ﬂ"u riLE COPY

2 o AD-A224 489

May 1990

IMPLEMENTATION ISSUES IN
MULTILEVEL SECURITY FOR
OBJECT-ORIENTED DATABASES

Goeorge Mason University

& Sushil Jajodila, Borls Kogan

" ~APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

| Rome Air Development Center
R Alr Force Systems Command
T E Grlffiss Air Force Base, NY 13441-5700

s

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releaszable tyu the National Technical Information Services (NTIS) At
'ﬁyig_it will be releasable to the general public, inclucing foreign natioms.

RADC-TR-90-92 has been reviewed and is approved for publicationm.

APPROVED: W\ \/ ﬂé—w“fmﬁ

JOSEPH V. GIORDANO
Project Engineer

wrROvED: émz 4 Wa(&‘

- .~ ZRAYMOND P. URTZ, JR.
Technical Director
.- Directorate of‘Coqmand & Control

j/
~FOR THE COMHARDER. va

—1“~IGOR G. PLONISCH
Directorate of Dlans & Pragrams

v —“", —ve s

IR TR

/t I 44

If your address has changed or if you wish to be removed from the RADC
malling list, or if the addressee iz no longer employed by your
organization, please notify RADC (COTD) Griffiss A¥FB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless coantractual obligatfons o
notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE G No, 07040188

P\ﬂc'ﬂ-:-u‘lr\-"n"“ d:- ..'. » '“;.."-lﬂ N vﬁ-ﬂﬁ “ o a n e) aFR oanewng sl
:-;::Emu—x:-' mr\;r e oc“:u--uu.nu-n w-':,m mmuzmm‘ -0
1. AGENCY USE ONLY (Laavo Bian) 2. REPCRT DATE 3. REPORT TYPE AND DATES COVERED
May 1990 Final Jun 89 to Dec 89
4. TITLE AND SUBTITLE 3. FUNDING NUMBERS
IMPLEMENTATION ISSUES IN MULTILEVEL SECURITY C -~ F30602-88-D-0028
FOR OBJECT-ORIENTED DATABASES PE - 35167G
, PR - 1068
6. AUTHCR(S) TA - 01
WU - P4
Sushil Jajodia, Boris Kogan
7. PERFORMING ORGANIZATION NAME(S) AND ADDRLES(ES) s ;Enpgmm 'oEnmmzmou
George Mason University
Dept of Information Systems & Systems Enginecring
4400 University Drive
Fairfax VA 22030-4444
0 SPONSOFINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING AMONITORING AGENCY
REPORT NUMBER
Rome Air Devalopment Center (COTD)
Griffiss AFB NY 13441-5700 RADC-TR-90-92
| 11, SUPPLENMENTARY NOTES '”
RADC Project Engineer: Joseph V. Giordano/COTD/(315) 330-2925
122. DISTRIBUTION/AVAILABILITY STATEMENT 120. UISTRIBUTION COOE

Approved for public release; distribution unlimited.

13. ABSTRACT (Muzarum 200 vworom)

This report concentrates on implementation issues associated with the security model

for object-oriented databases. The discussion of the model is conducted from the
implementation point of view. Certain characteristics the model possesses, make its
implementation a conceptually simple matter. Two alternative approaches to the
subject of implementaticn are analyzed. Finally, the requirements the model pldces
on the implementation of the object layer are explained in detail. ’1‘// oo
7]) 7‘ / 7‘* 4 g\ st 7 '.‘ I.'
/ s d /) AR AR \““(/’)"."T‘ BRARNE -)
. , . \ — A ’ ——— J /]‘ ;
SV . R T T A1 S N) o,
14 SUBJECT TEAMS 5. NUMBER OF PAGES
Object-oriented, database management systems, multilevel security, 28
trusted systems '8. FRCE CORE
Tr'gi'%ﬁ;hﬁmsswmnm . gE%nf:A%é\sswmnoﬁ 1] giﬁmhou 20. LIMITATION OF ABSTRACT
LUNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
e T e
NSN 7540-01.280-5500 Sianoarg rorm 28e 83022

Pronaoeg by AMEI S8 23, 1D
™m0

ACKNOWLEDGEMENTS

RADC for making this work possible.

