Title: UNCLASSIFIED: Electronic Instabilities of Two-Dimensional Metals \(\text{K}_{2}\text{CuS}_{6} \) and \(\text{Rb}_{2}\text{CuS}_{6} \)

Personal Authors: Hyekyung Ro and William E. Hatfield

Abstract:

The two-dimensional metals \(\text{K}_{2}\text{CuS}_{6} \) and \(\text{Rb}_{2}\text{CuS}_{6} \) show anomalies in their temperature dependent electrical conductivities which suggest charge-density waves. The band structure calculation of the mixed-valence CDW compound \(\text{K}_{2}\text{CuS}_{6} \) shows that the Fermi surface of the compound is mainly composed of sulfur \(p \) electrons. The results of the calculations are supported by XPS studies.
Electronic Instabilities of Two-Dimensional Metals

$K_3Cu_8S_6$ and $Rb_3Cu_8S_6$

by

HyeKyeong Ro and William E. Hatfield

The Department of Chemistry, The University of North Carolina at Chapel Hill, North Carolina, 27599, U.S.A.

Prepared for Publication in

NATO ASI SERIES

Mixed Valency Systems: Applications in Chemistry, Physics and Biology

Reproduction in whole or in part is permitted for any purpose of the United States Government

*This document has been approved for public release and sale, its distribution is unlimited.

*This statement should also appear in Item 3 of Document Control Data - DD Form 1473. Copies of the form are available from the cognizant contract administrator.
Electronic Instabilities of Two-Dimensional Metals, \(\text{K}_3\text{Cu}_8\text{S}_6 \) and \(\text{Rb}_3\text{Cu}_8\text{S}_6 \)

HyeKyeong Ro and William E. Hatfield

Department of Chemistry, CB#3290

University of North Carolina at Chapel Hill

Chapel Hill, North Carolina 27599-3290

ABSTRACT. The two-dimensional metals \(\text{K}_3\text{Cu}_8\text{S}_6 \) and \(\text{Rb}_3\text{Cu}_8\text{S}_6 \) show anomalies in their temperature dependent electrical conductivities which suggest charge-density waves. The band structure calculation of the mixed-valence CDW compound \(\text{K}_3\text{Cu}_8\text{S}_6 \) shows that the Fermi surface of the compound is mainly composed of sulfur \(p \) electrons. The results of the calculations are supported by XPS studies.

Introduction

Attention has been focussed on alkali-metal copper chalcogenides as candidates for new conducting mixed-valence materials. In 1952, Rudorff et al. [1] first reported these remarkable mixed-valence solids, \(\text{KC}_{u_4}\text{S}_3 \), \(\text{K}_3\text{Cu}_8\text{S}_6 \), and \(\text{Na}_3\text{Cu}_4\text{S}_4 \). The fact that all of these compounds show high electrical conductivities at room temperature (100~1,000 \(\Omega^{-1}\text{cm}^{-1} \)) and are mixed-valence in character has stimulated a growing interest in these materials. Brown et al. [2] reported the single crystal X-ray diffraction results and physical properties of \(\text{KC}_{u_4}\text{S}_3 \). \(\text{KC}_{u_4}\text{S}_3 \) has a double layer structure with copper-sulfur (\(S\text{-Cu-S-Cu-S} \)) linkages separated by potassium ions and exhibits metallic properties in its electrical conductivity. According to X-ray photoelectron spectroscopy (XPS) experiments [3], \(\text{KC}_{u_4}\text{S}_3 \) has only copper in oxidation state \(\text{Cu}(I) \) rather than mixed valence \(\text{Cu}(I) \) and \(\text{Cu}(II) \). Thus the valence state of \(\text{KC}_{u_4}\text{S}_3 \) can be described formally as \(\text{K}^+\text{Cu}^{+1}_4(\text{S}^2-)_2(\text{S}^-) \), a charge distribution which shows the mixed valence of sulfur atoms. The electrical and magnetic properties of \(\text{RbCu}_4\text{S}_3 \) and \(\text{CsCu}_4\text{S}_3 \), which are isostructure with \(\text{KC}_{u_4}\text{S}_3 \), have been reported by Ghosh et al. [4]. \(\text{RbCu}_4\text{S}_3 \) and \(\text{CsCu}_4\text{S}_3 \) also show metallic behavior with room temperature conductivities of 1,400 \(\Omega^{-1}\text{cm}^{-1} \) and 1,250 \(\Omega^{-1}\text{cm}^{-1} \), respectively. \(\text{Na}_3\text{Cu}_4\text{S}_4 \) has a one-dimensional (1-D) crystalline structure [5] which is composed of \([\text{Cu}_4\text{S}_4]^3^- \) chains separated by sodium cations. This compound shows metallic behavior in the temperature dependence of its electrical conductivity \((\sigma_{RT}=300 \Omega^{-1}\text{cm}^{-1}) \) without any phase transitions arising from the Peierls instabilities which
are typically found in 1-D metals [6]. Whangbo et al. [7] reported a band electronic structure calculation on Na$_3$Cu$_4$S$_4$, and used the results to examine the absence of abnormal electrical phenomena in this 1-D compound.

