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. TESTS OF INITIALIZATION PROCEDURES WITH THE NRL
JLIMITED AREA NUMERICAL WEATHER PREDICTION MODEL

1. INTRODUCTION

Various initialization procedures have been tested for use with the Naval
Research Laboratory's (NRL) Limited Area Weather Prediction system. The system
has been developed to study the development of extratropical cyclones, which
occurred along or off the East coast of the U.S. during the Genesis of
Atlantic Lows Experiment (GALE) and the Experiment on Rapidly Intensifying
Cyclones over the Atlantic (ERICA). Errors in the analysis (which can be due
to observational errors and unresolvable scales of motion) and inaccuracies in
the model physics give rise to inertia- gravity wave oscillations in numerical
integrations of the model. Such errors are reflected as unbalanced deviations
in the wind and mass fields, which generate freely propagating inertia-
gravity waves. For the external and first few internal vertical modes of the
numerical model, the phase speeds of these free inertia- gravity waves are
much larger than the speeds of meteorological systems. The resulting high
frequencj oscillations can be seen in the surface pressure for example, with

amplitudes as large as 5 to 10 mb.

Over the years, various methods have been used to reduce these high
frequency oscillations in integrations of numerical weather prediction models.
Among these, initial conditions used for integrations of the model are
sometimes modified or initialized by application of various filtering
equations. In the conventional static initialization performed on pressure
surfaces, horizontal scaling arguments are used to derive the non-linear mass
balance equation, which relates the geopotential and the stream function of
the non-divergent wind for the larger scale atmospheric motions (see Haltiner
and Williams, 1980, for example). In midlatitudes it has been customary to use
the observed geopotential heights to compute a statically balanced wind field,
assuming the wind is geostrophic at the lateral boundaries of the model (see
Bengtsson, 1975, for example). On the other hand in the tropics, the non-
divergent wind is used to derive a statically balanced temperature from the
geopotential (see Krishnamurti, 1679, for example). Since most numerical
weather prediction models use vertical coordinates different from the

pressure, these statically balanced mass and wind fields must be then
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interpolated to the model vertical coordinates, introducing some noise in the
initial conditions. Sundqvist (1975) used horizontal scaling arguments to
derive the non-linear mass balance equation directly on the vertical sigma
levels of his numerical model. In the normal mode initialization, used in
global numerical weather prediction models (Andersen, 1977, Daley, 1979,
Temperton and Williamson, 1981, Williamson and Temperton, 1981, for example),
the normal modes of the numerical model are computed and by projecting the
initial wind and mass fields (which have been interpolated to the model
coordinates) onto these normal modes, the high frequency inertia- gravity
waves can then be removed. However in limited area models, it is not possible
to define the horizontal structure of the normal modes. In the vertical mode
initialization scheme of Bourke and McGregor (1983), filtering conditions for
the inertia- gravity waves are applied to the model dynamical equations to
derive linear diagnostic equations for the mass divergence and generalized
geopotential for the first few vertical modes of the model. With the further
condition that the linearized potential vorticity 4is unchanged by the
procedure, the equations can be solved iteratively for the amplitude of the
high frequency gravity waves in the initial conditions. The scheme has been
shown to be an application of the normal mode initialization scheme used in
global models, without the horizontal structure of the normal modes having to

be computed (Juvanon du Vachat, 1986; Temperton, 1988).

To reduce the amplitude of these high frequency gravity wave oscillations
in the NRL model, several basic types of initialization procedures have been
used. A static initialization procedure, which had been developed for the NRL
model, is tested. With the future implementation of a wind profiling network
in the U.S., there is renewed interest in deriving geopotential heights from
the wind field in the midlatitudes. 1In the NRL scheme then, the n-.n-divergent
wind is first computed from the analyzed winds on the pressure surfaces. The
computed non-divergent wind and the analyzed temperatures are then
interpolated to the model vertical coordinates. A diagnostic relation for the
geopotential on the sigma surfaces of the numerical model is derived, by
setting the tendency of mass divergence to zero and ignoring vertical
advection and friction in the divergence equation. For the boundary condition

on the geopotential, we generalized the conventional geostrophic relationship,




deriving diagnostic conditions for the normal derivatives of the geopotential
by ignoring the tendencies of momentum in the momentum equations.

A second type of initialization procedure, based on the vertical mode
initialization scheme of Bourke and McGregor (1983), has also been developed
for the NRL model. As is customary, we keep the geopotential, temperature and
pressure fixed at the lateral boundaries of the model. To provide a boundary
condition for the mass divergence however, an approximate mass divergence is
computed along the lateral boundary using the thermodynamic equation. In our
scheme, changes in the tangential wind along the lateral boundaries are
consistent with the changes in the vorticity and divergence computed by the

scheme.

The effect of the split-explicit scheme, which is used for integration in
time in the NRL model, and the non-linear initialization procedures in
reducing gravity wave oscillations in integrations of the NRL model are
investigated. The influence of two different lateral boundary treatments and
two different grids of differing resolution and domain size are investigated.
In these integrations, idealized Dboundary conditions are obtained by
interpolation from operational analyses. To minimize the impact of noise from
the boundaries influencing the interior, the boundary conditions are derived
from initialized fields for the cases of integrations starting from
initialized fields.

The numerical model, the vertical modes, the split-explicit integration
scheme and the two different lateral boundary treatments are described in
section 2. In section 3, the static initialization procedure is described and
illustrated. The vertical mode scheme is then described in section 3. The
convergence of the scheme is also shown for the two different grids. A low
resolution grid with a resolution of 2° in longitude by 1.5° in latitude,
covers the continental U.S., and a high resolution grid of 0.5° resolution in
latitude and longitude covers the eastern U.S. In section 5, integrations with
the split-explicit scheme for time integration are compared with a centered
difference scheme on the high resolution grid, for uninitialized initial
conditions. Integrations with the split-explicit scheme are then compared for

varying degrees of static initialization. In section 6, integrations with




initial conditions, initialized with the vertical mode scheme, are compared to
integrations with uninitialized fields for both the low and high resolution
grids. Differences due to the different lateral boundary treatments are

compared. The results are summarized and discussed in section 7.




2. MODEL DESCRIPTION

The Naval Research Laboratory’s primitive equations model (Madala et al.,
1987) uses sigma coordinates in the vertical and incorporates topography and
physical parameterizations of the boundary layer and precipitation processes.
The model is integrated in time using the efficient split-explicit method
(Madala, 1981). In the horizontal, an Arakawa C grid (Arakawa and Lamb, 1977)
is used with a latitude and longitude grid. The finite difference scheme is a
second order quadratic conserving scheme. The model has been used for example
to study the east coast snow storm of 10-12 February, 1983 (Chang et al.,
1989). For experiments in this paper, ten layers of equal thickness (with
Ao = 0.1) are used in the vertical sigma (0) coordinate from the surface
(0 = 1) to the model top (0 = 0). The model includes large scale precipitation
and a cumulus parameterization using a modified Kuo scheme. Unstable lapse
rates are removed by a dry convective adjustment scheme following Manabe et
al. (1965). The boundary layer 1is parameterized using a drag coefficient

formulation, and second order horizontal diffusion is included.

Two different model grids are used £for the model. A low resolution grid
(called the US grid), with a resolution of 2° longitude by 1.5° latitude,
covers the continental U.S. in a domain from 140.0°W to 40.0°W and 10.0°N to
70.0°N. The other grid (called the GALE grid) is a high resolution grid of
0.5° resolution in latitude and longitude, covering the eastern U.S. from
102.5°W to 57.5°W and 22.5°N to 47.5°N. Analyses at 14 standard pressure
levels (from 50 to 1000 mb) on a 2.5° hemispheric grid from the National
Meteorological Center (NMC) provide the initial conditions and idealized
boundary conditions for model integrations in this paper. The NMC 2.5°
resolution hemispheric analysis is interpolated to the horizontal model grid
using Lagrangian cubic polynomial interpolation. The thermodynamic variables
are interpolated in the vertical to the model sigma levels assuming they are
linear in the log of the pressure, while the wind components are interpolated
assuming they are linear in the pressure. An enveloped topography is derived
for each model grid from the U.S. Navy's global 10 minute elevation data, by
computing the average height for each model grid square and adding one
standard deviation. On each model grid, the enveloped topography is then

filtered by wusing the two-dimensional triangular smoother-desmoother of




Shapiro (1970), -to filter out any wavelengths: in the topography of twice the
grid distance. For use with the vertical mode initialization scheme, the model
topography is further smoothed by using one pass of the two-dimensional nine
point triangular smoother (Shapiro, 1970). Climatalogical mean sea surface
temperatures for the month of January of one degree resolution, taken from

Reynolds (1982), are interpnlated to the model grids.
2.1 Vertical Modes of the Mode

In order to solve for the vertical modes of our numerical model, we
linearize about a basic state at rest with a mean temperature T*, which is a
function of sigma only, and separate the linear and non-linear terms in the
model dynamical equations. The model dynamical equations in flux form can then

be written in matrix notation as

BS:u
+ 6:’ = A, (2.1)
ot
BBZV
+ K = A, (2.2)
ot y
bpsr
— + D = (2~3)
5e ) Ay
op
—5 + NZT p = 0 (2.4)
ot
and the hydrostatic relation and continuity equation are written
$-4¢, = MT (2.5)
ps& = N D (2.6)

where column vectors are in bold type, M;, Mp, N; are matrices, and NpT
represents the transpose of vector Nj. The vertical sigma coordinate (o) is
defined by the ratio of the pressure p to the surface pressure pg (Phillips,
1957). The dynamical variables are in vector form, where the elements of the

vectors represent the values of the variables at each of the ten model sigma




levels for a single horizontal grid point. The vectors u, v represent the
horizontal wind, T the temperature and ¢ the geopotential, at each of the
model sigma levels, which are defined at the middle of each of the sigma
layers in the vertical. ¢g is the surface geopotential (at ¢ = 1). The
generalized geopotential & is defined as

® = pg(g-§5 + RT*-¢%) (2.7)
where the average geopotential '* on the sigma surface is related to the mean
temperature T* through the hydrostatic relation f* =M T*. The vertical
motion & in the sigma coordinate (0) is staggered in the vertical, being
defined at sigma 1levels at the boundaries between the vertical layers.
Subscripts representing the horizontal grid points on the C grid (see also
grid mesh in Fig. 2 in section 2.3) have been omitted for clarity. The x and y
coordinates are defined by multiplying the longitude and latitude in radians
by the average radius of the earth. The mass divergence D on the sigma

surfaces is defined on the C grid in our spherical coordinates by

5(h pPPu) + % 6 (B Pl v) (2.8)

Here the difference operator 6 is defined in the x direction, using the

generalized geopotential § as an example, by

®(x+Ax/2) - ®(x-Ax/2)
Gxi = (2.9)

h Ax
x

where Ax is the grid spacing for the x coordinate and hy (equal to the cosine
of the latitude for our coordinate) is the map factor for the x coordinate. A
similar difference operator is defined for the y coordinate, where the map
factor 1is hy = 1 in our case. An averaging operator is also defined in the x-

direction, using the surface pressure as an example, by

ps(x+Ax/2) + ps(x-Axlz)
= 2 (2.10)

—
Pg

A similar averaging operator is defined for the y-coordinate and a two

dimensional averaging can be defined as




-—X
- SZ (2.11)

Elements of the matrices M;, Mz, N; and the vector Ny are functions of sigma
only. The vectors on the right hand side (RHS) of Egs. (2.1), (2.2) and (2.3)
include Coriolis, friction, non-linear advection and disbatic terms. Details
of the vector and matrix elements can be found in the report by Madala et al.
(1987).

