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ABSTRACT

This is the second part of a study which deals with the problem of

passive time delay estimation. The focus here is on systems employing

wideband signals and/or arrays of very widely separated receivers. A

modified (improved) version of the Ziv-Zakai lower bound (ZZLB) is used to

analyze the effect of additive noise and signal ambiguities on the attainable

mean square estimation errors. When the lower bound is plotted as a function

of signal-to-noise ratio (SNR) one observes two distinct threshold phenomena

dividing the SNR domain into three disjointed segments: at high SNR the

lower bound coincides with the Cramer-Rao lower bound (CRLB). This is the

ambiguity-free mode of operation where differential delay estimation is

subject only to local errors. At moderate SNR (between the two thresholds),

the lower bound exceeds the CRLB by a factor of 12( 0/W)2 where and0

W are, respectively, the center frequency and signal bandwidth. In this

region the ambiguities in the received signal phases cannot be resolved,

however a useful estimate of the differential delay can still be obtained

using the received signal envelopes. At low SNR, the lower bound approaches

a constant level depending only on the variance of the a-priori search domain

of the unknown delay parameter. In this region signal observations are

subject to envelope ambiguities as well, thus essentially useless for the

delay estimation.



I. INTRODUCTION

A. Ambiguity Phenomena in Time Delay Estimation

Estimation of the time difference of arrival of a noise-like random

signal observed at two or more spatially separated receivers is a problem of

considerable practical interest in many disciplines such as underwater

acoustics, geophysics and radio astronomy, to mention a few. Consequently,

numerous procedures have been proposed for passive time-delay estimation (e.g.

[i]-[7j). In most of the systems which have been analyzed the Cramer-Rao

inequality has been used to set a lower bound on the attainable mean square

estimation errors. Its use was justified by invoking a well known theorem in

statistics asserting that the maximum likelihood (ML) estimator is

asymptotically unbiased and that its error variance approaches the Cramer-Rao

lower bound (CRLB) arbitrarily close for sufficiently long observation times.

There remains the question: How long is "long enough"? Clearly, the

observation time T must be large compared with the correlation time (inverse

bandwidth) of signal and noise (WT/2w >> 1), a condition which presents very

little difficulty in practice. However, if one examines the problem more

closely, one finds a second condition: the ML estimator (which approaches the

CRLB asymptotically) must not be subject to ambiguities.

Perhaps the most common setting in which this difficulty occurs is in

aelay estimation using very narrowband signals. Consider the extreme case of

observations at only two receivers so that only one differential delay can be

estimated. The ML estimate of that delay cross correlates the received

signals, averages for time T, and obtaines the desired delay from the peak of



the cross correldtion function. In the narrowband case, the differential

aelay causes essentially to a phase shift between the received signals and

thus generating a formidable ambiguity problem. This is illustrated in Figure

1. The cross correlation output peaks at AT, the true differential delay, but

is quasi-periodic with a period of 2w/w where w is the center frequency

of the signal. To come close to the CRLB one must be able to distinguish

unambiguously between adjacent peaks of the correlation function. If the

signal bandwidth is only a small fraction of its center frequency (i.e.,

W/W0 << 1), adjacent peaks have very nearly equal height and identification

of the largest one wilt require either very large SNR or exceedingly long

observation times. In many important practical situations, therefore, the

attainable m.s.e. may be very drastically inferior to that predicted by the

CRLB.

In [8], a new lower bound, based on a modified (improved) version of the

Ziv-Zakai lower bound (ZZLB), is developed to analyze the attainable mean

square error (m.s.e.) in delay estimation schemes. The resulting lower bound

is then applied to investigate the effect of ambiguity on delay estimation

using narrowband signals [9]. When the lower bound is plotted as a function

of SNR, one observes a strong threshold phenomenon. Above a critical SNR the

lower bouna approaches the CRLB. In this region the indicated phase

ambiguities in the differential delay observations can essentially be

resolved. Below the threshold, the lower bound exceeds the CRLB by a large

factor. The point at which the threshold occurs as well as its magnitude are

factors of obious practical interest since system performance predictions

6n1n u nn umn m n m" . .
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generally are based on the small error assumption (i.e., CRLB) and may,

therefore, be extrapolated incorrectly below the threshold yielding extremely

optimistic performance predictions.

In the second part of the study we broaden the range of investigation to

widebanu signals which, for the delay estimation problem, will be divided into

two categories: baseband signals and bandpass signals.

in the basebana case, a typical cross correlation response is

illustrated in Figure 2 where W denotes signal bandwidth and [-D/2, D/2]

aenotes the a-priori search domain of the unknown delay parameter. One

immediately observes a similar, though not as critical, ambiguity phenomenon

whenever the a-priori search domain contains at least several peaks of the

cross correlation function (i.e., WD/2w >> 1).

In the bandpass case a typical cross correlation response is illustrated

in Figure 3. Here we observe two types of ambiguities: the more critical

ambiguity problem results from the highly oscillatory nature of the phase of

the observed cross correlation function. A secondary ambiguity phenomenon

results from the oscillatory nature of the envelope of the cross correlation

function.

