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1. Introduction and notation. In a very interesting paper Funaki has studied a

class of Hilbert space valued stochastic differential equations (SDE's) in

connection with his investigations of random strings (Funaki [4]). The work of

the present paper is a continuation or extension of [4] in the sense that the

SDE's considered here may be regarded as an abstract model for interacting

random strings. We do not know of specific examples of interacting strings in

mechanics or physics to which our results apply. However, a possible

application which provided us with our original motivation, is to the

asymptotic behavior of voltage potentials of certain models of interacting

spatially extended neurons. This application is not considered here since it

is briefly discussed in the recent paper of Chiang et al. [1].

The propagation of chaos for interacting particle systems has been

investigated in recent years by several authors (see Funaki [5] and the

references given there). It is natural, in the context of the present paper,

to consider the extension of such results for interacting Hilbert space valued

SDE' s.

The general notation and plan of the paper are given below.

For a complete separable metric space E, #(E) stands for the family of

probability measures on the Borel sets of E equipped with the topology of weak

convergence. For any separable Banach space B, C([O.T],B) denotes the space of

B-valued continuous functions on [O,T] with norm 1x1A := sup llxtl[B. If H is a

O~t T
separable Hilbert space we write T := C([OT].H) whenever it is convenient to

do so.

We begin by considering an *-valued SDE whose bulution will be denoted by

X! (A........A ' ) where I is a Hilbert space which it is convenient to take
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as the N-fold direct sum of a basic Hilbert space H. This SDE is our

interacting system with mean field interaction. The precise form of the SDE

and the conditions on the coefficients will be given in Section 2. The

existence of a unique solution is a simple consequence of a result of

Dawson [2].

Our main concern is the study of the asymptotic behavior of the sequence

1 N
of empirical measures N X " 6 6 being the Dirac measure at x E 1.

The tightness of Po(XN") - 1 In @( ) is proved in Theorem 2.1 and the tightness

of Po(TN)- 1 in @(@( )) is derived as a consequence in Theorem 2.2.

As is to be expected, the propagation of chaos of rN in which we are

interested leads to an SDE of the McKean-Vlasov type. The martingale problem

for this SDE is introduced in Section 3. Uniqueness of the solution is proved

in Theorem 3.2. The final propagation of chaos result is established in

Section 4 (The,,rem 4.8).

Section 5 is devoted to what we believe to be a new type of result for

McKean-Vlasov SDE's. We assume that H = L 2(G) where C is a bounded domain in

dRd. In this case we are able to show that there is a propagation of chaos in

C(O,T].C(G)). (Theorems 5.3 and 5.4). There has been some recent interest in

obtaining continuous versions of processes which are solutions of H-valued

Ornstein-Uhlenbeck SDE's (e.g. see Iscoe et al. [6]). Theorem 5.4 referred to

above, is a similar strengthening of the corresponding propagation of chaos

result.

To obtain this stronger result in Snction 5 we have had to assume that the

Pigenvalue Xn of the operator A (which is throughout assumed to have a discrete
1+6

spectrum) satisfy the condition X n - (ccO, 0). This limiLatiun isn
needed also for the continuous versions obtained by Funaki for his equation
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[4]. With this restriction, Theorem 5.4 is applicable to the case when the

generator of the semigroup Tt (see Section 5) is given by a strongly elliptic

operator of order 2m. provided 2m > d. Unfortunately, the last condition

excludes the interesting case of the Laplacian in three dimensions. We

believe, however, that a different approach to the problem based on the use uf

the Galerkin approximation might yield more general results in this direction.

On the other hand, it is likely that such an approach would require the

enlargement of the Hilbert space to some space of distributions and bring the

results more in line with those of [1]. Our aim in this paper has been to

obtain our results in C([OT],H) itself and to see under what conditions

propagation of chaos takes place in the space of continuous functions

C([O,T~xG) when H is taken to be L2 (G).

2. Interactinz systems of H-valued SDE's and tightness of Fn .

Let H be a separable Hilbert space and let A be a self-adjoint,

non-negative operator on H with dense domain. Suppose that A satisfies

condition (A.1) in the appendix, hence in particular for some 0(1,

(2.1) A-0 is nuclear.

Let {k} be the eigenvalues of A and {#kj be the corresponding eigenvectors.
-tA

Then (0k) forms a CONS. Let Tt := e be the semigroup acting on H.
Let Wt ..... be N-independent cylindrical Brownian motions on H (defined

t'** t

on some complete probability space (0,9,P)).

Consider the following equation for an interacting system Xwithth

N-components 0 = (XN.lXN....N.

(2.2) N = ANid + bON)dWi + axN.i)dt + 1 N
t t t t NJ=l t t
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where b:[O,T~xH --- L(H), a:[O.T~xH -4 H and I:HxH --+ H are continuous mappings

which satisfy

(2.3) I1b(t~h)#kI 02.1

(2.4) I1a(t,h)II C2 .1(lhI)

(2.5) II(h 1 h2) 11 029 l(11h11 + 11h 211)

(2.6) I1b(t~hj),Ok-b(t~h2)kI C2 .2( 11hj-h211)

(2.7) I1a(t ,h1 )-a(t,h2)I C2 .2( 11hj-h2 11)

(2.8) III(h 1.hi) - I(h2 .hj)1I C2 .2{11h 1-h211 + 1hj-h~II}.

forsom costats 2.1' C2.2 and h~h1 ,h2 ,hj.h C H, t C [0,T].

Letting I denote N-fold direct sum of H. define

L((hl11.... hN0) = (Ahl,-. .A

It is easily checked that L satisfies the condition imposed in the Appendix.

W =(Wi,... .WN) becomes an *-valued cylindrical Brownian motion and (2.2) can

be written as

dXN = -LX'~dt + I3(tX')dWt + a(t,XN)dt

for appropriate 13,a. It can be checked that (3,a satisfy conditions

(A.5)-(A.8). Thus we have that (2.2) admits a unique mild solution, with paths

belonging to C(EO.T),I) (see Appendix). Let us recall that by a mild solution

to (2.2). we mean that
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(2.9) XN'i
t

T XN + foT b s.X )dW + t a(s )ds + I It I()ds.t- 0 0t-s s s o't-s s N ;ort-s s sJ=l

Here, XN 'i C C([O.T],H). The following estimate on moments can be proved

exactly as in Theorem A.3. Let

C2.3 
k=1

k=l 1 k

(C2.3 < 0 in view of (2.1)). "roceeding as in the proof of Theorem A.3, we can

show that for constants C X0" depending only on p. we get
p p

19C+1

EI0,,. ,, C;,EII o.Ip + cc E o(l+,,0.ip + I I,,(O.J,,)dsS p2 3 s N J=l

Summing over i, we get

N N N
EIXi' .2 C'EIIX IIIP + 2C"cY2 C I ESf(l+IIX"iIP)ds.i=l i=l p 0 p 2.1 2.3 i=I

