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TESTS OF INITIALIZATION PROCEDURES WITH THE NRL

LIM1TED AREA NUMERICAL WEATHER PREDICTION MODEL

1. INTRODUCTION

Various initialization procedures have been tested for use with the Naval

Research Laboratory's (NRL) Limited Area Weather Prediction system. The system

has been developed to study the development of extratropical cyclones, which

occurred along or off the East coast of the U.S. during the Genesis of

Atlantic Lows Experiment (GALE) and the Experiment on Rapidly Intensifying

Cyclones over the Atlantic (ERICA). Errors in the analysis (which can be due

to observational errors and unresolvable scales of motion) and inaccuracies in

the model physics give rise to inertia- gravity wave oscillations in numerical

integrations of the model. Such errors are reflected as unbalanced deviations

in the wind and mass fields, which generate freely propagating inertia-

gravity waves. For the external and first few internal vertical modes of the

numerical model, the phase speeds of these free inertia- gravity waves are

much larger than the speeds of meteorological systems. The resulting high

frequency oscillations can be seen in the surface pressure for example, with

amplitudes as large as 5 to 10 mb.

Over the years, various methods have been used to reduce these high

frequency oscillations in integrations of numerical weather prediction models.

Among these, initial conditions used for integrations of the model are

sometimes modified or initialized by application of various filtering

equations. In the conventional static initialization performed on pressure

surfaces, horizontal scaling arguments are used to derive the non-linear mass

balance equation, which relates the geopotential and the stream function of

the non-divergent wind for the larger scale atmospheric motions (see Haltiner

and Williams, 1980, for example). In midlatitudes it has been customary to use

the observed geopotential heights to compute a statically balanced wind field,

assuming the wind is geostrophic at the lateral boundaries of the model (see

Bengtsson, 1975, for example). On the other hand in the tropics, the non-

divergent wind is used to derive a statically balanced temperature from the

geopotential (see Krishnamurti, 1979, for example). Since most numerical

weather prediction models use vertical coordinates different from the

pressure, these statically balanced mass and wind fields must be then
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interpolated to the model vertical coordinates, introducing some noise in the

initial conditions. Sundqvist (1975) used horizontal scaling arguments to

derive the non-linear mass balance equation directly on the vertical sigma

levels of his numerical model. In the normal mode initialization, used in

global numerical weather prediction models (Andersen, 1977, Daley, 1979,

Temperton and Williamson, 1981, Williamson and Temperton, 1981, for example),

the normal modes of the numerical model are computed and by projecting the

initial wind and mass fields (which have been interpolated to the model

coordinates) onto these normal modes, the high frequency inertia- gravity

waves can then be removed. However in limited area models, it is not possible

to define the horizontal structure of the normal modes. In the vertical mode

initialization scheme of Bourke and McGregor (1983), filtering conditions for

the inertia- gravity waves are applied to the model dynamical equations to

derive linear diagnostic equations for the mass divergence and generalized

geopotential for the first few vertical modes of the model. With the further

condition that the linearized potential vorticity is unchanged by the

procedure, the equations can be solved iteratively for the amplitude of the

high frequency gravity waves in the initial conditions. The scheme has been

shown to be an application of the normal mode initialization scheme used in

global models, without the horizontal structure of the normal modes having to

be computed (Juvanon du Vachat, 1986; Temperton, 1988).

To reduce the amplitude of these high frequency gravity wave oscillations

in the NRL model, several basic types of initialization procedures have been

used. A static initialization procedure, which had been developed for the NRL

model, is tested. With the future implementation of a wind profiling network

in the U.S., there is renewed interest in deriving geopotential heights from

the wind field in the midlatitudes. In the NRL scheme then, the rrn-divergent

wind is first computed from the analyzed winds on the pressure surfaces. The

computed non-divergent wind and the analyzed temperatures are then

interpolated to the model vertical coordinates. A diagnostic relation for the

geopotential on the sigma surfaces of the numerical model is derived, by

setting the tendency of mass divergence to zero and ignoring vertical

advection and friction in the divergence equation. For the boundary condition

on the geopotential, we generalized the conventional geostrophic relationship,
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deriving diagnostic conditions for the normal derivatives of the geopotential

by ignoring the tendencies of momentum in the momentum equations.

A second type of initialization procedure, based on the vertical mode

initialization scheme of Bourke and McGregor (1983), has also been developed

for the NRL model. As is customary, we keep the geopotential, temperature and

pressure fixed at the lateral boundaries of the model. To provide a boundary

condition for the mass divergence however, an approximate mass divergence is

computed along the lateral boundary using the thermodynamic equation. In our

scheme, changes in the tangential wind along the lateral boundaries are

consistent with the changes in the vorticity and divergence computed by the

scheme.

The effect of the split-explicit scheme, which is used for integration in

time in the NRL model, and the non-linear initialization procedures in

reducing gravity wave oscillations in integrations of the NRL model are

investigated. The influence of two different lateral boundary treatments and

two different grids of differing resolution and domain size are investigated.

In these integrations, idealized boundary conditions are obtained by

interpolation from operational analyses. To minimize the impact of noise from

the boundaries influencing the interior, the boundary conditions are derived

from initialized fields for the cases of integrations starting from

initialized fields.

The numerical model, the vertical modes, the split-explicit integration

scheme and the two different lateral boundary treatments are described in

section 2. In section 3, the static initialization procedure is described and

illustrated. The vertical mode scheme is then described in section 3. The

convergence of the scheme is also shown for the two different grids. A low

resolution grid with a resolution of 2* in longitude by 1.5* in latitude,

covers the continental U.S., and a high resolution grid of 0.5* resolution in

latitude and longitude covers the eastern U.S. In section 5, integrations with

the split-explicit scheme for time integration are compared with a centered

difference scheme on the high resolution grid, for uninitialized initial

conditions. Integrations with the split-explicit scheme are then compared for

varying degrees of static initialization. In section 6, integrations with

3



initial conditions, initialized with the vertical mode scheme, are compared to

integrations with uninitialized fields for both the low and high resolution

grids. Differences due to the different lateral boundary treatments are

compared. The results are summarized and discussed in section 7.
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2. MODEL DESCRIPTION

The Naval Research Laboratory's primitive equations model (Madala et al.,

1987) uses sigma coordinates in the vertical and incorporates topography and

physical parameterizations of the boundary layer and precipitation processes.

The model is integrated in time using the efficient split-explicit method

(Madala, 1981). In the horizontal, an Arakawa C grid (Arakawa and Lamb, 1977)

is used with a latitude and longitude grid. The finite difference scheme is a

second order quadratic conserving scheme. The model has been used for example

to study the east coast snow storm of 10-12 February, 1983 (Chang et al.,

1989). For experiments in this paper, ten layers of equal thickness (with

Ao - 0.1) are used in the vertical sigma (o) coordinate from the surface

(o - 1) to the model top (a - 0). The model includes large scale precipitation

and a cumulus parameterization using a modified Kuo scheme. Unstable lapse

rates are removed by a dry convective adjustment scheme following Manabe et

al. (1965). The boundary layer is parameterized using a drag coefficient

formulation, and second order horizontal diffusion is included.

Two different model grids are used for the model. A low resolution grid

(called the US grid), with a resolution of 2e longitude by 1.5' latitude,

covers the continental U.S. in a domain from 140.OW to 40.09W and 10.0QN to

70.0N. The other grid (called the GALE grid) is a high resolution grid of

0.50 resolution in latitude and longitude, covering the eastern U.S. from

102.50W to 57.50W and 22.50N to 47.50N. Analyses at 14 standard pressure

levels (from 50 to 1000 mb) on a 2.50 hemispheric grid from the National

Meteorological Center (NHC) provide the initial conditions and idealized

boundary conditions for model integrations in this paper. The NMC 2.5'

resolution hemispheric analysis is interpolated to the horizontal model grid

using Lagrangian cubic polynomial interpolation. The thermodynamic variables

are interpolated in the vertical to the model sigma levels assuming they are

linear in the log of the pressure, while the wind components are interpolated

assuming they are linear in the pressure. An enveloped topography is derived

for each model grid from the U.S. Navy's global 10 minute elevation data, by

computing the average height for each model grid square and adding one

standard deviation. On each model grid, the enveloped topography is then

filtered by using the two-dimensional triangular smoother-desmoother of
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Shapiro (1970), to filter out any wavelengths, in the topography of twice the

grid distance. For use with the vertical mode initialization scheme, the model

topography is further smoothed by using one pass of the two-dimensional nine

point triangular smoother (Shapiro, 1970). Climatalogical mean sea surface

temperatures for the month of January of one degree resolution, taken from

Reynolds (1982), are interpnlated to the model grids.

2.1 Vertical Modes of the Model

In order to solve for the vertical modes of our numerical model, we

linearize about a basic state at rest with a mean temperature T*o which is a

function of sigma only, and separate the linear and non-linear terms in the

model dynamical equations. The model dynamical equations in flux form can then

be written in matrix notation as

Bp- + 5* = A (2.1)

at x u

8av
s + 6 # - A (2.2)

et 7v

- + M 2  - AT (2.3)

Ors T
S + N2 D= 0 

(2.4)at

and the hydrostatic relation and continuity equation are written

0 s- M, T (2.5)

ps o N 1 D (2.6)

where colunm vectors are in bold type, M1, M2 , N1  are matrices, and N2T

represents the transpose of vector N2 . The vertical sigma coordinate (a) is

defined by the ratio of the pressure p to the surface pressure Ps (Phillips,

1957). The dynamical variables are in vector form, where the elements of the

vectors represent the values of the variables at each of the ten model sigma

6



levels for a single horizontal grid point. The vectors u, v represent the

horizontal wind, T the temperature and # the geopotential, at each of the

model sigma levels, which are defined at the middle of each of the sigma

layers in the vertical. #s is the surface geopotential (at o - 1). The

generalized geopotential 0 is defined as

# - ps[#-#s + RT*-#*] (2.7)

where the average geopotential f* on the sigma surface is related to the mean
temperature T* through the hydrostatic relation = M1 T*. The vertical

motion i in the sigma coordinate (a) is staggered in the vertical, being

defined at sigma levels at the boundaries between the vertical layers.