The purpose of this paper is to analyze the threshold effects and the

attainable m.s.e. for these two classes of signals.

B. Problem Formulation and Assumptions

The basic system of interest here consists of a stationary source

radiating a noise-like signal towards two spatially separated receivers. Each

receiver also receives an additive noise component so that the actual

waveforms observed at the receiver outputs are given by
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r1 (t) = s(t) + nl(t)
-T/2 < t < T/2(I

r2 (t) = s(t - AT) + n2 (t)

We shall assume that s(t), nl(t) and n2(t) are sample functions from

uncorrelatea zero-mean Gaussian random processes with spectral densities S(w),

N1(w) and N2(w), respectively. Since we are primarily interested in the

ambiguity problem in time delay estimation, implying the use of widely

separated receivers, the assumption of noise incoherence from receiver to

receiver is likely to be satisfied.

We shall further assume that At, the receiver-to-receiver delay, is

uniformly distributed in the interval

-D/2 < At < D/2 (2)

This a-priori domain may come about, perhaps from the known receiver

separation and the known velocity of propagation in the medium.

Finally, we shall assume that the observation time T is large compared

with the correlation time (inverse bandwidth) of signal and noise, i.e.

WT/2w >>1. This condition is very generally satisfied in problems of

practical interest here.

The problem may now be stated as follows: given the data at the

receiver outputs (i.e., ri(t) i = 1,2), characterize the minimum m.s.e.

estimate of the delay parameter. Our approach is to set a lower bound on the

attainable m.s.e. using the modified ZZLB. This approach is completely

inaependent from the actual estimation method. However, in [10] it is shown

that for sufficiently large WT products the cross correlator performance comes
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close to the lower bound below as well as above the threshold. These results

establish the modified ZZLB as an extremely tight lower bound for problems of

this type while demonstrating that the cross correlator is a nearly optimal

instrumentation in both the small and large error regimes.

C. The Modified Ziv-Zakai LQwer Bound

The modified ZZLB on the m.s.e. of any estimate AT of AT is given by

(L8], L9J) D

-Df xG[(D-x)Pe(x)] dx (3)

0

where GL j is a non-increasing function of x obtained by filling the valleys

in the function (D-x)Pe(x) (see Figure B-I in Appendix B). Pe(x) is the

minimum probability of error (achievable by the likelihood ratio test) for

deciding whether the true value of the parameter is AT or ATI where AT,

- AT 0 = x. In general, a closed analytical form for Pe(x) cannot be found.

However, in ([9j, Appendix A) it has been shown that for WT/2r >> 1, Pe(x) is

very closely approximdted by

Re(x): e a ( x ) + b(x )_T(-\2r -x) (4)

where

a(x) L ln(l + SNR(w)sin 2wx/2) dw (5')

0

b(x) Tj NR(w)sin2Wx/2 dw (6)
0x/2
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[S(W)/N 1 (w)][S(w)/N2 (w)]

anSNR(w) = I + S(w)/N(w) + S(w)/N 2(w)

_(y) e- du (8)
2 1T

y

We have also included Appendix A to demonstrat2 that tne expression on

the right hand side of Eq. (4) is, in fact, a lower bound on Pe(x). Hence, by

substituting Eq. (4) into Eq. (3) the inequality sign is preserved.

It is important to observe that since Eq. (7) uses arbitrary spectral

functions, the lower bound can be applied to investigate a wide class of

signals. As pointed out before, the study will be separated into two parts:

in Section II we consider baseband signals. Analytically it appears to be a

simpler case and should therefore be understood first. In Section III we

consider bandpass signals. In that context all the results concerning

narrowband signals [9] will be included and referred to as a special case.

II. BASEBAND SYSTEMS

In this section we shall concentrate on signals whose power is

aistributed about zero frequency. To simplify the form of results, let us

consider the following special case

S 1l< W12

(W)= (9)

0 I > W/2
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If we further assume that the additive noise components are spectrally

flat over [-W/2, W/2],then Eq. (7) assumes the simplified form

SNR I W/2

SNR (w) = (10)

0 Jwl >  W/2

where

(SIN 1 )(S/N 2)
SNR = T + S/NI + S/N2  (11)

and S/N. is the in-band signal-to-noise ratio at the ith receiver output.1

Substitution of Eq. (10) into Eqs. (5) and (6) immediately yields

W/2

a(x)= -- ln(1+ SNR sin 2Wx/2) dw (12)

0

W/2 2

b(x) Tf SNR sin Wx/2 dw (13)
2w 2r i + SNR sin 2 (2

0

To obtain the lower bound one must substitute Eqs. (12) and (13) into

Eq. (4) and Eq. (4) into Eq. (3) successively, and carry out the indicated

algebraic operations. Since we are primarily interested in the ambiguity

phenomenon we shall assume that WD/2w >> 1, say, by at least a factor of 3.

