Contract No: DAMD17-88-C-8011

Title: Synthesis and Biological Evaluation of Brain-Specific Anti-RNA Viral Agents

Principal Investigator: Marcus E. Brewster, Ph.D.

Contracting Organization: Pharmatec, Inc.
P.O. Box 730
County Road 2054
Alachua, FL 32615

Report Date: March 31, 1990

Type of Report: Final Report

Prepared For: U.S. Army Medical Research and Development Command
Fort Detrick, Frederick, Maryland 21701-5012

Distribution Statement: Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
Synthesis and Biological Evaluation of Brain-Specific Anti-RNA Viral Agents

Marcus E. Brewster, Ph.D.

Ribavirin is a potentially useful drug for treating encephalitic disease but is excluded from the brain because of its poor membrane permeability. This contract has attempted to develop brain-targeted delivery forms of ribavirin in an attempt to increase its efficacy towards central maladies. Ten such delivery systems have been prepared. These include several in which a brain-selective 1,4-dihydropyridine was attached to the 5′-position, one in which the 2′-position was modified and several others. After preparation, analytical systems were developed to separate, detect and quantify these materials both in vivo and in vitro. The stability of selected compounds was then studied in various biological matrices. Further in vivo testing included tissue distribution studies and antiviral activity studies performed in a murine viral encephalitic model.
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the US Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

Manus E. Brewer
PI - Signature
1/1/92
Date
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Body</td>
<td>9</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>9</td>
</tr>
<tr>
<td>Chemistry</td>
<td>9</td>
</tr>
<tr>
<td>Analytical Methodology</td>
<td>19</td>
</tr>
<tr>
<td>Animal Toxicology Studies</td>
<td>27</td>
</tr>
<tr>
<td>In Vivo Tissue Distribution</td>
<td>28</td>
</tr>
<tr>
<td>Antiviral Activity Studies</td>
<td>28</td>
</tr>
<tr>
<td>Discussion</td>
<td>29</td>
</tr>
<tr>
<td>Experimental Section</td>
<td>30</td>
</tr>
<tr>
<td>References</td>
<td>87</td>
</tr>
<tr>
<td>Schema</td>
<td>90</td>
</tr>
<tr>
<td>AVS Designation</td>
<td>111</td>
</tr>
<tr>
<td>Figures</td>
<td>112</td>
</tr>
<tr>
<td>Tables</td>
<td>118</td>
</tr>
</tbody>
</table>
INTRODUCTION

The inability to adequately treat viral encephalitic disease has made this malady pernicious and often fatal. The poor therapeutic accessibility of these infections can be traced to three major facets including the viral life cycle, the lack of efficacious pharmacologically-active agents and finally the inability to deliver those agents which are available to the central nervous system (CNS) for sustained periods and in significant amounts.

Viruses are submicroscopic pathogens which depend on the cellular nucleic acid and protein synthesizing mechanisms of its host for propagation. In general, viruses invade cells by first interacting at a recognizable surface protein, penetrating the cell membrane and subsequently releasing itself from a protective polypeptide coat to eject the core of the virus. The heart of these pathogens is genetic material either DNA or RNA and the type of nucleic acid give rise to the system of nomenclature for these entities. The viral DNA or RNA can then interact with cellular components to produce daughter genetic material as well as various structural or enzymatic proteins. After assembly and release, the viral progeny may infect other cells yielding disease or ultimately death.

DNA viruses are subdivided into five families and include the pathogens responsible for labial and genital herpes, chicken pox, shingles and mononucleosis. RNA viruses are present in more numerous forms and are subdivided into ten families. These viruses are unusual in that they reverse the usual DNA → RNA → protein sequence which occurs in higher life forms. RNA viruses are unusually dangerous for several reasons including their lethality and the lack of effective treatments. RNA viral diseases include hemorrhagic fevers of various descriptions, Dengue fever, Lassa fever and numerous encephalitic maladies including Japanese B encephalitis.

Chemotherapeutically, very few antiviral agents have been developed that have high in vitro activity against these viruses. One notable advance in the field was the advent of ribavirin or 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide which was synthesized in 1972. Ribavirin has a broad range of activity against both DNA and RNA viruses. This riboside, which contains an unnatural triazole base, significantly suppresses the infectivity and cytopathicity of several viral pathogens by mechanism
which are as of yet unclear. Several interactions have been suggested including inhibition of viral RNA polymerase10,11, the inhibition of inosine monophosphate dehydrogenase by ribavirin anabolites8,12 and interference of mRNA cap formation by the 5'-triphosphate of ribavirin12.

![Ribavirin structure](image)

These laboratory studies have been successfully translated to a clinically effective product. Ribavirin is active against several influenza viruses and respiratory syncytial virus and as such is used in an aerosol form to treat these diseases13,14. Ribavirin is also used in the treatment of Lassa fever which rages in epidemic proportions in Sierra Leone15. This regimen is significantly more effective than placebo in increasing survival.

Unfortunately, while peripheral viral infections can be successfully treated with ribavirin and other riboside derivatives, encephalitis is immune to the action of these drugs16,17. The ability of antiviral drugs, which are highly potent in \textit{vitro}, to exert activity in the CNS is attributable to their exclusion from the brain. The basis of this impermeability is the blood-brain barrier (BBB) which effectively separates the systemic circulation from the brain parenchyma. The capillaries which make up the cerebral microvasculature differ in three important morphological and several histochemical respects from their peripheral counterparts18,19. Structurally, CNS microvessel are unique in the way in which the component endothelial cells are joined together. In the brain, gaps between adjacent endothelial cells are significantly more narrow than in the systemic circumstance thus preventing the bulk transport of materials between cells and forcing compounds to diffuse directly through the cell membranes. As these barriers are
lipoidal in nature, the BBB restricts the entry of materials which do not have high affinity for the phospholipid matrix and consequently hydrophilic compounds are excluded. In addition to the morphological adaptations, brain capillaries lack fenestra and have a vesicular transport system which is less active than that found in the periphery. Cerebral capillaries are also characterized by their high content of various lytic enzymes which prevent uptake of blood-borne neurotransmitters and other substances. Superimposed on the relatively impermeable system are several selective and saturable carrier system to allow for the bidirectional equilibrium of various nutrients and metabolic wastes. As these specialized carriers usually are not important in drug uptake, molecules must be intrinsically lipophilic if they are to gain access to the CNS. This is the restriction which renders ribavirin which has a log P of only -2.06 ineffective in treating viral disease of the brain. Experimentally this is borne out by the inability of ribavirin to increase the life span or reduce viral titres in laboratory animals inoculated intracerebrally with various "susceptible" viruses.

Thus, as indicated in the premise, three major problems are encountered in treating brain viral disease. Assuming compounds like ribavirin would be effective if transported adequately to the CNS, efforts should be directed toward improving brain delivery of this riboside. One method for approaching this problem is transient chemical derivitization of ribavirin via the prodrug method. A prodrug is defined as a pharmacologically inert chemical derivative of an active compound which converts to the active species in vivo. The chemical manipulations are designed to transiently improve some deficient physicochemical property such as membrane permeability. In the case of ribavirin, esterification of the sugar hydroxy groups can lead to an increase in the lipophilicity of the conjugate. This technique has in some cases marginally improved the action of ribavirin against cerebrally implanted viruses. The triacetate of ribavirin was shown to increase the mean survival time and number of survivors when given i.p. to animals inoculated intracerebrally with Colorado tick fever virus and Dengue virus. Similarly, the tributyrate of ribavirin when administered subcutaneously was shown to increase the mean time to death in animals intracerebrally infected with Junin virus.

These results are encouraging in that increasing the concentration of ribavirin in the CNS by temporarily increasing its lipophilicity may lead to an improvement in the
action of the compound. The lipophilic esters chosen appear to be inactive in and of themselves but hydrolyze to yield the active antiviral agent. These prodrugs are not, however, optimized in terms of their pharmacokinetic and tissue distribution profile. While it is true that by increasing the lipophilicity of ribavirin, the drug will more easily pass the BBB and enter the CNS, the increased lipophilicity will increase the distribution of the conjugate in general leading to a greater tissue burden in non-target loci. This is important to consider when potentially cytotoxic materials are concerned. The other major drawback of simple lipophilic prodrugs is that while influx to the CNS is increased, efflux is likewise enhanced with the result being poor brain retention and a therapeutically short biological half-life. These two objections to simple prodrug, that is increase tissue burden with little tissue selectivity and poor CNS retention prompted the application of a novel drug targeting system. The method selected is the Chemical Delivery System (CDS). The CDS relies on the facile interconversion of a lipophilic dihydronicotinate and a hydrophilic nicotinate salt to achieve tissue selectivity and biomimics the conversion between NAD and NADH. This approach requires that a molecular carrier be attached to the drug of interest. While various carriers can be used, derivatives of nicotinic acid have proved to be the most successful to date. Upon esterification with nicotinic acid or a nicotinic acid derivative, quaternization and reduction, a 1,4-dihydrotrigonellinate (or CDS) derivative is obtained. This lipophile can, after systemic administration, pass the BBB and enter the CNS as well as other tissue compartments. The metabolically unstable dihydropyridine then oxidizes to give the corresponding pyridinium salt. This ideally inactive species is rapidly lost from the periphery due to its hydrophilic nature but is retained in the CNS because of its polarity and size and, therefore, its inability to back diffuse through the BBB. With time, hydrolysis can free the drug from its inactive, dopoted conjugate so that the liberated agent can exert its pharmacological effects. If the rate of degradation of the drug-oxidized carrier conjugate is slow, then a sustained release of the drug may be achieved. The advantages of this scheme include the low levels of the parent drug presented to the periphery which should reduce systemic dose-related toxicities. In addition, since the majority of the drug is present in the CNS as an inactive conjugate, central toxicity should be attenuated. This system has been successfully applied to a number of drugs
Army Final Report
March 31, 1990

and neurotransmitters including antibiotics, antiviral agents, anticancer agents, steroids and many others. In applying this approach to ribavirin, the chemical complexity of the molecule requires careful planning in terms of synthetic manipulations. Ribavirin is a riboside and thus contains three hydroxy groups, one primary (5') and two secondary (2' and 3'), which may provide handles for attaching either the brain-targeting dihydrotrigonellinate group or lipophilicity modifying esters or other derivatives. In addition, the triazole-carboxamide base can provide synthetic points of attachment via the amide group. As each of the hydroxylic and amide groups will provide derivatives with differing reactivities, the rates of oxidation and hydrolysis can be slowly optimized via selective synthetic manipulations. Subsequent to chemical alterations, preliminary toxicity screens were conducted and acceptable compounds examined analytically in both in vitro and in vivo paradigms. Finally, candidates were submitted and tested for biological activity in an encephalitis viral model utilizing the Balliet strain of Punta Toro virus.

RESULTS AND DISCUSSION

Chemistry

Several synthetic approaches have been examined and include attachment of a 1-methyl-1,4-dihydronicotinate moiety to the 5'-position of ribavirin followed by manipulation of the 2' and 3'-loci (5'-based CDS), attachment of the targeting moiety to the 3'-position of ribavirin followed by manipulation of the 2' and 5'-positions (3'-based CDS) and attachment of the dihydrotrigonellinate to the 2' position followed by manipulation of the 3' and 5'-hydroxy groups (2'-based CDS). In addition, attachment of the 1,4-dihydrotrigonellinate to more than one site was considered and derivitization of the carboxamide group attempted.

5'-Based Chemical Delivery Systems

To this point, the majority of delivery systems constructed are based on 5'-attachment of the dihydronicotinate. In developing the methodologies for this synthetic work, a model system was first prepared. In this synthetic route (Scheme I), the 2',3'-
hydroxy groups of ribavirin (1, AVS 0001) was protected as the 2',3'-0-isopropylidene (2, AVS 5221). The protected riboside was then reacted with trigonelline anhydride (3) to produce the 5'-trigonellinate iodide of the protected sugar (4). Reduction of this quaternary salt in aqueous basic sodium dithionite yielded the 5'- (1,4-dihydrotrigonellinate) of the ribavirin acetonide (5, AVS 5505). In the above synthesis, trigonelline anhydride was used to avoid possible complications arising from alkylation which may occur on the triazole base. The use of trigonelline anhydride, while effective, was cumbersome in that the trigonelline side product was difficult to remove, a circumstance which compromised the reaction yield. In circumventing this limitation, the synthetic route was re-examined by reacting the ribavirin acetonide with nicotinic anhydride giving rise to the 5'-nicotinate (6). This ester was subsequently quaternized to give (4a) and reduced to give (5). In the reaction conditions used for the quaternization, methylation of the triazole base was not observed.

A series of 5'-CDSs were then prepared by a general process summarized in Scheme II. In the compound prepared, a 1,4-dihydrotrigonellinate moiety was attached to the 5'-position and bis acylation effected at the 2' and 3'-positions. Ribavirin was first protected using 4,4'-dimethoxytrityl chloride to give the 5'-(4,4'-dimethoxytrityl)ether derivative (7). The 2' and 3' hydroxy groups were then esterified with a variety of acid anhydrides including pivaloyl, benzoyl, isobutyryl and acetyl to give rise to the corresponding 5'-1,4-dihydrotrigonellinate-2',3'-diesters (8), (9), (10) and (11), respectively. These compounds were then detritylated via the action of 80% acetic acid to yield compounds (12), (13), (14) and (15), respectively. The nicotinate carrier was then introduced. Use of nicotinoyl chloride hydrochloride as the acylating agent lead invariably to dehydration of the carboxamide of the base yielding the nitrile.

Use of nicotinic anhydride avoided this problem and gave the corresponding 5'-nicotinates in good yields (16), (17), (18) and (19), respectively. Quaternization of these derivatives with methyl iodide gave the trigonellinates (20), (21), (22) and (23) and reduction of these salts with aqueous basic sodium dithionite gave the CDS's (24, AVS 5056), (25, AVS 5057), (26, AVS 5054) and (27, AVS 5581), respectively.

A further compound in this series was synthesized, that being the derivative in which the 2' and 3' hydroxy groups were unmodified. This was considered an attractive
target since Canonico indicated that this CDS was effective in increasing survivability of animals intracranially inoculated with Japanese B encephalitis virus39. The derivatives were prepared according to Scheme III. The 2',3'-0-acetonide of ribavirin (2) was esterified with nicotinic anhydride in pyridine to give the 5'-nicotinate (6) which was subsequently deprotected with 88\% formic acid at room temperature for 10 hours. The unprotected 5'-nicotinate (28) was then methylated to give the trigonellinate salt (29) and reduced in aqueous basic sodium dithionite to give the dihydrotrigonellinate (30, AVS 5582).

After, initial animal results indicated significant antiviral activity associated with the acetonide based CDS (5), a series of compound was prepared based on this prototype. The first of these is given in Scheme IV. The 2',3'-0-cyclopentylidene derivative of ribavirin (31) was obtained by treating ribavirin with cyclohexanone in the presence of mesitylene sulphonic acid. The obtained cyclic ester was then reacted with nicotinic anhydride to give the 5'-nicotinate (32). This ester was then quaternized with methyl iodide to give the trigonellinate salt (33) and reduced in basic aqueous sodium dithionite to give the 5'-based CDS (34) in high yield. This cyclopentylidene derivative is chemically much less stable than the corresponding acetonide and should more rapidly release the active riboside \textit{in vivo}. Other derivatives which are presently being prepared include the cyclic carbonate (35).

\begin{center}
\includegraphics[width=0.5\textwidth]{2-Based Chemical Delivery Systems.png
\end{center}

2'-Based Chemical Delivery Systems

Initial work aimed at the preparation of ribavirin derivatives substituted in the 2'-position with 1,4-dihydrotrigonellinate moiety was based on the experiences of Ishido50. He reported that regioselective 2'-0-deacylation of peracylated purine and pyridine
ribonucleosides could be effected via the action of hydrazine hydrate. This approach would be advantageous in that it would circumvent the problems of extensive protective and deprotective synthetic routes and allow selective manipulation at the desired site. 5',3',2'-tri-0-benzoyl ribavirin (36) was, therefore, prepared by acylating ribavirin with benzoic anhydride. Unfortunately, hydrazinolysis of the tribenzoate proved not to be selective. Efforts then shifted to selective 3',5'-protection through the use of 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane (TIPDS-Cl). Reaction of ribavirin with this derivative gave rise to the 3',5'-O-(tetraisopropyldisiloxane-1,3-diyl) derivative (37) in high yield.

\[\text{(37)} \]

The next step, nicotinoylation of the protected riboside proved to be difficult. Acylation could not be achieved in more than 10% yield with either nicotinic anhydride in pyridine (1 to 6 equivalents) or in refluxing methylene chloride containing triethylamine. When the reaction was carried out at room temperature for 18 h in the presence of nicotinoyl chloride hydrochloride in pyridine, the starting materials disappeared but the infra-red spectrum of the products indicated dehydration of the amide to a cyano group (38). The 2'-nicotinate of the 3,5'-protected ribavirin derivative (39) was finally obtained in 90% yield by careful manipulation of reaction conditions. Removal of the protective disiloxyl group by previously published procedures lead to a complex mixture of products causing us to abandon this route.
Derivatives containing a nicotinate ester in the 2'-position were finally obtained using methods involving nonselective acylation of ribavirin followed by chromatographic separation of the isomers formed (Scheme V). This approach is more completely described in the next section. At any rate, 5'-dimethoxytritylated ribavirin was reacted with benzoyl chloride at 0°C to yield a mixture of three products, the bis benzoate of the protected ribavirin (40), the 2'-benzoate and the 3'-benzoate of the protected riboside ((41) and (42), respectively). The crude mixture was subsequently subjected to nicotinoylation using nicotinic anhydride to yield a mixture of the bis benzoate (40), the 2'-benzoate, 3'-nicotinate (43) and the 2'-nicotinate, 3'-benzoate derivatives of the protected ribavirin (44). These materials were separated by open column chromatography on silica gel to yield the pure components. Deprotection of the bis ester followed by quaternization and reduction should give the first 2'-based CDS.

3'-Based Chemical Delivery System

The preparation of 3'-based CDS was first approached by using published procedures which indicated that the 2'-hydroxy group of a 5'-protected riboside could be selectively silated using t-butyldimethylsilyl chloride in the presence of nitrate ion\(^{41,42}\). Two reaction sequences were attempted using this technology, one in which ribavirin is subjected to selective silation to yield ostensibly the 5',2'-protected base and one in which the 5'-dimethoxytrityl derivative of ribavirin is used as the substrate to give rise to the 2'-derivitized material (45). In both instances, the procedure used did not give selectivity with both the 2'- and 3'-isomers being formed in nearly equal proportions.

Failing in the selective route, it was next decided to nonselectively acylate the 5'-protected riboside with nicotinic anhydride and separate the anticipated isomers chromatographically. When 5'-dimethoxytrityl ribavirin was reacted with 3 equivalents of nicotinic anhydride, a single product was formed, presumably the bis acylated protected riboside (46). When one equivalent of the anhydride was used, starting material as well as the compound or mixture of compounds possessing a similar R, value to the bis nicotinate earlier described. Initially, speculation pointed to 2'-acylation as earlier work on dimethoxytrityl substituted ribosides suggested that selective reaction at the 2'-position occurred in various synthetic manipulations\(^{43}\). This was further studied. 5'-
Dimethoxytrityl ribavirin was treated with one equivalent of nicotinic anhydride and the reaction monitored hourly by thin layer chromatography (TLC). The reaction observed was estimated to have a half-life of 3 hours and was essentially complete after stirring at room temperature overnight. Attempts to isolate the products lead to degradation.

Similar synthetic approaches were followed using benzoic (47) and anisic (48) anhydride.

Given the analytical and synthetic complexities of these nonselective acylations, an unambiguous method of structure determination was required. To this end, high field 1H, 13C and two dimensional 1H-1H (COSY) NMR techniques were selected. To provide an adequate base line for examining substitution on the ribavirin nucleus, a two-dimensional proton-proton experiment was performed in a d$_6$-DMSO solvent. The results of those determinations are presented in Figure 1 which include 1H and 13C resonances. A sample spectra is provided in Figure 2.

In the synthesis, careful manipulation and argumentation of earlier methods allowed for preparation of the desired isomer in various compositions. When, for example, 5'-dimethoxytrityl ribavirin was treated with benzoyl chloride at 0°C and the reaction mixture was left overnight, three fractions were observed which could be separated and purified by open column chromatography (Scheme V). These fractions included the 2',3'-dibenzoate derivative of 5'-dimethoxytrityl ribavirin (40), a mixture of monobenzoylated products and a single, pure monobenzoate. When the synthetic procedure was repeated but with shorter reaction times, the dibenzoate formed in much lower quantities and the two isomeric monobenzoates could be obtained in pure form by open column chromatography. Both isomers were obtained as white solids. Two-dimensional 1H NMR indicated that the less polar isomer was the 2'-benzoate derivative of the protected riboside (41) and that the more polar isomer was the 3'-benzoate (42). Interestingly both of these purified isomers underwent O-to-O transacylation in DMSO to produce product scrambling as shown in Figure 3. In any case, the 3'-benzoate derivative was cleanly acylated with nicotinic anhydride in the presence of a nucleophilic catalyst (DMAP) to yield the 5'-dimethoxytrityl ribavirin 2'-nicotinate 3'-benzoate in good yield (49).

Further work with this reaction scheme indicated that the chromatographic separations could be reduced by treating the isomeric mixture of dimethoxytritylated
ribavirin benzoates with nicotinic anhydride to yield the 2',3'-dibenzoate of the protected riboside (40), and the 2'-nicotinate-3'-benzoate (44) and 2'-benzoate-3'-nicotinate (43) derivatives. Open column chromatography conveniently separated these 3 fractions in a ratio of 1.2 to 2.8 to 1.0, respectively. The 2'-nicotinate-3'-benzoate protected riboside (44) was then deprotected in the presence of 80% acetic acid to yield the 5'-hydroxy derivative (50). This material was then methylated with methyl iodide to give the 2'-trigonellinate derivative (51) and reduced in aqueous dithionite to give the 2'-based CDS (52, AVS 5756).

The use of other masking esters, the derivitization of the 5'-position and other manipulations are currently being considered.

Mixed 2',3'-Based Chemical Delivery Systems

The application of the chemical delivery system (CDS) to ribavirin was continued during the past quarter. In all investigations, the brain-targeting 1,4-dihydrotrigonellinate moiety was attached to the secondary alcohols of the sugar at the 2'- and/or 3'-position. Because of the problem of 2'- to 3'-O-transacylation, two component mixtures were produced containing various 2'-1,4-dihydrotrigonellonyl-3'-acyl and 2'-acyl-3'-1,4-dihydrotigonellonyl substitutions. These isomeric pairs were carefully prepared and analyzed. These materials can be painstakingly separated into unitary isomers but since in vivo hydrolysis will yield isomerization, our approach was to first test the biological activity of the isomers. Should significant activity occur, further isolation will be performed.

Three such isomeric pairs have been prepared. Scheme VI illustrates the synthesis of the ribavirin isomers containing a free 5'-hydroxy group and a pivaloate and 1,4-dihydrotrigonellinate moiety. In the preparation of this material ribavirin was first reacted with dimethoxytrityl chloride to give the 5'-protected nucleoside (7). Treatment of the DMT-derivitized compound with pivaloyl chloride in pyridine at 0°C gave a mixture of the 2'-pivaloyl (53b) and 3'-pivaloyl (53a) esters. High field proton NMR and 13C NMR confirmed the production of the "pure" bicomponent mixture. The 2',3'-isomers were then treated with nicotinic anhydride in methylene chloride and triethylamine to give two components, i.e., the 2'-nicotinoyl-3'-pivaloyl (54a) and 2'-
pivaloyl-3'-nicotinoyl (54b) derivatives of DMT-protected ribavirin. Treatment of the mixture with 80% acetic acid removed the dimethoxytrityl group to give 55a and 55b. The isomeric mixture was then methylated with methyl iodide to give a mixture of quaternary salts (56a and 56b) and reduced using aqueous basic sodium dithionite to give 2'-pivaloyl-3'-1,4-dihydrotrigonellinoyl ribavirin (57a) and 2'-1,4-dihydrotrigonellinoyl-2'-pivaloyl-ribavirin (57b).

A second isomeric pair was produced by derivitizing the 5'-position of the (57a/57b) mixture. This was done by treating (55a/55b) with benzoic anhydride as shown in Scheme VII to yield a mixture of 2'-nicotinoyl-3'-pivaloyl-5'-benzoylribavirin (58a) and 2'-pivaloyl-3'-nicotinoyl-5'-benzoylribavirin (58b). These peracylated ribose derivatives were then quaternized with methyl iodide to give (59a/59b) and reduced with sodium dithionite to give 2'-1,4-dihydrotrigonellinyl-3'-pivaloyl-5'-benzoylribavirin (60a)/2'-pivaloyl-3'-1,4-dihydrotrigonellinyl-5'-benzoyl-ribavirin (60b).

This approach was repeated as shown in Scheme VIII using benzoyl chloride to replace pivaloyl chloride which was used in Scheme I. In the reaction between DMT-protected ribavirin and the acyl chloride, three isomers were obtained namely the 2',3'-bis-O-benzoate (9), the 3'-O-benzoate (61c) and the 2'-O-benzoate (61b). Treating this crude mixture with nicotinic anhydride in methylene chloride and triethylamine gave the 2'-benzoyl-3'-nicotinoyl DMT-ribavirin derivative (62a), the 2'-nicotinoyl-3'-benzoyl DMT-ribavirin derivative (62b) and the 2',3'-dibenzoyl DMT-protected ribavirin (9). When this mixture was subjected to open column (silica) chromatography, the dibenzoate was easily removed and the (62a/62b) isomeric pair eluted in the same fraction. This mixture was deprotected using 80% acetic acid to give (63a/63b). The underivatized 5'- compounds were then quaternized with methyl iodide giving 64a/64b and reduced to yield a mixture of 2'-benzoyl-3'-1,4-dihydrotrigonellinoyl ribavirin (65a) and 2'-1,4-dihydrotrigonellinoyl-3'-benzoyl-ribavirin (65b).

The 5'-position was subsequently masked as the benzoate by treating the benzoate/nicotinate isomers (63a/63b) with benzoic anhydride to give 2'-benzoyl-3'-nicotinoyl-5'-benzoyl-ribavirin (66a) and 2'-nicotinoyl-3',5'-dibenzoyl-ribavirin (66b). These compounds were subsequently methylated giving 67a/67b and reduced in basic
aqueous sodium dithionite to give 2′-benzoyl-3′-1,4-dihydrotrigonellinoyl-5′-benzoyl-ribavirin (68a)/2′-1,4-dihydrotrigonellinoyl-5′-dibenzoyl-ribavirin (68b).

Finally, the preparation of the 2′,3′-bis CDS was made systematic. As shown in Scheme X, the 2′,3′-dinicotinoyl (69) derivative of DMT-protected ribavirin was prepared. This bis ester was deprotected giving (70) and methylated with methyl iodide to give the bis salt (71). The 2′,3′-bis(1,4-dihydrotrigonellinate) (72) was obtained by reduction of (71) in aqueous sodium dithionite.

We have been very interested in the effect of polyacylation of ribavirin with dihydrotrigonellinate groups. To this end, the 2′,3′-bis-(1,4-dihydrotrigonellinate)-5′-pivaloate derivative of ribavirin was prepared as presented in Scheme XI. As shown, 5′-dimethoxytritylated ribavirin is treated with an excess of nicotinoyl anhydride to give the 2′,3′-bis ester (69). Deprotection of the dinicotinate gave (70) which was pivaloated to give (73). Subsequent methylation and reduction gave the CDS (75). A variety of delivery systems were considered which contain a valeryl substitution in their structure. These intermediates were prepared according to Scheme XII in which 5′-protected ribavirin was nonselectively acylated with valeric anhydride giving rise to the 2′ (77b), 3′ (77a) and 2′,3′-bis ester (76) products. These products were then separated into individual components using open column silica chromatography. The 5′-based valeryl CDS was prepared by deprotecting compound (76) to give (78). This derivative was then nicotinoylated giving (79), methylated to give trigonellinate salt (80) and reduced in basic aqueous sodium dithionite yielding the CDS (81). Another valeryl containing CDS is given in Scheme IV. Here the brain-targeting dihydrotrigonellinate is attached to the secondary positions. In this synthesis a mixture of 5′-protected 2′ and 3′-valeryl ribavirin is treated with nicotinic anhydride to give a mixture of protected 2′-valeryl-3′-nicotinate (82b) and 2′-nicotinate-3′-valeryl (82a) ribavirin derivatives. Deprotection of this mixture gives rise to (83a) and (83b) which can be methylated and reduced to give a mixture of isomers (85a and 85b).

Final synthetic work was concerned with preparing a series of three C_{12}-derivatives of ribavirin. Reaction of the protected ribavirin with benzyl chloride yielded a mixture of three compounds (86), (91a) and (91b). (SCHEME XV) Separation by column chromatography on silica gel yielded bis-substituted ester (86) and
a mixture of 2'- and 3'-esters respectively. Compound (86) after deprotection with acetic acid was reacted with nicotinic anhydride followed by methylation and reduction to give the dihydro derivative at the 5'-position 90 (SCHEME XVI).