We can justify the use of Gronwall's lemma as in the proof of Theorem A.3, and

thus get

N N
I (l+ElillP) Cexp{2C"C 1 C2 3 T} I (l+EIIilip).

i=1 i=0

So we get for a constant C2.4 (not depending on N)

N
(2.10) sup Elli p I C. +EIIXNi IIp + I I EI.

t T 2.4 0 N i=l 0

In particular, for p=2, we have

( 2 .1 0) ' ,1112 11 2 + 1 N 1 1
(20'Suap EllX _I 2  C''1{lEIX"' + I EI 1 2

1 T 2t 0 N 0t T i=l
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We will fix a sequence of initial r.v.'s (Xo . . . . . XO ' N ) for the

interacting system with N-components satisfying the following conditions:

(2.11) The law of . ... .N) is a symmetric measure on Hx...xH.

N

0212 N il 6 in 3 (H). in probability.
0N 1 X~

0

(2.13) There exists a constant . such that EIIXII 2  for all N.
C2.5 0 C2 .5

Our problem is to investigate the asymptotics of

I-N N
(2.14) N 1 N i x.

We will prove that rN converges in distribution to r E !(v) where r is

non-random.

We first prove

Theorem 2.1: Assume (2.1), (2.3)-(2.8) and (2.1l)-(2.13). Then Po(XI'1  1 is

tight (as elements of *(C)).

Proof: Let us write

XN'l - T XN0 + VN
t tO0 t

where

vN= foTt b(s,XN)dW + ft a(sl)ds + I N TJ I(XNlXN3)ds-- 0 -s s OTts sas NI f; oTtS s X~s'

Ot_ _J=l
vNI + VN,2 + VN.3, say.

t t t

First note that (2.11), (2.12) imply that Po(X0'I)-I converges in 9(H) to go

and hence' that Po(Xo'I )- 1 is tight. From this it follows that !t(TXl') is

tight in P(T) since hn --+ h in H implies Tt hn -- T h uniformly in t. By
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construction, VNl E T. Thus to verify tightness of (V!) in 9(*), it suffices
1

to prove (see Ethier-Kurtz. [3])

(2.15) For all e > 0. 0 t T. 3 K _ H. compact, such that

PV C K,t 1-a

(2.16) For 0(6(1. 3 r.v. ZN(6 ) such that O~t 6, Os T, s+t T

and

irl [sup EEzN(6 )] = 0.
610 N

Since A-r is a compact operator for all r>O, (2.15) will follow if we

prove that for some r>O

(2.17) EIIArVNII 2  0.6.

Then we can take K t = (h E H: llArhll2 1 * K is compact as A-r is

compact and (2.17) implies

P(VN C K) 6 -EIIA rVNII 2

S2.6

Now

(21)EIrVNlII 2 -Ef~tIIA rT 5 b(s.X0. 1)1HS ds

tr 2
;IIA Tt-slH. ds

C2.10 t- Hs

0t 2r -2k(t-s)
=C2.1 -lf 0 \ e ds

k=1

S2r -1
2.1 k=lk *(2\k)

C2.7
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1-6
and C2 . u < - if 1-2r > 0. So we fix r 1 3 .

Note that (2.1l)-(2.13) imply EliXo.JII2  C and hence in view of (2.10).

(2.19) sup E[IIX'iI2] t 2c2.4c2.5 := C2.8 .
t T

Proceeding as in (2.18). one can show that for i=2.3.

(2.20) EIAr 'i, 2  2.C2.8 .1"

(2.18) and (2.20) imply (2.17).

For (2.16). fix 0((1, Ot<6, Os~s+t T. Then

(2.21) EE[IIvN. 5 _vN,'1 I19N~]= E[J'Q slITt. b(r.X71 )-T ~b(rXN)l 11s)I. drIs

ts2 S2
C2- {ftslIT I. dr + f;1lT -T II dr

21s t+s-r H S 0t+s-r s-r H-S

C2 U(6)2 .Ia

where

6 0 T2Isda(6 Jollfrll H-sdr + sup ; llT t+ s -Tr1 . r

tO5

On the other hand

IIVN,_VII2112 t+s 1
(2.22) U [IT -T 1 11 u0  IIT-T *1 II

t+s s Tssr .r r.r )ildr}(2.2) "V t .- V~ss' 2 (6) ll t (, INr -  )ldsrlH.slar

Similarly

(2.23) ,,v.3N.3,,2 .1a(6)fT(1+1,XN, IIXNiJ112 ,)dr.
J=l

Putting together (2.21)-(2.23), we get that

E[IVlherVNll2Ig] E[UW 1(6) I1

where
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(2.24) U~( 6 ) 2. CG 1 (6)f(+I 1 'II r N . r )dr1N
• j=i

Now

EUN 1 (6) = 9C2.1 T(1+2C2 .8 )a(6) := C2 .9(6)

and thus to prove (2.16). it remains to show that c(6) --+ 0 as 6 --- 0. Now

J.flTrll2.sds -+ 0 as 6 -+ 0 follows from the fact that

O0
6 2 1'oIITrIIH-Sdr -k=l <

For the second term,

T 2 T -Xk(t+r) -kr 2
sup JoII t+r-T r1H-Sdr =sup f; I {e -e
t<5 t 6 k

(e -k"-1)2T e -krdr
k

I (e-_Xk6 -1)2 .1_

k 3;

--- 0

as 6 --+ 0 by the Dominated Convergence Theorem, as I <

This completes the proof of (2.16) and hence it follows that (X,' 1)--  is tight

in -0(T). 3

As a consequence we have

Theoiem 2.2: Assume (2.1), (2.3)-(2.8) and (2.1l)-(2.13). Then

P'(IN)- I is tight in (

Proof: For each e > 0. let k be a compact set in C such that
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E(X ~KC) 2.