In that case, following some rather extensive algebra manipulations outlined

in Appendix B, it is shown that the lower bound consists of essentially three

disjointed segments as suggested by the following equation:



-8-

02,12 (WT/2w)SNR < a
2 > THRESHOLD a < (WT/2n)SNR < 6 (14)

247r/W 3TSNR (WT/27)SNR > s

where in the threshola region the lower bound varies essentially exponentially

with (WT/2r).SNR. This result is illustrated in Figure 4. The lower limit of

the threshold region is given by

a = 0.92 = -0.36 db (15)

The upper limit, a, is the solution to the following transcendental

equation

(s12)1(s/2) = (61WD) 2  (16)

Note that Eq. (16) has two solutions. We only consider the larger one.

In Figure 5, a is plotted and tabulated as a function of WD/27 for the

convenience of the reader. Thus in a logarithmic (db) scale B ,aries from

about 13 db for moderate WD products to about 16 db for exceedingiy large WD

products.

To put these results into perspective, we first observe that a m.s.e. of

02112 correspords to a random variable uniformly distributed in [-D/2,

0/2]. Such a performance level can always be achieved, regardless of signal

observations. The first line in Eq. (14), therefore, reads that for

combination of WT/2n and SNR such that their product (the so-called

post-integration SNR) does not exceed -0 db, signal observations are

completely dominated by noise thus essentially useless for the delay

estimation.

We next observe that m.s.e. predictions based on the Cramer-Rao

inequality yield the following lower bound ([9], Appendix B).
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2> SNR(w) dw (17)

0

Substituting Eq. (10) into Eq. (17) and carrying out the indicated

integration one immediately obtains the third line in Eq. (14). Hence, if the

post-integration SNR exceeds B, the ambiguities in the differential delay

observations can essentially be resolved. Cross correlating the received

signals one obtains a differential delay estimate whose m.s.e. is closely

characterized by the CRLB.

In the derivation of Eq. (14) we have assumed that WD/2r >> 1. This

condition means that the correlation time (inverse bandwidth) of the signal is

small compared with the maximum expected receiver-to-receiver delay, or that

the spacing between receivers is large compared with half-wavelength of the

modulation frequency (signal bandwidth). Only in that case we are dealing

with the possibility of a significant ambiguity problem. There remains the

question: How the results stated by Eq. (14) are affected when this condition

is not satisfied? In Figure 6 the lower bound is generated numerically (by

exact integration of Eq. (3)) and plotted as a function of the

post-integration SNR (in a logarithmic (db) scale) for fixed WT/2x and

different values of WD/2w. The threshold points a and a were calculated using

Eqs. (15) and (16). Note that c2 is normalized by D2/12 so that we

actually measure the relative efficiency of the attainable m.s.e. to the

a-priori variance. One observes a significant threshold effect whenever WD/2n

>> 1. In case WD/2w < 1 (i.e. in ambiguity-free situation), one observes a



- 10 -

rather smooth transition from the CRLB to the D2/12 asymptote. Note, in

passing, the close agreement between Eqs. (15) and (16) and the exact limits

of the threshold region.

We finally note that in the derivation of Eq. (14) it is assumed that

the source signal and the additive noises are spectrally flat over the

receiver frequency band. Spectrally flat signal, however, has a highly

oscillatory correlation function indicating a serious ambiguity problem. For

signal spectra whose correlation function (inverse Fourier transform) is

smoothly varying, the ambiguity phenomenon may not be as critical. The lower

bound in that case is still composed of the D2/12 segment and the CRLB, but

the threshold effect is expected to occur at a lower SNR. This effect can be

studied by analyzing the lower bound for various signal and noise spectra.

III. BANDPASS SYSTEMS

In this section we concentrate on signals whose power is distributed

about some center frequency wo" To simplify the form of results let us

consider, in complete analogy with the baseband case, the following special

casc

SM s 1 * "oi < W/2
S( ) I -/ (18)

0 * "o > W/2

We shall further assume that the additive noise components are

spectrally flat over the signal frequency band so that Eq. (7) assumes the

form
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SNR I'w * wo < W/2

SNR(w) = 0 (19)
0 1W + Woi> 'W /2

where SNR is defined in Eq. (11). Substitution of Eq. (19) into Eqs. (5) and

(6) immediately yields

W 0+W/2

a(x) = - 77 fln(l + SNR sin 2wx/2)d. (20)

Wo-W/2

* 0+W/2

+w/2
f SNRsin 2wx/2 dw (21)

x -W/2 1+SNRsin 2x/2

The lower bound is now obtained by successive substitutions of Eqs. (20)

and (21) into Eq. (4) and Eq. (4) into Eq. (3) and carrying out the indicated

algebra operations.