Similarly, the mixture of mono esters (91a) and (91b) was treated with nicotinic anhydride to give (92a) and (92b) mixture which was then deprotected with 80% acetic acid to yield (93a) and (93b). After purification by column chromatography from the side product the mixture was treated with MeI to give quaternary salts (94a) and (94b), which upon reduction with sodium dithionite yielded respectively 2'-trigonellinate-3'-benzyl and 3'-trigonellinate-2'-benzyl derivatives (SCHEME XV) (95a) and (95b).

2',3',5'-Based Chemical Delivery Systems

Attachment of the brain-targeting 1,4-dihydrotrigonellinate derivative to several hydroxy groups was considered. In the first such system, ribavirin was percylated with nicotinic anhydride in dry pyridine to yield the trinicotinate (95) (Scheme XVII). This tris ester was quaternized with methyl iodide to give the tris trigonellinate salt (96) and reduced in aqueous sodium dithionite to give the 2',3',5'-tris(1,4-dihydrotrigonellinate) derivative of ribavirin (97).

Derivatization of the Carboxamide of Ribavirin

The carboxamide functionality of ribavirin was considered as a possible synthetic handle. Initial manipulations were aimed at the formation of hydroxymethyl amides which would allow for esterification but would also provide for rapid reversion of the derivative to the starting amide upon hydrolysis. Ribavirin triacetate and tribenzoate (36) were first considered. Hydroxymethylation of the tribenzoate could not be effected using formaldehyde in basic conditions at room temperature or at 60°C. In addition there was no reaction between paraformaldehyde and ribavirin tribenzoate at 40°C in the presence of sodium methoxide. At elevated temperatures polymerization appears to occur in this reaction as indicated by NMR. Further attempts to hydroxymethyl ribavirin triesters included the use of base catalysts such as potassium carbonate, ammonium hydroxide and potassium hydroxide, sodium methoxide and triethylamine, none of which facilitated the reaction. The poor solubility of the ribavirin triester in aqueous solutions
promoted a series of nonaqueous reactions including hydroxymethylation by paraformaldehyde or 1,3,5-trioxane in carbon tetrachloride, dichloroethane and tetrahydrofuran. No reaction occurred in the temperature range between 25°C-40°C and polymerization consistently occurred at refluxing temperatures. Use of acid catalysts resulted in amide dehydration. In addition to formaldehyde, more electrophilic aldehydes were considered. Unfortunately no reaction occurred between tribenzoyl ribavirin and chloral hydrate, anhydrous chloral and n-butyl glyoxylate44. Similar failures were reported for ribavirin tripropionate (99). Other derivatives of the amide position which were not explored include thioamides, amidoximes, O-acylamidoximes, 1,2,3-oxadiazoles, amidines, and ureas.

While the amide substituent was resistant to alkylation, it could be acylated. Two such derivatives were prepared as indicated in Schema XVIII and XIX. As illustrated in Scheme VII, dimethoxytritylated ribavirin (7) can be treated with an excess of isobutyric anhydride to yield the 2',3',N'-triisobutyrate derivative of the 5'-protected riboside (100). Subsequent detritylation yields (101) which is then nicotinoylated to give the 5'-nicotinate (102). Quaternization yields the 5'-trigonellinate (103) and reduction gives rise to the 5'-dihydrotrigonellinate derivative of ribavirin acylated in the 2',3' and N'-positions (104, AVS 5222). In Scheme VIII, careful manipulation of reaction conditions allows the formation of the 5',N'-dinicotinate derivative of ribavirin 2',3'-diacetate (64) when ribavirin 2',3'-diacetate (103) is treated with nicotinic anhydride. The tetracylated product (103) is then quaternized to give the 5',N'-bis trigonellinate salt (106). Reduction of (106) will give the 5',N'-bis(1,4-dihydrotrigonellinate)-2',3'-diacetate (107).

In all cases, compounds have been scaled up from a few hundred milligrams to 2-5 g amounts.

Analytical Methodology

One of the most challenging aspects of this project has been the development of sturdy and reliable analytical techniques to detect, separate and quantitate the ribavirin-DS's, the corresponding quaternary salts and ribavirin itself, both \textit{in vitro} and \textit{in vivo}. Ribavirin is highly water soluble and does not have a chromophore which significantly absorbs light above 208 nm. The ribavirin quaternary salts were shown to act in a
chromatographically distinct manner compared to previously prepared trigonellinate salts thus requiring the development of novel HPLC methods. This discussion will concentrate on each component of the CDS starting with the relatively well behaved dihydronicotinates, progressing to the trigonellinate salts and ending with the various attempts which have been made to quantitate the parent compound, ribavirin, and ribavirin derivatives.

The first CDS studied was the 2',3'-O-acetonide-5'-dihydrotrigonellinate derivative of ribavirin (5). This compound has the usual dihydropyridine (Band III) absorbance around 360 nm. Several HPLC systems have been developed to quantitate this derivative including the following:

1) Column: 2 Perkin-Elmer HS-3 C18 columns (3 μm particle, 3.3 cm x 4 mm i.d.) in series Mobile Phase: Methanol:0.02 M KI\(_2\)PO\(_4\) :H\(_2\)O 40:40:20 Flow Rate: 1.0 mL/min Temperature: Ambient Detection: UV, 360 nm Retention Time: 11.0 min

2) Column: Spherisorb C-8 (Brownlee Cartridge, 10 cm x 2.4 mm i.d.) Mobile Phase: Methanol:0.008 KI\(_2\)PO\(_4\) 40:60 Flow Rate: 0.4 mL/min Temperature: 21.8°C Detection: UV, 360 nm Retention Time: 10.0 min

Each of these systems could also isolate and quantitate the corresponding 5'-nicotinate-2',3'-O-acetonide and the 2',3'-O-acetonide derivatives of ribavirin. The retention times of these species was in system 1, 10 min and 6.3 min, respectively, and 10 min and 5.2, respectively, in system 2. The trigonellinate salt (4) could not be eluted using these systems.

Assay conditions similar to System 2 were utilized for analysis of the 5'-1,4-dihydrotrigonellinate derivatives of ribavirin-2',3'-dibenzoate (25), ribavirin-2',3'-dipivaloate (24), ribavirin-2',3'-diisobutyrate (26) and 2',3'-N'-triisobutyrate-5'-1,4-dihydrotrigonellinate ribavirin (62) as described below.
Compound (25)

Column: Spherisorb C-8 (Brownlee Cartridge, 10 cm x 2.1 mm i.d.)
Mobile Phase: Methanol:0.008 M KH$_2$PO$_4$ (58:42)
Flow Rate: 0.4 mL/min
Temperature: 21.8°C
Detection: UV, 360 nm
Retention Time: 17.8 min

Compound (24)

Column: Spherisorb C-8 (Brownlee Cartridge, 10 cm x 2.1 mm i.d.)
Mobile Phase: Methanol:0.008 M KH$_2$PO$_4$ (60:40)
Flow Rate: 0.4 mL/min
Temperature: Ambient
Detection: UV, 360 nm
Retention Time: 13.0 min

Compound (26)

Column: Spherisorb C-8 (Brownlee Cartridge, 10 cm x 2.1 mm i.d.)
Mobile Phase: Methanol:0.008 M KH$_2$PO$_4$ (58:42)
Flow Rate: 0.4 mL/min
Temperature: Ambient
Detection: UV, 360 nm
Retention Time: 6 min

Compound (104)

Column: Spherisorb C-8 (Brownlee Cartridge, 10 cm x 2.1 mm i.d.)
Mobile Phase: Methanol:0.008 M KH$_2$PO$_4$ (58:42)
Flow Rate: 0.4 mL/min
Temperature: Ambient
Detection: UV, 360 nm
Retention Time: 15 min

In various instances, these systems were modified depending on the specific analysis.

When, for example, the 2',3'-diisobutyryl-5'-dihydrotrigonellinate derivative of ribavirin (26) was examined in biological tissues, the following conditions were used:

Column: Spheri-5 RP-8 column (Brownlee)
Fitted with a C-8 guard column
Mobile Phase: Acetonitrile:0.067 M KH$_2$PO$_4$ (75:25)
Flow rate: 1 mL/min
Temperature: Ambient
Detection: UV, 360 nm
Retention Time: 5 min
In this case, detection at 266 nm greatly increased sensitivity due to the higher extinction coefficient at this absorbance. No interferences were observed using this lower wavelength.

The above listed chromatographic systems were then used to assay the stability of several CDS's as illustrated in Table I. The rate of degradation of each of four systems was assayed in rat blood, brain homogenate, liver homogenate and in some cases phosphate buffer. The acceleration of degradation rates in biological matrices compared to buffers is consistent with an enzymatically-mediated decomposition. Of the compounds examined, the acetonide appears to be the most stable under the conditions utilized. These chromatographic systems have been used in various in vivo tissue distribution studies which will be discussed in the next section.

The development of stable chromatographic systems for the trigonellinate salts has been problematic. Initial studies indicated that the 2',3'-acetonide derivative of 5'-1,4-dihydrotrigonellonyl ribavirin (4) eluted poorly if at all on ODS (C18) or C8 silica stationary phases. Inclusion of buffers, anionic ion pair reagents and cationic competitive quaternary ammonium salts did not improve the chromatography. A non-aqueous reverse phase system based on a cyano derivitized column gave better retention and relatively good peak shape. This system is described below:

- **Column:** Spherisorb CN (5 μm particle size, 250 mm x 4.6 mm i.d.)
- **Mobile Phase:** Acetonitrile + 0.002 M tetrabutylammonium perchlorate
- **Flow Rate:** 2.0 mL/min
- **Temperature:** Ambient
- **Detection:** UV, 266 nm
- **Retention Time:** 9.8 min (19.7 min at 1 mL/min)

Unfortunately this system was found to be unstable and was associated with relatively rapid degradation of the column leading to irreproducibility. A second system was thus developed:

- **Column:** Spherisorb C-8 (Brownlee Cartridge, 10 cm x 2.1 mm i.d.)
- **Mobile Phase:** Isopropanol:0.05 M KH₂PO₄ (10:90 + 0.005 M sodium octanesulfonate)
- **Flow Rate:** 0.4 mL/min
- **Temperature:** Ambient
- **Detection:** UV, 266 nm
- **Retention Time:** 7 min
This system was useful, however, only for limited in vitro and bulk compound purity studies. It was not sufficiently stable to be used for analysis of the quaternary salts in biological tissues due to the appearance of interfering peaks and the poor extractability of the trigonellinate salts from biological homogenates.

Finally a reproducible method was developed for the 5'-trigonellinate of ribavirin acetonide. This method employed a C1 column and is summarized below:

- **Column:** Spherisorb C1 (25 cm x 4.6 mm i.d.) fitted with a C2 guard column
- **Mobile Phase:** Acetonitrile:0.01 M acetate buffer pH 4.4 (50:50)
- **Flow Rate:** 1 mL/min
- **Temperature:** Ambient
- **Detection:** UV, 224 nm
- **Retention Time:** 16.2 min

This system allowed for both chemical studies of the 5'-trigonellinate of the ribavirin acetonide as well as in vitro and in vivo investigation.

Several physicochemical parameters of (4) were measured including the pH of maximum stability of the 5'-trigonellinate of ribavirin acetonide, its stability in acetonitrile, its partition coefficient and its stability in buffer, blood and brain homogenate. The pH of maximum stability was determined using the following equation

$$[H^+]_{\text{min}} = \frac{k_{\text{OH}} \cdot Kw}{k_+}$$

when k_{OH} is the specific catalytic base rate constant, k_+ the specific acid catalytic rate constant and Kw, the ionization constant for water. In this equation k_{OH} and k_+ can then be obtained from the following relationships:

$$\log k_{\text{OH}} = \log k + pKw - pH$$

and

$$\log k_+ = \log k + pH.$$

Using the rate constants obtained from degradation of (4) in 0.1 M HCl and phosphate buffer (pH 6.47 and 7.57) the specific acid and base catalytic constants were obtained...
(Table 11) and the pH_{min} was found to be 3.92 at 25°C. At this pH, the trigonellinate should have a t_{1/2} of approximately 3.5 months as estimated using the equation

\[k_{\text{min}} = 2(K_{\text{H}^+} \cdot K_{\text{OH}^-} \cdot K_{w}^{1/2}) \]

This indicates that at a pH of 4, solutions of the acetonide (4) should be stable. The degradation product in acidic media was exclusively ribavirin 5'-trigonellinate while in basic media, only ribavirin acetonide was detected.

Since acetonitrile is used both in the preparation of biological tissues for analysis and in HPLC mobile phases, the stability of ribavirin 5'-trigonellinate 2',3'-acetonide in this solvent was considered. The ribavirin trigonellinate was shown to degrade in acetonitrile in a zero order process with an apparent rate constant of \(k = 3.9 \times 10^{-10} \) M/sec. As this process is zero order, the half-life of disappearance of this material will depend on its initial concentration. The major product of degradation in these studies was ribavirin acetonide.

The efficient extraction of the CDS components is essential for accurate and precise quantitations. The distribution constant (concentration in acetonitrile/concentration in the aqueous phase) were therefore determined for ribavirin acetonide (2), ribavirin 5'-trigonellinate (28) and ribavirin 5'-trigonellinate-2',3'-acetonide (4). These data are collected in Table III. As shown, the extraction is pH independent and the efficiency range from 59% in the case of the ribavirin acetonide (2), to 32% in the case of the acetonide trigonellinate (4) to 0% for ribavirin trigonellinate (28).

The \textit{in vitro} stability of the ribavirin 5'-trigonellinate-2',3'-acetonide was assayed in several biological matrices and phosphate buffer are shown in Table IV. As indicated whole rat blood degrades the trigonellinate about twice as rapidly as does phosphate buffer or brain homogenate.

A second trigonellinate salt which has been examined is ribavirin 5'-trigonellinate-2',3'-diisobutyrate (26). The assay of this material was accomplished using methodologies similar to those employed for (4). The tissue distribution of this species in rats after i.v. administration of the ribavirin 5'-[1,4-dihydrotrigonellinate]-2',3'-diisobutyrate is discussed in the \textit{in vivo} section.
Analytical system for examining ribavirin itself have been considered. Published methods include the use of phenyl boronate affinity chromatography and extraction/ion exchange chromatography both of which are used as a sample clean-up procedure prior to HPLC determinations45,46. These methods are time consuming and are not convenient. In deference to these protocols, attempts have been made to develop online systems which do not require extensive sample manipulation prior to assay.

Three HPLC stationary phases were considered including a Partisil PAC, Spherisorb CN and Spherisorb Phenyl support. In the Partisil column operating with a mobile phase consisting of 85% aqueous acetonitrile, ribavirin could be eluted at 7.7 min but the peak shape was unacceptably poor. Using the Spherisorb CN column with aqueous acetonitrile (92% acetonitrile) ribavirin gave a retention time of 5.14 min but the sensitivity of the system was low. The use of gradient elution did not significantly improve this finding. The Spherisorb column appeared to be the most useful. Using a 20% aqueous acetonitrile mobile phase, ribavirin eluted at 3.2 min and linear standard curves could be generated. Unfortunately, this analysis would require extraction of the analyte into an organic solvent and due to the poor lipophilicity of ribavirin, this process is not efficient. In an effort to improve the selectivity of this determination, a different type of detection was examined. Specifically, ribavirin was chromatographed on an anion exchange column (Carbo Pac PA-1, Dionex®) using a 0.1 M NaOH mobile phase at a flow rate of 1.0 mL/min. The drug was then detected using a pulsed amperometric detector (Dionex®) in which the potential was set at 0.05 and the sensitivity at 100 nA. Under these conditions, the retention time for ribavirin was 6.5 min and its limit of detection in water was 100 \(\mu \)g/mL. The sensitivity of this assay could be increased approximately 3-fold by addition of 0.02 M sodium acetate to the mobile phase. Unfortunately, blank brain samples gave large chromatographic responses which covered ribavirin.

Finally, after several months of concentrated effort we have developed an HPLC method for quantitating ribavirin. By modifying literature procedures, we now report quantitation of ribavirin with a limit of detection of 1 ng. The procedure developed involved phenyl boronate affinity chromatography prior to HPLC analysis. Specifically, 7 mm i.d. polypropylene columns (Ranin D-160) were cut into 10 cm, capped with
polypropylene bed supports (Ranin D-162) and fitted with stop cocks (Ranin D-163). The closed columns were filled with 2 mL of 250 mM \(\text{NH}_4\text{C}_2\text{H}_6\text{O}_2 \) buffer and 1 mL of a phenyl boronate agarose (PBA) affinity gel (Amicon Matrex PBA-60). The slurry was allowed to settle and the buffer was removed by gravity flow. The PBA gel was equilibrated to active conditions by allowing 36 mL of 250 mM \(\text{NH}_4\text{C}_2\text{H}_6\text{O}_2 \) buffer to percolate through the bed by gravity flow. Samples of ribavirin were then added in 1.0 mL aliquots to each column and allowed to pass through the gel bed. The column was washed with 6.0 mL of \(\text{NH}_4\text{C}_2\text{H}_6\text{O}_2 \) buffer. Retained ribavirin was then eluted with 6.0 mL of 0.1 M formic acid. The eluate was then collected, freeze-dried and stored at 0°C.

In examining recovery of ribavirin using this approach, solutions of exactly 1, 10, 100 \(\mu \text{g/mL} \) and 1.0 mg/mL ribavirin were prepared using 250 mM \(\text{NH}_4\text{C}_2\text{H}_6\text{O}_2 \) pH 8.8 buffer as the diluent. Exactly 1.0 mL of each concentration was adsorbed and extracted from six different columns as described above. At least one sample of each concentration (1.0 mL) was added to test tubes, frozen, and lyophilized directly without passage through a PBA column. All freeze-dried samples were then carefully reconstituted \textit{in situ} with 1.0 mL of mobile phase, and transferred to autosampler vials.

Samples of the 1, 10, 100 \(\mu \text{g/mL} \) and 1.0 mg/mL ribavirin in \(\text{NH}_4\text{C}_2\text{H}_6\text{O}_2 \) buffer were injected directly into the HPLC system (5 \(\mu \text{l} \)). The peak area response was linear \((r^2 = 0.9998)\) across the entire range. Chromatograms of 1 and 10 \(\mu \text{g/mL} \) ribavirin as well as a buffer blank are shown in Figure 4.

Lyophilized and re-constituted ribavirin samples (starting amount of ribavirin) were used as the comparison for the PBA extracted samples to determine recovery of ribavirin from the PBA chromatography step. Results are summarized below.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Avg response</th>
<th>C.V.</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (\mu \text{g/mL})</td>
<td>7,038 (n=6)</td>
<td>7.7%</td>
<td>88%</td>
</tr>
<tr>
<td>10 (\mu \text{g/mL})</td>
<td>82,560 (n=6)</td>
<td>8.9%</td>
<td>88%</td>
</tr>
<tr>
<td>100 (\mu \text{g/mL})</td>
<td>748,939 (n=6)</td>
<td>7.2%</td>
<td>82%</td>
</tr>
<tr>
<td>1.0 mg/mL</td>
<td>5,266,010 (n=6)</td>
<td>11.7%</td>
<td>61%</td>
</tr>
</tbody>
</table>

Chromatograms of 1 and 10 \(\mu \text{g/mL} \) samples, both PBA extracted and non-extracted, after lyophilization and re-constitution are shown in Figure 5. A least squares
fit of the average area response of the recovered samples from 1 µg/mL to 100 µg/mL yields a coefficient of determination (r^2) of 0.9999 (d.f. = 15), indicating that the extraction method is uniform (unbiased) with respect to concentration within this range.

In the HPLC method, a Spherisorb ODS-2 5µ 4.6x250 nm column was used. The mobile phase contained 1:99 methanol:20mM KH$_2$PO$_4$ pH 5.5 and the flow rate was 0.8 mL/min. Ribavirin was detected ultravioletly at 208 nm. In this system the retention time for ribavirin was 8.1 min ($k' = 2.5$).

Animal Toxicology Studies

An acute i.v. paradigm was used to access the toxicity of the CDS's prepared. In screening compounds for toxicity, the dose was dictated by the maximum solubility of a particular dihydrotrigonellinate in dimethylsulfoxide (DMSO), the vehicle selected for these studies. After solubility determination, animals were given a DMSO solution containing 90% of the maximum solubility value. If death or overt toxicities ensued, the dose was systematically lowered. General robustness, body weight, survival and gross organ appearance at necropsy were then monitored. Table V summarizes the lethality resulting from various doses of CDS's used in this study. As illustrated, the 5'-(1,4-dihydrotrigonellinate)-2',3'-diisobutyrate derivative of ribavirin was the compound found to possess the lowest degree of acute toxicity. The dibenzoate (25) and 2',3',N'-tributyrate derivatives (62) appeared to be the most toxic. In the case of the dibenzoate, a dose of 34 mg/kg caused cyanosis prompting a diminution of the dose. The dipivaloate (24) produced some ataxia at the 57.3 mg/kg dose level so the dose was lowered to 38.2 mg/kg. At this dose no toxic effects were observed. In all cases, toxic doses of compound were associated which darken lungs at necropsy. Body weight changes were used as a general indication of toxicity. Those data are shown in Table VI. The animals used in these studies were adults characterized by relatively stable body weights. Dramatic losses in mass were noted and correlated with the dose of the compound given. Some individuals lost significant amounts of weight and some animals tended to gain weight more slowly. The most toxic compound in this required approach to be the 2',3',N'-tributyrate (62) while the diisobutyrate (26) and dipivaloate (24) were
relatively nontoxic. The low toxicity exhibited by the diisobutyrate promoted this material to the first compound to be examined for in vivo distribution.

In Vivo Tissue Distribution

The diisobutyrate (26) was administered i.v. to conscious restrained Sprague-Dawley rats (BW = 200-250 g) in a DMSO vehicle. At 15 min, 1, 2, 6 and 24 hours post-drug administration animals were sacrificed by rapid decapitation and brain and blood collected and frozen. These simply were later weighed, homogenized and extracted with acetonitrile. The acetonitrile layer was then assayed for both the CDS and the corresponding trigonellinate. No CDS was detected in any tissue at any time. This is not unusual given the metabolic instability of the CDS and its large volume of distribution. In addition, the ribavirin 2',3'-diisobutyrate-5'-trigonellinate (22) was not detected in blood presumably due to rapid hydrolysis. In the brain, however, the "intact" pyridinium salt (22) was detected through 2 hours (disappearing by 6 hours). The concentration of the quaternary salt in brain is summarized in table VII. The levels of the CDS metabolite rose to a maximum at 1 hr before decreasing in concentration. In addition to the quaternary salt an unknown metabolite appeared at 8.27 min which was neither ribavirin nor the ribavirin 2',3'-diisobutyrate. This peak did not appear to be influenced by ion pairing reagents suggesting that it is not charged. This metabolite was present in low concentration initially, rose to its maximum level at 2 hours and then fell. Attempts are being made to identify this material. The improved analytical methodologies will allow more selective and sensitive examination of the CDS in vivo.

Antiviral Activity Studies

Prepared compounds were submitted to Dr. Robert Sidwell at Utah State University for antiviral screening. The model used was an in vivo murine system in which animals were inoculated intercerebrally with the Balliet strain of Punta Toro virus⁷. This is a Phlebovirus of the Bunyaviridae family. It is closely related to the pathogens responsible for phlebotomus, or flea sandfly, fever and Rift Valley fever⁷. The particular strain of this virus causes a deadly encephalitis in which i.v. administered ribavirin has no perceptible effect. Specifics of this model have been published. Table
VIII gives the initial results obtained for compounds (24), (25), (5) and (26). As illustrated, significant extension of the animal's life span is observed in several cases and the acetonide (5) significantly increases the number of survivors relative to vehicle controls. In these animals, the drug was administered 4 hours prior to viral inoculation.

Subsequent reports, however, contradicted these initial findings and suggested that the compound was not active at least after a single dose in the model examined. Work is currently being directed to retest the previously submitted compounds using a multiple dose paradigm. Three newly prepared compounds will shortly be sent for testing. In addition to the compounds present in Table VIII, the tributyrate derivative (104) and ribavirin acetonide (2) were examined for antiviral activity but were found to be inactive.

Discussion

Several synthetic routes were utilized in the preparation of CDS for ribavirin. The 5'-based carriers could be conveniently prepared by first selectively alkylating the 5'-position using dimethoxytrityl chloride, acylating the unmanipulated 2' and 3'-hydroxy groups and subsequently deprotecting the riboside. The free 5'-functionality was then nicotinoylated, quaternized and reduced to yield the desired derivatives.

The carrier system based on the 2' and 3'-hydroxylic groups were not as accessible. Initial attempts were made to introduce various groups selectively to the ribavirin nucleus using various previously published methods. Unfortunately, specific acylation could not be performed and as a result, nonselective method followed by chromatographic purification were necessary. By careful manipulation of the reaction conditions, a preponderance of the 2'/3'-monoacylated products could be obtained which were then either separated by open column chromatography or subsequently acylated and separated. This latter method was typically followed as the 2'/3'-monoacylated products were found to undergo 0-to-0 transacylation in solution. This equilibrium resulted in product scrambling. While 2' to 3' and 3' to 2' exchange occurred, no migration of moiety acylated at these secondary positions to the 5'-hydroxy group occurred.
Derivitization of the amide group did not prove to be feasible. Attempts to hydroxymethylate this position resulted in either no reaction or, at higher temperature, polymerization. Other electrophiles such as anhydrous chloride or alkyl glyoxylates were similarly unreactive towards this functionality. Interestingly, the carboxamide was relatively sensitive to dehydration resulting in the formation of a nitrile substituent. The lability of this group to the usually difficult reaction may be related to the adjacent ring nitrogen. This proton acceptor may facilitate the described degradation by mechanisms described in Scheme XX.

After preparation, analytical methodologies were developed to accurately and precisely separate, detect and quantitate the CDS's and their precursor/metabolites. The lipophilic dihydrotrigonellinates could be easily followed using traditional reversed phase techniques. The trigonellinate salts however proved to be unusually in their chromatographic properties relative to other systems which have been studied. After examining several possibilities, the best results were obtained using a C-1 silica based column. The water soluble riboside, ribavirin, is difficult to assay using HPLC and was not adequately eluted using either normal or reversed phase systems. Electrochemical detection did not improve the selectivity of the determinations. Phenyl bororate affinity chromatography and other approaches used preparatory to chromatographic separation are presently being validated.

In vitro studies indicated that the CDS rapidly degrades in homogenates of various tissues. Most of the compounds tested are relatively nontoxic when administered acutely and have, therefore, been examined in various in vivo models. Administration of one of the CDS's (26), resulted in brain uptake of the CDS with subsequent conversion to the trigonellinate salt. Antiviral activity studies are in progress.

EXPERIMENTAL SECTION

Microcombustion analysis of compounds synthesized was performed by Atlantic Microlabs, Atlanta, GA. Uncorrected melting points (m.p.) were determined with either an Electrothermal or Thomas-Hoover melting point apparatus. Ultraviolet spectra (UV) were obtained on either a Hewlett-Packard 8451A diode array or a Shimadzu UV-160 rapid scan spectrophotometer. Infra-red spectra (IR) were recorded on a Beckman
Microlab 620 MX spectrophotometer. Samples were analyzed as potassium bromide pellets or as a thin film on sodium chloride windows. Proton nuclear magnetic resonance (\(^1\)H-NMR) spectra were obtained on either a Varian EM 360 or a Varian XL 200 (200 MHz, FT mode) and \(^{13}\)C samples obtained on the latter instrument (50 MHz, FT mode). Samples were dissolved in an appropriate solvent and chemical shifts (\(\delta\)) reported relative to tetramethylsilane in the case of \(^1\)H-NMR and referenced to the central signal CDCl\(_3\) (77 ppm) or d\(_8\)-DMSO (39.5 ppm) in the case of \(^{13}\)C-NMR. Thin-layer chromatography was performed on EM reagents DC-aluminum foil plates coated to a thickness of 0.2 mm with indicated silica gel (60 mesh). Ribavirin was obtained from Viratec, Inc. and other solvents and reagents from either Aldrich or Sigma Chemical Company. HPLC was performed using a Spectra-Physics SP8800 pump, an SP8490 UV-Vis variable wavelength detector, an SP8780 refrigerated autosampler and a SP4270 integrator. All chromatographic operations were controlled via an IBM-AT microprocessor using Chromnet® software.

1-(2',3'-O-isopropylidene-\(\beta\)-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (2, AVS 5221)

The synthesis of Cpd. 2, using the method described by Witkowski and Robins\(^4\) resulted in an intractable tar. In this method, ribavirin was treated with a mixture of 70% perchloric acid.

Cpd. 2 was synthesized in a manner similar to that described for imidazole nucleosides. Dry hydrogen chloride (7.4 g) was dissolved in acetone (160 mL). To this solution ribavirin (5.0 g, 20.5 mmol) was added and the mixture was stirred at RT for 24 h. It was then poured into a stirred cold solution of ammonium hydroxide (27 mL) in water (240 mL). After a pH 8 solution was obtained, it was concentrated to a small volume (100 mL). The separated ammonium chloride was removed by filtration, the filtrate was evaporated under reduced pressure and the residue was dried in vacuo at 50° for 2 h. The dry residue was repeatedly extracted with warm chloroform. Evaporation of the chloroform under reduced pressure gave the product (5.3 g, 91%) as a white solid.

