= Rij(l)R;i(') + Rii(k)R;;(k) + Fij(l,k) (4.B.10b)
= IRij(I)l2 + Rii(k)R;&) + Fij(l,k) (4.B.10¢c)

where
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Fij(l,k) = E[xi(n)Xj(n -1- k)]E[x;(n - I)X:(n - k)]. (4.B.11)

Using eq(4.B.10c) in (4.B.7), we obtain

1 2N ikl
VN =3853 ka,i’ 2N+l] {Ru(k)R (k) + Fyj(Lk)]. (4.B.12)

In Appendix D, we show that the summation in eq(4.B.12) over positive
%*
and negative values cancels the imaginary terms in Rii(k)Rjj(k) and Fij(l,k), SO

2N
Vij(LN) =5Nl+—1 kggm[l 2;11‘11] Re[R;i(kR; (k) +Fj(lk)l.|  (4B.13)

We note that the term Re[Fij(I,k)] will contribute a dependence of Vij(I,N) upon
cross-correlation terms such as Ipijl. The ergodicity condition expressed by

eq(4.B.6) now reduces to

2N
lim VAN = fim 5Ny 3 |1 - ] ReRyR;00 + Fygh] =0

(4.B.14)
In Appendix D, it is also noted that for each of these real terms, their values at
positive k equals those at negative k, so that

1 2N ikl
Vij(IN) = 2N+1 kEO [1 2N+1] {ZRC[Rll(k)R (k) + Fl_](l K)]

-[R;;(O)R; (O)+FIJ(I 01}. (4.B.15)

The term at k=0 is subtracted so that it is not counted twice. Finally, it is also

shown (see Appendix D) that if the corresponding bandpass processes are jointly
stationary and narrowband, then Fu(l,k)=0 so that

Vij(l,N) = Eij(N) (4.B.16a)
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where

2
Ejj(N) = %} il EZN[I 213(11] Re[Ru(k)R (K)]. (4.B.16b)

We now consider the functional dependence of eq(4.B.i6) on the coirelation
parameters.

CASE 1 High Temporal Correlation and Negligable F'ij(l k)

Using the Gaussian shaped functional form of eq(3.C.13a) for the
autocorrelation functions, eq(4.B.16b) becomes

2 2
O'iicjj
2N Ikl
Vij(l,N) = Eij(N)= IN+1 k=§2 1 - 2N+1 (xu)k XJJ)

cos [6;;(k) - ij(k)] 4.B.17)

For high temporal correlation on the i and j processes, Ajj = Ajj= 1. In
this case, large values of N are required to reduce Vij(I,N). For total temporal
correlation on both channels (ie., lii=kjj=l) and real correlation functions [so
that eii(k)=6jj(k)=0 and the spectra are even], the LHS of eq(4.B.14) simplifies
to

2 2
k. 2N Ikl
P}T“EIJ(N) = hm im N+ }:2 1 - N +1](l“) l (4.B.18a)
22 2 2
5;i%jj Sii%jj

N |l
= MmN+l k_% (D - lim N Sy 2N+1  (4B.18D)
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' 4N+1] 2 2 lim N(2N+1
- 1gnJ2N+l] cjjoj; - lim [_L—l(zN+1)2 05 (4.B.18¢)

2 2 2 2 2 2
= 20“6JJ - 0iiSij = %ii0jj #0. (4.B.18d)
Eq(4.B.18d) indicates that in the case of total temporal correlation, the cross-
correlation function does not maintain the ergodicity condition.

CASE 2 Low Temporal Correlation and Negligable Fij(l,k)

In this case, we consider processes i and j with low temporal correlation so
that Aj; = Aj; = 0. IfFij(I,k)'-sO, eq(4.B.16b) applies. Again, considering real,

Gaussian correlation functions, we have

2 2
0;i%;;

2N Ikl 2
1' E-- — lim N[l - ] l.. . 4.B.19
Nopoo ijN) NN+ D 2N+1 (Ml)k ha ( )

For small Ajj and A;; , only the k = 0 term is significant so that
22
O'ilcll
lim ElJ(N) = llm M N+ = =0. (4.B.20)

Nooo

Ergodicity holds for this case so that time averages may provide good

results for sufficiently high values of N. This condition will also be maintained
provided either A;; or Ajj is sufficiently small. However, larger values of N will

be.required to reduce Eij(N) to a specified value.

CASE 3 Non-Negligable Fij(l,k)
In this case, Re[Fij(I,k)] contributes to Vij(l,N) in eq(4.B.13). Eq(D.8b) in

Appendix D expresses this function in terms of the correlation functions of the
quadrature terms. In general, these terms describe the dependence of Vij(‘) upon

lag | as well as the cross-correlation between the ith and jth processes.
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V. MULTICHANNEL AUTOREGRESSIVE PROCESS MODELS

A. DEFINITION OF THE AR PROCESS

In this analysis, the multichannel observation processes obtained under
hypotheses H; with i = 0, 1 are assumed to be generated by multichannel
autoregressive processes. The multichannel Jx1 vector process x (nlH;) with

i=0,1 is expressed as

Mj
x@H)=-3 A}fai(klni);(n-k) + u(nlH;) i=0, (5.1)
k=1

H
where AM;(kIHj) is the kth JxJ matrix coefficient for an AR process of model

order Mj. We note that it is expressed in terms of the Hermitian operation for
notational convenience, but is not treated here as a Hermitian matrix. The vector
u(n) is a Jx1 white noise driving vector which, in general, has an arbitrary
correlation across the J channels so that

0 | #0
E{u(n)uH(n - ) ={l£u3,(0) =[Z¢] |=0. (5.2)

Ruu (0) = [Z4] is the JxJ covariance matrix of the vector process uy(n) and may

have off-diagonal components. Since u (n) is uncorrelated in time, but retains an
arbitrary correlation across channels, then with wide-sense joint stationarity of
the channel processes assumed, we can consider

u(m=Cy(n (5.3)

where the J x J matrix C is a constant matrix. This matrix gives rise to the
channel correlation on u (n). The vector y (n) is a Gaussian white noise vector
uncorrelated in time and across channels such that

0 | #0
Ely(n)yH(n - |)={1[)3 | :o. (5.4)
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The elements of the diagonal matrix Dy are the variance terms associated with the
white noise driving term on each channel. And so, from eq (5.3) we can obtain
the zero-lag correlation matrix (assuming wide-sense stationarity)

Ruu (0) =E [u () u H(m)] = [Z¢] (5.5a)
=E [ Cy (n) y H(n) CH] (5.5b)
= CDyCH (5.5¢)

We could assume unit variance on all elements of Dy without loss of generality so
that Dy = 1. The significance of this discussion is that the correlation matrix
Ryuu(0) is a constant matrix associated with the white noise driving term u (n).
The correlation between the channel elements of u (n) gives rise to the off-
diagonal terms in Ryy(0). Since Ryy (0) expressed in eq (5.5) is Hermitian®,
positive semi-definite, we could also perform an LDLH decomposition such that

Ruu(0) = LuDuLuH (5.6)

where L, is unit diagonal lower triangular. Solving for Dy, we obtain

Dy = Lu'lRuu (V)] (Lu'l)H (3.7a)
= E [Ly-lu (n) uH (n) Ly-1)H] (5.7b)
=E{z () zH (n)] (5.7¢)

where
zm)=Lyly (5.8)

so that z (n) is a J x 1 vector containing uncorrelated elements. It represents an
underlying process of the multichannel AR process which can be viewed as a
"spatially-causal” white noise driving term. Since Ly-1 is also lower triangular
unit diagonal, it is invertible so that from eq (5.8)

t It is noted that in general the correlation matrix Ryy (1) is not Hermitian
for 120.
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um)=Lyz () (5.9)

Eq (5.9) indicates that y (n) , originally defined in eq (5.3) , could identically be
generated by the z (n) process through the transformation matrix Ly; i.e. eq (5.1)

can be written in tglde equivalent form
i
H .
x(nlH;) = - Y, AmikiH;)s(n-k) + Lyy(H;)znlH;) i=0,1 (5.10)
k=1

where Ly (Hj) denotes the specific matrix Ly under hypothesis Hj, In [1], a two
stage multichannel prediction error filter is considered which uses estimates of

the Aﬁi(kIHi) coefficients to obtain an approximation of y (n) in the first stage

and an estimate of Ly-! to obtain an approximation of the temporally and spatially
uncorrelated process z (nlH;).

B. THE YULE-WALKER EQUATION
The relationship between the matrix coefficients Allei(k), the covarince

matrix [Z¢] of the forward AR driving noise vector and the known correlation
matrix Rxx from eq(2.3) can be expressed [2] as

AMRyz] = ((Zf] (0] ...[O]} (5.11)
where

Apy =1 Ay(1) A(2) ... A(M)]. (5.122)
and

[Zf] = E{u(m)yH(n)] (5.12b)

The matrix [ Rxx] is the reversed order correlation matrix of [Rxx]; i.e., the
correlation matrix obtained with the time order of the vector x; y from eq(2.4b)

reversed. The corresponding equations for the stationary, backward AR process
is expressed as

B (Ryy] = ([0].-[0] [Sp1H) (5.13)
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where H H
Bix = [Ba(M)-..Ba(1) 1] (5.14)

and [Zp] is the covariance matrix of the backward AR driving noise vector.

Eqgs(5.11) and (5.13) are the augmented forms of the multichannel Yule-Walker
equations.
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VL. PROCESS SYNTHESIS
A. General Procedure

In this section, we discuss the synthesis procedure used to generate wide-
sense stationary, multichannel autoregressive processes with Gaussian statistics.
The Jx1 vectors s(n) and ¢(n) defined in eq(2.1) are generated as distinct,
multichanne]l AR processes for the sigrnal and non-white noise. respectively,
although each channel will be an ARMA process [16,17,10]. They are controlled
individually using the scheme shown in Fig 6.A.1 which is similar to that
suggested in [2] for scalar process synthesis. In this paper, the synthesis
procedure is generalized to consider multichannel vector processes in which we
are able to control the variance and temporal correlation on each channel, the
cross-channel correlation as well as the signal-to-noise (S/N) and clutter-to-noise
(C/N) ratios.

u SIGNAL s(n)
YsGl ol H 2

| u, | CLUTTER | <) x(nlHy) = s(n)+c(n, +w(n)
1 Ycl{C _: HC(Z) ' {K(n“_b) = ¢(n)+w(n)

By
w(n) T

xw-PCw
. .