Let us first assume that Wfw ° << 1. Since we are concerned with the

joint effect of envelope and phase ambiguities on the attainable m.s.e. (see

Figure 3), we shall further assume that WD/2w > 1. In this setting,

therefore, we are dealing with narrowband signals and very widely separated

receivers. Following some rather extensive algebraic manipulations outlined

in Appencix C, it is shown that the lower bound consists of essentially two

distinct threshold effects dividing the entire SNR domain into three

disjointed segments as suggested by the following equation
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02/12 (WT/27)SNR < y

THRESHOLD y < (WT/2r)SNR < 6

C > (12r/W TSNR 6 < (WT/2)SNR < v (22)

THRESHOLD v < (WT/27)SNR < n

/ WTSNR (WT/2n)SNR > 1

where in the threshold regions the lower bound varies essentially

exponentially with (WT/21)SNR. This composite result is illustrated in Figure

7. The various threshold points will be defined shortly. We further observe

that in the narrowband case the CRLB (obtained by substituting Eq. (19) into

Eq. (17) and carrying out the indicated integration) is given, to an excellent

approximation, by

-> ir/w 0WTSNR (23)

Thus if (WT/2n)SNR > n, the lower bound coincides with the CRLB. This

is the ambiguity free mode of operation.

If 6 < (WT/2n)SNR < p, the lower bound exceeds the CRLB by a factor of

12(t 0/W)2. In this region signal observations are subject to unresolved

phase ambiguities, however, useful estimate of the differential delay can

still be obtained from the envelope of the cross correlation function. Note

that this segment of the lower bound coincides with m.s.e. predictions based

on a simplified version of the Barankin lower bound [11]. We further note

that the 3rd line in Eq. (14) exhibits exactly 3 db (a factor of 2) loss in

m.s.e. relative to the 3rd line in Eq. (22). This result indicates the

following: the 3rd line in Eq. (14) is the CRLB based on the received signal
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envelopes. An estimator which realizes that m.s.e. consists of shifting the

received signals to baseband (perhaps because of unresolved phase ambiguities)

prior to the cross correlation operation. The latter scheme, therefore, is

always inferior to a scheme which first cross correlates the received signals

and then uses the envelope of the cross correlation function for the delay

estimation.

Finally, if (WT/2v)SNR < y, the lower bound is essentially characterized

by the constant level of D2,12. This is the noise dominated region where

signal observations are subject to envelope ambiguities as well, thus

essentially useless for the delay estimation.

The lower and upper limits of the more critical threshold are given,

respectively, by

= (2.761 X)(wO/W) 2  (24)

n = (6/2 )(W /W)Z[1-1(W2/24w2)] 2  (25)

wheref-( ) denotes the inverse of.W( ). Eqs. (24) and (25) depends only

on wON, the ratio of center frequency to signal bandwidth. Eq. (25) is of

particular interest since it represents the minimum amount of post-integration

SNR required to achieve the CRLB. Thus, for example, if w0/W = 10 (i.e. 10

percent signal bandwidth), v = 14.5 db and n = 28.3 db. If wo/W = 100

(i.e. 1 percent signal bandwidth), p = 34.5 db and n = 50.8 db. One further

observes that the threshold region is not infinitely small as may be

interpreted from the analysis based on the Barankin lower bound [11]. For 10

percent signal bandwidth it is a segment of 13.8 db. For 1 percent signal
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bandwidth it is a segment of 16.3 db.

The lower and upper limits of the secondary threshold are given,

respectively, by

y = 0/2 = 0.46 = -3.36 db (26)

s = s/2 (27)

where a is defined by Eq. (16). Hence, the secondary threshold is shifted by

exactly 3 db (a factor of 2) relative to the threshold phenomenon found in the

baseband case.

The analytical result illustrated in Figure 7 is derived under the

assumption that W/w0 << 1. In that case, the lower bound exhibits two

distinct threshold effects. The phase ambiguities and envelope ambiguities

occur at essentially disjointed segments of the SNR domain and therefore, in a

sense, strictly additive. This conclusion, however, applies only to

narrowband signals. As the signal bandwidth increases the two threshold

regions come close (i.e., 6 converges to v) and the two ambiguity phenomena

are, in fact, indistinguishable. This effect is illustrated in Figures 8-10

where the lower bound is generated by exact numerical integration of Eq.

(3). Note, in passing, the close agreement between the various threshold

points, calculated using Eqs. (24) to (27), and the exact limits of the

threshold regions.
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Narrowband Systems

It is not difficult to relate the composite result given by Eq. (22) to

the analysis of narrowband systems carried out in [9]. In [9] the lower bound

is derived under the assumption that the signal bandwidth is so narrow that

its correlation time (inverse bandwidth) exceeds the maximum expected delay

(i.e. WD/2 < 1). The envelope-type ambiguities, therefore, are completely

eliminated from considerations. Instead of having a threshold effect, there

is a smooth transition from the first line of Eq. (22) to its third line as

illustrated in Figure 11. The point at which the transition occurs (denoted

by p in the figure) is obtained by simply intersecting the two indicated

lines. One finds

p = (18/ir2 )/(WD/2r)2  (28)

With this modification Eq. (22) reduces to the result derived in [9].