Such a K exists as Po(X' 1 )-1 is tight in ('). Then

P(r-N(Kc) > e) &(Kc)

=1 1 fce N '
1=1

1 2

Let 1 = {A E I(e): A(K 2_m) 1-e2 -m V m l). Then IE is compact in 9Q() and

p(FN 2 P( N(Kc -m) > E2-r)
m=l e2

Y .2-m = c.
m=l

3. Martinizale problem for the McKean-Vlasov equation.

For pl *I2 C S(H). let M(J1IL 2 ) denote the class of probability measures X

on HxH with X(ExH) = 1il(E) and X(HxE) = 112 (E) for all Borel sets E in H. For

p>O. let p(H) := (1E 5$(H): fIIhIIPti(dh) < -). Let pp : Ip(H)Hx9() --( [Ow) be

defined by

(3.1) p 1U,2) = inf{ f Ihl-h21IX(dhldh
p VtY HxH 1 2 d 1dh2): X CE~ l';2)

p (H) is a metric space with the metric p p.P

Let I: HxI(H) --. H be defined by

(3.2) I(h.p) = fI(h.h')(dh').

Then using (2.8). we can deduce

(3.3) I1(hl. 1 l)-I(h2.- P2 )II C2 .2( IIhl-h 2 11 + pi(Pi.P2)1.



For a continuous flunction t tfrom [O~t] into -*1 (H), consider the equation

(3.4) dZ t= -AZ tdt + b(tZ t)dW t + a(t.Z t)dt + I(Z t 4t)dt

with EllZ 0 11 2 where b.a.I are assumed to satisfy (2.3)-(2.8). Then with :N=H.

L=-A. 13=b. a(t,h) = a(t.h) + I(h.IIt ), the conditions in the appendix. Thus we

have that the equation (3.4) has a unique solution (Z t) with Z.eC([O.T].H),

sup EIIZ t 11 2 < -. Further. the law of (Z.) is uniquely determined by

b,aI,(Ii t),Vz)

Let us note that if Z is a process with paths in C([O,T].H) with

sup EIll ( li <- for pM,. then t -.+ v (Z t) is continuous from
tCT

[0,T] --+ 1(H). This follows from

Pl~vs~ut EIZt-ZI 1

and Z s--+ Z tas s --+ t pointwise and 11Z S-z t 1 is uniformly integrable since

sup EliZ liUp < w
t T

Let us now consider the McKean-Vlasov equation

(3.5) dZt = -AZ tdt + b(t.Z t)dW t+ a(t.Z t)dt + (tVzt)d.

A process (Z t) is said to be a solution to (3.5) if Z. e C([O.T].H).

(3.6) t --+ V(Z t) is a continuous function from [O.T] -+!1H

and (Z t) is a solution to (3.4) with pt= V(Z d)

In the next section. we will prove that for any 11 E 9 2(H). there exists a

solution (Z t) to (3.5) with V(Zo) = gon. We will now prove uniqueness.

Theorem 3.1: Let Ep(H). Let (Z 1). (Z2 ) be solutions to the McKean-Vlasov
POE 2t t
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equation (3.5) with 2(Z;)=-2(ZO-) = go Then 2(Z.) = 2.(teeaemsus

on T = C([O.T],H)).

Proof: Let p= I (Z 1 2 = 2(Z2 Then we have

i37 ~ b i .i~d i
(3.7) dZ AZidt + b(t.Zt)dWt + a(t.Z)dt + I(Zt t)dtt t t

where WIw 2 are cylindrical Brownian motions. Take another probability space

with a cylindrical Brownian motion (Wt) and a.r.v. Z0 with I(Zo) = go' ZO

independent of (Wt). Let (Z t) be the solution to

' -i ,S i '- i j%,S i
(3.8) dZt = -AZtdt + b(t.Zt )dWt + a(t.Zt )dt + I(Z t tt)dt

'- i -
with ZO =ZO Since equation (3.7) admits a unique solution in law. it follows

that I(Z.) = 2(Z'). So to complete the proof, it suffices to prove Z* = i

a.s.. and since these are continuous processes, that EZ1 = Z,,1 = 0 for all t.

Now we have (see Appendix)

'sit - t 'i -i i
t =S to + f;St_sbtZt)dWt + SSta(t.Zt)dt + fSS I(Zt.J1t )dt

and hence, using (2.6). (2.7) and (3.3).

(3.9) EIIZl Z 1 2 3CfIIlsII'42EII22 21

No e ha L L 3 2 .2 0 t s H . S '4 l s = Z II 1 2p l( X i .ji i))d s .

1 i .2 11 2 1 ,2 i12
s s P2(fsts) s s

since f(Zs) = f(Zs) = / s . Thus

Since sup EIZ 1 < - ,TU 1.1 J'oI2ds < . Remark A.2 yields "_2i 2 0.
t T
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This completes the proof. D

Martingale problem.

For f CC 0 l ({), let U nt: H --+ R be defined by

(3.11) (Unf)(h) =fC(h, 1)..... Chn))

and let = (Unf: f C Co(IRn), n 1}. Let d be defined by
nn

(3.12) dt(Unf)(h ) := n (b( t,h) i),biht.h) )(Uf )(h)
iJ=l

n

+ I (at,h - x h,*i)Unfi)Ch)
i=1

where fi = ii fl _axjI Let

n

(3.13) f(Unf)(hl.h 2 ) = I (I(hl.h 2).*,i)fi(hl)
i=1

and

(3.14) #(Uf)(hlw) = fH$(Unf)(h 1 .h2 )p(dh2 )

for hl.h 2 C H, g C 1,(H). As noted in the Appendix, if (Zt) is a solution to

the McKean-Vlasov equation (3.5), then for all g C 9

g(zt) - fsg(Zs )ds - f;.g(Zs.gs)ds

is a martingale with ps = f(Zs). This leads us to the following definition.

Let (Z t) be the canonical process on I = C([O,T].H).Lt

A probability measure A on 1 is said to be a solution to the McKean-Vlasov

martingale problem if

(3.15) t --4AoZ I is continuous from [O.T] --# I(H).
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and

(3.16) g(Z d - f6S'5 (Z5 )ds - S;.g(Z5.AoZsi )ds

is a A-martingale for all g C I.

It follows from Theorem A.2 that A is a solution to the McKean-Vlasov

martingale problem if and only if A is the distribution of a solution to the

McKean-Vlasov equation (3.5). These remarks and Theorem 3.1 lead us to

Theorem 3.2. Let go C £2(H). Let A 1.A2 be solutions to the McKean-Vlasov

martingale problem with

1 -1 2 -1A l(Z 0 ) = A 2(Z 0 ) =0"

Then A =A2 .

Remark 3.1: We can choose a countable subset S0 C 9 s.t. (3.16) is a

martingale for all g C I0 implies the martingale property for all g C W.

Indeed, for each n. let En be a countable dense subset in C2ORn) and let

20 = {U nf: f C E n , n 1).

Let I(T) be the class of A C 3(1 ) such that (3.15) holds.