Subscripts representing the horizontal grid points on the C grid (see also

grid mesh in Fig. 2 in section 2.3) have been omitted for clarity. The x and y

coordinates are defined by multiplying the longitude and latitude in radians

by the average radius of the earth. The mass divergence D on the sigma

surfaces is defined on the C grid in our spherical coordinates by

D hy P u) + y( x y V) (2.8)
h yx y s h xY x sy x

Here the difference operator 6 is defined in the x direction, using the

generalized geopotential # as an example, by

O(x+AxI2) - #(x-Ax/2)
6 # - (2.9)h Ax

where Ax is the grid spacing for the x coordinate and hx (equal to the cosine

of the latitude for our coordinate) is the map factor for the x coordinate. A

similar difference operator is defined for the y coordinate, where the map

factor is hy - 1 in our case. An averaging operator is also defined in the x-

direction, using the surface pressure as an example, by

-x Ps(x +Ax/2) + pS(x-Ax/2)

Ps 2 (2.10)

A similar averaging operator is defined for the y-coordinate and a two

dimensional averaging can be defined as

7



-y -Ps Ps Ps (2.11)

Elements of the matrices M1 , M2 , N1 and the vector N2 are functions of sigma

only. The vectors on the right hand side (RHS) of Eqs. (2.1), (2.2) and (2.3)

include Coriolis, friction, non-linear advection and diabatic terms. Details

of the vector and matrix elements can be found in the report by Madala et al.

(1987).

Solutions to the homogeneous equations (in which terms on the RHS of Eqs.

(2.1), (2.2), (2.3) and (2.4) are zero) are freely propagating gravity waves.

Now eliminating all variables in the homogeneous equations except 0, we obtain

82

- H V 9 = 0 (2.12)

where the matrix M3 is defined as M3 - M1 M2 + (RT*-O*)N2T and whose elements

are only functions of the vertical sigma coordinate and do not depend on the x

and y coordinates. In our x and y spherical coordinates, the two dimensional

Laplacian V2 is defined by

21 1
v 2 - 6 (h 59) + 6 ( 5 9 (2.13)h yx y x h xy xy

Similarly, we can show that the mass divergence D satisfies the same equation

(2.12), while the vorticity of the background flow is not affected by gravity

wave motions. The equation (2.12) is separable and by separating the vertical

structure, a set of vertical eigenmodes and corresponding eigenvalues can be

obtained (see also Kasahara and Puri, 1981, for example). In terms of our

matrix notation, the eigenvectors Ek and corresponding eigenvalues Xk are

found by solving the matrix equation

M3 Ck - Xk Ck .  (2.14)

If E represents the eigenvector matrix (with each column representing an

eigenvector Ek) of matrix M3, and A is the diagonal matrix with the diagonal

elements given by the eigenvalues Xk , then we can write

M3 E - A E. (2.15)
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and by multiplying Eq. (2.12) by the inverse of E we have

82•

- V2 e = 0 (2.16)
8t

2

where e = E-1  , and we have used the property of the eigenvector matrix that

E-1 M3 E - A , which can be easily verified by comparing the elements of

matrices M3 E and E A (see Strang, 1988, p254, for example). For each

vertical mode we have

k - 2 e 0(2.17)
at 2  k k

where ek  is the amplitude of the generalized geopotential and Xk is the

TABLE 1: Mean temperatures for 12Z January 23, 1986, on
sigma surfaces of 10 layer model for GALE grid.

Model Level Sigma Level Temperature
(oK)

1 0.05 205.9

2 0.15 214.0

3 0.25 222.1

4 0.35 236.1

5 0.45 249.4

6 0.55 259.4

7 0.65 266.6

8 0.75 271.9

9 0.85 275.9

10 0.95 278.4



TABLE 2: The equivalent depths and the phase speeds for
the vertical modes of a ten layer model for the
mean temperature profile defined in Table 1.

Mode No. Equiv. Depth Phase Speed
(meters) (meters s-1 )

1 9,399.0 303.5

2 1,508.0 121.6

3 226.6 47.1

4 85.7 29.0

5 30.3 17.2

6 13.7 11.6

7 6.4 7.9

8 2.7 5.1

9 0.9 3.0

10 0.2 1.3

eigenvalue for the kth mode. Eq. (2.17) is a wave equation describing the

propagation of the free gravity mode whose phase speed ck is given by Jk.
In the linearization used here to obtain the gravity modes, the Coriolis term

is combined with the non-linear terms, and as such the gravity modes are

applicable only for high frequencies or small time periods compared to the

period of inertial oscillations. However it can be noted that the vertical

structure of the modes derived in this case is unchanged even if the Coriolis

terms are included with the linear terms on the left hand side of Eqs. (2.1)

and (2.2). In this case the linearization defines the inertia- gravity modes

(see section 4.1).

As an example the eigenmodes are computed for the ten layer model using a

emperature profile taken from the NMC 2.50 hemispheric analysis for 12Z

January 23, 1986 during the second Intensive Observing Period (IOP) of GALE.
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The temperatures are interpolated to the model grid and averaged on the sigma

surfaces over the GALE grid covering the eastern U.S. The average temperatures

on the model sigma levels at the middle of each layer are shown in Table 1.

The eigenvalues and the phase speeds for each of the ten vertical modes

computed are shown in Table 2. The eigenvalues are given in terms of

equivalent depths defined by Xk/g , where g is the acceleration due to

gravity. The corresponding vertical structure for each of the modes is shown

in Fig. 1. The number of zero crossings in the vertical structure of each mode

is given by the mode number minus one. The phase speeds of the modes vary

from 303.5 m s- 1 for the external (first) mode to 1.3 m s- 1 for the tenth

mode. For the first three modes, the external mode and first two internal

modes, the phase speeds are much faster than typical meteorological systems,

which are typically less than 20 m s- 1 . Then to integrate a model with a

centered difference scheme in time and a grid spacing Ax, the time step 2 At

must be small enough to satisfy the CFL condition 2 At (U+c) I Ax 1 , for

the external gravity mode which has the fastest phase speed c, and where U is

a maximum advecting wind speed (see for example Mesinger and Arakawa, 1976,

p51). To allow the NRL model to be integrated more efficiently at a larger

time step, more appropriate for meteorological systems, the split-explicit

scheme was developed.

2.2 Split-Explicit Time Integration

In the split-explicit method of Madala (1981), a centered difference

scheme is used with a large time step to compute initial estimates of the

tendencies of the model variables for all the terms, except for diffusion

which uses forward differencing. The time step satisfies the CFL condition for

the phase speed of the 4th gravity mode. To step the model variables at time

t - At forward in time by 2 At, using the centered difference scheme, the non-

linear terms and forces are computed at time t. These first estimates of the

tendencies of the mass (surface pressure p.. temperature T) and wind fields

(u, v) are then corrected for the motion of the higher frequency gravity

modes, assuming that the computed non-linear, Coriolis, diabatic and friction

forcing terms are constant during the time step of 2 At. The specific humidity

q is not corrected. To obtain the corrections, the amplitudes of the

deviations of the divergence D - D(t) and the generalized geopotential

II



# - #(t) are integrated over the interval of .2 At at smaller time steps, for

each of the first three vertical modes. For the external mode a time step of

At/8 is used, while for the first two internal vertical modes time steps of

At/4 and At/2, respectively, are used. The average of these deviations, over

the interval of twice the large time step 2 At, is then used to correct the

initial explicit estimate of the variables. Further details can be found in

the Appendix. For the integration of the deviations of the divergence a

lateral boundary condition is also required for the generalized geopotential.

A boundary value for 9 - #(t) is computed by a linear interpolation from the

boundary values at t-At and t. Further pragmatic boundary conditions are

provided by reducing the amplitude and phase of the deviations of the

divergence and generalized geopotential in a boundary zone (see the Appendix).

Besides providing a 4 to 5 times saving in computer time over explicit

methods, the averaging of the lower gravity wave eigenmodes can be expected to

reduce the amplitude of the freely propagating higher frequency gravity waves.

2.3 Lateral Boundary Conditions

To update the large scale flow at the horizontal boundaries during the

integration of the NRL model, externally prescribed boundary conditions are

required for both the u and v components of the wind field and the mass and

humidity fields. In the model, the mass and humidity variables of surface

presure Ps, temperature T, geopotential 0 (or generalized geopotential 9),

and specific humidity q are defined at the lateral boundary. The wind

components are staggered in the C grid and as applied to the NRL model, the

tangential wind is defined at the boundary, while the normal wind is staggered

half a grid point in from the boundary (see Fig. 2). In this paper two

different lateral boundary treatments, the tendency relaxation scheme of

Perkey and Kreitzberg (1976) and the Davies (1976, 1983) relaxation scheme,

are used and compared for use with various initialization procedures. To

provide the model boundary conditions in our experiments, idealized boundary

values and tendencies are derived from the NMC 2.5 degree hemispheric

analyses, interpolated to the model grid.

(a) Perker Kreitzberg scheme.

In the Perkey Kreitzberg scheme, model computed tendencies for each of the

dependent variables are blended with specified boundary tendencies in a

12



boundary zone of 5 points. After each time step, the model tendencies for each

of the independent model variables are adjusted according to

Ba [Ba 1 Ba
- - (1-) - + a - (2.18)
at Lt Im at Jb

where a is the independent model variable psu, ps, PsT, or

subscript m represents the model computed value, and subscript b the

prescribed boundary value. a is a linear function of the minimum distance (n)

from the lateral boundary, in units of the grid spacing. As in Chang et al.

(1989), we use for the mass and humidity variables (that is, for p., psT, psq)

( 1 - n for n 5

a 1 5 (2.19)
0 for n > 5

wi prve which are staggered on the grid mesh,

we use

f 1 for n 0.5
au = x for (2.20)

1 for n 9 0.5
av M for n(2.21)

The boundary tendencies, derived from the twelve hourly NMC analyses, are

updated every twelve hours of model integration.

(b) Davies scheme.

In the Davies scheme, computed model variables are relaxed to the boundary

values themselves at each time step in a boundary zone of 6 points. In this

case, the model variables are adjusted at each time step according to

a - (1-a) am  + a ab (2.22)

where, following Gr~nis et al. (1987), we define a as a quadratic function of

the minimum distance (n) from the lateral boundary, in units of the grid

spacing. For the mass variables we use

13



1for n 0

6 . 6 2 for 1 n 9 5 (2.23)

0 for n 6

The functions au and av  for the u and v components of the wind field are

defined similarly as in Eqs. (2.20) and (2.21), using the averaging operators

in the x and y coordinate directions, respectively. At each time step, the

boundary values are computed by a linear interpolation in time from the 12

hourly NMC analyses.
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3. STATIC INITIALIZATION

In the static initialization procedure used at NRL, a diagnostic

relationship is derived for the geopotential on the sigma surfaces of the

model. The non-divergent wind is first computed for the analyzed winds on the

pressure surfaces. The NRL model differs from many other limited area models

in that the tangential wind is specified at the lateral boundary of the model,

instead of the normal wind. To compute the non-divergent wind then we solve

for the stream function, assuming that the tangential wind along the lateral

boundary is purely non-divergent. The non-divergent wind and the analyzed

temperatures are then interpolated to the sigma coordinates of the model. A

diagnostic relation is then derived for the geopotential on the sigma surfaces

of the numerical model, by ignoring the tendency of divergence, vertical

advection and friction. The initial non-divergent wind and analyzed

temperatures, interpolated to the sigma surfaces, are used to compute the non-

linear forcing terms. Boundary conditions for the normal derivatives of the

geopotential are obtained by ignoring the tendencies in the momentum

equations.

