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a) SCIENTIFIC RESEARCH GDALS
L“}? The wmain objective of this research is to investigate the
relati;nships setween modern concepts of nrnonlinear dynamical
systems, chaos theary and fully turbulent boundary lavers. The
approach that we are taking is ko search for & connection between
strange attractors and the large-scale coberent structures which
appear to play a dominant role in the dynamics of turbulent shear
flows. . Within ‘the framework of this research contract we are

- attacking the high Reynolds number turbulent boundary laver from
two fronts: ji) From the lawer Reynolds numbar transitional
boundatry lavers, which have the proper flow geometry but & lower

Reynolds onumber ana therefore lawer dimensional dynamics; and

-

(ii):from the high Reynolds number free shear layer +lows, which
Fave a simpler flow geometry than the fully turbulent boundary
layer, but for which the ccoherent structures and their dynamics
aogppear to be much simpler:/ Because of the saomewhat reduced

complexiby, investigating these Fflows first will offer a far

better opportunity to establish a connection of transitional

and/ar turbulent behaviar with low-dimensional strangs
attractors. With tne experience and understanding gained from
these simpler flows, . we will then bhe in a position to

successfully attack the fully turbulent bgundary layer.

X}
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b)MAJOR ERUGRESS IN THE FAST YEAR ‘

Continuation of build-up and/or madification of variaus

facilities for investigating coherent structures and their

T

connection to chaos:
1Y Shear-laver facility (water) with extensive use of
various flow visualization techniquss and advanced
measuremnant techniqués (LDV, particle tracking, etc.).
(h. Glezer)
ii) Jet racility (air). (R. &. Fetersen)

iii) UWind tunnel (air) for wake studies. (F. Champagne, I.

ALt il e ety

Wygnanski)l

" il

Lakiidint)
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iv) New water channel for investigation aof boundary laver

EA LA T Y

transition. (H. Faszl, A. Glezer, R. A. Petersen)

v} New versatile water channel for wakes (glane and

G 2 T 3
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axigymmetric), shear layers, ektc. (F. Champagne, A.

At A

Glezer, R. A. Petersen, 1. Wygnanski)
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- Connection between correlation dimension and large coherent
structures in jgt “lows via the use of diagnostic tecols. (R.
Petersen, I. Wygnanski, H. Fiedler.)

- Application of the proper orthoconal decomposition technigue to

a harmonically farced plane mixing laver. (A. GBlezer and A.

Pearlstein)

Thasratical

Work in Proar=ss

— Dynamics and Stakility of Soliton Solutions of the Damped and

Driven Sine—-Gordon Equeation. (D. Mclaughlin, A. Pearlistein)’
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.

~ Develapment of Numerical Methods for Determining Dimensions,
Attractaors from "Real" Data (data from experiwments, or Navier-—
Stokes simulations). (S. Lichter, D. Rand, A. Newell)

- LCoherent Mode — Stochastic Mede Decompaosition of Turbulent
Fielas. {A. Newesll)

- Revelopment of Navier-Stokes Methcids far Investigating Dynamicé
ot Loherent Structures in Free Shaar Layvers dnd Wakes. (H.
Fasel)

- Davelopment of Navier—-Stokes Methods for Simulating Later
Stages of Transitisn (appearance of random motion). (H. Fasel)

— Norgeriadic Flow Generated by an Oscillating Two-Dimensional
Cvlinder. (A. FPearlstein)

- Devalopment of chaos diagnostic Leols that incorporate spatial
infaormation (i.e., spatial coharence)' and application to
transitional and turbulent jets. (D. Rand, J. Caputo, R.

Fetersen)

c) FLAMS FOR NEXT YEAR'S RESEARCH

——— et it e e s > oo s s —n

All the work listed under & is in proyress and will be
continued in the coming vyear.
Newly added activities will be:

- Chaos diagnostics and analysis of numerical data obtained from
Navier—Stokes simulation. of Jaminar—-turbulent &ransition in
boundary layers. (A. Slezer, A. Pearlstefn, H. Fasel)

~ Develgpment of numerical model for simulations of transition
and turbulence in axisymmetric jets (to allow direct comparison
with jet experiments). (H. Fasiel and R. Li}

—~ Fhase gspace statistics analysis of data from jet experiments

(R. Fetersen)
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(d,e,f,g) List of Fublications, Reparis, Fresentaktions
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1. Fagers Fublished:in Refereed .Journals:
H. Fasel

“"Generation of Tihree—-Dimensional, Spatially Amplifiad .
Disturbance Waves by Periodic Flowing and Suction in & Flat
Flate Boundary Layver." with U. Konselmsnmn and U. Rist), Zabd
&7, p. 298, (1937}, )

“The Influence of Wall Temperabturz cor: the Develaopmant of
Tollmien-Schlichting Waves in Boundary Laver Flows," (with
H. Bestek and F. Dittrich), ZAMM &7. p. 25&, (1987).

"Breardown of a Two--Dimensional Laminar Separation Bubble in
a Flat Flate Boundary Layer," O'ith K. Gruber), Z&MM &7, p.
286, (1987:%.

LA Vi o R i

"N'.mericsal Investigation of the Three-Dimensional
Developmant in Boundary Lavetr Transition," (with U. Rist and
Y. Konzelmann), AIAA Faper 87-1203, (1937).

-nar s

"Interaction Between a Tollmien-Schlichting Wave and a
Laminar Separahion Rubble,” (with K. B8ruber and H. Bestek),
_______________ (1987). '

"Nonlinear Interactions of Twoa—-Dimensiaonal Tallmien—
Schlichting Waves in a Flat Plate Boundary Laver,: (with J.
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"Numerical Investigation of the 8tability of Taylor Vartesx
Flow in a Wide Bap," (with J. A. Meyer), ZaMM &8 (to be
published in 1988).

"Numer-ical Simulation of Subharmonic Resanance in Boundary
Layer Transition,;" (with U. Konzelmann and U. Rist), ZAMM
68, (toc be published in 1988).

"Numerical ' Simulation of the Boundary Layer Transition
Frocess Near the Secondary Instability,” (with U. Rist and
U. Konzelmann), ZAMM &8, (to be. published in 1988).
"Numerrical Investigation of the Gnaset of Chaos in the Flaow
Between Rotating Cylinders," (with &. Laurien), Zat1 65 (to
be published in 1988).

A. Glezer

"On the Formation of Vortex Rings," accepted Fhys, Eluids.

"On the Breakdown of the Wave Packet Trailing a Turbulent Spot.in
a Laminar Boundary Layer;" (with Y. Katz, and I. J. Wygnanski),
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D. HMclLaughlin

"On the Weak Limit of Rapidly Oscillating Waves,” (with L.
Chierchia and M. Ercolani), to appear in Duke Math. Jd., 1958.
"Geomebry of tha todulational Inctability. Part 1: Local
Results; Fart 2: Global Results,” (with N. Ercolani and ., G.
Forast) submitted to Comm. Fure Appl. Makth., 1788.

Fart 1 also Plemgirs of the AMS, 19838 and FPart I Memoirs af Lhe
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AME 1988 and Physica P 1998 “Connection RBetween Homoclinic

R el — 1

Structure of Isospectral Set, in Instabilities.

"Geometry of the Modulational Instability, Fart S: Homocelinic
Orbits for .he FPeried Sine~-Gordon Equation," {(with N. M. Ercolani
and M. B. Forest) to appear Phvsica D, 1938.

"4 fuasi-periodic Route to Chaos in a Near Integrable FDE,Y
(with #. Bishop, M. G. Forest, and E. Overman), Fhvsics Letk. 4.
Vol. 1246, pp. 3Z33-348, 1988.
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"Stability and Bifurcation of Time-periodic Solutions of the
Dampad and Driven -Sine-Gordon Equation," (with A. Pearlstein ano
G. Terrones) preprint, Univ. of Ariz., 1988.

"Stability and Bifurcation of Spatially Coherent Solutions of the
Damped—Driven NLS Equation," (with G. Terrones and A. Fearlstein,
in preparation.

"Notes on Melnikov Integrals for Models of the Driven Fendulum
Chain," (with N. M. Ercolani and M. 3. Farest) preprint, Univ. of
Ariz., 1988.

"Chaos in a Perturbed Sine—Gardon Equation and in a Truncated
Modal System," (with A. R. Bishop, R. Flesch, M. G. Farest, and
E. A. Overman 1I) preprint, Los Alamos, 1987. '

"Modal Representations of Chaotic Attractors for the Driven
Damped Pendulum Chain," (with A. R. Bishop, M. G. Forest, and E.
A. Overman II) preprint, Ohio State University , 1988.

"Fimite Amplitude Modal Equations for Nearly Integrable PDE’'s,"
(with N. M. Ercolani and M. G. Forest) preprint, Ohio State
University, 1988.

A. Newell

"Fized Foints and Chaotic Dynamics of an Infinite Dimensional
Map," (with J. M. Moloney, H. Adachihara,; and D. W. iclaughiin,
Chaos. Noige and EFractals, pp. 137-186, 1987.

"A Calculus Curriculum for the Nineties," (with D. Lovelaock)
Frocendings MRC-MAA "Calculus Curriculum." Oct. 1i987.

"Snell's Laws at the Interface Between Nonlinear Dielectrics,”
(with A. B. Aceves and J, V. Molanay), Fhysics Letters A, VYol.
129, No. 4, 1988, pp. 231-235.




"Reflection and Transmission of Sglf—focus=ad Channels at
Nonlinear Dielectric Interfaces, (with A. 8&. dAceves and J. V.
Molaoney!d. .

"Trajectories of Surface Waves at the Interface Between NDnlingar
Dielectrics (wikth #&. Aceves and J. Moloney), submicted ta BPhysics
Review Lettars.