It is easy to see that for g E I0 (3.16) is a martingale under A C *(C)

if and only if

(3.17)

F(A) := S [g(Zt)-g(Zs) - fs'dug(Z u)du - JS g(Z uAOZu )du]gl(Zr ).. g m (Zrm )dA

is zero for all r1 r2 ... r mS~t, gl,....gm C ®0. m l. Also we can restrict

rI .... ,rm s.t to rationals.

Let I be the class of functionals F: I(Te) --* 5k defined by (3.17). for

g'gl . g ® C0 rl"... rm S t rationals. Then S is a countable class, and we

have
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Remark 3.2: A E P(T) is a solution to the McKean-Vlasov martingale problem if f

F(A) = 0 for all F C 5.

4. Propazation of chaos in C([0.T),H)

We return to the setup of Section 2. We assume conditions (2.3)-(2.8) and

(2.1l)-(2.13) throughout this section. Thus by Theorem 2.2, Po(FN') 1 is tight

(in ~((~. We need to identify the limit points of this sequence. Let us

fix a subsequence N' such that PO(N )l converges, i.e. r'" converges in

distribution to say r. F is a !0(1) valued random variable.

We will show that r' = A 0as where A 0 is the unique solution to the

McKean-Vlasov martingale problem with A 0 OZ 0  p j' . This will prove that

Po~"N-'converges in to (6) t

For A e let

(4.1) d(A) :1t1 T dt.

Now

4 (FrN)E T NIX.11
0d NJ ! Ilidt
0i=1

(see (2.19)) and hence by Fatou's lemma, Ed(r) TO2 .8. In particular.

d(r) < w a.s.

Fix F C I defined by (3.17). Then

(4.2) F(A) =ffG(z.,z:)dA(Z.)dA(z:)

where

(4.3) G(Z,.Z:) =: [g(z )-g(Z).fd g(Z )du - $g(Z .Z')du]-
.4 .4. .4 .4 s

1lZ )2Z 2 .. m.Z
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Thus G is a continuous function on Txe and further

(4.4) IGc(z..Z')I CF{l + JO 11 u 11du + j 0 ,,Zdu}

where CF is a constant depending on F and C2 1. Thus F(A) can be defined by

(4.2) for all A with d(A) ( w. In particular, F(r) is well defined.

Lemma 4.1: E[IF(rN')I - E[ IF(r) I

Proof: For k l, let

(4.5) Fk(A) :- f (CGv(-k))̂  kdAdA.

Then Fk is a bounded continuous function on 9C() and hence Fk(FN') -- Fk(0) in

distribution and IFk(A)j I k. Thus

(4.6) E[ IFk(r') I] --* E[IFk(r) I] .

Moreover,

(4.7) ElFk( ')-F(rN')l EfIC.l{Icl>k}drdI'

1 IGI2 drN'dFN

E(

S . 3 (1+2TC2 .8 )"

Similarly

(4.8) EIFk(r) - F(r) j E (

k 3C4(l+TC2 ..).

The familiar a/3 argument and (4.6), (4.7) and (4.8) yield the result. 0

Lemma 4.2: E[F2 (1N)] --. 0.
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Proof: Note that
1N

(4.9) F(r) I N LgX"A)-gcA )-A 8 g(O")ds
i=1

- t N .g(XNIX7J)dsgl(X. gm(X" ' i)
J=l 1 m

By considering the martingale problem corresponding to the system of equations

(2.9) (as in the Appendix), we can deduce that

M x : g i ) -g( ") - ftdg(XN")ds - ft 1 N gX,X J)ds

J=1

is a martingale, for itJ, MtM are orthogonal martingales (i.e. MiMj is a

martingale) and

ni. CMnfk =Xs tt n~f 'i CXs i)C-sXs )b~- .Xs )ds

<MiM>= f; I (U f )1TcN )(U f )(ON)(b*(s.XN',~,X).d
t' t k~ 0 n s n j s s k s

where g = Uf f - f Thus

(4.10) E[(iM (M e- me) 0 ixe

and

(4.11) E(Mi - Mi)2- s )  C4.2T

where C4.2 is a constant depending on F and C2.1- Thus
1 C4.2 T  .

EF~(cr N ) NC42 -. o

Together, these Lemmas yield

Theorem 4.3: F(r) = 0 V F C 5. a.s.

Proof: Note that
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{EIF(r)I} 2 = lir {EIF(I'N)I}2 lir EE 2 (')] = 0.
N' N,

Hence F(F) = 0 a.s. Since £ is a countable class, the result follows. 03

We now need to show that r 4 O(T) a.s., i.e. vt := F o (Zr) belongs to

C([O,T],!I{H)) a.s. Then we can invoke Remark 3.2 to conclude r = A0 . Let

N N.. rN~-l -1 We fisNhwt~ N -lI,.,,t := r -d 1l . We first show that Po(vN) is tight in
i=l

t

5(C[O,T],9$LCH})) . The following lemma will be used in the proof.

Lemma 4.4:

(4.12) II(T s-I)hII II(T t-I)hII V s t, h C H.

(4.13) lim sup E[II(Tt-I)Xo' 1II] = 0.
t-eO N

Proof:

2 X"ks 2 2II(Ts-I)hII = 2 (e- -1) (k.h)
k=l

CO "kt-2 )2
= (e 1) (*k.h)
k=1

2
= II(Tt-I)hII

Since Po(XN'I) --+0 in -(H), we can assume without loss of generality that

X --O .  a.s., with PO(X)1  =g. Moreover, EI10- l2  C2.5 implies

(4.14) EIIX. 1 - X11 --. 0.
0 0

Since II(Tt-I)II 2, we get from (4.14)

(4.15) sup EII(T -I)(XN'-XI)II EIIX 1-X1II -+0.
t 0 00 0
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Given 0)O, let No be s.t. for N NQ, L.H.S. in (4.15) is e/2. Since for each

N, EII(T -I)XN-1 II -.+0 as t 1 0, choose tN > 0 s.t. t~tN implies

EII(Tt-I)AQ "II a. Also let t 0O be s.t. t~t0 implies EII(Tk-I)X111 e/2. Now

for t t : min(toltil.....t N 0), we have

sup EII(T -I)XN-'1 li F-
N 0

To show the required tightness in the next result we will use the fact

that if K Is a compact set in #(H). then for all C < -,

K = K nfl gj 4E #1 (H) fI1hiI 2 (dh) C1

is a compact subset in 9s,(H).

Theorem 4.5: P o0( N -l1 is tight in #C[,]1())

Proof: We already know that Po(v N)-1 is tight in #(H). Moreover
t

E~f Ifihlt v (dh)} = E I1 11 _ii1N i
t ~ ~ N I 01t2.8'

Thus, using the commnent made just before the statement of the theorem, for 0>O,

we can find a compact set K a.tin #H)s.t.