Solutions to the homogeneous equations (in which terms on the RHS of Egs.
(2.1), (2.2), (2.3) and (2.4) are zero) are freely propagating gravity waves.
Now eliminating all variables in the homogeneous equations except §, we obtain

3% @

2
— - V- @& = 0 (2.12)
Bc2 M,

vhere the matrix Mj is defined as My = M; My + (RT*-¢*)N,T and whose elements
are only functions of the vertical sigma coordinate and do not depend on the x
and y coordinates. In our x and y spherical coordinates, the two dimensional
Laplacian V2 is defined by

Ve =

= [

1 vy
g ax( hy 6x ) + hx 6 ( hx 5 &) (2.13)

Similarly, we can show that the mass divergence D satisfies the same equation
(2.12), while the vorticity of the background flow is not affected by gravity
wdve motions. The equation (2.12) is separable and by separating the vertical
structure, a set of vertical eigenmodes and corresponding eigenvalues can be
obtained (see also Kasahara and Puri, 1981, for example). In terms of our
matrix notation, the eigenvectors 'ék and corresponding eigenvalues ), are
found by solving the matrix equation

M3 € = Mg €. (2.14)
If E represents the eigenvector matrix (with each column representing an
eigenvector €y) of matrix M3, and A is the diagonal matrix with the diagonal
elements given by the eigenvalues ), , then we can write

M3 E = AE. (2.15)




and by multiplying Eq. (2.12) by the inverse of E we have

62

- A Ve = 0 (2.16)

N

ot

where e = E-1 & , and we have used the property of the eigenvector matrix that
E-1 My E = A, which can be easily verified by comparing the elements of
matrices M3 E and E A (see Strang, 1988, p254, for example). For each

vertical mode we have

-\ Ve - 0 (2.17)

where ex is the amplitude of the generalized geopotential and Ay is the

TABLE 1: Mean temperatures for 12Z January 23, 1986, on
sigma surfaces of 10 layer model for GALE grid.

Model Level Sigma Level Temperature
(°K)
1 0.05 205.9
2 0.15 214.0
3 0.25 222.1
4 0.35 236.1
) 0.45 249.4
6 0.55 259.4
7 0.65 266.6
8 0.75 271.9
9 0.85 275.9
10 0.95 278.4




TABLE 2: The equivalent depths and the phase speeds for
the vertical modes of a ten layer model for the
mean temperature profile defined in Table 1.

Mode No. Equiv. Depth Phase Speed

(meters) (meters s'l)
1 9,399.0 303.5
2 1,508.0 121.6
3 226.6 47.1
4 85.7 29.0
5 30.3 17.2
6 13.7 11.6
7 6.4 7.9
8 2.7 5.1
9 0.9 3.0
10 0.2 1.3

eigenvalue for the kN mode. Eq. (2.17) is a wave equation describing the

propagation of the free gravity mode whose phase speed ¢ is given by fi;.
In the linearization used here to obtain the gravity modes, the Coriolis term
is combined with the non-linear terms, and as such the gravity modes are
applicable only for high frequencies or small time periods compared to the
period of inertial oscillations. However it can be noted that the vertical
structure of the modes derived in this case is unchanged even if the Coriolis
terms are included with the linear terms on the left hand side of Eqs. (2.1)
and (2.2). In this case the linearization defines the inertia- gravity modes

(see section 4.1).
As an example the eigenmodes are computed for the ten layer model using a

.emperature profile taken from the NMC 2.5° hemispheric analysis for 122

January 23, 1986 during the second Intensive Observing Period (IOP) of GALE.
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The temperatures are interpolated to the model grid and averaged on the sigma
surfaces over the GALE grid covering the eastern U.S. The average temperatures
on the model sigma levels at the middle of each layer are shown in Table 1.
The eigenvalues and the phase speeds for each of the ten vertical modes
computed are shown in Table 2. The eigenvalues are given in terms of
equivalent depths defined by )Ax/g , where g is the acceleration due to
gravity. The corresponding vertical structure for each of the modes is shown
in Fig. 1. The number of zero crossings in the vertical structure of each mode
is given by the mode number minus one. The phase speeds of the modes vary
from 303.5 m s-1 for the external (first) mode to 1.3 m s-1 for the tenth
mode. For the first three modes, the external mode and first two internal
modes, the phase speeds are much faster than typical meteorological systems,
which are typically less than 20 m s-l. Then to integrate a model with a
centered difference scheme in time and a grid spacing Ax, the time step 2 At
must be small enough to satisfy the CFL condition 2 At (U+c) / Ax € 1, for
the external gravity mode which has the fastest phase speed c, and where U is
a maximum advecting wind speed (see for example Mesinger and Arakawa, 1976,
pS1). To allow the NRL model to be integrated more efficiently at a larger
time step, more appropriate for meteorological systems, the split-explicit

scheme was developed.

2.2 Split-Explicit Time Integration

In the split-explicit method of Madala (1981), a centered difference
scheme is used with a large time step to compute initial estimates of the
tendencies of the model variables for all the terms, except for diffusion
which uses forward differencing. The time step satisfies the CFL condition for
the phase speed of the 4th gravity mode. To step the model variables at time
t - At forward in time by 2 At, using the centered difference scheme, the non-
linear terms and forces are computed at time t. These first estimates of the
tendencies of the mass (surface pressure pg, temperature T) and wind fields
(u, v) are then corrected for the motion of the higher frequency gravity
modes, assuming that the computed non-linear, Coriolis, diabatic and friction
forcing terms are constant during the time step of 2 At. The specific humidity

q is not corrected. To obtain the corrections, the amplitudes of the

deviations of the divergence D - D(t) and the generalized geopotential




® - §(t) are integrated over the interval of 2 At at smaller time steps, for
each of the first three vertical modes. For the external mode a time step of
At/8 is used, while for the first two internal vertical modes time steps of
At/4 and At/2, respectively, are used. The average of these deviations, over
the interval of twice the large time step 2 At, is then used to correct the
initial explicit estimate of the variables. Further details can be found in
the Appendix. For the integration of the deviations of the divergence a
lateral boundary condition is also required for the generalized geopotential.
A boundary value for & - #(t) is computed by a linear interpolation from the
boundary values at t-At and t. Further pragmatic boundary conditions are
provided by reducing the amplitude and phase of the deviations of the
divergence and generalized geopotential in a boundary zone (see the Appendix).
Besides providing a 4 to S5 times saving in computer time over explicit
methods, the averaging of the lower gravity wave eigenmodes can be expected to

reduce the amplitude of the freely propagating higher frequency gravity waves.

2.3 Latera oundary Conditions

To update the large scale flow at the horizontal boundaries during the
integration of the NRL model, externally prescribed boundary conditions are
required for both the u and v components of the wind field and the mass and
humidity fields. In the model, the mass and humidity variables of surface
pre’ sure pg, temperature T, geopotential ¢ (or generalized geopotential §),
and specific humidity q are defined at the 1lateral boundary. The wind
components are staggered in the C grid and as applied to the NRL model, the
tangential wind is defined at the boundary, while the normal wind is staggered
half a grid point in from the boundary (see Fig. 2). 1In this paper two
different lateral boundary treatments, the tendency relaxation scheme of
Perkey and Kreitzberg (1976) and the Davies (1976, 1983) relaxation scheme,
are used and compared for use with various initialization procedures. To
provide the model boundary conditions in our experiments, idealized boundary
values and tendencies are derived from the NMC 2.5 degree hemispheric
analyses, interpolated to the model grid.

(a) Perkey Kreitzberg scheme.
In the Perkey Kreitzberg scheme, model computed tendencies for each of the

dependent variables are blended with specified boundary tendencies in a

12




boundary zone of 5 points. After each time step, the model tendencies for each
of the independent model variables are adjusted according to

8a fa 3
)

a
_— = (l-a) [ —_— + a [ — (2.18)
ot 8t Jm t Jb

where a is the independent model variable ;zu. ;Zv. Ps» PsT, or pgq,
subscript m represents the model computed value, and subscript b the
prescribed boundary value. @ is a 1linear function of the minimum distance (n)
from the lateral boundary, in units of the grid spacing. As in Chang et al.
(1989), we use for the mass and humidity variables (that is, for pg, pgT. Psq)

1- 2 for n¢s
a = (2.19)

0 for n> S5

wni

while for the wind components ;:u. ;ZV. which are staggered on the grid mesh,

we use

{ 1 for n § 0.5
a =
u

-x (2.20)
a for n21
1 for n £ 0.5

e, = ) (2.21)
@7 for n21

The boundary tendencies, derived from the twelve hourly NMC analyses, are
updated every twelve hours of model integration.
(b) Davies scheme.
In the Davies scheme, computed model variables are relaxed to the boundary
values themselves at each time step in a boundary zone of 6 points. In this
case, the model variables are adjusted at each time step according to

a = (l-a) a; + @ ap (2.22)
where, following Gré¢nas et al. (1987), we define @ as a quadratic function of
the minimum distance (n) from the lateral boundary, in units of the grid

spacing. For the mass variables we use

13




1l for n=0
6.5 n 2
a = [ —4—33—- ] for 1$n¢gS5 (2.23)

0 for n2 6

The functions @, and a, for the u and v components of the wind field are
defined similarly as in Egqs. (2.20) and (2.21), using the averaging operators
in the x and y coordinate directions, respectively. At each time step, the
boundary values are computed by a 1linear interpolation in time from the 12

hourly NMC analyses.
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3. STATIC INITIALIZATION

In the static initialization procedure used at NRL, a diagnostic
relationship is derived for the geopotential on the sigma surfaces of the
model. The non-divergent wind is first computed for the analyzed winds on the
pressure surfaces. The NRL model differs from many other limited area models
in that the tangential wind is specified at the lateral boundary of the model,
instead of the normal wind. To compute the non-divergent wind then we solve
for the stream function, assuming that the tangential wind along the lateral
boundary is purely non-divergent. The non-divergent wind and the analyzed
temperatures are then interpolated to the sigma coordinates of the model. A
diagnostic relation is then derived for the geopotential on the sigma surfaces
of the numerical model, by ignoring the tendency of divergence, vertical
advection and friction. The initial non-divergent wind and analyzed
temperatures, interpolated to the sigma surfaces, are used to compute the non-
linear forcing terms. Boundary conditions for the normal derivatives of the
geopotential are obtained by ignoring the tendencies in the momentum

equations.

3.1 Non-Divergent Wind on Pressure Surfaces

For large scale atmospheric motions, the divergence of the velocity field
is an order of magnitude smaller than the vorticity. To a first approximation
then, the flow can be considered non-divergent on surfaces of constant
pressure. On pressure surfaces, the vorticity Sp and divergence Dy are defined

on the model horizontal grid as

1
1
S-p = hy 6x( hy v) - = Gy( h u) (3.1)
X
- 1 1 7Y
Dp hy 6:‘ hy u) + h_ dy( hl v ) (3.2)

where u and v are the analyzed wind components on a pressure surface,

interpolated to the horizontal grid of the model. The non-divergent flow can
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then be described by introducing a stream function ¢, so that the non-

divergent wind components uy and vy at that pressure level are given by

ug = - y, (3.3)
vy = Oxy
By computing the vorticity on the pressure surface, we can solve Poisson’s
equation,
2y = ¢ (3.4)

for the stream function ¢, and whence for the non-divergent wind. To provide
boundary coﬁditions for the stream function, we assume that the analyzed
tangential wind along the boundary of our model domain is purely non-
divergent. Then we obtain the Neumann boundary conditions for the stream
function

6,1 = -u atys=yg, y1 (3.5)

0xy = v at x = xp, X3
where yg, yj give the southern and northern lateral boundaries and xg, x; give
the western and eastern boundaries. In this case the stream function is not
unique, since adding a constant value to the solution of the stream function
is also a solution. As described in the report of Sashegyi and Madala (1989),
to obtain a unique solution for the stream function, we prescribe a value for
the stream function ¢ = 0 at a single arbitrary point on the boundary and use
the elliptic equations solver of Madala (1978, 1981). Choice of a zero value
as a first guess of the solution of the stream function then leads to the

efficient convergence of Madala's elliptic equations solver.