Tlc silica plates; BuOH:AcOH:H\(_2\)O 4:1:1; \(R_t = 0.67\)

IR (nujol mull): \(\nu_{\text{NH}+\text{OH}}\) 3380 and 3180; \(\nu_{\text{C=O}}\) 1700, \(\nu_{\text{C=N}}\) 1670; \(\nu_{\text{C=O}}\) 1130-1080.
1-H-NMR (DMSO-d$_6$): δ 8.9(s,1H, triazole proton), 7.8(br d, NH$_2$), 6.25(d, 1H, 1'H), 5.15(m, 3H, 5'OH + 2'H + 3'H), 4.3(t, 1H, 4'H), 3.5(2H, CH$_2$), 1.4(2s, 6H, 2xCH$_3$).

1-[5'-{(1-methyl-3-carbonylpyridinium)-2',3'-0-isopropylidene-D-ribofuranosyl}-1,2,4-triazole-3-carboxamide iodide (4)

Cpd. 2 (2.0 g, 0.007035 mol) was dissolved in anhydrous dimethylformamide (80 mL) and to it were added N,N-dimethylaminopyridine (0.26 g, 0.00213 mol) and trigonelline anhydride (3) (3.6 g, 0.00703 mol). The reaction mixture was stirred overnight at room temperature. The dimethylformamide was removed in vacuo at low temperature and the resulting oil was dissolved in dry acetone. After 2 h, a solid precipitated out. This was removed by filtration and the filtrate was evaporated to dryness in vacuo. The resulting yellow solid was recrystallized from ethanol to give the product (Cpd. 4) (1.3 g, 36%).

IR (nujol mull): v_{NH} 3580, 3440, 3240, 3160, v_c 1730, 1690, v_{CN} 1645, $v_{C=C}$ 1600, v_{C-O} 1180, 1120, 1070.

1-H-NMR (DMSO-d$_6$): δ 9.6(s,1H,Pyr), 9.3(d,1H,Pyr), 9.0(d+s,2H,Pyr + triazole proton), 8.3(m,1H,Pyr), 7.7(br d,2H,NH$_2$), 6.35(s,1H,1'H), 5.3(2H,2'H + 3'H), 4.6(m,6H,CH$_2$ + N-CH$_3$ + 4'H), 1.5(2s,6H,2xCH$_3$).

UV λ_{max} (MeOH): 266, 217.

1-[5'-{(1-methyl-3-carbonylpyridinium)(2',3'-0-isopropylidene)-D-ribofuranosyl}-1,2,4-triazole-3-carboxamide iodide (4a)

Cpd. 6 (6.0 g, 15.4 mmol) was dissolved in 70 mL dry acetone and 8 g of methyl iodide were added. The mixture was refluxed for 24 h after which the solvent was removed in vacuo and the resulting glass was powdered with a pestle and mortar. It was washed with a small amount of acetone followed by ether and dried in vacuo. This gave 8 g (97.7%) of product as a bright yellow solid.

IR cm$^{-1}$ (nujol mull): v_{NH} 3440, 3300, 3240, 3180, v_{C-O} 1735, 1680, $v_{C=O,C=O,N}$, NH_2 def 1640, 1590, v_{C-O} 1080, 1110.
Army Final Report
March 31, 1990

'H-NMR (DMSO-d$_6$): δ 9.65 (1H, s, pyrH), 9.45 (1H, d, pyrH), 9.15 (1H, d, pyrH), 9.05 (1H, s, 5-H), 8.45 (1H, m, pyrH), 7.7-7.9 (2H, bs, NH), 6.45 (1H, s, 1'-H), 5.4 (2H, bs, 2'-H, 4'-H), 4.75 (3H, bs, 2'-H, 4'-H), 4.6 (3H, s, N-CH$_3$), 1.45-1.65 (6H, 2x CH$_3$).

U.V. λ_{max} (MeOH): 266, 217.

1-[5'-(methyl-1,4-dihydronicotinoyl)-1-(2',3'-O-isopropylidene-3-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (5, AVS 5505)

To a stirred, degassed, ice-cold deionized water (4 mL) solution of Cpd. 4 (0.05 g, 0.000097 mol), a mixture of sodium bicarbonate (0.033 g, 0.000288 mol) sodium dithionite (0.062 g, 0.000288 mol) was added. The reaction was maintained at 0°C and under argon. After 3.5 h the precipitated yellow solid was filtered and washed with cold water and cold ethyl acetate. It was dried in vacuo and 0.02 g (53%) of the dihydro was obtained.

U.V. λ_{max} (MeOH): 360, 211.

'H-NMR (DMSO-d$_6$): δ 8.75 (s, 1H, triazole), 7.65 (br d, 2H, NH$_2$), 6.85 (s, 1H, Pyr-C$_2$), 6.25 (s, 1H, 1'H), 5.75 (d, 1H, Pyr-C$_2$), 5.05 (m, 1H, Pyr-C$_3$), 4.85-4.3 (m, 3H, 2'H, 3'H, 4'H), 4.15 (m, 2H, Pyr-C$_2$), 3.3 (s, 2H, 5'-CH$_3$), 2.9 (s, 3H, N-CH$_3$), 1.45 (2s, 6H, 2x CH$_3$).

1-[5'-(3-carbonylpuridine)-(2',3'-O-isopropylidene-3-D-ribofuranosyl)]-1,2,4-triazole-3-carboxamide (6)

2',3'-O-isopropylidene-3-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (20.0 g, 70.35 mmol) was dissolved in 400 mL anhydrous pyridine and cooled to 0°C. (32.1 g 240.7 mmol) Nicotinic anhydride was added portionwise and the reaction mixture was stirred at room temperature for 24 h. It was poured on to 1000 mL ice and extracted (2 x 1000 mL) with CH$_2$Cl$_2$. The combined organic extracts were washed with (2 x 700 mL) 5% NaHCO$_3$, (700 mL) H$_2$O, dried (MgSO$_4$) and the solvent was removed in vacuo. The resulting oil was purified on a silica column with CHCl$_3$: MeOH (9:1) as eluant. This gave 19.5 g (71.2%) of white solid product.

IR cm$^{-1}$ (nujol mull): ν_{NH} 3440, 3330, 3260, 3180, ν_{C-H} unsat 3120, $\nu_{C=O}$ 1730, 1690, $\nu_{C=N}$, NH$_2$ def 1600, ν_{C-O} 1080, 1100.
1-(5'-O-(4.4'-dimethoxytrityl)-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (7)

10.0 g of ribavirin was dissolved in 300 mL anhydrous pyridine and the solution was cooled to 0°C. 34.0 g of Dimethoxytrityl chloride was added to it portionwise over a 2 h period and the mixture was stirred at room temperature for 24 h. 40 mL of methanol was added to it and the solvent was removed in vacuo. The resulting oily solid was dissolved in 500 mL methylene chloride and washed with 5% NaHCO₃ (500 mL) water (500 mL), dried (MgSO₄) and the solvent was removed in vacuo. The resulting oily solid was washed with ether, filtered and purified on a silica column with CH₂Cl₂:MeOH (10:1) as eluant. This gave 41.3 g (92.3%) of product was an off white solid.

IR cm⁻¹ (nujol mull): νₕ₂OH 3460, 3200, νₕₒ 1690, νₕₒ,νₓ 1610, 2590.

1H-NMR (DMSO-d₆): δ 8.873 (s,1H,5-H); 8.317 (s,1H,NH); 8.314 (s,1H,NH); 7.28 (m,9H,arom,J=8.8 Hz); 6.85 (dd,4H,arom,J=8.8 and 2.4 Hz); 5.973 (d,1H,1'-H,J=2.4 Hz); 5.680 (d,1H,2'=OH,J=5 Hz); 5.234 (d,1H,3'-OH,J=6.2 Hz); 4.453 (q,1H,2'-H); 4.376 (q,1H,3'-H); 3.730 (s,6H,2xOCH₃); 3.17 (m,2H,5'-CH₂). C-NMR (DMSO) (75 MHz, FT mode) δ (ppm): 160.4(CO), 158.1, 158.15, 157.5, 145.6, 144.9, 135.7, 139.8, 129.7, 127.84, 127.8, 126.6, 113.2, 91.4, 85.4, 83.1, 74.1, 70.4, 63.6, 55.0.

1-(5'-O-dimethoxytrityl-2',3'-bis-0-pivaloate-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (8)

Cpd. 7 (5.0 g) was dissolved in 25 mL dry pyridine and to it 0.5 g of N, N-dimethylaminopyridine and 9.3 mL of pivaloic anhydride were added. The mixture was stirred at room temperature for 24 h. It was then poured on a 200 mL ice and extracted (2 x 200 mL) with CH₂Cl₂. The combined organic extracts were washed with NaHCO₃ (2 x 200 mL), H₂O (200 mL), and then dried (MgSO₄). The solvent was subsequently
removed under reduced pressure. The resulting oil was purified on a silica column with CHCl₃:MeOH(40:1) as eluent. This gave 4.6 g (70.3% of a white solid as product. IR cm⁻¹ (nujol mull): \(v_{\text{NH}} 3480, 3340, v_{\text{C-O}} 1740, 1710, v_{\text{C-N}}, \text{NH}_2 \text{ def} 1610, 1585, v_{\text{C-O}} 1130, 1160, 1180.\)

\(^1\text{H-NMR (CDCl}_3\):} δ 8.5 (1H,s,5-H), 7.7-6.7 (15H,m,atom ring,NH_2), 6.4-6.0 (2H,m+s,1'-H,2' or 3'H), 5.75 (1H,t,4'H), 4.45 (1H,m,2'-H or 3'-H), 3.9 (6H,s,2xOCH₃), 3.6 (2H,s,5'-CH₂), 1.2 (18H,s,6xCH₃).

1-(5'-0-dimethoxytrityl-2',3'-bis-0-benzoate-6-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (9)

Cpd. 7 (5.0 g) was dissolved in 25 mL anhydrous pyridine, to this were added 0.5 g N,N-dimethylaminopyridine and 10.4 g benzoic anhydride. The mixture was stirred at room temperature for 24 h. It was poured on to 200 mL ice and extracted (2 x 200 mL) with CH₂Cl₂. The combined organic extracts were washed with (2 x 200 mL) NaHCO₃, 200 mL H₂O, dried (MgSO₄) and the solvent was removed under reduced pressure. The resulting oil was chromatographed on a silica column with a CHCl₃:MeOH mixture 40:1 as eluant to give 5.5 g (80.3%) of product as white solid. IR cm⁻¹ (nujol mull): \(v_{\text{NH}} 3470, 3340, v_{\text{C-O}} 1730, 1700, v_{\text{C-N}}, \text{NH}_2 \text{ def} 1610, 1590, v_{\text{C-O}} 1130, 1100, 1070.\)

\(^1\text{H-NMR (CDCl}_3\):} δ 8.45 (1H,s,5-H), 8.1-6.6 (25H,m,atom ring,4'-H,2'-H or 3'-H), 6.35 (1H,s,1'-H), 6.0 (2H,s,2xOCH₃), 4.6 (1H,s,2'H or 3'H), 3.7 (6H,s,2xOCH₃), 3.55 (2H,s,5'-CH₂).

1-(5'-0-dimethoxytrityl-2',3'-bis-0-isobutyrate-6-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (10)

Cpd. 7 (24.5 g, 0.045 mol) was dissolved in 100 mL dry pyridine and to it 2.4 g of N,N-dimethylaminopyridine and (27.16 mL, 0.224 mol), isobutyric anhydride were added. The mixture was stirred at room temperature for 24 h. It was poured onto 300 mL ice and extracted (2 x 400 mL) with chloroform. The combined organic extracts were washed with 1 M NaHCO₃ (2 x 400 mL), water (400 mL), dried (MgSO₄) and the solvent was removed under reduced pressure. The resulting oil was purified on a silica
column with CHCl₃:MeOH (40:1) as eluent. This gave 18.0 g (58.5%) of product as a white solid.

IR cm⁻¹ (nujol mull): ν_NH 3460, 3340, ν_C=O 1740, 1690, ν_C=O,OH 1600, 1580.

¹H-NMR (CDCl₃): δ 8.45 (s, 1H, 5-H), 7.7-6.7 (m, 14H, NH + 13 arom), 6.4 (bs, 1H, NH), 6.1 (s + m, 2H, 1H + 2'H or 3'H), 5.7 (t, 1H, 4'H), 4.4 (m, 1H, 2'H or 3'H), 3.85 (s, 6H, 2 x OCH₃), 3.5 (bs, 2H, 5'CH₂), 2.6 (m, 2H, isobutryl CH), 1.25 (2s, 12H, 4 x CH₃).

1-(5'-O-dimethoxytrityl-2',3'-bis-0-acetate-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (11)

30.0 g, 0.05489 mol of 1-[5'-O-(4,4'-dimethoxytrityl)-9-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide was dissolved in anhydrous methylene chloride (450 mL) and 12.0 g, 0.10978 mol of dry triethylamine was added. After 20 min, acetic anhydride (18.0 g, 0.176315 mol) was added dropwise and the solution was stirred overnight at room temperature. It was washed with 5% NaHCO₃ (2 x 500 mL), H₂O (500 mL), dried (MgSO₄) and the solvent removed under reduced pressure. This gave 32.0 g (96.1%) of produce as a white solid.

IR cm⁻¹ (nujol mull): ν_NH 3480, 3340, ν_C=O 1755, 1700, ν_C=O,OH 1610, 1590.

¹H-NMR (DMSO-d₄): δ 8.926 (s, 1H, 5-H); 7.766 (s, 2H, NH); 7.286 (m, 9H, arom, J=3.4 Hz); 5.64 (t, 1H, 3'-H, J=5.6 Hz); 4.325 (apparent q, 1H, 4'-H); 3.734 (s, 6H, 2 x OCH₃); 3.25 (m, 2H, 5'-CH₂); 2.104 (s, 3H, COCH₃); 2.049 (s, 3H, COCH₃).

1-(2',3'-bis-0-pivaloate-β-D-ribofuranosyl)-1,2,3-triazole-3-carboxamide (12)

Cpd. 8 (3.0 g, 4.2 mmol) was dissolved in 60 mL 80% acetic acid and the mixture was stirred at room temperature for 1 h. It was neutralized with solid sodium bicarbonate until no more gas evolved, and was diluted with 300 mL water. The water layer was washed (2x600 mL) with Petroleum-ether 40-60° and then extracted 2x300 mL) with methylene chloride. The organic layer was washed with 200 mL water, dried (MgSO₄) and the solvent was removed under reduced pressure to give 1.43 g (82.7%) of product as a white solid.
IR cm⁻¹ (nujol mull): \(\nu_{\text{NH}} 3500, 3380, \nu_{\text{OH}} 3140, \nu_{\text{NH}_2} \text{def} 1640, \nu_{\text{C=O}} 1740, 1710, 1680, \nu_{\text{C-O}} 1130, 1160. \\
H-NMR (\text{CDCl}_3 \text{ DMSO-d}_6): \delta 8.8 (1\text{H}, \text{S}, 5'-\text{H}), 7.55-7.1 (2\text{H} \text{BS, NH}_2), 6.05 (1\text{H}, \text{d, 1'-H}), 5.9-5.35 (2\text{H}, \text{m, 2'-H, 3'-H}), 4.3 (1\text{H}, \text{m, 4'-H}), 3.75 (2\text{H}, \text{BS, 5'-CH}_2), 3.1 (1\text{H}, \text{BS, OH}), 1.2 (18\text{H}, \text{BS, 6xCH}_3).

1-(2',3'-bis-0-benzoate-\(\gamma \)-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (13)

Cpd. 9 (5.0 g, 6.62 mmol) was dissolved in 80 mL of 80% acetic acid and the mixture was stirred at room temperature for 1 h. It was neutralized with solid sodium bicarbonate until no more gas evolved, and was diluted with 500 mL water. The white precipitate formed was filtered off and washed thoroughly with petroleum ether (40-60°). It was dissolved in 250 mL methylene chloride, washed with 200 mL water, dried (MgSO₄) and the solvent was removed under reduced pressure to give 1.7 g (56.9%) of product as white solid.

IR cm⁻¹ (nujol mull): \(\nu_{\text{NH}} 3440, 3330, 3180, \nu_{\text{C=O}} 1730, 1700, \nu_{\text{C=H, C=C}}, \nu_{\text{NH}_2} \text{def} 1630, 1600 1590, \nu_{\text{C-O}} 1120, 1100, 1070, 1030.

H-NMR (DMSO-d₆): \(\delta 9.05 (1\text{H}, \text{s, 5-H}), 8.3-7.3 (m, 2 x \text{Ph, NH}_2), 6.65 (1\text{H}, \text{d, 1'-H}), 6.1 (2\text{H}, \text{m, 2'-H, 3'-H}), 5.35 (1\text{H}, \text{t, 5'-OH}), 4.65 (1\text{H}, \text{m, 4'-H}), 3.85 (2\text{H}, \text{m, 5'-CH}_2).

1-(2',3'-bis-0-isobutyrate-\(\gamma \)-D-ribofuranosyl)-1,2,3-triazole-3-carboxamide (14)

Cpd. 10 (13.0 g, 0.019 mol) was dissolved in 150 mL 80% acetic acid and the mixture was stirred at room temperature for 1 hr. It was neutralized with solid sodium bicarbonate until no more gas evolved, and was diluted with 1000 mL water. The aqueous layer was washed (2 x 500 mL) with ether and then extracted with chloroform (2 x 500 mL). The organic layer was washed with water (700 mL), dried (MgSO₄) and the solvent was removed under reduced pressure to give 6.0 g (82.5%) of product as a white solid.

IR cm⁻¹ (nujol mull): \(\nu_{\text{OH, NH}} 3480, 3380, 3160, \nu_{\text{C=O}} 1740, 1700, \nu_{\text{C=H, C=N}} 1670, 1640.

H-NMR (DMSO-d₆): \(\delta 8.85 (s, 1\text{H}, 5\text{-H}), 7.5 (\text{bs, 2H, NH}_2), 6.15 (d, 1\text{H}, 1'-\text{H}), 5.7 (m, 2\text{H}, \text{OH} + 2'\text{H or 3'}\text{H}), 5.15 (t, 1\text{H}, 4'\text{H}), 4.3 (m, 1\text{H}, 2'\text{H or 3'}\text{H}), 3.8 (\text{bs, 2H, 5'}\text{CH}_2), 2.6 (m, 2\text{H}, \text{isobutyl CH}), 1.2 (2s, 4\text{xCH}_3).
1-(2',3'-bis-0-acetate-β-C-ribofuranosyl)-1,2,4-triazole-3-carboxamide (15)

(32.0 g, 0.05275 mol) of 1-[5'-0-(4,4'-dimethoxytrityl)-2',3'-bis-0-acetate-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide was dissolved in 80% acetic acid (100 mL) and the mixture was stirred at room temperature for 30 min. 1.5 L of petroleum-ether:ether (2:1) was added and the solution was stirred for 1 h. The solvent was decanted off and the remaining oily solid extracted with 400 mL CH₂Cl₂, dried (MgSO₄) and the solvent removed in vacuo. The resulting solid was washed with 1 L ether. 14.7 g (91.9%) of product was obtained as a white solid.

IR cm⁻¹ (nujol mull): vNH₂, 3560, 3360, 3300, 3220, vCO 1750, 1700, 1630.

'H-NMR (DMSO-d₆): δ 8.915 (s, 1H, 5-H); 7.932 (s, 1H, NH); 7.742 (s, 1H, NH); 6.267 (d, 1H, 1'-H, J = Hz); 5.94 (t, 1H, 2'-H, J = 5 Hz); 5.488 (t, 1H, 3'-H, J = 5 Hz); 4.602 (bs, 5'-OH + H₂O); 4.249 (apparent q, 1H, 4'-H, J = 4 Hz); 3.66 (m, 2H, 5'-CH₂); 2.103 and 2.079 (2s, 6H, 2xCH₃).

1-[5'-(3-carbonylpyridine)-2',3'-bis-0-pivaloate-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (16)

Cpd. 12 (1.0 g, 2.4 mmol) was dissolved in 30 mL anhydrous pyridine and cooled at 0°C. Nicotinoyl chloride hydrochloride (0.87 g, 4.87 mmol) was added to the solution portionwise and the mixture was stirred overnight at room temperature. It was then poured into 200 mL ice water and extracted with chloroform (2 x 200 mL). The organic layer was washed with NaHCO₃ (2 x 200 mL) and water (200 mL). It was dried over sodium sulfate and the solvent was removed under reduced pressure. The resulting oil was dissolved in a minimum amount of dry ether and allowed to stand. A white solid precipitated. This was collected by filtration and washed with a small amount of cold ether. 0.85 g (67.5%) of the desired product was obtained as a white solid.

IR cm⁻¹ (nujol mull): vNH₂, 3430, 3340, 3300, 3220, vCO 1740, 1710, 1690, vC=O, NH₂ def 1620, 1600, vC=O 1150, 1130, 1100.

'H-NMR (CDCl₃): δ 9.3 (1H, s, pyr), 8.8 (1H, d, pyr), 8.4 (1H, s, 5-H), 8.35 (1H, m, pyr), 8.8 (1H, d, pyr), 8.4 (1H, s, 5-H), 8.35 (1H, m, pyr), 7.4 (1H, m, pyr), 7.1 (1H, s, NH), 6.25 (1H, bs, NH), 6.1 (1H, s, 1'-H), 5.8 (2H, m, 2'-H, 4'-H), 4.65 (2H, bs, 5'-CH₂, δ'H), 1.25 (18H, s, 6xCH₃).
1-[5'-{(3-carbonyl)pyridine}-2',3'-bis-0-benzoate-α-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (17)

Cpd. 13 (1.0 g, 2.22 mmol) was dissolved in 30 mL dry pyridine and the solution was cooled to 0°C. Nicotinoyl chloride hydrochloride (0.79 g, 4.42 mmol) was added to the solvent portionwise and the mixture was stirred at room temperature overnight. It was poured into 200 mL ice and extracted with chloroform (2 x 200 mL). The organic extracts were washed with NaHCO3 (2 x 200 mL), water (200 mL) and dried over sodium sulfate. The solvent was removed in vacuo and the remaining oil was dissolved in a small amount of ether and evaporated. The resulting white foam was recrystallized from EtOAc/ether/Pet. ether to give 0.7 g (56.8%) of a white solid.

IR cm⁻¹ (nujol mull): νₙₗ 3480, 3370, νₖ₉ 1745, 1725, 1690, ν₉₉ NH₂ def 1600, 1590, ν₉₉ 1120, 1090, 1070.

'H-NMR (DMSO-d₆): δ 9.15 (1H, s, pyr), 9.0 (1H, s, 5-H), 8.85 (1H, d, pyr), 8.45 (1H, d, pyr), 8.25-7.1 (m, 2xPh, pyrH, 2xNH), 6.75 (1H, s, I'-H), 6.15 (2H, bs, 2'-H, 4'-H), 4.8 (m, 3'-H, 5'-CH₂).

1-[5'-{(3-carbonyl)pyridine}-2',3'-bis-0-isobutyrate-α-D-ribofuranosyl]-1,2,3-triazole-3-carboxamide (18)

Cpd. 14 (5.0 g, 0.013 mol) was dissolved in 100 mL dry pyridine and the solution was cooled to 0°C. (5.9 g, 0.026 mol) nicotinic anhydride was added to it and the mixture was stirred overnight at room temperature. It was poured onto 200 mL ice and extracted with chloroform (2 x 300 mL). The combined organic extracts were washed with 1M NaHCO3 (2 x 300 mL), water (300 mL) and dried (MgSO4). The solvent was removed in vacuo and the resulting oil was dissolved in a small amount of ether and evaporated. 5.5 g (86.4%) of product was obtained as a white foam.

IR cm⁻¹ (nujol null): νₙₗ 3460, 3340, 3180, νₖ₉ 1740-1690, ν₉₉ 1600.

'H-NMR (CDCl₃): δ 9.3 (s, 1H, Pyr C2), 8.85 (d, 1H, Pyr C4), 8.55 (s, 1H, 5-H), 8.45 (d, 1H, Pyr C₆), 7.5 (m, 1H, Pyr C₅), 7.35 (bs, 1H, NH), 6.8 (bs, 1H, NH), 6.2 (d, 1H, 1'H), 5.9 (m, 2H, 2' or 3'H), 4.8 (bs, 3H, 5'CH₂ + 2'H or 3'H), 2.65 (m, 2H, isobutyl CH), 1.3 (2s, 4xCH₃).
1-(5'-(-3-carboxylpyridine)-2',3'-bis-0-acetate-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (19)

(5.0 g, 0.01649 mol) of 1-(2',3'-bis-0-acetate-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide was stirred with 300 mL anhydrous methylene chloride and (1.66 g, 0.01649 mol) dry triethylamine. Nicotinic anhydride (8.3 g, 0.03637 mol) was added and the mixture stirred at room temperature for 48 h. It was washed with NaHCO₃ (2 x 500 mL), H₂O (300 mL), dried (MgSO₄) and the solvent was removed in vacuo. The resulting solid was purified on a silica column with chloroform:methanol (10:1) as eluant. This gave 3.8 g (56.4%) of product as white solid.

IR cm⁻¹ (nujol mull): vₙH 3460, 3340, 3280, 3200, v_C-O 1750, 1690, v_C=N 1600.

¹H-NMR (DMSO-d₅): δ 9.099 (d, 1H, pyr C₂, J = 1.4 Hz); 8.910 (s, 1H, 5-H); 8.838 (dd, 1H, pyr C-6, J = 3.2 and 1.6 Hz); 8.401 (dt, 1H, pyr C-4, J = 8 + 2 Hz); 7.924 (s, 1H, NH); 7.788 (s, 1H, NH); 7.620 (dd, 1H, pyr C-5, J = 4.8 Hz); 6.431 (d, 1H, 1'-H, J = 2.4 Hz); 5.763 (m, 2H, 2',H, 3'-H); 4.594 (m, 3H, 4'-H + 5'CH₂); 2.133 and 2.102 (2s, 6H, 2 x OCOCH₃).

1-(5'-(1-methyl-3-carboxylpyridinium)-2',3'-bis-0-pivaloate-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide iodide (20)

Cpd. 16 (0.8 g, 1.55 mmol) was dissolved in 100 mL dry acetone. 2.7 g of methyl iodide were added and the mixture was refluxed overnight. The solvent was removed under reduced pressure and ether was added to the resulting gum. The yellow precipitate was filtered (hygroscopic) and dried in vacuo. This gave 9.9 g (88.2%) of (20).

U.V. λmax (MeOH): 266, 217

IR cm⁻¹ (nujol mull): v₁H 3440, 3300, vₐCO 1735, 1685, vₐNH, NH₂ def 1640, 1590, vₐCO 1130, 1160.

¹H-NMR (DMSO-d₅): δ 9.55 (1H, s, pyr), 9.3 (1H, d, pyr), 9.1 (1H, d, pyr), 9.0 (1H, s, 5-H), 8.3 (1H, m, pyr), 7.8-7.7 (2H, 2xs, NH₂), 6.45 (1H, s, 1'-H), 5.8 (2H, bs, 4'-H, 2'-H), 4.7 (3H, bs, 5'-CH₂, 3'-H), 4.5 (3H, s, N-CH₂), 1.2 (2s, 6xCH₃).
1-[5'-1-methyl-3-carbonylpyridinium]-2',3'-bis-O-benzoate-β-ribofuranosyl]-1,2,4-triazole-3-carboxamide iodide (21)

Cpd. 17 (0.7 g, 1.35 mmol) was dissolved in 60 mL dry acetone. 2.4 g of methyl iodide were added and the mixture was refluxed overnight. The solvent was removed under reduced pressure and to the resulting gum a minimum amount of ethyl acetate was added. The resulting yellow solid was filtered and washed with a small amount of cold ethyl acetate. This gave 0.75 g (77.9%) of the desired salt.

U.V. \(\lambda_{\text{max}} \) (MeOH): 266, 223, 209
IR cm\(^{-1} \) (nujol mull): \(\nu_{\text{NH}} \) 3440, 3300, 3280, 3180, \(\nu_{\text{C=O}} \) 1750, 1730, 1690, \(\nu_{\text{C=C,N}} \) NH def 1650, 1600, \(\nu_{\text{C-O}} \) 1130, 1100.

\(^1\)H-NMR (DMSO-d\(_6\)) \(\delta \) 9.65(1H,s,pyr), 9.35(1H,d,pyr), 9.1(1H,d,pyr), 9.0(1H,s,5-H), 8.35(1H,m,pyr), 8.15-7.3(12H,m,2xPh,NH\(_2\)), 6.8(1H,s,1'-H), 6.2(2H,bs,2'-H,4'-H), 5.2-4.7(3H,m,5'-CH\(_3\),3'-H), 4.55(3H,s,N-CH\(_3\)).

1-(5'-[1-methyl-3-carbonylpyridiniuml]-2',3'-bis-O-isobutyrate-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide iodide (22)

Cpd. 18 (5.0 g, 0.0102 mol) was dissolved in 100 mL dry acetone. 5.0 g methyl iodide were added and the mixture was refluxed for 48 h. The solvent was removed under reduced pressure and the resulting yellow gum was dissolved in 100 mL water and extracted with chloroform (2 x 50 mL). The aqueous layer was freeze dried to give 5.6 g (86.9%) of product as a yellow solid.