(¢]

Figure 6.A.1
In section II1.C, we discussed a method to shape the magnitude and phase of
correlation functions with various functional forms. Once these correlation
functions have been determined to obtain a desired spectral shape, the Yule-
Walker equation presented in section IV can be used to determine the AR

coefficients for the process with a model order chosen to fit the desired spectrum
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within certain tolerance specifications. In the procedure used here, correlation
functions for the signal and non-white noise are specified separately using Rsij(l)

and RCij(I), respectively. The autoregressive PSD which would result from these

coefficients provides a fit to the desired spectrum. Alternatively, when these
coefficients are used in the AR equation, we are able to generate processes which
provide a fit to the des’red spectrum in a MMSE sense. Specifically, the

following procedure is used to generate the AR time sequenced values:

(1) the desired shapes of the autocorrelation and cross-correlation values are
obtained using the f(-) functions by the methods of section III.C.
(2) the order of the AR process (for synthesis) is selected based upon a

specified tolerance for fitting the desired spectrum.
(3) the values of Rsij(l) and Rcij(l) form the signal and clutter correlation

matrix elements designated as Rgs and Rgg, respectively.
(4) the multichannel Yule-Walker equations are solved using the Levinson-

Wiggins-Robinson recursion [15] to determine the matrix coefficients

H H .
Ag(k) and [Zglg fork =1,2, ...Mg; ie.,

Ag [Rgpl = ((Zflg [0]..[0]) g=sc 6.A.1)
where H
Ag = [ Ag(1) Ag(2)...Ag (Mp)] g=sc (6.A.2)
- H
Rgo =Elg, , M g§“~n'Mg] g=sc (6.A.3a)
T
£onM, = (8T@ 27(0-1)..gT@-Mp)] g=sc (6.A.3b)
[Zflg = Elugug @] = [Zflg g=sc 6.A4)
wym = [u§m) i) .ufm) g=sc 6.A.5)
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(5) the values of A?(k) are now used in the generation of g(n) and ¢(n) via the

equation

M H
gn) =- kzglA g(K)g(n-k) +ugn) g=sc (6.A.6)

where Mg is the order of the signal model, A?(k) is the matrix coefficient of the

process g(n) and n_g(n) is a white noise driving vector with covariance matrix
[Zf]g. The vectors gg(n) and w(n) are generated using

ug(n) = Cgvo(n) g=8C (6.A.7a)
and

w() = Cyvy(n) (6.A.7b)

where lg(n) g=s,c and v, (n) are white noise vectors with unit variance on each

channel. Using eqs(6.A.7), we obtain

[Sflg = Elug(®ug ()] = ElCqupmyg Cg] g =50 (6.A89)
and u
Ryw(0) = E[w(n)wH(n)] = E[Cw!w(n)xg(n)cw]- (6.A.8b)
Using H u
Elvg(n)yg ()] = Elvy(n)yy,(n)] =1 (6.A.9)
where I is a JxJ identity matrix, eqs(6.1;:i8) can l})le written as
[Z:f]g = Cgfi[xg(n)gg (n)]Cg = CgCg g=sC (6.A.10a)
and
H H H
Ryw(0) = CyElvy (n)yym]ICy, = Cyw,Cy (6.A.10b)
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Eqs(6.A.10) indicate that Cg and C; can be obtained by the Cholesky
decomposition of [Zf] g and Ry, (0), respectively. The vectors us(n), uc(n) and
w(n) in Fig 6.A.1 are therefore controlled to be zero-mean, Gaussian white noise

vectors uncorrelated in time but with an arbitrary correlation across channels;
ie.,

H [0] 170
E[ﬂg(n)!g (n-)] = {Rﬁu(o)glz f]g =0 g=5sC (6.A.11)
0] 140
E[w(mwH(n-)] = {R[WL(O) T/._.o, (6.A.12)

In general, the matrices [Zf]g and Ry, (0) have off-diagonal components.

The functions Hs (z) and H¢ (z) are the model filter transfer functions for the
synthesis of the signal and clutter processes, respectively.
EXAMPLE

In this example, we consider the synthesis of a real, single channel AR
process of order two using real, Gaussian shaped correlation functions. The

correlation function is therefore expressed as
RS(l) = of(xs)'z. (6.A.13)

The Yule-Walker equation for this case is

RO) R(1) R(Q) 1 o
R RO RM) | a) [=f , (6.A.14)
R(:2) R(-1) R@©O) L a(2) 0

where o, is the variance of the white noise driving term of the associated AR

process. Using the functional form of eq(6.A.13) in {6.A.14) and sclving for the
coefficients, we have (dropping the script s notation)
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R()R(-1) - R(UR(0) 2
a(1) = RGIRG) - REOHRCD = - bss + 1 (6.A.15)
R(DR(1) - RQR(O) _ .2
32 = RO)R(©) - R(DR(-1) = s (6.A.16)
o2 = R(0) + a(DR(+1) + a(QR(+2) (6.A.172)
= og - cglz(‘;\.g +1+ ogxg (6.A.17b)
= G2T1- A2 - Ad +A0) (6.A.17¢)

We now consider the effect of these results when used in the AR equation
(6.A.6); ie.,

s(n) = - a(1)s(n-1) - a(2)s(n-2) + u(n). (6.A.18)
Using eqs(6.A.15) and (6.A.16) in (6.A.18), we have

s(n) = Xs(i\.z + 1)s(n-1) - kgs(n-2) + u(n) (6.A.19)

where the white noise driving term u(n) has the variance Gﬁ. We note from
eq(6.A.13) that as Ag approaches zero, the correlation function approaches a delta

. . . 2 .
function with variance . Therefore, s(n) is expected to be an uncorrelated

white noise process with variance oz. Examination of eq(6.A.19) indicates that
s(n) is approaching the white noise process u(n) for small Ag since the AR

coefficients are becoming vanishingly small. In addition, eq(6.A.17¢) indicates
that the variance of u(n) is approximated by that of s(n) as required. We
therefore have a method for process synthesis that allows one to control the

variance and temporal correlation over a wide range of values. Furtheremore,
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for a specific cz, the variance of the synthesized processes will remain fixed

independent of the choice of A.
B. Alternate Approach

We could characterize the observation processes x(nlH;) defined in eq(2.1)
as multichannel All\{d processes under each hypothesis. We would then have

i
x(mH) =-) Albi/li(kIHi)g(n-k) + u(nlH;) i=0,1 (6.B.1)
k=1

H
where M; , AM;(kiHj) and u (nlH;j) denote the model order, the matrix coefficients

and the white noise driving term under each hypothesis, respectively. Eq (6.B.1)
could be utilized to generate the processes under each hypothesis using
predetermined values for the coefficients. This approach is useful in the
diagnostics of parameter estimation algorithms; i.e., one could validate that the
estimates of the coefficients converge to the known preassigned model
coefficients as well as assess the convergence rate and final error variance. This
approach, however, does not allow control over the variations of the signal-to-
noise (S/N) and/or signal-to-clutter (S/C) ratios for parametric performance
evaluations.

C. Complex Processes with Jointly Gaussian Quadrature Components

In this section, we discuss the conditions which enable us to control the

Gaussian statistics of the synthesized processes. We accomplish this through the
white noise driving vectors, gg(n) and xg(n) in eq(6.A.7). Initially, we present .

the constraints on the quadrature correlation functions associated with xg(n) in

~order to obtain conventional complex Gaussian processes. Next, we relax these
constraints in order to synthesize the more general case of complex processes
which contain correlated Gaussian quadrature components.

Let us now consider expressing 1g(n) and Cg in eq(6.A.7) using their
quadrature components so that (dropping the g subscript)
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¥(n) = yy(n) +j ¥o(n)

and
C=Cl+j CQ

Using these expressions in (6.A.7), we obtain

u(m) = Cy(n)
= [C; +] Colly(n) +j von)]
= [Cryy(n) - Cquq)] +j [Cqy ) + Cryg®)]
so that
uy(m) = Cpyy(n) - Cqug(n)
uo®) = Cqyy(n) + Cryg(n).

We now have
Ryu(®) = Eluy(o)uf ()]

= E{[Cpy(0) - Coug@)lyi @Y - vomCyl)

II T T I T I T
= CRy(O)CT + CoR0)CY - CoR e (0)CL- CRA(O0)Ch

Similarly,

R = Elug@ug)]

= E{[Coum) + CiroM)]ly] m)Cq + vo@Ci1)

(6.C.1a)

(6.C.1b)

(6.C.2a)
(6.C.2b)

(6.C.2c)

(6.C.3a)
(6.C.3b)

(6.C.42)
(6.C.4b)

(6.C.4c)

(6.C.5a)

(6.C.5b)

I [ I
= CQRyy(0)CQ + CRAOIC + CoR(O)C] + CRIXOC  (6.C.5¢)

Rya(©) = Elugnug@)]
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= E{ [Ciyym) - CouomIly] m)CQ + yomCi 1} (6.C.6b)
= R (0)Ch - CQR B (0)Ch + CRMO)C] - CoRod0)CT  (6.C.6¢)
Ryy(©) = Elug@ug @] (6.C.7a)
=E{[cQz1(n)+c1xQ(§)1[x1T(n)c}r- ¥omCol} (6.C.Tb)

II T I T I T T
= CoRW(O)CI+ CR S (0)CT- CoR(0)Ch - CROCY:  (6.C.70)

In the special case where
Ry, (0) = R0 = 31 (6.C.8a)
Q QI
R2(0)=R%,(0) =0 (6.C.8b)

and | is the identity matrix, we have

Rgu(o) = 3C(CI +3CoCQ (6.C.9a)
Ran(©) = 3C oCQ+2CCI (6.C.9b)
I%(O =3 rC{z %CQ ] (6.C.9¢)
Ruu(o) 26 - 2GiCQ ' (6.C.9d)
so that
Ryu(®) = Ry ©) (6.C.10a)
and
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R QI
R“u(o) =- Ruu(o)' (6.C. IOb)

In the further restricted case where CQ=0 (which occurs when the correlation
functions in the Yule-Walker equation are real)

Rﬁ(") =- Rgll.(o) = [0]. (6.C.11)

The conditions expressed by eqs(6.C.10a) and (6.C.10b) are those required
to ensure that the magnitude of the complex process u(n) is Gaussian. We note
that these conditions result when eqs(6.C.8a) and (6.C.8b) hold; ie., when the
white noise driving vector v(n) has variances of 03 /2 on each channel quadrature

component and the quadrature components on each channel are uncorrelated. In
this special case, eq(6.A.8b) is maintained; ie.,

Elv(a)yH(@)] = D, =1. | 6.C.12)
If we generalize this case so that y(n) has an arbitrary variance on each channel
quadrature component as well as an arbitrary correlation between the Gaussian
quadrature components on each channel, the resulting u(n) is a more generally
distributed process. We also note that eq(6.C.12) can continue to be satisfied by

maintaining the relations

Ri2(0) =R (0) (6.C.13a)
and

Ry, (0) + Ro0) =1. (6.C.13b)
This can be seen by noting that
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Ely()yP(n)] = E{ [y/m) + j XQ(U)][X'II‘(H) -] 15(11)]} (6.C.14a)

= [Ryy(0) + RoZ(0)] +j [Ren(0) - R2(0)]. (6.C.14b)

Substituting eqs(6.C.13) into (6.C.14b) yields (6.C.12). We emphasize that
€qs(6.C.13a) and (6.C.13b) provide a more general condition than eqs(6.C.8a)
and (6.C.8b); ie., the quadrature components are now able to be implemented
with an arbitrary cross-correlation.

