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1. Introduction and notation. In a very interesting paper Funaki has studied a
class of Hilbert space valued stochastic differential equations (SDE's) in
connection with his investigations of random strings (Funaki [4]). The work of
the present paper is a continuation or extension of [4] in the sense that the
SDE's considered here may be regarded as an abstract model for interacting
random strings. We do not know of specific examples of interacting strings in
mechanics or physics to which our results apply. However, a possible
application which provided us with our original motivation, is to the
asymptotic behavior of voltage potentials of certain models of interacting
spatially extended neurons. This application is not considered here since it
is briefly discussed in the recent paper of Chiang et al. [1].

The propagation of chaos for interacting particle systems has been
investigated in recent years by several authors (see Funaki [5] and the
references given there). It is natural, in the context of the present paper,
to consider the extension of such results for interacting Hilbert space valued
SDE's.

The generzl notation and plan of the paper are given below.

For a complete separable metric space E, #(E) stands for the family of
probability measures on the Borel sets of E equipped with the topology of weak
convergence. For any separable Banach space B, C([0,T],B) denotes the space of

B-valued continuous functions on [0,T] with norm lixll := sup x lg. If His a
0<t<T

separable Hilbert space we write € := C([0,T],H) whenever it is convenient to
do so.
We begin by considering an ¥-valued SDE whose sulution will be denoted by

Xq = (X?'l,...,xq'N) where # i{s a Hilbert space which it is convenient to take



as the N-fold direct sum of a basic Hiibert space H. This SDE is our
interacting system with mean field interaction. The precise form of the SDE
and the conditions on the coefficients will be given in Section 2. The
existence of a unique solution is a simple consequence of a result of

Dawson [2].

Our main concern is the study of the asymptotic behavior of the sequence

=2

of empirical measures FN = % 2 GXN. 6x being the Dirac measure at x € €.
i=l

i
The tightness of P<>(XI:"1)-1 in #{®) is proved in Theorem 2.1 and the tightness

of PO(I“N)_1 in $(#(®)) is derived as a consequence in Theorem 2.2.

As is to be expected, the propagation of chaos of 1"N in which we are
interested leads to an SDE of the McKean-Vlasov type. The martingale problem
for this SDE is introduced in Section 3. Uniqueness of the solution is proved
in Theorem 3.2. The final propagation of chaos result is established in
Section 4 (Theurem 4.8).

Section 5 is devoted to what we believe to be a new type of result for
McKean-Vlasov SDE's. We assume that H = L2(G) where G is a bounded domain in
Rd. In this case we are able to show that there is a propagation of chaos in
C(0.T].C(G)). (Theorems 5.3 and 5.4). There has been some recent interest in
obtaining continuous versions of processes which are solutions of H-valued
Ornstein-Uhlenbeck SDE's (e.g. see Iscoe et al. [6]). Theorem 5.4 referred to
above, is a similar strengthening of the corresponding propagation of chaos
result.

To obtain this stronger result in Snction 5 we have had to assume that the
eigenvalue An of the operator A (which is throughout assumed to have a discrete
spectrum) satisfy the condition An ~ cu1+6 {c>0, 850). This limiiation is

needed also for the continuous versions obtained by Funaki for his equation




[4]. With this restriction, Theorem 5.4 is applicable to the case when the
generator of the semigroup Tt (see Section 5) is given by a strongly elliptic
operator of order 2m, provided 2m > d. Unfortunately, the last condition
excludes the interesting case of the Laplacian in three dimensions. We
believe, however, that a different approach to the problem based on the use of
the Galerkin approximation might yield more general results in this direction.
On the other hand, it is likely that such an approach would require the
enlargement of the Hilbert space to some space of distributions and bring the
results more in line with those of [1]. Our aim in this paper has been to
obtain our results in C([0,T],H) itself and to see under what conditions
propagation of chaos takes place in the space of continuous functions

C([0,T]xG) when H is taken to be L2(G).

2. Interacting systems of H-valued SDE's and tightness of .
Let H be a separable Hilbert space and let A be a self-adjoint,

non-negative operator on H with dense domain. Suppose that A satisfies

condition (A.1) in the appendix, hence in particular for some 6<1,

-0

(2.1) A is nuclear.

Let {Ak} be the eigenvalues of A and {¢k} be the corresponding eigenvectors.

Then {¢k) forms a CONS. Let ’I’t iz e'tA

be the semigroup acting on H.
Let Wt.....Wf be N-independent cylindrical Brownian motions on H (defined
on some complete probability space (12,%.P)).

Consider the following equation for an interacting system Xf with

N-components Xz = (Xf'l.XQ'z-----XT'N)

N
3 1(xf'i.x§'3)dc

2.2) a1 = - ige + bre M Yaw! + a(e X Hde + &
t t t t t NJI




where b:[0,T]xH — L(H), a:[0,T]xH — H and I:HxH — H are continuous mappings

which satisfy

(2.3) Ib(t,h)é Il < Cy 4

(2.4) la(t,h)It < C, | (1+IIhll)

(2.5) HI(h . hy)Il < Co (lthyll + lbyl)

(2.6) Ib(t.h, )¢, -b(t.hy)é Il < Cy H(Ih ~hyll)
(2.7) la(t.h )-a{t,hy)ll < Cp o(lh ~hyll)

(2.8) WI(h ,hi) = I(hg.hy)ll < Cy o{ih ~hyll + lhj-hl}.
for some constants C, ;. Cy 5 and h,h;.hy.hi.h, € H, t € [0,T].

Letting ¥ denote N~fold direct sum of H, define

L((h;.....hy)) = (Ah.....Ahy).

It is easily checked that L satisfies the condition imposed in the Appendix.
Wt t= (W;.....Wf) becomes an ¥-valued cylindrical Brownian motion and (2.2) can

be written as

dx]: = —Lxl:dt + [3(t:,x]:)dwt + a(t.xl:)dt

for appropriate B,a. It can be checked that B.a satisfy conditions
(A.5)-(A.8). Thus we have that (2.2) admits a unique mild solution, with paths
belonging to C([0.T].%#) (see Appendix). Let us recall that by a mild solution

to (2.2), we mean that




(2.9) x3!
N
- Ttxg.i + IT,_ b(s. x Hyaw! « gor a(s_xI:-i)ds + rlT Z ser,_ sI(x" i x“ +3)ds.

Here, XN‘i € C([0.T].H). The following estimate on moments can be proved

exactly as in Theorem A.3. Let

Cy 3

show that for constants Cp,C; depending only on p, we get

{ ® in view of (2.1)). Proceeding as in the proof of Theorem A.3, we can

N
ENXy 1P ¢ crEnxd LiP + CiCy 3ESS e TP w3 ek TiPyas
p O N j=1

Summing over i, we get

N N

Enxy P ¢ 3 ¢ EIIXN'iIIp + 20,8 (Cy o 3 Ef S(1+ux) LiP)as.
. 25 2.1%.3 s

Mz

i

We can justify the use of Gronwall’'s lemma as in the proof of Theorem A.3, and

thus get

N N
3 (+Enx, 1Py ¢ ¢ sexp{2C°Ch C, 4T} 3 (1+EnKy - Py,

i=1 123 i=1

So we get for a constant C2 4 (not depending on N)

2

(2.10) sup EIX)* 1P ¢ C o 4(1+ENXY 1P T = Enxy Py
t<T o

In particular, for p=2, we have

(2.10)" sup EIX, ' 1% ¢ ¢ q1+EnkS TnZ 4 L 5 ENxy" 1%}
t<T 1=1
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We will fix a sequence of initial r.v.’'s Xg = (Xg'l.....Xg'N) for the

interacting system with N-components satisfying the following conditions:

(2.11) The law of (Xg'l,....Xg’N) is a symmetric measure on Hx...xH.
N, 1Y
(2.12) Vy =% 26 — p . in $(H), in probability.
: 0 N i 0
i=1 Xy'

(2.13) There exists a constant C2 5 such that Euxg'iuz < 02 5 for all N.