U.V \(\lambda_{\text{max}} \) (MeOH): 265.8, 217.8.
IR cm\(^{-1} \) (nujol mull): \(\nu_{\text{NH}} \) 3460, \(\nu_{\text{C=O}} \) 1740, 1690, \(\nu_{\text{C=C,N}} \) 1650, 1600.

\(^1\)H-NMR (CDCl\(_3\)/DMSO-d\(_6\)) \(\delta \) 9.65(s,1H,Pyr C\(_6\)), 9.5(d,1H,Pyr C\(_6\)), 9.15(d,1H,Pyr C\(_6\)), 8.85(s,1H,5-H), 8.35(m,1H,Pyr C\(_6\)), 7.45(bd,2H,NH\(_2\)), 6.35(d,1H,1'H), 5.85(m,2H,4'H+2'H or 3'H), 4.65(m+s,6H,N-CH\(_3\),5'CH\(_3\)+2'H or 3'H), 2.6(m,2H,isobutyl CH), 1.2(2s,12H,4xCH\(_3\)).
1-[5'-((1-methyl-3-carbonyl pyridinium)-2',3'-bis-O-acetate-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide iodide (23)

To 2.5 g (0.006123 mol) of 1-[5'-(3-carbonylpyridine)-2',3'-bis-O-acetate-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide in 100 mL of anhydrous acetonitrile, 2.5 g of methyl iodide was added and the mixture refluxed overnight. The solvent was removed in vacuo, and the resulting yellow solid was washed with ether and recrystallized from a mixture of acetone-ether. This gave 2.6 g (77.2%) of the product as a yellow solid.

IR cm⁻¹ (nujol mull): ν_NH (3440,3320,3260,3180), ν_C=O (1740,1690), ν_C carbonyl (1640,1660).
UV λ_max (MeOH): 265.5, 216.5.

'H-NMR (DMSO-d₆): δ 9.545(s,1H,pyr C); 9.244(d,1H,pyr C-6, J=6 Hz); 9.093(d,1H,pyr C-4,J=8.2 Hz); 8.908(s,1H,5-H); 8.299(dd,1H,pyr C-5,J=6 and 2 Hz); 7.965(s,1H,NH); 7.735(s,1H,NH); 6.413(d,1H,1'-H,J=2.6 Hz); 5.753(m,2H,2'-H + 3'-H); 4.611(m,3H,4'-H, + 5'-CH₂); 4.453(s,3H,N-CH₃); 2.123 and 2.103(2s,6H,2xOCOCH₃).

1-[5'-((N-methyl-3-carbonyl-1,4-dihydropyridine)-2',3'-bis-O-pivaloate-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (24, AVS 5056)

To a stirred, degassed, ice-cold deionized water (250 mL) and chloroform (50 mL) biphasic solution of Cpd. 20 (0.6 g, 0.91 mmol), a mixture of sodium bicarbonate (0.46 g, 5.5 mmol) and sodium dithionite (0.87 g, 5.0 mmol) was added portionwise. The reaction was maintained at 0°C and under argon. After 1 h 15 min the organic layer was separated and the aqueous layer was extracted with 2 x 100 mL cold chloroform. The combined chloroform extracts were washed with 2 x 100 mL cold deionized water, dried (Na₂SO₄) and the solvent was removed in vacuo. 0.46 (95.8%) of product was obtained as a yellow oil.

IR (nujol mull) cm⁻¹: ν_NH 3480, 3340, 3200, 3110, ν_CH₃ 3010, 2980, 2940, 2880, 2820, ν_C=O 1740, 1690, ν_C=O, NH def 1600, ν_C=O 1180, 1160, 1130. 1070, 1030.

'H-NMR (CDCl₃): δ 8.55(s,1H,5-H), 7.45(s,1H,pyr C), 7.3(bs,1H,NH), 7.15(s,1H,1'-H), 6.8(bs,1H,NH), 6.15(d,1H,pyr C), 6.0-5.6(m,3H,3'-H,2'-H,4'-H), 4.9(m,1H,pyr C), 4.6(m,2H,5'-CH₂), 3.15(bs,2H,pyr C), 3.05(s,3H,N-CH₃), 1.25(s,6 x CH₃).
1-[5'-(N-methyl-3-carbonyl-1,4-dihydropyridine)-2',3'-bis-O-benzoate-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (25, AVS 5057)

To stirred, degassed ice-cold deionised water (800 mL) and chloroform (200 mL) system of Cpd. 21 (0.5 g, 0.72 mmol) a mixture of sodium bicarbonate (0.72 g, 8.58 mmol) and sodium dithionite (1.36 g, 7.86 mmol) was added. The reaction was maintained at 0°C and under argon. After 1 h 50 min the organic layer was separated and the aqueous layer extracted with 2 x 250 mL cold chloroform. The combined organic extracts were washed with 2 x 250 mL cold deionised water, dried (sodium sulfate) and removed under reduced pressure to give 0.34 g (83.1%) of the product as a yellow solid.

UV λ_{max} (MeOH): 361, 260, 228, 209.

IR (nujol mull) cm$^{-1}$: ν_{NH} 3460, 3360, 3180, $\nu_{C=O}$ 1730, 1685, $\nu_{C=O, C=O}$, NH$_2$ def 1650, 1590, $\nu_{C=O}$ 1180, 1130, 1100, 1070.

1H-NMR (CDCl$_3$): δ 8.45(s,1H,5-H), 8.15-7.2(m,13H,2 x Ph,pyridine C$_7$, NH$_2$), 7.1(s,1H,1'-H), 6.75-5.8(m,2'-H,3'-H,4'-H), 5.6(d,1H,pyridine C$_5$), 5.0-4.3(m,pyridine C$_5$,5'-CH$_3$), 3.1(bs,2H,pyridine C$_6$), 2.9(s,3H,N-CH$_3$).

1-[5'-(N-methyl-3-carbonyl-1,4-dihydropyridine)-2',3'-bis-O-isobutyrate-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (26, AVS 5054)

5.5 g of quaternary compound (22) was dissolved in 500 mL ice-cold deionized water and extracted with chloroform (2 x 400 mL). The aqueous layer was degassed and cooled to 0°C. A mixture of sodium bicarbonate (6.0 g, 0.071 mol) and sodium dithionite (11.6 g, 0.067 mol) was added portionwise to the stirred solution. After 1 h 40 min it was extracted with ice-cold ethyl acetate (600 mL). The organic layer was washed with ice-cold water (500 mL), dried (MgSO$_4$) and the solvent was removed under reduced pressure to give 3.1 g (77.5%) of product as a yellow solid.

UV λ_{max} (MeOH): 360, 213.5.

IR cm$^{-1}$ (nujol mull): ν_{NH} 3460, 3340, 3100, $\nu_{C=O}$ 1750, 1690, $\nu_{C=O, C=O}$, NH$_2$ def 1660, 1590.

1H-NMR (CDCl$_3$): δ 8.4(s,1H,5-H), 7.3-7.2(s + bs, 2H, NH + y$_r$ C$_7$), 6.08(d,1H,1'H), 5.9-5.7(t + bs,2H,4'H + NH), 5.68(d,1H,pyr C$_6$), 4.88(dt,1H,pyr C$_6$), 4.66-4.44(d +
Army Final Report
March 31, 1990

m,3H,2'H or 3'H + 5'CH₂), 4.16(d,1H,2'H or 3'H), 3.17(m,2H,pyr C₆), 3.01(s,3H,NCH₃), 2.7(m,2H,isobutyl CH), 1.4(m,12H,4 x CH₃).

1-[5'-(1-methyl-3-carbonyl-1,4-dihydropyridine)-2',3'-bis-O-acetate-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (27, AVS 5581)

To a stirred, degassed, ice-cold deionized water (50 mL) and methylene chloride (50 mL) solution containing (0.5 g, 0.00090987 mol) of 1-[5'-(1-methyl-3-carbonylpyridinium)-2',3'-bis-O-acetate-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide iodide, a mixture of sodium dithionite (0.63 g, 0.003635 mol) and sodium bicarbonate (0.31 g, 0.003635 mol) was added. The reaction was maintained at 0°C and under argon. After 2.5 h, the aqueous layer was extracted with ice-cold ethyl acetate and the combined organic extracts were washed with ice-cold water, dried (MgSO₄) and the solvent was removed in vacuo. This gave 0.29 g (75.2%) of product as a yellow solid. IR cm⁻¹ (nujol mull): vOH (3480,3340,3260,3200), vC=O (1750,1680), vC,N (1660,1600).

UV λₘₚₑₓ (MeOH): 346,225.

'H-NMR (DMSO-d₆): δ 8.386(s,1H5-H), 7.132(bs,1H,NH), 7.012(s, lHpyr C-2), 6.35(bs,1H,NH), 6.066(d,1H,1'-H,J=4.4 Hz), 5.8210(t,1H,3'-H or 2'-H,J=4.6 Hz), 5.62(dd,H,pyr C-6,J=1.6 + 6.6 Hz), 5.569(t,1H,2'H or 3'H,J=4.4 Hz), 4.792(dt,1H,pyr C-5,J=8 + 4 Hz), 4.517(m,2H,5'-CH₂), 4.277(dt,1H,4'-H,J=8 + 4 Hz), 3.058(bs,2H,pyr C-4), 2.946(s,3H,N-CH₃), 2.132 and 2.111(2s,6H,2 x OCOCH₃).

1-[5'-(3-carbonylpyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (28)

5.0 g of 1-[5'-(3-carbonylpyridine)-2',3'-O-isopropylidene-β-D-ribofuranoxyl-1,2,4-triazole-3-carboxamide (6) was dissolved in 100 mL of 88% formic acid and the mixture was stirred at room temperature for 10 h and then at 0°C overnight. Solvent was evaporated in vacuo at 30°C and traces of formic acid were removed by repeated addition of water and evaporation in vacuo. The residue was stirred with methylene chloride (250 mL) for 10-15 min. The solid was filtered and washed with CH₂Cl₂. This gave 4.3 g (95.6%) of the product as a white solid. IR cm⁻¹ (nujol mull): vOH (3480,3420,3300,3260,3180), vC=O (1760,1700), vC₆H₄ (1670,1600).
\[\text{H-NMR (DMSO-d}_8\text{): } \delta 9.080 (s, 1H, pyr C-2); 8.877 (s, 1H, 5-H); 8.825 (d, 1H, pyr C-6, J = 3.8 Hz); 8.368 (d, 1H, pyr C-4, J = 8 Hz); 7.875 (s, 1H, NH); 7.694 (s, 1H, NH); 7.628 (dd, 1H, pyr C-5, J = 4.8 + 7.8 Hz); 5.98 (d, 1H, 1'H, J = 2.4 Hz); 5.76 (d, 1H, 2'OH, J = 3.6 Hz); 5.483 (d, 1H, 3'OH, J = 6.6 Hz); 4.438 (m, 5H, 5'-CH}_2\text{, 2'-H, 3'-H, 4'-H). \]

1-[\text{5'(1-methyl-3-carbonylpyridinum)-\text{\delta}-D-ribofuranosyl}]\text{1,2,4-triazole-3-carboxamide iodide} (29)

To 2.3 g of 1-[\text{5'-(3-carbonylpyridine)-\text{\delta}-D-ribofuranosyl}]\text{1,2,4-triazole-3-carboxamide} in 200 mL of anhydrous acetonitrile, 2.3 g methyl iodide was added and the mixture was refluxed overnight. The solvent was removed in vacuo and the resulting solid was washed with ether, followed by methylene chloride. The solid was dissolved in acetone (1000 mL) and triturated with ether. This gave 2.8 g (85.7%) of pale yellow solid.

1-[\text{5'-(1-methyl-3-carbonyl-1,4-dihydropyridine)-\text{\delta}-D-ribofuranosyl}]\text{1,2,4-triazole-3-carboxamide} (30)

To a stirred, degassed, ice-cold deionized water (50 mL) solution of 0.8 g of 1-[\text{5'-(1-methyl-3-carbonylpyridinum)-\text{\delta}-D-ribofuranosyl}]\text{1,2,4-triazole-3-carboxamide iodide}, a mixture of sodium bicarbonate (8.0 g) and sodium dithionite (11.2 g) was added. The reaction was maintained at 0°C and under argon. After two hours, the solution was freeze dried. The resulting solid was extracted with acetone. The solvent was removed in vacuo and the yellow solid was redissolved in a small amount of acetone and triturated with methylene chloride. The precipitated product was filtered and washed with ether. This gave 0.3 g (52.8%) of yellow solid.

IR cm\(^{-1}\) (nujol mull): \(v\)\text{OH (3540-3200), }v\text{C=O (1680)} \quad v\text{C=C=N(1630,1620,1600)}

UV \(\lambda_{\text{max}}\) (MeOH): 218.5,360.

1-(\text{2',3'-O-cyclopentylidene-\text{\delta}-D-ribofuranosyl})\text{1,2,4-triazole-3-carboxamide} (31)

20.56 g (0.244 mol) of cyclopentanone was added dropwise to an ice cold stirred solution of mesitylene sulphonic acid (0.36 g, 0.0015 mol) in anhydrous DMF (50 mL) and triethylorthoformate (4.82 g, 0.0325 mol). On completion of addition, the mixture
was stirred at RT for 2 h. Ribavirin (5.0 g, 0.0205 mol) was added to the solution and it was stirred at RT until a clear solution was obtained (overnight). The solution was neutralized with triethylamine and evaporated under reduced pressure to give a pale brown oil. This was dissolved in chloroform and washed with a small amount of water. The organic layer was dried (MgSO₄) and the solvent was removed under reduced pressure to give 4.0 g (63%) of product as a white solid.

\[\text{1H-NMR (DMSO-d₄): } \delta 8.82(s,1H,5-H), 7.89(s,1H,NH), 7.69(s,1H,NH), 6.24(s,1H,1'-H), 5.15(d,1H,J=6 Hz,2'-H), 4.99(t,1H,J=5.4 Hz,5'-OH), 4.87(d,1H,J=6 Hz,3'-H), 4.26(t,1H,J=6 Hz,4'-H), 3.46(m,2H,5'-CH₂), 1.93+1.63(m,2H+6H, cyclopent) \]

IR cm⁻¹ (nujol mull): \(\nu_{\text{NH+OH}} \) 3380 and 3180; 1660.

1-[5'-(3-carbonylpyridine)-2',3'-O-cyclopentylidene-\(\beta \)-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (32)

1.0 g (0.0032 mol) of 2',3'-O-cyclopentylidene-\(\beta \)-D-ribofuranosyl-1,2,4-triazocarboxamide was dissolved in 25 mL anhydrous pyridine. 1.5 g (0.0064 mol) of nicotinic anhydride was added to it and the reaction mixture was stirred at RT for 24 h. It was poured onto 50 mL ice and extracted with methylene chloride (2 x 50 mL). The combined organic extracts were washed with 5% NaHCO₃ (2 x 40 mL), 40 mL H₂O, dried (MgSO₄) and the solvent was removed v.r.p. to give 1.1 g (82.2%) of product as a white solid.

\[\text{1H-NMR (DMSO-d₄): } \delta 9.01(s,1H,pyr 2-H), 8.85(s,1H,5-H), 8.82(dd,1H,pyr 6-H,J=6+2 Hz), 8.23(dt,1H,pyr 4-H,J=8+2 Hz), 7.88(s,1H,NH), 7.70(s,1H,NH), 8.06(dd,1H,pyr 5-H,J=8+5 Hz), 6.39(s,1H,1'H), 5.23(d,1H,3'-H,J=6 Hz), 5.14(dd,1H,2'-H,J=8+2 Hz), 4.66(apparent g,111,4'-H), 4.48(m,2H,5'-CH₂), 1.89+1.70(m,4H+4H,cyclopentane). \]

1-[5'-(1-methyl-3-carbonylpyridinium)-2',3'-O-cyclopentylidene-\(\beta \)-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide iodide (33)

To 1.0 g (0.0024 mol) of 1-[5'-(3-carbonylpyridinium)-2',3'-O-cyclopentylidene-\(\beta \)-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide in 75 mL of anhydrous acetonitrile, 1.1 g methyl iodide was added and the solution was stirred at RT for 5 days. The solvent was
removed under vacuo and the resulting solid was washed with methylene chloride, and then triturated with acetone ether. The precipitated product was filtered and washed with ether to give 1.1 g (82%) of product as a yellow solid.

\[^1H-NMR \text{ (DMSO-}d_6\text{)}: \delta \ 9.49(s,1H,\text{pyr }2-H), 9.19(d,1H,\text{pyr }6-H,J=4.81 \text{ Hz}), 8.94(d,1H,\text{pyr }4-H,J=5 \text{ Hz}), 8.86(s,1H,5-H), 8.25(dd,1H,\text{pyr }5-H,J=5+2 \text{ Hz}), 7.85(s,1H,\text{NH}), 7.63(s,1H,\text{NH}), 6.36(s,1H,\text{1'-H}), 5.25(s,1H,\text{3'-H}), 5.18(s,1H,\text{2'-H}), 4.54(m,3H,\text{4'H + 5'}-\text{CH}_2), 4.44(s,3H,\text{pyr N-CH}_3), 1.96 + 1.6(m,4H + 4H,\text{cyclopentane}). \]

UV λ_{max} (MeOH): 216,266.

IR cm$^{-1}$ (nujol mull): ν_{NH} 3440 and 3210, $\nu_{\text{C=O}}$ 1730, $\nu_{\text{C-N-C}}$ 1680, 1640.

1-[5'-(1-methyl-3-carbonyl]-1,4-dihydropyridine-2',3'-O-cyclopentylidene-\(\beta\)-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (34)

To a stirred, degassed, ice-cold deionized water (50 mL) and ethyl acetate (50 mL) solution containing 0.7 g (0.00117 mol) of 1-[5'-(1-methyl-3-carbonylpyridinium)-2',3'-O-cyclopentylidene-\(\beta\)-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide iodide, a mixture of sodium bicarbonate (0.6 g, 0.007 mol) and sodium dithionite (0.8 g, 0.005 mol) was added. The reaction was maintained at 0°C and under argon. After 1 h 45 min the organic layer was separated. The aqueous layer was extracted with ice-cold ethyl acetate and the combined organic extracts were washed with ice-cold, dried (MgSO$_4$) and the solvent removed under reduced pressure. This gave 0.4 g (79%) of product as a yellow solid.

\[^1H-NMR \text{ (CDCl}_3\text{)}: \delta \ 8.34(s,1H,5-H), 7.20(s,1H,\text{NH}), 6.76(s,1H,2-H), 6.43(s,1H,\text{NH}), 6.06(s,1H,\text{1'-H}), 5.60(dd,1H,\text{pyr }6-H,J=8+2 \text{ Hz}), 5.28(d,1H,\text{2'-H},J=6 \text{ Hz}), 4.85(dd,1H,\text{3'-H},J=6+2 \text{ Hz}), 4.76(dt,1H,\text{pyr }5-H,J=8+4 \text{ Hz}), 4.65(dt,1H,\text{4'-H},J=8+3 \text{ Hz}), 4.30+4.20(dd,2H,\text{5'-CH}_2,J=22+5 \text{ Hz}), 2.04+1.75(m,2H + 6H,\text{cyclopentane}). \]

UV λ_{max} (MeOH): 211,359.

IR cm$^{-1}$ (nujol mull): ν_{NH} 3460,3340 and 3200, $\nu_{\text{C=O}}$ 1720, $\nu_{\text{C-N-C}}$ 1650,1580.

1-(2,3,5-tri-O-benzoyl-\(\beta\)-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (36)

Ribavirin (1.0 g, 0.004095 mol) was dissolved in anhydrous pyridine (30 mL) and the solution was cooled to 0°C. 4,4-Dimethylaminopyridine (0.15 g, 0.0012 mol) and
benzoic anhydride (3.1 g, 0.0135 mol) were added to it and the mixture was stirred at 80°C overnight. The pyridine was removed in vacuo, the resulting oil dissolved in CH₂Cl₂ and washed with 5% NaHCO₃, 5% HCl and H₂O. The methylene chloride solution was dried over MgSO₄ and the solvent was removed in vacuo. The crude white solid was purified on a silica column with CH₂Cl₂:MeOH:Pet. ether, 95:5:20 as eluent. The product was obtained as a white solid in 70% yield.

IR (nujol mull): v NH, 3460, 3360, v CO, 1725, 1690, v CN, 1655, v ω, 1600, v ω, 1130-1030.

'H-NMR (CDCl₃): δ 8.6 (s, 1H, triazole), 8.25-7.25 (m, 15H, 3 x C₉H₆), 6.35 (d, 1H, 1'H), 6.15 (m, 4H, 2'H, 3'H, NH₂), 4.75 (br s + t, 3H, 5'H, 4'H).

1-(3.5-O-(tetraisopropyldisilox-1,3-diyl))-β-D-ribofuranosyll1,2,4-triazole-3-carboxamide (37)

Ribavirin (10.0 g, 40.95 mmol) was made anhydrous by repeated coevaporation with pyridine. Subsequently, it was dissolved in 300 mL dry pyridine and the solution was cooled to 0°C. 1,1,3,3-dichlorotetraisopropyldisiloxane (13.4 mL) was added to the reaction vehicle in which atmosphere moisture was excluded and the reaction mixture was stirred at ambient temperature for 24 h. It was then quenched under ice-cooling with a solution of 5% ammonium bicarbonate (500 mL) and extracted with CH₂Cl₂. The combined organic extracts were washed with H₂O, dried (MgSO₄), and the solvent was removed under reduced pressure. The clear oil obtained was purified on a silica column by using a step gradient of CH₂OH in CHCl₃ (0.5% to 5%). 13.2 g (66.2%) of the product was obtained as a white solid.

IR cm⁻¹ (nujol mull): ν NH + OH 3480, 3300, 3260, 3180, ν CH 3120, ν COO 1700, ν C=O, NH 1600. γ-H-NMR (CDCl₃): δ 8.55 (s, 1H, 5-H), 7.15 (bs, 1H, NH), 6.65 (bs, 1H, NH), 6.00 (s, 1H, 1'-H), 4.9-4.1 (m + s, 5H, 3'-H, 4'-H, 2'-H, 5'-CH₂), 2.25 (m, 1H, OH), 1.1 (s, 28H, 8 x CH₃, 4 x CH).

Attempted preparation of 1-[3.5'-O-(tetraisopropyldisilox-1,3-diyl)-2'-3-carboxylpyridine]-β-D-ribofuranosyll1,2,4-triazole-3-carboxamide (38)

Cpd. (37) (1.45 g, 3.0 mmol) was dissolved in 15 mL dry pyridine and cooled to 0°C. 1.59 g (8.9 mmol) of nicotinoyl chloride hydrochloride was added and the mixture stirred at ambient temperature for 24 h. It was poured onto 100 mL ice and extracted
(2 x 100 mL) with CHCl₃. The combined organic extracts were washed with 2 x 100 mL 5% NaHCO₃, 100 mL H₂O, dried (MgSO₄) and the solvent was removed in vacuo. The resulting oil was purified on a silica column with CHCl₃:MeOH (40:1) as eluent. This gave 1.0 g of product as a waxy white solid.

'H-NMR (CDCl₃): 8 9.2 (s, 1H, pyr), 8.75 (d, 1H, pyr), 8.5 (s, 1H, 5-H), 8.25 (d, 1H, pyr), 7.35 (dd, 1H, pyr), 6.15 (s, 1'H, 1H), 5.8 (d, 1H, 3'-H), 4.95 (dd, 1H, 2'-H), 4.3 (ls, 1H, 4' H), 4.05 (bs, 2H, 5'-CH₂), 1.00 (m, 28H, 4 x isopropyl).

1-I-[3',5'-O-(tetraisopropyldisiloxan-1,3-diyl)-2'-(3-carbonylpyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (39)

Cpd. (37) (1.0 g, 0.002 mol) was dissolved in 20 mL dry pyridine and cooled to 0°C. (0.94 g, 0.0041 mol) nicotinic anhydride was added and the mixture stirred at room temperature for 24 h. It was poured onto 200 mL ice and extracted (2 x 200 mL) with chloroform. The combined organic extracts were washed with 1M NaHCO₃ (200 mL), water (200 mL), dried (MgSO₄) and the solvent was removed under reduced pressure.

The resulting oil was stirred with petroleum-ether (40-60°) to give the product as a white solid (1.1 g, 90.5%).

IR cm⁻¹ (nujol mull): v NH 3460, 3340, v C=O 1745, 1700, 1690, v C=O 1600, 1580.

'H-NMR (CDCl₃): 8 9.45 (s, 1H, pyr), 8.95 (d, 1H, pyr), 8.65 (s, 1H, 5-H), 8.5 (d, 1H, pyr), 7.55 (m, 1H, pyr), 7.2-7.0 (2 x bs, 2H, NH₂), 6.25 (s, 1H), 6.0 (d, 1H), 4.95 (m, 1H), 4.4 (m, 1H), 4.2 (m, 2H), 1.0 (m, 28H).

Reaction of 1-(5'-O-dimethoxytrityl-β-D-ribofuranosyl)-1,2,4-triazole-3-N-carboxamide with benzoyl chloride (40, 41 and 42)

Ribavirin-DMT (7) (0.55 g, 0.001 mol) was coevaporated with dry pyridine (3 x 3 mL) and then dissolved into 5 mL of dry pyridine. The solution was cooled in an ice-cold bath and then benzoyl chloride (0.16 g, 0.0011 mol) in 5 mL of anhydrous pyridine was added dropwise over a period of 30 minutes. The reaction mixture was left
overnight stirring and then quenched with 5% solution of NaHCO₃ (100 mL) and extracted with methylene chloride (4 x 10 mL) and dried with MgSO₄. After solvent removal the crude material (0.94 g) was purified by column chromatography on silica gel (100-200 mesh) using 2% MeOH in CHCl₃ as an eluent.

As determined by spectral methods the first isolated product (130 mg) was 2',3'-dibenzoyl derivative (40). Then the mixture of monobenzoylated products (200 mg) and pure one monobenzoylated compound. 2',3'-Dibenzoyl ester (40) exists as a monohydrate. For C₃₆H₃₈N₄O₉ calculated: C, 68.42; H, 5.07; N, 7.42. Found for C₃₆H₃₈N₄O₉ x H₂O: C, 66.86(66.82), H, 4.89(4.95); N, 7.21(7.25). 'H-NMR (CDCl₃) (200 MHz, FT mode) δ (ppm): 8.43(1H,s), 7.96-7.91(4H,m), 7.60-7.15(17H,m), 6.82(2H,s), 6.78(2H,s), 6.72(1H,m), 6.40-6.30(2H,m), 6.10-5.95(2H,m), 4.64-4.62(1H,m), 3.75(6H,s), 3.60-3.50(2H,m). ¹³C-NMR (CDCl₃) (50 MHz, FT mode) δ (ppm): 16.51(CO), 160.3(CONH), 158.6, 157.3, 144.5, 144.2, 135.25, 135.2, 133.7, 133.5, 130.1, 129.75, 129.7, 128.4, 128.1, 127.9, 127.0, 113.2, 90.2, 87.0, 83.05, 74.8, 72.1, 63.0, 55.1.

Repetition of the above reaction with shorter reaction time (3 hrs) led to the predominant mixture of both monobenzoylated products with a small amount of bis benzoylated product. These two isomers were separated by column chromatography on silica gel using ethyl acetate as an eluent. The proton and carbon spectra of individual isomers were monitored in deuterated chloroform and in DMSO. Use of DMSO as a solvent gives slightly better resolution than chloroform, however, upon standing in DMSO the samples undergo slow isomerization.

Both the 2'- and 3'-isomers were obtained as white solids. Close analysis of proton-proton correlation spectra for both products allowed for determination that the less polar isomer is the desired 2'-benzoyl (41) and the more polar one corresponds to the 3'-benzoyl ester (42).

(41) ¹³C-NMR (DMSO)(75 MHz, FT mode) δ (ppm): 164.9, 160.2, 158.0, 157.9, 157.7, 145.8, 144.7, 135.5, 133.7, 129.7, 129.65, 129.6, 128.8, 128.7, 127.8, 127.7, 126.6, 113.1, 88.7, 85.4, 82.9, 76.4, 68.9, 63.1, 55.0.