P(tN E K ) l-6.

In what follows we use the notation of Section 2. For 0 s T. 0 t 6, s+t T,

from (2.2l)-(2.23) we have

(4.16) E[rIIXNl - XN.lii g~j EliITt+ XNl"-T 0"11 19N] + t[1N V111N

E[U"'(6) I 9N]
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where

iiN, j I,+ CI'TI'XX'JI1 N lie. T 1N2

(4.17) (6)- =IIT - u 0 2 . 1 [o6)] 0 oIr' N I r )dr.

Now using Lemma 4.4, (2.19) and a(6) --* 0 as 6 --+ 0. we get

(4.18) sup EP '(6) -*0 as 6 -*o.
N

Moreover, pl(Ut+s,s) 11  - xNJ so that

J=l

N 1NIN N 5+t5_OJl INEEPI(V t+s'V s  N I [ s"
J=l

wreU()= - .uN'J(6). Sic-U'(5 i6 by symmnetry, (4.18)

NN

J=l

implies
sup E(UN(6 )) -* as 6 -- 0.

N

This completes the proof of the theorem. (see Ethier-Kurtz, [3]). 0

We are now in a position to prove

Theorem 4.6: r E 0(6) a.s.

Proof: Recall that 1.
N ' converges in distribution to F. Now by Theorem 4.5

Po(vN' )- I is tight in O(C[*,T],OI(H))) and hence for s subsequence (N- of

Po(u N")- I converges in !(C([O.T].f1(H))).
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Thus

pO(FN,vN)l converges in 9(9(')xC([O,T],#I(H)))

to say. Po(,;)-. Since NoZ d it follows that N"(Z) 1
St t

Thus

t -+ ro(zt) is continuous from [OT] to 9 ICH) .

i.e. F C #). Since s(r) = 2(r), we conclude that

r C sCT). o

Theorem 4.8: (a). Let l0 E #2(H). Then there exists a unique solution A0 to

the McKean-Vlasov martingale problem with A0 o (70 )-
I = .

(b) rN --+ A0  in probability (as a #(9)-valued r.v.).

Proof: Theorems 4.3 and 4.7 imply that if F is any subsequential limit of

("N). then r c #(V) a.s. and

F(F) = 0 V F C 9 a.s.

Thus r is a solution to the McKean-Vlasov martingale problem with Fo(Z-o)-l= UO .

This shows existence of A0 as in (a). Uniqueness of A0 follows from Theorem

3.2. So now we get r = A0 a.s. Thus. all subsequential limits of (FN } are

equal to A0 . Since {FN) is tight, this gives pO(1FN)
-l -- 6A in ( and

hence -N -- A0 in probability. 0

5. Propazation of chaos in C([O.T];C(G)).

Let us now assume that H = L2(C). where G is a bounded region in Rd. Suppose

further that the semigroup (T t) generated by -A satisfies the following

additional conditions:
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Tt is an integral operator given by a symmetric kernel p(t,xy):

(5.1) Ttg(x) = tGP(t>xOy)g(y)dy, 00.

We put Tog(x) a g(x). for g C L2 (G).

(5.2) Ttg(x) is jointly continuous in (t.x) for g C C(G)

(5.3) lpktx,y)Il C5.1 t - 6  for 0<6<1

(5.4) I - -p(tx.y)l C5.2 t-exp(-Cs.3 Y-Xj t-r), t>o
oy

with a-r/ < 1 for each i

(5.5) f Ip(t.x.y)ldy C5.3 for tO.

Under these conditions on (A.Tt). we will show that the XNti(x) admit

versions in C([O.T].C(G)) and that rN, defined in Section 2 converges in

probability as random elements in O(C([O.T].C(G))) and as a consequence,

Ao(C([O.T].C(G))) = 1

provided po(C(G)) = 1. We begin with a lemma:

Lemma 5.1: There exist constants C5.4 . 61>0. 62>0 (depending only on A) such

that for O<tI t2. X1 .x2 C G

(5.6)f t 2 {2P(tl-S.X l ' y ) I s f t -P(t2-sx2.y)}2dyds ' 1.4.lt2-t.6 I x 2 - x l16 2

Prof: From p(s.x.y) = p(s.y.x) and the semigroup property one gets

(5.7) fG p(u.x.y)p(v x.y)dy = p(u+v.x.x).
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Using this, the L.H.S. in (5.6) equals

(5.8) f0 {p(2tl-2sXl,Xl)l (stl)+p(2t2-2s x2,x2)-2p(t2+tl-2s.xl xr)l(tl) .

By changing variables using substitutions t1-s = r, t2-s = r and
t2 1
2 - s = r, respectively in the three terms, (5.8) equals

t1  t2  (t2+t1 )/2
fO p(2r,xl.xl)dr + So p(2r,x2 x2 )dr - 2f(t2 t)/2 p(2rx 1 x2 )dr

I 11 2

where

Ij= fO p(2r,x .xj)dr - 2f(t2+t1 )/2 (2r,xl.X2)dr.

Let us write I I 111 + 112 + 1 13. where

(t2-tl)/2
11 = 2O  p(2r,xlx 2 )dr

(t+t)/2

12 = t p(2r xl 'x2 )dr

t 
1

13 = 0p(2r xlX) - p(2rxlx 2 )Idr.

From the inequality (5.3). it follows that

(5.9) Ill + 112 C5.51t 2 -tl 11 - 6

Now using (5.4) and e-x  x- q for q>O, we have

(5.10) Ip(2r.x ,x2 )-p(2,x,.xl)I = 11 (x2 xl)Vyp(2r.xlxl+U(xjXl))duI

05 2 Ix2-x1 Iet-xp(-C5 3u 1x-xx I.t - }
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C5 .2 lx2-xll IC 5 .3 lx2-x1 j13t -q-

C5 2Cq5. 31x2-x11 1-i3q -tq

d
In (5.10) v yis the gradient and the dot stands for the scalar product in M~

Since a=1-<1 we can choose qsuch that 6 =1-q >O0anda--qr(<1.Thnw
131

have

(5.11) 1 13 C5 .6 1Y2-x-111

Putting together (5.9). 5.11) we get (5.6).0

Lemma~ 5.2: Let f: [0,T]x2 --+ L(HH) be a measurable (5 w)-adapted process such

that

(5.12) "1"L(H.H) C5.7 . (H =L (G)).