3.1 Non-Divereent Wind on Pressure Surfaces

For large scale atmospheric motions, the divergence of the velocity field

is an order of magnitude smaller than the vorticity. To a first approximation

then, the flow can be considered non-divergent on surfaces of constant

pressure. On pressure surfaces, the vorticity 5p and divergence Dp are defined

on the model horizontal grid as

1

S h 6( h v) - - 6(h u) (3.1)

x

D -1 6( h u) + h 6(3.2)p h x y h Y xy x

where u and v are the analyzed wind components on a pressure surface,

interpolated to the horizontal grid of the model. The non-divergent flow can

15



then be described by introducing a stream function , so that the non-

divergent wind components u# and v# at that pressure level are given by

- - (3.3)
=-

By computing the vorticity on the pressure surface, we can solve Poisson's

equation,

V2 # . (3.4)

for the stream function #, and whence for the non-divergent wind. To provide

boundary conditions for the stream function, we assume that the analyzed

tangential wind along the boundary of our model domain is purely non-

divergent. Then we obtain the Neumann boundary conditions for the stream

function
6yO - -u at y - yo, yl (3.5)

5x# =v at x = zo, x 1

where yo, yl give the southern and northern lateral boundaries and xO , xl give

the western and eastern boundaries. In this case the stream function is not

unique, since adding a constant value to the solution of the stream function

is also a solution. As described in the report of Sashegyi and Madala (1989),

to obtain a unique solution for the stream function, we prescribe a value for

the stream function # - 0 at a single arbitrary point on the boundary and use

the elliptic equations solver of Madala (1978, 1981). Choice of a zero value

as a first guess of the solution of the stream function then leads to the

efficient convergence of Hadala's elliptic equations solver.

As eloquently described by Lynch (1989), the partitioning of the wind into

the divergent and non-divergent parts is not unique in a limited area domain.

The choice of using the tangential wind on the boundary to describe the normal

gradient of the stream function, minimizes the kinetic energy in the divergent

wind and does not lead to a mixed divergent and non-divergent term in the

kinetic energy balance. It can be noted that choice of defining the normal

wind at the boundary in some models, instead of the tangential wind used in

the NRL model, leads to solving Poisson's equation

V2 X - Dp (3.6)

for a velocity potential X, which defines the divergent component of the wind.

The non-divergent wind is then computed by subtracting the divergent component

from the original wind field. For the boundary conditions in this case, it is
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assumed that X - 0 at the lateral boundaries, that is, it is assumed that the

divergent component of the wind is zero on the boundary.

3.2 Static Non-Linear Mass Balance

For large scale atmospheric motions, the time tendency of the divergence

is small compared to the other terms in the divergence equation. A diagnostic

equation for the geopotential on the sigma surfaces of the model can then be

derived by ignoring this term. We can rewrite the model momentum equations

(2.1) and (2.2) in the form

5 + P 6x + R F6 p s  N (3.7)
at u

8+
s + ps 6y + R F-Y6yp 8 N (3.8)

atv

where we have included the non-linear advection of momentum, the Coriolis

force and friction in the terms on the RHS. The equation for the mass

divergence on the sigma surfaces is then obtained by taking 6. of hy times Eq.

(3.7) and adding 6y of hx times Eq. (3.8) giving

8D
- + Ve[pV(O-s)] = ND - V-[RT Vp5 + p8V#s] (3.9)
at

where the horizontal geopotential gradient is given by V# - (6x#. 6 y#) and

we have utilized the two dimensional divergence operator V to define

N V1 6 + 1

Nv y x  y u h y v (3.10)

VO(p VO) 6 6( h 5p ) + 6 (3.11)
y x

Here we have also defined the vector NV by NV - (Nu, Nv). Since the time

tendency of the divergence is assumed small compared to the other terms in the
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mass divergence equation (3.9), we can ignore this term. That is, setting the

tendency of the mass divergence zero in Eq. (3.9), we have

VO[psV(+-#s)] . ND - VO[RT Vps + psV s] (3.12)

To compute the term ND, we first compute the non-divergent wind on the

pressure surfaces, as described in section 3.1. The non-divergent wind and the

analyzed temperatures are then interpolated to the sigma surfaces of the model

(see the beginning of section 2 on the model description). The non-divergent

wind is then used to compute the terms on the RHS of Eqs. (3.7) and (3.8)

ignoring vertical advection and friction (leaving horizontal advection and

Coriolis forces). The analyzed temperatures and a surface pressure computed on

the model topography by interpolation are used to compute the remaining

forcing terms on the RHS of Eq. (3.12).

To solve Eq. (3.12), boundary conditions are required for the

geopotential. To obtain the boundary conditions we ignore the tendencies of

the u and v momentum in Eqs. (3.7) and (3.8) to obtain the Neumann boundary

conditions for the geopotential

P- 6u N R6 p P 6s (3.13)

Ax Axat x = x 0 + 2- ,2 1 - - and

2' -- 2'

at - YO+ 2j yl 2'

where y - yo, yl give the southern and northern lateral boundaries and x - x0 ,

xI give the western and eastern boundaries. In Fig. 2, our boundary conditions

for the geopotential gradient are defined along the lines given by the shorter

dashes, half a grid point in from the lateral boundary. Essentially, we have

generalized the conventional geostrophic boundary condition relating the

gradient of the geopotential to the geostrophic wind, by using the non-

divergent wind and including the non-linear horizontal advection term. The
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elliptic equation (3.12) can now be solved for the geopotential using the

Neumann boundary conditions (3.13) and (3.14) with an elliptic equations

solver, such as the Stabilized Error Vector Propagation (SEVP) solver (see

Hadala, 1978; Sashegyi and Madala, 1989). For the SEVP solver, the initial

geopotential derived from the observed temperatures is used to provide the

prescribed value at a point on the lateral boundary (to give a unique

solution) and to provide the first guess for the solver.

The balanced temperatures on the sigma surfaces are then found from the

balanced geopotential, by inverting the hydrostatic equation. Use of the

hydrostatic equation to compute the temperature introduces a 2 Ao saw tooth

wave structure in the vertical temperature profile. To remove this buckling,

deviations of the temperatures T' from the mean temperature T* are computed at

sigma levels at the boundaries of the vertical layers (half way between the

model sigma levels).

T- T (3.15)

The corrected temperatures are then obtained by adding the deviations

(interpolated back to the model sigma levels) to the mean temperature and

removing the mean of the deviations, so that the mean is unchanged.

T - T + T - < T > (3.16)

where < > is the horizontal average over the model domain on the sigma

surface.

3.3 ADRlication of Static Initialization

As an illustration of the scheme, the analyzed winds and temperatures,

taken from the NMC analysis for 12Z January 23, 1986, are first interpolated

to the model horizontal GALE grid for each of the 14 standard pressure levels

from 50 to 1000 mb in a domain covering the eastern U.S. The horizontal

resolution of the GALE grid is 0.50 in latitude and longitude in a domain

102.50W to 57.5°W and 22.5°N to 47.5*N. The non-divergent wind is then

computed as outlined above in section 3.1. In Fig. 3a we show the root-mean-

square (rms) changes that result in the u-component of the wind field after
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computing the non-divergent wind. Changes in the v-component of the wind field

are similar. We see that average changes in the wind field are 2 m s-1 in the

upper troposphere and 1.0 to 1.5 m s- 1 in the middle and lower troposphere.

The non-divergent wind and analyzed temperatures on the 14 standard pressure

levels are then interpolated in the vertical to the ten model sigma levels.

Our diagnostic equation for the geopotential is then used to compute a

balanced geopotential on the sigma surfaces. In Fig. 3b we show the rms

changes in the temperature at each of the model sigma levels resulting from

solving for the non-linear mass balance. Changes in the temperature in the

upper troposphere of 1C reduce to 0.5*C in the middle troposphere. However in

the lower troposphere large changes of 4.0*C are found. For comparison, the

actual analyzed winds and temperatures are interpolated to the model sigma

levels. In Figure 4, we compare the wind and temperature fields for the

analyzed fields and the statically initialized fields, after having

interpolated them back to 500 and 1000 mb pressure levels for display. At the

500 mb level, the temperature changes are small although the small trough is

weaker as a result of the non-linear mass balance. At the 1000 mb level

however the strength of the front is greatly weakened by the scheme, as is

reflected in the large rms change in temperature seen in Fig. 3b.
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4. IMPLICIT NORMAL MODE INITIALIZATION

We follow the vertical mode initialization scheme of Bourke and McGregor

(1983) by using the model dynamical equations to filter out the high frequency

inertia- gravity waves. Filtering conditions are applied to the model

dynamical equations to derive linear diagnostic equations for the mass

divergence and generalized geopotential, which are solved iteratively for the

first three vertical modes of the numerical model. The further condition that

the linearized potential vorticity is unchanged by the procedure is required

to compute the vorticity. Boundary conditions on the generalized geopotential

and mass divergence are required. As is customary, we keep the geopotential,

temperature and pressure fixed at the lateral boundaries. To provide a

boundary condition for the divergence, an approximate divergence is computed

using the thermodynamic equation. In our scheme, changes in the tangential

wind along the lateral boundaries are consistent with the changes in the

vorticity and divergence computed by the scheme.

4.1 Inertia- Gravity Wave Modes

We express the dynamical equations in terms of the time tendencies of mass

weighted vorticity, divergence and generalized geopotential, linearized about

the basic state at rest with mean temperature T*. The equations, with the 5
term included with the non-linear terms on the RHS, are

ac
- +fD - A (4.1)

- + V2 " f£ A D (4-2)
at

89
- + M3 D A (4.3)at

Here f is the Coriolis parameter, which is a function of latitude and we have

further defined the mass weighted vorticity C on the sigma surfaces as

1

1y 1-_x
T- 6( h p v) - 5 ( h p u) (4.4)

y y 7 Y x s
x
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In the equations we have ignored the staggering of the vorticity and mass

divergence relative to the generalized geopotential.

The freely propagating inertia- gravity waves in the model are solutions

to the linearized equations (4.1), (4.2) and (4.3) with the forcing terms on

the RHS of the equations equal to zero. Taking the time derivative of Eq.

(4.2) and eliminating the tendencies of the generalized geopotential and the

vorticity using Eqs. (4.3) and (4.1) with the terms on the RHS zero, we find

that the mass divergence satisfies the equation

82

+ [f2- _ V2 ] D - 0 (4.5)

In this case, the vertical modes, which are again found by solving for the

eigenmodes of matrix M3 , have the same vertical structure as that computed for

the gravity wave modes in section 2.1. The "ageostrophic deviations'

f! - V2#, which is f times the ageostrophic vorticity, can also be shown to

satisfy the same equation. Eliminating D from the homogeneous form of Eqs.