"Wavenurber Ss=lection of Convaction Rolls in a Bax," (wikh Ni
Arter and &. Bernoffl, acceptaed FPhysics of Fluids Letiers.
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"Numerrical Simulation of Rayleigh—-Benard Convectiorne im Shallow
Tanks, (with W. Arter), accepted Fhyvsics of Fluids.

"Soliktary wWaves as Fixed Foints of Irfinitte—Dimensional Maps for
an Optical Bistable Ring Cavity: Analysis,” (with H. Adachibara,
D. W, McLaughiin, and J. V. Moloney), to appear d. of
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“l.ax  Pairs, Backlund Transfaormations and Special Solutieons far
Ordinary Differential Equations,” (with J. D. Gibbon, M. Tabor,
and Y. Zeng), to appear Neonlinearitwv.

"Turbulent Transport and the Random Occurrence of Coherent
Events, (with D. Rand and D. Russell), to appear in special
volume of Fhysica By Nenlinear Fhengmena, Sept. 17883.

"Theary of Beam Reflection, Transmissian, Trapping, and Breakup
at Nonlinear Optical Interfaces, (with A. B. aceves and J. V.
Moloney), to appear Opitical Bistabilitv I 1583.

"Turbulent Dissipatiaon Rates and the Random Occurrence of
Coherent Events.," (with D. a. Rand and D. Russell), to appear
Ebys. Letters A.

~. Fzarlstein

"Onset of Convection in Variable Viscosity Fluids: #fn Assessment
of Approtimate Viscosity-Temperature Relations," Fhysics of
Fluids, 31, pp. 1388-1385, 1989.

"S8tavbility of Free Caonvectian Flows of Variable Viscosity Fluids
in Vertical and Inclined Slats," (with ¥,-M. Chen) accepted J.
Fluid Mechanics.

"Temperature Distributions in a Laminar—-Flaow Tubul ar
Fhotareactor,” (with F. Chen) accepted QIChE Jouwrnal.

“Low FPeclet Number Heat Transfer in a Laminar Tube Flow Subjectead
te Axkially Varyving Wall Heat Flux," (with B. P. Dempsev) zccepted
J. Heat Transfer.

"Efficient Transformation of Certain Singular Folynomial Matrix

Eigenvalue Problems," (with D. A, GBoussis) accepted J.
Computational Fhvsics.
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"Ramaval of Infinite Eigenvaluss in the Generalized Makrix
Eigenvalue Froblem," (with D. A. Goussis) accepted Jd.
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. Technical Reparts:
H. Fasel

ONR Contract NOB8Q14-85-K~@0412 vearly repor-t, Mar. 1987

D Fresentations
a. Invited
H., Fasel
"Navier-Staokes Simulations of Laminar-Turbuient‘Transition,u

International Symposium an Computational Fluid Dynamics,
Sydney,; Australia. 14-17 August 1937. ’

“Numerical Investigation of Stability and Transition in

Shear _ Flaws,“ Euromech Colloquium on Boundary Layer

iggtablllty and Transition, Exeter, England, 21-25 Sebt
b .

"Numerical Investigation of Transition in Wall &ounded Sheer
Flaws," Calif. Inst. of Technnlagy, Acril 1788.

“Numerical Simulation of Breakdown to Turbulence," 1Illinois
Institute of Technology, Chicago, Ill., May 1988.

"Stability and Transition and Transition Control in Shear Flows,”
McDonnell Douglas Research Labs,; St. Louis, Mo., May 1988.

A. Glezer
DARFA/URI-Brawn/Yale Conference on Turbulent Structures in Free
Shear Flows and Their Detection by Praoper Or thogonal

Decompositian, Newport, RI, June 1583.

Cornell University, Mechanical and Aerdspace Enginesring Seminar,
March 1988.

Frinceton University, Mechanical and Aerospace Engineering
Seminar, Dec. 1987.

D. Mclaughlin

Jaint Summer Research Conferences in the Mathematical Sciences,
University of Tolaorado, 1937.

Second Haoward University Symposium aa Nonlinear Semigroups,
Fartial Differential Equations, and Attractors, 1987.

Summer Schecol, 2 weeks of lectures, Ravello, Italy, 1987.

Math Colloquium, University of California, Davis., 1988.




.

Nonlinear Science Colloquium, University of California, San
Riegas 1988.

Nonlinear Schroedinger Conference, France, 1788.

"Critical Lavel Seits of Integrable FPDE’'s,"” Solitons in Fhysics
and Mathematics, Minneapolis, Minn., Sept. 1988.

A. FPearlstein

Gordon Research Conference on Oscillations and Dvnamic
Instabilities in Chemical Systems, Flvmouth, NH, ‘July 1988.

DARFA/URI-Braown/Yale Confarence an Turbulence Structures in Free
Shear Flaows and Their Detectiaon by Froper Orthogonal
Decomposition, Newpart, RI, June 1%9E8.

University of Califarnia; San Diego, Dept. of Appliad Mechanics
and Engineering Science, Feb. 1988B.

Yale University, Applied Mechanics Colloquium, Nov. 1987.

b, Contributed

H._Fasel

"Nonlinear Interactions of Two-Dimensianal Tallmien—
Schlichting Waves in a Flat Plate Boundary Laver," (with J.

Currle and A. Thumm),; GAMM Conference, Stuttgart, April
1987. -

"Numerical Simulation of Subharmonic Resonance in Boundary

Layer Transition,” (with U. Konzelmann and J. Rist), GAMM
Conference, Stuttgart, April 1987.

"Numerical Investigation gf the Onset of Chaos in the Flow
Between Rotating Cylinders," (with E. Lauriaen), GAMM
Conferences, Stuttgart, April 1987.

"Numerical Investigation of the Stability of Tavlior Vortex

Flow in a Wide Gap," {(with J. A. Mever), GaMM Conference,
Stuttgart, April 1987.

"Numetrical Simulation of the Boundary Layer Transition

Process Naar the Secondary Instability,” {(with Y. Rist and

U. ronzelmann), GAMM Conference., Stuttgart, April 1987.

"Interaction Between a Toallmien—-Schlichting Wave and a
Laminar Separation Bubble," (with K. Gruber and H. Bestek),
AIAA 192th Fluid Dynamiczs, Plasma Dynamics and Lasers
Conference, Honolulu, Hawaii, 8-10 June 1987.
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"Numerical Investigation of the Three-Dimensional
Development in Boundary Layer Transition," (with U. Rist and
U. Konzelmann), ALAA 19th Fluid Dynamics, Plasma Dvnamics
and Lasers Conference, Honolulu, Hawsiil, 8-10 Jun. 1987.

"Numerical Investigation of Unsteady Separation in Boundary
Lavers," AFRS/DFD Meeting, Eugene, 0OR, Nowv. 1987.

A. Glecer

"Evolution of & Pulsed Two-Dimensional Disturbance Superimposed
an an Excited Turbulent Plane Mixing Layer,® {(with X. Gu and I.
J. Wygnear 331} ARS/OFD Meeting, Eugene, OR, Novw. (987.

"Concurirent Streanwise and Spanwis2 Farcing of & Turbulent Mining
Layer," {(wikh K. J. Nygaard and I. J. Wygnanski) AFS/DFD Meeting,
Eugene, OR, Nav. 1737.

"Application aof the Froper Orthaogonal Decompositicn Technigue to
an Anharmonically Forced Flane Mixking Layer," (witn Z. Kadioglu
and A. J. Pearlstein) AFS/DFD Meeting, Fugene, OR, Nov. 1(9287.

A. Pearlstein

"The Onset of Instability Via Three-Dimensional Disturbances in
Farallel Shear Flows," APS/DFD Annual Meeting, Eugene, OR, Nov.
1987

"Control of Planfarm Selection by Boundary Anisotropy," (with A.
Oztekin AFS-DFD Annual Meeting, Eugene, OR, Nov. 1987.

"Application of the Froper Orthogonal Decamposition Technigque to
an  Anharmonically Forced Flane Mixing Laver," (with Z. kadioglu
and A. Glezer) APS-DFD Annual Meeting, Eugene, OR, Nov. 1987.

"Modeling of Mass Transfer Controlled Electrodepasition on Masked
Substrates," AIChE Annual Meeting, Mew York, Nov. 1987.
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h) List of Participants

Principal Investigators:

H. F. Fasel, Professor of Aerospace & Mechanical Engineering
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A. E. Newell, Professor of Mathematics

Faculty:
A. Glezer, Assistant Professor, Aerospace & Mechanical Engineering
D. McLaughlin, Professor of Mathematics

A. Pearlstein, Assistant Professor, Aerospace & Mechanical Engineer-
ing

R. Petersen, Assistant Professor, Aerospace & Mechanical Engineering

D. Rand, Professor, University of Warwick, England
(visiting for three months)

D. Russell, Center for Nonlinear Studies, Los Alamos, N.M.
(Mathematics Department)

R. Li, Post-doc Assistant, Aerospace-Mechanical Engineering

Graduate Students:
Aero-Mech. Engineering:
G. Terrones
Z. Kadioglu
J. Powell
D. Dratler
A. Godil

Applied Math:
M. Aksman
J. Powell
G. Solomon
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Application of the Proper Qrthoannal Decomposition Tecinique to

an

Anharmonically Forced Plane Mixing Layer

A. Glezer and A. Pearlstein (with Z. Kadioglu)
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APPLICATION OF THE P.0.D. TO THE DATA
Lumley(1967); Aubry, Holmes, Lumley & Stone (1986)

Previous 2pplications have been to fully developed turbulent

flows that are :

» Statistically Homogeneous in Two Directions

= Statistecally Séationary

-

DESCRIPTION OF THE P.0.D.

/uci,z).,............; ...... ...........U(l,n)‘
A= IIZIIIIIIIIZZ:IZIIIIO'(}.}é)'IZIIfIII;IIIIIIIII.
Oqé':i)'ﬂIIIIIIIIIIZ:IIIIIIIIIZZIIIIII(J'(J,IA)'J

Singular Value Decomposition of A (SVD) is equivalent %o compu~-

7
ting the eigen values of A.A

The aigen values measure energy or action in correponding eigen

vectors ( spatial modes ) .