The arbitrary correlation on the quadrature components of v(n) could be
obtained using

yj(n) pi(n) .
[xq(n ] =G [nq(n)] (6.C.15)
where
Elpmpgm]=[0] (6.C.162)
Elp®p @)] = Elpg®mpo@] =3 L (6.C.16b)

We now consider

Y le!cTz]
Ry, =E % (6.C.17a)

[Em(n)xf(n)l Elyy(nvgm)] ]

T T (6.C.17b)
Elvo®y ()] Eltg(mugm)
Ryy(0) Rya(0)
- (6.C.17¢)
R (0) RA(0)

where each element in eq(6.C.17¢) is a JxJ diagonal matrix. Using eqs(6.C.15)
through (6.C.16b) in the RHS of (6.C.17a)
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21 o g
Ry =GE [ I }GT (6.C.18a)

2o
= %GGT (6.C.18b)
so that . .
RyORNO |
=5 GGT. (6.C.19)
RO ORR©O | 2

The matrices on the LHS of eq(6.C.19) can be constrained to satisfy
eqs(6.C.13a) and (6.C.13b) without loss of generality. In addition, they could be
specified using functional forms similar to eqs(3.C.5) and (3.C.8). The diagonal
form of these matrices implies that correlation only exists between the quadrature

components of xg(n) g=s,c on a given channel and not across channels.

Therefore, for channels i=1,2,....J, we would use

I 1Q 1 ,
RSO =R O =lprdononl  i=12..] (6.C.20)

II < e
where o;; and o?iQ are the standard deviations of the quadrature components on

channel i. The variances on each channel are subject to the constraint

O+ ©Rgq =1 i = 12,0, 6.C21)
Also,
T 2 .
Ri0) = (62 i =12, (6.C.223)
~ and
RE(0) = (62)0q i=12,...J. (6.C.220)

Finally, eq(6.C.19) can be solved via the Cholesky decomposition to obtain G and
eq(6.C.15) implemented to generate yj(n) and xQ(n) with variable correlation.
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VII. SYNTHESIS RESULTS
A. Single Channel Case

In this section, we utilize the AR process synthesis procedure described in
section VI to generate single channel autoregressive processes of order two.
Using the Yule-Walker equation, two AR coefficients are obtained which, when
substituted into the scaler form of eq(6.A.6), provides the required signal
processes. For the processes shown in Figs 7.A.1 through 7.A.8, the real,
Gaussian autocorrelation function was used. We note that an AR(2) process has
an exponential autocorrelation function. In this case, we are generating processes
which provide a 'fit' to the Gaussian autocorrelation function in a MMSE sense.
We also note that in this case, the AR coefficients will be real. However, the
processes s(n) generated by eq(6.A.6) are complex since u(n) is complex. Also,
the resulting spectra will be even.

In Fig 7.A.1, we show the amplitude of the real part of the signal process

with order two using a temporal correlation coefficient of A;=0.99 and variances
03 ranging from 2.0 to 8.0. We note the variation in the amplitudes of each plot
as the variance changes. In Fig 7.A.2, we show the amplitude of the real part of
the signal using a variance c§=4.0 In this case, however, we demonstrate the
effect of varying .the temporal correlation coeffient A from 0.1 to 0.9999. We

note that Figs 7.A.2a through 7.A.2c are plotted for 100 samples, while
Fig.7.A.2d uses 200 samples. These figures illustrate the effect of Ag in

controlling the sample-to-sample correlation. It is apparent that as Ag approaches

unity, we are approaching the case of total correlation sample-to-sample;
however, as Ag goes to zero, the process becomes white. It is worth noting, at this
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time, that the imaginary component follows the same behavior. Recognizing that
the signal phase is expressed as

- a1 9
04(n) = tan l[ sl(n)] | (7.A.1)

then, as Ag approaches unity, 85(n) approaches a constant since sy(n) and sq(n)
are approaching constant values within a single trial. On the other hand, as A
approaches zero, 04(n) is random in time since sy(n) and sq(n) exhibit random
behavior. The important point to be made here is that the parameter Ag controls

the amplitude correlation as well as the phase coherence of the process. This
capability will be utilized to demonstrate coherent integration gain in detection
performance evaluations.

In Fig 7A.3, we show results for three separate trials of the real part of the
signal process for A = 0.9999 and oz = 4.0 over 200 time samples. The point to

be noted here is the randomness associated with the jnitial amplitude (and phase
via the previous discussion). As noted, however, after the initial amplitude is
selected at random, the remaining samples are highly correlated within each trial
as governed by the high value of the temporal correlation coefficient. This
feature will enable us to model processes such as Swerling fluctuating signals[14]
in radar applications, for example.

Fig 7.A.4 shows the results of the model fitting procedure. The dotted
curves plot the correlation functions predetermined by the functional shaping
method. The solid curves are plots of the correlation funcion calculated using

10,000 samples of the process over 40 lag values. Figs 7.A.4a, 7.A.4b and
7.A.4c are plots for Ag = 0.95, 0.8, and 1.0, respectively. We first note the effect

of Ag on the correlation function; ie. as Ag transitions from unity to zero, the

correlation function ranges from that of a slowly varying function of the lag
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value to that of a delta function. Next, we note from Figs 7.A.4a and 7.A.4b that
the plots of the AR process of order two provide a fit to the predetermined
correlation function. This is a result of the fact that it would require an AR
process of infinite order to model the Gaussian correlation process exactly.
These plots illustrate that the processes generated here are an approximation to
those of the predetermined correlation function. In fact, they are the processes
that fit the known model in a MMSE sense. In Fig 7.A.5, we show the
autoregressive power spectral density (ARPSD) which is obtained using the AR
coefficients obtained from the Yule-Walker equation. Fig 7.A.6 is the
corresponding power spectral density (PSD) determined using a zero-filled 64
point FFT of the calculated correlation functions plotted in Fig 7.A.4. The plots
for Figs 7.A.6a and 7.A.6b, show even spectra; however, we also note the dual
peaks associated with the poles of the AR(2) model. The obvious point to be
noted here is the behavior of the spectra for various values of Ag; ie. as Ag ranges
from unity to zero, the spectra transitions from its peaked behavior to the broad
distribution associated with white noise processes. It is also interesting to note
that as Ag decreases, the pronounced pole positions are diminished as shown in
Fig 7.A.6c. This is a result of the fact that the AR coefficients are becoming
vanishingly small as noted by eqs(6.A.9) and (6.A.10).

In Figs 7.A.7 and 7.A.8, we show plots of the autocorrelation function and
power spectral density, respectively, again using 10,000 samples of the same
signal process, but in the presence of unit variance additive white noise. We note
that the correlation functions in Fig 7.A.7 overlay the corresponding functions
shown in Fig 7.A.4 except that at lag zero, they have increased by a unit value
due to the uncorrelated noise process. A comparison of Figs 7.A.6 and 7.A.8

shows the increased levels due to the additive noise.
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B. Multichannel Case

In this section, we consider the generation of a two channel vector process
using the AR synthesis approach described in section VI. In this case, the
multichannel Yule-Walker equation is solved for the forward AR matrix
coefficients and the forward driving white noise covariance matrix. These
matrices are used in eq(6.A.6) and (6.A.7) for process generation. We limit the
results shown here to the case of real, Gaussian correlation functions. In sections
VII.C and VIL.D, we will quantitatively assess the ergodicity considerations
developed in section IV. In this section, however, we will note several qualitative
indications of the dependence of ergodicity on the correlation parameters.

Table 7.B.1 contains the parameters used in the auto- and cross-correlation
functions described in éqs(3.C.13a) and (3.C.23b). The resulting values are then
used in the correlation matrjx of the multichannel Yule-Walker equation to solve
for the coefficients C and A(k) k = 1,2. The resulting AR coefficient matrices
are listed in Table 7.B.2. We will discuss these quantities later to gain further
insight into the process generation procedure.

Figs 7.B.1 through 7.B.4 contain the results for processes with high
temporal correlation on each channel. In Fig 7.B.1, Aj; = 0.9999 on both

channels with Ip;,1=0.95. In Figs 7.B.2 through 7.B.4, Ajj = 0.95 on both
channels, while the cross-correlation coefficient Ip;,! ranges from 0.99 to 0.0.

Figs 7.B.1a and 7.B.1b show 200 sample observations of the synthesized
processes for channels 1 and 2, respectively, for one realization. A second
realization is shown in Figs 7.B.1c and 7.B.1d. A visual inspection of these two
trials reveals the relatively high degree of cross-correlation between the two
channels controlled by Ip;,1=0.95. Figs 7.B.le and 7.B.1f show the

corresponding ensemble averaged autocorrelation functions calculated using
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Fig.

7.B.1
7.B.2
7B.3
7.B.4
7.B.5
7.B.6
71.B.7
7.B.8
7.B.9
7.B.10
7.B.11
7.B.12

order

AR(2)
AR(2)
AR(2)
AR(2)
AR(2)
AR(2)
AR(2)
AR(2)
AR(2)

AR(2)

AR(2)
AR(@4)

2
C11

L U R S T T - U - N -G - -

2
022

Ll T TR R A T

Az

A'12

12

095 0.9999 0.9999 0.9999 0

Ipral Ay,
099 095
0.5 0.95
0.0 0.95
0.0 0.80
0.0 0.40
099 0.10
030 0.10
0.10 0.10
0.50 0.95
040 095
030 095

Table 7.B.1

0.95
0.95
0.95
0.80
0.40
0.10
0.10
0.10
0.10
0.10
0.10

095 0
095 0
arbitrary* 0
arbitrary* 0
arbitrary* 0
010 0
097 0
020 0
097 0
097 4
097 4

R,,(0)

3.8

3.96
2.0
0.0
0.0
0.0
3.96
1.2
0.4
2.0
0.8
0.6

* Examination of eq(3.C.23b) indicates that for Ip12! =0, the value of Ay is arbitrary.
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1,000 trials. We note that in Fig 7.B.1f, the experimentally obtained cross-
correlation function evaluated for lag zero fell somewhat below the process
variance of 4. The reason for this will be explained below. An overlay of six
realizations of the corresponding time-averaged, biased, autocorrelation function
for each channel is shown in Figs 7.B.1g and 7.B.1h, respectively. In these plots
10,000 time sample observations were used to estimate the functions over 64 lag
values. Figs 7.B.1i and 7.B.1j show the temporal- averaged and ensemble
averaged cross-correlation functions, respectively. Inspection of plots g and h
indicates that the six realizations of the estimated time-averaged autocorrelation
functions, each based on 10,000 time observations, vary considerably from trial-
to-trial. This implies that the variance of the time-averaged autocorrelation
functions is large. Likewise, this same behavior is noted for the time averaged
cross-correlation function in plot i. These results provide an jndicatjon that
ergodicity cannot be assumed to hold in this case even though the number of
observations N is as high as 10,000; ie., the estimates of the auto- and cross-
correlation functions obtained by time averaging over a single realization will, in
general, differ considerably from the ensemble averaged value when the temporal
correlation coefficients A;; are high.