Our problem is to investigate the asymptotics of

2

(2.14) T

== ') € %(¢€).
N i=1 )(l."i

We will prove that FN converges in distribution to I' € #(¢€) where I' is
non-random.

We first prove
Theorem 2.1: Assume (2.1), (2.3)-(2.8) and (2.11)-(2.13). Then Po(x’;'l)'1 is

tight (as elements of %(€)).

Proof: Let us write

where

VY = SET, (s Xy hyaW, + IST_a(s.XyNds + & 3 SGT, 100X Yy

0 t-s s

= VN'1 + VN’2 + VN'B. say.

t t t

First note that (2.11), (2.12) imply that Pt"'(Xg'l)—1 converges in #(H) to Mo
and hence that P'~‘>()(g'l)_1 is tight. From this it follows that Q(Txg‘l) is

tight in P(€) since hn'—» h in H implies Tthn — Tth uniformly in t. By
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construction, VT € €. Thus to verify tightness of Q(Vy) in #(€), it suffices

to prove (see Ethier-Kurtz, [3])

C H, compact, such that

(2.15) For all e >0, 0 t<T, 3 Ke ¢ €

PV €K, ) 21

t

(2.16) For 0<58<1, I r.v. ZN(5) such that 0{t<&, 0<s<T, s+t<T

ELIVY, Vol 193] < E[Z(8) %]
and

1i E 6
Un [sup E[2(5)] =

Since A © is a compact operator for all r>0, (2.15) will follow if we

prove that for some r>0

(2.17) ENA"VAN® ¢ C

2.1, C K is compact as AT is

. maT
Then we can take Ke.t = {(h € H: IA'hIlI” ¢ c 2.6}' .t

compact and (2.17) implies

PV €K ) < o=— EIAVINZ ¢ e.
' 2.6
Now
r,N, 1.2 .t ,T 1,2
(2.18) ENA vf ° = EfgIA Tt_sb(s.xz g g d
t,,T 2
C2.1‘r0"A Tt—s"H.s ds
- C txir 27\k(t s)

$C 2 7‘k (2Ak)

]
O

2.7




and C. < ® if 1-2r > 6. So we fix r 1= 22 .
2.u 3

Note that (2.11)-(2.13) imply Eﬂxg'JHZ < C2 and hence in view of (2.10),

.5

i
(2.19) sup ELIXY 2] < 26, Gy o i= Gy g

Proceeding as in (2.18), one can show that for i=2,3.

r,N,i,2
(2.20) EIATVY 12 ¢ eC, Gy oo )

(2.18) and (2.20) imply (2.17).

For (2.16), fix 0<6<1, 0£t<5, 0¢s<{s+t<{T. Then

1N, 1,2\ Ny o ctés 1 1
(2.21) ELVY; LV T2 1sl e BLsstSiT L b(r X0 T__ b(r.X) 1 (rgey 2.qdr 2N
t+s 2 s 2
$ C§.1{‘rs "Tt+s—r"H-Sdr + J.O"Tt:*l~s—r._’rs—r"H-Sdr
< G Lo(6)
where
o(5) = ngTrﬂﬁ.sdr + sup fg i, - Truﬁ.sdr
<5

On the other hand

(2.22) w222 ¢ (rEttur a(r. XY %)idr)?

t+s—r—Ts—r'l(s§r)"H°S
< G2 o(8) + So(1+ixy TiP)ar.
Similarly

(2.23) uvf;z-v§'3u2 < 2cg.la(a)f€(1+ux§'1+§-jzluxf'juz)dr.

=

Putting together (2.21)-(2.23), we get that

E[uvf+s-v§u2|y§] < B[ 1(8) 2]

where




9
(2.24) v sy = o2 o(a)sg(itux - hiZ + & 2 XY Inydr.
J
Now
EUN ' 1(8) = 9C3 | T(1+2C, g)a(8) = Cy qo(5)

and thus to prove (2.16), it remains to show that o(6) — O as 6 — 0. Now

J'éllTrH ds —> 0 as 6 — 0 follows from the fact that

o
2 1
f IITrIIH dr f K
For the second term,
sup ST _ -T I7 dr = sup f 3 {e
<5 O "t+r r H-S <6 Ok
-\, 6 -A T
<3 (e " —1)2fge " dr
k
_xké
2 1
< Z (e -1)% » —
k M
— 0

as 6§ — 0 by the Dominated Convergence Theorem, as D\;l ( o,
This completes the proof of (2.16) and hence it follows that SB(XI:{'I) is tight

in #(¢). o
As a consequence we have
Theorem 2.2: Assume (2.1), (2.3)-(2.8) and (2.i1)-(2.13). Then

P-(T)™ 1 is tight in 9(9(9)).

Proof: For each e > 0, let ke be a compact set in € such that
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P € K0y < €2
xN.l -1
Such a Ke exists as Po(X ') ~ is tight in #(€). Then

PCN(KS) > ) < 2 EFN(KD)

Let X_= {A € $(€): A(K __) 2 1-2" ¥V m1}. Then X_1is compact in $(¢€) and
e2

PN ex) ¢ T PUIVKE ) > e2™
¢ m=l e2 "

o
S262m=6. 4]
m=1

3. Martingale problem for the McKean-Vlasov equation.

For My -Hg € $(H)., let H(ul.u2) denote the class of probability measures A
on HxH with A(ExH) = ul(E) and A(HxE) = u2(E) for all Borel sets E in H. For
p>0. let # (H) := (u € $(H): SihiPu(dh) < ). Let pp 1 F,(H)® (H) — [0.@) be
defined by

(3.1) pg(ul.uz) = inf{ H{ﬂuhl-hzupx(dhldhz): N € M(p).hy))-

9p(H) is a metric space with the metric pp.

Let 1: Hx® (H) — H be defined by
(3.2) I(h.u) = JI(h.h')u(dh’).
Then using (2.8), we can deduce

(3.3) HT(hy ity )-T(hyp) I § Cy o (MR =holl + o (1) .1ig))
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For a continuous function t —p from [0,t] into 91(H). consider the equation

(3.4) dZ, = -AZ dt + b(£,Z )dW, + a(t.Z)dt + I(Z .p )dt

with EHZOH2 < © where b,a,I are assumed to satisfy (2.3)-(2.8). Then with #=H,
L=A, B=b, a(t.h) = a(t.,h) + I(h.ut). the conditions in the appendix. Thus we

have that the equation (3.4) has a unique solution (Zt) with Z.eC([0,T].H),
sup EIIZtII2 { @, Further, the law of (Z ) is uniquely determined by
t€T

b.a.I.(ut).Q(Zo).