Eigen vectors coastituts an orthogonai basis for rapresenting

U(x,y,%) . . ',
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Turbulent Dissipation Rates
and the Random Occurrence of Coherent Events
by

Alan C. Newell, David A. Rand*, David Russell §
Department of Mathematics
University of Arizona
Tucson, AZ 85721

Abstract

In this letter, we suggest that the transport properties and dissipation rates of a
wide class of turbulent flows are determined by the random occurrence of coberent
events that correspond to certain orbits which we call homoclinic excursions in the
high dimensional strange attractor. Homoclinic excursions are trajectories in the
non-compact phase space that are attracted to special orbits which connect saddle

points in tke finite region of phase space to infinity and represent coherent structures
in the flow field.

Introduction

It is generally accepted that turbulence in shear flows at Reyuolds numbers of
10° and higher has a large number of active degrees of freedom. Although estimates
of Lyapun: and Hausdorff dimensions are stnctly upper bounds the rapid loss of
spatial cor.elations over distances of the T, lor microscale R~% and the broadband
wavenumber spectrum suggest that many modes are playing an active role in the
dyna.mms The RY estimate (1], which is consistent with the intuitive idea of Landau
that it is necessary to resolve a turbulent flow field in a box of volume V down to
the Kolmogoroff inner scale of (v3/ e)T (v is kinematic viscosity, e = v | v u[*dZ
is the energy dissipation rate and is maependent of v for a large range of large
Reynolds numbers), means that if R is 104, RY is a billion! It is unlikely that
replacing the Navier-Stokes equations by a system of a billion o.d.e.s. will either
bring much insight into the nature of turbulence or make it possible to calculate
the invariant measure on the attractor needed to compute averages. Therefore,
whereas the concept of a strange attractor on which the flow is everywhere unstable
and ergodic is a valuable and necessary one, a new idea is needed if one is to be
able to compute in a practical way average flow quantities and in particular those
averages which represent transport properties, the flux of heat across a convection

*Present Address: Nonlinear Systems Laboratory, Warwick University, Coventry,
CV4 TAL United Kingdom

1 Present Address: Center for Nonlinear Studies, Los Alamos, NM 87545
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layer, momenium across a boundary layer, angular momentum between cylinders
rotating at different velocities, mass flux down a pipe or the amount of heavier fluid
which falls throngh a lighter one. It is also important to calculate the dissipation
rate which, in systems where energy is fed in at low wavenumbers and removed
at high ones, is equivalent to computing the fiux or cascade of energy across any
middle wavenumber. One of the main goals of a turbulence theory is to predict the
transport and the dissipation rate as a function of the applied stress. The purpcse of

this paper is to suggest one new avenue of approack to these problems of transport
in physical and wave space.

The basic idea is fairly simple. There is some evidence that, in a variety of
situations, transport is associated with organized flow structures. If this is the
case, one would like to identify and isolate those parts of the attractor and those
orbits in phase space which are the principal contributors to a particular flux. In
this letter we focus on a class of such special orbits which connect saddle points in
the finite part of phase space to infinity and which are the principal contributors
to the dissipation rate. The ideas are first illustrated in terms of a simple, but
nontrivial, example , the two dimensional forced, damped, nonlinear Schrddinger
(NLS) equation .

Ye—iv: p—ily[’y=F-D (1)

which arises in models of Langmuir turbulence. Although this model is a poor
approximation to the full Zakharov equations on several counts, it nevertheless
retains the essential feature, emphasized for many years by Soviet colleagues [2],
that, in the limit of strong ion damping, dissipation is mainly due to the collapse
of filaments rather than energy transfer to high wavenumbers by resonant wave-
wave interactions. The filaments are closely related to an exact, singular, localized
solution of the unperturbed and conservative NLS equation (1), whose modulus has
the shape '

[9(Z, ) = A7 R(n) , =27z~ Z (2)

near the blow-up point Z;. In (2), R(n) is the unique solution of R” + n™1R' —
R+ R® = 0,R'(0) = 0,R(c0) = 0 without zeros in (0,00) and (%) is a time
dependent function which becomes zero after a finite time ¢5. The rate of collapse
A(t) has not been yet satisfactorily determined. The two most recent efforts [3]
both agree that it has be form f(t)(¢p — t)i' where f(%) tends to zero very slowly
(e.g.(In(tg — t))™?! or (Inln(ty — ¢))~!) but differ on the exact asymptotic answer.
A sufficient but ot necessary condition for collapse is that the Hamiltonian H =
J(iv¥iF —£$]¥)dZ is negative. The negativity of H guarantees thatny = [ |9[24dZ,
also a constant of the motion for the NLS equation, is greater than the minimum
power p = 2 [° R?pdn = 0.29 needed to sustain collapse. If ny = p, Weinstein
(4] has shown that, if the solution blows up in finite time, then ¥(Z,t) converges
to (2) in the H! norm. On the other hand, if ny < p, global existence is assured
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and no blow-up occurs. Qur interest is in larger values of ny. In particular, an
initial condition which is a small perturbation of the unstable, monochromatic state
% = thoexp(ik - £ + i(k? ~ |4 [?)t) in 2 square box of side length L with k¥ =
27 L~Y(m,n), m,n integers (m = n = 0 corresponds to the Z independent state) for
which ny = |0/ L* will develop approximately nyp~! collapsing filaments, each
baving precisely the shape (2) near its collapse site £ and time ?o. In the phase
space of the unperturbed system, each collapsing filament will be represented by
an orbit which joins the saddle point representing the unstable solution to infinity.
We give these orbits a special name, heteroclinic connections to infinity or HCI’s,
because all orbits which escape to infinity are attracted to them even though the
unperturbed system is conservative. In other words, all solutions of NLS which
become singular in finite time have the shape (2) as they approach infinity. Of
course, in the damped system, the singularity is never quite reached. Once the
filament diameter is of the order of the Debye radius, Landau damping (represented
by D in (1)) becomes important and the energy is transferred from the wavefield
to electrons, a process know as burnout. The process of dissipation changes the
attracting point at infinity to a repeller and the system returns to the finite part
of phase space where it again comes under the influence of a saddle point and the
cycle is repeated. We call these large excursions, from the finite part of phase space
to the neighborhood of infinit~ and back again, homoclinic excursions. They are
organized by the HCI’s in the sense that as the trajectory approaches infinity, the
corresponding solution in physical space approaches a very special shape and in
particular the amount of energy it carries off to the dissipation cemetery at infinity

is known. Before attempting to mathematize these notions any further, we present
some numerical evidenée to support our picture.

Numerical Results -

We now turn to the main results of the numerical study. We integrated (1) using
a split-step Fourier algorithm on a grid of (128)? points. The time step used was
10~ and adequate to resolve the largest linear (¥?) and aonlinear (|9|?) frequencies
encountered in our simulations. Aliasing errors were judged to be insignificant by
making spot comparisons with a dealiased code on a (256)% grid. More details
are given in [5]. Energy is fed into the system at low k and removed at high &
through F' and D whose Fourier transforms are +;(k)r and v.(k)9¥x respectively
( ¥x is the Fourier transform of ¥(Z,t)). The support of +;(k) is near ¥ = 0 and
the support of 4.(k) is beyond ky where kg is the Debye wavenumber. It turned
out that in most of our simulations the global energy H (not a constant of motion
for (1)) was positive during all time intervals in which there were collapse events.
Figure 1 shows snapshots of |1)?(Z,t)| before, during and after the collapse. Figure
2 displays the instantaneous rate of dissipation ¥(t) = 2 "¢ v.(k)[¥x|?, its integral
I'(¢) = - [*dt'4(t'), and the global maximum of [|? over a time interval including
several collapses in a strong-turbulent regime after transients have died out and

3
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the system has reached a statistically steady state. —T is just the energy lost due
to dissipation as a function of time. Observe that a large fraction of the energy
dissipation occurs in sudden jumps and is directly correlated to the collapse events.
Energy ny = 3¢ |[1&/? is considered to be dissipated due to collapse only if ¥ > 7o,
where 7p is a threshold parameter. If this inequality holds over the interval (i1, %3],
then the energy burnt out is I'(#;) — I'(¢2), and the total energy lost due to collapse
for the entire simulation is the sum of all such differences. Denote this total energy
lost due to collapse by én. and the total energy dissipated by én. We have plotted
the ratio én./én as a function of 4, for several different turbulent regimes. As g
decreases the ratio increases and is of course one at 4¢ = 0. 79 = 1 was the smallest
value that gave ratios judged to be free from contamination by non-collapse events
for all cases studied, so it was chosen as the standard cut-off rate. With this choice
of 7, as much as 80% of the total energy dissipated is dissipated by collapsing
filaments in the most energetic case examined (< ny > 10). In the weakest
case (< ny > 5) more than 70% of the dissipated energy was lost in burned out
filaments. Furthermore, these estimates of the energy dissipation are conservative
because we have not yet included the more gradual loss due to the decay of the
high k& remnant left over from the collapse. The reason for this remnant, peculiar
to the nonlinear Schrodinger equation, is that a singular filament of this equation
carries the minimum threshold energy p required to sustain collapse. (In contrast,
the energy of a collapsing Zakharov filament, again a constaat of the motion, can
take on a ccatinuous range of values above the critical threshold.) Therefore, when
a significant portion of the filament’s spectral energy lies in the dissipative range
(k > kq), some of its energy is lost, collapse is arrested and only a partial burnout
occurs. It leaves behind a remnant in the form of broadened concentric cylindrical
shells of field energy centered at the collapse site (see Figure 3). In order to follow
the energy associated with the remnant, we monitored the field energy inside a small
cell centered at the collapse site and observed that the burnout of the central part
of the filament, or core, causes the fastest depletion of energy in the cell, but also
that it is immediately followed by a slower depletion. The slower loss is primarily
due {o the fluxing of the remnant through the cell boundary. If we add the energy
loss rp,0 < r £ 1, due to the burnout of the core to that carried out of the cell
by the remnant, we obtain a total loss of energy in the cell very close to the total
amount p carried by the collapsing filament. Figure 4 shows the disribution of r.