As eloquently described by Lynch (1989), the partitioning of the wind into
the divergent and non-divergent parts is not unique in a limited area domain.
The choice of using the tangential wind on the boundary to describe the normal
gradient of the stream function, minimizes the kinetic energy in the divergent
wind and does not lead to a mixed divergent and non-divergent term in the
kinetic energy balance. It can be noted that choice of defining the normal
wind at the boundary in some models, instead of the tangential wind used in
the NRL model, leads to solving Poisson's equation

V2y = pp (3.6)
for a velocity potential )y, which defines the divergent compcnent of the wind.
The non-divergent wind is then computed by subtracting the divergent component

from the original wind field. For the boundary conditions in this case, it is
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assumed that Y = 0 at the lateral boundaries, that is, it is assumed that the
divergent component of the wind is zero on the boundary.

3.2 Static Non-Linear Mass Balance

For large scale atmospheric motions, the time tendency of the divergence
is small compared to the other terms in the divergence equation. A diagnostic
equation for the geopotential on the sigma surfaces of the model can then be
derived by ignoring this term. We can rewrite the model momentum equations
(2.1) and (2.2) in the form

aox
Pgu -x =
_;:_ * P 5:' + RT prs = N, (3.7
A S
- + P 6yf + RT ﬁyps = N, (3.8)

where we have included the non-linear advection of momentum, the Coriolis
force and friction in the terms on the RHS. The equation for the mass
divergence on the sigma surfaces is then obtained by taking 6, of hy times Eq.
(3.7) and adding 6y of hy times Eq. (3.8) giving

oD
g- + VO[pSV(f-ﬁs)] - N - Ve [RT Vps + pszs] (3.9)
t

where the horizontal geopotential gradient is given by V¢ = (6,4, 6y$) and

we have utilized the two dimensional divergence operator V to define

- S § 1 Ty
Ny v-nv hy Jx( hy N+ h_ Gy( hl N ) (3.10)
- 3 ox 1 o A
Vo(psw) hy 6x( hy P, 5:' ) + hx Jy( hx P, 6y¢ ) (3.11)

Here we have also defined the vector Ny by Ny = (N,, Ny). Since the time

tendency of the divergence is assumed small compared to the other terms in the
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mass divergence -.equation (3.9), we can ignore this term. That is, setting the

tendency of the mass divergence zero in Eq. (3.9), we have

V-[psv(¢-¢s)] = N, - Ve [RT Vps + psV¢s] (3.12)

To compute the term Np, we first compute the non-divergent wind on the
pressure surfaces, as described in section 3.1. The non-divergent wind and the
analyzed temperatures are then interpolated to the sigma surfaces of the model
(see the beginning of section 2 on the model description). The non-divergent
wind is then used to compute the terms on the RHS of Egqs. (3.7) and (3.8)
ignoring vertical advection and friction (leaving horizontal advection and
Coriolis forces). The analyzed temperatures and a surface pressure computed on
the model topography by interpolation are wused to compute the remaining
forcing terms on the RHS of Eq. (3.12).

To solve Eq. (3.12), boundary conditions are required for the
geopotential. To obtain the boundary conditions we ignore the tendencies of
the u and v momentum in Eqs. (3.7) and (3.8) to obtain the Neumann boundary

conditions for the geopotential

P, 0. (#$) =~ B - RTOEp -, 04 (3.13)
at x = x, + A§ v X, - A% and
v 6 (44 = N - R iyﬁyps - 7 6.4, (3.14)

where y = yg, y3 give the southern and northern lateral boundaries and x = xg,
x1 give the western and eastern boundaries. In Fig. 2, our boundary conditions
for the geopotential gradient are defined along the lines given by the shorter
dashes, half a grid point in from the lateral boundary. Essentially, we have
generalized the conventional geostrophic boundary condition relating the
gradient of the geopotential to the geostrophic wind, by wusing the non-

divergent wind and including the non-linear horizontal advection term. The
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elliptic equation (3.12) can now be solved £for the geopotential using the
Neumann boundary conditions (3.13) and (3.14) with an elliptic equations
solver, such as the Stabilized Error Vector Propagation (SEVP) solver (see
Madala, 1978; Sashegyi and Madala, 1989). For the SEVP solver, the initial
geopotential derived from the observed temperatures is wused to provide the
prescribed value at a point on the lateral boundary (to give a unique

solution) and to provide the first guess for the solver.

The balanced temperatures on the sigma surfaces are then found from the
balanced geopotential, by inverting the hydrostatic equation. Use of the
hydrostatic equation to compute the temperature introduces a 2 Ao saw tooth
wave structure in the vertical temperature profile. To remove this buckling,
deviations of the temperatures T' from the mean temperature T* are computed at
sigma levels at the boundaries of the vertical layers (half way between the
model sigma levels).

R -
T - T.-. o (3.15)

The corrected temperatures are then obtained by adding the deviations
(interpolated back to the model sigma levels) to the mean temperature and

removing the mean of the deviations, so that the mean is unchanged.
T = T + T - <T > (3.16)

where < > is the horizontal average over the model domain on the sigma

surface.
3.3 lication of Stati nitialization

As an illustration of the scheme, the analyzed winds and temperatures,
taken from the NMC analysis for 122 January 23, 1986, are first interpolated
to the model horizontal GALE grid for each of the 14 standard pressure levels
from 50 to 1000 mb in a domain covering the eastern U.S. The horizontal
resolution of the GALE grid is 0.5° in latitude and longitude in a domain
102.5°W to 57.5°W and 22.5°N to 47.5°N. The non-divergent wind is then
computed as outlined above in section 3.1. 1In Fig. 3a we show the root-mean-

square (rms) changes that result in the wu-component of the wind field after
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computing the non-divergent wind. Changes in the v-component of the wind field
are similar. We see that average changes in the wind field are 2 m s-1 in the
upper troposphere and 1.0 to 1.5 m s-1 in the middle and lower troposphere.
The non-divergent wind and analyzed temperatures on the 14 standard pressure
levels are then interpolated in the vertical to the ten model sigma levels.
Our diagnostic equation for the geopotential is then used to compute a
balanced geopotential on the sigma surfaces. In Fig. 3b we show the rms
changes in the temperature at each of the model sigma levels resulting from
solving for the non-linear mass balance. Changes in the temperature in the
upper troposphere of 1°C reduce to 0.5°C in the middle troposphere. However in
the lower troposphere large changes of 4.0°C are found. For comparison, the
actual analyzed winds and temperatures are interpolated to the model sigma
levels. In Figure 4, we compare the wind and temperature fields for the
analyzed fields and the statically initialized fields, after having
interpolated them back to 500 and 1000 mb pressure levels for display. At the
500 mb level, the temperature changes are small although the small trough is
weaker as a result of the non-linear mass balance. At the 1000 mb level
however the strength of the front is greatly weakened by the scheme, as is

reflected in the large rms change in temperature seen in Fig. 3b.
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4. IMPLICIT NORMAL MODE INITIALIZATION

We follow the vertical mode initialization scheme of Bourke and McGregor
(1983) by using the model dynamical equations to filter out the high frequency
inertia- gravity waves. Filtering conditions are applied to the model
dynamical equations to derive linear diagnostic equations for the mass
divergence and generalized geopotential, which are solved iteratively for the
first three vertical modes of the numerical model. The further condition that
the linearized potential vorticity is unchanged by the procedure is required
to compute the vorticity. Boundary conditions on the generalized geopotential
and mass divergence are required. As is customary, we keep the geopotential,
temperature and pressure fixed at the lateral boundaries. To provide a
boundary condition for the divergence, an approximate divergence is computed
using the thermodynamic equation. In our scheme, changes in the tangential
wind along the 1lateral boundaries are consistent with the changes in the

vorticity and divergence computed by the scheme.

4.1 Inertis- Gravity Wave Modes

We express the dynamical equations in terms of the time tendencies of mass
weighted vorticity, divergence and generalized geopotential, linearized about
the basic state at rest with mean temperature T*. The equations, with the ﬂ

term included with the non-linear terms on the RHS, are

3¢
— + £fD = A (4.1)
3t Y

()} 2
— + Ve - £¢ = (4.2)
ot AD

o
— + D = A (6.3)
Ot & ¢

Here f is the Coriolis parameter, which is a function of latitude and we have

further defined the mass weighted vorticity ¢ on the sigma surfaces as

6(hx;:u) (4.4)
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In the equations we have ignored the staggering of the vorticity and mass

divergence relative to the generalized geopotential.

The freely propagating inertia- gravity waves in the model are solutions
to the linearized equations (4.1), (4.2) and (4.3) with the forcing terms on
the RHS of the equations equal to =zero. Taking the time derivative of Eq.
(4.2) and eliminating the tendencies of the generalized geopotential and the
vorticity using Eqs. (4.3) and (4.1) with the terms on the RHS zero, we find

that the mass divergence satisfies the equation

3% p

bcz

+ [ £2 - M, v? ] D = 0 (4.5)

In this case, the vertical modes, which are again found by solving for the
eigenmodes of matrix Mz, have the same vertical structure as that computed for
the gravity wave modes in section 2.1. The ‘"ageostrophic deviations"
f¢ - V28, which is f times the ageostrophic vorticity, can also be shown to
satisfy the same equation. Eliminating D from the homogeneous form of Egs.
(4.1) and (4.3), an expression for the tendency of the linearized potential

vorticity Q is obtained

)
at“‘3$"f’ )= 0 (4.6)

where the linearized potential vorticity Q is defined as
= ~1
Q:(S‘-f}(3 ¢ ) (4.7)

That is, the linearized potential vorticity Q 4is unchanged by the inertia-

gravity wave motions (see also Errico, 1986).

Now in terms of the amplitude of the mass divergence for each vertical

mode, we have

8% a_

Btz

+ [ f2 - Xk V2 ] dk = 0 (4.8)
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By including the Coriolis parameter in the linearization, we have introduced a
low frequency cutoff for the inertia- gravity wave modes (see also Gill, 1982,
for example). Assuming that the latitudinal wavelength of the modes are small
compared to the change in the Coriolis parameter f with latitude, Eq. (4.8) is

a wave equation with the phase speed of the plane wave modes given by
2
2 1
& T xk [ s [ k Rd ] ] o)

where Rq is the Rossby radius of deformation defined by

Rd = @ — (4.10)

and K = (Ky, Ky) is the horizontal wavenumber with k2 = K2 + k2. At the

higher frequencies (that is, for wavelengths small compared to 2 fde ), the
phase speeds of the modes can be approximately given by IX; and the modes
are essentially the gravity wave modes computed in section 2.1. For our ten
iayer model and our limited area domains, the gravity waves for the first two
modes are largely of high frequencies, since the Rossby radius of deformation
is large (7,256 km and 2,907 km at 35°N for example, for the first and second
modes, respectively), compared to the size of the model domain. However, for
the higher modes, the Rossby radius of deformation becomes comparable or
smaller than the domain size (1,126 km and 693 km for the third and fourth

modes at 35°N, for example), and the gravity waves are of lower frequency.
4.2 Vertical Mode Injtialization

4.2.1 Filtering Equations. We want to reduce the initial amplitude and
tendency of the high frequency inertia- gravity waves so that their amplitude
remains small during the integration of the numerical model. By requiring that
initially the first and second derivatives of the mass divergence are zero,
the amplitudes of the high frequency inertia- gravity waves will be kept small
during integration of the model. Taking the time derivative of Eq. (4.2) and

substituting for the tendencies of the generalized geopotential and vorticity
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from Eqs. (4.1) .and (4.3), an expression for the second derivative of the mass

divergence with respect to time is obtained,

%4y

2
3°D 2 2 2
-_— - V"D + £°D = — - VoA, + fA (4.11)
at2 " Bt ¢ S

The terms on RHS of Eqs. (4.1), (4.2), (4.3), which include the beta and non-
linear terms, vary slowly with time compared to the time scale for high
frequency gravity waves. Therefore we can ignore the time tendency of Ap in

Eq. (4.11). Then applying our filtering conditions

2
% a—% = 0 (4.12)
ot dt

to Eqs. (4.2) and (4.11) respectively, we obtain
2
VVe -f ¢ = A (4.13)

2 2 2
HSVD-fD = VAQ-fAS, (4.14)

To complete the set of equations a further condition is required. Assuming
that the changes to our initial fields due to our filtering procedure will be
small, then the changes to our fields represent that part of the fields due to
the freely propagating inertia- gravity waves. If they are small, their motion
can be described by the linearized equations (4.1), (4.2) and (4.3) with the
terms on the RHS equal to zero. We can therefore require that the linearized
potential vorticity be wunchanged by our initialization procedure. Our

filtering conditions are now

2 2
M3 V" @ - £ ¢ - MS ( AD + f Qo ) (4.15)
2 2 2
u3 v “p» -£fp = ¥V Ao - £ Ag (4.16)
¢ - f H;I [ ] = Q, . a constant (4.17)

We only need to filter the high frequency gravity waves, whose phase speeds

are much larger than the typical speeds of weather systems. Therefore our
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filtering .conditions need only be applied for those vertical modes whose phase
speeds are larger than about 25 m s1. For the ten layer model example shown
in Table 2, filtering the first three modes is sufficient. Using the same
vertical structure we defined earlier we can express our variables in terms of
amplitudes for each of the vertical modes, where

e =E1¢, d = E-lp, v = E-1¢, 9 = E-lQ.