(42) ¹³C-NMR (DMSO)(75 MHz, FT mode) δ (ppm): 165.0, 160.3, 158.1, 158.07, 157.8, 146.1, 144.7, 135.5, 135.3, 133.6, 129.8, 129.7, 129.5, 129.4, 128.7, 127.85, 127.7, 126.7, 113.2, 91.2, 85.8, 81.0, 73.5, 72.4, 63.2, 55.0.
Attempted Synthesis of 2'-t-butyldimethylsilyl (TBDMS) derivative (45)

5'-Dimethoxytrityl ribavirin (2.0 g, 3.59 mmol) was dissolved in 50 mL of dry tetrahydrofuran. To this solution was added dry pyridine (1.1 mL, 13 mmol) followed by AgNO₃ (0.73 g, 4.3 mmol) which had been finely ground with a mortar and pestle. After the AgNO₃ had dissolved (~15 min), t-butyldimethylsilyl chloride (0.7 g, 4.67 mmol) was added. There was noted the immediate formation of a white precipitate (AgCl) and the reaction was stirred overnight at room temperature. The reaction was filtered and the filtrate was concentrated in vacuum to give a residue which was taken up into CH₂Cl₂. This solution was washed twice with 0.5 M NaHCO₃. The organic layer was separated and dried over Na₂SO₄. The dried solution was filtered and the filtrate was concentrated in vacuum to an oil. TLC analysis of this product showed it to be a mixture of three products, which were shown by 1H-NMR analysis to be the 2'-, the 3'-, and the 2', 3'-bis silylated derivatives of 5'-dimethoxytrityl ribavirin. TLC analysis on silica (layer = 200 μ) with ethyl acetate as eluent showed two major spots. One spot, having an Rf of 0.50, was determined to be the 2'-silylated derivative, and another, having an Rf of 0.62, was determined to be the 3'-silyl compound. A third spot, Rf equal to 0.62, was determined to be the 2', 3'-bis silyl compound. The mixture was separated by chromatography from 250 g of silica gel, using ethyl acetate/hexane mixtures. The ¹H-NMR spectrum of the fraction which eluted secondly shows (CDCl₃) δ (ppm) 8.38 (s, 1, 5-H), 5.84 (d, J = 6Hz, 1'-H), 3.74 (s, 6, OCH₃), 0.87 (s, 9, -SiCCH₃). The Rf of this compound in ethyl acetate is also consistent with the results of Hakimelahi' who showed that the 2'-silyl derivatives were generally less polar than the 3'-derivatives. The NMR spectrum of the fraction which eluted thirdly shows (CDCl₃) δ (ppm) 8.52 (s, 1, 5-H), 6.00 (d, J = 4Hz, 1'-H), 3.76 (s, 6, OCH₃), 0.85 (s, 9, -SiCCH₃).

Reaction of 5'-dimethoxytrityl ribavirin with nicotinic anhydride (46)

To a solution of 5'-dimethoxytrityl ribavirin (0.65 g, 1.17 mmol) in 40 mL of pyridine was added nicotinic anhydride (0.80 g, 3.5 mmol). The reaction was stirred at room temperature overnight. The appearance of product was noted by TLC analysis. At intervals, the reaction was analyzed by TLC (SiO₂, ethyl acetate, methanol,
triethylamine; 4:1:trace). At 45 min, the spot corresponding to the product \((R_t = 0.33) \) was barely detectable. At 3 hrs the spot was nearly equal the intensity of the spot corresponding to the starting material \((R_t = 0.41) \). After stirring overnight, the reaction appeared to be \(\sim 95\% \) complete. The reaction mixture was concentrated in vacuo to a solid which was triturated with 30 mL of ethyl acetate for 30 mins. The resulting suspension was filtered. The filtrate was concentrated in vacuo to another residue which was again triturated with ethyl acetate, filtered, and concentrated. The residue from this third concentration was chromatographed from 100 g of SiO\(_2\), using ethyl acetate as eluent. The product partially decomposed on the column (both trityl and nicotinoyl groups hydrolysed) and the eluate containing the desired compound was concentrated and streaked onto a preparative TLC plate (SiO\(_2\), 2mm). The plate was developed with n-butanol, acetic acid, and water; 4:1:1. the product, with the loss of the dimethoxytrityl group, was removed from the plate but was contaminated with ribavirin. This product, presumably 2'-nicotinoyl ribavirin, has a \(R_t \) of 0.24, and stains blue (not orange) with the orcinol spray reagent.

Reaction of 5'-dimethoxytrityl ribavirin with Benzoic Anhydride (47)

To a solution of 5'-dimethoxytrityl ribavirin (0.53 g, 0.95 mmol) in 25 mL of dry pyridine was added benzoic anhydride (0.65 g, 2.86 mmol). The reaction was stirred at room temperature overnight. TLC analysis of the reaction mixture showed that a large amount of starting material remained and that the reaction gave two products, in equal amounts. The reaction was not analyzed further.

Reaction of 5'-dimethoxytrityl ribavirin with Anisic Anhydride (48)

To a solution of 5'-dimethoxytrityl ribavirin (0.69 g, 1.24 mmol) in 20 mL of dry pyridine was added anisic anhydride (1.06 g, 3.72 mmol). The reaction was stirred at room temperature for 2 days. TLC analysis showed the presence of a large amount of starting material and primarily a single product. At this point, DMAP (25 mg, catalytic amount) was added and the reaction was stirred at room temperature another day. TLC analysis at the end of this period showed complete reaction (starting material was not
detectable) and a single product. The reaction was concentrated in vacuo but not analyzed further.

1-(5'-0-dimethoxytrityl-3'-benzoyl-2'-nicotinoyl-β-D-ribofuranosyl)-1,2,4-triazole-3-N-carboxamide (49)

The 3'-0-benzoyl ester (42) (0.48 g, 0.74 mmol) (13) was dissolved in CH₂Cl₂ (10 mL) and Et₃N (0.09 g, 0.88 mmol), catalytic amount of DMAP, and nicotinic anhydride (0.17 g, 0.88 mmol) were added and the solution was stirred over a period of 1 hr. Then the reaction was quenched with 5% NaHCO₃ (30 mL) and extracted with methylene chloride (3 x 10 mL). The organic layer was washed with water (20 mL) and dried with magnesium sulfate. The crude product was purified by column chromatography on silica gel using ethyl acetate as an eluent. Yield was 73%.

¹H-NMR (DMSO)(300 MHz)(FT mode) δ (ppm): 9.09(1H,s), 8.98-8.82(1H,m), 8.34-8.26(2H,m), 7.92-7.84(4H,m), 7.66-7.18(12H,m), 6.84-6.81(4H,m), 6.74-6.73(1H,m), 6.21-6.19(1H,m), 6.11-6.07(1H,m), 4.70-4.65(1H,m), 3.71(6H,s), 3.43-3.41(2H,m).

¹³C-NMR (DMSO)(75 MHz)(FT mode) δ (ppm): 164.5, 163.6, 160.15, 158.05, 154.25, 150.2, 146.3, 144.5, 137.1, 135.4, 135.2, 133.9, 129.7, 128.8, 128.5, 127.8, 127.7, 126.7, 124.5, 124.0, 123.96, 113.15, 88.5, 85.8, 80.8, 74.7, 71.1, 62.65, 54.9.

1-[3'-Benzoyl-2'-nicotinoyl-β-D-furanosyl]-1,2,4-triazole-3-N-carboxamide (50)

1-[5'-0-dimethoxytrityl-3'-benzoyl-2'-nicotinoyl-β-D-furanosyl]-1,2,4-triazole-3-N-carboxamide (5.5 g, 7.3 mmol) was dissolved in 47 mL 80% of glacial acetic acid and the solution was stirred for 2 hrs at room temperature. The TLC did not show starting material. The reaction was neutralized by adding slowly solid NaHCO₃ and then water (200 mL). The neutral water solution was extracted with ethyl acetate (3 x 200 mL). The organic layer was washed with water 200 mL and dried with MgSO₄. The solvent removal gave crude product (5.2 g), slightly impure.

¹H-NMR (300 MHz, DMSO): δ 9.04(1H,d,J=2 Hz), 9.02(1H,s), 8.82(1H,dd,J=4.9, 1.65 Hz), 8.24(1H,dt,J=2 Hz, J₆=8 Hz), 8.00(2H,s), 7.96(1H,d,J=1.3 Hz), 7.81(1H,s), 7.71(1H,t,J=7.4 Hz), 7.56-7.49(3H,m), 6.69(1H,d,J=4 Hz), 6.17(1H,m), 5.96(1H,t,J=5 Hz), 5.34(1H,t,J=5.5 Hz), 4.64-4.63(1H,m), 3.86-3.77(2H,m).
Army Final Report
March 31, 1990

13C(75 MHz, DMSO): 164.74(CO), 163.42(CO), 160.23(CO), 157.76, 154.18, 150.03, 145.80, 137.0, 133.86, 129.26, 128.89, 128.77, 128.57, 124.40, 123.89, 88.86, 83.61, 74.89, 71.61, 60.85.

1-[3'-benzoyl-2'-trigonellinyl-\(\beta\)-D-furanosyl]-1,2,4-triazole-3-N-carboxamide (51)

Compound (50) (5.2 g, 0.011 m) was suspended in acetone (50 mL) and methyl iodide (6.5 g, 10.04 m) was added and the mixture was refluxed for 2 hrs. The yellow solution, containing oily residue was evaporated and the residue was triturated with diethyl ether. Yellow solid (3.75 g) was obtained by filtration.

1H-NMR (300 MHz, DMSO): 8 9.60(1H,s), 9.24(1H,d,J=6 Hz), 9.02(1H,s), 8.98-8.93(1H,m), 8.30-8.25(1H,m), 7.97-7.95(3H,m), 7.71(1H,m), 7.69-7.66(1H,m), 7.56-7.49(1H,d,J=3.8 Hz), 6.17-6.14(1H,m), 5.93(1H,t,J=5 Hz), 5.29(1H,t,J=5.5 Hz), 4.66-4.69(1H,m), 4.43(3H,s), 3.81-3.69(2H,m).

13C-NMR (75 MHz, DMSO): 164.70, 160.40, 160.10, 157.64, 146.65, 145.72, 144.62, 133.85, 129.34, 128.80, 128.73, 128.40, 128.01, 127.87, 88.47, 83.26.

1-[3'-benzoyl-2'-(1,4-dihydrotrigonellinyl-\(\beta\)-D-furoyl)-1,2,4-triazole-3-N-carboxamide (52, AVS 5756)

To the suspension of (7) (4.0 g) in a mixture of 80 mL of water and methylene chloride (80 mL) 2.26 g of sodium bicarbonate and 4.7 g of sodium dithionite was added at 0°C under stream of argon. Upon addition of reducing agents the solid dissolved. After 7 hrs, the two layers were separated, the organic layer was removed and water extracted with one portion of methylene chloride. After drying with MgSO$_4$ the solvent was removed and the residue was treated with 40 mL of diethyl ether. Yellow solid (2.5 g) was collected. The 1H-NMR and TLC showed some impurities therefore it was purified on alumina neutral, eluting with 1% MeOH in CHCl$_3$. Obtained 0.92 g.

Trituration with ether gave 0.60 g of yellow crystals.

λ_{max} (MeOH): 206, 364 nm.

1H-NMR (300 MHz, DMSO) of nonpurified compound: 8 9.3(1H,s), 8.05(2H,d,J=7 Hz), 7.89(2H,m), 7.73-7.57(4H,m), 6.92(1H,s), 6.32(1H,d,J=4 Hz), 5.84(1H,t,J=5 Hz), 5.76-5.72(1H,m), 5.25(1H,m), 4.68-4.47(2H,m), 3.73(2H,m), 2.81(2H,s), 2.74(3H,s).
1-(5'-O-Dimethoxytrityl-3'-O-pivaloyl-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (53a) and 1-(5'-O-dimethoxytrityl-2'-O-pivaloyl-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (53b):

8.8 g (16 mmols) of (7) was dissolved in 100 ml of dry pyridine and pivaloyl chloride (2.16 ml, 17.6 mmols) in 10 ml of pyridine was added dropwise in ice. The TLC taken after 0.5 hr later showed unreacted starting material. Addition of another portion of pivaloyl chloride and stirring the reaction mixture for two hours at room temperature completed the reaction. The mixture was treated with 200 ml of 5% sodium bicarbonate and extracted with methylene chloride (3 x 200 ml). The organic layer was washed with sodium bicarbonate 5% (300 ml), water (300 ml) and dried (magnesium sulfate). After solvent removal, the crude product was a white foam (10.3 g yield). Some of it was purified by column chromatography, but separation of isomers was not satisfactory. 1H NMR (300 MHz, DMSO): 8.64 + 8.61 (1H, s), 7.57 + 7.45 (2H, s), 7.68-6.90 (9H, m), 6.60-6.53 (4H, m), 5.72-5.71 (2H, m), 5.32-4.97 (1H, m), 4.65-4.42 (1H, m), 3.95-3.74 (1H, m), 3.45 (6H, s), 3.16-2.85 (2H, m), 0.93 (9H, s); 13C NMR (75 MHz, DMSO): 176.74, 176.60, 160.38, 160.32, 158.15, 158.13, 158.09, 158.06, 157.74, 157.65, 146.17, 145.78, 144.79, 144.71, 135.61, 135.57, 135.41, 129.77, 129.71, 127.92, 127.83, 127.76, 126.75, 126.66, 113.26, 113.17, 91.2, 88.87, 85.75, 85.41, 81.30, 79.21, 75.53, 72.44, 72.14, 68.74, 63.15, 63.06, 55.06, 40.34, 40.05, 26.94, 26.89. These chemical shifts includes both isomers.

1-[5'-O-Dimethoxytrityl-3'-O-(3-carbonylpyridine)-2'-O-pivaloyl-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (54a) and 1-[5'-O-dimethoxytrityl-2'-O-(3-carbonylpyridine)-3'-O-pivaloyl-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (54b):

The crude mixture of (53a) and (53b) (9.2 g) was dissolved in 150 ml of methylene chloride and 2.4 ml of triethylamine was added and catalytic amount of DMAP. Then nicotinic anhydride 3.93 g (17.2 mmols) was added. After 3 hours the reaction was quenched with 5% sodium bicarbonate and the organic layer was washed with water (60 ml) and dried with magnesium sulfate. Removal of the solvent yielded 9.62 g of crude product.
1-[2'-O-(3-Carbonylpyridine)-3'-O-pivaloyl-β-D-ribofuranosyl]-1.2.4-triazole-3-carboxamide (55a) and 1-[3'-O-(3-carbonylpyridine)-2'-O-pivaloyl-β-D-ribofuranosyl]-1.2.4-triazole-3-carboxamide (55b):

The crude mixture of two isomers (54a) and (54b) (10 g, 13.6 mmols) was dissolved in 80% of acetic acid. The orange solution was stirred at room temperature over a period of 3 hours. Then the reaction was quenched by an addition of solid sodium bicarbonate, followed by careful addition of water (300 ml). Then this suspension was extracted with ethyl acetate (3 x 300 ml). The organic layer was dried with magnesium sulfate. Evaporation of the solvent gave 7.98 g of crude product. Purification by column chromatography (silica gel) with chloroform:methanol 1%-10% gave pure product (2.41 g). 1H NMR (300 MHz, DMSO): 8.99-8.95 (2H, m), 8.76-8.75 (2H, m), 8.68-8.65 (2H, m), 8.20-8.13 (2H, m), 7.74 (2H, broad signal), 7.56 (2H, broad signal), 7.47-7.39 (2H, m), 6.35 (1H, d, J = 4 Hz), 6.23 (1H, d, J = 0.8 Hz), 5.81-5.78 (1H, m), 5.64-5.62 (2H, m), 5.48-5.45 (1H, m), 5.07-5.04 (2H, broad signal), 4.33-4.17 (2H, m), 3.56-3.50 (2H, m), 3.28 (2H, m), 0.86 (9H, s), 0.80 (9H, s); 13C NMR (75 MHz, DMSO): 176.33, 176.04, 163.79, 163.44, 160.31, 157.80, 154.32, 154.23, 150.24, 145.85, 145.68, 137.19, 137.15, 124.91, 124.60, 124.08, 89.08, 88.93, 83.67, 83.38, 79.20, 74.89, 73.94, 71.98, 70.78, 60.90, 26.60, 26.50. These chemical shifts are for both isomers. Calculated for C19H23N7O5 x H2O: c, 50.55; H, 5.14; N, 15.52. Found: C, 50 35; H, 5.28; N, 15.27.

1-[2'-O-(N-Methyl-3-carbonylpyridinium)-3'-O-pivaloyl-β-D-ribofuranosyl]-1.2.4-triazole-3-carboxamide iodide (56a) and 1-[3'-O-(N-methyl-3-carbonylpyridinium)-2'-O-pivaloyl-β-D-ribofuranosyl]-1.2.4-triazole-3-carboxamide iodide (56b):

2.41 g (5.56 mmols) of the mixture of (55a) and (55b) was dissolved in 30 ml of dry acetonitrile and an excess of methyl iodide was added. The mixture was refluxed for 4 hours, until no more starting material was visible on TLC. The solvent was removed and the residue was treated with 100 ml of diethyl ether. After stirring for 0.5 hour yellow precipitate was removed by filtration and dried. Yield 2.71 g (85%). 1H NMR (200 MHz, DMSO): 9.79-7.77 (1H, s), 9.40-9.37 (1H, m), 9.14-8.94 (2H, m), 8.43-8.36 (1H, m), 7.85-7.84 (1H, m), 7.71 (1H, s), 6.69-6.54 (1H, m), 6.10-5.65 (2H,
m), 4.59 (3H, s), 4.46-4.44 (1H, m), 3.79(1H, m), 2.11 (2H, m), 1.20-1.03 (9H, s); 13C NMR (50 MHz, DMSO): 175.84, 160.43, 160.17, 160.10, 157.43, 149.57, 146.65, 145.64, 144.80, 128.29, 128.06, 111.02, 88.72, 88.50, 83.07, 75.88, 73.52, 73.19, 70.13, 60.54, 60.45, 48.57, 48.51, 38.17, 26.60, 26.50. These chemical shifts are for both isomers. UV (MeOH): 234, 266 nm. Calculated for C$_{20}$H$_{26}$N$_{5}$O$_{7}$ x 2 H$_{2}$O: C, 39.29; H, 4.29; N, 11.46. Found: C, 39.98; H, 4.70; N, 10.97.

1-$(2'-O-(N$-Methyl-3-carbonyl-1,4-dihydropyridine)-3'$-O$pivaloyl-β-D-ribofuranosyl)$-1,2,4$-triazole-3-carboxamide (57a) and 1-$(3'$-O-$(N$-methyl-3-carbonyl-1,4-dihydropyridine-β-D-ribofuranosyl)-1,2,4$-triazole-3-carboxamide (57b) AVS # 6080:

1.98 g of the mixture of quaternary salts (56a) and (56b) was suspended in the 80 ml of methylene chloride and 80 ml of degassed, deionized water and sodium dithionite (4.4 g) and sodium bicarbonate (2.14 g) were added at once. The mixture was stirred under constant flow of argon. After 4 hours the two layers were separated. The organic layer was collected, dried with magnesium sulfate and after the solvent was removed yielded 1.15 g (74%) of yellow solid was obtained. 1H NMR (300 MHz, DMSO): 8.94 (IH, s), 7.89 (1H, s), 7.82 (1H, s), 7.16 (1H, d, J = 7 Hz), 6.26 (1H, s), 5.86 (1H, d, J = 7 Hz), 5.73 (1H, s)*, 5.70-5.65 (1H, m), 5.50-5.46 (1H, m), 5.47 (1H, m), 4.78-4.68 (1H, m), 4.28-4.27 (1H, m), 3.76-3.64 (2H, m), 3.43 (1H, s)*, 2.97 (5H, m), 1.18 + 1.14 (9H, s). *These peaks were not assigned, they may belong to the water addition product, analysis is in progress. 13C NMR (75 MHz, DMSO): 176.28, 176.02, 165.84, 165.42, 160.29, 157.67, 145.35, 145.42, 143.99, 143.66, 129.83, 129.76, 104.23, 104.07, 93.83, 93.35, 89.49, 89.28, 83.93, 83.54, 74.11, 73.00, 70.82, 69.69, 60.93, 54.91, 40.29, 40.06, 38.32, 38.28, 29.58, 26.70, 26.60, 21.57, 21.49. Peaks are given for both isomers. UV (MeOH): 230, 362 nm.

1-$(5'$-O-Benzoyl-2'$-O-(3-carbonylpyridine)-3'$-O$pivaloyl-β-D-ribofuranosyl)-1,2,4$-triazole-3-carboxamide (58a) and 1-$(5'$-O-benzoyl-3'$-O-(3-carbonylpyridine)-2'$-O$pivaloyl-β-D-ribofuranosyl)-1,2,4$-triazole-3-carboxamide (58b).

The crude mixture of (55a) and (55b) (2.10 g, 4.85 mmols) was dissolved in 20 ml of dry pyridine and catalytic amount of DMAP was
added. Solid benzoic anhydride (1.21 g, 10% excess) was added at once. After 3 hours the reaction was completed. It was quenched with 50 ml 5% sodium bicarbonate and extracted with methylene chloride (3 x 50 ml). The organic layer was washed with water (100 ml) and dried with magnesium sulfate. After the solvent was removed 3.05 g of white crystalline powder was obtained. 1H NMR (300 MHz, DMSO): 9.26 + 9.21 (1H, s), 9.0 (1H, s), 8.93-8.92 (1H, m), 8.45-8.32 (1H, m), 8.08-8.02 (3H, m), 7.89 (1H, S), 7.69-7.54 (4H, m), 6.74 + 6.58 (1H, s), 6.14-5.98 (2H, m), 4.83-4.58 (3H, m), 1.11 + 1.06 (9H, s); 13C NMR (75 MHz, DMSO): 176.23, 176.03, 165.53, 163.68, 163.45, 160.18, 158.17, 154.36, 154.19, 150.30, 150.22, 149.52, 146.28, 137.20, 137.08, 133.45, 133.41, 129.41, 129.36, 129.16, 128.83, 128.78, 124.61, 124.08, 123.95, 88.75, 88.56, 79.56, 79.22, 74.88, 73.87, 71.28, 70.20, 63.28, 38.30, 38.23, 26.54, 26.51. These peaks are for both isomers.

1-[5'-O-Benzoyl-2'-O-(N-methyl-3-carbonyl-pyridinium)-3'-O-pivaloyl-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide iodide (59a) and 1-[5'-O-Benzoyl-3'-O-(N-methyl-3-carbonyl-pyridinium)-2'-O-pivaloyl-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide iodide (59b):

A crude mixture of (58a) and (58b) 2.25 g (4.3 mmols) was dissolved in 30 ml of dry acetone and an excess of methyl iodide was added. The solution was refluxed for 6 hours and then solvent was removed under vacuum. To the residue 200 ml of diethyl ether was added and the oily suspension was stirred overnight. The next day yellow solid was collected by filtration and dried under vacuum. Yield 2.78 g (95%). 1H NMR (300 MHz, DMSO): 9.76 (1H, s), 9.34-9.01 (3H, m), 8.65-8.04 (2H, m), 8.0 (2H, s), 7.92 -7.50 (4H, m), 6.75 (1H, S), 6.20-5.96 (2H, m), 4.90-4.41 (7H, m), 1.1 + 1.06 (9H, s); 13C NMR (75 MHz, DMSO): 176.25, 176.10, 165.48, 160.60, 160.38, 160.07, 158.03, 149.81, 146.72, 146.66, 146.59, 146.35, 146.19, 145.04, 144.90, 114.75, 133.50, 133.45, 129.31, 129.22, 129.10, 129.02, 128.83, 128.29, 128.10, 127.97, 127.65, 88.56, 88.21, 79.21, 79.01, 75.787, 73.47, 72.13, 69.85, 68.50, 63.10, 55.75, 48.58, 48.54, 38.34, 38.26, 26.67, 26.59. These peaks are for both isomers.
1.36 g (2 mmols) of the mixture of isomeric quats (59a) and (59b) was suspended in a mixture of 50 ml of methylene chloride and 50 ml of degassed and deionized water. Then sodium dithionite (2.56 g) and sodium bicarbonate (1.24 g) was added and the reaction mixture was stirred under the constant flow of argon. After 5 hours the two layers were separated and the organic layer was dried with magnesium sulfate and the solvent removed under vacuum. Yield was 0.92 g (83%). ¹H NMR (300 MHz, DMSO): 8.00 (1H, s), 7.94-7.15 (9H, m), 6.40 (1H, broad signal), 5.76-5.73 (2H, m), 4.80-4.48 (4H, m), 3.42 (2H, s), 2.98 (3H, s), 1.16 (9H, s); ¹³C NMR (75 MHz, DMSO): 176.27, 165.52, 165.41, 160.17, 158.07, 146.17, 146.12, 144.13, 143.85, 129.78, 129.38, 129.14, 128.83, 104.27, 104.13, 93.24, 89.08, 79.46, 72.85, 70.82, 63.39, 40.27, 38.67, 38.27, 26.83, 26.61, 21.47. These chemical shifts are for both isomers. UV (MeOH) 224, 232, 364 nm.

Compounds (9), (61b), and (61c) were prepared as described in previous reports.

16.85 g of the mixture containing (9), (61b), and (61c) was dissolved in 100 ml of methylene chloride and catalytic amount of DMAP was added to it. Subsequently, triethylamine (2.62 g, 3.97ml) and nicotinic anhydride 6.49 g were added. After 3 hours the reaction was quenched by an addition of 100 ml 5% sodium bicarbonate, then the organic layer was separated, washed with water and dried with magnesium sulfate. Yield of crude products 18.78 g. The reaction mixture consisted of 1-(5'-dimethoxytrityl-2',3'-bis-O-benzoyl-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (9), (61b), and (61c). Separation by column chromatography on silica gel using 1%, 2%, and 5% methanol in chloroform. Obtained 2.4 g of (15a) then 10.4 g of the mixture of two isomers. ¹H NMR (300 MHz, DMSO): 9.06 (1H, d, J = 2 Hz), 8.97 (1H, s), 8.80-8.78 (1H, m), 8.26-8.23 (1H, m),
7.93-7.82 (3H, m), 7.62-7.14 (14H, m), 6.81-6.78 (4H, m), 6.71 (1H, d, J = 2 Hz), 3.66 (6H, s), 3.44-3.35 (2H, m); 1C NMR (75 MHz, DMSO): 164.55, 164.53, 163.59, 160.17, 158.08, 154.26, 154.14, 150.17, 150.06, 146.30, 144.59, 144.56, 137.09, 136.96, 135.42, 135.26, 134.05, 133.89, 129.72, 129.65, 129.39, 129.27, 128.84, 128.76, 128.48, 127.82, 127.72, 126.67, 124.61, 124.53, 123.95, 123.90, 113.17, 88.57, 85.83, 80.86, 74.76, 74.41, 71.51, 71.13, 62.72, 62.69, 54.93. Calculated for C$_{42}$H$_{37}$N$_5$O$_9$ x H$_2$O: C, 65.17; H, 5.08; N, 9.03. Found: C, 65.67; H, 5.08; N, 9.03.

1-[3'-O-(3-carbonylpyridine)-2'-O-benzoyl-β-D-ribofuranosyl]-1.2.4-triazole-3-carboxamide (63a) and 1-[2'-O-(3-carbonylpyridine)-3'-O-benzoyl-β-D-ribofuranosyl]-1.2.4-triazole-3-carboxamide (63b):

10 g (13.23 mmols) of mixture containing isomers (62a) and (62b) was dissolved in 85 ml of 80% acetic acid. The red solution was stirred at room temperature for 4 hours. The TLC showed no more starting material present. Then solid sodium bicarbonate was added and water (400 ml) carefully. The suspension was extracted with ethyl acetate (3 x 300 ml) and organic layer was dried with magnesium sulfate and then the solvent was removed under vacuum. Yield 9.82 g. 4.0 g of crude product was purified by column chromatography on silica gel using 1%, 2%, and 5% methanol in chloroform. Yield after purification was 3.05 g.

1-[3'-O-(N-Methyl-3-carbonylpyridinium)-2'-O-benzoyl-β-D-ribofuranosyl]-1.2.4-triazole-3-carboxamide iodide (64a) and 1-[2'-O-(N-methyl-3-carbonylpyridinium)-3'-O-benzoyl-β-D-ribofuranosyl]-1.2.4-triazole-3-carboxamide iodide (64b):

2.4 g (5.3 mmols) of purified mixture of isomers was dissolved in 30 ml of dry acetone and an excess of methyl iodide was added. The solution was refluxed over a period of 6 hours. Then the solvent was removed under vacuum and the oily residue was treated with 200 ml of diethyl ether and stirred overnight until yellow solid precipitated out. It was filtered off washed with additional amount of ether and dried under vacuum 2.82 g (89% yield). 1H NMR (300 MHz, DMSO): 9.63 (1H, s), 9.38-9.25 (1H, s), 9.10-8.90 (2H, m), 8.20-8.15 (1H, m), 8.10-7.25 (7H, m), 6.40 (1H, s), 6.20-5.90 (2H, m), 4.75-4.65 (1H, m), 4.42 (3H, s), 3.95-3.85 (2H, m), 2.50 (1H, s); 13C NMR (75 MHz, DMSO): 164.58, 164.22, 160.26,
160.00, 157.48, 149.38, 146.47, 144.61, 144.53, 133.71, 129.22, 128.68, 128.19, 128.04, 127.77, 88.56, 83.29, 75.98, 71.11, 68.56, 60.63, 55.75, 48.54. These chemical shifts are for both isomers. Calculated for C_{22}H_{22}N_{5}O_{7} x H_{2}O: C, 43.08; H, 3.62; N, 11.42; I, 11.42. Found: C, 43.76; H, 4.29; N, 10.57; I, 19.40.