Let us note that if Z is a process with paths in C([0,T].H) with
sup Euztup < ®, for p>1, then t — v
t€T
[0.T] — 91(H). This follows from

¢ T Q(Zt) is continuous from

pl(us.vt) < E"Zt_zs"

and Zs — Zt as s — t pointwise and "Zs-zt" is uniformly integrable since

sup Enztup < .
t<T

Let us now consider the McKean-Vlasov equation

(3.5) dZt = —Atht + b(t.Zt)dWt + a(t.Zt)dt + I(Zt.!(Zt))dt.

A process (Zt) is said to be a solution to (3.5) if Z e C([0.T].H),

(3.6) t —4'2(Zt) is a continuous function from [0, T] — 91(H)

and (Zt) is a solution to (3.4) with B, = !(Zt).
In the next section, we will prove that for any Mo € 92(H). there exists a

solution (Zt) to (3.5) with !(ZO) = gy We will now prove uniqueness.

Theorem 3.1: Let Hy € 92(H). Let (Zi). (Z%) be solutions to the McKean-Vlasov
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equation (3.5) with 2(23):2(23) = Then Q(Z{) = Q(Z?) (these are measures

Hg-
on € = C([0.T].H)).

Proof: Let pi = £(Z{). p> = 2(22). Then we have
i i 1, i i A1 d
(3.7) dz} = -azlac + b(v.zh)aw! + a(e.zlyae + 1zl pl)ar

where WI.W2 are cylindrical Brownian motions. Take another probability space
with a cylindrical Brownian motion (Wt) and a.r.v. Z, with Q(ZO) = Ky Z,

independent of (Wt). Let (Zi) be the solution to

1 o | -1 i pass NS |
(3.8) dZt = —Atht + b(t.Zt)dWt + a(t.Zt)dt + I(Zt'“t)dt

~

with Zé = Zo. Since equation (3.7) admits a unique solution in law, it follows

that Q(Zf) = Q(Zf). So to complete the proof, it suffices to prove Z} = E?
a.s., and since these are continuous processes, that EHZ 22 2 O for all t.
Now we have (see Appendix)
s | > t s | t o | t pagpas |
Z, =S2Z2,+ foSt_sb(t.Zt)dwt + foSt_sa(t.Zt)dt + J'OSt HZ .1, )dt
and hence, using (2.6), (2.7) and (3.3),
1 2,2 t 2 S1 22 2.1 2
(3.9)  ENZ_ - ZUN” < 3C, (oS, _ Wy S(4ENZ_ = ZJN™ + 207 (n_.u3)}ds}).
Note that
2, 1 2 1 2 31 32 .2
piug.n) < po(ug.uy) < EWZ_-Z 1.
since z(i‘) = 2(21) = ui Thus
s s s’
>1 52 .2 t 1
(3.10) ENZ.-z1° ¢ 18C, IoIS, _ uzguzs n2ds .
2 SJ1 522 _
Since sup EHZ ¢ ®» and f IS, _ N"ds < @, Remark A.2 yields ENZ -Z 0" = 0.

t<T
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This completes the proof. 8]

Martingale problem.
For f € cg(m“). let U f: H — R be defined by

(3.11) (U,E)(h) = £((h)). ... (hod))

and let @ = {U f: f € Co(R"), n 3 1}. Let #, be defined by

n * »*
(3.12) A UE)) =g 3 (O(ER)e) B (e (Ut I (B)

1
2 §j=1
n

X CCORERRATCERTE

d d
where fi = 5§;f' fij = 5§;fi' Let

n
(3.13) $(U_£)(h .hy) = ifl(x(hl.hz).4'i)fi(hl)
and
(3.14) $(UF)(hy.) = S(U ) (hy hy)u(dhy)

for hl,h2 €H, pue 91(H). As noted in the Appendix, if (Zt) is a solution to

the McKean-Vlasov equation (3.5), then for all g € 9
(Z.) - IS4 g(Z )ds - Si9g(Z_.u_)ds
Bloe 0%sB\%s 0" 845 Hyg

is a martingale with My = !(Zs). This leads us to the following definition.
Let (Zt) be the canonical process on € = C([0.T].H).
A probability measure A on € is said to be a solution to the McKean-Vlasov

martingale problem 1f

(3.15) t — AoZ;' 1s continuous from [0.T] — & (H).




14

and

(3.16) 8(2,) - Jgd (Z,)ds - [o?8(2,. 002 s

is a A-martingale for all g € 9.
It follows from Theorem A.2 that A is a solution to the McKean-Vlasov
martingale problem if and only if A is the distribution of a solution to the

McKean-Vlasov equation (3.5). These remarks and Theorem 3.1 lead us to

Theorem 3.2. Let Mo € 92(H). Let AI.A2 be solutions to the McKean-Vlasov

martingale problem with
1 .5 ,-1 -
Ao(Zy) ~ = A7o(Zy) T = my.

Then A1=A2.

Remark 3.1: We can choose a countable subset QO CPs.t. (3.16) is a
martingale for all g € 90 implies the martingale property for all g € 9.
Indeed, for each n, let En be a countable dense subset in C%(Rn) and let
EO = {Unf: f € En' n 2 1}.

Let $(€) be the class of A € $(€) such that (3.15) holds.

It is easy to see that for g € 9,, (3.16) is a martingale under A € g(ﬂ)
if and only if
(3.17)

FA) = 1 [82,)-8(Z,) - S 8(2,)d - I, 9a(Z, A2, )auley (2, ). g, (2, )k
m

is zero for all r1$r2$...$rm$s§t, gl.....gm € 90. m2l. Also we can restrict
Flee--oT ,8,t to rationals.
m

Let & be the class of functionals F: $(€) — % defined by (3.17), for

8.8 .- .8 € 90. rls...grmgsgt rationals. Then & is a countable class, and we

have
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Remark 3.2: A € P(®) is a solution to the McKean-Vlasov martingale problem iff

F(A) = O for all F € §.

4. Propagation of chags in C([0,T].H)

We return to the setup of Section 2. We assume conditions (2.3)-(2.8) and
(2.11)-(2.13) throughout this section. Thus by Theorem 2.2, PO(FN)-1 is tight
(in #(#(€))). We need to identify the limit points of this sequence. Let us
fix a subsequence N' such that PO(I"N')-1 converges, i.e. FN' converges in
distribution to say I'. T is a $(%¢) valued random variable.

We will show that I' = Ao a.s. where Ao is the unique solution to the
McKean-Vlasov martingale problem with AOOEBI = Uy- This will prove that

PO(I‘N)--1 converges in $(#(€)) to &

Ay
For A € #(¢€), let
(4.1) d(A) := fg £ 1Z 1A d.
@ t

Now

T1 N 1.2

E(r) = ST & 3 ux)tnfae
i=1 t
$TC g

(see (2.19)) and hence by Fatou’'s lemma, Ed(I') ¢ Ttb 8" In particular,
d(l') < » a.s.

Fix F € & defined by (3.17). Then

(4.2) F(A) = £ é G(Z,.2:)dA(Z,)dA(Z})
where
(4.3) G(Z,.Z)) = [&(Z,)-8(Z,)-IHd g2 )du - S3a(Z,.2;)au]-

gl(irl)gz(irz)...ém(irm).
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Thus G is a continuous function on €x€ and further
~ :' T ~ A.
(4.4) l6(z,.2:)] ¢ Cp{l + S 1Z lidu + SoIZ; lidu}

where CF is a constant depnending on F and 02 1 Thus F(A) can be defined by

(4.2) for all A with d(A) < ®. In particular, F(I') is well defined.
Lema 4.1: E[IF(r" )|] — E[|F(r)|]
Proof: For k21, let

(4.5) F (A) = f £ (Gv(-k))” kdAdA.
€

Then F, is a bounded continuous function on #(€) and hence Fk(FN ) — Fk(F) in

k
distribution and IFk(A)l < k. Thus

(4.6) ELIF (™" )11 — ELIF (D) |1

Moreover,

(4.7) EIF (N )-F( )| ¢ EJ'IGI.I{Ika}dFN ar?
¢ Ler foffar ar

¢ ¢ E3c2(1+24(™ )))

<< % . 3(%(1+2Tc2_8).