Recently, it has been reported [8] that the mixed valence metallic compound, K$_3$Cu$_8$S$_6$, which has a two-dimensional layered structure, exhibits two phase transitions, one at 153 K and a second one at 55 K. These were suggested to arise from charge-density wave instabilities. On the basis of XPS data for KCu$_4$S$_3$, it is expected that K$_3$Cu$_8$S$_6$ may have mixed valence sulfur i.e., S$^{2-}$ and S$^-$. Thus the charge distribution in K$_3$Cu$_8$S$_6$ can be written as K$^{+1}_{3}$Cu$^{+1}_{8}$(S$^{2-}$)$_5$(S$^-$). This leads to the conclusion that the conduction states of K$_3$Cu$_8$S$_6$ originate from the holes in the valence band, and it will be shown here that this has largely sulfur p orbital character. This is the first example of a material exhibiting the CDW phenomenon and which has sulfur p character in the Fermi surface. Usually, other 1-D CDW compounds, such as transition-metal dichalcogenides [9], transition-metal trichalcogenides [10], blue bronze [11], and KCP [12], have transition-metal d electrons in the conduction bands. In this report, the mixed valent states of K$_3$Cu$_8$S$_6$ and Rb$_3$Cu$_8$S$_6$ are examined by study of copper 2p core peaks using XPS. The temperature dependence of the electrical properties of K$_3$Cu$_8$S$_6$ and Rb$_3$Cu$_8$S$_6$ are also reinvestigated, and a band structure calculation on K$_3$Cu$_8$S$_6$ has been carried out to examine the electronic structure of Fermi surface.

Experimental Section

The preparation of K$_3$Cu$_8$S$_6$ is described in the literature [8]. A mixture of potassium carbonate, copper powder and sulfur powder, taken in a ratio of 6:1:6 was placed into an alumina crucible. The alumina crucible was tightly covered with an alumina cap and was placed inside a tube furnace. The tube furnace was flushed with argon for 1/2 hour before the reaction. A slow flow of argon was continued during the preparation to maintain an inert atmosphere during the reaction process. The reaction temperature of 825°C was reached with heating at the rate of 100°C/hour, and the reactants were soaked for 2 hours at 825°C. To obtain high quality crystals, a slow cooling process was used (50°C/hour). Blue-black shiny needles were separated from the polysulfides by washing with a deoxygenated 50:50 mixture of ethanol and distilled water. The crystals were thoroughly dried under vacuum. Rb$_3$Cu$_8$S$_6$ was prepared by using the same reaction condition as K$_3$Cu$_8$S$_6$, except that a mixture of rubidium carbonate, copper and sulfur in a ratio of 10:1:6 was used as reactants. The compounds were characterized by powder X-ray diffraction.

Temperature-dependent electrical resistances were measured by using the standard four-point probe technique. Samples for the conductivity measurements were pellets with a 6.5 mm diameter and approximately 1 mm thickness. Commercial probes (Alessi Industry) with a 1.25 mm probe spacing were employed. Constant current (5 mA) was
applied by using a Keithley Model 224 programmable current source, and the voltage drops were measured by Keithley 181 nanovoltmeter. Low temperatures were obtained by use of an Air Products Co. closed-cycle helium refrigerator.

XPS data were acquired by using a PHI 5400 XPS instrument manufactured by Perkin Elmer. Calibration of the instrument was done by using the Pt 4f\textsubscript{1/2} peak at 80.0 eV and the Cu 2p\textsubscript{3/2} peak at 952.6 eV. Excitation of a Mg anode was used for this work. The pass energy for the measurement was 35.8 eV, and the binding energy data were reproducible in the range of +0.1 eV.