1-[3'-O-(N-Methyl-1,4-dihydropyridine)-2'-O-benzoyl-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (65a) and 1-[2'-O-(N-methyl-3-carbonyl-1,4-dihydropyridine)-3'-O-benzoyl-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (65b) AVS # 6082:

1.19 g (2 mmols) of mixture of quaternary salts was suspended in a mixture of 50 ml of methylene chloride and 50 ml of degassed, deionized water and sodium dithionite (2.56 g) and sodium bicarbonate (1.24 g) were added and the mixture was stirred under a constant flow of argon. After 6 hours of stirring the two layers were separated and the organic layer was collected and dried with magnesium sulfate. After solvent removal 0.81 g (86%) of yellow solid was obtained. UV (MeOH): 216, 366 nm. ¹H NMR (300 MHz, DMSO): 8.96 (1H, s), 8.08-7.59 (7 H, m), 6.95 (1 H, s), 6.36 (1 H, d, J = 4 Hz), 5.84-5.75 (2 H, m), 5.27 (1 H, broad signal), 4.68-4.49 (3 H, m), 3.76-3.70 (1 H, broad signal), 3.44 (2 H, s), 2.87-2.51 (3 H, m); ¹³C NMR (75 MHz, DMSO): 165.34, 164.79, 160.29, 157.69, 145.60, 143.97, 133.85, 129.74, 129.71, 129.61, 129.43, 128.99, 128.88, 128.77, 104.25, 93.14, 89.56, 83.59, 73.06, 71.96, 68.57, 61.00, 55.82, 39.80, 21.31. These chemical shifts are for both isomers.

1-[5'-O-Benzoyl-3'-O-(3-carbonylpyridine)-2'-benzoyl-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (66a) and 1-[5'-O-benzoyl-2'-O-(3-carbonylpyridine)-3'-O-benzoyl-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (66b):

5.80 g (12.9 mmols) of a crude mixture of isomers (63a) and (63b) was dissolved in 40 ml of pyridine and the catalytic amount of DMAP was added. Then 3.23 g of benzoic anhydride was added at once. After 3 hours of stirring at room temperature the reaction was quenched with 5% sodium bicarbonate solution (100 ml) and the product was extracted with methylene chloride (3 x 100 ml). The organic layer was washed with water (200 ml) and dried with magnesium sulfate. After solvent was
removed the crude oily residue (7.40 g) was purified by column chromatography on silica gel using 1%, 2%, and 5% methanol in chloroform.

1H NMR (300 MHz, DMSO): 9.17-8.87 (3H, m), 8.37-7.46 (15H, m), 6.83-6.81 (1H, m), 6.28-6.23 (2H, m), 5.03-5.01 (1H, m), 4.72-4.70 (2H, broad signal); 13C NMR (75 MHz, DMSO): 165.54, 164.65, 163.58, 160.21, 158.22, 154.30, 146.39, 137.15, 136.99, 133.91, 133.42, 129.39, 129.32, 129.17, 128.89, 128.79, 128.74, 128.48, 124.55, 123.99, 88.60, 79.50, 79.18, 75.08, 70.99, 63.37. These chemical shifts are for both isomers. Calculated for C$_{28}$H$_{23}$N$_5$O$_8$ x H$_2$O: C, 58.43; H, 4.00; N, 12.17. Found: C, 57.97; H, 4.20; N, 11.84.

1-[[5'-O-Benzoyl-3'-O-(N-methyl-3-carbonylpyridinium)-2'-O-benzoyl-β-D-ribofuranosyll]-1.2.4-triazole-3-carboxamide iodide (67a) and 1-[[5'-O-benzoyl-2'-O-(N-methyl-3-carbonylpyridinium)-3'-O-benzoyl-β-D-ribofuranosyll]-1.2.4-triazole-3-carboxamide iodide (67b):

2.0 g (3.58 mmols) of a purified mixture of (66a) and (66b) was dissolved in 30 ml of dry acetone and an excess of methyl iodide was added. The mixture was stirred overnight and the solid that appeared was filtered off washed with additional amount of acetone (15 ml). The filtrate was refluxed for additional 6 hours and then the solvent was removed and the residue was treated with 100 ml of diethyl ether and the yellow solid was filtered off. Two crops combined together gave 2.49 g (99%) of quat. 1H NMR (300 MHz, DMSO): 9.78 (1H, s), 9.45-9.25 (1H, m), 9.20-9.00 (2H, m), 8.50-8.25 (1H, m), 8.20-7.50 (12H, m), 6.90 (1H, s), 6.40-6.20 (2H, m), 5.20-5.10 (1H, m), 4.80-4.60 (2H, m), 4.50 + 4.45 (3H, s); 13C NMR (75 MHz, DMSO): 165.53, 165.47, 164.67, 160.73, 160.57, 160.16, 158.11, 149.72, 146.79, 146.70, 146.43, 144.93, 133.95, 133.48, 129.59, 129.47, 129.36, 129.31, 129.03, 128.96, 128.87, 128.80, 128.29, 128.10, 88.50, 88.28, 79.19, 79.12, 76.17, 72.23, 70.59, 63.19, 63.13, 48.59, 48.53. These chemical shifts are for both isomers. Calculated for C$_{29}$H$_{26}$N$_5$O$_8$I: C, 49.80; H, 3.75; N, 10.01; I, 18.14. Found: C, 49.21; H, 3.88; N, 9.85; I, 17.94.

1-[[5'-O-Benzoyl-3'-O-(N-methyl-carbonyl-1,4-dihydropyridine)-2'-O-benzoyl-β-D-ribofuranosyll]-1.2.4-triazole-3-carboxamide (68a) and 1-[[5'-O-benzoyl-2'-O-(N-methyl-3-carbonyl-1,4-dihydropyridine)-3'-O-benzoyl-β-D-ribofuranosyll]-1.2.4-triazole-3-carboxamide (68b) AVS # 6081.
1.40 g (2 mmols) of the mixture of quats (67a) and (67b) was suspended in a mixture of 50 ml of methylene chloride and 50 ml degassed, deionized water and sodium dithionite (2.56 g) and sodium bicarbonate (1.24 g) were added. The suspension was stirred for 6 hours under constant flow of argon. Then two layers were separated and the organic layer was dried with magnesium sulfate. The removal of solvent gave 0.92 g of yellow solid (80% yield). \(^1\)H NMR (300 MHz, DMSO): 8.98 (1H, s), 8.11-7.51 (13H, m), 6.52 (1H, s), 6.07-5.78 (3H, m), 4.75-4.62 (4H, m), 3.46 (2H, s), 2.89 + 2.86 (3H, s); \(^13\)C NMR (75 MHz, DMSO): 165.54, 165.50, 164.69, 160.22, 158.12, 146.22, 144.18, 143.80, 133.86, 133.43, 129.53, 129.44, 129.38, 129.28, 129.18, 128.93, 128.80, 104.33, 104.17, 93.16, 89.19, 88.78, 79.54, 73.13, 71.34, 63.51, 54.92, 40.17, 21.36. These chemical shifts are for both isomers. UV (MeOH): 226, 366 nm.

1-[5'-Dimethoxytrityl-2',3'-bis-O-(3-carbonylpyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (69):

1-(5'-Dimethoxytrityl-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (7) (0.55 g, 1 mmol) was dissolved in 10 ml of methylene chloride and triethylamine (0.121 g, 1.2 mmols), catalytic amount of DMAP, and nicotinic anhydride (0.38 g, 2 mmols) were added. The reaction was stirred for 0.5 hour and controlled by TLC. Then 50 ml of 5% sodium bicarbonate was added to quench the reaction and the mixture was extracted with methylene chloride (3 x 15 ml). The organic layer was washed with water and dried with magnesium sulfate. Pure product was obtained as yellow foam in 91 % yield. Found: C, 61.72; H, 4.60; N, 10.54. Calculated for \(C_{41}H_{36}N_6O_9\times 2 H_2O\): C, 62.11; H, 5.08; N, 10.60. \(^1\)H NMR (300 MHz, CDCl\(_3\)): 9.17 (1 H, s), 9.10 (1 H, s), 8.77 (1 H, d, \(J = 4.9\) Hz), 8.75 (1 H, 3, \(J = 4.9\) Hz), 8.59 (1 H, d, \(J = 4.4\) Hz), 8.20-8.16 (2 H, m), 7.46 (2 H, d, \(J = 7.3\) Hz), 7.38-7.19 (10 H, m), 6.82-8.75 (5 H, m), 6.44 (2 H, d, \(J = 2.7\) Hz), 6.06-6.03 (1 H, m), 4.64-4.62 (1 H, m), 3.74 (6 H, s), 3.74-3.53 (2 H, m). \(^13\)C NMR (75 MHz, CDCl\(_3\)): 163.7, 163.5, 160.3, 158.5, 157.4, 154.05, 145.0, 144.0, 127.1, 137.0, 135.1, 130.1, 130.0, 129.95, 127.85, 126.9, 124.6, 123.4, 123.38, 113.1, 113.06, 89.6, 86.9, 82.7, 74.9, 72.3, 62.7, 55.5.

1-[2',3'-Bis-O-(3-carbonylpyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (70):
1-[[5'-Dimethoxytrityl-2',3'-bis-O-(3-carbonylpyridine-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (69)] (crude material) (12 g, 15.86 mmols) was dissolved in acetic acid 80% (99 ml). The orange solution was stirred for 4 hours at room temperature, until the TLC showed no more starting material. Then sodium bicarbonate was added (about 100 g), followed by water (400 ml). The organic material was extracted using ethyl acetate (3 x 300 ml). The solution was dried (magnesium sulfate) and the solvent was removed under reduced pressure to give 6.97 g of crude material. The crude product was purified by column chromatography, on silica gel using 10% methanol in chloroform. Found: C, 51.21; H, 4.07; N, 17.72. Calculated for C20H18N6O7 x H2O: C, 50.85; H, 4.26; N, 17.79. 1H NMR (300 MHz, DMSO): 9.12-9.11 (1 H, m), 9.05-9.04 (1 H, m), 8.90 (1 H, s), 8.87-8.82 (2 H, m), 8.34-8.24 (2 H, m), 7.80 (1 H, s), 7.70 (1 H, s), 7.61-7.53 (2 H, m), 6.71 (1 H, d, J = 4.3 Hz), 6.17-6.14 (1 H, m), 5.98 (1 H, t, J = 5 Hz), 5.33 (1 H, m), 4.66-4.65 (1 H, m), 3.82-3.70 (2 H, m).

1-[2',3'-Bis-O-(N-methyl-3-carbonylpyridinium)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide diiodide (71):

1g (2.2 mmols) of (70) was dissolved in 40 ml of dry acetone and an excess of methyl iodide was added. The solution was refluxed for 4 hours and the precipitate that formed was removed by filtration and dried under vacuum. The yield was 1.14 g (70%) of a yellow solid. 1H NMR (300 MHz, DMSO): 8.57 (2 H, d, J = 8 Hz), 8.15-8.11 (2 H, m), 7.94-7.87 (4 H, m), 7.22-7.15 (2 H, m), 6.70 (1 H, s), 6.60 (1 H, s), 5.03 (1 H, d, J = 4.6 Hz), 4.84-4.83 (1 H, m), 3.65-3.63 (1 H, m), 3.39 (3 H, s), 2.99-2.66 (2 H, m); 13C NMR (75 MHz, DMSO): 160.88, 160.62, 160.21, 157.64, 149.37, 149.28, 146.71, 145.88, 145.20, 145.16, 137.32, 128.23, 128.01, 124.10, 88.24, 83.18, 75.34, 72.67, 60.45, 48.69, 48.59. Found: C, 34.26; H, 3.43; N, 11.09. For C22H24I2N6O7 x 0.75 H2O calculated: C, 34.52; H, 3.56; N, 10.98.

1-[2',3'-Bis-O-(N-methyl-3-carbonyl-1,4-dihydropyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (72) AVS 5897:

2.97 g (3.7 mmols) of the bis quaternary salt (71) were suspended in 80 ml of methylene chloride and 80 ml of degassed, deionized water. The
salt dissolved in water not in the organic layer. Sodium dithionite (4.7 g), and sodium bicarbonate (2.3 g) were added to the solution causing it to turn orange immediately. After 4 hrs of stirring under the argon flow the insoluble solid that formed was filtered off and dried under phosphorous pentoxide. Yield was 2.3 g.

$$\text{H} \text{NMR (300 MHz, DMSO): } 8.90 (2 \text{ H, s}), 8.04 (1 \text{ H, s}), 7.75 (1 \text{ H, s}), 7.16 (2 \text{ H, d, J = 9 Hz}), 6.26 (1 \text{ H, d, J = 2 Hz}), 5.87-5.46 (6 \text{ H, m}), 4.80-4.79 (2 \text{ H, m}), 4.32-4.30 (1 \text{ H, m}), 2.99-2.78 (10 \text{ H, m});$$

$$\text{C NMR (75 MHz, DMSO): } 166.64, 166.16, 161.07, 157.78, 150.51, 146.27, 146.09, 144.70, 144.59, 137.83, 130.19, 130.08, 104.97, 104.82, 94.20, 93.76, 84.41, 73.79, 70.45, 61.45, 40.75, 21.98, 21.84.$$

UV (DMSO): 222, 360 nm.

1-5'-O-Pivaloyl-2',3'-bis-O-(3-carbonylpyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (73):

1-[2',3'-Bis-O-(3-carbonylpyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (70) (about 6 g of crude reaction mixture) was dissolved in 50 ml of pyridine and catalytic amount of DMAP was added, followed by pivaloyl anhydride (2.8 ml). After four hours the reaction was quenched by 50 ml of 5% sodium bicarbonate and the product was extracted with methylene chloride (3 x 100 ml). The organic layer was washed with water (100 ml) and dried with magnesium sulfate. After solvent removal the crude material was purified by column chromatography on silica gel, using chloroform-methanol (1%), followed by 5%. Yield was 2 g of pure, very hygroscopic material. Found: C, 52.58; H, 4.62; N, 14.25. For C_{25}H_{26}N_{6}O_{8} \times 2 H_{2}O required: C, 52.26; H, 5.26; N, 14.63.

$$\text{H NMR (300 MHz, CDCl}_3): 9.16-9.14 (2 \text{ H, m, H-2 pyr}), 8.79-8.77 (2 \text{ H, m, H-6 pyr}), 8.65 (1 \text{ H, s, CH}), 8.25-8.20 (2 \text{ H, m, H-4 pyr}), 7.41-7.36 (2 \text{ H, m, H-5 pyr}), 7.35 (2 \text{ H, s, NH2}), 6.51 (1 \text{ H, d, J = 3 Hz, H-1}), 6.26-6.23 (1 \text{ H, m, 0.08 (1 \text{ H, t, J = 5.5 Hz, H-3'})}, 4.81-4.79 (1 \text{ H, m), 4.50-4.46 (2 \text{ H, m, 1.20 (9 \text{ H, s, 3 Me). C NMR (75 MHz, CDCl}_3): 179.90, 163.61, 163.56, 160.46, 157.67, 154.06, 153.93, 150.52, 150.47, 145.04, 137.10, 137.04, 124.35, 124.16, 123.43, 123.37, 89.42, 80.57, 75.09, 71.41, 62.86, 38.59, 26.86.$$

1-5'-O-Pivaloyl-2',3'-bis-O-(N-methyl-3-carbonylpyridinium)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide iodide (74):
1-[5'-O-Pivaloyl-2',3'-bis-O-(3-carbonylpyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (73) (1.27 g) was dissolved in dry acetone (40 ml) and refluxed with an excess of methyl iodide for four hours. Then the solvent was removed to dryness and residue was triturated with diethyl ether (100 ml). Yellow solid was filtered off. Yield was 1.9 g. Found: C, 38.90; H, 4.07; N, 9.66. For C_{27}H_{32}N_{6}O_{8}S_{2} required: C, 39.43; H, 3.92; N, 10.22. ^1H NMR (300 MHz, DMSO): 9.71 (2 H, s), 9.25 (2 H, d, J = 6 Hz), 9.06 (2 H, s), 9.02 (1 H, s), 8.32 (2 H, t, J = 7 Hz), 7.94 (1 H, s), 7.75 (1 H, s), 6.90 (1 H, d, J = 3 Hz), 6.21-6.10 (2 H, m), 5.05-5.02 (1 H, m), 4.45-4.32 (8 H, m), 1.15 (9 H, s). ^13C NMR (75 MHz, DMSO): 177.24, 160.74, 160.70, 159.99, 158.02, 149.40, 149.34, 146.81, 146.24, 145.17, 145.10, 128.27, 128.08, 128.00, 87.87, 79.38, 75.24, 71.80, 62.75, 38.25, 26.83.

1-[5'-O-Pivaloyl-2',3'-bis-O-(N-methyl-3-carbonyl-1,4-dihydropyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (75) AVS # 6291:

1-[5'-O-Pivaloyl-2',3'-bis-O-(N-methyl-3-carbonylpyridinium)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide iodide (74) (1.5 g) was suspended in a mixture of 50 ml of deionized, degassed water and 50 ml of methylene chloride. Then mixture of sodium dithionite (2.30 g) and sodium bicarbonate (1.13 g) was added and the suspension was stirred in an ice bath under the stream of argon for four hours. The two layers were separated and organic layer was dried with magnesium sulfate. After solvent was removal under reduced pressure 1.08 g of product was obtained. UV (MeOH): 286, 356.5 nm. ^1H NMR (300 MHz, DMSO): 8.88 (1 H, s), 7.86 (1 H, s), 7.72 (1 H, s), 7.16 (2 H, d, J = 7 Hz), 6.32 (1 H, d J = 2.5 Hz), 5.86 (2 H, d, J = 8 Hz), 5.66-5.58 (2 H, m), 4.79-4.76 (2 H, m), 4.47-4.41 (3 H, m), 3.86 (2 H, s), 2.98 (8 H, m), 1.12 (9 H, s). ^13C NMR (75 MHz, DMSO): 177.19, 165.16, 165.48, 160.12, 157.90, 145.87, 144.01, 143.73, 129.75, 104.27, 104.41, 93.75, 93.42, 80.12, 73.09, 69.65, 63.27, 40.23, 38.22, 26.78, 21.47.

1-(5'-O-Dimethoxytrityl-2',3'-bis-O-valeroyl)-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (76): 1-(5'-O-Dimethoxytrityl-2',3'-bis-O-valeroyl)-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (7) (4.73 g, 8.65 mmols) was dissolved in 50 ml of methylene chloride and triethylamine (1.32 ml) was added. Then valeryl anhydride
(1.89 ml, 10% excess) was added dropwise via syringe. The reaction was monitored by TLC. After 2 hrs 0.3 ml more of valeryl anhydride was added and 2 hours later the reaction was quenched with 100 ml of sodium bicarbonate (5%). The organic layer was collected and water layer extracted with additional (2 x 50 ml) methylene chloride. After drying with magnesium sulfate solvent was removed and the crude mixture (4.6 g) was subjected to column chromatography on silica gel to separate bis adduct and 2'- and 3'- isomers. Elution with 1% and 2% methanol in chloroform gave 0.5 g of the bis adduct (76), followed by 5% solution to give mixture of mono-isomers (77a) and (77b). ¹H NMR (300 MHz, CDCl₃): 8.38 (1 H, s), 7.42 (2 H, d, J = 7 Hz), 7.32-7.19 (8 H, m), 6.81 (2 H, d, J = 8.7 Hz), 6.75 (2 H, broad signal), 6.36 (1 H, s), 6.08 (1 H, d, J = 5 Hz), 6.03-5.99 (1 H, m), 5.68-5.65 (1 H, m), 4.37-4.36 (1 H, m), 3.76 (6 H, m), 3.50-3.34 (2 H, m), 2.36-2.31 (4 H, m), 1.65-1.55 (4 H, m), 1.38-1.27 (4 H, m), 0.94-0.88 (6 H, m). ¹³C NMR (75 MHz, CDCl₃): 172.50, 172.00, 161.00, 158.61, 144.52, 144.18, 135.26, 135.23, 130.12, 129.0, 128.16, 127.96, 127.03, 113.24, 90.04, 86.92, 82.96, 74.04, 71.00, 62.84, 55.19, 33.63, 33.43, 26.84, 26.72, 22.18, 22.12, 13.67, 13.65.

1-[(5'-O-Dimethoxytrityl-3'-O-valeroyl)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (77a) and 1-[(5'-O-Dimethoxytrityl-2'-O-valeroyl)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (77b):

Obtained from the reaction mixture, containing (76), predominantly as 3'- isomer. ¹H NMR (300 MHz, CDCl₃): 8.45 and 8.43 (1 H, s), 7.38 (2 H, d, J = 7 Hz), 7.30-7.15 (7 H, m), 7.02 (broad signal), 6.77 (4 H, d, J = 4 Hz), 6.60 (1 H, broad signal), 6.05 and 5.96 (1 H, d, J = 4.4 Hz), 5.38 (1 H, t, J = 4.7 Hz), 5.25 (1 H, broad signal), 5.09 (1 H, s), 4.38-4.37 (1 H, m), 3.71 (6 H, s), 3.42-3.32 (2 H, m), 2.40-2.34 (2 H, m), 1.60-1.55 (2 H, m), 1.34-1.27 (2 H, m), 0.86 (3 H, t, J = 7 Hz). ¹³C NMR (75 MHz, CDCl₃): 173.31, 161.12, 158.46, 156.72, 144.41, 135.55, 135.49, 130.02, 128.12, 128.05, 127.88, 127.83, 126.90, 113.18, 92.57, 86.59, 82.58, 73.65, 72.87, 63.11, 55.15, 33.17, 26.81, 22.14, 13.68.

1-(2',3'-bis-O-valeroyl)-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (78);
1-(5'-O-Dimethoxytrityl-2'3'-bis-O-valeroyl)-ß-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (76) (13.31 g, 18.6 mmols) was dissolved in 116 ml of acetic acid (80%) and left stirring for 3 days. After neutralization with sodium bicarbonate, the product was extracted with ethyl acetate (4 x 200 ml). The organic layer was dried with magnesium sulfate and after solvent removal the crude oil was treated with diethyl ether (50 ml) - petroleum ether (20 ml) mixture. The solid that appeared after 15 minutes was filtered off and dried in the vacuum oven. Yield was 6.3 g (82%). Found: C, 52.32; H, 6.88; N, 13.51. For C_{18}H_{28}N_{4}O_{7} required: C, 52.42; H, 6.84; N, 13.58. \(^1\)H NMR (300 MHz, DMSO): 8.93 (1 H, s), 7.82 (2 H, d, J = 49 Hz), 6.26 (1 H, d, J = 3.7 Hz), 5.73 (1 H, t, J = 4.3 Hz), 5.54 (1 H, t, J = 4.6 Hz), 5.19 (1 H, broad signal), 4.24 (1 H, d, J = 3.8 Hz), 3.68-3.43 (2 H, m), 2.38-2.34 (4 H, m), 1.57-1.48 (4 H, m), 1.36-1.24 (4 H, m), 0.91-0.83 (6 H, m). \(^{13}\)C NMR (75 MHz, DMSO): 171.97, 171.68, 160.27, 157.74, 145.69, 89.00, 83.68, 73.73, 70.63, 60.88, 33.00, 32.86, 26.51, 26.42, 21.64, 21.55, 13.57, 13.52.

Deprotected 1-(2'3'-bis-O-valeroyl)-ß-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (78): (6.3 g, 15.27 mmols) was dissolved in 100 ml of methylene chloride, catalytic amount of DMAP, triethylamine (2.25 ml) and nicotinic anhydride (3.66 g) were added. The mixture was stirred at room temperature for six hours and then quenched with sodium bicarbonate (50 ml). The organic layer was separated, washed with 50 ml of water and dried with magnesium sulfate. The solvent removal yielded white foam (6.25 g) which was purified by column chromatography on silicas gel successively with 1% and then 2% methanol in chloroform. Yield of pure product was 5 g. \(^1\)H NMR (300 MHz, CDCl\(_3\)): 9.24 (1 H, d J = 1.3 Hz), 8.79-8.77 (1 H, m), 8.38 (1 H, s), 8.37-8.33 (1 H, m), 7.48-7.43 (1 H, m), 7.15-6.46 (2 H, s), 6.09 (1 H, d, J = 3 Hz), 5.87-5.84 (1 H, m), 5.78-5.75 (1 H, m), 4.72-4.56 (3 H, m), 2.46 (1 H, broad signal), 2.36 (4 H, q, J = 7.4 Hz), 1.63-1.56 (4 H, m), 1.39-1.31 (4 H, m), 0.92 (6 H, s). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): 172.32, 172.21, 164.88, 160.38, 157.83, 153.78, 150.93, 144.93, 137.40, 125.31, 123.73, 89.74, 80.68, 74.16, 70.31, 63.51, 33.52, 33.48, 26.76, 22.17, 22.14, 13.65.
1-[5'-O-(N-Methyl-3-carbonylpyridine)-2'3'-bis-O-valeryl]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide iodide (80):

1-(5'-O-3-Carbonylpyridine-2'3'-bis-O-valeryl)-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (79) (1.8 g) was dissolved in dry acetone (30 ml), and refluxed with an excess of methyl iodide for four hours. Then the solvent was removed and 100 ml of diethyl ether was added and the solution was stirred overnight. The solid that precipitated out was filtered off and dried under vacuum. Yield was 2.05 g. Found: C, 44.62; H, 5.33; N, 10.73. For C_{25}H_{34}N_5O_8I required: C, 45.53; H, 5.33; N, 10.62. UV(MeOH): 266 nm.

^{1}H NMR (300 MHz, DMSO): 9.57 (1 H, s), 9.32 (1 H, d, \(J = 6 \text{ Hz} \)), 9.11 (1 H, d, \(J = 8 \text{ Hz} \)), 8.98 (1 H, s), 7.98-7.75 (1 H, m), 7.85 (2 H, d, \(J = 64 \text{ Hz} \)), 6.46 (1 H, d, \(J = 2.5 \text{ Hz} \)), 5.82-5.80 (2 H, m), 4.80-4.59 (3 H, m), 4.51 (3 H, s), 2.42-2.39 (4 H, m), 1.56-1.53 (4 H, m), 1.33-1.30 (4 H, m), 0.92-0.84 (6 H, m).

^{13}C NMR (75 MHz, DMSO): 171.90, 171.68, 161.37, 160.07, 157.93, 148.84, 146.85, 146.49, 144.78, 128.97, 128.10, 88.225, 79.79, 73.20, 69.92, 64.43, 48.46, 32.91, 32.82, 26.33, 26.29, 21.52, 21.44, 13.54, 13.49.

1-[5'-O-(N-Methyl-3-carbonyl-1,4-dihydropyridine)-2'3'-bis-O-valeryl]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (81) AVS # 6292:

1.5 g (2.33 mmols) of 1-[5'-O-(N-Methyl-3-carbonylpyridine)-2'3'-bis-O-valeryl]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide iodide (80) was suspended in 50 ml of degassed, deionized water and 50 ml of methylene chloride. The mixture was cooled to 0°C and sodium dithionite (2.97 g) and sodium bicarbonate (1.46 g) were added at once. After two hours of stirring under stream of argon the reaction was not completed, therefore additional amounts of Na_{2}S_{2}O_{4} (0.38 g) and NaHCO_{3} (0.195 g) water added. In 15 minutes the reaction was completed and organic phase was separated, dried with magnesium sulfate yielding after solvent removal 1.39 g of product. UV (MeOH): 360.5 nm.

^{1}H NMR (300 MHz, DMSO): 8.89 (1 H, s), 7.88 (1 H, s), 7.76 (1 H, s), 7.07 (1 H, s), 6.35 (1 H, d \(J = 3 \text{ Hz} \)), 5.84-5.59 (3 H, m), 4.75-4.23 (4 H, m), 3.38 (2 H, s), 2.95 (3 H, s), 3.39-3.35 (4 H, m), 1.54-1.49 (4 H, m), 1.32-1.28 (4 H, m), 0.88-0.84 (6 H, m).

^{13}C NMR (75 MHz, DMSO): 171.80, 171.69, 166.60, 160.10, 157.96, 146.12, 143.25, 129.77, 103.91, 94.18, 88.56, 80.07, 79.94, 73.39, 70.52, 62.26, 40.05, 32.90, 32.81, 26.37, 21.57, 21.49, 13.52, 13.49.
1-[(5'-O-Dimethoxytrityl-3'-O-valeroyl-2'-O-(3-carbonylpyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (82a) and 1-[5'-O-Dimethoxytrityl-2'-O-valeroyl-3'-O-(3-carbonylpyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (82b);

1-[(5'-O-Dimethoxytrityl-3'-O-valeroyl)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (77a) and 1-[(5'-O-Dimethoxytrityl-2'-O-valeroyl)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (77b) (13.21 g) was dissolved in 25 ml of methylene chloride and triethylamine (2 ml), followed by catalytic amount of DMAP, and nicotinic anhydride (4.8 g) were added. The solution was stirred for two hours and then the reaction was quenched with 50 ml of 5% sodium bicarbonate. Organic layer was separated and dried with magnesium sulfate. Yield of crude product 13.0 g. Found: C, 63.66; H, 5.74; N, 9.15. For C_{40}H_{41}N_{5}O_{9} x H_{2}O required: C, 63.73; H, 5.75; N, 9.29. 1H NMR (300 MHz, DMSO+CDCl{3}): 9.16 (1 H, d, J = 1 Hz), 8.82 (1 H, s), 8.85 (1 H, d, J = 4.7 Hz), 8.34 (1 H, d, J = 8 Hz), 7.73 (2 H, d, J = 20.4 Hz), 7.61-7.57 (1 H, m), 7.38 (2 H, d, J = 7.8 Hz), 7.27-7.19 (7 H, m), 6.84 (4 H, d, J = 7 Hz), 6.59 (1 H, d, J = 2 Hz), 6.09-6.07 (1 H, m), 5.79 (1 H, t, J = 6 Hz), 4.44-4.42 (1 H, m), 3.74 (6 H, s), 3.37-3.24 (2 H, m), 2.22 (2 H, t, J = 7 Hz), 1.37 (2 H, t, J = 7 Hz), 1.16-1.09 (2 H, m), 0.69 (3 H, t J = 7 Hz). 13C NMR (75 MHz, DMSO+CDCl{3}): 171.51, 163.41, 160.04, 158.02, 158.00, 157.86, 154.10, 150.22, 146.04, 144.45, 137.01, 135.32, 135.18, 129.62, 129.55, 127.64, 126.53, 124.49, 123.79, 113.00, 88.51, 85.69, 80.99, 74.41, 70.10, 62.46, 54.86, 32.87, 26.31, 21.41, 13.29.