IV. CONCLUSIONS

This is the second part of a study which deals with the problem of

passive time delay estimation. The focus here is on systems employing

wiaeband signals and/or arrays of very widely separated receivers. A

modified (improved) version of the ZZLB is used to analyze the effect of

additive noise and signal ambiguities on the attainable mean square

estimation errors.

We first concentrated on baseband (lowband) signals. When the lower

bouna is plotted as a function of SNR, one observes a distinct threshold

phenomenon. Above a critical SNR the lower bound approaches the CRLB. This
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is the small error region. Below the threshold, the lower bound quickly

approaches a constant level depending only on the variance of the a-priori

search domain of the delay parameter. In this region signal observations are

completely dominated by noise, thus essentially useless for the delay

estimation. Information concerning the threshold points and the various

segments of the lower bound is given by Eq. (14).

Delay estimation using bandpass signals is analytically a more

complicated problem. Here the lower bound exhibits two distinct threshold

effects dividing the SNR domain into three disjointed segments: at high SNR

the lower bound coincides with the CRLB. This is the ambiguity-free mode of

operation where differential delay estimation is subject only to local

errors. At moderate SNR (between the two thresholds) the lower bound exceeds

the CRLB by a factor of 12(wo/W)2 where w and W are, respectively, the

center frequency and signal bandwidth. In this region the ambiguities in the

received signal phases cannot be resolved, however, a useful estimate of the

differential delay can still be obtained from the received signal envelopes.

At low SNR the lower bound approaches a constant level depending only on the

variance of the a-priori search domain of the delay parameter. In this

region, signal observations are subject to envelope ambiguities as well, thus

essentially useless for the delay estimation. Information concerning the

various threshold points and the various segments of the lower bound is given

by Eq. (22).
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APPENDIX A Lower Bounds on ()

The binary decision problem under consideration here is

given by

7, ZC( : L " (A-1)

The log likelihood ratio test (log LRT) between HO and Hi

is defined by

where A i is the conditional probability density of -

under 4- hypothesis, afid - represents the data vector (e.g. time

samples or Fourier coefficients of the received signals). Assuming

that H0  and u are equally likely to occur (i.e.

P\.4): Z 4,'-: a decision rule which minimizes the

probability of error compares the log LRT to zero threshold.

If i we decide on H ,if f (O we decide on H

Hence, the minimum attainable probability of error is given by

(A-3

Let 4 ) denotes the characteristic function associated

with .41li and are, by definition, a

Fourier transform pair satisfying
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(A-4)

and

~(A-5

The integrals in Eqs. (A-4) and (A-5) must be evaluated at

C0 ZO and C) = 0 , respectively. However, for future manipulations,

let C* be a real-valued parameter in the open interval (0,I).

Similarly, let C, be a real-valued parameter in (-1,0). In that

case, substituting Eqs. (A-4) and (A-5) into Eq. (A-3), one cbtains

C% ..L- V.,) Z 4A =" ',-

Note, in passing, that the transition from the first version

of Eq. (A-6) to its second version can be carried out if and only

if C0)0 and C, (0 . In this setting Pe(CL, Cz#X) is

expressed in terms of j(S) - C, I . Now, by definition

'I,,(S) 9 E ; .1 4z = 4 (A-7)

where E denotes the statistical expectation of the bracketed

quantity. Substituting Eq. (A-2) into Eq. (A-7) and observing that

f ((- ) (so that the statistical expectation operation can be
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performed with respect to the probability density of one

immediately obtains

~(S) Z 6Z1  .ULY( Il d (A-8)

. - -(A-9)

We shall now generate the data vector '- by Fourier analyzing

in Eq. (1). Since signal and noise are assumed to be zero

mean Gaussian processes and the components of I- are generated by

linear operations on these time functions, V has a multivariate

Gaussian distribution

.I -

: ,_(A-10)

where

~Q4 (A-11)

and f denotes the conjugate transpose of - To obtain )

one must substitute Eq. (A-1O) into Eq. (A-8) and carry out the indicated

algebra operations. For observation time T large compared with the

correlation time (inverse bandwidth) of signal and noise (i.e. W /Axy >>I )
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the Fourier coefficients (at each receiver output) associated with different

frequences are statistically uncorrelated. In that case the required

computations become relatively easy. Details are contained in ( [9 ]1

Appendix A). The result is
-I

415S1F( V9 ~' 0 S) I L4i~isA-sF(W~X)1(A- 12)

where

L /(A-13)

and p (P,) $/ ( (L\x/. (A-14)

The index K varies over all components in the signal frequency

band. Following very similar considerations for '(5 1 one obtains

-I

Tz 7 A + /- k ' ,X) (A- 15)

Note that \'?,(S) and L4(S) depend only on X so that

Re(CL ) = Pe N) One must now substitute Eqs. (A-12) and

(A-15) into Eq. (A-6) and carry out the indicated integration. It can be

easily shown that all the poles (singular points) of 'io ($)are located

on the real axis outside the interval [0,1] , all the poles of 'Y,(I)

are located on the real axis outside the interval [-1,01 Hence, the

first integral in Eq.(A- 6) can be evaluated for any value of Co in the

open interval (0,1) without affecting the desired result. Similarly, the
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second integral in Eq. (A-6) can be evaluated for any value of C,

in (-1,0). We shall find it most convenient to choose C 4- /1 sc'-A/2 '.

