
-TI JLE COPY

fADC-TR-9O-92
Final Technical Report D A 2 48
may 1990

IMPLEMENTATION ISSUES IN
MULTILEVEL SECURITY FOR
OBJECT-ORIENTED DATABASES

George Mason University

Sushl Jajodla, Boris Kojoan

.DTIC
a LECTE.-I.

1%7UL 10 10.211

APPROVED FOR PUBLIC RELEASE; DIS TRlIOUTON IJNLIMIED.

Rome Air Development Center
Air Force Systems Command

fOriffiss; Air Force Base, NY 13441-5700

This report has been reviewed by the RADC Public Affairs Division (PA)
and in releasable toj the National Technical Information Services (NTIS) At
TIMS it will be releasable to the general public, inclucding foreign nations.

RADC-TR-90-92 has been reviewed and is approved for publication.

APPROVED:

JOSEPH V. GIORDAN~O
Project Engineer

A'PROVED

iýAYMOND P. URTZ, JR.
Technical Director
D1~ectorLate. of Command &Control

FOR THE COMMAXNDER:

.IGOR G. PLonsmC

Directorate of P&lans & Prog*rams

.' ,

If your address h&& changed or if you wish to be removed from the RADC
wsiling list, or if the addressee is no longer employed by your
organization, please notify RADC (COTD) Griffiss M~ NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not re~turn copies of this report unless coatractual obligat:ons or
noticeq on a specific document require that it be returned.

/ 'V

REPORT DOCUMENTATION PAGE No.n00i-ne

evuaae ta of m uow 1Wn"m=6Dg 91lwwa fis ab a ow"IhfIoseetw Sano sane on 1We flUEV Pu ad namm .en suiseg seeww" w
eN Wte= "S l*bW -:S: q WAlOms. 20%ý 0ei Mw f "S6 as~ '==un= OC Amrun A 43m.

. -AGENCY USE ONLY IanasWQ JWW 2. RCKfrT OATE 1. RK RCT1YPE AM DATES COVERED

May 1990 Final Jun 89 to Dec 89
4. TI'E ANO 6UU'TrL, S. FUNOINO NUMBERS

IMPLEMENTATION ISSUES IN MULTILEVEL SECURITY C - F30602-88-D-0028
FOR OBJECT-ORIENTED DATABASES PE - 35167G

PR - 1068
6. AUTHORS) TA - 01

wU - P't
Sushil Jajodia, Boris Kogan

7- PERFORMNG ORGANIZATION NAnE4SIANOAOOACSS(ES) IREORT N AG

George Mason University
Dept of Information Systems & Systems Engineering
4400 University Drive
Fairfax VA 22030-4444

0 6PkWFNG&CFMRNGAGPOCNAPMS)ADADDESSES)10 SPONS0OAINO0tIONITVAIPG AGENCY
REPORT NUMBER

Rome Air Development Center (COTD)
Griffiss AFB NY 13441-5700 RADC-TR-90-92

11. SUFTLELNTARY NOTES

RADC Project Engineer: Joseph V. Giordano/COTD/(315) 330-2925

¶2A. DISThIIUTIOIAVAIL.AB2LITY STATEMENT 12. -TIUTO OI

/
Approved for public release; distribution unlimited,

13. ABC7RACT (MiAfuawm 2W

S This report concentrates on implementation issues associated with the security model
for object-oriented databases. The discussion of the model is conducted from the
implementation point of view. Certain characteristics the model possesses, make its
implementation a conceptually simple matter. Two alternative approaches to the
subject of implementation are analyzed. Finally, the requirements the model places
on the implementation of the object layer are explained in detail. "

-- / . - . ,

-7

"K<. J i

14 SULECTT'ERM S. NUNISER OF PAGES

Object-oriented, database management systems, multilevel security, 28
trusted systems 16. PRICECOOE

17 SECuRITY CLASSIFICATION il SECU•ITY CLASSIFICATION 19 SE CRI1Y CLASSiFICFtOEN 20 LIMIfTAI1ON OF ABSTRACTOF REPORIT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASqSIFIED UNCLASSIFIED UL
NSN r54".1.2104500 $ M&-anr i-rgmh2 ado~

OMrwnM by 114i by n. SW'n1-al

-- 1-

ACKNOWLEDGEMENTS

This work was partially supported by the U. S. Air Force, Rome Air Develop-
ment Center through subcontract # RI-64155X of prime contract #i F3)(02-
88-D-0028, Task B-9-3622 with University of Dayton. We are indebted io
RADC for making this work possible.