(4.1) and (4.3), an expression for the tendency of the linearized potential

vorticity Q is obtained

a ) = 0 (4.6)

where the linearized potential vorticity q is defined as

f H-1 9)(4.7)

That is, the linearized potential vorticity Q is unchanged by the inertia-

gravity wave motions (see also Errico, 1986).

Now in terms of the amplitude of the mass divergence for each vertical

mode, we have

2

k + [0 (4.8)
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By including the Coriolis parameter in the linearization, we have introduced a

low frequency cutoff for the inertia- gravity wave modes (see also Gill, 1982,

for example). Assuming that the latitudinal wavelength of the modes are small

compared to the change in the Coriolis parameter f with latitude, Eq. (4.8) is

a wave equation with the phase speed of the plane wave modes given by

ck k + [ J (4.9)

where Rd is the Rossby radius of deformation defined by

R d  k_- (4.10)

and a (x, y) is the horizontal wavenumber with 52 = X 2 + y 2 At the

higher frequencies (that is, for wavelengths small compared to 2 7 Rd ), the

phase speeds of the modes can be approximately given by bk and the modes

are essentially the gravity wave modes computed in section 2.1. For our ten

iayer model and our limited area domains, the gravity waves for the first two

modes are largely of high frequencies, since the Rossby radius of deformation

is large (7,256 km and 2,907 km at 35N for example, for the first and second

modes, respectively), compared to the size of the model domain. However, for

the higher modes, the Rossby radius of deformation becomes comparable or

smaller than the domain size (1,126 km and 693 km for the third and fourth

modes at 35*N, for example), and the gravity waves are of lower frequency.

4.2 Vertical Mode Initialization

4.2.1 Filtering Equations. We want to reduce the initial amplitude and

tendency of the high frequency inertia- gravity waves so that their amplitude

remains small during the integration of the numerical model. By requiring that

initially the first and second derivatives of the mass divergence are zero,

the amplitudes of the high frequency inertia- gravity waves will be kept small

during integration of the model. Taking the time derivative of Eq. (4.2) and

substituting for the tendencies of the generalized geopotential and vorticity
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from Eqs. (4.1) and (4.3), an expression for the second derivative of the mass

divergence with respect to time is obtained,

2 D V2  f 2  !A V2

8t 2  3 8t A +  f A. (4.11)

The terms on RHS of Eqs. (4.1), (4.2), (4.3), which include the beta and non-

linear terms, vary slowly with time compared to the time scale for high

frequency gravity waves. Therefore we can ignore the time tendency of AD in

Eq. (4.11). Then applying our filtering conditions

8Da)2 = 0 (4.12)
at at 2

to Eqs. (4.2) and (4.11) respectively, we obtain

V2 # - f ; M AD  (4.13)

H V2 D - f2 D W V2 A - f A (4.14)"30

To complete the set of equations a further condition is required. Assuming

that the changes to our initial fields due to our filtering procedure will be

small, then the changes to our fields represent that part of the fields due to

the freely propagating inertia- gravity waves. If they are small, their motion

can be described by the linearized equations (4.1), (4.2) and (4.3) with the

terms on the RHS equal to zero. We can therefore require that the linearized

potential vorticity be unchanged by our initialization procedure. Our

filtering conditions are now

3 v2 # - f2# - 3 (A + fo ) (4.15)

V2 D - f2 D = V2 A - f A (4.16)

C- f 1 # = Q . a constant (4.17)

We only need to filter the high frequency gravity waves, whose phase speeds

are much larger than the typical speeds of weather systems. Therefore our
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filtering conditions need only be applied for those vertical modes whose phase

speeds are larger than about 25 m s-1 . For the ten layer model example shown

in Table 2, filtering the first three modes is sufficient. Using the same

vertical structure we defined earlier we can express our variables in terms of

amplitudes for each of the vertical modes, where

e - E'1 #, d = E-1 D, 1 = E-1I, I - E'1Q.

Then our filtering conditions for the first three modes k = 1, 2, 3 can be

written

22

V 2ek e a (4.18)k X k kk
f2 1

V 2 d f2dk b (4.19)
k k k kk

f -xy
V k K Xek + O(4.20)

where the forcing functions ak and bk are the kth elements of the vectors

a E-1 ( + f 0Y) (4.21)

b - E 1 ( V2 A¢ - f ACxy) (4.22)

Here we have reintroduced the averaging operators to take into account the

staggering of the variables on our model grid. Since the forcing functions on

the RHS of Eqs. (4.18) and (4.19) depend on the vorticity, divergence and

geopotential, the set of equations is solved iteratively. With a first

estimate for the variables given by the uninitialized fields, the forcing

functions for the Helmholtz equations can be computed by integrating the model

to obtain the non-linear terms AD, A, A,5, and the initial potential vorticity

Q0 computed. By solving the Helmholtz equations for the amplitudes of

generalized geopotential and divergence, new values of the variables can be

computed. By recomputing the forcing functions the process can be repeated.

We require boundary conditions for the amplitudes of the generalized

geopotential and the mass divergence to solve the Helmholtz equations at each

iteration of our initialization procedure. We choose to keep 0 fixed at the

boundary, so that at the boundary 0, T and ps are unchanged by the
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initialization procedure. It has been customary to set the amplitude of the

mass divergence in the first three modes to zero along the boundary and

adjusting the integrated divergence over the model domain. However for a

domain with substantial topographic features along the boundary, this is too

restrictive. We choose to estimate the divergence at the first mass point in

from the boundary using the thermodynamic equation and neglecting the tendency

of the generalized geopotential. In terms of the amplitudes of the vertical

modes we have, using thermodynamic equation (4.3) with B - 0,

d (E-IA, }k (4.23)

x k

4.2.2 Iterative Procedure. By defining incremental changes to the

amplitudes of mass divergence, generalized geopotential and vorticity for each

iteration i

d; + A , ek = ek + Ae k, Vk = vk  + AVk (4.24)

an equivalent scheme can be derived for the incremental changes. For the ith

iteration of the amplitudes of the generalized geopotential, mass divergence

and vorticity, we have for the kth mode

2 i f2 i-1Vek - T e k  ak (4.25)
kk kc

2 f2 di I i-iV2k " -d k - kbk (4.26)

x k k

x V - f e k -k - f e (4.27)
k k k k k k

We can use Eqs. (4.2) and (4.11) to compute the residuals which remained after

the previous (i-l)th iteration. Using Eq. (4.17) to substitute for the

vorticity in the equation for the mass divergence Eq. (4.2) and multiplying by

E-1 , we find that

2 i-l f 2  i-l i-l ad-ke k e k - -- (4.28)
k kat
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That is, the residual remaining after the (i-i)th iteration for the equation

of the amplitude of the generalized geopotential is given by the tendency of

the mass divergence. A similar residual can be computed for equation for the

amplitude of the mass divergence. Taking the time derivative of Eq. (4.2) and

substititing for the second time derivative of the mass divergence in Eq.

(4.11) and then multiplying by E-1, we find

f2 -i-l - i- 8 2 (4.29)
k kk

That is, the residual remaining after the (i-l)th iteration is given by the

tendency of the amplitude of the ageostrophic deviation fC - V20. Then by

subtraction, we find that the incremental changes are forced by

2 2  d
V Aek - -ek a (4.30)

2 1 f2 il 28e- Bk-x

V2di LA i - 1 j~ (4.31)
K kd k at a

A i f e -(4.32)
k '-k k

where the terms on the RHS of Eqs. (4.30), (4.31) are now the residuals from

the previous iteration. To compute the residuals on the RHS, we integrate the

model one time step to compute adiabatic tendencies without friction, diabatic

heating, or updating of the values of the model variables at the lateral

boundaries. The residuals are then computed from

d 61 -8-s + 1 (4.33)

8V 7 uE-1E" t - E"1I 6x  i- - 67 hx  --! (4.34)
ata t 7" Y t

M L - ) + [RT .*] 8 Ps (435)
t t#27
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In terms of the changes to the amplitude of the generalized geopotential our

boundary condition on changes to e becomes

Aek - 0. (4.36)

In terms of changes to the amplitude of the divergence the boundary condition

becomes

18ek

Ad = k 81 k (4.37)

4.2.3 Changes to the Horizontal Wind, Temperature and Surface Pressure.

The resulting changes to the horizontal wind field can then be computed from

the changes in the divergence and vorticity by solving for the changes in the

velocity potential and the stream function. The grid stencil for the

divergence (and velocity potential) and the vorticity (and stream function) is

shown in Fig. 5. That is, given the change in the divergence AD = E Ad we

solve a Poisson's equation

V2 AX = AD (4.38)

for the change AX in the velocity potential X at the interior mass

(generalized geopotential 0) points (see Fig. 5) for each sigma level of the

model. The boundary condition on Ax is

AZ - 0 (4.39)

at the model lateral boundaries. This produces no change in the tangential

wind along the model boundaries, but only change to the divergent wind in the

interior. Now given the change in the vorticity A! = E AV we solve a

Poisson's equation

V2 At - A! (4.40)

for the change At in the stream function t for each sigma level of the model.

The vorticity changes calculated from Eq. (4.32) are specified at interior

points staggered half a grid distance from the mass and wind points. Since the

integrated vorticity over the domain may change, the integrated tangential

wind along our model boundary may change. We therefore prescribe a boundary

condition of no change in the stream function

At - 0 (4.41)

at fictitious boundary staggered half a grid point outside our model boundary.

implying that the non-divergent wind does not change there. However the non-

divergent wind and hence the tangential wind does change along the model
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boundary. The gradients of the changes of the stream function and the velocity

potential at each sigma level of the model then define the changes

to the mass weighted wind,

A(su) = 6x AX - 6y At (4.42)

A(-sv) = 6y AZ + 6x At (4.43)

With the changes to the wind field defined in this way, the changes to the

wind field along the lateral boundaries of the model are consistent with the

changes in the vorticity and mass divergence over the model domain.

Following Temperton (1984), the changes in the surface pressure P., and

the temperature T can be derived directly from changes in the generalized

geopotential 0. We consider the linearized equations for the motion of the

freely propagating gravity waves

8#
- M3 D (4.44)

at

p - - M D (4.45)

at

Now eliminating D we can relate the tendencies of surface pressure and

temperature to that of the generalized geopotential for gravity wave motions,

so that

apT T -1 5
- -N 2 D - N2T M- (4.46)

at at

p -T = - - (4 .4 7 )

at a t

Since the changes derived from our initialization procedure represent the

gravity wave part of the flow, we can assume a wave solution for the changes.

The changes to the surface pressure and temperature are then related to the

changes in the generalized geopotential by

Ap N 2 T M 31 - 12 T 13 E Ae (4.48)

A(p ,T) 1,2 M43
1A# . M 1 EAe (4.49)
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4.3 Convergence of the Vertical Mode Scheme

To test our vertical mode initialization procedure, we use the 12 hourly

NMC 2.5* hemispheric analyses for the period 12Z January 23 to 12Z January 29,

1986, for the period of the second Intensive Observing Period (lOP) of GALE.