We shall further make the change of variables S in the

first integral and - in the second integral. In this

setting one obtains

A

oC

This is an exact expression for P, . To generate a lower

-- I

bound on we shall use the inequality > whene'er

0 Thus

Substituting Eq.(A-17) into Eq. (A-16) one obtains
00

TT o " aX eI _ 'I (L' K IX) I-1
/I I I III

C(3
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where we defined

a (N() w.j 12 x- PL~( (A-19)

j ( X) (A-20)

LA ( - ( 1,x

The integral in Eq. (A-18) can be evaluated analytically using

[12], p. 338, formula 3,466-1. The result is given by

which is the desired result. Substituting Eq. (A-14) into Eqs. (A-19)

and (A-20), one obtains

a'~~) 6-= I£ 2 9 4 >s 2A /4

-.

(A-23)

where we define Cw =.4.r,. . For large WT product and smoothly varying

signal and noise spectra the function, (')nL x/.4changes only

insignificantly over the frequency increment of w , so that the sums in

Eqs. (A-22) and (A-23) can be converted into the integrals ia Eqs. (5)

and (6), respectively.

Eq. (A-21) can further be used to generate weaker lower bounds
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on Pe(x), which will become useful in the proceeding analysis. We shall

start from Eqs. (A-19) and (A-20). Since

4 .lLi~) k k(4.x (A-24)

and since

It immediately follows that

a r4td

and

4: () ) -

(A-27)

where 2b(x) and [a(x)+b(x)] are the terms appearing in Eq. (A-21).

Replacing the first term by its upper bound, and the second term by its

lower bound, Po can further be bounded by

- t(OK)

where c(x) and d(x) are given by
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~ I~(~)sc'v(cW)/j.)di (A-29)
"Ir

too(A-30)

Using the inequality _ ,x l , C(X) and a(x) can

further be bounded by

C' ) / . (A-31)

(A-32)

where

c - J "v i, (A-33)

0

and

6 0 (A-34)

Substituting C(Y) and dJ by their upper bounds, one

immediately obtains

P4')- x ~ (A-35)
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We note, in passing, that the lower bound given by Eq. (A-35)

is useful only for small x, where the inequalities in Eqs. (A-31) and

(A-32) are tight.
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Appendix B Analysis Of the Modified ZZLB For Baseband Signals

The modified ZZLB is given by Eq. (3), rewritten here for

reference

T)
- I (B-1)

The function &[(,D-K)P,(X}] assumes a simple form if

contains several well-defined peaks. This is illustrated in Figure

12 for a typical baseband case. Thus, if I (, )(4)-.. are the local

maxima of , ( ), then at each segment J, I the function

Y-) PC (Xi is closely bounded by

IDX eiT> )' I (B-2)

Note that since &LO.-X) P () is a non-increasing function of

x, Eq. (B-2) holds for arbitrary set of ,.'$. We further note that the

local maxima of Pe(x) are, in fact, the local maxima (ambiguity points) of

the cross-correlation function. These occur, approximately, at (see Figure

2).

required for the computation, of Eq. (B-2), is

closely approximated using the expression in Eq. (4). Following the

derivation in Appendix A, that expression is shown to bela lower bound.
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Thus

e, x . b (Y ,)

where Ck(V) and of)l, are obtained by substituting , into Eqs.

(12) and (13), respectively. One obtains

-A/ -A - L

and

*f,) aI. ] (.

- oR 4 , . . .- ,. (B-6)

where Jx,./ 4 - nrT/. . Since the integrands in Eqs. (B-5) and (B-6) are

even and periodic functions of S.. with a period of T , and since we are

integrating over [oj )7T/X] , these equations become independent of n,

i.e. zC,-A and b )-b , where

7/1

I'l

0,, ZIT (E 7

rNR.,~A r .! ___ (B-8)
T JT _
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The integral appearing in Eq. (B-7) can be found in [12],

p. 594 formula 4.399. The integral appearing in Eq. (B-8) can be modified

to a form found in [121, p. 152, formula 2.562. Thus

Pe (B-9)

Substituting Eqs. (B-3) and (B-9) into Eq. (B-2), one obtains

~-T'~Pe--I ) /~~x. (B-10)

Since .- D-17"/,T-9 for all XE x.-LTT/./, ),] , it immediately

follows that

The first line in Eq. (B-11) is illustrated by the dashed line

in Figure 12. The second line in Eq. (B-11) indicates that zero is a

better bound. For W/XA>> I , the lower bound presented by Eq. (B-Il)

is very tight except for values of X in the vicinity of X - 0, where

Pt (*A changes rapidly.