.------------

AOceOsion For

NTIS GRA&T
DTIC TAB 0

lrml-ruunced C]
Jus~t lrcatloL

By__

VIastributi oz/
AvaLlability Cod.,

-i j~at !SPOClal

pi

-2-

ABSTRACT

This report concentrates on implementation issues associated with the security
model for object-oriented databases introduced by Jajodia and Kogan [.4]. The
discussion of the model is conducted from the implementation point of view.
Wu argue that, due to certain characteristics that our model possesses, its
implementation turns out to be a conceptually simple matter. We analyze two

alternative approaches to the subject of implementation. Finally, we explicate
the requirements that our model places on the implementation of the object
layer.

-3-

1. Introduction.

This report concentrates on implementation issues associated with the security

model for object-oriented databases introduced by Jajodia and Kogan 14]. The single

most important point that we will try to make here is that the nature of our nmodel is such

that it already contains the recipes for implementation. In other words, it would be wise

to consider the questions of the model and its implementation in a highly integrated way

rather than to place them at related but separate conceptual levels.

Because of the preceding consideration we think it advisable to start this report with

a brief but self-contained description of the model of [4].

The main motivation of our work in [4] was to construct a security model that

would integrate in a very natural way with an object-oriented model rather than juxta-

pose with it. To that end we decided to move away from the traditional object-subject

paradigm of Bel! and LaPadula [2] for mulilevel security. In its place we introduced a

new paradigm whose main elements were objects (in the new, object-oriented sense) and

messages.

In an object-oriented data model, the notion of object is rather different from the

Bell-LaPadula notion of object. Whereas the latter is simply a file, or a record, or a field,

the former can be regarded as a passive repository of data and, at tie same time, as an

active agent manipulating those data and communicating with other objects. It seems

natural, therefore, that such objects be viewed as units of security. Perhaps the most

important consequence of adopting such a view is that, due to the property of encapsula-

tion,t information flow becomes explicit (in the fonr of message exchange among

+ Encapsulation of objects - a fundamental property of object-oriented syŽ•tems - means that

only objects themselves can have direct access to their internal state (their attributcs). For anyone

-4-

objects) and, therefore, easy to control. Thus, the notion of encapsulation, which was ori-

ginally introduced in object-oriented systems to facilitate modular design, can now be

employed for purposes of security. The conceptual clarity and simplicity of the model

translates into simplicity of design of security mechanisms.

An informal view of the model describes the system as cons; ;ting of objects that are

assigned unique security classifications. Objects can communicate among themselves

only by means of sending messages. Messages cannot, however, flow directly from one

object to another. Instead, they have to be screened by a security module that decides

how to handle any given message based on the security classifications of the sender and

the intended receiver as well as some additional information. The rulings issued by this

module embody the security policy.

Section 2 is reproduced from [4]. In it, we define our formal object-oriented data

model. Section 3 is an exposition of the security model rendered in such a fashion as to

address implementation concerns more explicitly than it was done in [4]. Section 4

explains why our model is conceptually easy to implement in object-oriented environ-

ments. Section 5 discusses some alternatives for implementation of object-oriented data-

bases based on our model, particularly the issue of which elements of the system have to

be trusted. Section 6 addresses some requirements placed by our model on the imple-

mentation of the object layer. Finally, Section 7 ends this report with some concluding

remarks and observations.

else to access the object's state, it is necessary to send a message to that object.

-5-

2. Object-Oriented Data Model.

An object-oriented database is a collection of objects communicating via messages.

Each object consists of a unique identifier, a set of attributes and a set of methods, thc

latter being essentially pieces of code. Each attribute has a value, which can chanec over

time.