The initial synoptic situation, showing a cold front moving off the east coast

of the U.S. and a low in the Gulf of Alaska, is shown in Figs. 4 and 8. During

this IOP, a coastal front develops along the east coast of the U.S. and

subsequently, a cyclone develops offshore when the low system from the Gulf

of Alaska reaches the east coast. The thirteen analyses for the period are

interpolated to the model coordinates for the two different horizontal grids

with differing domain size and resolution and then initialized with the

vertical mode scheme for the first three vertical modes only. The US grid

covers a domain including the continental U.S.A. with a horizontal resolution

of 2* longitude by 1.5e  latitude. The GALE grid covers a smaller domain

including the eastern half of the U.S.A. and extending out over the Atlantic

to 52.5*W with a finer horizontal resolution of 0.50 in longitude and

latitude. In the vertical, both grids use ten equally spaced sigma levels. The

smoothed model topography used for each grid is shown in Fig. 6a and b. For

the GALE grid, a case with smoother topography along the lateral boundary,

shown in Fig. 6c, is also generated by merging the courser topography from the

US grid (Fig. 6a) with the GALE topography (Fig. 6b) in a boundary zone with a

width of five degrees in latitude and longitude. The merging is carried out by

linearly interpolating the courser topography from the US grid to the GALE

grid, and replacing the GALE topography at the first seven points in from the

boundary. At the eight to tenth points, a linear combination is used with

weights given by (0.75, 0.25), (0.5, 0.5) and (0.25, 0.75) for the course

topography and GALE topography, respectively.

4.3.1 Usin& the low resolution US grid. At the analysis times, the

initial amplitudes for the mass divergence and vorticity are computed on the

US grid for each of the vertical modes, prior to initialization. The mean

amplitudes of the mass divergence and vorticity for each of the vertical modes

are averaged over the US domain and in time over the period of interest for

the thirteen analyses and shown in Table 3. The mean amplitude of the

vorticity decreases with increasing mode number, while the mean amplitude of
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TABLE 3: The mean mass divergence and vorticity on the
sigma surfaces of the model for the US grid,
averaged for the week of 12Z January 23 to 12Z
January 29, 1986.

Mode No. Mass Divergence Vorticity
(dynes cm 2 s1) (dynes cm-2 s-1)

1 7.68 82.04

2 7.54 36.28

3 12.63 36.98

4 9.08 32.86

5 7.63 17.53

6 6.32 11.82

7 4.81 8.14

8 3.81 5.56

9 2.92 4.41

10 1.82 2.65

the mass divergence maximizes at the third mode. As expected, the amplitudes

of the divergence are an order of magnitude smaller than the amplitude of

vorticity for the external mode. The analyses, interpolated to the model sigma

coordinates for the US grid, are initialized with the vertical mode scheme for

the first three vertical modes only. After each iteration of our vertical mode

initialization procedure, the resulting root-mean-square (rms) changes in the

amplitudes of the mass divergence, vorticity, generalized geopotential and

surface pressure were computed. In Fig. 7 we show these rms changes, averaged

for all the analysis times, at each iteration of the initialization procedure.

For each of the first three vertical modes initialized, it can be noted that

the mean rms changes in the amplitudes of the divergence at the first

iteration of the procedure are as large as the initial amplitudes themselves,

while the changes in the amplitude of the vorticity are very small compared to
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their initial values. For the first two modes, the changes in the amplitude of

the mass divergence decrease rapidly with increasing iterations, with the

changes being very small after just two iterations. For the third mode, the

changes in amplitudes of the mass divergence do not decrease as rapidly. The

mean rms changes in the surface pressure, shown in Fig. 7d are less than a mb

for each iteration.

To demonstrate the effect of the number of modes initialized on the

changes in the amplitude of the mass divergence with each iteration, the

number of modes initialized is varied from one to six modes for the case of

one analysis on 12Z January 23, 1986. In Fig. 7e we show the changes in the

mass divergence for the highest mode number initialized for each of the cases.

The rate of decrease in the mass divergence changes increases as the higher

order modes are initialized, and in fact increases with iteration for the

sixth mode initialized. For the first two modes, the gravity waves are

essentially of high frequency, since the Rossby radius of deformation is so

large for these modes (see section 4.1). As the mode number increases however,

the Rossby radius of deformation decreases and the frequency of the inertia-

gravity r;.de decreases for the same wavelengths. The tendencies of the mass

divergence for the gravity modes are then much less for the higher order

modes, and convergence of the scheme would be expected to be slower.

As an illustration, we demonstrate the result of the vertical mode

initialization using the NMC analysis for 12Z January 23, 1986. The initial

analyzed sea-level pressure and wind field at the sigma level o - 0.25 are

shown in Figs. 8a and 8b. A deep surface low of 987 mb lies west of Greenland

and high pressure dominates the eastern U.S. Aloft at the jet level, strong

jet maxima of about 55 and 48 m s-1 straddle a trough over the eastern U.S.,

with a further jet maximum upstream, entering the domain from the Gulf of

Alaska. The surface pressure change resulting from the vertical mode

initialization is shown in Fig. Sc. The surface pressure adjustments due to

initialization are small, with an rms change in this case of 0.9 mb and at

most several mb in places. After the initialization, the vertical motion

in the middle troposphere at a sigma level a - 0.45, is shown in Figure 8d.

Upward motion relative to the sigma surface (negative values of the vertical

motion) is found on the south side of the jet off the coast of North America
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and also ahead of the exit region of the jet streak. Sinking motion is found

in the region of the high surface pressure over the eastern U.S. In sigma

coordinates, the sigma surfaces follow the sloping topography, with the result

that westerly flow in the lee of mountains gives rise to strong upward motions

on the sigma surface. Such strong topographic signatures are seen in the lee

of the Rockies and the Appalachian mountains. In Fig. 9 we compare the

contributions to the vertical motion from the first three modes (Fig. 9a),

which are initialized, and from the remaining modes (Fig. 9b), which are

unchanged by the initialization procedure. The strong signal due to the

mountains clearly dominates the vertical motion computed for the first three

modes, while smaller synoptic scale magnitudes are apparent in the remaining

modes.

The vertical mode initialization scheme removes that portion of the

initial wind and mass fields that describe the inertia- gravity waves (for

modes 1 to 3). Such structures then should be seen in the changes made to the

analyzed fields resulting from the initialization. In Fig. 10a we show the

wind and geopotential height changes at the jet level a - 0.25. At the jet

level, we see that the geopotential changes reach 30 to 40 gpm in places. The

wind field shows flow of several m s-1 crossing the contours of geopotential

height, indicative of inertia- gravity wave structures (see Matsuno, 1966, for

example). At the same level the changes in temperature and the u and v

components of the wind are shown in Fig. 10b, c and d. The changes in the

temperature are at most a degree, while changes in the wind components are at

most several m s- 1 . Typical vertical profiles of the rms changes in the u

component and the temperature are shown in Fig. 11. The resulting changes in

the mean temperature, shown in Table 4, are very small and at most 0.156C in

the upper troposphere.

4.3.2 Using the high resolution GALE grid. For the smaller GALE grid with

0.5 degree resolution, the mean amplitudes for the vorticity and mass

divergence are shown in Table 5, for each of the vertical modes. For each

iteration of our vertical mode initialization scheme, the mean rms changes in

the amplitudes of the divergence and the vorticity are shown in Fig. 12, for

the first three modes initialized. In this case, the amplitude changes for the

geopotential (or equivalently vorticity) decrease very rapidly for all the
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TABLE 4: The root-mean-square changes in the mean
temperature on the US grid for 12Z January 23,
1986, resulting from vertical mode initialization.

Model Level Sigma Level AT*
(OK)

1 0.05 0.052

2 0.15 0.143

3 0.25 0.098

4 0.35 0.048

5 0.45 0.022

6 0.55 0.018

7 0.65 0.014

8 0.75 0.069

9 0.85 -0.001

10 0.95 -0.011

three modes. However, the amplitude changes for the mass divergence in the

case of the third mode do not decrease as rapidly and in fact do not reduce to

zero. On the GALE grid, smaller scale topographic features of appreciable

amplitude are present (see Fig. 6b), compared to the US grid (see Fig. 6a).

For the third mode, the gravity modes at these smaller scales are of high

frequency and of shorter vertical scale. Non-linear effects of the gravity

waves interacting with the topography can become significant. Also in the

boundary zone, where there was no special smoothing of the topography, the

divergence forced by the topography for these modes can get quite large. Then

the errors in the computed boundary divergence can be large also. To test the

latter, the initialization is repeated for two cases with the topography on

the GALE grid smoothed in a five degree boundary zone, as outlined in the

beginning of section 4d (see Fig. 6c). In Fig. 12c we compare the changes in

the amplitude of the mass divergence when the unsmoothed (Fig. 6b) and the
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smoothed topography (Fig. 6c) are used for a typical example (such as for the

analysis on 12Z January 23, 1986) and for an extreme example with much larger

changes at higher iterations (for 12Z January 24). In both cases, the changes

in the mass divergence decrease much more rapidly when the topography is

smoothed in a five degree boundary zone.

For the smaller GALE grid, the initial sea level pressure and wind field

in the upper troposphere at sigma level o = 0.25 for 12Z January 23, 1986 is

shown in Fig. 13a and b. A front is shown moving off the east coast of the

U.S. with high pressure dominating the eastern half of the U.S. A strong jet

streak is leaving the domain at the north-east corner of the domain and a

minor short wave trough with its associated jet maximum is located on the Gulf

of Mexico. The surface pressure changes, shown in Fig. 13c are small, being at

TABLE 5: The mean mass divergence and vorticity on the
sigma surfaces of the model for the GALE grid,
averaged for the week of 12Z January 23 to 12Z
January 29, 1986.

Mode No. Mass Divergence Vorticity
(dynes cm- 2 s-i) (dynes cm- 2 s-1)

1 7.53 92.17

2 8.12 39.21

3 15.11 42.80

4 10.05 37.65

5 9.17 19.48

6 6.73 12.05

7 4.79 7.96

8 3.84 5.72

9 2.74 4.32

10 1.72 2.51
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most a mb. In this GALE domain, the western boundary is at about 1 km, sloping

down to 500 to 250 meters within 5 degrees in from the boundary (Fig. 6b). The

topographic features in the domain produce a strong signal in the vertical

motion field shown in Fig. 13d. The increasing westerly shear with height at

the western boundary and in the lee of the Appalachians, produces strong

rising motion in sigma coordinates. Away from the influences of sloping sigma

surfaces over the topography, sinking motion is observed in the high pressure

along the Mississippi river valley and rising motion on the south side of the

jet axis off the east coast. Qualitative agreement is found with the vertical

motion field produced for the larger US domain. When the smoother topography

in the boundary zone (see Fig. 6c) is used, the large noisy values in the

vertical motion along the northern boundary and south-west corner (seen in

Fig. 13d) are removed, while the interior remains unchanged (see Fig. 13e).