Crystal Structure

The crystal structure of K\textsubscript{3}Cu\textsubscript{8}S\textsubscript{6} and Rb\textsubscript{3}Cu\textsubscript{8}S\textsubscript{6}, first solved by Burschka et al. [13], is shown in Fig. 1. These compounds are isostructural and have monoclinic symmetry with the space group C2/m. The basic structural unit of K\textsubscript{3}Cu\textsubscript{18}S\textsubscript{6} is an infinite [Cu\textsubscript{4}S\textsubscript{4}]n- chain with a slightly distorted trigonal planar Cu-S coordination. The [Cu\textsubscript{4}S\textsubscript{4}]n- chains follow the b axis in the unit cell. The [Cu\textsubscript{4}S\textsubscript{4}]n- chains which are bridged by edge-sharing tetrahedra result in the pleated layers which are separated by potassium atoms. There are two types of Cu-S coordination in the structure, threefold coordination within the [Cu\textsubscript{4}S\textsubscript{4}]n- chains and fourfold coordination within the bridging Cu-S bonds. The elliptical shapes at the fourfold Cu sites in Fig. 1 indicate that these sites are either disordered or that they have large thermal parameters. From a structural point of view, it is clear that there is an in-plane anisotropy in this layered structure. In the following section, it will be shown that how the low-dimensional structure is related to the anomalous electrical properties. It is interesting that the [Cu\textsubscript{4}S\textsubscript{4}]n- column structure is a fundamental unit in the structure of other alkali-metal copper (or silver) chalcogenides, like Na\textsubscript{3}Cu\textsubscript{4}S\textsubscript{4}, [5] KCu\textsubscript{3}S\textsubscript{2}, [14] and K\textsubscript{2}Ag\textsubscript{4}S\textsubscript{3} [15].
Figure 2. Resistance of a pellet of $K_3Cu_8S_6$ (a) and $Rb_3Cu_8S_6$ (b) as a function of temperature. The room temperature resistivities of $K_3Cu_8S_6$ and $Rb_3Cu_8S_6$ correspond to 3.3×10^{-3} Ωcm and 4.1×10^{-3} Ωcm, respectively.

Physical Properties

The temperature dependence of the resistance of a pressed pellet of $K_3Cu_8S_6$ is plotted in Fig. 2(a) for the range 20-300 K. The resistance decreases with decreasing temperature, indicative of metallic behavior, down to about 150 K. There is a second-order phase transition at 150 K as a result of the CDW phenomenon. The resistivity increase of CDW states, which accompany the lattice distortion, are due to the opening of a gap at the Fermi surface. According to the report by ter Haar et al. [8], there are
two phase transitions in a single crystal of $K_3Cu_8S_6$ at 150 K and 53 K, and these are second-order and first-order phase transition, respectively. The absence of a transition at 53 K in our data may be an experimental antifact arising from the fact that the conductivity measurements were carried out by using a pressed pellet rather than a single crystal.

Magnetic susceptibility and specific heat data for $K_3Cu_8S_6$ [8] also show the phase transition at the same temperatures detected in the conductivity curve. Although a CDW-driven phase transition generally results in anomalies in the temperature variation of the resistivity, magnetic susceptibility, and specific heat measurements, observation of a superlattice by electron, X-ray, or neutron diffraction confirms the modulation of the lattice due to the CDW state. A low temperature X-ray scattering study [16] of CDW waves in the $K_3Cu_8S_6$ shows that the second-order transition at 153 K corresponds to the onset of an incommensurate CDW with a wave vector of $q=(0, (1-\delta)/2, 0)$ (where δ measures the incommensurability) and the first-order transition at 55 K produce a new commensurate periodicity with a wave vector of $q=(1/2, 1/2, 0)$. The parameter δ shows a temperature dependence in the second-order transition region ($\delta=0.11$ at 153 K and 0.07 at 53 K).

One of the important properties of CDW is the possibility of a sliding motion of the CDW as first suggested by Fröhlich. Nonlinear conductivity below a threshold electric field, attributed to the sliding CDW, was first reported for NbSe$_3$ by Monceau et al. [17] Since then, a considerable amount of work has been done to explore the dynamics of moving CDW for NbSe$_3$ [18, 19] and other CDW compounds such as TaS$_3$ [20] and $K_0.3MoO_3$ [21, 22]. However, CDW dynamics, such as electric-field-induced motion of the CDW, was not observed in $K_3Cu_8S_6$ [16].

The temperature dependence of the resistance of the $Rb_3Cu_8S_6$ is shown in Fig. 2(b). $Rb_3Cu_8S_6$ also exhibits a phase transition at 120 K and the resistance turns down around 20 K. It is most likely that this phase transition is due to a CDW which has a similar origin as that of the isotypic compound $K_3Cu_8S_6$. Conductivity measurement provide the simplest method to search for anomalies due to the phase transitions. To ascertain that the phase transitions of $Rb_3Cu_8S_6$ are CDW instability, X-ray or neutron scattering studies are required.