An object can invoke one of its methods in response to a message received fiomn

another object. A method invocation can, in turn, (1) directly access an attribuie hclong-

ing to the object (read or change its value); (2) invoke other methods belonging to the

object; (3) send a message to another object; or (4) create a new object.

There is a special type of object, called user object. A user object represents a user

session with the system. User objects adlner from regular objects in that, in addition to

being able to invoke methods in response to messages, they can also invoke methods

spontaneously.t User object can be created only by the system, at the login time.

Let us formalize now the central elements of the object-oriented data model. We

postulate a finite set of domains D t, D 2, ..., D,,. Let D be the union of the domains aug-

mented with a special elcment nil, i.e., D = D1 u D 2 u - u Dn u (nil). Every ele-

ment of D is referred to as a primitive object. Let A be a set of symbols called attribute

The notion of spontaneous method invocation may seem rather arbitrary at first. It is, however,

nccessaq! in order to avoid running into a version of the chicken-and-cgg paradox. Namely, if a
message can be. sent only through a method invocation (see property (3) of method invocations)
and if a method can be activated only by a message received from another object, then how does
any processing in such a system ever get initiated? (One has to insist that cither the egg or the
chicken come first.) In reality, we want a user to be able to initiate a system activity, e.g., by
typing a string of characters on the keyboard. This would serve as a signal for the corresponding
user object to initiate a method. We choose to think of this as a "spontaneous" initiation, because
the keyboard and any signals that it sends are external to our model.

-6-

names, I a set of identifiers, and M a sct of linite strings of code called methods. Let V be

a set of values defined as follows: V = D u I u 2!. That is, a value is either a primitive

object or an identifier or a set of idcntiticrs.

Definition 1. An object is either a primitive object or a quadruple o -i, a, v, p)

such that i e I, a = (a, ..., ak) where aj e A for all j (1 _<j5 <k), v = (v, ...1, Vk) where

vj E Vforallj (1 j 5 k), and g cM. 0

Definition 1 states that an object is defined by its identifier, an ordered set of attri-

bute names, an ordered set of corresponding values, and a set of methods. We assume

that every object has a unique identifier, i.e., for any two objects o, = (i, as v, ,i) anid

01 = (i, a1, v,, [t), o. = o, iff is = il. The uniqueness of object identity is commonly

considered a fundamental propertv of object-oriented syst... .. 1..

We will use the following notation in the foregoing discussion. Let

O= (i., a,, vs, g,) be an object. Then i (os) denotes the object identifier, i,; a (o,)

denotes the list of attributes, a,; v (o) denotes the list of attribute values, v,, and p(o,)

denotes the object's set of methods, its.

Definition 2. A message is a triple g (h, p, r) where hi is the message nane,

S P (P ... , Pk), k > 0, is an ordered set (list) of values called the message paramcters,

and r is the return value. 0

Similarly to the nctation used for objects, we let hi (g), p (g), and r(g) denote the

name, the parameter list, and the return value of message g respectively.

An object sends a message by invoking a system primitive SEND (g, i) where i is

the identifier of the receiver object. The value r(g) is computed by the method activated

-7-

in the receiver upon the arrival of g there and returned to the sender.'

In the literature on object-oriented data models, the response to a message is oftcr-

defined as a return object. We use the notion of variable instead, in order to avoid deal-

ing with the issue of accessing the state of the return object, which, in compliance with

the property of encapsulation, would have to be done via message sending (unless the

return object is a primitive object). Sending messages to an object that has been returned

in response to another message seems conceptually cumbersome. The notion of variable,

on the other hand, implies direct accessibility without the need to resort to message send-

ing. Of course, return variables should be allowed to have arbitrarily complex structure

if we do not want to lose the modeling power associated with objects.

Definition 3. The interface f, of object o is a function fo: 11 ---+ I[(o) U [vojid)

where H is a set of all possible message names. fl

The interface of object o determines which messages o responds to. Those are the

messages whose names, Ih, are such that f0(h) ;e void. If fo(It) = void, o does not

respond to messages whose name is It. Moreover, the interface determines which partic-

ular method, out of the set of methods, p(o), defined for object o, is to be invoked,

depending on the name of the given message.