Similarly
1
(4.8) EIF,(I) - F(I)| < £ E{3CA(1+24(T))
1
S &+ 3CR(IIC, ).
The familiar e/3 argument and (4.6), (4.7) and (4.8) yield the result. o

Lemma 4.2: E[FX(I)] — o.
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Proof: Note that

(4.9) ) =

N ™M=

1 | ,1 .1
N ltg(xlz )-(x 1)t g(x))ds

s N j

N
t1 D S R | .1 , 1
- S0y 3 gey tx dyasle (7). g 000 ).
=1 1 m
By considering the martingale problem corresponding to the system of equations

(2.9) (as in the Appendix), we can deduce that

N
i .o ’i - li - t vi - t _1_ 'i 'j
My = g%yl 00" - S (X)) S 2 religr g s
is a martingale, for i#j, Mi.Mi are orthogonal martingales (i.e. Mng is a

martingale) and

0

i .5 ¢ 1 A Sy . * A
M =5 k.§=l(uhfk)(x§ )(Unfj)(xz )(b (s.Xg )4, .b (s,Xg )$)ds

- =2
where g = Unf. fk = axk f. Thus

1 iy ul o
(4.10) EL(M-ML) (- 10)[20] = 0 1z
and
i i,2
(4.11) E(Mt - Hs) < C4.2T
where C4 2 is a constant depending on F and C2 1 Thus
EF(Y) < iE-N C, oT = 0. o

Together, these Lemmas yield

Theorem 4.3: F(I') =0 VF €&, a.s.

Proof: Note that
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EIF)? = 1im EIFT ) < 1im E[F(C )] = 0.

Hence F(I') = 0 a.s. Since & is a countable class, the result follows. a

We now need to show that I' € $(¢) a.s., i.e. v_ =T o (Zt)-1 belongs to

t
C([O.T].?l(H)) a.s. Then we can invoke Remark 3.2 to conclude I' = A;. Let

2

B s TNO(Z )-1 =X 35 . We first show that PO(DN)_l is tight in
¢ ¢ N yo1 N1 ’
Tt

9(C([0.T],91(H))). The following lemma will be used in the proof.

Lemma 4.4:
(4.12) W(T~Ihil < W(T-Dhil Vs <t heH.
(4.13) lim sup E[I(T,-)Xy" 117 = o.
t-0 N
Proof:

2 NS

? 2 2
WT -I)hn® = 3 ( -1)“(¢, .h)
s ) k=1 € ( k

© At

MNE o 2
=3 -1 h
k=1(e ) (¢k )

= u(t ~Dhi.

Since P*'-’(Xg'l)-1 = Ky in $(H), we can assume without loss of generality that

1 1 1,-1
Xg — X a.s., with PO(XO) =p

1.2
0 0" Moreover, Euxg = < C2.5 implies

1 1
(4.14) Enxy! - X1 — .
Since H(Tt—I)H { 2, we get from (4.14)

(4.15) sup Ell(Tt—I)(Xg'l-x(l))ll < Euxg'l—xéu — 0.
t
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Given €>0, let N0 be s.t. for N2N., L.H.S. in (4.15) is { e/2. Since for each

N. EN(T,-I)X0 1l — 0 as t 1 0, choose ty > 0 s.t. t<ty implies

N

.1 1
EH(Tt—I)Xg Il { e. Also let to>0 be s.t. tgto implies EH(Tk-I)XOH { e/2. Now
for t £ t = min(to.tl.....tNo). we have
sup EN(T ~1)X5 10 < e. o
N

To show the required tightness in the next result we will use the fact
that if K is a compact set in $(H), then for all C < o,

K, = KN {u €9 (H) : fihu(dn) ¢ C}

is a compact subset in 91(H).

-1

Theorem 4.5: P o (v?) is tight in 9(C([O.T].91(H))).

-1

Proof: We already know that PO(vf) is tight in $(H). Moreover

N
E(f mil(dn)) =E & 3 ux’i"u2 $Cy g
1=1 :

Thus, using the comment made just before the statement of the theorem, for >0,

we can find a compact set Ke in QI(H) s.t.

t

N
P(v, €K, ) 2 1-e.

In what follows we use the notation of Section 2. For 0¢s¢T, 0<t<s, s+t<T,

from (2.21)-(2.23) we have

(4.16) E[ﬂxfii - xg'lﬂlgg] < E[HTt+sxg-1_Tsxg-1u |$§] + E[uvf+s_v§" lgg]
< EDN(T,-DXy ' S5+ (ELIVY, -Van? (300"

< B 1(s) | 7]
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where

, N
(4.17) 3(8) = n(r-nxy 92 + ¢, (Lo TAgsn -2 + & 3 0x}Ii?yar.
. o

Now using Lemma 4.4, (2.19) and o(8) — 0 as 6§ — 0, we get

(4.18) sup EUN'1(6) -0 as & —o0.
N

N

Moreover, pl(vt+s

N
W oL 3 X2+ U so that

j=1

t+s’

N
ELpy (Vv ) 1951 § § 2 EOIKG L0 15

N
SE[F Z U3e) I3

j=1
R NONEN
. N
where UN(8) = & 3 UN'3(8). since EU' ' J(5) = EU'1(5) by symmetry. (4.18)
J=1

implies

sup E(l}N(b)) — as 6 —0.
N

This completes the proof of the theorem, (see Ethier-Kurtz, [3]).
We are now in a position to prove
Theorem 4.6: T € #(€) a.s.

Proof: Recall that FN converges in distribution to I'. Now by Theorem 4.5
Po(u’ )71

{N'}.

is tight in 9(C(°.T].91(H))) and hence for s subsequence {N"} of

Po(urj")-1 converges in 9(C([0.T].91(H))).




Thus

po(r oY )71 converges in #(#(€)xC([0.T].%, (H)))

N"

V", 1t follows that To(z )" = .

to say, PO(F.D)—I. Since I'N'O(it)-1 =D .

Thus
t — FO(Zt) is continuous from [0,T] to 91(H).
i.e. F € 3(@). Since ¥(T') = Q(F). we conclude that

I € $(¢). o

Theorem 4.8: (a). Let Mg € 92(H). Then there exists a unique solution Ao to

the McKean-Vlasov martingale problem with Ao o (Zo)_1 = M-
(b) FN —_ Ao in probability (as a #(€)-valued r.v.).

Proof: Theorems 4.3 and 4.7 imply that if I' is any subsequential limit of

(N}, then T € 3(€¢) a.s. and

F(ry =0 VFe€& a.s.

Thus I' is a solution to the McKean-Vlasov martingale problem with FO(ZO)—1=uO.