In Fig 7.B.2, the cross-correlation coefficient is increased slightly to 0.99
while the temporal correlation coefficients are reduced to 0.95 on both channels.
Fig 7.B.2 shows the same data displays as Fig 7.B.1. We note in plots a and b,
that both channel processes have become more uncorrelated in time as evidenced
by their more rapid temporal fluctuation. However, we also note the high cross-
correlation between the channel processes; ie., both waveforms are nearly

identical (note the scale change on the plots a and b). This high correlation
results from the high value of Ip;,1=0.99. Again, plots ¢ and f show the
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Fig. 7.B.1 Two channel AR(2) processes a.) channel 1 data (trial 1) b.)
channel 2 data (trial 1) c.) channel 1 data (trial 2) d.) channel 2 data (trial 2)
e.) ensemble averaged channel 1 autocorrelation (1,000 realizations) f.)
ensemble averaged channel 2 autocorrelation (1,000 realizations).
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238

Fig. 7.B.1 (contin.) g.) time-averaged channel 1 autocorrelation (6 trials)
h.)time averaged channel 2 autocorrelation (6 trials) i.) time-averaged cross-
correlation (6 trials)

realizations).

j.) ensemble averaged cross-correlation (1,000
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Fig. 7.B.2 Two channel AR(2) processes a.) channel 1 data (trial 1) b.)
channel 2 data (trial 1) c.) channel 1 data (trial 2) d.) channel 2 data (trial 2)
¢.) ensemble averaged channel 1 autocorrelation (1,000 realizations) f.)
ensemble averaged channel 2 autocorrelation (1,000 realizations).
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Fig. 7.B.2 (contin.) g.) time-averaged channel 1 autocorrelation (6 trials)
h.)time averaged channel 2 autocorrelation (6 trials) i.) time-averaged cross-
correlation (6 trials) j.) ensemble averaged cross-correlation (10,000
realizations).
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ensemble averaged autocorrelation functions for each channel. Six realizations of
the corresponding time-averaged autocorrelation functions shown in plots g and h
show a significant decrease in the variance of these functions as compared to the
previous figure. Likewise the six realizations of the time-averaged cross-
correlation function in plot i also show a reduction in their variance.

In Fig 7.B.3 and 7.B.4, the temporal correlation coefficients are held at
0.95 as in 7.B.2; however, the cross-correlation coefficient is reduced to 0.5 and
0.0, respectively. In each of these figures, plcts a and b show a single realization
of 200 sample observations. An overlay of six corresponding temporally-
averaged autocorrelation functions, based on 10,000 time sample observations
each, is shown in plots ¢ and d. Six trials of the temporal-averaged cross-
correlation function are shown in plot e, while the corresponding ensemble
averaged result, based on 10,000 realizations, is shown in plot f. A visual
comparison of the temporally-averaged autocorrelation functions in Figs

7.B.2g,h, 7.B.3c,d and 7.B.4c,d indicates that the variance associated with these
plots appears to remain constant. Again, we note that 7»11 and }»22 have

remained constant, although Ip 5! has changed significantly. Close examination

of the scale levels for the temporally averaged cross-correlation functions among
these figures indicates that the variance of this function has not changed. We will
discuss this point further in section VIL.D.

The cross-correlation coefficient is held at zero in Figs 7.B.5 and 7.B.6,
while the temporal correlation coefficients are decreased to 0.8 and 0.4,
respectively. Plots a and b for Figs 7.B.4, 7.B.5 and 7.B.6 show the effect of the

decreasing temporal correlation; ie., the processes are becoming more whitened
as A;j decreases. The resulting autocorrelation functions shown in plots ¢ and d

for these cases also reflect this trend by approaching a delta function as A;;
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Fig. 7.B.3 Two channel AR(2) processes a.) channel 1 data b.) channel 2 data
C.) time-averaged channel 1 autocorselation (6 trials) d.) time-averaged channel
2 autocorrelation (6 trials) e.) time-averaged cross-correlation (6 trials) f.)
ensemble averaged cross-correlation (10,000 realizations).
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Fig. 7.B.4 Two channel AR(2) processes a.) channel 1 data b.) channel 2 data
c.) time-averaged channel 1 autocorrelation (6 trials) d.) time-averaged channel
2 autocorrelation (6 trials) e.) time-averaged cross-correlation (4 trials) f.)
ensemble averaged cross-correlation (10,000 realizations).
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. Fig. 7.B.5 Two channel AR(2) processes a.) channel 1 data b.) channel 2 data

c.) time-averaged channel 1 autocorrelation (6 trials) d.) time-averaged channel
2 autocorrelation (6 trials) e.) time-averaged cross-correlation (6 trials) f.)
ensemble averaged cross-correlation (10,000 realizations).
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ensemble averaged cross-correlation (10,000 realizations).
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decreases. Close examination of plot e in each of these figures provides some
indication that the variance of the cross-correlation function decreases as )‘11 and

122 decrease.

In Figs 7.B.7 through 7.B.12, similar plots are shown. Fig 7.B.7 shows the
case of two noisy processes which are highly correlated. In Fig 7.B.8, the
temporal cross-correlation coefficient 1.12 is raised to 0.97. The value of Ipy,l
was lowered to 0.3 in order to satisfy the positive semi-definiteness constraint
condition. We note that in the expanded view of the cross-correlation function
displayed in Fig 7.B.8f, the resulting estimated values at these lags remain high
out to the lag value of 2. Beyond | = 2, however, the cross-correlation function
drops significantly. This result will be discussed later. Fig 7.B.10 shows the
interesting result obtained when the noisy signal on channel 2 is required to be
correlated with the high temporally correlated channel 1 process. Fig 7.B.10c
shows an overlay of the two distributions shown in plots a and b. As this figure
indicates, the noisy channel 2 process appears as a modulation on the channel 1
process. It is also noted that the autocorrelation functions for each channel have
maxima and minima which occur at the same lag values. In addition, an
interesting peak occurs at the third lag value in plot e. We will consider this
later.

Finally, we consider the results shown in Figs 7.B.11 and 7.B.12, where
|12 is specified to be 4. In these figures, we use AR(2) and AR(4) processes,
respectively. Plots a and b in each figure show 200 samples of the processes. As
in the previous case, the difference in temporal correlation on each channel is
noted. The overlay in Fig 7.B.11c shows the effect of the distinct variances on
each channel as well as the moderate amount of cross-correlation. Six

realizations of the corresponding autocorrelation functions are shown in plots d
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Fig. 7.B.7 Two channel AR(2) processes a.) channel 1 data b.) channel 2
data c.) time-averaged channel 1 autocorrelation (6 trials) d.) time-

averaged channel 2 autocorrelation (6 trials) e.) time-averaged cross-
correlation (6 trials).
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Fig. 7.B.8 Two channel AR(2) processes a.) channel 1 data b.) channel 2 data
c.) time-averaged Channel 1 autocorrelation (6 trials) d.) time-averaged channel
2 aqtocomelauon (6 trials) e.) time-averaged cross-correlation (64 lags-6 trials)
f.) time-averaged cross-correlation (6 lags-6trials).
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Fig. .7.B.9 Two channel AR(2) processes a.) channel 1 data b.) channel 2 data
c.) time-averaged channel 1 autocorrelation (6 trials) d.) time-averaged channel
2 autocorrelation (6 trials) e.) time-averaged cross-correlation (64 lags-6 trials)
f.) time-averaged cross-correlation (6 lags-6trials).
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Fig. 7.B.10 Two channel AR(2) processes a.) channel 1 data b.) channel 2 data
c.) overlay of channels 1 and 2 d.) time-averaged channel 1 auto- correlation (6
trials) e.) time-averaged channel 2 autocorrelation (6 trials).
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Fig 7.B.10 (contin.) f.) time-averaged cross-correlation (64 lags-6trials) g.)
time-averaged cross-correlation (6 lags-6triais).
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Fig. 7.B.11 Two channel AR(2) processes a.) channel 1 data b.) channel 2 data
c.) overlay of channels 1 and 2 d.) time-averaged channel 1 auto- correlation (6
trials) e.) time-averaged channel 2 autocorrelation (6 trials).

127




o8- h
- -

o.0- o]
- -y
1 d
] b

.5 ®

1.8 Lam an an a ™ ng v T 7 | —— — v
® @ » » - = o » la} / 2 4 A'

leg lag
f g

Fig 7.B.11 (contin.) f.) time-averaged cross-correlation (64 lags-6trials) g.)
time-averaged cross-correlation (6 lags-6trials).
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Fig. 7.B.12 Two channel AR(4) processes a.) channel 1 dpta b.) channel 2 data
c.) time-averaged channel 1 autocorrelation (6 trials) d.) time- avgraged channel
2 autocorrelation (6 trials) e.) time-averaged cross- correlation (64 lags-6
trials) f.) time-averaged cross-correlation (8 lags-6trials).
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and e for Fig 7.B.11 and plots ¢ and d for Fig 7.B.12. The cross-correlation
functions (six realizations) are displayed in the last two plots in each figure for 64
and 8 lag values, respectively. We note that in Fig 7.B.11g, the cross-correlation
function peaks at a lag value of |;, = 2 rather than |;5 = 4. In Fig 7.B.12f,
however, we note that for the AR(4) process, the cross-correlation function does
peak at I12 = 4. We also mention that in the case of the AR(4) process described
in Fig 7.B.12, the parameter Ip;,| had to be lowered to the value of 0.3. This

was necessary to maintain the positive semi-definiteness requirement. Finally, in
plots ¢ and d for Fig 7.B.12, we again note that the maxima and minima occur at
the same lag values. In addition, we note that for this AR(4) process, the peak
values of the channel 2 autocorrelation function follow the shape of the channel 1
autocorrelation function. The rapid decrease in this function between the peak
values is a measure of the 'noisy' channel 2 process. The periodic peak values,
however, are a measure of the correlation on this channel resulting from its
moderate degree of cross-correlation (ie., Ip;4/=0.3) with the high temporally
correlated channel 1 process.

Considerable insight into the process generation scheme can be obtained by
examining the coefficients in Table 7.B.2 which were determined from a solution
of the Yule-Walker equation. For Fig 7.B.1, we first note that the white noise
driving covariance matrix C has very low values compared to those in the A(1)
and A(2) matrices. This will cause the resulting processes to be highly dependent
upon the past data samples with minimal dependence upon the driving white noise

vector. This increases the temporal correlation on the channel processes. In
addition, the c;; and c,; elements of this matrix are approximately equal, while

C44 is much smaller. This will cause the elements of the vector u(n) in eq(7.A.7)

to be nearly identical, thus contributing to the high cross-correlation. We again
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point out that in this case of high temporal correlation, the C matrix has small
values. This will cause the variance of the white noise driving term to be small.
If the overall variance of the process is required to be large, the synthesis process
must be operated over a long initial transient period to allow the processes to
reach sufficient magnitude. For this case, only 2,000 initial samples were
generated before saving. This quantity was not sufficient and thus the low values

shown in Fig 7.B.1f resulted.
In Fig 7.B.2, the ¢y and ¢, elements are again nearly equal and much

greater than c44 so that the very high cross-correlation is obtained. We note,

however, that all the C matrix elements have increased as compared to the
previous case. This will cause the additive white noise driving variance to have a
more significant effect on the resulting process. As a result, temporal correlation
on each channel will decrease as expected since the A, and A, values have been

decreased. , ‘
In Figs 7.B.4, we note that only c,, and c,, are non-zero. This will cause

the vector u(n) to have totally uncorrelated elements, thus providing no cross-
correlation as required since Ip,,I=0. Examination of these elements for
Figs7.B.4 through 7.B.8 shows the increasing significance of the white noise
driving term relative to the past values; ie., the C matrix eventually begins to
weight the white noise vector y(n) higher than the A(k) k=1,2 matrices weight the

past samples. Thus, the temporal correlation decreases.
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Fig.
7.B.1