We have defined methods as strings of code. Now we are in a position to give a

more formal definition of methods.

As we shall see in the next section, sometimes the security component of the system will have

to interfere :n the matter of computing r (g).

-.8-

Definition 4. Let o be an object. A ,elthod mn detincd for o (in Ei p) is a function

nP -- 2a() xV "x 2 x V where P is a set of all possible parameter lists. 0

Definition 4 states that a method maps a list of parameters into a triple. The first cle-

ment of the triple is a set (possibly empty) of attribute-name--attribute-value pairs where

the names are drawn from the set of the object's attribute names. The second element is

a set (possibly empty) of message-identifier pairs. The third element is a value.

In response to a message g = (h, p, r), an object o invokes a mcthod il C [1()

such that rn = f0(h) (we assume that fo(hi) ; void). Then, the value ,n (p) is computed

(this corresponds to executing the method's c)de with the argument list p). The compu-

tation results in m(p) ([(a 1 , v1) ..., (a,, Vs)}, [(gl, i,1), ..- (g 1 , it)), vj). The

semantics of this are as follows. Attributes a , ..., a, of o are updated with new values

v 1, ..., v, respectively; messages g , ..., g, are sent to the objects with identifiers i 1 ... , it

respectively; and vj is returned to the sender of g. Notc that for some k we could have

ik = i (o), i.e., an object can send a message to itself. This, for instance, can serve as a

mechanism for invoking other methods within the same object.

Objects are used to model real-world entities.t This is done by associating proper-

ties, or facets, of an entity with attributes of the corresponding object. The attribute

values are, then, instantiations of those properties. For instance, a country can be

represented in a geographic object-oriented database by an object a where a (o)=

(COUNTRYNAME, POPULATION, CAPITAL,, NATIONAILFLAG,

FORMOFGOVERNMENT) and v (o) = ("Albania", 117, i (), i (2), i(03)). T'he

"t As we will see later, a single entity may be modeled by more than one object.

-9-

values of the first and second attributes are a string and an integer, respectively; tile

values of the rest of the attributes are references to other objects that, in turn, describe the

capital, the national flag, and the form of government of the nation of Albania.

Note that an object's methods, unlike its attributes, do not have counterparts in the

real-world entity modeled by tile object. Tile purpose of methods is quite different. It is to

provide support for basic database functionality such as querying and updating objects.

A realistic object-oriented model should also contain the notion of constraints. For

instance, an attribute of an object may be allowed to assume values only from a restricted

subset of domains or object identifiers. To simplify the exposition, we choose to disre-

gard the issue of constraints in this report. I lowever, it should be a simple rmatter to incor-

poratc this notion in our security--data model.

3. Object-Oriented Security Model.

The system consists of a set 0 of objects (see Definition 1) and a partially ordered

set S of security levels with ordering relation <. A level Si E S is said to be dominated by

another level Sj e S, this being denoted by Si <- Si, if i = or Si < Si. For two levels Si

and Sj that are unordered by <, we write Si < > Si.

There is a total function L: 0 • S, called securitv classification function, i.e., for

every o c 0, L(o) c S. In other words, every object has a unique security level associ-

ated with it.

- 10-

3.1. Characterization of Information Flows.

Information can legally flow from an object o() to an object ok if and only if

. 1, od) < L o(I) All other infornation flows arc considered illegal.

It. 141 we identified basic types of information flow. They are as follows: forward,

backLward, transitive. and indirect tlows. The forward flow is carricd by a message in its

parameter list. The backward flow is associated with a message's return value. The tran-

sitive flov, is the net cflO'ect of sevcral forward or backward flows along a chain of objects.

"ihc indirect flow occurs betvween two objects that do not eXchange messages with each

other but, instcad, exchange messages with a third object; the latter is riot, howscic,

threctln atlectcd liv the flov, (unlik" the case of the transitive l•,ow).