Mixed-Valence States

Among a series of reported potassium-copper-sulfur compounds, $KCuS$ [23], KCu_4S_3, $K_3Cu_8S_6$ and KCu_3S_2, only KCu_4S_3 and $K_3Cu_8S_6$ provide mixed-valence examples. Usually, it is tempting to assign the mixed-valency to the transition metal. However, an early XPS study for KCu_4S_3 [3] shows that KCu_4S_3 contains only Cu(I). Fig. 3(a) shows the core level peaks of Cu 2p$_{1/2}$ and 2p$_{3/2}$ of $K_3Cu_8S_6$. The binding energy, the shape, and the line width of the signal correspond to those of monovalent copper. There is no evidence of Cu(II), which would show pronounced satellites in the higher binding energy region. Thus, $K_3Cu_8S_6$ can be described as
Figure 3. (a) Copper 2p\textsubscript{1/2}, 2p\textsubscript{3/2} photoelectron spectrum of K\textsubscript{3}Cu\textsubscript{8}S\textsubscript{6}. (b) Photoelectron spectrum of K\textsubscript{3}Cu\textsubscript{8}S\textsubscript{6} in valence band region.

K+\textsubscript{1.3}Cu+1.8(S2-)\textsubscript{5}(S-), a formulation which involves mixed-valence of sulfur.

The valence band region of the spectra of K\textsubscript{3}Cu\textsubscript{8}S\textsubscript{6} is shown in Fig. 3(b). A broad peak about 8 eV wide is assigned to the states which are mainly sulfur 3p character, and a narrow copper 3d peak about 3 eV wide is superimposed on the broader peak.

Band Structure Calculation

The conduction process of K\textsubscript{3}Cu\textsubscript{8}S\textsubscript{6} is different from that of other typical CDW materials. Typically, the metallic conduction of usual CDW materials, for example, transition metal dichalcogenides and transition metal trichalcogenides, originate from transition metal d electrons in the conduction band. However, it can be expected from the mixed valence S2- and S- in K\textsubscript{3}Cu\textsubscript{8}S\textsubscript{6}, that the metallic property of K\textsubscript{3}Cu\textsubscript{8}S\textsubscript{6} is due to the hole which is mainly sulfur p character in the valence band. Thus, the Fermi surface and CDW are originated from sulfur p electrons rather than copper d electrons. But, it is clear that covalence is very important in Cu-S bonds, and it is likely that the wave functions at the Fermi surface of this metallic compounds have considerable copper as well as sulfur character.

Band structural calculation were carried out to get some insight into the origin of the CDW states. Tight-binding band electronic structural calculation on the basis of the extended Hückel method were performed by using a program obtained from Quantum Chemistry Program Exchange (Program No. 571). The atomic parameters employed in this work are
Figure 4. Band electronic structure calculated for the 1-D lattice of $[\text{Cu}_8\text{S}_6]^{3-}$. The wave vectors Γ and Y are defined as: $\Gamma=(0,0,0)$ and $Y=(0,b^*/2,0)$.

shown in Table 1. The dispersion relations for the $[\text{Cu}_8\text{S}_6]^{3-}$ layer are shown in Fig. 4. In the dispersion relations of $[\text{Cu}_8\text{S}_6]^{3-}$ layer, the Fermi level cuts the top two bands, both of which are about 70% of sulfur 3p and 30% copper 3d in character. As expected, covalency of the copper-sulfur bond results in hybridization of the copper (Cu^{2+} and Cu^+) and sulfur (S^{2-} and S^-) electrons in the Fermi surface. However, the XPS result which shows no evidence of the existence of Cu(II), is not consistent with the band calculation. One of the interesting facts is that the top band is mainly composed of copper and sulfur orbitals which make up the tetrahedral bridges between $[\text{Cu}_4\text{S}_4]^{n-}$ chains. The main part of the second band is due to the copper and sulfur orbitals which compose the $[\text{Cu}_4\text{S}_4]^{n-}$ chains. As mentioned in the crystal structure section, the disorder of the bridging

Table 1. Atomic parameters used in the calculation

<table>
<thead>
<tr>
<th>atom</th>
<th>orbital</th>
<th>H_{ii}, eV</th>
<th>ξ_1</th>
<th>ξ_2</th>
<th>c_1</th>
<th>c_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>3s</td>
<td>-20</td>
<td>2.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3p</td>
<td>-13.30</td>
<td>1.817</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>4s</td>
<td>-11.4</td>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4p</td>
<td>-6.06</td>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3d</td>
<td>-14.00</td>
<td>5.95</td>
<td>2.30</td>
<td>0.5933</td>
<td>0.5744</td>
</tr>
</tbody>
</table>
copper (Cu3 in Figure 1) may play a main role in the phase transition of K₃Cu₈S₆.