The strong signal remaining in the vertical motion field along the western

boundary, due to the high gradients in the topography there, demonstrates the

importance of the specification of accurate boundary conditions used for the

solution of the divergence changes in the initialization procedure. For this

case the resulting changes in the geopotential and wind and temperature

changes at a =0.25 are shown in Fig 14. In the upper troposphere, the

resulting rms changes in the wind components are about 1 m s-1 , while the rms

temperature changes are about 0.50C. In the vertical, the variation of the rms

changes in the wind components and temperature with each iteration is similar

to that shown for the US grid in Fig. 11, decreasing with increasing number of

iterations. Three iterations are sufficient for the changes in the wind and

temperature to be very small.
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5. MODEL INTEGRATIONS WITH STATIC INITIALIZATION

To test the effect of the split-explicit time integration scheme in

smoothing the unwanted high frequency oscillations in the NRL model, the model

is integrated on the GALE grid with uninitialized data both with the split-

explicit scheme described in section 2.2 and with an explicit time integration

scheme of smaller time steps. Integrations with varying degrees of static

initialization are then compared in three other experiments. Time series of

the surface pressure and the vertical motion a in sigma coordinates at

selected points on the GALE grid were compared in the five experiments, which

are listed in Table 6. The NMC 2.5 degree hemispheric analysis for 12Z January

23, 1986 is used to start the integrations for each of the experiments. This

is a case of a cold-air damming and coastal front event, which occurred from

January 23-25, 1986, during GALE. The GALE grid covers a domain from 22.50S to

47.5*N in latitude and 102.5W to 57.5*W in longitude, with 0.5 degree

horizontal resolution.

For the experiments here, the Perkey Kreitzberg lateral boundary

formulation, described in section 2.3a is used. To provide the boundary

tendencies for each of the experiments, the non-divergent wind is computed for

TABLE 6: Experiments with Static Initialization on GALE grid.

1A Explicit Integration with uninitialized initial state using
leapfrog scheme with a 2 At time step of 60 secs.

lB Split-Explicit Integration with uninitialized initial state,
using a 2 At time step of 300 secs.

iC Split-Explicit integration with Non-divergent Initial State,
using a 2 At time step of 300 secs.

ID Split-Explicit integration with Static Non-linear Mass Balance,
using a 2 At time step of 300 secs.

Supplementary experiment:

1C' Same as 1C, but with boundary tendencies computed from non-
divergent wind and observed temperatures.
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each of the 12 hourly NMC analyses, the fields interpolated to the sigma

coordinates of the model and a statically balanced temperature computed as

outlined in section 3.2. Initial boundary values and 12 hour tendencies are

then extracted for the 5 point boundary zone, defined in section 2.3a. To

provide the same boundary values in each of the experiments, the initial

fields for each experiment are merged with the statically balanced fields in

the boundary zone, using the linear function a defined by Eq. (2.19). That is,

we multiply the initial fields by (1-a) and add a times the statically

balanced fields in the boundary zone.

5.1 Damping by Split-Explicit Scheme

In expt 1A, the model is integrated in time with a conventional leapfrog

scheme for 12 hours with a 2 At time step of 60 s starting from uninitialized

data. Oscillations of surface pressure of as much as 5 to 8 mb of amplitude

and periods of 1 to 2 hours are observed in the first 12 hours of integration.

Curve A in Fig. 15a shows these typical oscillations in the surface pressure

at a grid point at 90°W and 35*N in the western half of the domain. Curve A in

Fig. 15b shows the vertical motion 0 interpolated to a sigma level at a = 0.5,

for the same grid point. The curve A shows a typical rapid adjustment

(increase in this figure) in the first 6 of the integration with smaller

oscillations of periods of 2 to 4 hours superimposed. The higher frequency

oscillations in surface pressure are largely due to the barotropic external

gravity mode while the adjustment and oscillations in the vertical motion in

the middle troposphere are largely due to the internal gravity modes.

In expt lB, the model is integrated for 48 hours with the split-explicit

scheme using a 2 At time step of 300 s starting again from the same

uninitialized data. For the first hour or so the oscillations in the surface

pressure (Curve B in Fig. 15a) are the same as in the explicit integration.

However the oscillations are strongly damped in the next three hours of

integration. Little difference is noticed in Fig. 15b in the variation of 0

at o = 0.5 between the explicit (Curve A) and split-explicit (Curve B)

integrations. One can conclude that the split-explicit integration scheme acts

to reduce the amplitude of the unwanted external gravity waves in the first

Lhrej to four hours of iikLegration.
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5.2 Non-Divergent and Staticalll Balanced Initial Fields

As outlined in section 3.1, the analyzed vorticity on pressure surfaces is

used to first calculate the non-divergent component of the wind. A first guess

of the surface pressure and temperature is found by interpolation to the model

topography. The non-divergent wind, analyzed temperature and humidity are then

interpolated to the model sigma levels. The initial and non-divergent wind

fields at 1000 mb and 500 mb were compared in Fig. 4. In expt 1C, a 48 hour

integration using the split-explicit scheme is then performed with this data.

As shown by Curve C in Figure 16a, the amplitude of the initial oscillations

of the surface pressure are reduced to 2 to 3 mb and are largely damped out

after 3 hours. Oscillations in the surface pressure of a mb can be still seen

at a grid point at 830W and 35ON (not shown) over the Appala(.hian mountains.

Curve C in Figure 16b shows that the strong adjustment (increase) in the

vertical motion o is still present in the first 6 hours and the superimposed

higher frequency oscillations are only slightly reduced in amplitude. By

removing the divergent component of the wind from the analyzed data the

initial value of the vertical motion is also reduced. On sigma surfaces over

sloping topography, a vertical shear of the non-divergent wind will introduce

divergence on the sigma surfaces, as will errors caused by vertical

interpolation. By largely removing the horizontal divergence we have

essentially removed the external gravity mode after three hours of

integration.

In a supplementary experiment lC', boundary tendencies are computed from

analyzed temperatures and the non-divergent winds on pressure surfaces,

instead of from statically balanced temperatures. For initial conditions, the

analyzed temperatures and winds are interpolated to the sigma coordinates

without merging the statically balanced temperatures in the boundary zone. The

integrations in this case were largely indistinguishable from those expt 1C.

Since in the PK scheme, we damp only the tendencies in the boundary zone,

initial differences in the boundary zone in the two cases are damped, leading

to similar integrations. Little difference was also found in the integrations

if the mass divergence is removed from the initial fields on the sigma

surfaces instead of on the pressure surfaces.
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A static initialization of the mass field is performed using the non-

linear mass balance equation in sigma coordinates, as outlined in section 3.2.

The non-linear balance equation is used to derive a balanced geopotential and

temperature field from the non-divergent wind field. In Fig. 4 we showed the

initial and balanced temperature fields interpolated to the 1000 mb pressure

level. As mentioned in section 3.3, the balanced temperature field is much

smoother than the initial field, due to the smoothing of the Laplacian

operator. In expt ID, a 48 hour integration was carried out starting from this

statically initialized data. The oscillations in the surface pressure, shown

in Curve D of Figure 16a, are of the same amplitude as in the non-divergent

case (Curve C in Fig. 16a), being damped after 3 hours of integration.

However, a small mean drift of about a mb is seen to develop in the surface

pressure (curve D) during the 12 hours of integration. Again oscillations of

surface pressure of a mb still remain over the Appalachian mountains. The

vertical motion shown in curve D of Figure 16b still shows the rapid

adjustment (increase) during the first 5 hours, but the higher frequency

oscillations are much reduced in amplitude and mostly eliminated after 4 hours

of integration. The non-linear balance of the mass field essentially removes

the internal gravity waves except for the initial adjustment in the first 4

hours.

When using the split-explicit scheme and starting from uninitialized or

initialized data, the 12 to 48 hour forecasts are very similar. Even in expt

1D, where the static initialization had smoothed out the initial temperature

gradient along the front (see Fig. 4), the model regenerates the temperature

gradient and intensifies it further in the first 12 hours. As an example, we

show in Fig. 17, the variation of the surface pressure and the vertical motion

at a grid point in the second twelve hours of integration for expts lB. 1C and

1D. In the case of expts 1B and 1C, the variation in the surface pressure is

much the same. Since the same boundary values and tendencies were used in the

three expts (expts lB. 1C and 1D), we see that the drift in the surface

pressure, produced by the static initialization, is eliminated in the second

twelve hours. Only in the case of expt IA, with a 12 hour explicit time

integration with uninitialized data, are high frequency oscillations in the

surface pressure and vertical motion still substantial after 12 hours of

integration, producing more noticeable differences in the 12 hour forecast.
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6. MODEL INTEGRATIONS WITH VERTICAL MODE INITIALIZATION

To assess the effect of the vertical mode initialization procedure in

removing the high frequency gravity wave oscillations, the NRL model is

integrated starting from initialized and uninitialized data, for the two

different US and GALE grids of differing domain size and horizontal

resolution. The influence of two different lateral boundary treatments, namely

the tendency relaxation scheme of Perkey and Kreitzberg (PK) and the Davies

relaxation scheme, is also investigated. The experiments are summarized in

Table 7. As described in section 2.3, model computed tendencies are relaxed to

specified boundary tendencies in a boundary zone of 5 points at each time step

in the PK scheme. The 12 hourly boundary tendencies, derived from the NMC

hemispheric analyses interpolated to the model grid. In the Davies scheme,

large scale boundary values are computed by linear interpolation from 12

hourly values, derived from NMC analyses, which have been interpolated to the

model grid. The computed model variables are then relaxed to the boundary

TABLE 7: Experiments with Vertical Mode Initialization.

US GRID (with a 2 At time step of 400 secs):

2B 24 Hour integration with uninitialized initial state, using
PK lateral boundary scheme.

2C 24 Hour integration with initialized initial state, using
PK lateral boundary scheme.

2E 24 Hour integration with initialized initial state, using
Davies lateral boundary scheme.

GALE GRID (with a 2 At time step of 100 secs):

3B 12 Hour integration with uninitialized initial state, using
PK lateral boundary scheme.

3C 12 Hour integration with initialized initial state, using
PK lateral boundary scheme.

3D 12 Hour integration with uninitialized initial state, using
Davies lateral boundary scheme.

3E 12 Hour integration with initialized initial state, using
Davies lateral boundary scheme.
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values themselves at each time step in a boundary zone of 6 points. For

integrations with initialized fields, the analyzed fields interpolated to the

model grid are also initialized to provide balanced boundary values and

tendencies. In this way we prevent a lot of noise propagating from the

boundary into the interior of the model domain, which could contaminate the

results. On the two grids, the smoothed topography, as shown in Fig. 6 is used

for the integrations.