As a:gucd in 14l. for an otbject to acquire intonuation, time viues of some ,f it,

asttributes ,,nust tx" changed Therefore, one can prevent an illegal forward infonnation

ilo%% b\ making sure that no such changes occur as a result of a nwthod invocation in

response it a message. Similarly, an illegal backward flow is prevented by returning uil

in response to a message. Note that nil is also retunied when the messyge is undeliverable

ftor whatever rcamon (e.g.. the targct object does not exist). Next, by definition, if no illc-

gal fomrx ard or backwaid tlow., are allowed, nO illegal transitive flow can occur either.

li-iall, toi pre ent illegal indirect information flows, one lutist ensure that a mcntho. P,

pre\ etlied Irein updatimg amn local attributcs iside the object if the mllellhod is invoked iMi

response io a me•sage from anotLer object tlhat is at a higher or umrclated sccurily level.

A

-11- I

3.2. Ths Message Filtering Algorithm

To control all the types of information flow described above, the message filtering

algorithm was introduced in 141. The idea that information flow be controlled by control-

ling the flow of messages requires that all basic object activity -- such as access to inter-

nal attributes, new object creation, and invocation of local methods - be implemented

by allowing an object to send messages to itself!t These are built-in, or system-defined,

messages. This means that a response to such a message is carried out directly by thei

systems, according to some pre-defined semantics, rather than by the invocation of a

user-defined metho..

Fo" easy reference, we reproduce here the message filtering algorithm of 14] (scc

l:igure 1).

In Figure 1, g =(h, p, r) is a message. Objects o-(il, a,, vi, tl) and

02 = i2, a 2 , V'2, p2) are the sender and the receiver of g respectively. The method

invocation ill o(responsible for sending g is denoted t 1. Finally, t2 is the invocation of

the method f,,(,h) in)2 after receiving g. Every method invocation t has a stats s (t).

The status is either U (unrestricted) or R (restricted). The default is U.

The message filtering algorithm is the core of our security model. The effect of

making this sCcurity-modeling choice is that all infomaation-transfer-related activity is

ri.ndered explicit in the formi of message sending. This has a direct rclation to the lueCS-

tion of implementation, for such activity is now subject to monitoring by a security

module called the message filter, whose functionality is based on the message fihl in..g

f Ilicre arc cxistinb, objcct-oriented database systems that, in fact, use this kind ol
implementation, e.g., GemStone.

-12-

algorithm.

4. Algorithmic Nature of the Model.

Our security model has one distinctive feature that makes the question of implemren-

tation relatively easy to address. That is the fact that virtually the entire model can be

expressed as one simple algorithm. When coded and implanted into the system that sup-

ports objects, this algorithm becomes a security module that we refer to as the mnessage

filter. The role of this module is to act as an interceptor for every message originated by

any object and decide how to process that message. Figure 2 shows the interaction

among objects as taking place with mediation on the part of the message Slter.

Thus, the model already contains the prescription for its own implementation. This

fact is due to the model's algorithmic nature. Note that this is in contrast with other

existing database security models, which are constraint-based. Models of the latter kind

require some additional work on mechanisms for enforcing those constraints before the

actual implementation can take place. In addition, those models probably could not be

implemented as a single module because the constraint checking would have to be done

in a number of different logical places.

5. Placement of Trust, or What to Rely on.

In this section, we discuss what is perhaps one of the central implementation ques-

tions for any secure system: which components of the system need to bc trustcd.

- 13-

CASEA: 0102

(1) ifL(ol) =L(o 2)

let g pass; s (t 2) <- s (t 1)

(2) ifL(o1)<>L(o 2)

block g

(3) ifL(o 1) < L(o 2)

letg pass; r +--nil; s(t2) +-S(t1)

(4) ifL(0 2) < L(ol)

let g pass; s (t 2) +-- R

CASEB: 0 1o02

(1) if h= WRITE

(L.a) if S(ri) = U

let g pass
(L.b) ifs(t 1) = R

block g

(2) if I = READ

let g pass

(3) if g = (CREAT, I v 1, Vk, **' Sj}

(3.a) if s(t1) = Uand (Si < L(o1) or S <> L(o 1)
let g block;

(3.b) ifs(t 1) = R

block g

(3.c) ifs(t 1) = UandL(o)! -Si

let g pass

(4) if h = INVOKE

let g pass; s (t2) *- s (t 1)

Figure 1. The Message Filtering Algorithm.