Then our filtering conditions for the first three modes k = 1, 2, 3 can be

written

2

2 £
v e, - xk e = a, (4.18)
v2 £ - i (4.19)

4 - A dy X Dk .
= £ o

Yk A °k + 1, (4.20)

where the forcing functions ap and by are the kth elements of the vectors

a = Eq A+ £ 6;’7) (4.21)
b = £ (v Ay - £ ZE?Y ) (4.22)

Here we have reintroduced the averaging operators to take into account the
staggering of the variables on our model grid. Since the forcing functions on
the RHS of Eqs. (4.18) and (4.19) depend on the vorticity, divergence and
geopotential, the set of equations is solved iteratively. With a first
estimate for the variables given by the uninitialized fields, the forcing
functions for the Helmholtz equations can be computed by integrating the model
to obtain the non-linear terms Ap, Ay, A¢, and the initial potential vorticity
Qo computed. By solving the Helmholtz equations for the amplitudes of
generalized geopotential and divergence, new values of the variables can be

computed. By recomputing the forcing functions the process can be repeated.

We require boundary conditions for the amplitudes of the generalized
geopotential and the mass divergence to solve the Helmholtz equations at each
iteration of our initialization procedure. We choose to keep ® fixed at the

boundary, so that at the boundary ¢, T and pg are unchanged by the
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initialization procedure. It has been customary to set the amplitude of the
mass divergence in the first three modes to zero along the boundary and
adjusting the integrated divergence over the model domain. BHowever for a
domain with substantial topographic features along the boundary, this is too
restrictive. We choose to estimate the divergence at the first mass point in
from the boundary using the thermodynamic equation and neglecting the tendency
of the generalized geopotential. In terms of the amplitudes of the vertical
modes we have, using thermodynamic equation (4.3) with %% = 0,

E"May 3, (4.23)

A

dk=

k

4.2.2 Iterative Procedure. By defining incremental changes to the
amplitudes of mass divergence, generalized geopotential and vorticity for each

iteration i

i i-1

4G

i i i-1
+ Bd . e =e T+ he (4.24)
an equivalent scheme can be derived for the incremental changes. For the ith
iteration of the amplitudes of the generalized geopotential, mass divergence

and vorticity, we have for the kth mode

2
2 1 £ i i-1
v e, - X; e, a (4.25)
2 i £ 3 1 .i-1
k k
T XYy T 2 XY
i i i-1 i-1
Xk v, - £ e, = Xk v, - f e (4.27)

We can use Eqs. (4.2) and (4.11) to compute the residuals which remained after
the previous (i-1)th  jteration. Using Eq. (4.17) to substitute for the
vorticity in the equation for the mass divergence Eq. (4.2) and multiplying by
E-l, we find that

i-1
2 4-1 £2 4 i-1 Bd,
v e, WL = 8, - —_— (4.28)
k 8t
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That is, the residual remaining after the (i-1)th iteration for the equation
of the amplitude of the generalized geopotential is given by the tendency of
the mass divergence. A similar residual can be computed for equation for the
amplitude of the mass divergence. Taking the time derivative of Eq. (4.2) and
substititing for the second time derivative of the mass divergence in Eq.

(4.11) and then multiplying by E-1, we find

2 <X
Pats £ - Lt BRI ] e
k k k

That is, the residual remaining after the (i-1)tP iteration is given by the
tendency of the amplitude of the ageostrophic deviation £¢ - V2¢. Then by

subtraction, we find that the incremental changes are forced by

i-1
2 0
v2 Aei - i—Aei = b (4.30)
k ot
i-1 i-1%7
2 de ov
v? Ad.i‘ R Adi - i— 2k _ gk (4.31)
xk k ot Bt
i £ iy
Avk = i; Aek (4.32)

where the terms on the RHS of Egs. (4.30), (4.31) are now the residuals from
the previous iteration. To compute the residuals on the RHS, we integrate the
model one time step to compute adiabatic tendencies without friction, diabatic
heating, or updating of the values of the model variables at the lateral

boundaries. The residuals are then computed from

[ " Bpru [ dplv ] )
9% - E-lg—-g = g? 5, 8 + % 5, | B = (4.33)
L x| e « 71 3t |
"y 4 L r —X <
Sv | g18¢ B'lr 5 [ 2pv bl h opgh 4.34
ot ot x - y x (4.34)
] | Bt hx | T
[ [ 8p T dp
IR - Y S [R'r*-ﬁ*][-—s]] (4-33)
ot | at

27




In terms of the changes to the amplitude of the generalized geopotential our
boundary condition on changes to e becomes

deyp = 0. (4.36)
In terms of changes to the amplitude of the divergence the boundary condition

becomes

de
1 k
AL = Ak (4.37)
)‘kbt

4.2.3 Changes to the Horizontal Wind, Temperature and Surface Pressure.
The resulting changes to the horizontal wind field can then be computed from

the changes in the divergence and vorticity by solving for the changes in the
velocity potential and the stream function. The grid stencil for the
divergence (and velocity potential) and the vorticity (and stream function) is
shown in Fig. 5. That is, given the change in the divergence AD = E Ad we
solve a Poisson’s equation

VZ Ay = Ap (4.38)
for the change Ay in the velocity potential y at the interior mass
(generalized geopotential ®) points (see Fig. S) for each sigma level of the
model. The boundary condition on Ay is

Ay =0 (4.39)
at the model lateral boundaries. This produces no change in the tangential
wind along the model boundaries, but only change to the divergent wind in the
interior. Now given the change in the vorticity A¢ = E Av we solve a
Poisson's equation

VZ Ay = A¢ (4.40)
for the change A¥ in the stream function ¥ for each sigma level of the model.
The vorticity changes calculated from Eq. (4.32) are specified at interior
points staggered half a grid distance from the mass and wind points. Since the
integrated vorticity over the domain may change, the integrated tangential
wind along our model boundary may change. We therefore prescribe a boundary
condition of no change in the stream function

A¥ = 0 (4.41)
at fictitious boundary staggered half a grid point outside our model boundary,
implying that the non-divergent wind does not change there. However the non-

divergent wind and hence the tangential wind does change along the model
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boundary. -The gradients of the changes of the stream function and the velocity
potential at each sigma level of the model then define the changes
to the mass weighted wind,

A(pgw) = Ox By - &y A¥ (4.42)
B(pIv) = &y Ay + &x A¥ (4.43)

With the changes to the wind field defined in this way, the changes to the
wind field along the lateral boundaries of the model are consistent with the

changes in the vorticity and mass divergence over the model domain.

Following Temperton (1984), the changes in the surface pressure pg, and
the temperature T can be derived directly from changes in the generalized
geopotential ®. We consider the linearized equations for the motion of the

freely propagating gravity waves

oé

a— = -M D (4.44)
t

Bpsr

- = -, D (4.45)
t

Now eliminating D we can relate the tendencies of surface pressure and

temperature to that of the generalized geopotential for gravity wave motions,

so that
op ' .1
—_ = . N2T D - NZT H3'1 -— (4.46)
ot ot
Bpsr 1 oé
= — (4.47)
ot u2 " ot

Since the changes derived from our initialization procedure represent the
gravity wave part of the flow, we can assume a wave solution for the changes.
The changes to the surface pressure and temperature are then related to the

changes in the generalized geopotential by

bp, = N7 MPae = N M EBe (4.48)

Ap,T) = M, u;l A = M, n;l E Ae (4.49)
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4.3 v e Ver a ode Schem

To test our vertical mode initialization procedure, we use the 12 hourly
NMC 2.5° hemispheric analyses for the period 122 January 23 to 12Z January 29,
1986, for the period of the second Intensive Observing Period (IOP) of GALE.
The initial synoptic situation, showing & cold front moving off the east coast
of the U.S. and a low in the Gulf of Alaska, is shown in Figs. 4 and 8. During
this IOP, a coastal front develops &along the east coast of the U.S. and
subsequently, a cyclone develops offshore when the low system from the Gulf
of Alaska reaches the east coast. The thirteen analyses for the period are
interpolated to the model coordinates for the two different horizontal grids
with differing domain size and resolution and then initialized with the
vertical mode scheme for the first three vertical modes only. The US grid
covers a domain including the continental U.S.A. with a horizontal resolution
of 2° longitude by 1.5° latitude. The GALE grid covers a smaller domain
including the eastern half of the U.S.A. and extending out over the Atlantic
to 52.5°W with a finer horizontal resolution of 0.5° in 1longitude and
latitude. In the vertical, both grids use ten equally spaced sigma levels. The
smoothed model topography used for each grid is shown in Fig. 6a and b. For
the GALE grid, a case with smoother topography along the lateral boundary,
shown in Fig. 6c, is also generated by merging the courser topography from the
US grid (Fig. 6a) with the GALE topography (Fig. 6b) in a boundary zone with a
width of five degrees in latitude and longitude. The merging is carried out by
linearly interpolating the courser topography from the US grid to the GALE
grid, and replacing the GALE topography at the first seven points in from the
boundary. At the eight to tenth points, a linear combination is used with
weights given by (0.75, 0.25), (0.5, 0.5) and (0.25, 0.75) for the course
topography and GALE topography, respectively.

4.3.1 Using the Jow resolution US grid. At the analysis times, the

initial amplitudes for the mass divergence and vorticity are computed on the
US grid for each of the vertical modes, prior to initialization. The mean
amplitudes of the mass divergence and vorticity for each of the vertical modes
are averaged over the US domain and in time over the period of interest for
the thirteen analyses and shown in Table 3. The mean amplitude of the

vorticity decreases with increasing mode number, while the mean amplitude of
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.TABLE 3: The mean mass divergence and vorticity on the
sigma surfaces of the model for the US grid,
averaged for the week of 12Z January 23 to 122
January 29, 1986.