This shows existence of AO as in (a). Uniqueness of Ao follows from Theorem

3.2. Sonowwegetl =A, a.s. Thus, all subsequential limits of (FN} are

0
equal to Ay Since {I'} is tight. this gives Po(r")™! — 5, in #(3(¢)). and
0

hence FN — AO in probability. (0]

5. Propagation of chags in C([0.T]:C(G)).

Let us now assume that H = L2(C). where G {s a bounded region in Rd. Suppose
further that the semigroup (Tt) generated by -A satisfies the following

additional conditions:




22
Tt is an integral operator given by a symmetric kernel p(t,x.,y):

(5.1) T.g(x) = fop(t.x.y)g(y)dy. t>0.

We put Tog(x) g(x)., for g € L2(G).

(5.2) Ttg(x) is jointly continuous in (t,x) for g € C(G)
(5.3) lpet.x.y)| € G 4 t7%  for o¢s<l
d -a B.-r
(5.4) | ——T-p(t.x.y)l S Cg ot exp(-Cq 3|y—x| t )., 0
ay . .

with a-r/B < 1 for each {

(5.5) J lp(t.x.y)|dy ¢ C5.3 for t>0.

Under these conditions on (A'Tt)' we will show that the Xf'i(x) admit
versions in C([0,T].C(G)) and that TN. defined in Section 2 converges in

probability as random elements in #(C([0.T].C(G))) and as a consequence,
Ao(C([0.T1.C(G))) = 1
provided uO(C(G)) = 1. We begin with a lemma:

Lemma 5.1: There exist constants C5 4 61)0. 62>O (depending only on A) such

that for O<tl$t2. X|Xg €G
t2 2 % %
(56)1.0 fc (p(tl_s-xl'Y)lsstl-p(t2—s-x2'Y)) dyds ¢ C54(lt2-t1| 4'lxz-xll }

Proof: From p(s.x.y) = p(s.y.x) and the semigroup property one gets

(5.7) Jo P(u.x.y)p(v x.y)dy = p(utv.x.x).
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Using this, the L.H.S. in (5.6) equals

t
(5.8) fo2(p(2t -2s, X, xl)l( St )+p(2t -2s, Xq 2) 2p(t *ty -2s, XpaX ) )1

By changing variables using substitutions tl—s =r, tz—s =r and

t o+t
22 1 s = r, respectively in the three terms, (5.8) equals
Y ty (t2+t1)/2
fo p(2r.xl.xl)dr + IO p(2r,x2.x2)dr - 2f(t2—t1)/2 p(2r.x1.x2)dr
=11+I2
where
t (t2+t )72

Ij = foj p(2r.xj.xj)dr - (t 1)/2 p(2r, X x2)dr

Let us write Il < I11 + I.,+1 3 where

12 1
(t -t )/2
= f p(2r.x1.x2)dr
(t2+t1)/2
112 = It p(2r.xl.x2)dr

1
‘
1,53 =7, |p(2r.x1.x1) - p(2r.x1.x2)|dr.
From the inequality (5.3), it follows that
1-6
(5.9) I+ 1o § C5.5|t2 t | .
Now using (5.4) and e X < x 9 for q>0, we have

(5.10) |p(2r.xl.x2)-p(2'.xl.xl)| = |fé (x2-x1)-vyp(2r.x1.xl+u(x2-x1))dul

Cs. g%, 1£exp(-C5 3 by 67"

(sgtl)

}ds.
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< C5.2'x2'x1".alcs.3|x2'xllpt-v|—q

_ _ 1-Bq, -a+qv
= C5. 908 3% It :

In (5.10) vy is the gradient and the dot stands for the scalar product in Rd.

Since a = % { 1, we can choose q such that 61 = 1-Bq > 0 and a—qr < 1. Then we

have
6l
(5.11) I3 <G glxo |
Putting together (5.9), 5.11) we get (5.6). o

Lemma 5.2: Let f: [0,T]x? — L(H,H) be a measurable (3:)-adapted process such
that

(5.12) neil ».  (H = L%()).

L) $ G571 ¢

Let w? =W (¢ ) and let
(5.13) £.(x) := nflfé[fc[f:p("x")](Y)’n(Y)dYJd': .

2
Then ft(x) is a version of the L(G)-valued process §t=f8Tt_sfdes.

Proof: Since {Wg: n2l} is a family of independent Wiener processes, the

convergence of series appearing in (5.12) follows from

Eftue™p(t-s.x. )12, d
0 sp( s.X L2(G) s

. -]
t, 2
E nElfo(fsp(t-s,x. ).¢n) ds

A

C. Slip(t-s.x. )12, d
5. 770 PLt7S.X 12() s

C5_7fé p(2t-2s,x.x)ds < =.
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Moreover for h=h(x) € L2(G). we have

(5.14) SE (On(x)dx = 3 Jo[I(F(p(e-8.x. ). Ih(x)ax]dW]

n=

(- ]
t, .
nzjl'ro(fs:.rt-sh'wn)d'n

"

t, .»
FolfgTe-gh-d¥,)

(h'féTt-sd's)'

Since (5.14) holds for all h € L2(C). it follows that ft(x) is a version of ft

o]
We are now in a position to prove

Theorem 5.3: Suppose that (2.1), (2.3)-(2.8). (2.11)-(2.13). (5.1)-(5.5) ho.d

Further. suppose that
(5.15) xg'J(-) € C(G). 1<J¢N

and for some p2l. such that p6l > 2(1+¢). p62 > 2(1+¢) with >0 (where 61.62

are as in (5.6)).
Jd.p
Eﬂxg nw o< CS.S' N21.

Then. the processes Xt'l admit versions if'i such that

X1 € c([0.T].C(G)) = C([0.T]xC).
Pioof: Note that in view of Theorem A. there exists a constant C% 9 depe:d:in

on C2.l and C5.8 such that

AP, ~
(5.16) guxf LR




for all t€[0.T]. 12!. Now write

M) = W00 ¢ 200 ¢ 200 ¢ e

t

where

Wl x) = Ipctey )y (v )dy
Wo2x) = (05T b(s XN hhaw ) (x)
(the version given by lLessa 5.2).
Y3 = ST als. X sy (x)

= Siplt-s.x.y)a(s. X, ') (y)dyds

i - fgfp(z—s.x.y)r(Xﬂ".X§")(y)dyds.

NMZ

for tlgtz‘ X, X € GC. we have

511 B2 Y ) IP
‘2 1

t
2 = .1 ' 2, p/2
a CPEIIO b (s.X: )(p(t2-s.x2.')-p(tl—sl.xl.-) (SStl))" ds |

t
2 . 2 p/2
cpcg Lo mp(ty-s g )Pt - x, )l(ss:l)}" ds |

, 69 P2
s Cpcg 1C§/3"‘2"1 . x|

10e
C -

$ C5 ol hty- 1' ’1‘2 x|

n *he other hand

. N 3 N3p

G P -

{ S) Y‘2 (xz) \(3 [
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< slfgfc<p(tz—s1x2.y)b(slx§")(y)-p(cl-s.xl.y)b(s.xﬂ")(y)x(sStl))dydslp

t t
< E[f02fc(p(t2-s.x2.y)-p(tl-s.xl.y)l(sstl))zdsdy J'ozllb(s.XI:‘l)llzds]p/2

6 5 t
1 2,72 1,2, p/2
CECy 4fltgmt, | Melagmx, | 2yes 21k - 1i?)as TP
t
< R Stlegmey | 4 Ixgx |17 £ 2(1eEmc) TiPyas

1+ 1+
$ G5 pilegty ! F+"‘2"‘1' °}.
Similarly

(5.19) Elvfé*(xz)-vﬁi*(xl)lp < G olltgmt 1Mo+ xymx, |14}

Here C5.10'C5.11'C5.l2 do not depend on N. In view of (5.17), (5.18) and
(5.19). it follows from a well-known result (see [4]) that Yf'J(x) admit

versions ;:'J(x). j=2,3.4. such that
' d(-) € c([0.TIxG) = C([0.T].C(G)).