6.1 Integrations on the US grid

In the first three experiments listed in Table 7, we compare 24 hour

integrations with initialized and uninitialized initial conditions on the US

grid, using the two different lateral boundary treatments. The split-explicit

integration scheme is used in each case with a 2 At time step of 400 seconds.

In expt 2B, the PK tendency relaxation scheme is used for the lateral boundary

treatment with uninitialized initial conditions. The 12 hourly boundary

tendencies are derived from the uninitialized analyzed fields. Initial

oscillations of nearly 8 mb in the surface pressure, caused by the

uninitialized initial conditions, are damped by the split-explicit scheme in

the first 6 hours or so, as was shown in section 5.1. As an example, curve B

in Figs. 18a and b shows the variation of the surface pressure with time at a

grid point at 90*W and 35*N on the US grid. In expt 2C, initialized initial

conditions are used with the PK lateral boundary scheme. The boundary

tendencies in this case are derived from initialized NMC analysis fields. With

initialized initial conditions, the high frequency oscillations are almost

completely removed, even over high topography such as the Rocky Mountains. An

example with the surface pressure can be seen with curve C in Figs. 18a and b.

Large high frequency oscillations in the vertical motion are also eliminated

for the interior grid points, as can be seen in Figs. 18c and d. Even though

both expts 2B and 2C used somewhat different boundary conditions

(uninitialized values versus initialized values) no mean drift was produced.

In the boundary zone, the difference seen between the results in expt 2B and

that in expt 2C, is due to gravity waves, which are damped in time by the PK

scheme.
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In expt 2E, .the Davies scheme is used with initialized initial conditions.

As can be seen by Curve E in Fig. 18, use of the Davies scheme produces a

similarly smooth integration of the surface pressure and the same variation in

the vertical motion. However, the variation of the surface pressure with time

in this case does differ somewhat after 4 hours from that found with the PK

tendency relaxation scheme. The PK scheme produced some artificially larger

vertical motions at the first grid point inside the boundary. The time

variation of the surface pressure and vertical motion at a grid point in the

boundary zone, at a distance of three times the grid spacing in from the

boundary, is shown in Fig. 19. A linear variation of the surface pressure is

seen with time in the boundary zone when the Davies scheme is used. With the

PK scheme oscillations of long period of about 12 hours can be seen in the

surface pressure and the vertical motion. The variation of the vertical motion

is small for the Davies scheme at this point. This noise, generated by the PK

scheme in the boundary zone, may have propagated into the interior to cause

the differences seen in the integrations after 4 hours. The difference can be

seen (in Fig. 18b for example) as a low amplitude oscillation of long period

at 12 to 24 hours integration. However little overall differences can be seen

in the 12 and 24 hour forecast fields between each of the experiments.

6.2 Integrations on the GALE 2rid

A series of four integrations are conducted on the GALE grid with

uninitialized and initialized initial conditions with the two lateral boundary

schemes (see last four experiments listed in Table 7). In each case, the

split-explicit scheme is used for time integration with a 2 At time step of

200 seconds. For the cases with initialized initial conditions, 12 hourly

boundary values and tendencies are computed from the NMC analyzes,

interpolated to the model grid and then initialized. The integrations with

initialized initial conditions, expts 3C and 3E, essentially remove the high

frequency oscillations. As an example in Fig. 20, we show the variation of

surface pressure and the vertical motion in the middle troposphere at two grid
points on the GALE grid for the different integrations with initialized and

uninitialized initial conditions. The grid point at 90°W and 35*N is in the

western half of the domain, while the grid point at 83*W and 35*N lies on the

top of the Appalachian Mountains. With the PK lateral boundary scheme.
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oscillations of a mb or so are seen during the integration period when

uninitialized initial conditions are used (Curve B). With initialized initial

conditions obtained with the vertical mode scheme, the oscillations are

removed except for an initial hump of 0.5 mb in the surface pressure seen

after the first two hours of integration (Curve C). With the Davies scheme and

initialized initial conditions, a smoother variation of the surface pressure

is seen (Curve E). The rapid initial adjustment in the vertical motion has

been largely removed, leaving a slower increase in the vertical motion with

time.

In expt 3D, the Davies scheme for the lateral boundary treatment is used

with uninitialized initial conditions. A different response is produced in the

surface pressure, while the response in the vertical motion field is similar

to the PK scheme for grid points in the interior of the domain. In Fig. 21, we

compare the surface pressure variation and vertical motior. in the middle

troposphere at our two grid points for initialized and uninitialized initial

conditions, when the Davies scheme is used. In the case of the Davies scheme

with uninitialized initial conditions, an initial shock of large amplitude is

seen in the surface pressure (curve D in Figs. 21a and b), which is rapidly

damped in the first 4 hours or so. The scheme acts to damp any gravity waves

that propagate into the boundary zone from the interior. Using initialized

initial conditions, this initial shock is eliminated (curve E in Figs. 21a and

b). With time, the integrations in the first 12 hours differ by as much as a

mb or so in expts 3D and 3E (see Fig. 21). The difference is explained by the

fact that in expt 3D, we force uninitialized boundary values in the boundary

zone, and the model solution in the interior is forced to adjust in the first

three of four hours of integration.

In the boundary zone large differences are found when using the different

boundary treatments. In Figs. 22a and b, we show the variation of the surface

pressure at two grid points in the boundary zone for the different lateral

boundary treatments. The grid point at 590W and 40ON lies a distance of three

grid lengths from the lateral boundary (at 57.50W), while the grid point at

58OW and 40*N is a distance of one grid length. With the Davies scheme, the

boundary values are strongly forced in the boundary zone, which is reflected

in the linear variation in the surface pressure in the boundary zone (see
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curve E in Figs. 22a and b, for example). With the PK scheme, oscillations in

the surface pressure, with an amplitude of one to two mb and period of about

twelve hours, can be seen in the boundary zone (see curve C in Fig. 22a and

b). The two schemes also differ in their response in the vertical motion in

the boundary zone. With the PK scheme, the vertical motion piles up at the

first grid point in from the boundary, while with the Davies scheme, larger

vertical motions are found in the zone between the interior region and the

boundary zone. The variation of the vertical motion at the two grid points in

the boundary zone is shown in Figs. 22c and d. Using the Davies scheme, curve

E in Fig. 22c shows a slow increase of the vertical motion to 20 x 10- 3 hr- 1 ,

for the grid point which is a distance of three grid lengths in from the

lateral boundary. In Fig. 22d, curve E shows a slower linear variation of the

vertical motion, increasing to 10 x 10- 3 hr"1 , at the grid point one grid

length from the boundary. With the PK scheme low amplitude changes in the

vertical motion occur at the boundary between the boundary zone and the

interior (see curve C in Fig. 22c), while unrealistically large values of

30 x 10- 3 hr- 1 are reached in the vertical motion at the grid point lying a

distance of one grid length in from the lateral boundary (see curve C in Fig.

22d). In Fig. 23, we compare the surface pressure variation and vertical

motion in the middle troposphere at our two grid points in the boundary zone

for initialized and uninitialized initial conditions, when the Davies scheme

is used. The boundary values are again strongly forced in the boundary zone in

both cases. The initial shock in the surface pressure variation in curve D, in

Fig. 23a, is eliminated by the initialization (curve E).
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7. SUD11ARY AND CONCLUSIONS

To remove the high frequency gravity wave oscillations, various

initialization procedures have been tested for use with the Naval Research

Laboratory limited area numerical weather prediction model. Operational

analyses obtained from the National Meteorological Center (NMC) for the period

of the second intensive observing period of the GALE experiment are used to

test the procedures and provide initial and boundary conditions for model

integrations. The model is integrated with initial conditions with varying

degrees and type of initialization on two different model grids, one a low

resolution grid of 2* longitude by 1.5* latitude covering the continental U.S.

(US grid) and the other a higher resolution grid of 0.5* in latitude and

longitude covering the eastern U.S. (GALE grid). The influence of two

different lateral boundary treatments, namely the tendency relaxation scheme

of Perkey and Kreitzberg (PK) and the Davies relaxation scheme, are compared.

For integrations with initialized fields, the NMC analyzed fields interpolated

to the model grid are also initialized to provide balanced boundary values and

tendencies. This reduces noise in the boundary zone, which can propagate into

the interior of the domain and contaminate our test.

In the static initialization procedure, the non-divergent wind is first

computed for the analyzed winds on the pressure surfaces, by solving for the

streamfunction. The non-divergent wind and the analyzed temperatures are then

interpolated to the sigma coordinates of the model. A diagnostic relation is

then derived for the geopotential on the sigma surfaces of the numerical

model, by ignoring the tendency of divergence, non-linear vertical advection

and friction. The initial non-divergent wind and analyzed temperatures,

interpolated to the sigma surfaces are used to compute the non-linear forcing

terms. With the tangential wind defined along the model lateral boundary with

the C grid, consistent boundary conditions for the normal derivatives of the

geopotential are easily obtained by ignoring the tendencies in the momentum

equations.

The NRL model uses the split-explicit scheme to integrate in time. The

scheme is compared to a centered difference scheme by integrating the model on

the GALE grid. The split-explicit scheme has been shown to reduce the
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amplitude of the unwanted external gravity wave oscillations in the first

three to four hours of integration. However, a typical rapid adjustment with

superimposed oscillations occurs in the mid-troposphere vertical motion in the

first 4 to 6 hours of integration. The new static initialization procedure is

also tested on the GALE grid. By interpolating the non-divergent wind and

analyzed temperature to the model sigma surfaces, the amplitude of the initial

oscillations of the surface pressure are reduced to 2 to 3 mb and are largely

damped out after 3 hours. Using the non-divergent wind and performing a static

non-linear balance of the mass field, provides a balanced initial state,

except for a smooth initial adjustment of the vertical motion in the first

five hours or less of integration and a small mean drift in the surface

pressure. For the varying degrees of static initialization, similar 12 to 48

hour forecasts are produced when the split-explicit scheme for time

integration was used.

A vertical mode initialization scheme following that of Bourke and

McGregor (1983) has been developed for use with the NEL model. Filtering

conditions are applied to the model dynamical equations to derive to linear

diagnostic equations for the mass divergence and geopotential, which are

solved iteratively for the first three vertical modes of the numerical model.

These modes have phase speeds which are much faster than those of

meteorological systems. The further condition that the linearized potential

vorticity is unchanged by the procedure is required to compute the vorticity.