Mode No. Mass Divergence Vorticity
(dynes cm~2 s-1) (dynes cm~2 s-1)
1 7.68 82.04
2 7.54 36.28
3 12.63 36.98
4 9.08 32.86
5 7.63 17.53
6 6.32 11.82
7 4.81 8.14
8 3.81 5.56
9 2.92 4.41
10 1.82 2.65

the mass divergence maximizes at the third mode. As expected, the amplitudes
of the divergence are an order of magnitude smaller than the amplitude of
vorticity for the external mode. The analyses, interpolated to the model sigma
coordinates for the US grid, are initialized with the vertical mode scheme for
the first three vertical modes only. After each iteration of our vertical mode
initialization procedure, the resulting root-mean-square (rms) changes in the
amplitudes of the mass divergence, vorticity, generalized geopotential and
surface pressure were computed. In Fig. 7 we show these rms changes, averaged
for all the analysis times, at each iteration of the initialization procedure.
For each of the first three vertical modes initialized, it can be noted that
the mean rms changes in the amplitudes of the divergence at the first
iteration of the procedure are as large as the initial amplitudes themselves,

while the changes in the amplitude of the vorticity are very small compared to

31




their initial values. For the first two modes, the changes in the amplitude of
the mass divergence decrease rapidly with increasing iterations, with the
changes being very small after just two iterations. For the third mode, the
changes in amplitudes of the mass divergence do not decrease as rapidly. The
mean rms changes in the surface pressure, shown in Fig. 7d are less than a mb

for each iteration.

To demonstrate the effect of the number of modes initialized on the
changes in the amplitude of the mass divergence with each iteration, the
number of modes initialized is varied from one to six modes for the case of
one analysis on 122 January 23, 1986. In Fig. 7e we show the changes in the
mass divergence for the highest mode number initialized for each of the cases.
The rate of decrease in the mass divergence changes increases as the higher
order modes are initialized, and in fact increases with iteration for the
sixth mode initialized. For the first two modes, the gravity waves are
essentially of high frequency, since the Rossby radius of deformation is so
large for these modes (see section 4.1). As the mode number increases however,
the Rossby radius of deformation decreases and the frequency of the inertia-
gravity w..de decreases for the same wavelengths. The tendencies of the mass
divergence for the gravity modes are then much 1less for the higher order

modes, and convergence of the scheme would be expected to be slower.

As an illustration, we demonstrate the result of the vertical mode
initialization using the NMC analysis for 122 January 23, 1986. The initijal
analyzed sea-level pressure and wind field at the sigma level ¢ = 0.25 are
shown in Figs. 8a and 8b. A deep surface low of 987 mb lies west of Greenland
and high pressure dominates the eastern U.S. Aloft at the jet level, strong
jet maxima of about 55 and 48 m s-1 straddle a trough over the eastern U.S.,
with a further jet maximum upstream, entering the domain from the Gulf of
Alaska. The surface pressure change resulting from the wvertical mode
initialization is shown in Fig. 8c. The surface pressure adjustments due to
initjialization are small, with an rms change in this case of 0.9 mb and at
most several mb in places. After the initialization, the vertical motion 0
in the middle troposphere at a sigma level 0 = 0.45, is shown in Figure 8d.
Upward motion relative to the sigma surface (negative values of the vertical

motion) is found on the south side of the jet off the coast of North America
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and also ahead of the exit region of the jet streak. Sinking motion is found
in the region of the high surface pressure over the eastern U.S. In sigma
coordinates, the sigma surfaces follow the sloping topography, with the result
that westerly flow in the lee of mountains gives rise to strong upward motions
on the sigma surface. Such strong topographic signatures are seen in the lee
of the Rockies and the Appalachian mountains. In Fig. 9 we compare the
contributions to the vertical motion from the first three modes (Fig. 9a),
which are initialized, and from the remaining modes (Fig. 9b), which are
unchanged by the initialization procedure. The strong signal due to the
mountains clearly dominates the vertical motion computed for the first three
modes, while smaller synoptic scale magnitudes are apparent in the remaining

modes.

The vertical mode initialization scheme removes that portion of the
initial wind and mass fields that describe the inertia- gravity waves (for
modes 1 to 3). Such structures then should be seen in the changes made to the
analyzed fields resulting from the initialization. In Fig. 10a we show the
wind and geopotential height changes at the jet level ¢ = 0.25. At the jet
level, we see that the geopotential changes reach 30 to 40 gpm in places. The
wind field shows flow of several m s-1 crossing the contours of geopotential
height, indicative of inertia- gravity wave structures (see Matsuno, 1966, for
example). At the same level the changes in temperature and the u and v
components of the wind are shown in Fig. 10b, ¢ and d. The changes in the
temperature are at most a degree, while changes in the wind components are at
most several m s-1. Typical wvertical profiles of the rms changes in the u
component and the temperature are shown in Fig. 11. The resulting changes in
the mean temperature, shown in Table 4, are very small and at most 0.15°C in

the upper troposphere.

4.3.2 Using the high resolution GALE grid. For the smaller GALE grid with

0.5 degree resolution, the mean amplitudes for the vorticity and mass
divergence are shown in Table 5, for each of the vertical modes. For each
iteration of our vertical mode initialization scheme, the mean rms changes in
the amplitudes of the divergence and the vorticity are shown in Fig. 12, for
the first three modes initialized. In this case, the amplitude changes for the
geopotential (or equivalently vorticity) decrease very rapidly for all the
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TABLE - 4: The root-mean-square changes in the mean
temperature on the US grid for 12Z January 23,
1986, resulting from vertical mode initialization.

Model Level Sigma Level AT*
(°K)

1 0.05 0.052
2 0.15 0.143
3 0.25 0.098
4 0.35 0.048
5 0.45 0.022
6 0.55 0.018
7 0.65 0.014
8 0.75 0.069
9 0.85 -0.001
10 0.95 -0.011

three modes. However, the amplitude changes for the mass divergence in the
case of the third mode do not decrease as rapidly and in fact do not reduce to
zero. On the GALE grid, smaller scale topographic features of appreciable
amplitude are present (see Fig. 6b), compared to the US grid (see Fig. 6a).
For the third mode, the gravity modes at these smaller scales are of high
frequency and of shorter wvertical scale. Non-linear effects of the gravity
waves interacting with the topography can become significant. Also in the
boundary zone, where there was no special smoothing of the topography, the
divergence forced by the topography for these modes can get quite large. Then
the errors in the computed boundary divergence can be large also. To test the
latter, the initialization is repeated for two cases with the topography on
the GALE grid smoothed in a five degree boundary zone, as outlined in the
beginning of section 4d (see Fig. 6c). In Fig. 12c we compare the changes in

the amplitude of the mass divergence when the unsmoothed (Fig. 6b) and the
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smoothed topography (Fig. 6c) are used for a typical example (such as for the
analysis on 12Z January 23, 1986) and for an extreme example with much larger
changes at higher iterations (for 12Z January 24). In both cases, the changes
in the mass divergence decrease much more rapidly when the topography is

smoothed in a five degree boundary zone.

For the smaller GALE grid, the initial sea level pressure and wind field
in the upper troposphere at sigma level ¢ = 0.25 for 12Z January 23, 1986 is
shown in Fig. 13a and b. A front is shown moving off the east coast of the
U.S. with high pressure dominating the eastern half of the U.S. A strong jet
streak is leaving the domain at the north-east corner of the domain and a
minor short wave trough with its associated jet maximum is located on the Gulf

of Mexico. The surface pressure changes, shown in Fig. 13c are small, being at

TABLE 5: The mean mass divergence and vorticity on the
sigma surfaces of the model for the GALE grid,
averaged for the week of 122 January 23 to 122Z
January 29, 1986.

Mode No. Mass Divergence Vorticity
(dynes cm-2 s-1) {dynes cm-2 s-1)
1 7.53 92.17
2 8.12 39.21
3 15.11 42.80
4 10.05 37.65
5 9.17 19.48
6 6.73 12.05
7 4.79 7.96
8 3.84 5.72
9 2.74 4.32
10 1.72 2.51
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most a mb. In this GALE domain, the western boundary is at about 1 km, sloping
down to 500 to 250 meters within 5 degrees in from the boundary (Fig. 6b). The
topographic features in the domain produce a strong signal in the vertical
motion field shown in Fig. 13d. The increasing westerly shear with height at
the western boundary and in the lee of the Appalachians, produces strong
rising motion in sigma coordinates. Away from the influences of sloping sigma
surfaces over the topography, sinking motion is observed in the high pressure
along the Mississippi river valley and rising motion on the south side of the
jet axis off the east coast. Qualitative agreement is found with the vertical
motion field produced for the 1larger US domain. When the smoother topography
in the boundary zone (see Fig. 6c) is wused, the large noisy values in the
vertical motion along the northern boundary and south-west corner (seen in
Fig. 13d) are removed, while the interior remains unchanged (see Fig. 13e).
The strong signal remaining in the vertical motion field along the western
boundary, due to the high gradients in the topography there, demonstrates the
importance of the specification of accurate boundary conditions used for the
solution of the divergence changes in the initialization procedure. For this
case the resulting changes in the pgeopotential and wind and temperature
changes at 0 =0.25 are shown in Fig 14. In the upper troposphere, the
resulting rms changes in the wind components are about 1 m s-1, while the rms
temperature changes are about 0.5°C. In the vertical, the variation of the mms
changes in the wind components and temperature with each iteration is similar
to that shown for the US grid in Fig. 11, decreasing with increasing number of
iterations. Three iterations are sufficient for the changes in the wind and

temperature to be very small.

36




5. MODEL INTEGRATIONS WITH STATIC INITIALIZATION

To test the. effect of the split-explicit time integration scheme in
smoothing the unwanted high frequency oscillations in the NRL model, the model
is integrated on the GALE grid with wuninitialized data both with the split-
explicit scheme described in section 2.2 and with an explicit time integration
scheme of smaller time steps. Integrations with varying degrees of static
initialization are then compared in three other experiments. Time series of
the surface pressure and the vertical motion 0 in sigma coordinates at
selected points on the GALE grid were compared in the five experiments, which
are listed in Table 6. The NMC 2.5 degree hemispheric analysis for 122 January
23, 1986 is used to start the integrations for each of the experiments. This
is a case of a cold-air damming and coastal front event, which occurred from
January 23-25, 1986, during GALE. The GALE grid covers a domain from 22.5°S to
47.5°N in latitude and 102.5°W to 57.5°W in 1longitude, with 0.5 degree

horizontal resolution.

For the experiments here, the Perkey Kreitzberg lateral boundary
formulation, described in section 2.3a is used. To provide the boundary

tendencies for each of the experiments, the non-divergent wind is computed for

TABLE 6: Experiments with Static Initialization on GALE grid.
1A Explicit Integration with uninitialized initial state using
leapfrog scheme with a 2 At time step of 60 secs.

1B Split-Explicit Integration with wuninitialized initial state,
using a 2 At time step of 300 secs.

1C sSplit-Explicit integration with Non-divergent 1Initial State,
using a 2 At time step of 300 secs.

1D Split-Explicit integration with Static Non-linear Mass Balance,
using a 2 At time step of 300 secs.
Supplementary experiment:

1C' Same as 1C, but with boundary tendencies computed from non-
divergent wind and observed temperatures.
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each of the 12 hourly NMC analyses, the fields interpolated to the sigma
coordinates of the model and a statically balanced temperature computed as
outlined in section 3.2. Initial boundary values and 12 hour tendencies are
then extracted for the 5 point boundary zone, defined in section 2.3a. To
provide the same boundary values in each of the experiments, the initial
fields for each experiment are merged with the statically balanced fields in
the boundary zone, using the linear function @ defined by Eq. (2.19). That is,
we multiply the initial fields by (l1-a) and add a times the statically

balanced fields in the boundary zone.

5.1 Damping by Split-Explicit Scheme

In expt 1A, the model is integrated in time with a conventional leapfrog
scheme for 12 hours with a 2 At time step of 60 s starting from uninitialized
data. Oscillations of surface pressure of as much as 5 to 8 mb of amplitude
and periods of 1 to 2 hours are observed in the first 12 hours of integration.
Curve A in Fig. 15a shows these typical oscillations in the surface pressure
at a grid point at 90°W and 35°N in the western half of the domain. Curve A in
Fig. 15b shows the vertical motion 0 interpolated to a sigma level at ¢ = 0.5,
for the same grid point. The curve A shows a typical rapid adjustment
(increase in this figure) in the first 6 of the integration with smaller
oscillations of periods of 2 to 4 hours superimposed. The higher frequency
ascillations in surface pressure are largely due to the barotropic external
gravity mode while the adjustment and oscillations in the vertical motion in

the middle troposphere are largely due to the internal gravity modes.