In view of (5.2). Y?'l(°) € C([0.T]xG). Hence it follows that X¥'1(°) admits a
version ;?'l(') € C([0.T].C(G)). Similarly, we can construct versions iN'j of
X112, LN

Let FN = %- ETbiﬂ i We regard FN as a random element of

#(€([0.T].C(G))). Since 2?'1 is a version of XN'i. it follows that F§ is a
version of FN. We will now show that the sequence FN converges in probability

in C([0.T].C(G)).

Theorem 5.4: Suppose that the conditions of Theorem 5.3 are satisfied. Further
assume that

(5.20) po(xg-‘)“1 — ;0 in $(C(G)).
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Then we have the following conclusions:

(1)  Po(X'1)7! s tight in $(C([0.T].C(C)));
(11) Po(F)! 1s tight tn $($(C([0.T.C(C)))):

(1i1) If AO is the 'mique solution to the NcKean-Vlasov martingale problem with

AOO(ZO)-I Mo and Ay is its restriction to C([0.T].C(G)). then FN — Ay in

probability in #$(C([0.T].C(G))).

Proof: The estimates (5.17). (5.18) and (5.19) imply that Po(Y''J)7! are tight
in $(C([0.T].C(G)) for j=2.3.4.
From (5.5). it follows that 1f g — g, in C(G) (uniformly) then
(T8, )(x) — (T g,)(x) uniformly in (t.x) € [0.TG. This observation and
(5.20) imply that
Po(Y''1)7!  converges tn $(C([0.T].C(G)))

and hence P°(§N'1)-l is tight in #(C[0,T].C(G)) where
BRI

This proves (i). (ii) follows from (i). The proof is the same as that of
Theorem 2.2. We only have to replace € by C([0.T].C(G)). Now,

P(I‘N)“1 = P"'-'(FN)-1 converges in #(¢€) (Section 4). Moreover,

C([0.T].C(G)) € C([0.T].L3(C)) = € and Po(I)~! is tight in $(C([0.T].C(G))).
Hence it follows that PO(FN)_1 converges in #(C[0,T].C(G)) to say Xb. Then XO

is the restriction of Ao to C([0,T].C(G)). This proves (5.21). o]

Appendix

Let ¥ be a separable, real Hilbert space with inner product (+.°) and norm
Hell. Let L be a self-adjoint, non-negative operator on ¥ with dense domain

and such that L has a discrete spectrum (pn) with




(A1) p ~ en!*®  (c>0. 550).

We denote the eigenfunctions of L by (wn) and the semigroup of which -L is

the generator by St' Note that for 8 > 1/1+6 we have

[}
(A.2) 2 P
n=1

9 ¢

a fact that will be used often in what follows. Note that we also have

-pkt

(A.3) Stwk = e “lk

Let ('t) be a cylindrical Brownian motion on H, (defined on some complete
probability space (f1.%5,P).

Consider the SDE
(A.4) dYt = -LYtdt + ﬁ(t.Yt)th + a(t.Yt)dt.

where B: [0.T]x® — L(X.%), a:[0.T]x¥ — X are continuous functions satisfying

conditions as in Dawson [2].

(A.5) ng" (e h)w M < C, |

(A.6) ta(t.h)ll § C, | (1+UhN)

(A.7) n(p'(t,hl)-p"(c.hz))wkn < C, lth -yt
(A.8) Ha(t.h;) - a(t.hy)l < C, b ~h i

L]
for constants CA.l'CA.2 and for all k21, h.hl.h2 € X, 0Kt<T. B denotes the
adjoint of f and L(%.%X) is the space of continuous linear operators from ¥ to
’.

Under these conditions, (A.4) can not be interpreted as




30

-t , t t
Y, =Yy + iyl ds + J'Oﬁ(s.Ys)dWs + Ioa(s.Ys)ds

as the stochastic integral féﬁ(s.Ys)d's may not be defined and a priori. Y may

not belong to the domain of L. Instead, (A.4) is to be interpreted as

(A.3) Y. =S Y+ fo - p(s Y )dW + f S._ a(s.Ys)ds.
Since

t 2 t, 2
(A.10) EIONSt_sﬁ(s.Ys)"H_Sds = Efouﬁ (S'Ys)st-s"H-Sds

t e . 2
Efy kzlup (5.Y,)S,_ ¥ M1“ds

o -2(t-s)p
Efy Ze Kig™(s.Y )wkuzds
k=1

- -2tpk
(C s (e )

Al ol 2y

in view of (A.2). the stochastic integral appearing in (A.9) is well defined.

"."H S appearing above is Hilbert-Schmidt norm.
Definition: A measurable process (Yt) is said to be a mild solution to (A.4)
if

I(T)IIY(t.u)ll2dt (® a.s.

and if (A.9) is satisfied for all t.

The following result is due to Dawson [2].

Theorem A.1: Let EMYOH2 < ®» and YO be independent of ('t)' Then (A.4) admits
a unique (up to P-null sets) mild solution (Yt) in the class of measurable

processes satisfying
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(A.11) sup ENY 1% ¢ =,

ST

Further (Yt) can be chosen to have paths in C({0,T].¥). See Remark A.3 beiow
for an outline of the proof of Theorem A.l.

It {s ency to see that (Yt) satisfies (A.9) {ff

YE i (Y,.%) satisfy for k1
-p t -p (t-s) -p (t-s)
(A12) YE = e K Y5+ fi(e & BY(s. Y Jw .dW ) + fle X (a(s.Y).¥,)ds.

An elementary computation shows that (A.12) {s equivalent to
2
(A.13) avk - -pkvfdc + (B"(6.Y vy .d¥ ) + (a(t.Y,).w )dt.

Thus, it follows that (Yt) is a mild solution to (A.4) 1iff Yt t= (Yt.wk)

satisfy (A.13) for k1.

Martingale blem corre ing to (A.4).

For f € cg(n“). let U f:H — R be defined by
(A.14) (U_£)(h) = £((h.¥;).....(h.y)).
For f € C%(Rn). we write f = 5%; f. fij = 5%; f,.

Let 8 = (U f: f € CO(R"). n 2 1} and let

(A.15) 2 (U f)(h)

n n
2 (BB BT ) (UF D)+ 3 (a(e.h)-pyhok ) (Upf D (B).
J= =

If (Yt) is a mild solution to (A.4) then (A.13) is satisfied, and hence for all

g €9,
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(A.16) g(Y,) - Jo(2.8)(Y,)ds

is a martingale, and hence Pl i= F’OY-l is a solution to the (2t)-martingale
problem on Ql := C([0.T].%). This means the following. Let (ft) denote the

canonical process on Ql' Then

(A.17) 8(E,) - Jo(2.8) (€ )ds

is a Pl—martingale. We have the following converse to this observation.

Theorem A.2: Let Pl be a solution to the (!t)-martingale problem
(Pl € #(C([0.T].%))). Then P1 is a "weak solution’ to (A.4), i.e. P1 is the

distribution of a mild solution to (A.4) on some probability space.