This work was partially supported by the U. S. Air Force, Rome Air Develop-
ment Center through subcontract # RI-64155X of prime contract # F30¢02-
88-D-0028, Task B-9-3622 with University of Dayton. We are indebted 10

ﬂ"‘

Accession For Pd
NTIS GRAZIL &
DTIC TaB]
Unannzunced a
Justl:’:cntlon‘.__ﬁ_
By

L!Liggibutlon/]

=
i Ave}_llqbility Codegy
Avuliw{_th;i“/-or
Dist Specigl

ABSTRACT

This repon concentrates on implementation issues associated with the security
model for object-oriented databases introduced by Jajodia and Kogan [4]. The
discussion of the model is conducted from the implementation point of vicw.
We argue that, due to certain characteristics that our modcl possesses, its
implementation turns out to be a conceptually simple matter. We analyze two
alternative approaches to the subject of implementation. Finally, we explicate _
the requirements that our model places on the implementation of the object
layer. A

1. Introduction.

This report concentrates on implementation issues associated with the security
model for object-oriented databases introduced by Jajodia and Kogan [4]. The singie
most important point that we will try to make here is that the nature of our model is such
that it already contains the recipes for implementation. In other words, it would be wise
to consider the questions of the model and its implementation in a highly integrated way

rather than to place them at related but separate conceptual levels.

Because of the preceding consideration we think it advisable to start this report with

a brief but self-contained description of the model of [4].

The main motivation of our work in [4] was to construct a security model that
would integrate in a very natural way with an object-oriented model rather than juxta-
pose with it. To that end we decided to move away from the traditional object-subject
paradigm of Bell and LaPadula [2] for muliilevel security. In its place we introduced a
new paradigm whose main elements were objects (in the new, object-oriented sense) and

messages.

In an object-oriented data model, the notion of object is raiher different from the
Bell-LaPadula notion of object. Whereas the latter is simply a file, or a record, or a ficld,
the former can be regarded as a passive repository of data and, at the same time, as an
active agent manipulating those data and communicating with other objects. It scems
natural, therefore, that such objects be vicwed as units of security. Perhaps the most
important consequence of adopting such a view is that, due to the property of encapsula-

T

tion,' information flow becomes explicit (in the form of message exchange among

¥
Encapsulation of objects — a fundamental property of object-oricnted systems — means that
only objects themsclves can have direct access to their internal state {their auributes). For anyone

-4 -

objects) and, therefore, casy to control. Thus, the notion of encapsulation, which was ori-
ginally introduced in object-oriented systems to facilitate modular design, can now be
employed for purposes of security. The conceptual clarity and simplicity of the model

translates into simplicity of design of security mechanisms.

An informal view of the model describes the system as cons: sting of objects that are
assigned unique security classifications. Objects can communicate among themselves

only by means of sending messages. Messages cannot, however, flow directly from one

object to another. Instead, they have to be screened by a security module that decides
how to handle any given message based on the security classifications of the sender and

the intended receiver as well as some additional information. The rulings issued by this

module embody the security poiicy.

Section 2 is reproduced from [4]. In it, we define our formal object-oriented data
model. Section 3 is an exposition of the security model rendered in such a fashion as to
address implementation concerns more explicitly than it was done in [4]. Section 4
explains why our model is conceptually easy to implement in object-oriented environ-
ments. Section 5 discusses some alternatives for implementation of object-oriented data-
bases based on our model, particularly the issuc of which elements of the system have to
be trusted. Section 6 addresses some requirements placed by our model on the imple-
mentation of the object layer. Finally, Section 7 ends this report with some concluding

remarks and observations.

clse to access the ubject’s state, it is necessary 1o send & message 1o that object.

2. Object-Oriented Data Model.

An object-oricnted database is a collection of objects communicating via messages.
Each object consists of a unique identificr, a set of atrribures and @ set of rmethods, the
later being essentially pieces of code. Each attribute has a value, which can change over
time.