To take this effect into account, we observe that for small x,

Pt!x) is closely bounded using Eq. (A-35). In that region, therefore,

- p,(X)] is closely bounded by

• i, w,,,n iiinmnnm-nmmm n mm n nu
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where in the transition from the first version of Eq. (B-12) to its second

version we observe that (TLf(z)I ( x) whenever (x is a non-increasing

function of x. The parameters c and d are obtained by substituting Eq.

(10) into Eqs. (A-33) and (A-34), respectively. One obtains

g Y- " I? J 06 rr (B-13)

0

and

For future manipulations we note that

'C/'a:t -_Or (B-I5)

Combining Eqs. (B-I) and (B-12), [-CD-') Pk')j is tightly

bounded by

a4

P, K -D T/TN/VV
(B-16)

where is defined by
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(3 = " (B-I 7)

Note that is approximately the point at which the first and

second lines in Eq. (E-16) intersect. Substituting Eq. (E-16) into Eq.

(B-1) one obtains the following lower bound

Carrying out some straight forward algebra manipulations, it can

easily be shown that 4, lT/'AJ . Since we are assuming that /

the first term on the right hand side of Eq. (B-18) is closely

approximated by

r3 )Ckk) Y -

"4Jv

where in the transition from the second versions of Eq. (B-19) to its

third version we have substituted Eqs. (B-15) and (B-17). Similarly, the

integral appearing in the second term of Eq. (B-18) is closely

approximated by

-D i( - Tr/w - , ti X Z -D6 (B-20)

Substituting Eqs. (B-19) and (B-20) into Eq. (B-18), one

obtains
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Numerical integration indicates that Eq. (B-21) is an excellent

approximation to the exact result (Eq. (B-i)). The lower bound presented

by Eq. (B-21) exhibits two distinct asymptotes: As X'i-4O , the

variables a, b and c approaches zero. In that limit the second term in Eq.

(B-21) becomes the dominant term and the lower bound approaches

(B-22)

As ,i- , a+b --- oo and b - w7/w- . In that limit

the first term in Eq. (B-21) becomes the dominant term in the sum and the

lower bound approaches

>" X

_ - IZ. 4€
.j ( - -- "N(B-23)

One immediately identifies Eq. (B-22) with the first line of

Eq. (14), and Eq. (B-23) with its third line.

The transition from the IVII. asymptote to the

4,Wr- asymptote essentially starts when

4 q (E-24)
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and is essentially completed when

' 6(B-25)(iT

where in the transition region (the so-called threshold region) the lower

bound varies essentially as O(vb ) . One must now substitute Eqs.

(B-7), (B-8) and (B-13) into Eqs. (B-24) and (B-25), and solve these

equations with respect to SNR in order to obtain the corresponding 3 db

points. Suppose, for the moment, that these solutions are obtained at

SNR Z( I . In that case, Eqs. (B-7) and (B-8) can be approximated,

without incurring any significant errors, by

-. 44 40 114 (B-26)

e,) A JQ(B-27)
rr a.

With these approximations, Eqs. (B-24) and (B-25) assume the

simplified forms

)(B-28)

and

R iteo-i (B-29)

where R is the post-integration SNR defined by



- 34 -

(w T-1 7-))(B-30)

Denoting by R -( the solution to Eq. (B-28) and substituting

I.,4 . , one immediately obtains Eq. (15). Denoting by

/ y3 the solution to Eq. (B-29), one immediately obtains Eq. (16). We

further observe that in terms of SNR the solution to Eq. (B-28) reads

SNR , the solution to Eq. (B-29) reads SNR :(/Cv3 -/ ).

Thus, for WvT/ r>> d , the simplifying approximations made in Eqs.

(B-26) and (B-27) may affect these results only insignificantly.
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Appendix C. Analysis Of The Modified ZZLB For Bandpass Signals.

The modified ZZLB is given by Eq. (3), rewritten here for

reference.

P,(( c (C-i)
0

For values of x in the vicinity of Y:o , the function

C-L'-x) ~p(x) is closely bounded using Eq. (B-12), where the parameters c

and d are obtained by substituting Eq. (19) into Eqs. (A-33) and (A-34),

respectively. Assuming that ,/-/ >>I (so that one can ignore terms on

the order of relative to 1), C2 and f are given, respectively,

by

(C-2)

: W.A 0  (C-3)

For future manipulations we note that

( c (C-4)

For values of x away from K':O , a tighter lower bound on

C- L(D-L Pe' can be generated from the local maxima of P(X) . This is

illustrated in Figure 12 for a typical baseband case. In the bandpass

case, however, PJW has two sets of local maxima. One set,
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: - , is associated with the ambiguities in the envelope of the

cross-correlation function, the other set, 'x- (,gT/t. )i ,is associated

with the ambiguities in the phase of the cross-correlation function.

We shall assume, without any significant loss in generality that

His an integer. In that case, using the set )K: =t,/ and

following the same considerations outlined In Appendix B,&LO-J)Pefr is

bounded using Eq. (B-1l), where a and b are given by

C "- a, (C-5)

\,4 T ;-, '- I (C-6)
b " -4, _* - a '

Note that there is a factor of 2 difference between Eq. (C-5)

and Eq. (B-7), and between Eq. (C-6) and Eq. (B-8).