The remnant plays two roles in the dissipation process. First, it provides a
nucleating center for new collapses, a fact we have verified by examining the spatial
distribution of collapse sites. As a consequence the frequency of collapses increases.
We found that for 45(k) = 26(k — 1) (the beam drives just the lowest wavenumber
in the box), the distzibution of collapse times is nearly Poisson with a mean time
between events of w;! =< 7 >= .08. Second, the gradual damping of the remnant
enhances the ambient dissipation rate < ¥4 > (i.e., the dissipation rate averaged
over time intervals free from collapse) over that amount we would expect from
other dissipative mechanisms. In order to verify this, we carried out the following
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relaxation experiment. By changing the sign of the nonlinearity in equation (1) from
plus to minus, we obtain a system with the same linear dispersion as the plus system
and therefore presumably the same resonant wave interaction character but without
the unstable modulational and nucleational instabilities (which will be discussed in
the next section) and collapsing solutions. Initializing the two systems identically,
we ran them with the forcing turned off (45 = 0) and compared their dissipaticn
rates between collapses of the (+) system, before their energies had separated by
more than 10% of the common initial value. The ambient dissipation rate of the (+)
system was typically 50% greater than that of the non-collapsing (-) system while
the collapse remnants were dissipated. Including collapse events in the tally, the
(+) system lost energy three times as fast as the (-) system. We conclude, therefore,
that the amount of energy dissipated by non-collapse events is at most one-quarter
of the total energy dissipated. Therefore, the energy dissipation budget is as follows.
The average total dissipation rate < y>=w. < r> p+ <4 >=wep<r > gs,i-

since 9—%_%3 = 35;} < v > depends only on the mean turbulence level < ny, > but,

as we have pointea out, < 74 > and w,. depend both on < ny > and the nature of
the dissipation. The average function < r > lost in burnout depends only on the
latter. We plotted both < v > and w, as a function of < ny > and found that,
as expected from above, the product < 7 > w? is almost independent of < ny >.
Futhermore it was equal to .13 which is equal to the product of p (which was .29),

< r > (which was .3) and f;&- (which was about 1.3). Graphs showing the loss of

energy from a small cell surrounding the collapsing filament, %f- as a function of
Y0, < 7 > and w, as a function of < ny >, the distribution of collapse times, the
angle-averaged correlation function and actual trajectories illustrating homoclinic
excursions will be given elsewhere [5].

Whereas these results confirm the thesis that coberent collapse events dominate
dissipation, the expense involved in two dimensional experiments did not allow us
to run a sufficient number of simulations in order to determine in what limit, if
any, %;- approaches unity. In connection with this question, and in parallel with
the ideas of DiPerna and Majda [6], one would also like to develop the notion of
a weak solution in which solutions of the undamped equations could he continued
beyond the collapse time by simply deleting the collapsed filament and lowering the
L, norm of the solution by a fixed amount. In order to examine these questions,
we simulated the one dimensional nonlinear Schrddinger and Zakharov models with
quintic nonlinearities on grids of 1024 and 256 points respectively. Aliasing errors
were removed by smoothly interpolating 1 onto a grid of 8 1024 or 256 points before
forming the nonlinear frequency ||*. The results for NLS showed that, for the same

turbulence levels, the percentage of the dissipaticn rate accounied for by collapses
rose from 59% at k4 = 128 (where, because the dissipation effects are clearly felt
in the early stages, there are many failed attempts to form collapsing filaments), to
72% for kg = 256, to 82% for k4 = 512. The average loss of energy per collapse

decreases with kq (the amount of energy greater than kg in the Fourier transform




of the collapsing filament decreases with increasing kq) but the frequency of events
increases proportionately so that the average dissipation rate remains the same.
The evidence clearly suggests that in the large k4 limit, all the energy dissipated is
dissipated by collapse events which occur infinitely often with infinitisemal losses of
energy per event.

A much more striking result was obtained when we ran the very same experiment
on the Zakharov model

¢t - i";bzz + iP",/’ =F-¢eD (3)

Pt +200py = pre = (W’P)zz (4)

where F' and D are as before and 2v o p; is a convolution integral modelling ion
damping. The ion acoustic field p(z,t) is no longer slaved to the electric field
intensity (for NLS, p in the equation (3) is replaced by —|[¢|*). Therefore, during
collapse, in which the fields take on a self-similar form close to (2) but in which
the inertial acceleration py is also important, the cavity formed by the ion field
encourages total burnout of the fillament (see Figure 5). We found that when € =
1,ky = 32,< ny >= 1.625, the average enetgy < r > p lost per event was 1.95,
the average time between events was .83 and 22 was 92%. (For the Zakharov
model, the amount of energy carried i the ﬁla.ment a constant of the motion for
the unperturbed equations, can take on a range of va.lues greater than the threshold
value p = .43 in this case. Thus r > 1). The distribution of r rose sharply after
r =1, had a2 mean of 1.95/.43 and had a relatively long tail. Also, we observed that
all the collapses occurred in 9 nonoverlapping sites, were driven by the nucleational
instability (see the section after next for discussion), and the sites drifted about the
box. When we increased ky to 64, < ny >= 1.8, the frequency of events increased
to (.69)™? (there were 287 events in 198 time umts) and the distribution of r came
closer to one. The average energy lost per event was 1.57 units and é’-:f- was 95%.

(In contrast, at the same parameter values and over 100 time units, the NLS model
had 972 events with an average energy loss of .09 and %= was 72%.) Further,
when we decreased ¢ to § (again k4 = 64), the distribution of r came closer to
threshold and %’-}{- was 98%. Also, for € = 1, when k4 was increased to 128, & =

was 98%. This leads us to conjecture that as ky increases and ¢ decreases, the
distribution of » will cluster about one, and that each collapsing event will burn off
exactly the threshold energy p = .43. In this asymptotic limit, the weak solution
of the unforced, undamped equation in which the turbulence eventually decays, is
found by simply removing the collapsing filament from the field and reducing the
L: norm by p. (The weak lmit, i.e. ¥{(z,0) is the weak limit of Y(z,Ajas A — 0 if
f go(z)¢(z, 0)dz = %13) J o(z)¥(z, A)dz where ¢ is smooth, of a collapsing filament
is zero because it oscillates very fast and its width decays at a faster rate than its
amplitude increases). We will report more details elsewhere. We are also currently
testing some ideas concerning the estimation of the frequency of events.
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Coherent Events

Our picture, then, is that in this and a wide variety of similar situations, the
dissipation rate is governed by the random occurrence of coherent events. In order
to compute a good approximation to the dissipation rate, one need only know the
following information; (i) the nature of the hemoclinic excursion (equivalently the
spatial and temporal shape of the coherent structure) and the energy lost in the
cycle and (ii) the average frequency of occurrence. Although finding approximations
to these quantities will not in general be an easy task, it should be considerably
simpler than finding the complete statistics on the turbulent flow. Further, this
picture suggest that the most natural decomposition of the turbulent field is one in
which the field is divided into low dimensional, organized structures (the collapsing
filaments) and a high dimensional component consisting of chaotic fluctuations in
the field during intervals when no collapse events occur. In phase space, the high
dimensional component will cause the homoclinic excursion to fluctuate chaotically
about the HCI but, because in physical space these fluctuations represent chaotic
behavior away from the collapse site, it is reasonable to expect that their effects
can be captured using low order statistics and that they will not appreciably affect
the dissipation rzte.

One would like to unders.and better the low dimensionality and attractive nature
of the organized, singular structures. Why is it that the only structures through
which the 9(Z,t) field becomes singular are relatively simple? We have no mathe-
matically rigorous or even plausibly compelling argument but suggest that this is
a very important question to answer. Our own attempt at an answer is incom-
plete but stresses the importance of the scaling symmetry which the NLS (and Za-
kharov) equation enjoys: if ¢(Z, t) is a solution, so is ¢(Z, T) where ¢ = A~19, X=
A=1Z, T = \~2t which suggests the family ¥ = A"1R(A~1|Z]) exp(—iA~2¢) of exact
solutions. If ¢ is to approach infinity as A=?(t), then in order that the dispersion
and time derivative ferms can balance cubic nonlinearity, £ must scale as A™? and
t as A~%2, Thus a singular solution in which dispersion can balance nonlinearity
(spatially independent solutions, some of which can be singular, are unstable) de-
mands scale symmetry. If one inserts ¥ = A~1p(X = A™13, T = [ A~2di) into
the NLS as the leading term in an asymptotic expansion and if one makes the fur-
ther ansatz that ¢ = f(Z)expif, where § = [ A~2dt+ lower order terms, then the
demand that the coefficient of A~2 be zero gives a nonlinezr eigenvalue problem
for f(Z) for which there is a unique isotropic ground state solution, namely R(n).
However, the separation ansatz is not forced at this level. One might conjecture
that if one attempts to construct a uniformly valid expansion for 1, then both this
ansatz and the behavior of A(¢) might result from solvability conditions. This is the
point of view taken by Zakharov [3|. Despite the absence of a rigorous argument,
it would appear, nevertheless, that symmetry constraints have much to do with the
low dimensionality of the singular structures.