In expt 1B, the model is integrated for 48 hours with the split-explicit
scheme using a 2 At time step of 300 s starting again from the same
uninitialized data. For the first hour or so the oscillations in the surface
pressure (Curve B in Fig. 15a) are the same as in the explicit integration.
However the oscillations are strongly damped in the next three hours of
integration. Little difference is noticed in Fig. 15b in the variation of 0
at 0 = 0.5 between the explicit (Curve A) and split-explicit (Curve B)
integrations. One can conclude that the split-explicit integration scheme acts
to reduce the amplitude of the unwanted external gravity waves in the first

chrece to four hours of incegration.
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S.2 Non-Divergent and Statically Balanced Injtial Fjelds

As outlined in section 3.1, the analyzed vorticity on pressure surfaces is
used to first calculate the non-divergent component of the wind. A first guess
of the surface pressure and temperature is found by interpolation to the model
topography. The non-divergent wind, analyzed temperature and humidity are then
interpolated to the model sigma levels. The initial and non-divergent wind
fields at 1000 mb and 500 mb were compared in Fig. 4. In expt 1C, a 48 hour
integration using the split-explicit scheme is then performed with this data.
As shown by Curve C in Figure 16a, the amplitude of the initial oscillations
of the surface pressure are reduced to 2 to 3 mb and are largely damped out
after 3 hours. Oscillations in the surface pressure of a mb can be still seen
at a grid point at 83°W and 35°N (not shown) over the Appalachian mountains.
Curve C in Figure 16b shows that the strong adjustment (increase) in the
vertical motion 0 is still present in the first 6 hours and the superimposed
higher frequency oscillations are only slightly reduced in amplitude. By
removing the divergent component of the wind from the analyzed data the
initial value of the vertical motion is also reduced. On sigma surfaces over
sloping topography, a vertical shear of the non-divergent wind will introduce
divergence on the sigma surfaces, as will errors caused by vertical
interpolation. By largely removing the Thorizontal divergence we have
essentially removed the external gravity mode after three hours of

integration.

In a supplementary experiment 1C', boundary tendencies are computed from
analyzed temperatures and the non-divergent winds on pressure surfaces,
instead of from statically balanced temperatures. For initial conditions, the
analyzed temperatures and winds are interpolated to the sigma coordinates
without merging the statically balanced temperatures in the boundary zone. The
integrations in this case were largely indistinguishable from those expt 1C.
Since in the PK scheme, we damp only the tendencies in the boundary zone,
initial differences in the boundary zone in the two cases are damped, leading
to similar integrations. Little difference was also found in the integrations
if the mass divergence is removed from the initial fields on the sigma

surfaces instead of on the pressure surfaces.
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A static initialization of the mass £field is performed using the non-
linear mass balance equation in sigma coordinates, as outlined in section 3.2.
The non-linear balance equation is used to derive a balanced geopotential and
temperature field from the non-divergent wind field. 1In Fig. 4 we showed the
initial and balanced temperature fields interpolated to the 1000 mb pressure
level. As mentioned in section 3.3, the balanced temperature field is much
smoother than the initial field, due to the smoothing of the Laplacian
operator. In expt 1D, a 48 hour integration was carried out starting from this
statically initialized data. The oscillations in the surface pressure, shown
in Curve D of Figure 16a, are of the same amplitude as in the non-divergent
case (Curve C in Fig. 16a), being damped after 3 hours of integration.
However, a small mean drift of about a mb is seen to develop in the surface
pressure (curve D) during the 12 hours of integration. Again oscillations of
surface pressure of a mb still remain over the Appalachian mountains. The
vertical motion shown in curve D of Figure 16b still shows the rapid
adjustment (increase) during the first 5 hours, but the higher frequency
oscillations are much reduced in amplitude and mostly eliminated after 4 hours
of integration. The non-linear balance of the mass field essentially removes
the internal gravity waves except for the initial adjustment in the first &

hours.

When using the split-explicit scheme and starting from uninitialized or
initialized data, the 12 to 48 hour forecasts are very similar. Even in expt
1D, where the static initialization had smoothed out the initial temperature
gradient along the front (see Fig. 4), the model regenerates the temperature
gradient and intensifies it further in the first 12 hours. As an example, we
show in Fig. 17, the variation of the surface pressure and the vertical motion
at a grid point in the second twelve hours of integration for expts 1B, 1C and
1D. In the case of expts 1B and 1C, the variation in the surface pressure is
much the same. Since the same boundary values and tendencies were used in the
three expts (expts 1B, 1C and 1D), we see that the drift in the surface
pressure, produced by the static initialization, is eliminated in the second
twelve hours. Only in the case of expt 1A, with a 12 hour explicit time
integration with uninitialized data, &are high frequency oscillations in the
surface pressure and vertical motion still substantial after 12 hours of

integration, producing more noticeable differences in the 12 hour forecast.




6. MODEL INTEGRATIONS WITH VERTICAL MODE INITIALIZATION

To assess the effect of the vertical mode initialization procedure in
removing the high frequency gravity wave oscillations, the NRL model is
integrated starting from initialized and uninitialized data, for the two
different US and GALE grids of differing domain size and horizontal
resolution. The influence of two different lateral boundary treatments, namely
the tendency relaxation scheme of Perkey and Kreitzberg (PK) and the Davies
relaxation scheme, is also investigated. The experiments are summarized in
Table 7. As described in section 2.3, model computed tendencies are relaxed to
specified boundary tendencies in a boundary zone of 5 points at each time step
in the PK scheme. The 12 hourly boundary tendencies, derived from the NMC
hemispheric analyses interpolated to the model grid. In the Davies scheme,
large scale boundary values are computed by 1linear interpolation from 12
hourly values, derived from NMC analyses, which have been interpolated to the

model grid. The computed model variables are then relaxed to the boundary

TABLE 7: Experiments with Vertical Mode Initialization.
US GRID (with a 2 At time step of 400 secs):

2B 24 Hour integration with uninitialized initial state, using
PK lateral boundary scheme.

2C 24 Hour integration with initialized initial state, using
PK lateral boundary scheme.

2E 24 Hour integration with initialized initial state, using
Davies lateral boundary scheme.

GALE GRID (with a 2 At time step of 100 secs):

3B 12 Hour integration with uninitialized initial state, using
PK lateral boundary scheme.

3C 12 Hour integration with initialized initial state, using
PK lateral boundary scheme.

3D 12 Hour integration with uninitialized initial state, using
Davies lateral boundary scheme.

3E 12 Hour integration with initialized initial state, using
Davies lateral boundary scheme.
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values themselves at each time step in a boundary zone of 6 points. For
integrations with initialized fields, the analyzed fields interpolated to the
model grid are also initialized to provide balanced boundary values and
tendencies. In this way we prevent a lot of noise propagating from the
boundary into the interior of the model domain, which could contaminate the
results. On the two grids, the smoothed topography, as shown in Fig. 6 is used

for the integrations.

6.1 Integrations on the US grid

In the first three experiments 1listed in Table 7, we compare 24 hour
integrations with initialized and uninitialized initial conditions on the US
grid, using the two different 1lateral boundary treatments. The split-explicit
integration scheme is used in each case with a 2 At time step of 400 seconds.
In expt 2B, the PK tendency relaxation scheme is used for the lateral boundary
treatment with wuninitialized initial conditions. The 112 hourly boundary
tendencies are derived from the uninitialized analyzed fields. Initial
oscillations of nearly 8 mb in the surface pressure, caused by the
uninitialized initial conditions, are damped by the split-explicit scheme in
the first 6 hours or so, as was shown in section 5.1. As an example, curve B
in Figs. 18a and b shows the variation of the surface pressure with time at a
grid point at 90°W and 35°N on the US grid. In expt 2C, initialized initial
conditions are wused with the PK lateral boundary scheme. The boundary
tendencies in this case are derived from initialized NMC analysis fields. With
initialized initial conditions, the high frequency oscillations are almost
completely removed, even over high topography such as the Rocky Mountains. An
example with the surface pressure can be seen with curve C in Figs. 18a and b.
Large high frequency oscillations in the vertical motion are also eliminated
for the interior grid points, as can be seen in Figs. 18c and d. Even though
both expts 2B and 2C used somewhat different boundary conditions
(uninitialized values versus initialized wvalues) no mean drift was produced.
In the boundary zone, the difference seen between the results in expt 2B and
that in expt 2C, is due to gravity waves, which are damped in time by the PK

scheme.
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In expt 2E, the Davies scheme is used with initialized initial conditionms.
As can be seen by Curve E in Fig. 18, use of the Davies scheme produces a
similarly smooth integration of the surface pressure and the same variation in
the vertical motion. However, the variation of the surface pressure with time
in this case does differ somewhat after & hours from that found with the PK
tendency relaxation scheme. The PK scheme produced some artificially larger
vertical motions at the first grid point inside the boundary. The time
variation of the surface pressure and vertical motion at a grid point in the
boundary zone, at a distance of three times the grid spacing in from the
boundary, is shown in Fig. 19. A linear variation of the surface pressure is
seen with time in the boundary zone when the Davies scheme is used. With the
PK scheme oscillations of long period of about 12 hours can be seen in the
surface pressure and the vertical motion. The variation of the vertical motion
is small for the Davies scheme at this point. This noise, generated by the PK
scheme in the boundary zone, may have propagated into the interior to cause
the differences seen in the integrations after 4 hours. The difference can be
seen (in Fig. 18b for example) as a low amplitude oscillation of long period
at 12 to 24 hours integration. However little overall differences can be seen

in the 12 and 24 hour forecast fields between each of the experiments,.

6.2 Integratjons on the GALE grid

A series of four integrations are conducted on the GALE grid with
uninitialized and initialized initial conditions with the two lateral boundary
schemes (see last four experiments 1listed in Table 7). 1In each case, the
split-explicit scheme is used for time integration with a 2 At time step of
200 seconds. For the cases with initialized initial conditions, 12 hourly
boundary values and tendencies are computed from the NMC analyzes,
interpolated to the model grid and then initialized. The integrations with
initialized initial conditions, expts 3C and 3E, essentially remove the high
frequency oscillations. As an exampie in Fig. 20, we show the variation of
surface pressure and the vertical motion in the middle troposphere at two grid
points on the GALE grid for the different integrations with initialized and
uninitialized initial conditions. The grid point at 90°W and 35°N is in the
western half of the domain, while the grid point at 83°W and 35°N lies on the
top of the Appalachian Mountains. With the PK lateral boundary scheme,
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oscillations of a mb or so are seen during the integration period when
uninitialized initial conditions are used (Curve B). With initialized initial
conditions obtained with the vertical mode scheme, the oscillations are
removed except for an initial hump of 0.5 mb in the surface pressure seen
after the first two hours of integration (Curve C). With the Davies scheme and
initialized initial conditions, & smoother variation of the surface pressure
is seen (Curve E). The rapid initial adjustment in the vertical motion has
been largely removed, leaving a slower increase in the vertical motion with
time.