The observed wind and temperature is first interpolated to the sigma surfaces

of the model. The iterative procedure is then used to compute incremental

changes to the generalized geopotential, mass divergence and vorticity for the

first three vertical modes of the numerical model. As is customary, we keep

the geopotential, temperature and pressure fixed at the lateral boundaries in

the scheme. To provide a boundary condition for the divergence however, an

approximate divergence at the boundary is computed using the thermodynamic

equation. In our scheme, changes in the tangential wind along the lateral

boundaries are consistent with the changes in the vorticity and mass

divergence computed. The procedure provides a balanced vertical motion field

and produces smaller changes to the initial mass and wind fields, compared to

the static initialization. The scheme is tested on two grids, of differing

domain size and grid resolution. Convergence of the scheme is rapid with the
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lower resolution US grid, with three iterations of the scheme being sufficient

for convergence. With the smaller GALE grid of higher resolution and sloping

topography along two boundaries, the convergence of the scheme is slower and

in fact the mass divergence didn't converge for the third mode. However, by

smoothing the topography in a boundary zone of five degrees, the convergence

of the scheme is much improved. In both cases, changes in the mass and wind

fields are still small after three iterations.

Integrations with initial conditions, initialized with the vertical mode

initialization procedure, prevent gravity wave oscillations, without producing

a mean drift in the surface pressure, and provide a balanced vertical motion

field. On the coarse US grid, little difference is found between integrations

using either of the lateral boundary treatments. However, some low amplitude

oscillations in the surface pressure of long period remain in the interior of

the domain and some noise is generated in the vertical motion at the lateral

boundaries when the Perkey Kreitzberg scheme is used. On the smaller GALE

grid, some noise is produced in the vertical motion in the boundary zone by

both schemes. In the interior, the Davies scheme produces a smoother variation

of the surface pressure. When the Davies scheme is used with integrations

starting from uninitialized data and boundary values, an initial shock in the

surface pressure is damped in the first four hours. However a small drift in

the surface pressure is produced. This indicates that the boundary values used

with the Davies scheme should be as balanced as possible for the numerical

model, being initialized or derived from integrations on a larger grid or with

another model. Similar 12 to 48 hour forecasts are again produced with the

various experiments.

For grids of high resolution such as our GALE grid, and especially when

fine scale topography is used along the boundary, it is reconmended that no

more than three iterations of the vertical mode scheme should be used in

practice. For grids of even higher resolution, only the first two modes may be

able to be initialized, with possibly no more than three iterations used with

the scheme. Some improvement however, can be expected by smoothing the

topography in the boundary zone or using a nested model to provide more

accurate boundary values for the mass divergence for the inner nested grids.
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APPENDIX: SPLIT-EXPLICIT SCHEME

The model equations in matrix notation can be written

8Pu
s + 6* = A (Al)

+ 6* = A (A2)

at y v

8pT + M 2 D = AT (A3)

at

+ N 2T D- 0 
(A4)

at

- A 
(A5)

atq

# - s lT (A6)

where the variables are defined in section 2.1, and the non-linear, Coriolis,

friction and diabatic terms are included in the terms on the right hand sides

of the equations. Integrating (Al), (A2), (A3), (A4) and (A5) over a time step

2 At we obtain

pu(t+At) - pau(t-At) + 2At 6*i 2At I (A7)

;yv(t+at) - ;yv(t-At) + 2At 6* 2At A (A8)
s sy v

Ps T(t-ft) - p sT(t-At) + 2At M2 D - 2At AT (A9)

Ps(t+At) -p s(t-At) + 2At N2T 0 (AlO)

ps q(t+At) - p sq(t-At) - 2At Aq (All)

1 ft+At
where the averages a - 2 At ft-At a dt (A12)

and ps and p represent grid point averages as defined in section 2.1. The

non-linear and Coriolis terms on the right hand sides are slowly varying so

that Ai - A.(t), Av - A.(t), AT - AT(t). For an explicit time step choosing
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* O(t), D ! D(t), gives the conventional centered difference scheme for

time integration. We use this explicit difference scheme to compute first

estimates of the variables at time t+At, giving

--x Uex (tst - x0-t A (t) - 2,&t A (t) (A13)
-x exxpsU (t+At) - pu(t-At) + 2At 6 0(t) - 2t A (t) (A14)

-ysex s t2 v(t At) - v(t-At) + 2(t ) AtA()yA4
Tex

ps (t+At) - psT(t-At) + 2At H D(t) - 2At AT(t) (A15)

pex(t ,t) - Ps(t-At) + 2At N2T D(t) - 0 (A16)
5  's 2ex

psq (t+At) - psq(t-At) - 2At A q(t) (A17)

Subtracting these equations from Eqs. (A7), (A8), (A9), (A10) and (All), we

can then write for the corrected variables

p u(t+At) + 2At 6([ #(t)] = -psu e x (t+At) (A18)

pv(t+At) + 2At 6 (9 - 0(t)] M p yvex(t+At) (A19)

s y ps

pST(t+At) + 2At M2[D - D(L)] = psTex (t+At) (A20)

ps(t+At) + 26t N2  [D - D(t)] = p5x (t+At) (A21)

ps q(t+At) - psq ex (t+At) (A22)

where the terms on the right-hand side are the explicit computations of the

variables. We only need to compute the corrections 0 - 9(t), D - D(t) for

those vertical modes whose phase speeds relative to the ground U +

are greater than Ax/(2At). where U is the maximum background flow speed. It

can also be noted that the specific humidity q need not be corrected. To

obtain the corrections for these modes, the amplitudes of the deviations

9 - 0(t), D - D(t) are integrated at smaller time steps, over the interval

of twice the large time step.

To integrate the deviations we require equations for the tendencies of

mass divergence and generalized geopotential. By taking 6. of hy times Eq.

(Al) and adding 6y of h. times Eq. (A2) we obtain the equation for the

divergence. By taking M1 times Eq. (A3) and adding (RT* + 0*) times Eq. (A4)

an equation for the generalized geopotential is obtained. That is

52



8D2- + 2 A (A23)

at m

80
-+ H3D MA (A24)at

where A 6 ( hA + 6 6(yA) (A25)
m hyx y u hX y xvy I

and the two dimensional Laplacian V2 is defined by Eq. (2.13) in section 2.1.

In terms of our vertical modes, the amplitudes of the mass divergence and

generalized geopotential are d = E-1D, e = E-1 #. The amplitudes of the

deviations of the divergence dkn - dk(t), and the generalized geopotential

ekn - ek(t) are integrated with smaller time steps given by Ark = At/mk.

For the ten layer model, the deviations are computed for the first three modes

with mk given by 8, 4 and 2 respectively. Now integrating over smaller time

steps we have

n+1l n2n rk VA26)d - - + 2 Ak ek 2 Ark A E-iAm(t))k (A26)

n+l n-1 ne k e k + k k d 2 Ark A E-I T(t))k  (A27)

For our explicit time step, applying the centered difference scheme with time

step 2 At to Eqs. (A23) and (A24), or from Eqs. (A13), (A14), (A15), (A16)

directly, we obtain

dX (t+At) - dk(t-At) + 2 t V2 ek(t) - 2 At { E-lA n(t)) k  (A28)

eex (t+At) - ek(t -At) + 2 At dkit) = 2 At { EIH1 A(t)}k (A29)

By subtraction we obtain the equations for integrating the deviations

dkn - dk(t), ekn - ek(t)
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[dkn dk (t) d.Kt) ]  + 2Ark V (e n_ ek(t))

-- [dj (t+At) - dk(t-At)) (A30)

n+1 n-1 n -

[ek - ek(t)] - [ek - ek(t)] + 2Atk Xk d- dk(t))

1 [e.ex (t+At) - e (t-At)) (A31)

e-x ex yex-1

where x(t+At) = (Ei D (t+At)}k = (E-1[6P ) + h yPx

ad eex E-1 ex(
and e e(t+At) = { E 1 (t+At)}k

The required corrections are then given by

d k -d k(t) 1 (d d k(t))(A2

k- 1 n=

- k(t) _ I (e k ek(t)) (A33)
mk n=1

For the integration of the deviations of the divergence, a lateral

boundary condition is required for the generalized geopotential. The boundary

value for ek - ek(t) is computed by linear interpolation from the values at

t -At and t. Further pragmatic boundary conditions are provided by reducing

the amplitude and phase speed of the deviations of the divergence and

generalized geopotential in the boundary zone by the factor 1-a. where a is

defined in section 2.3, for the two different lateral boundary formulations.

That is to reduce the phase speed ck  in the boundary zone, we multiply Xk in

Eq. (A31) and the V2 term in Eq.(A30) by (1-a). The amplitudes are reduced in

the boundary zone by multiplying the correction terms in Eqs. (A20) and (A21)

by (1-a) and those in Eqs (A18) and (A19) by (1-au ) and (1-av), respectively.
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FIG. 1. The vertical structure of the modes versus sigma level in a ten
layer model for the case of a basic state at rest with the mean temperature
profile defined in Table 1.
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FIG. 2. The horizontal grid stencil for the Arakawa C grid as applied to
the NRL model, showing the lateral boundary grid points. u and v represent the
horizontal wind components. The surface pressure ps, the temperature T, the
geopotential 0, specific humidity q, the mass divergence D and vertical
motion 6 are defined at the same horizontal grid point as the generalized
geopotential 9.
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grid point as the mass divergence D. The lateral boundary conditions for A1
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FIG. 7. The root-mean-square (rms) changes in the amplitudes on the US
grid of (a) the mass divergence Ad in dynes cm-2 s-1, (b) the generalized
geootential Ae in units of 1011 dynes s-2, and (c) the vorticity Av in dynes
cm- s-1, versus the iteration number in the vertical mode initialization
scheme, for each of the first three vertical modes. In (d) is shown the rms
change Aps in the surface pressure in mb versus the iteration number. The rms
values are averaged for all the analyses of the week of 12Z January 23 to 12Z
January 29, 1986. (e) The rms change in the amplitude of the mass divergence
Ad in dynes cm-2 s-1 versus iteration number for the highest mode initialized,
as the number of modes initialized is varied from one to six modes for the
analysis on 12Z January 23, 1986 only.
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FIG. 7. The root-mean-square (rms) changes in the amplitudes on the US
grid of (a) the mass divergence Ad in dynes cm-2 s-1 , (b) the generalized
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values are averaged for all the analyses of the week of 12Z January 23 to 12Z
January 29, 1986. (e) The rms change in the amplitude of the mass divergence
Ad in dynes cm-2 s-1 versus iteration number for the highest mode initialized,
as the number of modes initialized is varied from one to six modes for the
analysis on 12Z January 23, 1986 only.
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FIG. 12. The root-mean-square (rms) changes on the GALE grid in the
amplitudes of (a) the mass divergence, and (b) the vorticity versus iteration
number in the vertical mode initialization scheme for each of the first three
vertical modes, averaged for all the analyses for the week of 12Z January 23
to 12Z January 29, 1986. (c) Comparing the rms changes in the amplitude of the
mass divergence when the GALE topography (see Fig. 6b) is used (solid lines)
to that when the GALE topography, which has been further smoothed (see Fig.
6c) in a five degree zone around the lateral boundary, is used (dashed lines).
The analyses only on 12Z January 23 (labelled I) and 12Z January 24, 1986
(labelled I) are used.
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