The two-dimensional band calculation of [Cu₈S₆]³⁻ shows very weak dispersion along the direction which is perpendicular to the [Cu₄S₄]ⁿ⁻ chain direction in the [Cu₈S₆]³⁻ layer. Thus, it can be concluded that K₃Cu₈S₆ is a quasi-one-dimensional material in terms of both the crystal structure and electronic properties.

Conclusion

The mixed-valence inorganic compounds K₃Cu₈S₆ and Rb₃Cu₈S₆ show abnormal electrical properties as a result of the CDW instabilities. K₃Cu₈S₆ and Rb₃Cu₈S₆ are the first inorganic materials in which the charge carrier and the subsequent CDW have significant p character. The band calculation which we have presented here, reveals that sulfur 3p orbitals contribute significantly to the bands near the Fermi surface in the mixed compound K₃Cu₈S₆.

Acknowledgement. This research was supported in part by the Office of Naval Research.

References

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>3</td>
<td>Dr. Ronald L. Atkins</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Division, Code 1113</td>
<td></td>
<td>Chemistry Division (Code 385)</td>
<td></td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td></td>
<td>Naval Weapons Center</td>
<td></td>
</tr>
<tr>
<td>Arlington, VA 22217-5000</td>
<td></td>
<td>China Lake, CA 93555-6001</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>1</td>
<td>Chief of Naval Research</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Special Assistant</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. Bernard F. Douda</td>
<td></td>
<td>for Marine Corps Matters</td>
<td></td>
</tr>
<tr>
<td>Crane, IN 47522-5050</td>
<td></td>
<td>Code 00MC</td>
<td></td>
</tr>
<tr>
<td>Dr. Richard W. Drisko</td>
<td>1</td>
<td>800 North Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td></td>
<td>Arlington, VA 22217-5000</td>
<td></td>
</tr>
<tr>
<td>Code L52</td>
<td></td>
<td>Dr. Bernadette Eichinger</td>
<td>1</td>
</tr>
<tr>
<td>Port Hueneme, California 93043</td>
<td></td>
<td>Naval Ship Systems</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>2</td>
<td>Engineering Station</td>
<td></td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>Code 053</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>high</td>
<td>Philadelphia Naval Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>quality</td>
<td>Philadelphia, PA 19112</td>
<td></td>
</tr>
<tr>
<td>David Taylor Research Center</td>
<td>1</td>
<td>Dr. Sachio Yamamoto</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Eugene C. Fischer</td>
<td></td>
<td>Naval Ocean Systems Center</td>
<td></td>
</tr>
<tr>
<td>Annapolis, MD 21402-5067</td>
<td></td>
<td>Code 52</td>
<td></td>
</tr>
<tr>
<td>Dr. James S. Murday</td>
<td>1</td>
<td>San Diego, CA 92152-5000</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>David Taylor Research Center</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
<td>Dr. Harold H. Singerman</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annapolis, MD 21402-5067</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: Code 283</td>
<td></td>
</tr>
</tbody>
</table>
ORGANOELEMENT CHEMISTRY - Distribution List

Professor O. T. Beachley, Jr.
Department of Chemistry
State University of New York
Buffalo, NY 14214
R&T Code 4135002

Professor Herbert C. Brown
Purdue University
Department of Chemistry
West Lafayette, IN 47907
R&T Code 4135011

Professor Steven L Buchwald
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, MA 02139
R&T Code 4135014

Professor William E. Hatfield
Department of Chemistry
University of North Carolina
Chapel Hill, NC 27514
R&T Code 4135007

Professor M. Frederick Hawthorne
Department of Chemistry
405 Hilgard Avenue
University of California
Los Angeles, CA 90024
R&T Code 4135004

Professor Robert H. Neilson
Department of Chemistry
Texas Christian University
Fort Worth, TX 76843
R&T Code 4135005

Professor Kurt Niedenzu
Department of Chemistry
University of Kentucky
Lexington, KY 40506
R&T Code 4135003

Professor Richard L. Wells
Department of Chemistry
Duke University
Durham, NC 27706
R&T Code 4135008