An object can invoke one of its methods in response to @ message received fiom
another object. A method invocation can, in turn, (1) directly access an auribuie belong-
ing to the object (read or change its value); (2) invoke other methods belonging to the

object; (3) send a message to another object; or (4) create a new object.

There is a special type of object, called user object. A user object represents a user
scssion with the system. User objects differ from regular objects in that, in addition to
being able to invoke micthods in response to messages, they can also invoke methods

spontaneously.Jr User object can be created only by the system, at the login time.

Let us formalize now the central elements of the object-oriented data model. We
postulate a finite set of domains D, D, ..., D,. Let D be the union of the domains aug-
mented with a special element nil, i.e., D =Dy uDy, v - - D, U {nl}. Every cle-

ment of D is referred to as a primitive object. 1.et A be a set of symbols called aurribuie

T The notion of spontancous method invocation may scem rather arbitrary at first. It is, however,
necessary in order o avoid running into a version of the chicken-and-egg paradox. Namcly, if a
message can be sent only through a method invocation (sce property (3) of method invocations)
and if a method can be activated only by a message received from another object, then how does
any processing in such a system cver get initiated? (Onc has to insist that cither the egg or the
chicken come first) In rcality, we want a user to be able 1o initiatc a system activity, ¢.g., by
typing a string of characters on the keyboarC. This would serve as a signal for the corresponding
uscr object to initiate a method. We choose to think of this as a "spontancous” initiation, because
the keyboard and any signals that it sends are external to our model.

-0 -
nanes, I a set of identificrs, and M a sct of finite strings of code called methods. Let V be

a set of values defined as follows: V =D Ul U2/, Thatis, a value is cither a primitive

object or an identifier or a set of identifiers.

Definition 1. An object is either a primitive object or a quadruple o = (i, a, v, 1)
suchthatie I,a =(a,, .., ay) where aie Aforall j(1£/<k), v =(vy, .., W) where

vje Viorall j(1<j<k),andpucM. O

Definition 1 states that an object is defined by its ideniifier, an ordered set of atrri-
bute names, an ordered sect of corresponding values, and a set of methods. We assume
that every object has a unique identifier, i.e., for any two objects o, = (iy, ay, vy, Uy) and
oy = (g, ag, v, W), o5 = o, it iy = i;. The uniqueness of object identity is commonly

considered a fundamental propernty o

e
)
&7
(¢4
[¢]
o
g
o
w3
-
(4
[oN
n
<
4]
P
(¢
:3
&
=
¥

We will use the following notation in the foregoing discussion. Let
os = (g, ag, vy, W) be an object. Then i(o,) denotes the object identifier, i;; a(oy)
denotes the list of attributes, ag; v(o,) denotes the list of attribute values, v, and n(o,)

denotes the object’s set of methods, |i,.

Definition 2. A message is a triple ¢ = (h, p, r) where I is the message name,
P =(P1s . P&), k 20, 1s an ordered set (list) of values called the message paramerers,
and r is the return value. O

Similarly to the nciation used for objects, we let 2 g), p(g), and r(g) denote the

name, the parameter list, and the return vaiue of message g respectively.

An object sends a message by invoking a system primitive SEND (g, i) where i is

the identifier of the receiver object. The value r(g) is computed by the method activated

-7-
in the receiver upon the arrival of g there and retumed to the sender.t

In the literature on object-oriented data models, the response to a message is ofen
defined as a return object. We use the notion of variable instead, in order to avoid deul-
ing with the issue of accessing the state of the return object, which, in compliance with
the property of encapsulation, would have to be done via message sending (unless the
return object is a primitive object). Sending messages to an object that has been retumed
in response to another message seems conceptually cumbersome. The notion of variable,
on the other hand, implies direct accessibility without the need to resort to message send-
ing. Of course, return variables should be allowed to have arbitrarily complex structure

if we do not want to iose the modeling power associated with objects.