Let Wn = W i and let
t t n

n=l 1

Tef (x) is a version of the L 2(G)-valued process t7-T fd

Prof: Since {WI1: n 1} is a family of independent Wiener processes, the

convergence of series appearing in (5.12) follows from

E I~fsP(t-s*x ~p)ds- Ef~Ilf~p(t-s.x..)II2 (,ds
n= 1o) L (

5
)11 2 ds

C5.f~tlp~-s~'-L 2(G)

-C 5 .7 f; p(2t-2s.x.x)ds < ~
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Moreover for h=h(x) E L 2(G). we have

(5.14) fft(x)h(x)dx = f[f(fP(t-s.x.').S)h(x)dx]dW' n
n=-- s

= ; f0(fTtsh. n)dWn
n=

= f0(f s T t -s h.dWs )

(h.ftT sdWs)
0 t-ss

Since (5.14) holds for all h C L2(G). it follows that t(x) is a version of t

at0

We are now in a position to prove

Theorem 5.3: Suppose that (2.1), (2.3)-(2.8). (2.1l)-(2.13). (5.I)-(5 )ho~d

Further, suppose that

(5.15) XC() C C(G). Il Q n

and for some p~l. such that p6I > 2(1+e). p62 > 2(l+e) with e>O (where 6. 62

are as In (5.6)).

EIIX l lp C .  N4I.

Then. the processes XNi admit versions X such that
t

C C([O.T].C(G)) E C([O.T]xG).

Pipf: Note that in view of Theorem A. there exists a constant C-) depe:,d,.-

on C2.1 and C5. 8 such that

(5.16) EIIXN p - 9



for all t4E[O.T). if)!. Now write

NI(x) = yN* (X) + yN242(x) +*N3x *4x

where

YN1 X)= fp~t-x-y)0X, 1 (y)dy

yN.2W =(f T ~s.N' ), )(x)

(the version given by Lem 5.2).

yN.3(W = (f tT a(s. x1 m.')ds)(x)

= f~,p(t-s.x.y)a(s.X4 1 )(y)dyds

and

'44 N t.. ~ J .
S(X) I ~ fwp(t-S.x.y)I(A.X)(y)dyds.

Fot t ~t 2 .'~ Ex C . we have

(5 47) E IyN 2( 2yl 2(x)Ip
2 1

C Elf t2~b 'm.1 1 d p
p 0 O (s. ,sV Pt-'2--~ls'l-'St1

Or. !he other hwa

2 (
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El I' ct, .y)b s,x"~ )cy)-pct s, .y)bC,.O' )Cy) l )dyd, l
t2 pt2SX (Stl C 2dsdy t

E[fO fG(P(t 2
- s ' x2

' y) - p (t l - s ' x l ' y)l ) }ds fOd

6 6 t
E[C5 .4( t2 -tll I1+1x2-xl 

2 _fOl(I+IIX .11 2 )ds)P/ 2

C /2. tI 2+ t2 EIX'lp

pC c.c4{t 2 -tl l+'+lx 2-x Il fO( +EIxs' lP)ds

%. il(l[t2-tl {1l+F+ IXxl +e).

Similarly

Here C5. 10 .C5 . 1 1 ,C5 .12 do not depend on N. In view of (5.17), (5.18) and

(5.19). it follows from a well-known result (see [4]) that YN'j(x) admit

versions WJ(x). J=2.3.4. such that

i.'J(-) C C([O.T]xG;) -- C([OT],C(G)).

In view of (5.2). Y!"(.) E C([O.T]xG). Hence it follows that XN'I() admits a

version C() C C([O.T],C(G)). Similarly, we can construct versions ; NJ of

xNi. 1=1.2. N.

Let 0 N . We regard iv as a random element of

f('([O.T].C(G))). Since . is a version of X. it follows that is a

version of T1. We will now show that the sequence P, converges in probability

in C([O.T].C(C)).

Theorem 5.4: Suppose that the conditions of Theorem 5.3 are satisfied. Further

assume that

(5.20) P°(X0'I- po in CG)
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Then we have the following conclusions:

(i) Po(X 1')- I is tight in 3(C([OT],C(G)));

(ii) Po(N)-1 is tight in !(9(C([O.T.C(G))));

(iii) If A,. is the imique solution to the NcKean-Vlasov martingale problem with
Aoo - 1 = g. and A0 is its restriction to C([O.T],C(G)). then .-A in

probability in !(C([O,T].C(G))).

Proof: The estimates (5.17). (5.18) and (5.19) imply that Po (N'J) -l are tight

in §(C([O.T].C(G)) for J=2,3,4.

From (5.5), it follows that If gn - go in C(G) (uniformly) then

(Ttgn)(x) --+ (Ttgo)(x) uniformly in (tx) C [O.T]xG. This observation and

(5.20) imply that

po( )-I converges in 9(C([O,T].C(G)))

and hence Po( '1 )- is tight in !(C[O,T],C(G)) where

N,I_= N.1 + N?.2 + V,.3 + 4.

This proves (I). (ii) follows from (I). The proof is the same as that of

Theorem 2.2. We only have to replace It by C([O,T].C(G)). Now.

P(IN) - l = Po(iV) -1 converges in f(T) (Section 4). Moreover.

C([OT].C(G)) S C([OT].L2(G)) = V and Po(i?) -1 is tight in *(C([O.T].C(G))).

Hence it follows that Po(iL)- converges in 3(C[O.T],C(G)) to say AO. Then A0

is the restriction of A0 to C([O,Tj,C(G)). This proves (5.21). 0

Appendix

Let I be a separable, real Hilbert space with inner product (-..) and norm

1I*1I. Let L be a self-adjoint, non-negative operator on ; with dense domain

and such that L has a discrete spectrum (pn) with
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(A.1) pn cn1+6  (c>O, 6>0).

We denote the eigenfunctions of L by {4in) and the semigroup of which -L is

the generator by S . Note that for 9 > 1/1+6 we have

m

(A.2) 7 < ...
n=1 n

a fact that will be used often in what follows. Note that we also have

(A.3) st% = ePkt

Let (Wt ) be a cylindrical Brownian motion on H. (defined on some complete

probability space (,.S.P).

Consider the SDE

(A.4) dYt = -LYtdt + 0(t.Yt)dVt + a(t.Y )dt.

where fi: [O.T] x --+ L(2.2). a:[O.T]xg - 2 are continuous functions satisfying

conditions as in Dawson [2].