- a -

object object object

Message Filter

r

object

object

Figure 2.

5.1. The TDJ Approach: Complementing the Reference Monitor with

the Message Filter.

One approach to this question is dictated by the traditional notion of TDI (Trusted

Database Implementation). This approach relics on the underlying security kernel of the

operating system. The kernel is the trusted component that implemntcns the mandatory

access control in the context of multilevel security. The role of the database security

model in such a setting is to provide a high level (data-mode-l level) inu rprctation of the

security policy for database users.

In accordance with this approach, the central e nderlit Of OUr meul - telnessloe i---

- 15-

filter - does not have to be trusted, since the actual security enforcement is done at the

operating system level by the reference monitor. The latter checks all data access

requests submitted to the operating system by user processes to make sure that no viola-

tions of the access policy occur.

The TDI approach is the widely used way of dealing with database security require-

ments. Examples are the SeaView model [1, 3] and the security model for object-

oriented applications developed at SRI [6]. Our security model can be just as easily

implemented using the TDI approach as the above two. In this implementation, the mes-

sage filter would provide the database interpretation for the actual enforcement of the

security policy by the reference monitor. The reference monitor would have to be

trusted; h!e message filter wouldi not.

5.2. The High Level Approach: Replacing the Reference Monitor with

the Message Filter.

One of the advantages of our model, however, is that it also makes possible an alter-

native m.etho•,d o-If 11m.plcmcn.ting th. c systc.. . and placin.g trust an-log its -,i--ollel/ltls. I his

new method has potential advantages over the more traditional one. Below, we discuss

these advantages following the discussion of why the alternative method is feasible.

But first, it would be useful to compare the functionality and role of a message lilter

with those of a reference monitor. There is an interesting parallel between the two. The

function of both is to control information-transfer activity in the system, based on the

presumption that (1) all such activity is carried out using a predefined set of primitives,

- 16-

and (2) an instance of usage of a primitive can always be detected and acted upon

appropriately by the security module (a message filter or reference monitor) with the

objective of preventing illegal information flows. In the case of reference monitor, the

primitives are data access requests submitted to the operating system by an active process

(usually in the form of system calls). In the case of message filter, the primitives are mes-

sages sent by method invocations.

The majority of actual computer systems today are implemented using data access

calls. That is why the notion of reference monitor is both natural and effective.

Imagine, however, that messages replaced data access calls as the basic primitive.

Then it would be just as natural and easy to guard against illegal information transfer

using a message filter as it was using a reference monitor in the case of data access calls.

Such an assumption is not far fetched at all since systems exist built on the message send-

ing primitive [8].

Thus, when messages replace data access calls as primitives, a message filter should

replace a reference monitor as the enforcer of security. The placement of trust, then,

shifts from the latter to the former, i.e., the former must now be trusted and the latter

disappears completely. Such state of affairs seems quite favorable to our model of data-

base security as well as to the problem of secure object-oriented databases in general.

The reason for this is that there is no longer a separation between secrtity enforcement

and its interpretation: they have become one and the same. Thc messav, filter does not

rely any more on any underlying security kernel but rather enforcce security directly by

regulating the flow of messages among objects. This ý;ituation, we belie s, iw more

-17-

effective and reliable than a two-tiered implementation of the kind of TDI.

6. Object Security and Object Implementation.

In order for our approach to object security to be effective, the implementation of.

objects themselves must satisfy certain requirements. In other words, our security model

is not indifferent to how specifically the object layer is implemented.

This subject has been already touched at several points earlier in this report and

especially in [4]. In this secLfn° the subject is brought into focus an6 given a brief

unified treatment.