Geometry of Phase Space

The dominance of filaments in the dissipation process suggests that the attractor
A contains two saddle-like unstable sets A and S and heteroclinic orbits between
them. M contains saddle points representing modulationally or nucleationally un-
stable (we discuss these shortly) solutions of (1), (3) and (4). The stable manifold
of § at infinity is low dimensional and corresponds to the idealized collapsing fil-
aments of the unperturbed equation. The unstable manifold of M intersects the
stable manifold of S. The unstable manifold of S (the burnout due to Landau
damping) intersects the stable manifold of M. The speed of attraction and repul-
sion at S are governed by two entirely different processes and are not related. The
former depends on the faster than exponential collapse while the latter depends
on dissipation and, for the Zakharov equation, the slow relaxation of the ion hole.
Based on this picture A can be roughly subdivided into two sets Ac and Ay. When
the system is in Ay, it is dominated by what we all the hash modes consisting of the
background field and radiation modes left over from the formation and collapse of
the coherent structures. This set will generally be large dimensional but contributes
little to the dissipation rate. On the other hand, when the system is in Ag, it is
dominated by the coherent structures, and in particular as the saddle point S at in-
finity is approached, the trajectories asymptotically tend to the special arbit which
we have earlier called the HCI. In other words, the part of the turbulent solution
which provides the principal contribution to the dissipation rate is low dimensional.
After the energy is removed by Landau damping (or in general by whatever dissi-
pation process is relevant) the phase point returns to the turbulent soup Ay where
it again comes under the influence of the saddle points in M and the cycle repeats.

We now turn to a discussion of the structure of the phase space, the nature
of the saddle point M and its unstable manifold. Whereas the perturbations of
forcing and damping modify the phase space structure, it is the topology of the
phase space of the unperturbed system which sets the stage for the large homo-
clinic excursions. T+ . properties of the unperturbed system, which is Hamiltonian,
are crucial. One is the fact that its phase space contains many fixed points and
periodic orbits of saddle type and separatrices joining these. The second crucial
property is the non-compactness of the constant energy surfaces and the existence
of heteroclinic connections (HCI’s) which join certain of the saddle points to in-
finity. Whereas Hamiltonian perturbations of this system can destroy certain tori
through resonances and create new chains of elliptic centers and hyperbolic saddles
and non-Hamniltonian perturbations can turn the centers into attracting sinks or
destroy them altogether, the important point to make is that the hyperbolic nature
of the original saddles and the attracting nature of their HCI’s remain intact and
play a dominant role in the dynamics of the perturbed system. The instabilities
which give rise to collapsing filaments in (1) are closely related to the naturally
occurring instabilities of the unperturbed NLS equation, an infinite dimensional,
Hamiltonian system with Hamiltonian H and the additional motion constants ny
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and J =1 J( 7 %" — " v ¥)dZ. There are two types of unstable critical points.
The first are nonlocal solutions which are constant or purely periodic in space with
a time behavior depending on amplitude (so they are really vnstable periodic or-
bits). These states are unstable to sideband disturbances (fluctuations with a spatial
period close to that of the unstable solutions), an instability known as the modu-
lational instability. The second type are called cavitons and are analogous to the
solitons of the one dimensional equation. Like the collapsing filament, they have
zero H value and any perturbation which decreases H will render them unstable.
Because of the existence of unstable solutions, the phase space of the unperturbed
Hamiltonian system contains many saddle points. Increasing the size of the do-
main or the amplitude of the ¢ field (the important parameter is the L, norm) will
create saddle-center bifurcations and increase the number of saddles. Hamiltonian
perturbations such as the addition of a term V(z)[)|* to H can create additional
island chains of hyperbolic saddles and elliptic centers and in particular, if V(z)
is a localized potential well, these new critical points can correspond to the just
mentioned localized caviton states {7]. The presence of a small amount of dissi-
pation will destroy centers, turning some into sinks, but the saddles will persist.
Other non-Hamiltonian perturbations, such as forcing, can destroy the stable sinks
and destabilize the weakly stable cavitons which are localized in potential wells. In
practice, this scenario often arises [8], particularly for the Zakharov equations and
in some instances for the nonlinear Schrodinger equation. If ion damping is large,
the hole in the ion acoustic density field remains after the burnout of the electric
field. The hole acts as a slowly relaxing potential which can serve to focus electric
field energy into a metastable caviton [7]. When the hole amplitude is sufficiently
small, the caviton destabilizes and the field intensity and ion acoustic field again
form collapsing filaments (see Figure 5). We call this the nucleational instability.
The phenomenon was discovered in numerical simulations by Doolen, Russell, Rose
and DuBois [8] and has also been confirmed in experiments by Cheung and Wong
[9]. It is from a combination of modulational and nucleational instabilities that the
collapsing filaments are born. The cycle time of the homoclinic excursion in each
case depends on (a) the time taken for the phase point to come under the influence
of a saddle instability and (b) the growth rate of the instability. In the NLS case it
is difficult to estimate the former. In the Zakharov case, however, this time, during
which the phase point returns from S back to Ag, can be estimated by calculating
how long it takes for the hole to relax [10].

Simple Example of a HCI

The existence of HCI's depends on two crucial properties of the underlying un-
perturbed (undamped, unforced) equations; the presence of saddle points in the
finite part of phase space and the non-compactness of the energy surface on which
they lie (or the intersection of the level surfaces of the constants of the motion of
there is more than one). The existence of saddle points and the noncompactness
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of the energy surface means that there are many unstable solutions whose unstable
manifolds are unbounded. We do not yet understand why, in infinite dimensional
systems, the HCI is attracting and low dimensional although we can illustrate the
former property with a simple finite dimensional example. Consider the perturbed
Duffing’s oscillator z* +z ~ 223 = F(¢)—(zz;?)" 2z, where F(t) is small and the ad-
ditional factor (zz;!)" has been added to the damping term in order to arrange for
it to turn on only when z is large. The unperturbed, exactly integrable Hamiltonian
system represents a pacticle in a quartic potential V(z) = (2? ~ z*) with critical
points z* = z = 0 (a center) and z = 0,z =T 2= (saddle points). The unstable
and stable manifolds emanating from z =T 715- are the non-compact energy level
surfaces E = L = 1o'? 4 72? — 22* which join the saddles to infinity through the
HCIsz = (z*~3)forz" > 0,2 > Jeand 2" = ~(2?—}) for &’ < 0,z < —Js. The
other branches, the stable manifolds of z* and z =% -;}5, are repellers for increasing

time. All energy level surfaces £ > 1 and those for £ < £ for which z2 > 1 escape
to infinity in finite time %, and it is easy wo chow that all escaping orbits are asymp-
totically equal at infinity. By this we mean that the distance between all escaping
orbits tends to zero as they approach infinity. To see this easily, consider the Lau-
rent series about the finite blow-up time ¢, in the unperturbed Duffing equation;

z(t) = (t=ta)" +6(t—t0)+ § c2;+1(E)(t=19)2*+1, Observe that the information
=1

as to which escaping orbit one is on is contained in the terms cubic and higher in
(t—%9). The singular part of all escaping orbits are the same. One can also introduce
a canonical change of coordinates, u = —z~!,v = z%(2" — 2% + 1), in which one can
see that the orbit z° = 2~ L,z > 715, corresponding to E = g, attracts all other
orbits escaping to infinity. The fact that Hamiltonian systems can have attracting
orbits (the point at infinity itself is not even a fixed point) at infinity does not seem
to be generally known although it is apparent in the work of Bogoyavlenskii [11]
who examines the neighborhood of infinity for several Hamiltonian systems.

Nonlinear Schrodinger HCI’s

This simple example illustrates how the topology of the phase space of the un-
perturbed system is important in controlling the dynamics of the perturbed sys-
tem. Likewise in the weakly perturbed nonlinear Schrédinger equation, in which
forcing is applied at small wavenumbers and the damping at large, it is the topol-
ogy of the phase space structure of the unperturbed problem which dominates the
dynamics of the perturbed problem. The unperturbed problem is again Hamil-
tonian although, in this case, it is infinite dimensional with motion constants
ny =[PP dE, J =i [ V" = ¢" T ¢)dT and H = L [(V¢ - 79" — §4*$"?)d3.
In particular, the intersection of the level surfaces and in particular the energy is
non compact and there are orbits (HCI’s) in the surface ny, > n, = p which join the
saddle points representing modulational and nucleational instabilities to infinity.

10




QOur picture of the phase space then is as follows. For low levels of forcing (either
F is small or the domain area is small), the modulus of the electric field grows
till ny > n. at which stage the phase point eventually comes close to an unstable
saddle point which is joined to infinity via a collapsing filament. The instability sets
in, the filament is formed, it collapses, a certain portion of its energy is dissipated
(depending on the damping structure) and a remnant of high k waves is left over.
For the Zakharov system, we expect a more complete burnout. ‘The system returns
close to its original state and the process is approximately repeated with the initial-
ization of the collapsing filament being due to either modulational or nucleational
instabilities. In particular, either the remnant or the ion acoustic field can provide
a cavity for the nucleation of metastable cavitons which collapse once the support
disperses away. For larger values of the applied stress (either larger forcing or larger
boxes), the value ny of the mean turbulence level is much larger and can be many
times n.. In this case, spatial correlations decay rapidly and many collapsing fila-
ments can czcur at different spatial locations although, since each event is so rapid,
they will rarely occur in the same time intervals. For these large turbulence levels,
the saddle point M represents a collection of saddle points in the turbulent soup
part of the attractor Ay, some of which correspond to analogues of the modula-
tional instability of more complicated periodic shapes and others of which are best
understood as nucleational instabilities.