Definition 3. The interface f, of object o is a function f,: H = p(o) L {void]

where H is a set of all possible message names. O

The interface of object o determines which messages o responds to. Those are the
messages whose names, #, are such that f,(h)#void. If f,(h) = void, o docs not
respond to messages whose name is 4. Moreover, the interface determines which partic-
ular method, out of the set of methods, (o), defined for object o, is to be invoked,

depcnding on the name of the given message.

We have defined methods as strings of code. Now we are in a position o give a

more formal definition of methods.

T As we shall see in the next section, sometimes the security component of the system will have
to interfere in the matter of computing r (g).

-8 -

Definition 4, Let o be an object. A method m defined for o (im e p) is a function

m: P — 28XV 5 36 x1 5 vy where P is a sct of all possible parameter lists. O

Definition 4 states that a method maps a list of parameters into a triple. The first cle-
ment of the triple is a set (possibly empty) of attribute-name—attributz-value pairs where
the names are drawn from the set of the object’s attribute names. The s¢cond element is
a set (possibly empty) of message—identifier pairs. The third element 1s a value.

In response to a message ¢ = (A, p, r), an object o invokes a method m e p(o)
such that m = f,(h) (we assume that f,(k) # void). Then, the value m (p) is computed
(this corresponds to executing the method’s ¢ yde with the argument list p). The compu-
tation results in m(p)=({(ay, vy) ., (ae, ve)l, { (g1, 01) ooy (& i}, vij. The
semantics of this are as follows. Attributes ay, ..., a; of o are updated with new values
Vi, ..., Vg respectively; messages g1, ..., g, are sent to the objects with identifiers iy, ..., I,
respectively; and v; is returned to the sender of g. Note that for some & we could have
iy =1(0),i.e., an object can send a message to itsclf. This, for instance, can serve as a
mechanism for invoking other methods within the same object.

Objects are used to model real-world entities.” This is done by associating proper-
tics, or facets, of an entity with attributes of the corresponding object. The attribute
values are, then, instantiations of those properties. Tor instance, a country can be
represented in a geographic object-oriented database by an object o where a(0) =
(COUNTRY_NAME, POPULATION, CAPITAL,, NATIONAL_FLAG,

FORM_OF_GOVERNMENT) and v(0) = (**Albania’, 117,i(0), i(03), i 03)). The

T As we will see later, a single entity may be modeled by more than one ebject.

-9.

values of the first and sccond attributes are a string and an integer, respectively; the
values of the rest of the attributes are references to other objects that, in turn, describe the

capital, the national flag, and tire form of government of the nation of Albania.

Note that an object’s methods, unlike its attributes, do not have counterparts in the
real-world entity modeled by the object. The purpose of metinods is quite different. Itis to
provide support for basic database functionality such as querying and updating objects.

A realistic object-oriented model should also contain the notion of constraints. For
instance, an attribute of an object may be allowed to assume values only from a restricted
subset of domains or object identifiers. To simplify the exposition, we choose to disre-
gard the issue of constraints in this report. However, it should be a simple matter to incor-

porate this notion in our security—data model.

3. Object-Oriented Security Model.
The system consists of a set O of objects (see Definition 1) and a partially ordered
set S of security levels with ordering relation <. A level §; € Sis said to be dominared by

another level §; € §, this being dencted by §; <S5, if i = jor §; < §;. For two levels §;

and SJ- that are unordered by <, we write S; <> S;.

There is a total function L: O = S, called security classification function, i.c., for
every o € O, L(0) e S. In other words, every object has a unique security level associ-

ated with it.

- 10 -
3.1. Characterization of Information Flows.

Information can legally flow from an ebject o, 1o an object oy if and only if
[.(0)) S Leog). All other information flows are considered illegal.