7.B.2

7B.3

7.B.4
7.B.5

7.B.6
7.B.7

7.B.8
7.B.9
7.B.10
7.B.11

7.B.12

A(l)
-198 4.54x10*4

| 4.54x10°4  -1.98

[1.81 -3.6x10‘6]
| 00 -1.81

[ -1.795 -0.0313]
| -0.0313 -1.795
-1.81 0.0 ]

. 0.0 -1.81
-1.31 0.0 ]

| 0.0 -1.31

[-0.464 0.0 ]

| 00 -0.464

[ -0.101 4.84x10°7
| 4.78x10-7  -0.101
£ 0.072 4).334]

| -0.334 0.072
-0.099 -0.010] |

| -0.010 -0.099
[-1.792 -0.0311 ]

L -0.801 0.257
[-1.632 -0. 149]

| -0.782 0.162
-3.093 -0.0418]

L -4.053 0.283
AQ3)

[-2.573 -0.0375]

-6.797 0.4123

AQ2)
] [ 0.984 -4.54x10'4]

| -4.54x104 -0.984

[0.903 ~3.8x10‘6]
| 0.0 0903

[ 0.903 -6.23x10'3]
|-6.23x103  0.903
£0.903 0.0 ]

| 0.0 0.903
[0.64 0.0 ]

. 0.0 0.64
[0.16 0.0 ]

| 0.0 0.16

] [ .0.01 -2.9x10'8]
| -2.9x10-8  -0.01

70.183 -0.31

| .0.31 0.184)
- 0.099 -0.019]

| -0.019 0.099
0.9174 -0.0292]

| 0.0166 0.3545
[0.789 -0.154]

| 0.545 0.321
[ 3.974 -0.0386]

| -8.2604 0.4039
A(4)
[0.698 -0.0384]
2.085 0.452

Table 7.B.2
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C
"0.0051 0.0
| 0.0049 0.0015

[0.269 0.0 ]
1 0.266 0.038

[0.265 0.0 ]
L 0.066 0.257
0.269 0.0 ]

. 0.0 0.269.
[0.922 0.0 ]

| 0.0 0.922._
1.81 0.0 ]

. 0.0 1.81
[1.99 0.0
| 1.97 0.281]
[1.82 0.0 :|

10.74 0.166

1.989 0.0 ]
[ 0.195 1.980 |
[0.261 0.0 ]
| 0.521 1.519.
[0.213 0.0 ]
| 0.639 0.608 |
[0.0665 0.0

| 0.5798 0.5834

]

|




For the matrix elements corresponding to the Fig 7.B.8 results, we make
the following observations. First, the relatively high values of the C matrix
elements compared to the A(k) matrices again provides emphasis on the white
noise driving term. Second, the relatively high and equal off-diagonal elements

of the two A(k) matrices provides high cross-correlation with respect to the two
past sample values. This result is controlled by the high value of A,,=0.97.

Third, the value Ip,,1=0.3 has a significant effect on the C,, element. It is near

the uppermost value for the cross-correlation coefficient that can be obtained
under the constraint condition of positive semi-definiteness. The result is that the
white noise vector is provided a moderately high cross-correlation. This case can

be contrasted with the coefficients for Fig 7.B.9. In this case, the low value of
7\.12=0.2 and Ip12I=0.1 causes the off-diagonal elements in the A(k) matrices and

the c,;to decrease significantly.
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C. The Autocorrelation Function Ergodicity Results

In this section, we will evaluate the ergodicity of the autocorrelation
function. This will be accomplished by evaluating the variance of the time-
averaged autocorrelation function as determined by its ergodic series. In section
IV.A, we developed the expression described by eq(4.A.15). In that case, the
time-averaged autocorrelation function Rii.r(l) was estimated using eq(4.A.1). In

practice, however, we use expressions such as the estimator

f -| 1
M ZXI(n)x (n-1) 0 <l <N,-1

R.. (LN7) =19 7.C.1
0=y (7.C.1)
%

M 2 Xjmxj@-i)  -(Np-1) <l <0.
n=0

, \
For M = N , we obtain the biased estimator while for M = Nt - |, we have the

unbiased estimator. In Appendix B, we derive the expression for the variance of
the biased estimator and obtain

Np-lil-1

Vi (l NT)=NL [1 "'*'k'] Cop(k.D) (1.C22)

T k=-(Ngell|-1)
-||
1 Z [1 _ IIJ:l_ls_'] [IR;;0012 + Re(F(Lk)}]  (7.C.20)

- Np k=-(Np-lll-1) Nt

In the case where F;j(l,k)=0, the form of eq(7.C.2b) indicates that VBii(I)

decreases as a function of lag |. This results from the decreasing number of

positive terms in the summation as well as the decrease in the first bracketed term
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as lag | increases. This is to be contrasted with the form of eq(4.A.18) where the
variance at each lag value was determined using the same number of sample
values. As a result, eq(4.A.18) provided a constant variance independent of |
when Fj;(Lk)=0. Finally, in [7] it is noted that the variance of the unbiased
estimator may increase as a function of | since this variance expression has the

term FI_IW before the summation.
T -

In this section, we will consider the special case of the real, exponentially
shaped autocorrelation function, and synthesize an AR(1) process. The real

AR(1) process also has an exponential autocorrelation function expressed as

Rar®k) = RA(0) [-a(1)]¥ (1.C.32)
= o4p [a¥, (7.C.3b)
where
%
RAR(0) = 1-a2(1) - %ar (7.C4)

and 0121 ,a(1) and G%\R are the white noise driving variance, the AR(1) parameter,

and the variance of the AR(1) process, respectively. Eq(7.C.4) follows from the
Yule-Walker equation where

02 = Ryr(0) + a(RAR(-1) (7.C.5)
= o2g - 22(1) 025 (7.C.5b)
=03g [1-a2(). (7.C.5¢0)
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With
-a(l) = A’AR (7C6)

we have

Rpr®) =025 Marl¥. (1.C.7)

Therefore, in this special case, the AR(1) autocorrelation function is equivalent to
the autocorrelation function used in the correlation matrix of the Yule-Walker
eq(6.A.1). In section IV, the functional form of the autocorrelation function
expressed by eq(4.A.19) was used in eq(4.A.18). We note that this
autocorrelation function is the function to which the synthesized processes are
providing a best ‘fit'. If, however, we are attempting to validate an analytic
expression for eq(4.A.18) or eq(7.C.2b) using the synthesized AR processes, we
must use the form for the AR autocorrelation function in this expression rather
than the functional form which we are attempting to 'fit'. In general, the AR
autocorrelation functions are a rather complicated function of the AR
parameters[11]. In the case of the AR(1) process, however, we use eq(7.C.7) in
(7.C.2b). We also note that in the case where R;j(a) is real, the in-phase and
quadrature components of the synthesized outputs are uncorrelated (see Appendix
F) so that

R (@) = RiX@) = 0 all o (7.C.8)

In Appendix F, we also show that in this case

Rii(a) = R (@) all o (7.C.9)
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and at a 0
Ru(O) Ru ) = o / 2. (7.C.9b)

Using these equations in eqs(4.A.17a) and (4.A.17b), we have
Re(F;i(lk)} =0 all Lk. (7.C.10)

From eq(7.C.7), eq(7.C.2b) becomes

N-ll|-1

L l+Ik| 2
Vg (LN7) = NG, . [1 Ny ] IR;;(k)l (7.C.11a)
=-(N,-
Np-llf-1
1 j+1k 2kl
3 1- (AAR) (7.C.11b)
T Ny --(N - 1)[ NT] AR

Eq(7.C.11b) is an analytic expression for the variance of the time-averaged
autocorrelation function of the AR(1) process considered in this case. We now

consider the expression used to calculate this variance with the synthesized data.
Consider Np realizations of the random process xj(n). Let each realization be

indexed by the integer a; a=1,2,...,.Ng. Corresponding to the realization with
index a, let ﬁiin(l,NTIa) be the biased, time-averaged cross-correlation function

estimate using N observation samples. The sample variance of the time-averaged

cross-correlation function estimates is computed from Ny realizations using the
expression
i Nr -
Va"[ﬁiin(l,NT):NR] = Nl leﬁiin(l,NTIa) - ﬁiin(l,NRIa)lz (7.C.12)
o=
where

Nr
ﬁm'b(' Nglo) = N 2 Riimy(:Nrlo). (7.C.13)
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In Fig 7.C.1, the maximum value of VBii(I,N-r), which occurs at |=0, is
plotted (solid curves) as a function of A;j=Asg for Ny =100 and N =1000 using

the analytic expression of eq(7.C.11b). The corresponding sample variances of
the time-averaged autocorrelation function estimates computed by eq(7.C.12) at
lag zero using the synthesized data processes are also plotted (¢) on this curve.
These values were computed using N, realizations of the autocorrelation function
estimates. For Ny =100, Np=10,000 was used while for Ny =1000, the number .
of realizations was reduced to Ng=1,000.
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Fig 7.C.1 Maximum variance of the ti;ne-averaged exponentially shaped
autocorrelation function versus A;; with Gjj=4; analytical(~) and computed(e).
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Table 7.C.1 contains the parameters used in the process synthesis procedure
as well as the values of N1 and Ny for the sample variance calculation. In these

cases, the variance of the process cizi was held fixed at 4 while A;; was varied

from 0.1 to 0.99.
Figs 7.C.2 through 7.C.11 show the results for these variances based on the
computed values of eq(7.C.12) and the analytic expression of eq(7.C.11b). In

plot a of Fig 7.C.2, we show six realizations of the biased, time-averaged
autocorrelation function plotted over 64 lag values using Ny=100 time samples.

The corresponding ensemble averaged result is shown in plot b using Np=10,000.
The sample variance of the biased time-averaged autocorrelation function plotted
in a is displayed in c. These values were computed using eq(7.C.12) with

NRr=10,000. The corresponding analytic calculation using eq(7.C.11b) is shown

in plot d. In plot e, we show the corresponding sample variance using the
unbiased estimate of the autocorrelation function. As noted previously, the
variance of the biased autocorrelation function decreases with | while that for the
unbiased function may increase. This behavior is illustrated in plots c, d and e
and is also noted in Fig 5.12 of ref [7]. In plots f, g, h and i, we show the
ensemble averaged quadrature correlation functions estimated from the
synthesized process using Np=10,000. Examination of these plots validates
eqs(7.C.8), (7.C.9a) and (7.C.9b) recognizing that a finite number of realizations
were used in the computations.

In Figs 7.C.3 through 7.C.6, we show results similar to those described in
Fig 7.C.2 (although the unbiased variance is no longer considered). In Fig 7.C.7
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Fig. oil

7.C.2 4.0
7.C3
7.C4
7.C.5
7.C.6
71.C.7
7.C8
7.C9
7.C.10
7.C.11

Aij Ny
0.1 100
0.5

0.7

0.9

0.99

0.1 1000
0.5

0.7

0.9

0.99

Table 7.C.1
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through 7.C.11, we show the results corresponding to plots a, b, ¢ and d in the
previous figures using NT=1000 and Ng=1000.