Other turbulent situations

We mention here that a similar situation obtains in the Euler equations. For
low values of the applied stress, laminar states can be destabilized by identifiable
instability mechanisms, centrifugal instabilities, mean flow profiles with inflexional
points and so on. These instabilities do not go away when the fluid is more highly
stressed and becomes fully turbulent. Indeed saddle points representing local inflex-
ional and centrifugal instabilities remain very much part of the strange attractor of
the high Reynolds number Navier Stokes equations and play a large role in trans-
ferring energy to high wavenumbers where dissipation acts. In highly turbulent
flows, the inflexional profile of the mean flow is not sustained for all time uniformly
in space, but if it is sustained long enough in a local region, then rapidly growing
packets of three dimensional inflexional instabilities can erupt and carry energy off
to the dissipation cemetaries. In addition, the level surfaces in the phase space are
noncompact. Moreover, it is not unreasonable to argue that the dissipation rate
of shear flow turbulence arises not from the wave-wave interaction familiar from
Fouricr space cumulant descriptions, but instead to suggest it is dominated by the
formation and destruction of thin vortex sheets or surfaces containing vortex tubes
(the state S) in which almost all of the vorticity is concentrated. One might conjec-
ture that the initial formation of surfaces of vorticity concentration follows singular
solutions (either finite or infinite time) of the Euler equations driven principally by
inflexional instabilities. Once formed (the system is close to S), these sheets would

11




be notoriously unstable, to Kelvin-Helmholz instabilities of the tangential velocity
discontinuities and to Taylor-Gortler centrifugal instabilities of the helical flows in-
duced by vortex lines embedded in the curved sheets. These secondary instabilities
quickly transfer the energy to the viscous cemetaries where energy is dissipated and
the system is returned close to a state where approximately the same c¢ycle can
repeat.

Finally, we suggest that these ideas are not restricted to the approximation of
dissipation rates. Other transport properties such as the momentum exchange from
the plate to the outer flow in a turbulent boundary layer also seem to be dominated
by “organized events,” namely the burst-sweep cycle. It is interesting that Aubry,
Holmes, Lumley and Stone [12] have found a type of homoclinic excursion in their
analysis of the “long wave” structure of a turbulent boundary layer suggesting the
beginning of a burst sweep cycle, although their excursion does not lead to any
kind of singular behavior. One might conjecture that the latter could result if
one were to add a short scale inflexional wave component which can result from
such a wavepacket being phase locked to and growing on the local distortion of the
turbulent mean profile. Further, we suggest it may be alsc valuable to apply these
ideas to heat transport at high Rayleigh numbers (where thermal plumes would
play the role of singular structures)-and Rayleigh-Taylor instabilities.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure Captions

Snapshots of [*(Z,t)| at times (a) beginning of (b, during and (c) after collapse.

A record over a short period of time of the instantaneous rate of dissipation
7(t) = 2Zg7.(k)|p(k)[?, its integral T(t) = — J* ¥(¢')dt', and the global spatial
maximum of [(k)]? as functions of time in the strong turbulent regime with
1 = 26(k - 1).

Concentric shells which are the remnants of two simultaneous collapses. Note:
simultaneous collapses are rare and these were initiated by a symmetric initial
state.

The distribution of » for two-dimensional NLS.

The (a) nucleation, (b) collapse and (c) burnout of a filament of the Zakharov

equation. The overshoot of the cavity during burnout encourages tetal dissipation
of the filament.
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Abstract

We suggest that the transport properties and dissipation rates of a wide class
of turbulent flows are determined by the random occurrence of coherent events
which correspond to certain orbits which we call homoclinic excursions in the high
dimensional strange attractor. Homoclinic excursions are trajectories in the non-
compact phase space that are attracted to special orbits which connect saddle points
in the finite region of phase space to infinity and represent coherer* structures in the
flow field. This picture also suggests that one can compute fluxe. using a relatively
low dimensional description of the flow. A method for extracting the organized

structures from a time-series is given and provides a local analogue of the notion of
Lyapunov exponents.

This paper is dedicated to Joe Ford, a pioneer in modern dynamics and a master
of the Southern simile. It will appear in a special .volume of Physice D, Nonlinear
Phenomena (about September 1988) which celebrates his 60th birthday and his
many years of service as an editor of this journal.
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Introduction

It is generally accepted that turbulence in shear flows at Reynolds numbers of 10°
and higher has a large number of active degrees of freedom. Although estimates of
Lyapunov and Hausdorff dimensions [1] are strictly upper bounds, the rapid loss of
spatial correlations over distances of the Taylor microscale R~ and the broadband
wavenumber spectrum suggest that many modes are playing an active role in the
dynamics. The R¥ estimate, which i5 consistent with the intuitive idea of Landau
that it is necessary to resolve 2 ti .oulent flow field in a box of volume V' down to
the Kolmogoroff inner scale of (v° /e) (v is kinematic viscosity, e = v [, | v u[?dZ
is the energy dissipation rate and is mdependent of v for a large range of large
Reynolds numbers), means that if R is 104, RY is a billion! It is unlikely that
replacing the Navier-Stokes equations by a system of a billion o.d.e.s. will either
bring much insight into the nature of turbulence or make it possible to calculate
the invariant measure on the attractor needed to compute averages. Therefore,
whereas the concept of a strange attractor on which the flow is everywhere unstable
and ergodic is a valuable and necessary one, a new idea is needed if one is to be
able to compute in a practical way average flow quantities and in particular those
averages which rep..esent transport properties, the flux of heat across a convection
layer, momentum across a boundary layer, angular momentum between cylinders
rotating at different velocities, mass flux down a pipe or the amount of heavier fluid
which falls through a lighter one. It is also important to calculate the dissipation
rate which, in systems where energy is fed in at low wavenumbers and removed
at high ones, is equivalent to computing the flux or cascade of energy across any
middle wavenumber. One of the main goals of a turbulence theory is to predict the
transport and the dissipation rate as a function of the applied stress. The purpose of

this paper is to suggest one new avenue of approach to these problems of transport
in physical and wave space.

The basic idea is fairly simple. The e is some evidence that, in a variety of
situations, transport is associated with .rganized flow structures. If this is the case,
one would like to identify and isolate those parts of the attractor and those orbits
in phase space which are the principal contributors to a particular flux. Our claim
is that they are homoclinic excursions analogous to homoclinic orbits which occur
at random intervals on the attractor and connect that large dimensional part of the
attractor, consisting of states of the system which contribute little to the flux, to
itself. The homoclinic excursions are arranged by orbits connecting the main part
of the attractor to an organizing structure which is represented in phase space by
a generalized saddle. Of particular interest to us is the case where this structure
is at infinity and corresponds to a singular solution. We give the orbits connecting
saddles in the attractor to the singular structure at infinity the name heteroclinic
connections to infinity (HCI's). There are also orbits from the singular structure
back to the main part of the attractor. The HCI's are important because we shall
show that there is a sense in which they are attracting even when the system is
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conservative, The existence of HCI's depends upon two crucial properties of the
unperturbed (undamped, unforced) equations: the presence of saddle points in the
phase space of the unperturbed system and the non-compactness ‘of the energy
surface on which they lie (or the intersection of the level surfaces of the constants of
motion if there is more than one). The existence of saddle points ir. the phase space
of the unperturbed system and the non-compactness of the energy surface means
that there are many unstable solutions whose unstable manifolds are unbounded.
The HCI, which lives in the unstable manifold, corresponds in physical space to a
coherent structure which is usually localized in space, has a finite lifetime and is
connected with a family of exact, albeit singular, solutions of the field equations.
At infinity, where a large portion of the energy of these solutions is in small scales,
the structure becomes unstable to dissipative processes which drain its energy and
relax the system back to the neighborhood of its initial state, thus completing the
cycle. Towards the end of this paper, we will discuss a prescription for identifying

.and finding these structures using time series data.

Our picture, then, is that in a wide variety of situations, turbulent transport is
achieved and the dissipation rate is governed by the random occurrence of coherent
events. In order to compute a good approximation of the dissipation rate or flux
in question, one need only know the following information, (i) the nature of the
homoclinic excursion (equivalently the spatial and temporal shape of the coherent
structure) and the energy lost in this cycle, and (ii) the average frequency of occur-
rence. Although finding approximations to these quantities will not in general be
an easy task, it should be considerably simpler than accurately following the full
dynamics. Obtaining these estimates by largely deterministic means is not intended
to disregard the fact that turbulence is a stochastic process in which statistical fluc-
tuations are important. What it does suggest, however, is that the most natural
decomposition of the turbulent field is one in which the field is divided into orga-
nized motions represented by dominant orbits in the phase space and statistical
fluctuations about these orbits. The method, discussed later, by which we iden-
tify the organized structures and their dynamics is a variation of Karhunen-Loeve
expansions (later used by Lumley (2] in the context of turbulence) which extract
from statistical data dominant shapes and forms. Our method is novel in that it
is a weighted local version of the Lumley method and is therefore able to pick out
selectively relatively rare coherent evei.s which long time averages would lose. As
we have mentioned, we believe that in many cases these dominant shapes will be
closely related to exact, singular solutions of the governing equations which act as
asymptotic attractors in a sense to be described below. Further, with this decompo-
sition, it may even be possible to approximate the full dynamics on the attractor, at
least to some degree of accuracy, by 2 finite and low dimensional system of o.d.e.’s,
with stochastic coefficients reflecting the influence of the many, many other active
degrees of freedom contained in the fluctuations about the principal orbits. It is our
thesis that a good approximation to the transport may be obtained either by ig-
noring altogether or by simply taking average values of these stochastic coefficients.
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In any event, we suggest that using this decomposition, the fluctuations can be de-
scribed with low order statistics. The principal difference with previous thinking (3]
in which one attempts to embed the attractor in a large but finite dimensional Eu-
clidean manifold (the inertial manifold approach) is that we no longer demand that
the approximation to the turbulent field keeps the phase point, which represents
the state of the system, always in the attractor. Rather we simply demand that it
moves parallel to the real attractor, respecting the directions associated with large
homoclinic excursions which we claim are largely responsible for transport. This re-
quirement, much weaker than the cone condition of inertial manifold theory, means
that far fewer coordinates are needed to describe those particular features of the
dynamics associated with the homoclinic excursions.