1-[(3'-O-valeroyl-2'-O-(3-carbonylpyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (83a) and 1-[(2'-O-valeroyl-3'-O-(3-carbonylpyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (83b).

1-[(5'-O-Dimethoxytrityl-3'-O-valeroyl-2'-O-(3-carbonylpyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (82a) and 1-[(5'-O-Dimethoxytrityl-2'-O-valeroyl-3'-O-(3-carbonylpyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (82b) (1038 g, 14.11 mmols) was dissolved in 91 ml of 80% acetic acid and the reaction was completed after stirring overnight. White cake (10.19 g) was obtained and it was purified by column chromatography on silica gel using 5% methanol in chloroform. The yield of the purified material (very hygroscopic) was 4.90
g. Found: C, 51.38; H, 5.42; N, 15.74. For C_{19}H_{23}N_{5}O_{7} x 0.5 H_{2}O required: C, 51.58; H, 5.66; N, 15.83. \^1H NMR (300 MHz, CDCl_{3}): 9.14 (1 H, s), 8.79 (1 H, s), 8.75 (1 H, d, J = 5 Hz), 8.25 (1 H, d, J = 8 Hz), 7.63 (1 H, s), 7.42-7.31 (1 H, m), 7.06 (1 H, s), 6.35 (1 H, d, J = 3.5 Hz), 6.06 (1 H, t, J = 4.4 Hz), 5.81-5.78 (1 H, m), 5.06 (1 H, broad signal), 4.43 (1 H, d, J 3.7 Hz), 4.03-3.84 (2 H, m), 1.47-1.40 (2 H, m), 1.26-1.15 (2 H, m), 0.77-0.71 (3 H, m).

\^13C NMR (75 MHz, CDCl_{3}): 172.47, 163.56, 161.04, 156.94, 153.94, 150.59, 145.08, 137.34, 124.67, 123.45, 90.23, 84.59, 75.81, 70.62, 60.99, 33.44, 26.60, 21.90, 13.42.

1-\{3'-O-Valeroyl-2'-O-(N-methyl-3-carbonylpyridinium)-\beta-D-ribofuranosyl\}-1,2,4-triazole-3-carboxamide iodide (84a) and 1-\{2'-O-valeroyl-3'-O-(N-methyl-3-carbonylpyridinium)-\beta-D-ribofuranosyl\}-1,2,4-triazole-3-carboxamide iodide (84b):

1-\{3'-O-Valeroyl-2'-O-(3-carbonylpyridine)-\beta-D-ribofuranosyl\}-1,2,4-triazole-3-carboxamide (83a) and 1-\{2'-O-valeroyl-3'-O-(3-carbonylpyridine)-\beta-D-ribofuranosyl\}-1,2,4-triazole-3-carboxamide (83b) (4.90 g) was dissolved in 30 ml of dry acetone and stirred with an excess of methyl iodide over a period of three days. Then the solvent was removed and the residue was treated with diethyl ether (40 ml) and the precipitate was filtered off. The yield of very hygroscopic solid was 5.40 g. Found: C, 41.04; H, 4.80; N, 11.44. For C_{20}H_{26}N_{5}O_{7}I x 0.5 H_{2}O required: C, 41.10; H, 4.79; N, 11.98. \^1H NMR (300 MHz, DMSO): 9.68 (1 H, s), 9.30 (1 H, d J = 6 Hz), 9.07 (1 H, d, J = 8 Hz), 8.99 (1 H, s), 8.39-8.34 (1 H, m), 7.96 (1 H, s), 7.44 (1 H, s), 6.60 (1 H, d, J = 3.5 Hz), 6.04-6.01 (1 H, m), 5.67-5.64 (1 H, m), 5.27-5.21 (1 H, m), 4.51 (3 H, s), 3.73-3.66 (2 H, m), 2.50-2.30 (2 H, m), 1.45-1.37 (2 H, m), 1.24-1.17 (2 H, m), 0.80-0.75 (3 H, m). \^13C NMR (75 MHz, DMSO): 172.11, 160.21, 157.70, 149.59, 146.83, 145.81, 144.97, 128.12, 88.58, 83.19, 75.80, 70.15, 60.56, 48.56, 32.86, 26.32, 21.46, 13.60.

1-\{3'-O-Valeroyl-2'-O-(N-methyl-3-carbonyl-1,4-dihydropyridine)-\beta-D-ribofuranosyl\}-1,2,4-triazole-3-carboxamide (85a) and 1-\{2'-O-valeroyl-3'-O-(N-methyl-3-carbonyl-1,4-dihydropyridine)-\beta-D-ribofuranosyl\}-1,2,4-triazole-3-carboxamide (85b) AVS # 6290:

1-\{3'-O-Valeroyl-2'-O-(N-methyl-3-carbonylpyridinium)-\beta-D-ribofuranosyl\}-1,2,4-triazole-3-carboxamide iodide (84a) and 1-\{2'-O-
valeroyl-3'-O-(N-methyl-3-carbonylpyridinium)-ß-D-ribofuranosyl]-1,2,4-
triazole-3-carboxamide iodide (84b) 1.5 g, 2.61 mmols) was suspended in
60 ml of deionized, degassed water and 60 ml of methylene chloride. Then
sodium dithionite (3.33 g) and sodium bicarbonate (1.63 g) were added
and the reaction mixture was stirred under argon in an ice bath for one
hour. Then organic layer was separated and dried with magnesium sulfate.
Solvent removal yielded 1.1 g of the product. UV (MeOH): 292.4, 364.8 nm.
1H NMR (300 MHz, DMSO): 8.92 (1 H, s), 7.91 (1 H, s), 7.72 (1 H, s), 7.13 (1
H, s), 6.22 (1 H, d, J = 3.8 Hz), 5.87-5.84 (1 H, m), 5.71-5.69 (1 H, m), 5.50-
5.46 (1 H, m), 5.18-5.15 (1 H, m), 4.80-4.75 (1 H, m), 4.30-4.27 (1 H, m),
3.70-3.61 (2 H, m), 2.98 (2 H, s), 2.97 (3 H, s), 2.38-2.30 (2 H, m), 1.56-1.50
(2 H, m), 1.48-1.25 (2 H, m), 0.90-0.86 (3 H, s). 13C NMR (75 MHz, DMSO):
171.87, 165.44, 160.28, 157.68, 145.51, 144.00, 129.74, 104.30, 93.32,
89.53, 83.48, 72.91, 70.74, 60.86, 40.30, 33.12, 26.54, 21.66, 21.58, 13.61.

Finally we were able to separate and isolate previously synthesized two
isomers: 1-[5'-O-dimethoxytrityl-3'-O-valeroyl-2'-O-(3-carbonylpyridine)-
ß-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (82a) and 1-[5'-O-
 dimethoxytrityl-2'-O-valeroyl-3'-O-(3-carbonylpyridine)-ß-D-
ribofuranosyl]-1,2,4-triazole-3-carboxamide (82b). The separation by
column chromatography using silica gel and ethyl acetate was followed by
deprotection with 80% acetic acid according to the procedure described
before (see report Dec 1989).

1-[3'-O-Valeroyl-2'-O-(3-carbonylpyridine)-ß-D-ribofuranosyl]-1,2,4-
triazole-3-carboxamide (83a):

1H NMR (300 MHz, DMSO): 9.16 (1 H, d, J = 2 Hz), 8.90 (1 H, s), 8.82(1
H, dd, J = 3.5, 1.7 Hz), 8.29 (1 H, d, J = 4 Hz), 7.51-7.43 (3 H, m), 6.37 (1 H,
d, J = 4 Hz), 6.03 (1 H, t, J = 5 Hz), 5.71 (1 H, t, J = 5 Hz), 5.24 (1 H, t, J = 5
Hz), 4.43-4.42 (1 H, m), 3.90-3.78 (2 H, m), 2.33-2.28 (2 H, m), 1.50-1.45 (2
H, m), 1.26-1.19 (2 H, m), 0.81-0.76 (3 H, m). 13C NMR (75 MHz, DMSO):
171.72, 163.10, 160.30, 157.03, 153.66, 150.20, 144.51, 136.74, 124.25,
123.22, 89.83, 84.12, 75.12, 75.25, 70.35, 60.50, 33.00, 26.24, 21.47, 13.15.
Found: C, 51.34; H, 5.46; N, 15.68. For C19H23N5O7 x 0.5 H2O: C, 51.58; H,
5.66; N, 15.83.
1-2'-O-Valeroyl-3'-O-(3-carbonylpyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (83b):

1H NMR (300 MHz, DMSO): 9.20 (1 H, s), 8.84 (2 H, m), 8.34-8.30 (1 H, m), 7.53-7.34 (3 H, m), 6.25 (1 H, d, J = 4 Hz), 5.91-5.85 (2 H, m), 5.22 (1 H, t, J = 5 Hz), 4.53-4.50 (1 H, m), 3.92-3.82 (2 H, m), 3.23-3.21 (2 H, m), 2.30-2.24 (2 H, m), 1.47-1.39 (2 H, m), 1.23-1.16 (2 H, m), - 76 (3 H, t, J = 7.3 Hz). **13C NMR (75 MHz, DMSO):** 170.85, 163.01, 159.80, 156.53, 153.10, 149.72, 143.95, 136.19, 122.74, 89.87, 83.89, 74.17, 71.57, 60.51, 32.77, 26.09, 21.37, 13.06. Found: C, 52.71; H, 5.39; N, 16.08. For C_{19}H_{23}N_{5}O_{7} required: C, 52.65; H, 5.35; N, 16.16.

1-2'-O-Valeroyl-3'-O-(N-methyl-3-carbonylpyridinium)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide iodide (84a):

1H NMR (300 MHz, DMSO): 9.71 (1 H, s), 9.32 (1 H, d, J = 6 Hz), 9.05 (1 H, d, J = 8 Hz), 8.97 (1 H, s), 8.38-8.33 (1 H, m), 7.88 (1 H, s), 7.72 (1 H, s), 6.59 (1 H, d, J = 3.5 Hz), 6.04-6.01 (1 H, m), 5.68-5.64 (1 H, m), 5.22 (1 H, m), 4.53 (3 H, s), 4.45-4.41 (1 H, m), 3.78-3.66 (2 H, m), 2.34 (2 H, t, J = 8 Hz), 1.46-1.39 (2 H, m), 1.26-1.21 (2 H, m), 0.80 (3 H, t, J = 7 Hz). **13C NMR (75 MHz, DMSO):** 171.95, 160.34, 160.16, 157.60, 149.50, 146.82, 145.60, 144.91, 128.18, 128.08, 88.60, 83.27, 75.85, 70.10, 60.49, 48.48, 32.83, 26.25, 21.45, 13.52. Found: C, 40.57; H, 4.53; N, 11.62. For C_{20}H_{26}IN_{5}O_{7} x H_{2}O required: C, 40.50; H, 4.56; N, 11.78.

1-3'-O-Valeroyl-2'-O-(N-methyl-3-carbonylpyridinium)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide iodide (84b):

1H NMR (300 MHz, DMSO): 9.81 (1 H, s), 9.42 (1 H, d, J = 3 Hz), 9.31 (1 H, d, J = 8 Hz), 9.17 (1 H, s), 8.47 (1 H, m), 7.81 (1 H, s), 7.71 (1 H, s), 6.67 (1 H, d, J = 4 Hz), 6.08-6.05 (2 H, m), 5.41-5.50 (1 H, m), 4.62 (4 H, m), 3.90-3.81 (2 H, m), 2.51-2.34 (2 H, m), 1.59-1.50 (2 H, m), 1.36-1.25 (2 H, m), 0.80 (3 H, t, J = 8 Hz). **13C NMR (75 MHz, DMSO):** 171.68, 160.68, 160.07, 157.59, 149.59, 149.47, 146.88, 146.75, 145.48, 144.90, 128.39, 128.03, 88.64, 83.14, 73.40, 73.14, 60.67, 48.48, 32.62, 29.53, 26.16, 21.28, 13.42.
Found: C, 41.40; H, 4.75; N, 11.44. For C_{20}H_{26}IN_{5}O_{7} x H_{2}O required: C, 41.10; H, 4.79; N, 11.98.

1-[3'-O-Valeroyl-2'-O-(N-methyl-1.4-dihydro-3-carbonyl-1.4-dihydropyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (85a) AVS # 6296:

UV (MeOH): 206, 262 nm. \(^{1}\)H NMR (300 MHz, DMSO): 8.92 (1 H, s), 7.91 (1 H, s), 7.72 (1 H, s), 7.13 (1 H, s), 6.22 (1 H, d, J = 3.8 Hz), 5.87-5.84 (1 H, m), 5.71 (1 H, m), 5.50-5.46 (1 H, m), 5.18-5.15 (1 H, m), 4.80-4.75 (1 H, m), 4.30-4.27 (1 H, m), 3.70-3.61 (2 H, m), 2.98 (2 H, s), 2.97 (3 H, s), 2.38-2.30 (2 H, m), 1.56-1.50 (2 H, m), 1.48-1.25 (2 H, m), 0.80 (3 H, t, J = 8 Hz). \(^{13}\)C NMR (75 MHz, DMSO): 171.87, 165.44, 160.28, 157.68, 145.51, 144.00, 129.74, 104.30, 93.32, 89.53, 83.48, 72.91, 70.74, 60.86, 40.30, 33.12, 26.54, 21.66, 21.58, 13.61. Found: C, 51.59; H, 6.10; N, 14.02. For C_{20}H_{27}N_{5}O_{7} x H_{2}O required: C, 51.38; H, 6.25; N, 14.98.

1-[2'-O-Valeroyl-3'-O-(N-methyl-3-carbonyl-1.4-dihydropyridine)-β-D-ribofuranosyl]-1,2,4-triazole-3-carboxamide (85b) AVS # 6297:

UV (MeOH): 208, 364 nm. \(^{1}\)H NMR (300 MHz, DMSO): 8.91 (1 H, s), 7.90 (1 H, s), 7.72 (1 H, s), 7.15 (1 H, d, J = 1.4 Hz), 6.26 (1 H, d, J = 4.5 Hz), 5.89-5.86 (1 H, m), 5.68 (1 H, t, J = 5 Hz), 5.47 (1 H, t, J = 4.5 Hz), 5.17 (1 H, m), 4.80-4.76 (1 H, m), 4.23-4.21 (1 H, m), 3.66-3.61 (2 H, m), 3.39 (2 H, s), 2.98 (3 H, s), 2.34-2.29 (2 H, m), 1.51-1.46 (2 H, m), 1.29-1.22 (2 H, m), 0.85 (3 H, t, J = 8 Hz). \(^{13}\)C NMR (75 MHz, DMSO): 171.58, 165.83, 160.22, 157.65, 145.53, 143.69, 129.84, 104.10, 93.74, 88.97, 84.02, 73.89, 69.62, 60.93, 40.25, 32.98, 29.59, 26.43, 21.56, 13.57. Found: C, 52.18; H, 5.97; N, 14.45. For C_{20}H_{27}N_{5}O_{7} x 0.5 H_{2}O required: C, 52.39; H, 6.15; N, 15.27.

1-(5'-O-Dimethoxytrityl-2'3'-bis-O-lauryl)-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (86):

1-(5'-O-Dimethoxytrityl)-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (7) (22.5g, 0.041 m) was dissolved in 200 ml of pyridine and lauryl chloride (14.96 ml, 0.044 m, d=0.946g/ml) in 50 ml of methylene
chloride was added dropwise. The reaction mixture showed three major spots. After overnight stirring at room temperature the solution was treated with 5% sodium bicarbonate solution and organic layer was collected. Drying (magnesium sulfate) and solvent removal yielded sticky yellow residue which was purified by column chromatography on silica gel using chloroform and then 1% methanol in chloroform. Obtained 14.59 g of bis product (86) and 12 g of the mixture of two isomers (91a) and (91b).

1H NMR (300 MHz, CDCl$_3$): 8.60 (1 H, s), 8.36 (1 H, s), 7.43-7.40 (2 H, m), 7.32-7.19 (12 H, m), 6.80 (4 H, d, J = 8.5 Hz), 6.73 (1 H, s), 6.36 (1 H, s), 6.07 (1 H, d, J = 4.8 Hz), 6.01 (1 H, t, J = 5 Hz), 5.68-5.64 (1 H, m), 4.37-4.36 (1 H, m), 3.77 (6 H, s), 3.49-3.38 (2 H, m), 2.35-2.30 (4 H, m), 1.63-1.56 (4 H, m), 1.26-1.18 (32 H, s), 0.90-0.86 (6 H, m). 13C NMR (75 MHz, CDCl$_3$): 172.28, 171.98, 160.79, 158.63, 157.14, 149.35, 144.35, 144.17, 136.36, 135.26, 130.13, 129.16, 128.17, 127.97, 113.24, 90.09, 86.95, 83.05, 74.05, 71.04, 62.82, 55.20, 33.96, 33.75, 31.92, 29.63, 29.49, 29.35, 29.30, 29.28, 29.21, 29.15, 19.09, 24.96, 24.83, 24.76, 24.71, 22.69, 14.12.

1-(2',3'-bis-O-lauryl)-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (87):

1-(5'-O-Dimethoxytrityl-2',3'-bis-O-lauryl)-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (86) (3.22 g, 0.00354 mmol) was dissolved in 24 ml of 80% acetic acid and the pink solution was stirred overnight. A lot of pinkish solid appeared. The solid was filtered off, washed with water (60 ml) and dried in the oven. Recrystallization from methanol gave 1.44 g of pure product. 1H NMR (300 MHz, DMSO): 8.90 (1 H, s), 7.87 (1 H, s), 7.72 (1 H, s), 6.24 (1 H, d, J = 4 Hz), 5.71 (1 H, t, J = 4.5 Hz), 5.52 (1 H, t, J = 5 Hz), 5.20 (1 H, broad signal), 4.23-4.21 (1 H, m), 3.67-3.60 (2 H, m), 2.38-2.31 (4 H, m), 1.54-1.52 (4 H, m), 1.25 (32 H, s), 0.88-0.83 (6 H, m). 13C NMR (75 MHz, DMSO): 171.66, 171.39, 160.16, 157.68, 145.53, 88.96, 83.53, 73.64, 70.48, 60.75, 33.24, 33.10, 31.39, 29.14, 29.04, 28.84, 28.56, 28.48, 24.37, 24.29, 22.15, 13.79. Found: C, 62.90; H, 9.16; N, 9.23. For C$_{32}$H$_{56}$N$_4$O$_7$ required: C, 63.13; H, 9.27; N, 9.20.

1-(5'-O-(3-carbonylpyridine)-2',3'-bis-O-lauryl)-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (88):
1-(2'3'-bis-O-lauryl)-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (87) (6.08 g, 0.01 m) was suspended in 100 ml of methylene chloride and 1.53 ml of triethylamine, followed by catalytic amount of DMAP was added. Nicotinic anhydride, freshly prepared (2.5 g, 20 % excess) was added causing dissolution of the starting material. After short time reaction mixture did not show anymore starting material and it was worked up as usual by quenching with 5% sodium bicarbonate solution and extraction with methylene chloride. The crude product was slightly impure and was purified by column chromatography eluting with 2% methanol in chloroform. Obtained 5.06 g of white sticky foam. 1H NMR (300 MHz, DMSO): 9.10 (1 H, d, J = 2 Hz), 8.92 (1 H, s), 8.82 (1 H, dd, J = 1.7 Hz and 3 Hz), 8.40 (1 H, dt, J = 1.7 Hz, and 8 Hz), 7.92 (1 H, s), 7.81 (1 H, s), 7.61 (1 H, dd, J = 5 Hz), 6.43 (1 H, d, J = 2.5 Hz), 5.85 (1 H, t, J = 5.4 Hz), 5.77 (1 H, dd J = 2.4 Hz), 4.65-4.53 (3 H, m), 2.42-2.29 (4 H, m) 1.55-1.54 (4 H, m), 1.24 (32 H, s), 0.87-0.83 (6 H, m). 13C NMR (75 MHz, DMSO): 171.96, 171.83, 164.78, 160.43, 158.51, 154.13, 150.46, 146.57, 137.42, 125.51, 124.41, 89.10, 79.85, 74.03, 70.50, 64.10, 33.61, 31.78, 29.54, 29.43, 29.24, 29.09, 28.93, 24.72, 22.54, 14.16. Found: C, 63.08; H, 8.28; N, 9.96. For C$_{38}$H$_{59}$N$_5$O$_8$ x 0.5 H$_2$O required: C, 63.15; H, 8.31; N, 9.69.

1:[5'-O-(N-methyl-3-carbonylpyridinium)-2'3'-bis-O-lauryl]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide iodide (89):

1-[5'-O-(3-carbonylpyridine)-2'3'-bis-O-lauryl]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (5.06 g) was dissolved in acetone and an excess of methyl iodide was added. The solution was refluxed for 4 hrs after that the solvent was removed and the residue was treated with diethyl ether giving gelatine like matter (8.54 g after drying). 1H NMR (300 MHz, DMSO): 9.61 (1 H, s), 9.47 (1 H, d, J = 5 Hz), 9.11 (1 H, d, J = 8 Hz), 8.96 (1 H, s), 8.35 (1 H, m), 7.83 (1 H, s), 7.56 (1 H, s), 6.44 (1 H, s), 5.83 (2 H, m) 4.77-4.56 (6 H, m), 2.38-2.36 (4 H, m), 1.58-1.56 (4 H, m), 0.87 (6 H, m). 13C NMR (75 MHz, DMSO): 171.56, 171.34, 161.11, 159.94, 157.82, 148.87, 146.79, 146.36, 144.73, 128.88, 128.11, 88.14, 79.70, 73.11, 69.68, 63.94, 48.29, 33.19, 33.10, 31.25, 29.35, 28.99, 28.89, 28.69, 28.46, 28.39, 24.20, 24.16, 22.03, 13.72. Found: C, 53.72; H, 7.41; N, 7.81. For C$_{39}$H$_{62}$N$_5$O$_8$ x H$_2$O required: C, 53.74; H, 7.35; N, 8.03.
1-[(5'-O-(N-methyl-3-carbonyl-1,4-dihydropyridine)-2'3'-bis-O-lauryl]-\beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (90) AVS #6299:

1-[(5'-O-(N-methyl-3-carbonylpyridinium)-2'3'-bis-O-lauryl]-\beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide iodide (4.23 g, 0.005 m) was suspended in the mixture of methylene chloride (100 ml) and deionized and degassed water (100 ml). Then sodium dithionate (7.83 g) and sodium bicarbonate (3.75 g) was added and the mixture was stirred under constant stream of argon. After two hours the layers were separated and the organic layer was dried (magnesium sulfate) and the solvent removed on vacuo. Yield 2.3 g. UV(MeOH): 226, 360 nm. \(^1\)H NMR (300 MHz, DMSO): 8.88 (1 H, s), 7.88 (1 H, s), 7.77 (1 H, S), 7.07 (1 H, d, J = 1.5 Hz), 6.34 (1 H, d, J = 3 Hz), 5.85 (1 H, d, J = 10 Hz), 5.74-5.71 (1 H, m), 5.55-5.61 (1 H, m), 4.75-4.73 (1 H, m), 4.44-4.42 (1 H, m), 4.26-4.24 (1 H, m), 3.38 (2 H, s), 2.96 (3 H, s), 2.40-2.31 (4 H, m), 1.56-1.52 (4 H, m), 1.26 (32 H, s), 0.89-0.85 (6 H, m). \(^{13}\)C NMR (75 MHz, DMSO): 171.59, 171.50, 166.51, 160.03, 157.99, 146.01, 143.17, 129.75, 103.87, 94.20, 88.58, 79.98, 79.17, 73.39, 70.48, 62.28, 40.12, 33.19, 33.10, 31.35, 29.00, 28.98, 28.87, 28.78, 28.49, 28.43, 24.29, 22.12, 21.51, 13.87. Found: c, 62.83; H, 8.44; N, 9.64. For C\(_{39}\)H\(_{63}\)N\(_5\)O\(_8\) x H\(_2\)O required: C, 62.63; H, 8.62; N, 9.36.

1-(5'-O-Dimethoxytrityl-2'-O-lauryl]-\beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (91a) and 1-(5'-O-dimethoxytrityl-3'-O-lauryl]-\beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (91b):

Obtained as described above, the structure was determined based on their spectral and analytical properties. \(^1\)H NMR (300 MHz, CDCl\(_3\)): 8.44 (1 H, d, J = 2.4 Hz), 7.38-7.24 (11 H, m), 6.98 (1 H, broad signal), 6.78-6.76 (2 H, m), 6.58 (1 H, broad signal), 5.95 (1 H, s), 5.38 (1 H, d, J = 1.4 Hz), 5.17-5.09 (2 H, m), 4.37 (1 H, m), 3.71 (6 H, s), 3.41-3.32 (2 H, m), 2.36-2.34 (2 H, m), 1.59-1.58 (2 H, m), 1.24 (16 H, s), 0.87-0.85 (3 H, m). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): 173.11, 160.94, 158.34, 158.28, 156.60, 144.74, 144.28, 135.42, 135.36, 129.87, 127.92, 127.72, 126.74, 113.04, 92.42, 86.47, 82.56, 73.55, 72.82, 63.02, 54.98, 33.88, 31.74, 29.45, 29.32, 29.17,
29.12, 28.97, 28.92, 24.67, 22.51, 13.96. Found: C, 66.32; H, 7.10; N, 7.58.
For C41H52N4O8 x H2O required: C, 65.95; H, 7.24; N, 7.51.

1-[5'-O-Dimethoxytrityl-2'-O-lauryl-3'-O-(3-carbonylpyridine)]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (92a) and 1-[5'-O-dimethoxytrityl-3'-O-lauryl-2'-O-(3-carbonylpyridine)]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (92b):

1-(5'-O-Dimethoxytrityl-2'-O-lauryl)-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (91a) and 1-(5'-O-dimethoxytrityl-3'-O-lauryl)-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (91b) (3 g, 4.1 mmols) was dissolved in 75 ml of methylene chloride and DMAP (catalytic amount) and triethylamine (0.6 ml) was added followed by nicotinoic anhydride (1.03 g, 4.4 mmols). The reaction was quenched with sodium bicarbonate (5% solution) after six hours and organic layer was separated, dried and evaporated to dryness. Purification by column chromatography on silica gel with chloroform, then 1% methanol in chloroform yielded a mixture of two isomers (3.41 g).

1H NMR (300 MHz, CDCl₃): 9.22 (1 H, d, $J = 2$ Hz), 8.80-8.78 (1 H, m), 8.48 (1 H, d, $J = 7.8$ Hz), 7.46-7.22 (15 H, m), 6.84-6.28 (4 H, m), 5.81 (1 H, m), 4.45 (1 H, m), 3.75 (6 H, s), 3.65-3.45 (2 H, m), 1.50-1.48 (2 H, m), 1.25-1.17 (2 H, m), 0.87 (3 H, m). 13C NMR (75 MHz, CDCl₃): 172.27, 163.66, 160.69, 158.61, 157.45, 154.11, 150.86, 144.80, 144.23, 137.32, 135.28, 130.10, 128.15, 127.96, 127.03, 124.72, 123.52, 113.25, 89.94, 86.94, 82.93, 75.13, 71.06, 62.90, 55.16, 33.86, 31.86, 29.53, 29.43, 29.32, 29.22, 29.14, 28.99, 28.94, 24.73, 24.64, 22.65, 14.12. Found: C, 67.17; H, 6.89; N, 8.36. For C47H55N5O9 x 0.5 H2O required: C, 66.99; H, 6.65; N, 8.31.

1-[2'-O-Lauryl-3'-O-(3-carbonylpyridine)]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (93a) and 1-[3'-O-lauryl-2'-O-(3-carbonylpyridine)]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (93b):

1-[5'-O-Dimethoxytrityl-2'-O-lauryl-3'-O-(3-carbonylpyridine)]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (92a) and 1-[5'-O-dimethoxytrityl-3'-O-lauryl-2'-O-(3-carbonylpyridine)]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (92b) (3 g, 3.6 mmols) was dissolved in 24
ml of 80% acetic acid. The mixture was stirred at room temperature for 12 hours. Then the pink solution was neutralized with solid sodium bicarbonate, diluted with water and product was extracted with ethyl acetate (3 x 100 ml). The organic layer was dried and the solvent removed yielding 3.2 g of crude product. Crude mixture was purified by column chromatography using 2% followed by 5% methanol in chloroform. Obtained 1.32 g. \(^1\)H NMR (300 MHz, CDCl\(_3\)): 9.17 (1 H, s), 8.79-8.77 (1 H, m), 8.70 (1 H, d, \(J = 1 \) Hz), 8.27-8.24 (1 H, m), 7.43-7.40 (2 H, m), 7.28 (1 H, d, \(J = 2 \) Hz), 6.67 (1 H, s), 6.30-6.29 (1 H, m), 6.07-6.05 (1 H, m), 5.94-5.78 (1 H, m), 4.44 (1 H, s), 4.05-3.86 (2 H, m), 3.30-2.26 (2 H, m), 1.49-1.44 (2 H, m), 1.23-1.16 (16 H, m), 0.89-0.84 (3 H, m). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): 172.63, 163.69, 160.90, 157.15, 154.03, 150.83, 144.96, 137.44, 124.78, 123.56, 90.49, 84.96, 76.04, 70.85, 61.32, 33.93, 31.90, 29.58, 29.49, 29.38, 29.33, 29.27, 29.19, 29.04, 24.78, 24.67, 22.68, 14.13.