A comparison of plot a in each of these figures graphically illustrates the
increase in the variance of the time-averaged autocorrelation function as Aj;

approaches unity. In addition, a comparison of the figures corresponding to a
specific value of A;; shows the decrease in this variance as Nt increases. The

plots shown in Fig 7.C.1 summarize the results shown in these figures.
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rue W WEY

Fig 7.C.2 Time-averaged autocorrelation function and its variance for A=0.1 and
03-4 a.) biased R(l) (6 trials) using NT=100 b.) ensemble averaged REg(l) using

10,000 realizations c.) sample variance of the biased RT(l) d.) analytical variance
of biased R(l) e.) sample variance of the unbiased Ry(}). -
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D. The Cross-Correlation Function Ergodicity Results

In this section, we will ~~aluate the ergodicity of the cross-correlation
function. This will be accomplished by evaluating the variance of the time-
averaged cross-correlation function as determined by its ergodic series. In
Section IV.B, we developed the expression for the variance described by
eq(4.B.13). In this section, we will consider an expression for the variance of the
biased, time-averaged cross-correlation function estimator using limited data.
Following a similar discussion as presented in Section VII.C, eq(4.B.13) is
modified for the biased estimator such that
Nr-li-1

%k
";12( I]Re[Rii(k)Rjj(k) +F;lk)].  7.D.1)

1 |
Vp;;(LN) = Ny k=-(NT-|||-1)[1

We will now consider the case of a two channel AR(1) process with real
correlation functions. Table 7.D.1 lists the parameters used in the synthesis
procedure of section VI. Table 7.D.2 lists the A(1) and C matrices used in the
AR process synthesis equation expressed by eqs(6.B.5) and (6.B.6). We note that
in each of the A(1) matrices

;= Aqp (7.D.2a)
and

Ay, = Ay (7.D.2b)
while

ajp =25, =0. (7.D.2¢c)
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We also note that the cross-correlation between the process is controlled by
the elements of the C matrices; ie., for high correlation, the ¢{; and ¢, elements

become nearly equal while c;, diminishes. For low correlation, the c,; element

diminishes. From eqs(7.D.2), each channel process is an AR(1) process such that

Ry &) = 657 (' (7.D.3a)

and 5
Rqy(K) = 632 (Ay0)'¥. (7.D.3b)

As in the previous section, we can show (see Section VI.C and Appendix G) that
when Rij(k) is real, the in-phase and quadrature components of the synthesized

outputs are uncorrelated so that
QA IQ
R‘J (a) = Rij (a) =0. (7'Df4)
We also show that in the case where

Rjj(0) = Rj () (7.D.5)

so that Fij(l,k)=0, eq(7.D.1) can be written as

Np-ill-1
' 1 Hi+1k 2 ki _2 Kkl
Vg::(LN) =~ py 1- 551671 A11)7 699 (A22) (7.D.6)
Bij Nt k=- (NT-III-I)[ Nt ] 11 A1) 9221422

In Fig 7.D.1, the peak value of VBij(I) which occurs at =0 is plotted (solid
curves) as a function of Ag=A11=A22 for Ny = 100 and N1 = 1000 using the
analytic expression of eq(7.D.6) and c%1= o§2=4. The corresponding peak
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values of the sample variances of the time-averaged cross-correlation function

estimates computed using the synthesized data processes are also plotted (x) on
this curve. These values were computed using Ny realizations of the functions.

For Nt = 100, Ng = 10,000 was used while for Ny = 1000, the number of

realizations was reduced to Np = 1,000. The sample variances based on Np

realizations of the time-averaged cross-correlation function estimates are

computed using the expression
Ng

1 -
Vaﬂﬁijrb(INT)zNR] = Nl aéllﬁiij(l,NTla) - ﬁiij(l,NRIa)lz (7.D.7)

where
_ Ngr
R (INglo) = o= Y R (WNglo) (7.D.8)
)T\ "R = NRa—l YTy " "TI- i

and ﬁiij(l,NR[a) is the biased, time-averaged, cross-correlation function for

realization o.

Figs 7.D.2 through 7.D.10 show the results for these variances based on the
computed values of eq(7.D.7) and the analytic expression of eq(7.D.6). Table
7.D.1 contains the parameters used in the process synthesis procedure. In these

cases, the variance of the processes cfland c%z was held fixed at 4 while A1 and

A2 were varied from 0.1 to 0.99. The cross-correlation coefficient Ip 5! had

values of 0.99, 0.5 and 0.0. Table 7.D.2 contains the A(1) and C coefficients. As

noted previously, the off diagonal terms of the A(1) coefficients are negligible.
We also note that as the temporal correlation coefficients A;; increase, the

diagonal elements of A(1) increase; whereas, changes in Ipijl affect the c,; and

Cy7 elements of C.
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Fig.

71.D.2
7.D.3
7.D.4
71.D.5
71.D.6
1.D.7
7.D.8
7.D.9
7.D.10

Fig.

7.D.2

7.D.3
7.D.4
71.D.5

7.D.6

2
%11

2
022

0.1

0.5

0.5

0.9 0.9

Table 7.D.1

A(l)

o

0.1

0.5

0.9

-0.1

4.7x 10'7

| 4.7x1077
-0.1 0.0 ]

L 0.0 -0.1.
[-0.1 0.0 7

L 0.0 -0.1
[-0.5 0.0 7

[ 0.0 0.5
-0.5 0.0 T

L 0.0 -0.5.

Table 7.D.2

1

-0.1

60

Ipgol

0.99
0.50
0.00
0.99
0.50
0.00
0.99
0.50
0.00

Ny

100

C

Nr I12

1000

1.99 o.o]
11.97 0.28
T 199 0.0

L 0.995 1.723
[1.99 0.0 ]

L 0.0 1.99
[1.732 0.0

| 1.715 0.244

[1.732 0.0 ]
. 0.866 1.50

]
J




Fig. A(1) C

; £.0.5 0.0 " 1.732 0.0 ]
1.D. | 00 0.5 | 00 1732
D8 £-0.9 0.0 r0.872 0.0 ]
- L 0.0 -0.9 | 0.863 0.123
D9 7.0.9 0.0 r0.872 0.0 ]
. L 0.0 -09. [ 0.436 0.755
1D.10 " 0.9 0.0 ] ~0.872 0.0
. [ 0.0 -0.9 . 0.0 0.872
Table 7.D.2 (contin.)
16 T
14 =
2 2
12 - C11=02=4 Ny= 100 § 1000
10 -
1.4 = > T
V 12 ~
max Bij(.) 1.0 -
“—
08 - n.rnm
1000
M— .
u—

1 1 ¥ 1 x
0.1 03 oS 0.7 09 10 AR

Fig 7.D.1 Maximum variance of tzhc ti1211e-avemged exponentially shaped
cross-correlation function with 011=079=4; analytic (~) and computed (°).
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Appendix A
In this Appendix, we prove that

RAA () =Ryn (@ fori~j andi4 ] (A1)

where the symbol A in this discussion refers to the Hilbert tranform. Consider

Raf™ = E[f;(0)0;(t-7)] (A.22)
A:(On; V)
= E % J S dA (A.2b)
1 [ EMi®nA)]
=7 j e O (A.2¢)
But
¢ ni®)nih)
E[ﬁi(t)nj(l)] = E % j l—t_qf—d(p (A.3a)
| { El@no)]
=z J lt-¢J do (A.3b)
R (M)
) O I o D
= T J’ t-¢ d¢ (A3C)
Let
o =t-A (A.4a)
and
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B=0¢-2

so that
. Rpn (B)
E[ﬁi(t)nj ()] =% J TlB:'x—dB

= Rninj(t-x) = Rninj(a)-

Using eq(A.5b) in (A.2c), we have

These results also hold when i = j.
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Appendix B
In this appendix, we derive the expression for the variance of ﬁiiT(I,N)

expressed by eq(4.A.3a). Consider the time averaged estimate of the

autocorrelation function; ie.,

1 N *
RirWN) =57 T x)x; @ - ) (B.1)
n=-

where the symbol A in this discussion designates the quantity ac an estimate. Let

o)) = xi(n)x; (n - I ®.2)

Assuming stationarity, the covariance of ¢(n,l) can be expressed as

Cppkh) = E[{o(m,D-E[6(m.D1} {¢*(n-k,)) - E[0*(n-k,)]1}] (B.3a)
= E[0(n,D¢ " (n-k,)] - E[o(m,DIE[$* (n-k,})]
- E[o(n,N]E[¢*(n-k,D] + E[¢(n,DIE[6*(n-k,})] (B.3b)
= Ry¢(k,)) - E[o(n,DIE[d (n-k,])] (B.3c)
where
Rop(kD) = Elp(m,Do™(n - kD). (B.4)

Assuming stationarity, we have from eq(B.2),

E[o(,)] = Rjj(1) (B.52)
and
*
E[¢*(n-k,)] = Ry;() (B.5b)
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so that
Cook.D —R¢¢(k D - IR"(l)I (B.6a)

-E[x,(n)x (n- l)x @- K0 -1 -1 - Ry, (B.6b)

Now consider the variance of the complex estimate ﬁiiT(l,N) which can be

expressed as

V3N = E{ [Rii(LN-ER;; N1 [R;ir(N)-ERp N1 } (B.7a)
= ERji(LN)R;70N)] - ELR ;i (LN)ER ;7 LN)]. (B.7b)

Using eq(B.1), we have

Rii N)R;p(LN) = — 2 S @ a-DxERE-D B8
@N+1)2 n SN poN

so that '

1 N

Z ZE[xl(n)x (n- l)x Pxi@e-Nl. (B.9)

2N+1)2 nZIN paN

ER;ip(LNR;ip(LN)] =

Also, from eq(B.1)

{ N
ER;ip(1LN)] = aNaD 2 Riilh (B.10)

n=-N

so that
. . N N

E[R;i(LN)IE[R;;7(LN)] = " Z-N pz Rii(DR (). (B.11a)
IR )12, B.11b
(2N+1> n=2-:N pg i B-10
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Using eqs(B.9) and (B.11b) in (B.7b), we obtain

Vji(LN) =

1 Z Z {E[xl(n)x (n- l)x @i - D1 - IRjiHI2 }.
(2N+1) n=-N p=-N

(B.12)
Using eq(B.6b) in eq(B.12)
1
Vii(lN) = C ! B.13
ii(LN) (2N+1)2 n_z:’NpEN ¢¢(n p.D ( a)
1
= 2N + 1 - KI] Cy(k,| B.13b
(2N+1)? %IE # 1~ ] Coplieh (813
1 kI
= @N+D) 2[1 aN+1) CootkD- (B.13¢)

=-2N

- We now derive an alternate expression for the variance of ﬁiiT(I,N) using

the biased time-averaged autocorrelation function. In this case, we use eq(7.C.1)
with M=N so that eq(B.8) becomes for positive and negative |

| NpkINglo

Riimy( NT)ﬁu-Ib(l NT).N—T ngo pi-:o x;(n)x; (n- I)x (P)x;(p-

0<I<Np-1 (B.14a)
No-l|-INpH]-1,

=_17 Y ):x (m)x;(-lNxi(p)x; " p-1l)
NT n=0 p=0

-(Np-1) < 1<0 (B.14b)
so that
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Np-l-1 Np-l-1