Before attempting to mathematize these notions any further, let us first consider
a representative case study in which these ideas take concrete form.

The Zakharov model of Langmuir turbulence.

The Zakharov equations,

L 3
Viip +ire oo+ swpri V2 9) = é—ﬂv -p(Ve + Eo) + - F, (1)

1
Ptt+2l/i°Pt—'03V2P=mV”VqSlz (2)

couple the density fluctuations p(Z,t) and the longitudinal component of the electric
field E = L (¢eirt +())+Ey in a plasma and constitute a popular nonlinear fluid
model of Langmuir turbulence [4]. Here w, is the plasma frequency at which a cold
plasma is resonant in the longitudinal mode and the envelope ¢(Z,t) is assumed to
vary slowly in time compared to w, 1, The linear, dissipative convolution opera-
tors 7, and +; are used to model Landau damping; both increase with increasing
wavenumber but v, does so abruptly in order to cut off the coherent longitudinal
oscillations as the Debye wavenumber kg = 2% is approached; rq is the distance at
which the Coulomb potential of a bare charge is diminished exponentially by the
ambient plasma. Fisa forcing term that injects electric field energy into the plasma
and is also modelled by a linear convolution operator 7,0 E. Equation (2) is the ion
acoustic wave equation in which ion density fluctuations are driven by gradients of
the electric field intensity, the so-called pondermotive force. If the ions are quasi-
stationary, the dominant term on the left hand side of (2) is the last and, in this
case, the ion density fluctuation p is directly slaved to the field intensity |7 4|>. In
one spatial dimension and with suitable rescalings, the Zakharov equations reduce
to the familiar nonlinear Schrddinger equation in dimensionless variables for the
electric field envelope (7, t)

%—’f+z‘v2¢+z‘|¢lz¢=F-D. (3)
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Our case study will principally focus on the two dimensional version of (3). Although
this model is a poor approximation to the real physics on several counts (it ignores
finite sound speed effects and the role that sound waves play in energy transfer, it
assumes the ion density is slaved to the electric field intensity, it is two dimensional
and the premises from which it is derived become suspect as the electric field reaches
its singular limit), nevertheless it retains the essential features of the full dynamics
in the sense that the dissipation rate is controlled by the filament dynamics Tnergy
is fed in at low k& and removed at high & through ¥ and D whose respective fFourier
transforms are y3(k)(k) and v,(k)(k)(H(k, t) is the Fourier transform of (%, t))
with the support of v3(k) being near ¥ = 0 and the support of v.(k) being k > k4.

For many years it has been conjectured by Soviet colleagues [4] that the principal
mechanism for the transfer of spectral energy, at least in the limit of large ion
acoustic damping where free wave effects can be ignored, is not resonant wave-wave
interactions, but rather the collapse of filaments which are closely related to exact,
localized, singular solutions of the unperturbed equations. In the two-dimensional
nonlinear Schrédinger equation, these filament solutions take the form (5]

1z

[HE D ~ 5RO 1= e @

where the shape R is the unique solution of R" + n~'R! - R+ R® = (,R'(0) =

0, R(c0) = 0 without zeros in (0,00). The function A(t) approaches (Inln(t, —
) "1(to — )7 as t — ¢ [6]. The filaments preserve the Ly norm and so the power
ny = [|$|?dZ carried by one of these coherent structures is p = 2r J5° R*ndn
and is a pure number equal to .29 in our units independent of time and initial
conditions. The value of H for the filament structure is exactly zero but each of its
two components [ |7 ¥|2dZ and [ [1|*dZ becomes unbounded. The structure of
the singular filaments for the Zakharov equations and for the nonlinear Schrédinger
equation in three dimensions is somewhat different but in each case the role is the
same. These solutions are initiated by instabilities of the unperturbed equations
and serve to carry the energy from large to small scales simply by squashing it in
collapsing filaments. In reality, the singularity is never reached. Once the filament
diameter is of the order of the Debye radius, Landau damping becomes important
and the energy is transferred from the wave field to electrons, a process known as
burnout. This cycle of events is shown in Figure 1.

The instabilitic - which give rise to collapsing filaments in (3) are closely related
to the naturally occurring instabilities of the unperturbed nonlinear Schrédinger
equation, an infinite dimensionai, narmltoman system with Hamiltonian H and the
additional motion constants ny and J =i (¥ v ¥* — ¥ ¥ ¥)dE. Although we
will discuss the geometry of phase space in more detail in the next section, it is
important to mention at least two types of unstable critical points of the dynamical
system. The first are nonlocal solutions which are constant or purely periodic in
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space with a time behavior depending on amplitude (so they are really unstable pe-
riodic orbits). These states are unstable to sideband disturbances (fluctuations with
a spatial period close to that of the unstable solutions), an instability known as the
modulational instability. The second type are called cavitons and are analogous to
the solitons of the one dimensional equation. Like the collapsing filament, they have
zero H value and any perturbation which decreases H will render them unstable.
Because of the existence of unstable solutions, the phase space of the unperturbed
Hamiltonian system contains many saddle points. Increasing the size of the do-
main or the amplitude of the ¢ field (tke important parameter is the Ly norm) will
create saddle-center bifurcations and increase the number of saddles. Hamiltonian
perturbations such as the addition of a term V(z)[|? to H can create additional
island chains of hyperbolic saddles and elliptic centers and in particular, if V(z) is
a localized potential well, these new critical points can correspond to the just men-
tioned localized caviton states [7]. The presence of a small amount of dissipation
will turn centers into sinks, but the saddles will persist. Other non-Hamiltonian per-
turbations, such as forcing, can destroy the stable sinks and destabilize the weakly
stable cavitons which are localized in potential wells. In practice, this scenario of-
ten arises [8], particularly for the Zakharov equations and in some instances for the
nonlinear Schrédinger equation. If ion damping is large, the hole in the ion acoustic
density field remains after the burnout of the electric field. This hole can serve to
focus electric field energy and nucleate a metastable caviton. However, as the hole
slowly collapses, the caviton destabilizes to a collapsing filament. We call this the
nucleational instability. It is from a combination of modulational and nucleational
instabilities that the collapsing filaments are born.

We now turn to the numerical evidence for the dominance of collapse events.
Figure 2 displays the instantaneous rate of dissipation y(t) = 25 v.(k)[¢r[?, its
E

integral I(¢) = — [ " dt'y(t'), and the global maximum of |2 over a time interval
including several collapses in a strong-turbulent regime. ~I' is just the energy lost
due to dissipation as a function of time. Observe that a large fraction of the energy
dissipation occurs in sudden jumps and is directly correlated to the collapse events.
Energy ny = 5 |¢x|? is considered to be dissipated due to collapse only if v > 7o,

E
where vy is a threshold parameter. If this inequality holds over the interval [t;, %3],
then the energy burnt out isT(?;) —I'(¢2), and the total energy lost due to collapse
for the entire simulation is the sum of all such differences. Denote this total energy
lost due to collapse by én, and the total energy dissipated by énp. In Figure 3 we
have plotted the ratio dn./énr as a function of 4y for several different turbulent
regimes. As vy decreases the ratio increases and is of course one at 79 = 0. 79 =1
was the smallest value that gave ratios judged to be free from contamination by non-
collapse events for all cases studied, so it was chosen as the standard cut-off rate.
With this choice of 49, as much as 80% of the total energy dissipated is dissipated
by collapsing filaments in the most energetic case examined (< ny > 10). In
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the weakest case (< ny >2 5) more than 70% of the dissipated energy was lost in
burned out filaments. Furthermore, tiiese estimates of the energy dissipation are
conservative because we have not yet included the more gradual loss due to the decay
of the high & remnant left over from the collapse. The reason for this remnant is
peculiar to the two dimensional nonlinear Schrédinger equation and occurs because
a singular filament of this equation carries the minimum threshold energy p required
to sustain collapse. (In contrast, the energy of a collapsing Zakharov filament, again
a constant of the motion, can take on a continuous range of values above the critical
threshold.) Therefore, when a significant portion of the filament’s spectral energy
lies in the dissipative range (k > kq), some f its energy is lost, collapse is arrested
and only a partial burnout occurs. A histogram showing the distribution of the
fraction of the filament energy lost in the burnout is shown in Figure 4. It leaves
behind a remnant in the form of bréadened concentric cylindrical shells of field
energy centered at the collapse site (see Figures 1e, f). In order to follow the energy
associated with the remnant, we monitor (Figure 5) the field energy inside a small
ceil centered at the collapse site. We note in Figure 5b that the burnout (¢ ~ .08)
of the central part «f the filament, or core, causes the fastest depletion of energy
in the cell, but also that it is immediately followed by a slower depletion (the drop
over the time interval .08 < ¢ < .12, which we call the “shoulder”). The slower loss
is primarily due to the fluxing of the remnant through the cell boundary. If we add
the energy loss rp,0 < r < 1, due to the burnout of the core to that carried out of
the cell by the remnant, we obtain a total loss of energy in the cell very close to the
total amount p carried by the collapsing filament.

The remnant plays two roles in the dissipation process. First, it provides a nu-
cleating center for new collapses, a fact we have verified by examining the spatial
distribution of collapse sites. As a consequence the frequency of collapses increases.
In Figure 6, we plot a histogram of the times between successive eventsw for the
case 75 = 2. The distribution is nearly Poisson with a mean time between events
of w! =< 2 >~ .08. Second, the gracual damping of the remnant enhances the
ambient dissipation rate < ¥4 > (i.e., the dissipation rate averaged over time inter-
vals free from collapse) over that amount we would expect from other dissipative
mechanisms. In order to verify this, we carried out the following relaxation ex-
periment. By changing the sign of the nonlinearity in equation (3) from plus to
minus, we obtain a system with the same linear dispersion as the plus system and
therefore presumably the same resonant wave interaction character but without
the unstable modulational and nucleational instabilities and collapsing solutions.
Initiaizing the two systems identicall , we ran them with the forcing turned off
(75 = 0) and compared their dissipation rates between collapses of the (+) system,
before their energies had separated by more than 10% of the commor intial value.
The ambient dissipation rate of the (+) system was typically 50% greater than that
of the non-collapsing (-) system while the collapse remnants were dissipated. In-
cluding collapse events in the tally, the (+) system lost energy three times as fast
as the (-) system. We conclude, therefore, that the amount of energy dissipated by
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non-coliapse mechanisms is at most one quarter of the total energy dissipated.