(A.5) ll10*(t'h) kll CAA

(A.6) IIa(th)II CA.l(+IIhII)

(A.7) 11( 3 (t.h,)- (t.h 2 ))*k l CA. 211hl-h 2 1

(A.8) lia(t.hl) - a(t.h2 )I CA.2hl-h 2 I

for constants CA. CA. 2 and for all k~l, h.h,.h2 E 1. Ot T. P* denote. the

adjoint of P and L(2.X) is the space of continuous linear operators from I to

Under these conditions. (A.4) can not be interpreted as
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Yt = Y o JO LY sds + f ,O(sYs)dWs + f~a(s.Ys)ds

as the stochastic integral f p(s.Ys)dWs may not be defined and a priori. Y may

not belong to the domain of L. Instead. (A.4) Is to be interpreted as

(A-90 Yt S tY 0 + f;St 1 (s.Y )dW 5+ fSt~a(b.y s)ds.

Since

(A. 10) Ef 2SI3t.Y2I ds

= Ef; Y 1113(sY 2 Sts 0d

W - 2 ( t -s)Pp 2

0k=1

C (I-e2t
CA-1 k=1 pl

in view of (A.2). the stochastic integral appearing in (A.9) is weil defined.

11-11 H.S appearing above is Hilbert-Scheidt norm.

Definition A measurable process (Y t) is said to be a mad~ solution to (A.4)

if

fT 11Y~tI1 2 dt < - as.

and if (A.9) is satisfied for all t.

The following result is due to Dawson [2].

Theorm .i l: Let E11Y 011
2 <( and Y0be independent of (t).Then (A.4) admits

a unique (up to P-null sets) mild solution (Y t) in the class of measurable

processes satisfying



31

(A.11) sup EIIYt 112 <
t T

Further (Y t) can be chosen to have paths in C([O.T],;). See Remark A.3 below

for an outline of the proof of Theorem A.I.

It iq P-izy to see that (Yt) satisfies (A.9) iff

Y (Yt'4k) satisfy for k 1
tk

k ePkt k t -Pk(t-s) w ( -Pk(t -s)(A.12) = e Y6 + )13 (s kdWs) + fJe (a(s.Ys).,k)ds.

An elementary computation shows that (A.12) is equivalent to

(A.13) d9k = YPkdt + (ew(t.Yt)*k.dWt) + (a(t.Yt).*k)dt.
k

Thus. it follows that (Y ) is a mild solution to (A.4) iff Y k (Y

satisfy (A.13) for k~l.

Nartinaale Problem correspondtno to (A.4).

For f C C-O(tn). let Unf:H -o be defined by

(A.14) (Unf)(h) n f((hj 1). (hi)).

For f C(Rn). we write f := f  f f

Let I = (Unf: f C Co(n). n 1) and let

(A. 15) et (U nf)(h)

1n n

:= i (t,h) iP'(t~h)\ )(U n f ij )(h )+ i I (a(t.h)-pih .i)(Unfi)(h).
ij=l i=l

If (Yt) is a mild solution to (A.4) then (A 13) is satisfied, and hence for all

g C,
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t

(A.16) g(Yt - f0(Isg)(Ys)ds

is a martingale, and hence P := Poy-I is a solution to the (If )-martingale

problem on Q C([O.T].1). This means the following. Let (f t) denote the

canonical process on 0 V Theii

(A.17) g(E ) - f$(Isg)(fs)ds

is a Pl-martingale. We have the following converse to this observation.

Theorem A.2: Let PI be a solution to the (It )-martingale problem

(P 1 E I(C([O,T].))). Then PI is a 'weak solution' to (A.4), i.e. P is the

distribution of a mild solution to (A.4) on some probability space.

Prof: Using (A.16) for g = Unf for f C C2 (IRn) . it follows using standard

arguments that

(A.18) Mt := (ft.4'k)-CEo. k)-o Ss-..*k)dt

is a local martingale, with continuous paths and

(A.19) <14= JO(j(s> s)t k*3(s.f )*)ds-

As a consequence.

(A.20) E sup IMkI 2  (CA. 1 )2 T

and (Kt) is a square-integrable martingale. Let

k -P k.t= Pk

Then using (A.20) and (A.2). one has
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nk 2
Esup I 1 N t'pII --+ 0 as n,m-e.
t T k=m

kHence N = kNt4 k is an *-valued martingale with continuous paths. Since

Nt.N > =t -A --%, )d<N N > opk pj (P (S.fs),Pk .p (sf))ds=sJ

= f((s.fs)A k.P (s.fs)A-Pij)ds

it follows that

NN)t  t G oG ds

where Cs (w) = A -(s.s(S)).

Using arguments as in the proof of Theorem IV.3.5 in Yor [7], one can conclude

that there exists a *-valued cylindrical Brownian motion (Bt) (perhaps on an

enlarged probability space) independent of f0 such that

Nt = JoGsdBs

so thatpN-k = tS, * )*k.dBs) . Hence,
so that Nf(Gsqkk'dBs) (s..=

t = fo(jt(sN)s)kdBs) " This and (A.18) imply that (ft) is a solution to

(A.13) and hence a mild solution to (A.4).

We will discuss later the question of uniqueness of solution to the

martingale problem. We first obtain an estimate on moments. Note that in

(A. 10) we have essentially proved

T 2 k
(A.21) fO StlH-s dt = L (1-e

k=l Pk

Theorem A.3: Let (Yt) be a mild solution to (A.4) with Y.E C([O.T].1). Then

for p 2
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(A.22) sup EIIYt lip CA.5{I+EIIYoII}
t T

where CA. 5 depends only on CA.I.CA.4 and p.

Proof: First note that

(A.23) IIStYo0 IIY0 11.

Next.

EIlf S 13(s.Y )dWliIp CA6 EJoIStSP(s Y Hds]

and hence

(A.24) Ellft-s3(S.Ys)dWs lIp  C."C. IC

as seen in (A.10). For the dt integral term one has

( CA. 7)P2 . if l+Y l~ ls ll)s.

If we knew a priori that the L.H.S. in (A.22) is finite, we could combine

(A.23). (A,24). (A.25). take expectations and complete the proof using

Cronwall's inequality. To overcom this difficulty we proceed as follows. Let
I T

(A.25) 11f; S a(sY) = Cll . 11 tsup 1 ,Y (., )id

where C is chosen s( that f~kdP=l andl let dPk 2 gkdP. Let denote fdPk

Since Kl. it follows that E.k(f) E(f) for f 0 and hence (A 24) holds .i.

E replaced by Ek. Taking expectation in (A 23). (A.) with respect to Pk

using Cronw all lei we pet
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(A.20) sup EkIYtu P C +A.5*E,:klIYoIIP}.
t< T

Since gk- . (A.22) follows from (A.26) by dominated convergence. 0

Remark A.I. Note that the result proved above gives a proof of the fact that

any solution Y.EC([O.T],X) of (A.4) must satisfy (A.lI)I

Lemm AA: Let f E L([O.T]) and f 2 0.