In expt 3D, the Davies scheme for the lateral boundary treatment is used
with uninitialized initial conditions. A different response is produced in the
surface pressure, while the response in the vertical motion field is similar
to the PK scheme for grid points in the interior of the domain. In Fig. 21, we
compare the surface pressure variation and vertical motiorn. in the middle
troposphere at our two grid points for initialized and uninitialized initial
conditions, when the Davies scheme is used. In the case of the Davies scheme
with uninitialized initial conditions, an initial shock of large amplitude is
seen in the surface pressure (curve D in Figs. 2la and b), which is rapidly
damped in the first 4 hours or so. The scheme acts to damp any gravity waves
that propagate into the boundary 2zone from the interior. Using initialized
initial conditions, this initial shock is eliminated (curve E in Figs. 2la and
b). With time, the integrations in the first 12 hours differ by as much as a
mb or so in expts 3D and 3E (see Fig. 21). The difference is explained by the
fact that in expt 3D, we force uninitialized boundary values in the boundary
zone, and the model solution in the interior is forced to adjust in the first

three of four hours of integration.

In the boundary zone large differences are found when using the different
boundary treatments. In Figs. 22a and b, we show the variation of the surface
pressure at two grid points in the boundary zone for the different lateral
boundary treatments. The grid point at 59°W and 40°N lies a distance of three
grid lengths from the lateral boundary (at 57.5°W), while the grid point at
58°W and 40°N is a distance of one grid length. With the Davies scheme, the
boundary values are strongly forced in the boundary zone, which is reflected

in the linear variation in the surface pressure in the boundary zone (see




curve E in Figs. 22a and b, for example). With the PK scheme, oscillations in
the surface pressure, with an amplitude of one to two mb and period of about
twelve hours, can be seen in the boundary zone (see curve C in Fig. 22a and
b). The two schemes also differ in their response in the vertical motion in
the boundary zone. With the PK scheme, the vertical mction piles up at the
first grid point in from the boundary, while with the Davies scheme, larger
vertical motions are found in the 2zone between the interior region and the
boundary zone. The variation of the vertical motion at the two grid points in
the boundary zone is shown in Figs. 22c and d. Using the Davies scheme, curve
E in Fig. 22c shows a slow increase of the vertical motion to 20 x 10-3 ht’l,
for the grid point which is a distance of three grid lengths in from the
lateral boundary. In Fig. 22d, curve E shows a slower linear variation of the
vertical motion, increasing to 10 x 10-3 hr-l, at the grid point one grid
length from the boundary. With the PK scheme 1low amplitude changes in the
vertical motion occur at the boundary between the boundary zone and the
interior (see curve C in Fig. 22c), while unrealistically large values of
30 x 10~3 hr-l are reached in the vertical motion at the grid point lying a
distance of one grid length in from the lateral boundary (see curve C in Fig.
22d). In Fig. 23, we compare the surface pressure variation and vertical
motion in the middle troposphere at our two grid points in the boundary zone
for initialized and uninitialized initial conditions, when the Davies scheme
is used. The boundary values are again strongly forced in the boundary zone in
both cases. The initial shock in the surface pressure variation in curve D, in

Fig. 23a, is eliminated by the initialization (curve E).
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7. SUMMARY AND CONCLUSIONS

To remove the high frequency gravity wave oscillations, various
initialization procedures have been tested for use with the Naval Research
Laboratory 1limited area numerical weather prediction model. Operational
analyses obtained from the National Meteorological Center (NMC) for the period
of the second intensive observing period of the GALE experiment are used to
test the procedures and provide initial and boundary conditions for model
integrations. The model 1is integrated with initial conditions with varying
degrees and type of initialization on two different model grids, one a low
resolution grid of 2° longitude by 1.5° latitude covering the continental U.S.
(US grid) and the other a higher resolution grid of 0.5° in latitude and
longitude covering the eastern U.S. (GALE grid). The influence of two
different lateral boundary treatments, namely the tendency relaxation scheme
of Perkey and Kreitzberg (PK) and the Davies relaxation scheme, are compared.
For integrations with initialized fields, the NMC analyzed fields interpolated
to the model grid are also initialized to provide balanced boundary values and
tendencies. This reduces noise in the boundary zone, which can propagate into

the interior of the domain and contaminate our test.

In the static initialization procedure, the non-divergent wind is first
computed for the analyzed winds on the pressure surfaces, by solving for the
streamfunction. The non-divergent wind and the analyzed temperatures are then
interpolated to the sigma coordinates of the model. A diagnostic relation is
then derived for the geopotential on the sigma surfaces of the numerical
model, by ignoring the tendency of divergence, non-linear vertical advection
and friction. The initial non-divergent wind and analyzed temperatures,
interpolated to the sigma surfaces are used to compute the non-linear forcing
terms. With the tangential wind defined along the model lateral boundary with
the C grid, consistent boundary conditions for the normal derivatives of the
geopotential are easily obtained by ignoring the tendencies in the momentum

equations.
The NRL model uses the split-explicit scheme to integrate in time. The

scheme is compared to a centered difference scheme by integrating the model on

the GALE grid. The split-explicit scheme has been shown to reduce the
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amplitude:of the unwanted external gravity wave oscillations in the first
three to four hours of integration. However, a typical rapid adjustment with
superimposed oscillations occurs in the mid-troposphere vertical motion in the
first 4 to 6 hours of integration. The new static initialization procedure is
also tested on the GALE grid. By dinterpolating the non-divergent wind and
analyzed temperature to the model sigma surfaces, the amplitude of the initial
oscillations of the surface pressure are reduced to 2 to 3 mb and are largely
damped out after 3 hours. Using the non-divergent wind and performing a static
non-linear balance of the mass field, provides a balanced initial state,
except for a smooth initial adjustment of the vertical motion in the first
five hours or less of integration and a small mean drift in the surface
pressure. For the varying degrees of static initialization, similar 12 to 48
hour forecasts are produced when the split-explicit scheme for time

integration was used.

A vertical mode initialization scheme following that of Bourke and
McGregor (1983) has been developed for use with the NRL model. Filtering
conditions are applied to the model dynamical equations to derive to linear
diagnostic equations for the mass divergence and geopotential, which are
solved iteratively for the first three vertical modes of the numerical model.
These modes have phase speeds which are much faster than those of
meteorological systems. The further condition that the linearized potential
vorticity is unchanged by the procedure is required to compute the vorticity.
The observed wind and temperature is first interpolated to the sigma surfaces
of the model. The iterative procedure 1is then used to compute incremental
changes to the generalized geopotential, mass divergence and vorticity for the
first three vertical modes of the numerical model. As is customary, we keep
the geopotential, temperature and pressure fixed at the lateral boundaries in
the scheme. To provide a boundary condition for the divergence however, an
approximate divergence at the boundary is computed using the thermodynamic
equation. In our scheme, changes in the tangential wind along the lateral
boundaries are consistent with the changes in the vorticity and mass
divergence computed. The procedure provides a balanced vertical motion field
and produces smaller changes to the initial mass and wind fields, compared to
the static initislization. The scheme 1is tested on two grids, of differing

domain size and grid resolution. Convergence of the scheme is rapid with the
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lower resolution US grid, with three iterations of the scheme being sufficient
for convergence. With the smaller GALE grid of higher resolution and sloping
topography along two boundaries, the convergence of the scheme is slower and
in fact the mass divergence didn’'t converge for the third mode. However, by
smoothing the topography in a boundary =zone of five degrees, the convergence
of the scheme is much improved. In both cases, changes in the mass and wind

fields are still small after three iterations.

Integrations with initial conditions, initialized with the vertical mode
initialization procedure, prevent gravity wave oscillations, without producing
a mean drift in the surface pressure, and provide a balanced vertical motion
field. On the coarse US grid, little difference is found between integrations
using either of the lateral boundary treatments. However, some low amplitude

oscillations in the surface pressure of long period remain in the interior of

the domain and some noise is generated in the vertical motion at the lateral
boundaries when the Perkey Kreitzberg scheme is used. On the smaller GALE
grid, some noise is produced in the vertical motion in the boundary zone by
both schemes. In the interior, the Davies scheme produces a smoother variation
of the surface pressure. When the Davies scheme is used with integrations
starting from uninitialized data and boundary values, an initial shock in the
surface pressure is damped in the first four hours. However a small drift in
the surface pressure is produced. This indicates that the boundary values used
with the Davies scheme should be as balanced as possible for the numerical
model, being initialized or derived from integrations on a larger grid or with
another model. Similar 12 to 48 hour forecasts are again produced with the

various experiments.

For grids of high resolution such as our GALE grid, and especially when
fine scale topography is used along the boundary, it is recommended that no
more than three iterations of the vertical mode scheme should be used in
practice. For grids of even higher resolution, only the first two modes may be
able to be initialized, with possibly no more than three iterations used with
the scheme. Some improvement however, can be expected by smoothing the
topography in the boundary zone or using a nested model to provide more

accurate boundary values for the mass divergence for the inner nested grids.
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APPENDIX: SPLIT-EXPLICIT SCHEME

The model equations in matrix notation can be written

dp u
s
- + 6.8 = A (A1)
t
BEZV
+ o6& = A (A2)
8t y v
Bpst
- + M,D = A, (A3)
dp
—£ + NZT D = O (A4)
ot
8p.q
= A (AS)
3t 1
$-¢ = MT (A6)

where the variables are defined in section 2.1, and the non-linear, Coriolis,
friction and diabatic terms are included in the terms on the right hand sides
of the equations. Integrating (Al), (A2), (A3), (A4) and (AS) over a time step
2 At we obtain

pru(t+dt) - pru(t-At) + 2At 6% = 2Bt A (A7)
4 poe 4 Y - a
psv(t+At) - psv(t-bt) + 2At 6y 2At A, (AB)
psT(t+At) - psT(t-At) + 2At u2 D = 2At A, (A9)
ps(t+At) - ps(t-At) + 2At Nzr D = ] (A10)
psq(t+At) - psq(t-bt) o= 2At Aq (All)
_ 1 t+it
where the averages a = 2 bt j a dt (A12)

t-At

and E: and ;Z represent grid point averages as defined in section 2.1. The

non-linear and Coriolis terms on the right hand sides are slowly varying so
that Ku = Ay(t), KV = Ay(t), KT = Ap(t). For an explicit time step choosing
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& = L), D = D(t), gives the conventional centered difference scheme for
time integration. We wuse this explicit difference scheme to compute first
estimates of the variables at time t+At, giving

Pout (t+At) - pru(t-At) + 2At 6 #(t) = 28t A (V) (A13)
PIvT(t+At) - plw(t-At) + 2Bt 5 8(t) = 2Bt A (1) (A14)
psTex(t+At) - p T(t-At) + 28t M, D(t) = 28t A(®) (A15)
p:x(t+At) - p (t-At) + 2Bt NZT D(t) = 0 (A16)
psqe‘(t+At) - p a(t-At) - 2Bt A (1) (A17)

Subtracting these equations from Eqs. (A7), (A8), (A9), (Al0) and (All), we
can then write for the corrected variables

E:u(t+Ac) + 28 58 - &t))] = S:ue‘<:+At) (A18)
plv(t+At) + 2Bt 6y[3 - 80)] = PIvTX(t+At) (A19)
p T(t+At) + 2At M,[D - D(t)] = psrex(t+At) (A20)
p (t+ht) + 28t NZT (D - D] =  pI¥ (t+be) (A21)
P q(t+ht) = pq (t+ht) (A22)

where the terms on the right-hand side are the explicit computations of the
variables. We only need to compute the corrections ® - ), D - D(t) for
those vertical modes whose phase speeds relative to the ground U + fi;
are greater than Ax/(2At), where U is the maximum background flow speed. It
can also be noted that the specific humidity q need not be corrected. To
obtain the corrections for these modes, the amplitudes of the deviations
® - %(t), D - D(t) are integrated at smaller time steps, over the interval
of twice the large time step.