We shall now use the set rX 4 (2P/e.)h to generate another lower

bound on GL(D-A) IPV%. using similar considerations. Making use of Eq.

(A-28), P(-j, ) is bounded by

C>k I xj)(C 7

where (Xv,.) and ak)'K-) are obtained by substituting Eq. (19) into Eq.

(A-29) and (A-30), and calculating these functions for X:S, . Following

some straight forward algebra manipulations, one obtains

(C-8

Wi/
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^ - ,- 1'. 1.S, C(-1, (C-9)

Using the inequality C,..) and ) can be

bounded by

(C-I10)

(C-Il)

where

T (C-12)

r W T e,.., (C-13)

For future manipulations we note that

1 - (,w,,r/;.L-? (C-14)

Suhstituting and ,4() ) by their tipper bounds, one

obtains

Now since
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and since t'e right hand side of Eq. (C-15) is a monotonically decreasing

function, it immediately follows that

Pa K1 D-;/,..,o)(C1

Combining Eqs. (B-12), (C-17) and (B-il) (in the given order),

T4oD-,, ( is tightly bounded by

X) t

.'

where , and are defined by

(C-19)

.rn.

Note that is approximately the point at which the first and

second lines in Eq. (C-10 intersect, is approximately the point at

which the second and third lines intersect. Substituting Eq. (C-18) into

Eq. (C-i), one obtains the following lower bound
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, JX(D:"
.. ~ ~ -X 43(A ,) i

(C-21)

Following some straight forward algebra manipulations, it can

easily be shown that 3, 1T/L., , and that 3 21A.r/ . Since we are

assuming that zlT/l44, , the lower bound can be approximated, without

incurring any significant errors, by

t - gq4 Ix P(~~

<< j .-<., W,<, )) .)<

9,~~ (X4;r/.J

II

414

-k~ ~ Ij ___
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where in the transition from the second version of Eq. (C-22) to its third

version we have substituted Eqs. (C-4), (C-14), (C-19) and (C-20).

Substituting Eqs. (C-2), (C-12), (C-5) and (C-6) into Eq.

(C-22), one can now generate m.s.e. predictions for any pre-specified SNR.

We further note that the second and third terms in Eq. (C-22) contribute

significantly to the sum only when SNR*,Z . In that region, a and b can

be approximated, without incurring any significant errors, by

S .(C-23)

r ze. (C-24)

1.

With these considerations, the lower bound assumes the form

-2 ..

X If

where R is defined as the product of rp by SNR (the so-called

post-integration SNR).

We shall now examine few limiting cases: If I ~(I , the third

term on the right hand side of Eq. (C-25) becomes the dominant term in the

sum and the lower bound approaches
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;> (C-26)

If 4"I 4 (Laob, the second term becomes the dominant term in

the sum and the lower bound approaches

(~~LA4)( (\(,kn) rV

Finally, if P . , the first term in the sum becomes

the dominant one, and the lower bound approaches

-"X87 .T) T ,T'>'

IlL.
(C-28)

One immediately identifies Eqs. (C-26), (C-27) and (C-28) with

the first, third and fifth lines of Eq. (22) respectively.

The transitions from the first line of Eq. (22) to its third

line essentially starts when
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'i/il(C-29)

and is essentially completed when

6 (W

where in the transition region the lower bound varies essentially as

) . Denoting by : the solution to Eq. (C-29) and using the

similarity between Eq. (C-29) and Eq. (B-28), one immediately obtains Eq.

(26). Denoting by I the solution to Eq. (C-30) and using the

similarity between Eq. (C-30) and Eq. (B-29), one immediately obtains Eq.

(27).

The transition from the third line of Eq. (22) to its fifth

line essentially starts when

Z A -
/  (C-31)

and is essentially completed when

WO (C-32)

where in the transition region the lower bound varies essentially as

(g ~ .Denoting by - and (:7 the solutions to Eqs.

(C-31) and (C-32) and following some straight forward algebra

manipulations, one immediately obtains Eq. (24) and (25), respectively.
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Figure Captions

Fig. 1. Typical Narrowband Signal Cross Correlation

Fig. 2. Typical Baseband Signal Cross Correlation

Fig. 3. Typical Bandpass Signal Cross Correlation

Fig. 4. Composite Bound on - Baseband Systems

Fig. 5. vs. V-/

Fig. 6. VS. Post Integration SNR for Easeband Signals.

Fig. 7. Composite Bound on 6'?-Bandpass Systems

Fig. 8. Normalized m.s.e. vs. Post Integration SNR for , -

Fig. 9. Normalized m.s.e. vs. Post Integration SNR for

Fig. 10. Normalized m.s.e. vs. Post Integration SNrR for ''o--

Fig. 11. Composite Bound on 7 - Narrowband Systems.

Fig. 12. and ')an for Typical Easeband Case.
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