(i) Suppose g.6 are nonnegative, bounded, measurable functions on [O.TJ sl.ch

that

(A-27) g(t) fof(t-s'{g(s) + 6(s)}ds. t E [O.T].

Then. there exists a finite measure u on [O.T] depending only on f. such tha

sup g(t) .ft 6(u)IA(du)
t T 0/

(ii) Suppose gn.6 are sequences of bounded measurable functions such th.a"

gn(t) fof(t-s)(gn(s) * 6n(s))ds. nl. t([.T]

Further. suppose 6n (s) I C and 6n (s) - 0 as n ,, Vs Then

sup g (t) -. 0 as n --
t<T

W() Without loss of genera lity. we can assx that g is 4nreas:t-

Now. repeatedly using the ireq ality (A 27) we get

g(t) Ioflt-t l(glt )46lt l)dt.

0~ 1' 1't1

'I ~ - 6 t ) t ft f t t ) ( K
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It follows that for any integer kl.

(A 28) g(T) aI +.+ k * g(T).

where

T T f(s) f(sk)6(T-Iksi)l ds ds
(A029) = O I " (,Ts T) I k

and bk is defined similarly with 6 1. Now

k= f 6(u)pk(du)

where 4 E *([O.T]) is defined for B C !([O.T]) by

T (BT is ) 1 f(s .l
uk(B )  -- fO 0 B..... 1 k

Note. bk j- ([O.T]) Now
%(OT fT .jTI f~ S)dSI ..ds,

k o~)) TT )ds
J*. O(Tks T) (si)f(sk .

ikT
exp(aT) U f 0exp(-as I)f(s 1 )ds t.

Choosing a>O such that foexp(-as)f(s)ds %. we get

0k

tk = jAk([O.T]) exp(aT)(%)
k

]'-us bk -. 0 Moreover. since Xk=ljAk(O.T]) < - and thus

p(B) := _:=ljk(O)

defines a finite measure on [O.T]. Now

g(T) a  = aI a f6(U)jk(dU) = fb(u)p(du).
1=1 :
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This .roves (i). (ii) is an easy consequence of (i). 0

Remark A.2: It follows from the preceding lemma chat if g is bounded

nonnegative and measurable. f is nonnegative and integrable on [O.T] and

g(t) f(t-s)g(s)ds. O~t T

then g(t) E 0.

Theorem A.5: Let p0 E #2( ')  Then there Is a unique solution to the ((et),pO)

martingale problem on C([OT],*).

Proof: In view of Theorem A.2, A.3 it suffices to prove that if (Yt) is a mild

solution to (A.4) with PoYo =pO , then the law of (Yt) is uniquely determined.

Let (Y t) be a mild solution.

Let A = {O=t 0 <t1 (... <t=T} be a partition of [OT] with

JAI = max It -t 1 . For tE[O.T]. A(t) := tt if t t<tt+ 1  Let be

defined as follows: for t0 tit1.

Y t = StYo f S t - s (sYO)dWs + foSt_sa(s.Yo)ds.
It folo+ t0a S 0

It foli:ws that (Y O~tt } is a functicnal of (Yo,(W.)}. Then for tl<t~t2

t+I t - tYt = Y t I+StYo-S tI0+f 1s t-s (sY tI)dW s + ft S tsa(s Y t)ds.

It again follows that {Y : t1 <tt 2 } is a functional of {Y .Yt I(W.)} and hence
1

that of (YO'(W)}.

Having defined (Yt: O<t t}' define (Yt: tl<t tt+l} by

a, at -t

Y t =YtI+StYo_St iY 0 + t iS t-s P(s, t t)dW s +0tS asY t )ds.

It = + foSllws ta (dW + fost  (sbl .ti

It then follows that {Yt O~t T)=F(Yo.(W.)) for a suitable functional F. and as
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a result, the law of (Y) is uniquely determined. Now. Y satisfies

~At t YA+slsdS t

(A 30) it = StYo + foSt-s(s' A(s) fStsa(s.Y A(s))ds -

Proceeding as in Theorem A.3, it can be shown that

(A-31) sup EIIYtlI2 CA.E(+IIYoII2 ) : CA. 9 .
t T

Using Lipschitz conditions (A.7). (A.8) on a.0 we can conclude that

2 t 2 2
E1IY C-Y t 11  2f0 IS ts 11 H sCA. 2EIIYs-YA(s) 112 d s

2CA.24 IIS0 t - s l  HS{EIIYs - Ys I1 + EIIs -YA(s)ll2}ds"

iet s= Ell -A(s) 112. We will show tnat if we take A n such that IA nI - ,

then 6 A (s) --- 0 This along with (A.31) and Lemma A.4 implies, (writing
n

(A 32) sup EIIY - II2 _ 0.
t T t

It will then follow that the finite dimensional distributions of (Y.) converge

o (and thus determine) the corresponding finite dimensional distributions of

-.)

Fix t.A and let r=A(t). Again we write Y = Y . Then

2 ~2 t 2C2 aC
EIIY -Y I2 3{EII(S -I)Sr Yo + fr Sl 2 . c)ds

t r t-r r 0 r t-s H .S A.1 aA.4)d

and hence

k 6) 6A( t )  3{40AIIISu112sdu + ElI(SA)-I)Yoll2} "

Nov-if 1A -'0. f1 IIll .H sdu -- 0 and since

n(St.o2 2

1!( t- n~)- )y 112 211Y 0112
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and

lim 1( ( --_ 0 a s.
nn

the dominated convergence theorem implies that the second term on the R H "

(A.33) goes to zero. Hence

6A (t) - 0 for each t
n

This completes the proof.

Rema:k A.3: Uniqueness of mild solution to (A 4). in the class of as, ab.e

processes can be proved by getting the moment estimte (A 22) (with p=2) for

any two solutions Yl.Y 2 and then using the Lipschitz conditions and Rewirk "

The existence of a C([O.T.l*) solution can be proved as follows Let Vn be r ie

orthogonal projection onto the linear span of S.....n See (A 3) and .e"

be the solution to

(A.34) dy = -Air Yn + u13(t.9')dV +v t.nd
t n t n tt n t

ynO= VnY0
0- nO0

The existence (and uniqueness) of solution to (A.34) can be proved via

routine methods as it is essentially an equation for a finite dimensional

process. Again our Lipschitz conditions imply that EIIyn-yul 2 -. 0 Further
t t

arguments as in Theorem 2.1 will yield that {yn} is -tight- in C([O.T>.l) :f

{Y.} is a weak-limit, it can be proved that Y is a mild solution to (A 4)
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