In [4) we identitied basic types of information flow. They are as follows: forward,
backward, transitve, and indirect lows. The forward flow 1s carricd by 4 message in its
parameter list. The backward flow is associated with a message’s retum value. The wran-
sitive flow s the net cffect of several forward or backward flows along a chain of chjects.
The indirect flow occurs between twe objects that do not enchange messages with cach
other but, instead, exchange messages with a third object; the latter is not, however,
darectly affected by the flow (unlike the case of the transitive flow),

As arpucd in [4) tor an object to acguire informauon, the vaiues of some of iy
atinbutes must be changed Therefore, one can prevent an illegal forward information
flow by making sure that no such changes occur as a result of a method invocation in
response o g message. Sumlarly, an illegal backward flow 1s prevented by returning nil
I 1esponse toa message. Note that sil is also returned when the message is undeliverable
for whatever reason (e.g., the target object does not exist). Next, by definiuon, if no ille-
pal ferward or bachward flows are allowed, no illegal transitive flow can occur either.
Fally, o prevent allegal indirect information flows, one must ensure that a method is

prevented trom updaimg any local attributes inside the object 1 the method is invoked

response 1o a message from another object that is at a higher or unrelated security level

-11-
3.2. The Message Filtering Algorithm

To control all the types of information flow described above, the message filtering
algorithm was introduced in [4). The idea that information flow be controlled by control-
ling the flow of messages requires that all basic object activity — such as access to inter-
nal attributes, new object creation, and invocation of local methods — be implemented
by allowing an object to send messages to itself.! These are built-in, or systern-defined,
messages. This means that a response to such a message is carried out dircctly by the
systems, according to some pre-defined semantics, rather than by the invocation of a
user-defined method.

For easy reference, we reproduce here the message filtering algorithm of [4)} (sce

Figure 1),

In Figure 1, g =(h, p, r) is a message. Objects oy = ({4, aj, vy, Y1) and
02 = (i),dz, vy, Hp) are the sender and the receiver of g respectively. The method
invocation in o responsible for sending g is denoted ¢;. Finally, 15 is the invocation of
the method f,,, (k) in 0, after receiving g. Every mcethod invocation 1 has a staws s (1).

The status 1s either U (unrestricted) or R (restricted). The default is U.

The message filtering algorithim is the core of our sccurity model. The effect of
LY
making this sccurity-modeling choice is that all information-transfer-related activity is

rendered explicit in the form of message sending. This has a direct relation to the ques-

tion of implementation, for such activity is now subject to monitoring by a sccurity

module calied the message filter, whose functionality is based on the message filering

There are existing object-oriented database systems 1hot, in fact, use this kind ol
implementation, c.g., GemStone.

algorithm.

4. Algorithmic Nature of the Model.

Our security model has one distinctive feature that makes the question of implemien-
tation relatively easy to address. That is the fact that virtually the entire model can be
expressed as one simple algorithm. When coded and implanted into the system that sup-
ports objects, this algorithm becomes a security module that we refer to as the message
filter. The role of this module is to act as an interceptor for every message originated by
any object and decide how to process that message. Figure 2 shows the interaction

among objects as taking place with mediation on the part of the message flier.

Thus, the model already contains the prescription for its own implementation. This
fact is due to the model’s algorithmic nature. Note that this is in contrast with other
existing database security models, which are consiraint-based. Models of the latter kind
require some additional work on mechanisms for enforcing those constraints before the
actual implementation can take place. In addition, those models probably could not be
implemented as a single module because the constraint checking would have to be done

in a number of difterent logical places.

5. Placement of Trust, or What to Rely on. ¥

In this section, we discuss what is perhaps one of the central implementation ques-

tions for any secure system: which components of the system need to be trusted.

-;'-‘E

-13-

CASEA: o0,#0>

(1) ifL(01)=L(07)
let g pass; s(1,) «s(1y)
(2) if L(01)<>L(037)
block g
3) if L(0,)<L(02)
let g pass;r « nil; s(17) «s(1ty)
(4) if L(02) <L{0))

let g pass; s (1) « R

CASEB: 0; =0, ;

(1) if h = WRITE
(1.a) ifs(ed=U
let g pass
(1.b) ifs(t;)=R
block g
(2) if h = READ
let g pass
(3) il g = (CREATE, { vy, v, ..., Sj}
(3.2) ifs(t1)=Uand(Sj<L(01)0rSj<>L(01)
let g block;
(3.b) ifs(ty)=R
block g
(3.0) if.\'(tl)=Uand[,(01)$Sj
let g pass
(4) if h = INVOKE

let g pass; s (1) «—s(11)

Figure 1. The Message Filtering Algorithm.