Proof: Using (A.16) for g = Unf for f € Cg(Rn). it follows using standard

arguments that
(A.18) ME s (E, W) (Eg W) -Tg(als.E )N E, w )dt
is a local martingale, with continuous paths and

(A.19) Wb = S5(B" (s E B (5.E v )ds.
As a consequence,

(A.20) E sup 512 < (c, T
t<T )

and (Ht) is a square-integrable martingale. Let

k %
Nt = pk Hl:

Then using (A.20) and (A.2), one has
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n
E sup Il ZN\pkllz—)O as n,m — ©,
t$T k=m

Hence Nt t= Ethwk is an ¥-valued martingale with continuous paths. Since

SSRGSV O VAL
= T5(8 (5. E A . B (5. EIA 0, )ds
it follows that

X0, ..J'tGGds
where Gs(w) = A-“B(S-fs(“))-

Using arguments as in the proof of Theorem IV.3.5 in Yor [7]. one can conclude
that there exists a ¥-valued cylindrical Brownian motion (Bt) (perhaps on an

enlarged probability space) independent of fo such that
N = S'G_dB
t "Os s

so that Nk = 8(C*¢k.dB ) = p;%(B*(s,fs)wk.st). Hence,

Hk IO(B (s.§ $)¥, 4B g)- This and (A.18) imply that (§,) is a solution to
(A.13) and hence a mild solution to (A.4). a
We will discuss later the question of uniqueness of solution to the

martingale problem. We first obtain an estimate on moments. Note that in

(A.10) we have essentially proved

2 1 k
(A.21) f IS NG dt = I — {l-e }.
t'H-S k:l pk
< s L._¢c
k=1 Pk T TA.4

Thegrem A.3: Let (Yt) be a mild solution to (A.4) with Y € C([0.T].¥). Then

for p22
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p p
(A.22) ::g EHYtH < CA.5(1+EHYOH }

where CA.S depends only on CA.I'CA.4 and p.

Proof: First note that

p p
(A.23) "StYOH [4 HYOH ;
Next,

t P t 2 p/2
EHIOSt_sﬁ(s.Ys)dWSH < CA.GE[IO"St-sB(s'Ys)"H.Sds]

and hence

t p * .
(A.24) ENSoS,_B(s.Y )W 1P < ¢, Cﬁ.x C, 4
as seen in (A.10). For the dt integral term one has

(A.25) nfg S,_ga(s.Y )dsiP ¢ uféust_suu.sua(s,vs)udsIP

4 lféHSt_sug.sds)(féua(s.Ys)ﬂzdslp/2

< (€, P2 gy i%)asP?

< CA.7I8(1+"Ys"p)ds.

If we knew a priori that the L.H.S. in (A.22) is finite. we could combine
(A.23). (A.24). (A.25). take expectations and complete the proof using
Gronwall's inequality. To overcome this difficulty we proceed as follows. le:

g (v) = C(1 + % :2$ m't(«.a)n")'l

where C is chosen s¢ that ngdP=l and let de = gde. Let IE.k denote I-de

Since gkgl. it follows that Ek(f) S E(f) for f 2 O and hence (A 24) holds with

E replaced by Ek' Taking expectation in (A.23). (A.25) with respect to Pk.:uxf

using Gronwall's lemma we get
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P P
(A.20) sup Ek"Yt" < CA.S(l’Ek"YO” }.
tsT
Since g — 1. (A.22) follows from (A.26) by dominated convergence. o

Remark A.1. Note that the result proved above gives a proof of the fact that

any solution Y €C([0.T].%) of (A.4) must satisfy (A.11).
Lemma A.4: Let f € L([O0.T]) and f 2 O.

(1) Suppose g.6 are nonnegative. bounded, measurable functions on [0.T] such
that

(A.27) g(t) < féf(t-s){g(s) + 6(s))ds. t € [0.T]
Then. there exists a finite measure u on [0.T] depending only on f. suck tha:

sup g(t) § Job(uu(du).
tT

(ii) Suppose gn.én are sequences of bounded measurable functions such tha-
(1) ¢ FTe(t-s){g (s) » 6 (s)}ds. n2l. t€[0.T]
% 0 &n n ' ¢t '
Further. suppose bn(s) 4 C and 6n(s) —~ QO as n —~=Ys Then

sup (t) — O as n —e =
T “n

Proof (1{) ¥ithout loss of generality. we can assume that g is increasi g

Now. repeatedly using the inequality (A 27) we get

() < Sof (-t ) (g(x, )6t ) }dr,

t
t tel . . oan
;I&(PKHOUXM(I0f&bf(ht”f“lﬂzﬂgﬁ2ﬁﬁhzydqgn

-




It follows that for any integer k21,

(A 28) g(T) ¢ a, +...+a ¢+ bkg(T).
where
T T
(A 29) =T T sy f(s)8(T-s )1 ds
& =do Yo 1 " 154 (Z?siST) 1

and bk is defined similarly with 6§ = 1. Now
a, = J 6(u)uk(du)

where u, € #((0.T]) is defined for B € 3([0.T]) by

u (8) = 53 fgnB(T-zfsi)f(sl) L f(s,)ds .. .ds

kl

Note, bk = “k([O'T])' Now

¥

T
(0.7 = f,...1
My 0 1o (ZfsisT)

k
< exp(aT) 1I-Ilfgexp(—asi)f(si)dsi.
Choosirg a>0 such that fgexp(—as)f(s)ds { %. we get
by = 1 ([0.T]) < exp(aT) (%),

Thus bk — 0. Moreover, since 2:=1uk([0.T]) { ®» and thus

u(B) := 3 _u (B)

defines a finite measure on [0.T]. Now

g(T) ¢ 2
i=1

f(sl)...f(sk)dsl..

a, = p fb(u)uk(du) = [6(u)u(du).
u=1

..ds

K

.ds

k
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This proves (i1). (ii) is an easy consequence of (i). a

Remark A.2: It follows from the preceding lemma that if g is bounded

nonnegative and measurable, f is nonnegative and integrable on [0.T] and

g(t) < Jof(t-s)g(s)ds. OSegT

"
©

then g(t) =

Theorem A.5: Let Ho € 92(1). Then there is a unique solution to the ((Qt).uo)

martingale problem on C([0,T].¥).

Proof: In view of Theorem A.2, A.3 {t suffices to prove that if (Yt) is a mild
solution to (A.4) with P0Y61=uo. then the law of (Yt) is uniquely determined.
Let (Yt) be a mild solution.

Let A = (O=t0<t (...<tm=T} be a partition of [0,T] with

1
Let Yt = YA be

t
t

|a] = max |t For t€[0,T). A(t) := t  1f t et
i

i+1° 1" i 1

defined as follows: for tOStgtl.

> t. t
Yt = StYO+ Oat_sﬁ(s.Yo)dWs + fost_sa(s.Yo)ds.

It foliuws that (Yt: OgtStl} is a functicnal of {YO.(W_)). Then for t,<t<t,

Y, = Yt1+StYO-StlYO+ftlSt_sB(s.Ytl)dWs + ftlst_sa(s.Ytl)ds.

It again follows that (Yt: tl<t$t2) is a functional of {YO.Yt .(¥,)} and hence
1

that of (Yo.(w.)).