Ry (N ! s
E[Rjiy, .NDRjimy, (LNT) ]=I‘g 2z pEO Efxi(n)x; (n-Dx; (p)xi(p-H]
0<I<Np-1 (B.15a)
| Nplll-INgAL .
== ZE[xi(n)xi(n-lll)xi(p)xi (p-in]
NT n=0 p=0
-(Np-1)<1<0 (B.15b)
Also,
| Nptl
E[Rjipy, (WNpI = N zo R;;(l) 0<I<Np-1 (B.16a)
n=
| Npdlk1,
- N ngo R:() -(Np-1) <1 <0. (B.16b)
so that
*
E[Rjir, (NDIE[Rjip, (Np)] =
| Np1Nph1 |
== Y Y RO 0<IsNg (B.17a)
NT n=0 p=0
| Npl- N1
== Y Y Ri®I? Np-1)<I<0.  (B.17b)
NT n=0 p=0

Using eqs(B.15) and (B.17) in the expression

Vp;;(LNT) = E[ﬁiin(l'NT)ﬁii;b(LNT) 1- E[ﬁiin(I’NT)]E[ﬁii;*b(l’NT)]

(B.18)

we obtain
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Ny-l-1 Np-l-1

1 * *
VN =3 ¥ ¥ (Elxi@x; a-hx; @xip-D] - IRizHI?)
NT n=0 p=0
for 0<I<Ng-1 (B.19a)
Np-ll|-INplf-1 *
1 2
=— Y 2 {Ex;@x@-lDxip)x; (-] - IR;i(Hl“}
T n=0 p=0
for -(Np-1)<I<0. (B.19b)
Using eq(B.6b) in (B.19)
Npl-1 Noy-l-1
1
VBii(I,NT) == Y Coo - p.) 0<I<Nt-1 (B.20a)
NT n=0 p=0
1 Np-ll-INp-ll]-1,
== 3 Yy C¢¢(n -pll)  -(Np-1)<I<0. (B.20b)
T n=0 p=0
We now let k = n - p where
“(Np-1-1)<k<Np-I-1 for 0<I<Np-1 (B.21a)
“(Np-W-1)<k<Np-ll-1 for -(Np-1)<I<0. (B.21b)

We also note that eq(B.21b) is equivalent to eq(B.21a) for all | so that

N-ll}-1
1 T
VeNp="7 ¥ [Np-- K] Cpp(kl) OSISNp-1  (B.22a)
T k=-(N-ll|-1)
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NT-III 1

1
—5 [N -III-IkI]C kM) -(Np-1)<1<0.  (B.22b)
N% k--(NT-III -1) ®0 '

However, for negative lag |, we have
]
C¢¢(k,lll) = C¢¢(k,l) (B.23)
so that after dividing the bracketed factor by one of the Ny terms in the

denominator

| N1
Vp..(LND) = =
B0 = Ny k=-(N-ll|-1)

[1 _ I+ Ikl] C¢¢(k ) (B.24)

for both positive and negative values of |. In Appendix C, we show that the
imaginary terms in C¢¢(k,|) cancel when summed over positive and negative

values of k so that

l NT"I“‘].

Nt k=-(N-ll|-1)

Hl+1kl
VBu(I’NT) = [1 -

Ny ] Re{Copk.D}. (B.25)
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Appendix C
In this appendix, we consider the term F;j;(l,k) in eq(4.A.11); ie.,

* *
Fji(lk) = E[xj(m)x(@ - | - WIEx; @ - Dx; (0 - K)). (C.1)

Expressing the process x;(n) in terms of its quadrature components
E[xj(n)xin - | - k)] =
= E{ [xjy(n) + jxjom][x;(n - 1 - k) + jxjo(n - | - K1} (C.2a)
11 QQ QL IQ
={R(+1)-R; (1+0} +j{R 1+ +R;; (1 +K}  (C2b)

and
* *
Elx; (n - Dx; (n - k)] =

= E{[xjj(n - ) - jxjq(n - D][xjy(n - k) - jxjq(n - K)1} (C.3a)
= {Rik -0 -REK - D) - i{RY k- D+ Rk - D) (C.3b)
But

Ri(k - ) = Ri(l - k) (C42)
Rk - =R 1) (C.4b)
RY&- 1) = Ry - k) . (C4o)
Rk - ) =R (1 - k) (C4d)

so that eq(C.3b) becomes

181



* *
Elx;(n - x; (n - k)] =

= {Rg(l -k) - R%Q(I -k)} - j{RiQiI(l -k + RIiiQ(l -k} (€3)

Substituting eqs(C.2b) and (C.5) into (C.1), we obtain

Fji(lk) = {Rg(l +Kk) - R%Q(I +k)}H Rg(l -k) - R%Q(I -k}
oy

I I I
+ {R?i (I+k)+Ri?(l+k)}{R(i2i (I-k) +R;

-K)}
- (R0 +10-R§A+ 0} (RY- 10+ REI - 0))
+i (Ri0-0-REA -0} RY1+ 0+ R+ 0} (€6)

When the function Fj;(1,k) is used in eq(4.A.12), and the limit as N—oo is taken, it

contributes the additional term in the summation

. 1 2N ki
L) = b}gx:o IN+1 k=?2 1 - N+ Fji(L.k). C.D
By examination of eq(C.6), we note that the imaginary terms in eq(C.7)
sum to zero. This can be seen by first noting that F;;(Lk) is real for k=0. We also
note that imaginary terms evaluated with negative values of k serve to cancel the

corresponding imaginary terms for positive values of k. And so, only the real
part of the function Fj;(l,k) contributes to the function Ly;(I) . Therefore,

L::() = lim
ii(1) R

00

1_ 2N Ikl
2N+1 k=>_32N[1 - 2N+1] Re{Fjj(Lk)}. (C.8)
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Examination of the real terms in eq(C.6) indicate that identical terms are
contributed by each positive and negative k value so that eq(C.8) can also be

written

. 1 2N Ikl
L;0) = }}l_l::o INT1 k§0 [1 - 5N +1] {ZRC{Fii(I,k)} - Fii(l,O)}. (C.9

The term Fj;(1,0) is subtracted in the above equation so that it is not counted

twice. If we now define

RCii(a) = Rg(a) - R%Q(a) (C.10a)
and
RDu(a) R (oz)+Rll (o) (C.10b)
eq(C.8) becomes
M= i 1 2N Ikl ] | .
Lii() = Nf;zml Sl T 2N+1 ] RelFii(hk)) (C.117)

) 1 N[ ki

+ RDii(I + k)RDii(l -k)]  (C.11b)

If the corresponding bandpass processes are stationary and narrowband,
then (see Section ITI.E.2.a),

QQ

(a) Ry () (C.12a)

and

rQ IQ

V) = R ). (C.12b)
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Using eqs(C.12a) and (C.12b) in (C.6), we obtain

Fji(lk) = 0.

In this case, eq(4.A.13b) becomes

: 1 2N Ikl 2
ViilN) = tim o kgz,il ' 2N+1] IRkl
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Appendix D

In this appendix, we consider the terms FIJ(I k) and Ru(k)RJJ(k) in

eq(4.B.10c). Consider,
* *
Fij(l,k) = E[xi(n)Xj(n -1- k)]E[xj (n- I)Xi (n - k)].

Expressing the processes xj(n) and Xj(n) in quadrature form, we have
E[xi(n)Xj(n 1-k)] =

= E{ (xire) + Jx,Q(n)J[xﬂ(n - k) *+ixjqln- - k)]}

= {Ru(l +k) - R (I +k)} + {R (| +k) + RlJ (I +k)}

and
%* *
E[Xj (n - |)x1 (n - k)] =

_E{[xﬂ(n 1) - jxjqn - |)][x11(n ) - Jle(n k1)

= (RYjtc- - R0k - D} -J{RY G- + R D}

But 1 II
Rji(k -h= Rij(| -k)

QQ QQ
R} k-D=Rj (-

QI 1Q
Rj k-D=R;7(-Kk

IQ QI
Rjik-D =R (-

so that eq(D.3b) becomes
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* *
E[Xj (n - l)Xi (n - k)] =
—{RU(I -K) - RlJ -1} - J{le (-k)+ RIJ -0} (D.5)

Substituting eqs(D.2b) and (D.5) into (D.1), we have

Fij(k) -{Rg(' +Kk) - Rj; (l+k>}{R,J(l -k) - R,J %-1)
+{Ri-(I+k)+Rij(l+k)}{Rij(l-k)+Rij(l-k)}
-J{RJ(I+k) RS (I+k)}{RlJ(I -K) + RU(I k)}
+J{RJ(| -k) - R (I k)}[R (I+k)+RlJ(I+k)} (D.6)

When the function Fij(l,k) is used in eq(4.B.14), it contributes the additional term

in the summation

Li) = lim 5o 3. L D7
ij( = im 5Nt S ! - 28T Fif bR (D.7)

As in the case for L;j(l) expressed by eq(C.7), the- imaginary terms in eq(D.6)
cancel in the summation of eq(D.7). Therefore, only the real part of Fij(l,k)
contributes to the term Vij(l,N) so that

L) = lim 5o 3 |1 lkl]RFIk D8
11()“N.l:n°°2N+l k=;2 ~ 2N+1 ef u( )} (D.8)

Examination of the real terms in eq(D.6) indicate that identical terms are

contributed by each positive and negative k value so that eq(D.8) becomes
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2N
Ly® = lim 21~}+1 2 [1 -Zgll]{ZRe{Fij(l,k)} -Fjl0).  ©®9

The term Fj;(1,0) is subtracted in the above equation so that it is not counted

twice. We now consider the second term in eq(4.B.10c); ie.,

* * %
Rﬁ(k)Rjj(k) = E[xi(n)xi (n- k)]E[xj (n- I)xj(n -1-Kk)l. (D.10)
Now
*
E[xj()x; (n - k)] =
= E{[xj(n) + jxiqm)][xj1(n- k} - jxjq(- K)]} (D.11a)
= (R0 + RIAK)} +i{RY 00 - R0 (D.11b)

and

E[x; (n- l)x_i(n -1-kK)]=

= E{lxjin- ) - - jxjq( - l)][xﬂ(n | k)+ jxig-1-K)] (D.12a)

=R <1<)+R3Q<k)} R} G0 - R0}, (D.12b)

And so

Rii(R;00) = {Rji0 + Ry 00} {Rjj00 + R3 00}
+ {R3 00 - Ri{ 00} (R} (0 - R0
(R} + R W HRS 0 - R0}

+ {Rjj00+ B3 0} {RY 60 - R (k) ). (D.13)
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Consider the imaginary terms
* I QL QQ. . QI S | G (0]
Im{Rii()R;()} = -j Rii(Rjj &) - Rjj “GOR;j &) + j RjiMR;; (k)

. I g ¢ I ] I
+ R3OR; ) + j REGORS () + ) R SRR ()

- RFIORG () - § R GRG0 (D.14)

We now recall that
Rii(k) = Rii(-k) (D.152)
R 2K) = R3(K) (D.15b)
RE (k) = Ry (-k) (D.15¢)
Ri(K) = R3] (k) (D.15d)

%
with equivalent expressions for the j channel processes. When Rii(k)Rjj(k) is

used in the summation of eq(4.B.12), we recognize that the terms in eq(D.14)

will cancel when the positive and negative k values are determined. For example,
II
the first term in this equation becomes -j Rii(k)RjJQ(k) when k is negative. This

term will cancel the third term in the equation for k positive. Similarly, the
other terms cancel. A similar argument can be used to determine that the real
terms in eq(D.13) for negative k equal those for positive k.