Al T B

object

object object

Message Filter

object object

object

Figure 2,

5.1. The TDI Approach: Complementing the Reference Monitor with

the Message Filter.

One approach to this question is dictated by the traditional notion of TDI (Trusted
Database Implementation). This approach relies on the underlying security kernel of the
operating system. The kernel 1s the trusted component that implements the mandatory
access control in the context of muliileve! security. The role of the database security

model in such a setting is to provide a high level (data-model level) intcrpretation of the

security policy for database users.

In accordance with this approach, the central element of our model — the message

-15-

filter — does not have to be trusted, since the actual sccurity enforcement is done at the
operating system level by the reference monitor. The latter checks all data access
requests submitted to the operating system by user processes to make sure that no viola-

tions of the access policy occur.

The TDI approach is the widely used way of dealing with database sccurity require-
ments. Examples are the SeaView model [1,3] and the security model for object-
oriented applications developed at SRI [6]. Our security model can be just as easily
implemented using the TDI approach as the above two. In this implementation, the mes-
sage filter would provide the database interpretation for the actual enforcement of the

security policy by the reference monitor. The reference monitor would have to be

trusteq: the messa

5.2. The High Level Approach: Replacing the Reference Monitor with

the Message Filter.

One of the advantages of our model, however, is that it also makes possible an alter-
native method of implementing the systcm and placi its components. This

new method has potential advantages over the more traditional one. Below, we discuss

these advantages following the discussion of why the alternative method is feasible.

But first, it would be useful to compare the functionality and role of a message filter
with those of a reference monitor. There is an interesting parallel between the two, The

funciion of both 1s to control information-transfer activity in the system, based on the

presumption that (1) all such activity is carried out using a predefined set of primitives,

<16 -

and (2) an instance of usage of a primitive can always be detected and acted upon
appropriately by the security module (a message filter or reference monitor) with the
objective of preventing illegal information flows. In the case of reference monitor, the
primitives are data access requests submitted to the operating system by an active process
(usually in the form of system calls). In the case of message filter, the primitives are mes-

sages sent by method invocations.

The majority of actual computer systems today are implemented using data access

calls. That is why the notion of reference monitor is both natural and effective.

Imagine, however, that messages replaced data access calls as the basic primitive.
Then it would be just as natural and easy to guard against illegal information transfer
using a message filter as it was using a reference monitor in the case of data access calls.
Such an assumption is not far fetched at all since systems exist built on the message scnd-
ing primitive [8].

Thus, when messages replace data access calls as primitives, a message filter should
replace a reference monitor as the enforcer of security. The placement of trust, then,
shifts from the latter to the former, i.e., the former must now be trusted and the latier
disappears completely. Such state of affairs seems quite favorable to our model of data-
base security as well as to the problem of secure object-oricnted databases in general.
The reason for this is that there is no longer a separation between securnity enforcement
and its interpretation: they have become one and the same. The messag: filter docs not

rely any more on any underlying sccurity kernel but rather enforces sceurity directly by

regulating the flow of messages among objects. This situation, we believe, is more

-17-

effective and reliable than a two-tiered implementation of the kind of TDI.

6. Object Security and Object Implementation.

In order for our approach to object security to be effective, the implementation of. -
objects themselves must satisfy certain requirements. In other words, our security model -

is not indifferent to how specifically the object layer is implemented.

This subject has been already touched at several points earlier in this report and
especially in [4]. In this secucn, the subject is brought into focus ana given a brief

unified treatment.

All such implementation requirernents imposed by the security model can be
expressed in the following general form: Every object activiry related to information
transfer must be implemented by message-passing. This means that in addition to

interaction among objects, message-passing must also be used for the following:
(1) reading of local attributes by an object,

(2) updating of local attributes,

(3) 1invocation of local methods, and

(4) inheritance (both class-instance and class-subclass).