1-[2'-O-Lauryl-3'-O-(3-carbonylpyridinium)]-B-D-ribofuranosyl-1,2,4-triazole-3-carboxamide iodide (94a) and 1-[3'-O-lauryl-2'-O-(3-carbonylpyridinium)]-B-D-ribofuranosyl-1,2,4-triazole-3-carboxamide iodide (94b):

1-[2'-O-Lauryl-3'-O-(3-carbonylpyridine)]-B-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (93a) and 1-[3'-O-lauryl-2'-O-(3-carbonylpyridine)]-B-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (93b) (3 g, 1.8 mmols) was refluxed in acetone with an excess of methyl iodide overnight. Solvent was removed under vacuo and diethyl ether was added. The suspension was stirred overnight and yellow solid was collected. Yield 3.65 g. \(^1\)H NMR (300 MHz, DMSO): 9.69 (1 H, s), 9.32 (1 H, d \(J = 6 \) Hz), 9.05 (1 H, d, \(J = 8 \) Hz), 8.99 (1 H, s), 8.39-8.34 (1 H, m), 7.94 (1 H, s), 7.73 (1 H, s), 6.60 (1 H, d, \(J = 3.5 \) Hz), 6.04-6.01 (1 H, m), 5.68-5.64 (1 H, m), 4.52 (3 H, SO), 4.45-4.43 (1 H, m), 3.76-3.65 (2 H, m), 2.36-2.30 (2 H, m), 1.44-1.42 (2 H, m), 1.23-1.18 (16 H, m), 0.87-0.83 (3 H, m). \(^{13}\)C NMR (75 MHz, DMSO): 172.04, 160.45, 160.16, 157.67, 149.53, 146.81, 145.74, 144.93, 128.14, 128.09, 88.58, 83.15, 75.81, 70.11, 60.53, 48.51, 33.09, 31.26, 28.96, 28.83, 28.78, 28.69, 28.66, 28.61, 28.30, 24.20, 22.07, 13.93. Found: C, 45.01; H, 5.69; N, 9.57. For C\(_{27}\)H\(_{40}\)N\(_5\)O\(_7\) x 2 H\(_2\)O required: C, 45.70; H, 6.20; N, 9.87.
1-[2'-O-Lauryl-3'-O-(3-carbonyl-1,4-dihydropyridine)]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (95a) and 1-[3'-O-lauryl-2'-O-(3-carbonyl-1,4-dihydropyridine)]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (95b) AVS # 6300:

1-[2'-O-Lauryl-3'-O-(3-carbonylpyridinium)]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide iodide (94a) and 1-[3'-O-lauryl-2'-O-(3-carbonylpyridinium)]-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide iodide (94b) (1 g, 1.5 mmols) was suspended in a mixture of methylene chloride (50 ml) and deionized, degassed water (50 ml). Then sodium dithionate (2.32 g) and sodium bicarbonate (1.13 g) was added at once. The reaction mixture was stirred for 2 hours and the two layers were separated, an organic layer was dried with magnesium sulfate. Solvent evaporation yielded 0.620 g of product. UV (MeOH): 218, 362 nm. 1H NMR (300 MHz, DMSO): 8.92 (1 H, s), 7.89 (1 H, s), 7.72 (1 H, s), 7.13 (1 H, s), 7.03 (1 H, d, J = 4 Hz), 5.85 (1 H, d, J = 8.4 Hz), 5.71 (1 H, m), 5.48-5.46 (1 H, m), 5.18 (1 H, m), 4.77-4.74 (1 H, m), 4.29 -4.27 (1 H, m), 3.72-3.59 (2 H, m), 3.41 (1 H, s), 2.78 (2 H, s), 2.97 (3 H, s), 2.36-2.32 (2 H, m), 1.54-1.53 (2 H, m), 1.25 (16 H, s), 0.88-0.83 (3 H, m). 13C NMR (75 MHz, DMSO): 171.79, 165.42, 160.26, 157.68, 145.47, 143.94, 129.71, 104.22, 93.39, 89.59, 83.45, 72.96, 70.71, 60.84, 40.29, 33.29, 33.29, 31.87, 29.10, 28.99, 28.87, 28.81, 28.56, 24.44, 22.17, 21.52, 13.93. Found: C, 58.09; H, 7.33; N, 12.63. For C27H42N5O7 x 0.5 H2O required: C, 58.15; H, 7.77; N, 12.56.

2',3',5'-Trinicotinoylribavirin (96)

1.22 g (5 mmol) of ribavirin was suspended in 20 mL dry pyridine and 3.3 g (18 mmol) nicotinoyl chloride hydrochloride was added to the suspension along with a catalytic amount of DMAP. The reaction mixture was stirred at 80°C for 24 hours. 1.6 g (9 mmol) nicotinoyl chloride hydrochloride was subsequently added to the reaction mixture and the solution stirred at 80°C overnight. The reaction mixture was then poured into 200 mL of ice water and stirred at room temperature for one hour. The white precipitate was filtered and washed with cold water. It was then crystallized from ethyl alcohol. Yield = 1.96 g, 70%, m.p. 168-170°C; Rf: 0.57 in n-BuOH:AcOH:H2O = 4:1:1; λ = 264 nm (in EtOH);
Army Final Report
March 31, 1990

Anal: C, H, N; (C₆H₂,N₇O₆)₂.C₅H₄N (1/2 pyridine of crystallization) C, 57.19 (57.66); H, 3.87 (3.62); N, 17.55 (17.59);

'H-NMR (DMSO-d₆): δ 9.23(s,1H, triazole), 9.2-9.06(m,3H, py C-2 protons), 8.9-8.8(m,3H, py C-6 protons), 8.4-8.23(m,3H, py C-4 protons), 7.66-7.43(m,3H, py C-5 protons), 6.88(d,1H,1'H).

Ribavirin 2',3',5'-tritrigonellinate (97)

0.56 g (mmol) of 2',3',5'-trinicotinoylribavirin was dissolved in 20 mL of dry acetone. 0.22 mL (0.51 g, 3.6 mmol) of methyl iodide was added to the solution. The reaction mixture was refluxed overnight. Yellow crystals appeared after cooling of the reaction mixture. The crystals were removed by filtration, washed with cold acetone and dried.

Yield = 0.94 g (95%), m.p. 128-130°C, decomp: 200°C; λₘₐₓ = 266, 318 nm (in EtOH);
Anal: C₃₀H₃₀N₄O₆: 985.32 C 35.45, (35.59); H 3.07, (3.10); N 9.95, (9.80); I 39.64 (39.45).

'H-NMR (DMSO-d₆): δ 9.8-9.66(m,3H, py C-2 protons), 9.36(s,1H, triazole), 9.38-9.26(m,3H, py C-6 protons), 9.1-9.03(m,3H, py C-4 protons), 9.56-9.23(m,3H, py C-5 protons), 7.11(d,1H,1'H), 4.56(s,9H,N+CH3).

Ribavirin 2',3',5'-tri(1,4-dihydrotrigonellinate) (98)

0.49 g (0.5 mmol) of (55) was dissolved in 10 mL of degassed water. 0.34 g (4 mmol) of sodium hydrogen carbonate and 0.7 g (4 mmol) of sodium dithionite was added over a period of five minutes to the solution which was stirred at room temperature under argon. 30 mL Dichloromethane was then added to the reaction mixture and after 2.5 hours the reaction mixture was worked up, since the quaternary salt was undetectable in the solution. The organic layer was separated, washed with 5% sodium hydrogen carbonate solution and dried over magnesium sulfate under argon. The solvent was removed under reduced pressure to yield a yellow powder. Yield = 0.18 g (60%), m.p. 98-102°C; λₘₐₓ = 356 nm (in EtOH);
Rₕ = 0.77 in CHCl₃:acetone = 8:2;
Anal: C₃₀H₃₅N₇O₆.2H₂O C, 54.11 (54.01); H, 5.79 (5.30); N, 15.23 (14.84).
1H-NMR (DMSO-d$_6$): δ 9.16(s,1H, triazole 5-proton), 7.16(d,2H, carbamoyl), 3-2.66(m,15H,C-4 protons, N-CH$_3$).

1-(2,3,5-tri-0-propionyl-\beta-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (99)

Ribavirin (4.88 g, 0.02 mol) was dissolved in 50 mL of anhydrous pyridine. Propionic anhydride (9.2 mL, 9.66 g, 0.074 mol) was added to the solution and the reaction mixture stirred at room temperature overnight. The pyridine was subsequently removed in vacuo. Trace were removed by azeotropic distillation with toluene. The oily residue was partitioned between ethyl acetate and 5% sodium bicarbonate solution and washed with 5% sodium bicarbonate twice and with water once. The aqueous solution was backwashed with ethyl acetate. The combined organic phases were then evaporated in vacuo yielding a yellow oil (7.2 g, 87%).

1H-NMR (CDCl$_3$): δ 8.53(1H,s, triazole), 6.13(1H,d,1'-H), 7.36(2H,d,N1H); 5.56-5.9(2H,m,2'-H and 3H), 4.42(3H,m,5'-H,4'-H), 1.16(9H,t,CH$_3$), 2.33(6H,9,CH$_2$), TLC silica, $R_f = 0.72$ n butanol:acetic acid:H$_2$O:4:1.

1-(5'-0-dimethoxytrityl-2',3'-bis-0-isobutyrate-\beta-D-ribofuranosyl)-1,2,3-triazole-3-N-isobutryl-carboxamide (100)

5'-Dimethoxytrityl ribavirin (7)(24.5 g, 0.045 mol) (7) was dissolved in 100 mL dry pyridine. N,N-dimethylaminopyridine (5.0 g) and isobutyric anhydride (74.3 mL, 0.448 mol) were added and the mixture was stirred at RT for 48 h. It was poured onto 300 mL ice and extracted with chloroform (2x400 mL). The combined organic extracts were washed with 5% NaHCO$_3$ (2x400 mL), water (400 mL), dried (MgSO$_4$) and the solvent was removed under reduced pressure. The resulting oil was purified on a silica column with CHCl$_3$:MeOH (40:1) as eluent. This gave 20.0 g (59%) of product as a white solid.

IR cm$^{-1}$ (nujol mull): v_{NH}, 3360, v_{C-O}, 1740, 1710, $v_{C\equiv N,C\equiv C}$, 1610.

1H-NMR (CDCl$_3$): δ 9.22(s,1H,NH), 8.4(s,1H,5-H), 7.45-6.7(m,13H, arom), 6.1(d,1H,1'H), 5.9(t,1H,3'H), 5.8(t,1H,4'H), 4.45(m,1H,2'H), 3.85(s,6H,2xOCH$_3$), 3.5-3.1(m,3H,5'CH$_3$ + isobut CH), 2.65(m,2H, 2x isobut CH), 1.25(m,18H, 6x CH$_3$).
1-(2',3'-bis-0-isobutyrate-β-D-ribofuranosyl)-1,2,4-triazole-3-N-isobutyl carboxamide (101)

Compound (58) (12.0 g, 0.01586 mol) was dissolved in 60 mL of 80% acetic acid and the mixture was stirred at room temperature for 1 h. It was neutralized with solid sodium bicarbonate (400 g) until no more gas evolved. It was then diluted with 1500 mL water and extracted with chloroform (2 x 500 mL). The organic layer was washed with water (700 mL), dried (MgSO₄) and the solvent was removed under reduced pressure. The resulting oily solid was triturated with petroleum-ether to give 5.5 g (76.3%) of the product as a white solid.

IR cm⁻¹ (nujol mull): υOH 3520, υNH 3110, υCaO 1750, 1730, 1700, υC=O 1660, 1540.

¹H-NMR (CDCl₃): δ 9.48(s,1H,NH), 8.7(s,1H,5-H), 6.1(d,1H,1'H), 5.75(t,1H,3'H), 5.6(t,1H,4'H), 4.35(m,1H,2'H), 4.05-3.8(m,2H,5'CH₂), 3.5(m,2H,OH + isobut CH), 2.6(m,2H, 2 x isobut CH), 1.25(m,18H, 6 x CH₃).

1-[5'(3-carbonylpyridine)-2',3'-bis-0-isobutyrate-β-D-ribofuranosyl]-1,2,4-triazole-3-N-isobutyl carboxamide (102)

Compound (59) (7.5 g, 0.0165 mol) was dissolved in 90 mL dry pyridine and the solution was cooled to 0°C. Nicotinic anhydride (8.9 g, 0.0392 mol) was added to it and the mixture was stirred overnight at room temperature. It was poured onto 200 mL ice and extracted with chloroform (2 x 300 mL). The combined organic extracts were washed with 5% NaHCO₃ (2 x 300 mL), water (300 mL) and dried (MgSO₄). The solvent was removed in vacuo and the resulting oil was dissolved in a small amount of ether and evaporated. This gave 6.0 g (65%) of product as a white solid.

IR cm⁻¹ (nujol mull): υNH 3380, υCaO br 1760-1700, υCaN,C=O 1600.

¹H-NMR (CDCl₃): δ 9.48(s,1H,NH), 9.2(s,1H,Pyr), 8.8(d,1H,Pyr), 8.54(s,1H,5-H), 8.4(d,1H,Pyr), 7.5(m,1H,Pyr), 6.15(d,1H,1'H), 5.82(m,1H,3'H), 5.75(t,1H,4'H), 4.75(d,1H,2'H), 4.6(m,2H,5'CH₂), 3.5(m,1H, isobut CH), 2.65(m,2H, 2 x isobut CH), 1.25(m,18H, 6 x CH₃).
1-[5'-N-methyl-3-carbonyl-1.4-dihydropyridine]-2',3'-bis-0-isobutyrate-\(\beta\)-D-ribofuranosyl]-1,2,4-triazole-3-N-isobutryl carboxamide (104, AVS 5222)

3.6 g (0.005 mol) of quaternary compound (61) was dissolved in 600 mL ice-cold deionized water and washed with 300 mL ethylacetate. The aqueous layer was degassed and cooled to 0°C. A mixture of sodium bicarbonate (7.6 g, 0.09 mol) and sodium dithionite (14.8 g, 0.085 mol) was added portionwise to the stirred solution. After 1 h 30 min, it was extracted with ice-cold degassed ethyl acetate (600 mL). The organic layer was washed with ice-cold water (500 mL), dried (MgSO\(_4\)) and the solvent was removed under reduced pressure to give 2.26 g (78.7%) of product.

UV \(\lambda_{\text{max}}\) (MeOH): 359.5, 212.0

IR cm\(^{-1}\) (nujol mull): \(v_{\text{NH}}\) br 3320-3180, \(v_{\text{C=O}}\) 1750, 1730, 1700, \(v_{\text{C=O,C=O}}\) 1670, 1640, 1610.

\(^1H\)-NMR (CDCl\(_3\)): \(\delta\) 9.45(s,1H,NH), 8.5(s,1H,Pyr), 6.1(d,1H,1'H), 5.8(t,1H,3'H), 5.75(m,1H,Pyr), 5.55(m,2H,5'CH\(_2\)), 4.84(m,1H,2'H), 3.5(m,1H, isobut CH), 3.05(brS,2H,Pyr\(_\text{C}\)), 2.94(s,3H,N-CH\(_3\)), 2.6(m,2H, 2 x isobut CH), 1.25(m,18H, 3 x CH\(_2\)).
1-(2',3'-bis-0-acetate-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (105)

Compound (62) (8.0 g, 0.01319 mol) was dissolved in 50 mL of 80% acetic acid and the mixture was stirred at room temperature for 1 h. It was neutralized with solid sodium bicarbonate until no more gas evolved, and extracted with ethyl acetate. The organic layer was dried (MgSO₄) and the solvent removed under reduced pressure to give 1.5 g (37.5%) of the product as a white solid.

IR cm⁻¹ (nujol mull): \(\nu_{\text{OH+NH}} \) 3500, 3350, 3180, \(\nu_{\text{C=O}} \) 1750, 1690, \(\nu_{\text{C=N}} \) 1670, 1620.

\(^1\)H-NMR (CDCl₃): \(\delta \) 8.9(s,1H,5-H), 7.95(s,1H,NH), 7.72(s,1H,NH), 6.25(d,1H,1'H), 5.7(t,1H,3'H), 5.48(t,1H,4'H), 5.18(t,1H,OH), 4.25(m,1H,2'H), 3.75-3.5(m,2H,5'CH₂), 2.05(2s,6H,2xCH₃).

1-[5'-(3-carbonylpyridine)-2',3'-bis-0-acetate-β-D-ribofuranosyl]-1,2,4-triazole-3-N-nicotinoyl carboxamide (106)

Compound (63) (2.2 g, 0.00755 mol) was dissolved in 100 mL dry methylene chloride, to it triethylamine (0.84 g, 0.008305 mol) and nicotinic anhydride (1.9 g, 0.008305 mol) were added. The mixture was stirred at room temperature for 36 h, washed with 5% NaHCO₃ (100 mL) and H₂O (100 mL), dried (MgSO₄) and the solvent removed under reduced pressure. This gave 1.2 g (30.9%) of product as a pale brown solid.

IR cm⁻¹ (nujol mull): \(\nu_{\text{NH}} \) 3380, \(\nu_{\text{C=O}} \) br 1750-1700, \(\nu_{\text{C-C,C=NH}} \) 1650, 1600.

\(^1\)H-NMR (CDCl₃): \(\delta \) 10.3(s,1H,NH), 9.15(s,2H,2xPyr), 8.82(d,1H,Pyr), 8.75(d,1H,Pyr), 8.5(s,1H,5-H), 8.35(d,1H,Pyr), 8.22(d,1H,Pyr), 7.5(m,2H,Pyr), 6.18(d,1H,1'H), 5.85(m,1H,3'H), 5.75(t,1H,4'H), 4.8-4.55(m,3H,2'H+5'CH₂), 2.15(2s,6H,2xCH₃).

1-[5'-(1-methyl-3-carbonyl pyridinium)-2',3'-bis-0-acetate-β-D-ribofuranosyl]-1,2,4-triazole-3-N-(N-methylnicotinoyl)carboxamide diiodide (107)

Compound (64) (1.0 g, 0.001948 mol) was dissolved in 50 mL dry THF and methyl iodide (4 mL) was added to it. The mixture was refluxed overnight, cooled and the solid was filtered and washed with cold THF to give 1.2 g (77.5%) of yellow crystalline product.

UV \(\lambda_{\text{max}} \) (MeOH): 265.0, 219.5
IR cm\(^{-1}\) (nujol mull): \(\nu_{\text{NH}}\) br 3600-3000, \(\nu_{\text{C=O}}\) 1750,1720,1700, \(\nu_{\text{C=O,C=O}}\) 1640,1590.

\(^1\)H-NMR (DMSO-d\(_8\)): \(\delta\) 11.95(br,s,NH), 9.6(s,Pyr), 9.55(s,Pyr), 9.33(d,Pyr), 9.25(d,Pyr), 9.15(s,5-H), 9.05(m,Pyr), 8.95(d,Pyr), 8.3(m,Pyr), 6.55(d,1'H), 5.8(m,3'H+4'H), 4.85-4.5(m,2'H+5'CH\(_2\)), 4.48(2s,2xN-CH\(_3\)), 2.1(2s,2xCH\(_3\)).

IN VITRO STUDY

Blood: Trunk blood was obtained from a freshly killed Sprague-Dawley rat and collected in a 15 mL polypropylene tube which contained heparin (1000 units/mL; 200 \(\mu\)L/tube). The tube was then vortexed for 30 s and snap frozen at -80°C to hemolyze red cells.

Tissue homogenates: The tissue of interest was obtained from freshly killed rats and was homogenized in isotonic phosphate buffer to generate a 20% (w/v) suspension. The homogenate was centrifuged for 5 min and the supernatant used immediately.

Procedure: 5.0 mL of blood or tissue homogenate was added to a 20 mL vial and incubated for 5 min in a shaking water bath (37°C). To \(\mu\)L of a dihydropyridine stock solution (5 mM) made up in methanol was then added to the homogenate or blood as the system was shaken for 5 sec. At selected time post-addition, the vial was vortexed and 300 \(\mu\)L of sample removed and mixed with 600 \(\mu\)L of ice-cold acetonitrile (04 92:8 acetonitrile:DMSO in the case of blood). The samples were vortexed for 20 sec and centrifuged in a Beckman Microfuge 12. The supernatant is then removed as assayed by HPLC.
REFERENCES

Scheme I

\[
\begin{align*}
\text{Ribavirin} & \quad \xrightarrow{\text{acetone + HCl}} \quad \text{Trigonelline Anhydride} \\
& \quad \xrightarrow{\text{Nicotinic Anhydride}} \quad \text{Nicotinic Anhydride} \\
& \quad \xrightarrow{\text{CH}_3\text{I}} \quad \text{(4)} \\
& \quad \xrightarrow{\text{Na}_2\text{S}_2\text{O}_4} \quad \text{(5)} \\
& \quad \xrightarrow{\text{(6)}} \quad \text{(2)}
\end{align*}
\]
Scheme II

```
Ribavirin

DMT-Cl

DMTO

OH OH

(7)

R

(8) R = pivaloate; (9) R = benzoate
(10) R = isobutyrate; (11) R = acetate.

CH₃COOH

Nicotinic Anhydride

(12) R = pivaloate; (13) R = benzoate
(14) R = isobutyrate; (15) R = acetate

(16) R = pivaloate; (17) R = benzoate
(18) R = isobutyrate; (19) R = acetate

CH₃I

(20) R = pivaloate; (21) R = benzoate
(22) R = isobutyrate; (23) R = acetate

(24) R = pivaloate; (25) R = benzoate
(26) R = isobutyrate; (27) R = acetate
```
Scheme III

Ribavirin

(2) + HCl → (3)

Nicotinic Anhydride

HCOOH → (4)

CH₃I → (5)

Na₂S₂O₄ → (6)

(28)

(29)

(30)
Scheme IV

\[
\begin{align*}
&\text{Ribavirin} \\
&\text{Acetone + HCl} \\
\rightarrow &\text{Nicotinic Anhydride} \\
\rightarrow &\text{(31)} \\
\rightarrow &\text{(32)} \\
\rightarrow &\text{(33)} \\
\rightarrow &\text{Na}_2\text{S}_2\text{O}_4 \\
\rightarrow &\text{(34)}
\end{align*}
\]
Scheme VI

\[\text{Ribavirin} \xrightarrow{\text{DMTO}} \text{Z} \xrightarrow{\text{DMTO, } \text{CH}_2\text{CH}_2\text{Cl}} \text{53a} + \text{53b} \]

\[\text{55a} + \text{55b} \xrightarrow{\text{HOAc}} \text{54a} + \text{54b} \]

\[\text{Methyl iodide} \]

\[\text{56a} + \text{56b} \xrightarrow{\text{Na}_2\text{S}_2\text{O}_4, \text{NaHCO}_3} \text{57a} + \text{57b} \]
Scheme VII

5a/5b

\[(\text{C}_{6}\text{H}_{5}\text{CO})_{2}\]
Scheme VIII

\[
\text{DMETO} + \text{C}_6\text{H}_5 - \text{C}_6\text{H}_5 \rightarrow 6.1a
\]

\[
\text{DMETO} + \text{C}_6\text{H}_5 - \text{C}_6\text{H}_5 \rightarrow 6.1b
\]

\[
\text{DMETO} + \text{C}_6\text{H}_5 - \text{C}_6\text{H}_5 \rightarrow 6.1c
\]

\[
\text{HOAc} + \text{Na}_2\text{SO}_4, \text{NaHCO}_3 \rightarrow 6.4a
\]

\[
\text{Methyl iodide} \rightarrow 6.4b
\]
Scheme IX

63a/63b

\[(C_6H_5CO)_2O\]

\[66a + 66b\]

\[67a + 67b\]

\[\text{Mol acetone}\]

\[\text{Na}_2S_2O_4 \text{ NaHCO}_3\]

\[68a + 68b\]
SCHEME XII

Ribavirin

[Chemical structures and reactions diagram]
SCHEME XIII

Ribavirin

1. \[\text{DMT-O} \]
2. \[\text{DMT-Cl} \]
3. \[[\text{CH}_3(\text{CH}_2)_3\text{CO}]_2\text{O} \]

\[7 \]

\[76 \]

\[78 \]

\[72 \]

\[80 \]

\[81 \]

\[\text{CH}_3\text{COOH} \]

\[\text{Nicotinic Anhydride} \]

\[1. \text{Na}_2\text{S}_2\text{O}_4 \]

\[2. \text{NaHCO}_3 \]
SCHEME XIV

1. Nicotinic Anhydride
2. CH$_3$COOH
3. Mel Acetone
4. Na$_2$S$_2$O$_4$, NaHCO$_3$
SCHEME XVI

Ribavirin

1. CH₃I
2. Ni₅S₉O₄
Scheme XVII

Ribavirin

\[\text{DMT-Cl} \]

\[\text{Nicotinic Anhydride} \]

\[\text{CH}_3I \]

\[\text{Nicotinic Anhydride} \]

\[\text{DMTO} \]
Scheme XVIII

Ribavirin

\[\text{Ribavirin} \rightarrow \text{DMT-Cl} \rightarrow \text{(7)} \]

\[\text{CH}_3\text{COOH} \rightarrow \text{(100)} \]

Nicotinic Anhydride

\[\text{(101)} \rightarrow \text{CH}_3\text{I} \rightarrow \text{(103)} \rightarrow \text{(104)} \]
Scheme XIX

Nicotinic Anhydride

CH₃I

Na₂S₂O₄
Figure 1

1H-NMR (COSY)

8.8 ppm

4.25 ppm

4.45 ppm

5.3 ppm

5.65 ppm

7.7 and 7.9 ppm

1H-NMR

5.0 ppm

4.0 ppm

5.9 ppm

$^1^3$C-NMR

145.2 ppm

61.5 ppm

157.4 ppm

160.7 ppm

91.9 ppm

74.7 ppm

85.7 ppm

70.2 ppm

17.2 ppm

3.9 ppm

8.8 ppm

4.25 ppm

4.45 ppm

5.3 ppm

5.65 ppm

7.7 and 7.9 ppm
Figure 2. 1H - 1H NMR spectra (cosy) of ribavirin
Figure 3. Isomerization of monoacylated DMT-protected ribavirin
Figure 4

Chromatograms of 5 μl injections of 250 mM AmOAc, pH 8.8 containing different concentrations of ribavirin. a) 0 μg/ml ribavirin (blank) b) 1.0 μg/ml ribavirin c) 10 μg/ml ribavirin.
Figure 5

Chromatograms comparing 5 µ injections of ribavirin samples with and without undergoing PBA chromatography extraction. All samples lyophilized and then reconstituted in 1.0 ml mobile phase so as to be the same volume as before any treatment.

a) 1.0 µg/ml not extracted
b) 1.0 µg/ml extracted
c) 10 µg/ml not extracted
d) 10 µg/ml extracted
Figure 6 Weight gain in Sprague-Dawley Rats after the maximum tolerated doses of various ribavirin derivatives.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Dose (mg/kg)</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVS 5581</td>
<td>231</td>
<td>4/4</td>
</tr>
<tr>
<td>AVS 5582</td>
<td>150.9</td>
<td>4/4</td>
</tr>
<tr>
<td>AVS 5896</td>
<td>178.7</td>
<td>4/4</td>
</tr>
<tr>
<td>AVS 5897</td>
<td>154.8</td>
<td>4/4</td>
</tr>
<tr>
<td>AVS 5898</td>
<td>160.7</td>
<td>4/4</td>
</tr>
<tr>
<td>AVS 5786</td>
<td>150.3</td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td>75.2</td>
<td>4/4</td>
</tr>
<tr>
<td>7a/7b</td>
<td>150.0</td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td>75.0</td>
<td>0/4</td>
</tr>
<tr>
<td></td>
<td>37.5</td>
<td>4/4</td>
</tr>
<tr>
<td>Compound</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>AVS 5581</td>
<td>214</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>±4</td>
<td>±3</td>
</tr>
<tr>
<td>AVS 5582</td>
<td>230</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>±8</td>
<td>±7</td>
</tr>
<tr>
<td>AVS 5786</td>
<td>217</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>±12</td>
<td>±12</td>
</tr>
<tr>
<td>AVS 5896</td>
<td>220</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>±7</td>
<td>±7</td>
</tr>
<tr>
<td>AVS 5897</td>
<td>220</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>±4</td>
<td>±3</td>
</tr>
<tr>
<td>AVS 5898</td>
<td>234</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>±10</td>
<td>±9</td>
</tr>
<tr>
<td>7a/7b</td>
<td>194</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>±2</td>
<td>±3</td>
</tr>
</tbody>
</table>