Having defined (Yt: O<t$t1). define (Yt: t1<t$ti+l} by

Y, =Y, +stY0-st1Y0 + Itist-sp(s'yti)dws + IS, _qa(s.Y, )ds.

i i

It then follows that (Yt: OStST}:F(Yo.(W_)) for a suitable functional F, and as
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a result, the law of (Y ) is uniquely determined. Now, Y satisfies

(A 30) Yt =S Y IO

¢ B(s. YA( ))ds + IOS a(s.;A(s))ds(

t-s

Proceeding as in Theorem A.3, it can be shown that

2 -
(A 31) :2¥ EHY H < CA.SE(1+"YO" ) = CA.Q'

Using Lipschitz conditions (A.7). (A.8) on a.f we can conclude that

v 2 t 2
EHY(—Yt" < 2IOHS "H SCA 2EHY YA( )H ds
2
< 2C f HS IH S(EHY -Y - + EHY YA( )H }ds.
et & (s) = EHY YA( ) We will show tnat if we take An such that |An| — 0,
then 6A (s) = 0 This along with (A.31) and Lemma A.4 implies, (writing
n

‘An
Yoy,
(A.32) sup EIY, -Y“u — 0.

t<T

[t will then follow that the finite dimensional distributions of (Y?) converge
'o {(and thus determine) the corresponding finite dimensional distributions of
()

~

Fix t.A and let r=A{t). Again we write Y = A Then

~ o~ 9 2 .t 2
ENY -Y 0% ¢ 3(EN(S,_ -I)S Y I + frust_suﬂ.scf_1(a+cA_4)ds

and hence
. [A] 2 _ 2
(A 13) 5,(1) € 3{5g 'S Uy cdu + EN(S,_, 0 -D)Y I}
IAnI 2
Now if IAnl — 0, IO "Su"H.Sdu — 0 and since
. . 2 2
r(s S1)Y IS < 20Y N

t—An(t)
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lim WS _ -I)Yol12 —0 as |

n

A (1)

the dominated convergence theorem implies that the second term on the R ¥ & -
(A.33) goes to zero. Hence

6A (t) — O for each t.
n

This completes the proof.

Rema;k A.3: Uniqueness of mild solution to (A.4). in the class of measurab.e
processes can be proved by getting the moment estimate (A.22) (with p=2) for
any two solutions YI.Y2 and then using the Lipschitz conditions and Remarx A .
The existence of a C([0.T.X) solution can be proved as follows lLet v be te
orthogonal projection onto the linear span of (wl ..... wn) (See (A 3) and le- v

be the solution to
(A.34) dY: = —ArnY2 + tnﬁ(t.Y’:)d't + rna(t.Y?)dt

Yg = 'nYO'

The existence (and uniqueness) of solution to (A.34) can be proved via
routine methods as it is essentially an equation for a finite dimensional
process. Again our Lipschitz conditions imply that EuY?-Y:uz —+ 0. Further
arguments as in Theorem 2.1 will yield that (Y?) is “tight” in C([0.T].%2) i

{Y,} is a weak-limit, it can be proved that Y is a mild solution to (A 4)




o

References

iamg. TS Aa.ianpur G and Sundar. P (1990) Propogation of chaos arcd
+he Wchean-V.asov equations in duals of nuclear spaces To appear in App.iec
Ma'Hemmtics and (ptisization

‘mwsor P ¥ (1497%) Stochastic evo.ution equations and reiated meas.ve
processes  WMu.civaria'e Amalysis O p 1-5N

Terter SN and kurtz T G (1) Markov processes characterisa’.or ars
(omvergernce ¥iiey New York

Funak: T (1983) Random wmotion of strings and re.a‘ed stochastic evo..io0f
eguations Nagoya Math ' 89 ([983) p 126-13

Piwaky T (1354) A certain class of diffusion processes associated vt
-of..inear parabo.ic equations Z Wahrsch = p 313

lscoe | Marcus N B Nclonaid O Taiagrard M and Zine | I
Tontinutty of ’2—\'32\1«1 Ornstein-ih.enbeck processes Arr Prolmd V (S

»  H5-64

Yor WM ix:istence e: unic.te de diff sions & va.eurs dans T estmce Oe <o et
Arir. ‘ns: Henr: Poincare BiT (.374) 55-66




250

25

R W

R

S

Technical Reports
Center for Stochastic Processes
Department of Statistics
University of North Carolina
Chapel Hill, NC 27599-3260

G. Kallianpur and R. Selukar, Estimation of Hilbert space valued parameters
hy the method of sieves, Ci.. §3.

G Kallianpur and R. Selukar, Parameter estimation in linear filtering,
Oct 89

P Bioomfield aid H L. Hurd, Periodic correlation in stratospheric ozone
time series. Oct. S§9

1 M Arderson. J Horowitz and L D Pitt. On the existence of local times:
a geomelric study. Jan. 90.

G lindgren and 1 Rychlik. Slepian models and regression approximations in
crossing arnd extreme value theory. Jan. 90

Koui. M-estimators in linear models with long range dependent errors,

H 1
Feb

B

H.rd o Almost periodically unitary stochastic processes, Feb. 90.
W7 leadhertter. On a basis for "Peaks over Threshold' modeling. Mar. 90.

S Tamtiimis ard I Masry. Trapezoidal stratified Monte Carlo integration,
LSRN

W Warg.es ard S Cambanis Dichotomies for certain product measures and
s ibhle processes. War U@

N Mae-:ma arsd ¥ Morita Trimmed sums of wmixing triangular arrays with
$°1°.0"m-y rows Wa- A

S amar s ad W Waeima (haracteriiations of one-sided linear
femcr:iory. (evy motions War O

Nl atd M Rae s Holder cortinuicy of sample paths of sowe
te {2 om x- scabe poocesses Wa- A

¥ Ne-, ¢ WM. - - he-tias spnces and thelis duals. War W

= Baecies W R eallwcer awd [ de Haa- Tail ard guartile estimatior

Prs w7t By g R o3ty seg e es Apr 4

b Rerters At 8 Txetar s Samep g des.gs foc estomating ittegtals of
L st - proresses Lt g Gandent - meas deciva‘iives Ap- ¥

S Racding=as . A~ » o1 mr° g ‘e ev'cema. weu for & clans of gcaciotas
[ et ) [ S a

Tt entw e ae v Bucces Tr cerccp. wm,.c twocy foc fam ey of
St ) R g mA e wet Fom ey Wy 2

¥y » ¥ ‘2 . s'e - w & “mmwmc v Roccecrcagn cg tw wmng e wmens o daca
I-owm geew-z €0 * % o Wgy 3




297.

298.

299.

302.

303.

S. Cambanis and C. Houdré, Stable noise: moving averages vs Fourier
transforms, May 90.

T.S. Chiang, G. Kallianpur and P. Sundar, Propagation of chaos and the
McKean-Vlasov equation in duals of nuclear spaces, May 90.

J.M.P. Albin, On the upper and lower classes for stationary Gaussian fields
on Abelian groups with a regularly varying entropy, June 90.

. M. Iizuka and Y. Ogura, Convergence of one-dimensional diffusion processes

to a jump process related to population genetics, June 90.

. G. Samorodnitsky, Integrability of stable processes, June 90.

C. Houdré, On the spectral SLLN and pointwise ergodic theorem in L%, July
90.

0. Kallenberg and R. Sztencel, Some dimension-free features of
vector-valued martingales, July 90.

. G. Kallianpur and R.L. Karandikar, Interacting Hilbert space valued

stochastic differential equations and propagation of chaos, July 90.