When the above requirements are satisfied, all information activity in the system

can be checked directly by the message filter. As was mentioned in [4], some existing

object-oriented systems indeed implement access to local attributes and local method
invocation by having an object send a primitive message to itself. The situation is analo-

Zous to a system where processes have to issue system calls in order to access data or

- 18-
activate a procedure. Therefore, there is nothing unusual about these requirements.

Implementing the inheritance mechanism by means of message passing is not a new
concept either (e.g., see [7]). Its essence is in redirecting of a message sent to an object
such that the method called for is not physically located in the object. For example, all
the methods defined for a class of objects are stored within the class object for that class.
Therefore, when a message is sent to an instance of that class, it will be redirected to the
class object so that the needed method can be invoked there. Subsequently, if the method
invocation requires access to the instance object’s attributes, messages will be sent to the
latter for that purpose. A further redirection of messages can occur if the method in

question is inherited from a superclass rather than defined locally for the class.

Thus, the requirements placed by our secunity model on the implementation of the
object layer are by no means unreasonable. However, the very fact illzit there are some
requirements will preclude using our model with just any object-oriented database. We
do not consider this a detriment, though, for the following reason. Qur interest 1s in con-
structing an effective and comprehensive approach to security for object-oriented data-
bases, not just coming up with minimally functional mechanisms that can be fitted on top

of any existing database.

7. Conclusions.

We have attempted to present here an integrated trcatment of the questions of secu-
rity modeling and security implementation in the context of object-oriented databases.

Such methodology seems particularly appropriate because the security model that we arc

’ 19-

using is, by its very nature, both abstract and implementation specific.

Perhaps, the most important novel idea found in this report is that of supplementing,
or perhaps even replacing, the traditional reference monitor with the message filter,

o which seems to be a natural choice in object-oriented databases.

3 This report along with its companion report on the object-oriented data and security
models [4] represent an initial step in what we hope will be a long-term research effort

u towards designing and building multilevel secure object-oriented databases.

References

1. Teresa F. Lunt , Roger R. Schell, William R. Shockley, Mark Heckman, and Dan
Warren, ‘‘A near-term design for the SeaView multilevel database system,”’ Proc.
Symp. on Security and Privacy, pp. 234-244, April 1988.

2. D.E.Bell and L. J. LaPadula, *‘Secure computer systems: Unified exposition and
multics interpretation,”’ The Mitre Corp., March 1976.

3. Dorothy E. Denning, Teresa F. Lunt , Roger R. Scheil, William R. Shockley, and
Mark Heckman, ‘‘“The SeaView security model,”” Proc. Symp. on Security and

Privacy, pp. 218-233, April 1988.

Sushil Jajodia and Boris Kogan, ‘‘Integrating an object-oriented data model with

multilevel security,”” Report prepared for the Rome Air Development Center,

December 1989,

Setrag N. Khoshafian and George P. Copeland, “‘Object Identity,”’ Proc. Conf. on

Object-Oriented Programming: Systems, Languages, and Applications, pp. 406-416,

T

-20 -

1986.

6. Teresa F. Lunt and Jonathan K. Millen, *‘Secure knowledge-based systems,”
Interim Technical Report, Computer Science Laboratory, SRI International, August
1989.

7. Naftaly H. Minsky and David Rozenshtein, ‘A law-based approach to object-
oriented programming,”’ Proc. Conf. on Object-Oriented Programming: Sysiems,

Languages, and Applications, pp. 482-493, October 1987.

8. Andrew S. Tanenbaum and Robert van Renesse, “‘Distributed Operating System,”’

ACM Computing Surveys, vol. 17, no. 4, pp. 419-470, December 1985.

MISSION
of

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Controi,
Communications and Intelligence (C*l) activities. Technicel and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C°I systems. The areas of
technical competence snclude communications, command and
control, battle management tuformation processing, surverllance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagetior, and electronic
reliability/maintainability and compatibility.