Finally, we note that if the corresponding bandpass processes are jointly
stationary and narrowband, then (see Section III.E.2.b),
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II
Ryj(@) = R (@)

and o 10
Rij (o) = -Rij (o).

Using these equations in eq(D.6), we obtain

Fij(l,k) =0.
In this case, eq(4.B.13) becomes

k!

1 2N *
Vij(I,N) = 5N+1 k=§2N[1 - ‘z‘ﬁ'ﬁ] Re[Rii(k)Rjj(k)].
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Appendix E
In this appendix, we verify several of the equations noted in section
MI.C.4.b. From eq(3.C.60a)

Aj=1+ K% -2(A11)Kq (E.la)
=1+K[Kj - 24111 (E.1b)

Taking the partial derivative of A{ with respect to K1, we have

dAj

K, = 2K1 -2A11 (E.2a)
and

324

5 = 2. (E.2b)

dK;

Eq(E.2a) and the positive value of eq(E.2b) indicates that A{ has a minimum
value at K| = A1, so that |

>1-(p>. (E.3b)
Since O0< A <1, we have
Aj>1- (1.11)2 >0 (E.4)

so that eq(3.C.61a) is verified. From eq(3.C.60e)

B =1-2(A12)%+ A19)* (E.5a)

=[1- (%> (E.5b)
Since O< A 1<1, then 0<B<1. From eq(3.C.60f)
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C =% + (A% - A D*(Ag0)? - (E.6a)
=[A1] - 122]2 + (A 1)2(7»22)2 (E.6b)

so that 0<Cx]1.
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Appendix F
In this appendix, we validate eqs(7.C.8) and (7.C.9) of section VII.
Consider the complex single channel i AR process of order M

M
x;j(n) = - kzla*(k)xi(n - k) + u(n). (F.1)

Expressed in quadratic form, we have

xj(n) = x;1(n) +j xiQ(n) (F.2a)
M
=- k§1[al(k) +] aQ(k)]*[in(n-k) +j xjq@-] + u@) +jugm  (F.2b)

M
=- kzl [, K)xif(n-k) + aK)xjq(n-k)] + uy(n)

M
-j { z [aI(k)xiQ(n-k) - aQ(k)in(n-k)] + uQ(n)} (F.2¢)
so that
M
X =- Y, [a,(k)x;y(n-k) + aQ(k)xiQ(n-k)] + uy(n) (F.3a)
M
xjq(n) = - kZl[al(k)xiQ(n-k) - aQ(k)in(n-k)] + uQ(n). (F.3b)

In general, x;;(n) and xiQ(n) will be correlated for aQ(k) # 0 since they
both contain terms involving x;;(n-k) and xiQ(n-k). However, for aQ(k)=O,

eqs(F.3a) and (F.3b) reduce to
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M

xjm) =- Y a;(k)xj(n-k) + u;(n) : (F.4a)
M

Xjqn) = - kz a;(k)xjq(m-k) + uQ(n). (F.4b)
=]

In this case, x;y(n) and xiQ(n) are uncorrelated provided their white noise

driving terms are uncorrelated. In the process synthesis procedure described in
Section VI, a(k) will be real when the correlation function is specified to be real.

And so, aQ=0 and
RiS() = Ry (k) = 0. (F.5)

From eqs(F.4a) and (F.4b), we also note that both quadrature components are AR
processes with the same coefficients and equal white noise driving variances.

Therefore,

Ri(K) = Ry (K). (F.6)

We also note that in the simulation process described in section VI, we first

solve for the white variance term 0"21 in the Yule-Walker equation. We then

divide this quantity by 1/2 and apply this variance to each quadrature component
of the white noise driving term. At k=0, we therefore expect to obtain the result

2

G..

I QQ ii
R;0) =R (0) = 5~ (F.7)
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Appendix G |
In this appendix, we validate eqs(7.D.4) and (7.D.5) of Section VII.

Consider the complex two channel AR process of order M

M
(@) = - kZIAH(k)zL(n-k) + u(n) (G.1)

Expressed in quadratic form, we have

im)= zq(n) +J Xg(n) (G.2a)
=- Z [Alk) + jAQE [H[x(n-k) + j xq(n-k)] + wi@) + jug@)  (G.2b)

g |

kZI [A1®) - JAQMI[x/@-K) + j 2g@-)] + u®) + jug®@)  (G.2¢)

Z

k}: (Al 0 @-k) + Aq(k)xQ(n—k)] + uy(n)

-] {kZI[A}'(k)xQ(n-k) - AQIE@K)] + uom) } G.2d)
so that
M T T
x(n) =- kzl [A1 K)x1n-k) + AgK)zg(n-k)] + ug(n) (G.3a)
M T T
xQ(n) = - k§1 [A1()zg@-k) - AQK)x(n-k)] + ug(n) (G.3b)
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In general, x;(n) and xq(n) will be correlated for Ag(k) # 0 since they both

contain terms involving x;(n-k) and 3Q(n-k). However, for Ag(k) = 0, eqs(G.3a)

and (G.3b) reduce to
M
X =- kZle (k)xpn-k) + yy(n) (G.4a)
M
xo@) = - kZIAI (kK)zqn-k)+ ug(n) (G.4b)

Written in expanded form, the two channel processes become

I I
Xq;(0) M | 3110 221K |rx. (nk)] [uyym)
xj(n =[ ( )]=- I I [ (n-k)]+[ (n)] (G.5a)
XAW] g1 appl) agk) |L¥2 Y21
and
I I
x10() M | 3a11K) 321(K) |rx. (k)] [ui0m)
xom=| ¢ |=. g P (G.5b)
VYT I xpom) [~ T =] I I X0-K) [ | uyo@) .
Q k=1| a12(k) az2(k) Q Q

In the process synthesis procedure described in Section VI.A and VLB, the

quadrature components of the white noise driving vectors are all uncorrelated.

Therefore,
R13® =R =0. (G.6)

We also note from egs(G.5a) and (G.5b) that the vector processes xj(n) and
Xq(n) are AR processes which have identical parameters. We therefore have
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R = R0 (G.72)

Rp(k) = RIR(K) (G.7b)
and .
Ry = R K). G.Tc)

These results validate eqs(7.D.4) and (7.D.5).
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Appendix H
In this appendix, we validate eq(4.A.10c). Consider eq(4.A.9b) expressed

R¢¢(k,l) = E[xi(n)x: (n - I)x: (n - k)xj(n - | - k)]. (H.1)
Consider
xj(n) = x;y(n) +j xiQ(n). (H.2)

Using eq(H.2) in (H.1), we obtain

Ryg®kD) = E{ [xi1(n) + ) xjq@)][xig(n-1) - j xiq(a-D]
o [xj1(n-k) - j x;Q(n-K)][xjp(n-1-k) + j xj(n-1-k)] } (H.3a)
= E{ [xig(m)x;i(n-D+x;Q@x;Q@m-N+ix;qmxi(n-)-ixirm)xiq-1)]
-[in(n-k)in(n-I-k)+xiQ(n-k)xiQ(n-l-k)+jin(n-k)xiQ(n-l-k)
-jx;Q@-K)xjr(n-1k)]}  (H.3b)
= E[x;1(n)x;1(n-Dx;1(n-k)x;1(n-1-k)] + E[xiQ(n)xiQ(n-|)in(n-k)in(n-l-k)]
+ E[in(n)in(n-l)xiQ(n-k)xiQ(n-l-k)] + E[xiQ(n)xiQ(n-l)xiQ(n-k)xiQ(n-l-k)]
- E[xiQ(n)in(n-I)in(n-k)xiQ(n-l-k)] + E[in(n)xiQ(n-I)in(n-k)xiQ(n-l-k)]
+ E[xiQ(n)in(n-|)xiQ(n-k)in(n-|-k)] - E[in(n)xiQ(n-l)xiQ(n-k)in(n-|-k)]
+jE[in(n)in(n-I)in(n-k)xiQ(n-I-k)] - jE[in(n)in(n-|)xiQ(n-k)in(n-|-k)]
+jE[xiQ(n)xiQ(n-I)in(n-k)xiQ(n-I-k)] - jE[xiQ(n)xiQ(n-l)xiQ(n-k)in(n-I-k)]
+jE[xiQ(n)in(n~l)in(n-k)in(n-l-k)] + jE[xiQ(n)in(n-l)xiQ(n-k)xiQ(n-l-k)]
-jE[in(n)xiQ(n-l)in(n-k)in(n-l-k)] -j E[xil(n)xiQ(n-I)xiQ(n-k)xiQ(n-l-k)]
(H.3c)

For Gaussian, zero-mean quadrature components, eq(H.3c) can be expressed as
(dropping the i subscript)
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Rgok.D) = R + Ri(k) + Ryl + KRy -

+ RooWRp(h) + RGik) + Roy(l + KRk -
+ Ry(DRqq() + Rig) + Rig(l + KR gk -
+ Rga() + Rag®) + Rog(l + KRgok - )

- RoiDR1q(l) - Roi(k)Rjq(k) - Roq( + KRk - )

+ Rig() + Rp®Roqk) + Rig(l + Rk -

+ RO + Rog(IRp () + Royll + KRyo(k - )

- RigRqr(!) - Riqk)Rqp(k) - Rp(l + k)Rgok - )
+ {Rp(ORq(l) + Rp(k)Rq(k) + Rig(l + K)Rrk - h}

-j {Ru(MRqp(l) + Rig)Ry(k) + Ryl + KRk - D}

+j {RgoMRig() + Rer)Raq@) + Rogll + KRgylk - D}

-j {RggMRqu(!) + Rog®)Ry(k) + Roi(l + KRogk - h }

+j {Rqi)Rp() + Ro(k)R(k) + Rop(l + kK)Ryg(k - D}

+j {Ri)Roq() + Rog(k)Rq(k) + Rog(l + KIRjglk - D}

-j {RigRp() + Ry(k)Ry(k) + Rpp(l + K)Rgy(k - )

-j {Rig(Rqo(M + Rigk)Raak) + Rig(l + KIRgok - }.  (H4)

where we note that the first two terms in each parenthesis for the imaginary

terms cancel. Since

R() = Ryr(h) + Rog®] +j Rey(l) - Ry (H.5)
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then
IRMIZ = RE(D + 2Ry(OR g0 + Rig() + Ror(k) - Reg(Riq) + Rig(D)

(H.6)
and similarly for IR(k,))I2 so that

Rook) = IRiz(DI2 + IR;0012 + Fylk) (H.7)

where

Fn(l,k)—{R (I+k) RQQ(I+k)}{R (-k) - RQQ(I k) }
+{R (l+k)+RQ(I+k)}{R (-k)+ RIQ(I K}
-j{R Yek)- RQQ(H-k)}{R -k + RIQ(I k)}
+j {R (I k) - RQQ(I k)}{RSI(I+k)+R§iQ(I+k)} (H.8)

as noted in eq(C.8b) of Appendix C.
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Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C3I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C3I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibitity.