To integrate the deviations we require equations for the tendencies of
mass divergence and generalized geopotential. By taking &y of hy times Eq.
(Al) and adding Gy of hy times Eq. (A2) we obtain the equation for the
divergence. By taking M; times Eq. (A3) and adding (RT* + '*) times Eq. (A&4)

an equation for the generalized geopotential is obtained. That is
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()]

— + Y% = A (A23)
3t
o
—_ 4 MS D = MlAT (A24)
ot

= 1 1 w7y
where Am hy 6x( hy Au) + hx 6y( hx A) (A25)

and the two dimensional Laplacian V2 is defined by Eq. (2.13) in section 2.1.
In terms of our vertical modes, the amplitudes of the mass divergence and
generalized geopotential are d = E-1p, e = E-1§. The amplitudes of the
deviations of the divergence dy - dr(t), and the generalized geopotential

ex™ - ex(t) are integrated with smaller time steps given by ATy, = At/my.
For the ten layer model, the deviations are computed for the first three modes
with my given by 8, 4 and 2 respectively. Now integrating over smaller time

steps we have

n+l n-1 2 n -1

dk - dk + 2 Afk v e, = 2 Ark { E Am(t)}k (A26)
e U Pl L oar A d® = 287 (B (t)} (A27)
k K k M 9% k M) A0}y

For our explicit time step, applying the centered difference scheme with time
step 2 At to Eqs. (A23) and (A24), or from Eqs. (Al3), (Al4), (AlS), (Al6)
directly, we obtain

x 2 -1
(t+Ar) - dk(t-At) + 2 At ¥ ek(t) = 2 At { E Am(t)}k (A28)

4

2
k

-1
(t+br) - ek(t-At) + 2 At Xk dk(t) = 2 At { E M1 AT(t)}k (A29)

By subtraction we obtain the equations for integrating the deviations

dg? - dg(t), ex™ - er(t) ,




[d:+1 - 4 (1) - [d;:'1 - d ()] 4+ 2T, v? (e? - e (1)
= = [dp X (t+At) - d (t-At)) (A30)
My
[e:+1 - e ()] - [ez-l - e (8)]  + 28T ) (d: - 4 (£)
1
= —q [e;x(t+ﬁt) - e (t-At)] (A31)
ex -l ex - -1 -x_ex 1 Yoy _ex
where dk (t+At) = {(E D (t+At)}k = (E [Gx(psu ) + hxﬁy(hxpsv )] }k
and eix(t+At) = { E'ltex(t+At)}k
The required corrections are then given by
ak - dv) = = ?% (dz - d () (A32)
™ nm1
&, - e (t) = - mf(e“- e, (t)) (A33)
k k mk nel k k

For the integration of the deviations of the divergence, a lateral
boundary condition is required for the generalized geopotential. The boundary
value for ey - eyx(t) is computed by linear interpolation from the values at
t -At and t. Further pragmatic boundary conditions are provided by reducing
the amplitude and phase speed of the deviations of the divergence and
generalized geopotential in the boundary =zone by the factor l-a, where a is
defined in section 2.3, for the two different lateral boundary formulations.
That is to reduce the phase speed ci in the boundary zone, we multiply Ay in
Eq. (A31) and the V2 term in Eq.(A30) by (1-a). The amplitudes are reduced in
the boundary zone by multiplying the correction terms in Egs. (A20) and (A21)
by (1-a) and those in Eqs (Al18) and (Al19) by (l-a,) and (l-a,), respectively.
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profile defined in Table 1.
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62




)

.0 RSN %
D D N7
\’ -4
S Gy N\ -
S5.0 I -3 - ' ]
\ H\//> % ]
z 3 & e ]
& i
40.0 :
.- -
25.0 _- ’0‘6 '\} X . 1
! N§ N ]
[ PA0) & A ~ 8 ]
TR ]
JIALILIALAAIILIAIE.NI M AN T
~140.0 -i30.0 -120.0 -110.0 -100.0 -90.0 -80.0 -70.0 -AN.0 -50.0 -40.0
(b) 47"5' - : T T v T 7 T > T M A
)
H > ///// .
i Q 489. €£11;7 ’%/_,.wa 7T
A 848 - §
42.5 : Y ! & ft/ _\1
'§ l-’ c-d
- d
@ - ! .
= 31,5 //;ﬁ’ g |
o A
e 85(/ s N
P4
32.% - .
/
"—\/\'v.sw\-,‘\ I\\ A
Pid ’ . 1 _
27.5 , N =
“ \ % f..;
g LB _
: - NN ,._:
22.5 L 1 L 1 =21 I Bt 1 X 1 A 1 1
Jle2.s -97.5 -92.5 -81.5 -82.5 -77.5 -72.5 -67.5 -62.5 -57.5
(c) 97.5 ' _— ﬁ
1‘\_,
42.5 4
37.5 ~
: T
-
32.5 -
.
27.5 ~
22 S a1 o= =~ .1 A 1 A 1 A, 1 4
“lo2.s -97. -92.5 -g1.5 -82.5 -77.5 -72.5 -67.5 -62.5 -57.5
COLeMG

FIG. 6. The smoothed model

topography for

(a) the US grid, (b) for the

GALE grid and (c) for the GALE grid with the topography further smoothed in a
five degree zone around the lateral boundary. The horizontal resolution is 2°
longitude by 1.5° latitude for the US grid and 0.5° in latitude and longitude

for the GALE grid. The contour
m, and 250 m for those below 1000 m.

intervals

63

are 500 m for elevations above 1000




1 2 3 4 5 6 3
ITERATION NUMBER

o ] )
1 2 3 4 5 6

ITERATION NUMBER

FIG. 7. The root-mean-square (rms) changes in the amplitudes on the US
grid of (a) the mass divergence Ad in dynes cm~2 s-1, (b) the generalized
geogotential Ae in units of 1011 dynes s-2, and (c) the vorticity Av in dynes
cm~¢ s-1, versus the iteration number in the vertical mode initialization
scheme, for each of the first three vertical modes. In (d) is shown the rms
change Apg in the surface pressure in mb versus the iteration number. The rms
values are averaged for all the analyses of the week of 122 January 23 to 122
January 29, 1986. (e) The rms change in the amplitude of the mass divergence
Ad in dynes cm-2 s-1 versus iteration number for the highest mode initialized,
as the number of modes initialized is varied from one to six modes for the
analysis on 122 January 23, 1986 only.
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FIG. 7. The root-mean-square (rms) changes in the amplitudes on the US
grid of (a) the mass divergence Ad in dynes cm-2 s-1, (b) the generalized
geogotential Ae in units of 1011 dynes s-2, and (c) the vorticity Av in dynes
cm~2 s-1, versus the iteration number in the vertical mode initialization
scheme, for each of the first three vertical modes. In (d) is shown the rms
change Apg in the surface pressure in mb versus the iteration number. The rms
values are averaged for all the analyses of the week of 12Z January 23 to 122
January 29, 1986. (e) The rms change in the amplitude of the mass divergence
Ad in dynes cm-2 s-1 versus iteration number for the highest mode initialized,
as the number of modes initialized is wvaried from one to six modes for the
analysis on 12Z January 23, 1986 only.

65




! ‘ .

*asTMIaYI0 .34 ¢.0T X ST K1and puB {_1Yy _0T X 0T 3a0QE
sapnatulew 103 1-I4 ¢-0T X 6°2 K1aaa 91® wuofjow T[EBOTFIIBA 38yl I03J SiInojuo)
‘qu ¢°0 £15A2 218 33usvyd aanssaid adeJINS JO SINOJUOD ‘UOTIBZTTEBTITUT 3pouw
1¥0F333A 3Yy3 193J® °‘GH 0 = D Tonl] vuwldys B8 3E a1aydsodo13 3Tppyw a8yl uy .1y
¢-0T 3O s3Ifun uy pIary uoyow 1897338A 3yl (p) pus a8ueyo ainssaiad aoejins
ayl (2) "1-S W %G S¥ uMmoys 10308A PUTM UMWIXeW 3Y] °¢.S W Ot worj Burseaiouy
‘1-5 W 0T £1aa3 218 SYOBIOST 2yl pue qu 4 £K13A3 aie aanssaid Taaayr-eas
JO sanojuod ayl °986T ‘€z Aienuer 2ZT 303 GZ'0 = 0 T3A3] ew8ys Tepow e prid
SN 8yl uo PIar3y purm (q) pue ainssaid T3aa[-vas (®) paziirue a3yl ‘g °9I4

[ > e T P
MAPRIAELERE L) St N~ .7 S0 Ee A U QINLIPLESBLEN NP S L) N S et S BN p . ' ~O‘ g Q
- ~— ~~. [y ’ . Q \ .4J R ~

)
£

‘

) 190
H

&

.

kM A l%d--..-.lﬂ-.--_-.-..4- ITJ.-.-,-HMM\-K“;.{IIIIM\“'”«-_-..—44.—<]lc<<<‘
O SS ARsansanasasas I A : ) pess
H> - T 7 ! ) ’ . T g0t
[ ¥ ¥ 9\0
L e e A R , -~ - A
S
— ~ -
I - - 4
i - -, - - N
- - - - —_ S - ]
5 |
— et = E
003
S -




sinojuo) ‘sapow Sutuyewai ayl ur (q)

‘pg *3T4 uUT SB 318 UOTIOW [EITIXI3A JO
‘sapow TEOTIISA 222yl 3IsaATF 8y3 (®)

ur ¢y°0 = p TaasT suwldys 3@ uoyjow JEIFIIAA Ayl O3 UOTINGTI3UCD YL ‘6 ‘9Id

L

T

L 2 S S B S S R SNV MR

Sy ) ob-2-_)

1

-.-.4w-<.-4-...-_j-<..1
~
.

P S

67




*sadueyd aanjeiadway ayi 10j
0,62°0 Pu® ‘;_s w ¢°Q 21¢ sjuauodwod pufm Y3l JO SINOJUOH °y.S W ¢ ST 103D3a
unwixew ayl pue wdd g Liaas as1e a3ueyd> TeTIUL3I0d0dB JO SINOIUOD BYL ‘9861
‘gz Lienuep 221 103 6Z°'0 = 0 JO 12A3] ®BW3Fs a8yl 3Is pufa ayjl jo juauodwod-a
ay3: (p) pue pufm ay3l jo juauodwod-n a8yl (o) ‘aanisiadwal ayil (q) °‘prarj pura
ay3y pue 3yByay 1eFIuszodosd ayjy () ur prad sn ayi uo sadueyd ayl ‘o1 ‘91d

IR 7 LA L MZ:@ = -m. - AL
: T ERAER -

~ -

. =~
V. - JIN
= ‘Y
4
N

P\\h:%
Pt}

PO

68

ot R
@




‘9861 ‘€z Laenuer 2z1 103 ‘awayds
UOTIPZTIRTITUT apow T®OTIIaa 8Y3 JO SUOTIBIBIF] 983Y3 13ISITI BYI 10J [aA3]
ewdts snsiaa ‘D, ut ainjeiadwsly ayil (q) pue 1-S W UT puta 8yl jo 3uauodwod
-n ay3y () ur pra8 sn a8y uo sadueyo azenbs-usaw-3003 Yl ‘IT °‘9Id

. . (00) LV _ (s/w) ny
o't 80 90 °0 20 0 0 St 0’1 S0 0
I ] T T . I i i .
S6°0 $6°0
S9°0 ¢, . 590 o
o g
s =
M m
2 5
se'o & se0 "
. 4
_ 4
2 €
500 : 500

¢l (®)

69




@ ®)

12 - 4.0

ITERATION NUMBER

2 3 4 5
ITERATION NUMBER

FIG. 12. The root-mean-square (rms) changes on the GALE grid in the
amplitudes of (a) the mass divergence, and (b) the vorticity versus iteration
number in the vertical mode initialization scheme for each of the first three
vertical modes, averaged for all the analyses for the week of 12Z January 23
to 12Z January 29, 1986. (c) Comparing the rms changes in the amplitude of the
mass divergence when the GALE topography (see Fig. 6b) is used (solid lines)
to that when the GALE topography, which has been further smoothed (see Fig.
6c) in a five degree zone around the lateral boundary, is used (dashed lines).
The analyses only on 12Z January 23 (labelled 1) and 122 January 24, 1986
(labelled II) are used.
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