All such implementation requirements imposed by the security model can be

expressed in the following general form: Every object activity related to information

transfer must be implemented by message-passing. This means that in addition to

interaction among objects, message-passing must also be used for the following:

(1) reading of local attributes by an object,

(2) updating of local attributes,

(3) invocation of local methods, and

(4) inheritance (both class-instance and class-subclass).

When the above requirements are satisfied, all information activity in the system

can be checked directly by the message filter. As was mentioned in [41, some existing

object. oriented systems indeed implement access to local attributes and local method

invocation by having an object send a primitive message to itself. The situation is analo-

gous to a system where processes have to issue system calls in order to access data or

- 18,,

activate a procedure. Therefore, there is nothing unusual about these requirements.

Implementing the inheritance mechanism by means of message passing is not a new

concept either (e.g., see [7]). Its essence is in redirecting of a message sent to an object

such that the method called for is not physically located in the object. For example, all

the methods defined for a class of objects are stored within the class object for that class.

Therefore, when a message is sent to an instance of that class, it will be redirected to the

class object so that the needed method can be invoked there. Subsequently, if the method

invocation requires access to the instance object's attributes, messages will be sent to the

latter for that purpose. A further redirection of messages can occur if the method in

question is inherited from a superclass rather than defined locally for the class.

Thus, the requirements placed by our security model on the implementation of the

object layer are by no means unreasonable. However, the very fact that there are some

requirements will preclude using our model with just any objec!-oriented database. We

do not consider this a detriment, though, for the following reason. Our interest is in con-

structing an effective and comprehensive approach to security for object-oriented data-

bases, not just coming up with minimally functional mechanisms that can be fitted on top

of any existing database.

7. Conclusions.

We have attempted to present here an integrated treatment of the questions of secu-

rity modeling and security implementation in the context of object-oriented databases.

Such methodology seems particularly appropriate because the security model that we arc

-19-

using is, by its very nature, both abstract and implementation specific.

Perhaps, the most important novel idea found in this report is that of supplementing,

or perhaps even replacing, the traditional reference monitor with the message filter,

which seems to be a natural choice in object-oriented databases.

This report along with its companion report on the object-oriented data and security

models [4] represent an initial step in what we hope will be a long-term research effort

towards designing and building multilevel secure object-oriented databases.

References

1. Teresa F. Lunt , Roger R. Schell, William R. Shockley, Mark Heckman, and Dan

Warren, "A near-term design for the SeaView multilevel database system," Proc.

Syrnp. on Security and Privacy, pp. 234-244, April 1988.

2. D. E. Bell and L. J. LaPadula, "Secure computer systems: Unified exposition and

multics interpretation," The Mitre Corp., March 1976.

3. Dorothy E. Denning, Teresa F. Lunt, Roger R. Scheil, William R. Shockley, aiid

Mark Heckman, "The SeaView security model," Proc. Symp. on Security and

Privacy, pp. 218-233, April 1988.

4. Sushil Jajodia and Boris Kogan, "Integrating an object-oriented data model with

multilevel security," Report prepared for the Rome Air Development Center,

December 1989.

5. Setrag N. Khoshafian and George P. Copeland, "Object Identity," Proc. Conf. on

Object-Oriented Programming: Systems, Languages, and Applications, pp. 406-416,

- 20 -

1986.

6. Teresa F. Lunt and Jonathan K. Millen, "Secure knowledge-based systems,"

Interim Technical Report, Computer Science Laboratory, SRI International, August

1989.

7. Naftaly H. Minsky and David Rozenshtein, "A law-based approach to object-

oriented programming," Proc. Conf. (in Object-Oriented Programming: Systems,

Languages, and Applications, pp. 482-493, October 1987.

8. Andrew S. Tanenbaum and Robert vah Renesse, "Distributed Operating System,"

ACM Computing Surveys, vol. 17, no. 4, pp. 419-470, December 1985.

j -- i

MISSION

of
Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (0CJ) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of CVI systems. The areas of
technical competence include communications, command and
control, battle management iuformation processing, surveillance
sensors, intelligence data Collection and handling, solid state
.sciences, electromagnetics, and propagation, and electronic 72M
reliability/maintainability and compatibility.

",i.

,. ... ,. - -,,.- .- --