Therefore, the energy dissipation budget is as follows. The average total dissipa-
tion rate < v > is given by

<Y>=w. < Tr>p+< 14> (8)

The ambient dissipation rate can be eliminated in terms of 35;':-7’:- since %ﬁ = s
and we obtain

np
= — 6
<¥> wcp<r>-5nc (6)

In (5) and (6), < ¥ > depends only on the mean turbulence level < n, > but, as
we have pointed out, < 74 > and w. depend both on < ny > and the nature of
the dissipation < r > depends only on the latter. In Figure 7, we plot both < v >
and w, as a fraction of < ny > and, consistant with (6), these curves are parallel
over a large range of < n, >. Indeed, we checked the product < v > w;! for
a range of values of < ny > and found it to be almost independent of the mean

turbulence energy level and equal to 13 and equal to the product < » > f(i?‘—))f- taken
from Figures 3 and 4 (< r >~ -3 (Bn)e. .75). We expect that as the dissipation

' (Bn)
mechanism is postponed to higher k, the fraction of energy lost in burnout will
increase and the histogram in Figure 4 will accumulate at p = .29. We also expect
that w. will decrease proportionately and that in this limit the prod:«it w. < r >
can in principal be activated theoretically by arguing that in a homoclinic excursion
the phase point spends the longest time in its cycle near the saddles in the finite
part of phase space. If this were the case w, < r > would be given by a product
of o, the growth rate of the modulational or nucleational instabilities, and k2, the
mean density of collapses. Both these quantities should depend mainly on < ny >.

Verification of these suggestions requires extensive computation which is presently
underway but not yet complete.

In summary, then, we have demonstrated that the turbulent transport of field
energy to dissipative spatial scales in the two dimensional nonlinear Schrdinger
equation is overwhelmingly dominated by the explosive collapse of localized states
or filaments, just as it is dominated by caviton collapse in the Zakharov equations.
To help visualize these events as fluctuations about a basic homoclinic excursion(s)
we have plotted flow irajectories projected onto the global observables ny, H and
l¥|2... to produce a curve in three dimensions shown in Figure 8a. In Figure 8b,
we have projected this curve onto the three coordinate planes to aid visualization.
Those trajectories which are fluctuations about homoclinic excursions are the sparse
loops passing through the largest values of |1]2,,,. The denser, more jittery part of
the curve lies in what we call (in the next section) the hash part of the attractor.

Whereas these results confirm the thesis that coherent collapse events dominate
dissipation, the expense involved in two dimensional experiments did not allow us
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to run a sufficient number of simulations in order to determine in what limit, if
any, 7= 6"’ approaches unity. In connection with this question, and in parallel with
the 1deas of DiPerna and Majda [9], one would also like to develop the notion of
a weak solution in which solutions of the undamped equations could be continued
beyond the collapse time by simply deleting the collapsed filament and lowering the
L, norm of the solution by a fixed amount. In order to examine these questions,
we simulated the one d*mensional nonlinear Schrédinger and Zakharov models with
quintic nonlinearities on a grid of 1024 points. Aliasing errors were removed by
smoothly interpolating % onto a grid of 8 x 1024 points before forming the nonlinear
frequency [|*. The results for NLS showed that, for the same turbulence levels,
the percentage of the dissipation rute accounted for by collapses rose from 59% at
ky = 128 (where, because the dissipation effects are clearly felt in the early stages,
there are many failed attempts to form collapsing filaments), to 72% fer k4 = 256,
to 82% for k4 = 512. The average loss of energy per collapse decreases with kg (the
amount of energy greater than k4 in the Fourier transform of the collapsing filament
decreases with increasing k) but the frequency of events increases proportionately
so that the average dissipation rate remains the same. The evidence clearly suggests
that in the large k4 limit, all the energy dissipated is dissipated by collapse events
which occur infinitely often with infinitisemal losses of energy per event.

A much more striking result was obtained when we ran the very same experiment
on the Zakharov model

1/)5 - i";bzz + 2,01/) =F—-eD (7)

Pt + 200 pp — prz = (|¢|4)zz (8)

where F' and D are as before and 2v o p; is a convolution integral modelling ion
damping. The ion acoustic fleld p(z,%) is no longer slaved to the electric field
intensity (for NLS, p in the equation (7) is replaced by —||*). Therefore, during
collapse, in which the fields take on a self-similar form close to (2) but in which
the inertial acceleration pe: is also important, the cavity formed by the ion field
encourages total burnout of the filament. We found that when ¢ = 1, k4 = 32,<
ny >=1.625, the average energ, s < 7> plost per event was 1.95. the average time
between events was .83 and 2= was 92%. (For the Zakharov model, the amount
of energy carried in the filament, a constant of the motion for the unperturbed
equations, can take on a range of values greater than the threshold value p = .43 in
this case. Thus r > 1). The distribution of r rose sharply after » = 1, had a mean
of 1.95/.43 and had a relatively long tail. Also, we observed that all the collapses
occurred in 8 uquvcua.yp.\ub axuca, were driven ‘oy the nucleational insnabiliny and
the sites drifted about the box. When we increased k4 to 64, < ny >= 1.8, the
frequency of events increased to (.66)~! (there were 151 events in 100 time units)
and the distribution of r came closer to one. The average energy lost per event was
1.55 and %1’-- was 95%. (In contrast, at the same parameter values and in the same
time 1nterval the NLS model had 972 events with an average energy loss of .09 and
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i‘ﬁf’ was 72%.) Further, when we decreased ¢ to i (again kg = 64), the distribution

of r came closer to threshold and %%f- was 98%. This leads us to conjecture that
as ky increases and ¢ decreases, the distribution of r will cluster about one, and
that each collapsing event will burn off exactly the threshold energy p = .43. In
this asymptotic limit, the weak solution of the unforced, undamped equation in
which the turbulence eventually decays, is found by simply removing the collapsing
filament from the field and reducing the L, norm by p. (The weak limit, i.e. ¥(z,0)
is a weak solution if [ ¢(z)¢(z,0)dz = ’{1_1310 J o(z)(z, \)dz where ¢ is smooth, of
a collapsing filament is zero because it oscillates very fast and its width decays at
a faster rate than its amplitude increases). We will report more details elsewhere.

We are also currently testing some ideas concerning the estimation of the frequency
of events.

In Figure 9, we give the angle-averaged correlation function

2n de
Co)= [ g <wE+ @) >
2
=/ df eikpcoso < I,&(,}’)P S
0

27 &=
P>

= Y dolle) < WB(RIE >
E

in the 1turbu.lenf; regime 75 = .2, Observe that the correlation length A = 27 <
k? >~72 .7 is much less than the simulation box size (2) so that the turbulence
is independent of the periodic boundary conditions.

We end this section with a few remarks about the two-dimensional numerical

scheme. In calculating solutions to (3), we use the following “split-step” numerical
algorithm to advance the solution from ¢ to ¢ + dt.

$(&,1 + dt) = p (Seap(-i[p P (2)dt)
where (" refers to Fourier transform)

D) = p(k, t)ezp(15(k) — ve(k) +ik?)dt

This method exactly conserves ny(= [ dz|y|?) in the conservative limit (v, — 0)
and when aliasing errors are absent; errors in the Hamiltonian = [(|7%[? - |4|*)dZ
are 0(d¢?). Aliasing errors incurred during the nonlinear part of the evolution are
minimized by strong dissipation at short scales (see figure 9) that curtails the time-
averaged spectrum (see figure 10). Our time step (dt) is 10~%, and is sufficient to
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resolve the maximum nonlinear frequencies (J1]?,,, < 4 x 10%) encountered in the
most intense turbulent regime studied. The Landau damping function used is shown
in Figure 10. Its asymptotic shape is chosen to be sufficiently steep (~ k1*¢,¢e > 0)
so that the collapsing filament is eventually arrested but not too steep so as to reflect
the collapsing filament in k£ — space. It depends on a single parameter, the ion-to-
electron mass ratio M, which in our analysis we take to be 7344 (the mass ratio in
a singly-ionized Helium plasma), and increases abruptly at £ = .2kg = 2(%\/1\—4- ).
The turbulence energy level is changed by varying the forcing term F'. In all cases

F= 76[¢(Ak:7 Aky) + d’(- A kz, Aky) + 1/)(Ak=, -A ky) + 1/)(_ A kz) -A ky)]a

i.e., energy is injected by linearly destabilizing four modes symmetrically in k —
space, where Akz = 25, Aky = £%, and Ly = Ly = 27. (Our simulations are in a
square box 27 long on each side spanned by a regular grid of 1282 points.) Because
this scalar forcing is isotropic, the turbulence is isotropic. (See Figure 10). Notice
that as a filament collapses it will decouple from the forcing which is confined to long

wavelengths., Thus the dominant transport mechanism (collapse) is independent of
the details of injection.

Geometry of phase space

While the full attractor A is large dimensional, the dominance of filaments sug-
gests that A is the fuzzy covering of a skeleton which consists of generalized saddle
points M and S and two heteroclinic orbits. In the case study just discussed, M
is the set of saddle points which are modulationally or nucleationally unstable and
S is the idealized collapsing filament, namely the singular self-similar solution of
the two dimensional nonlinear Schrédinger equation. The unstable manifold of M
intersects the stable manifold of S and vice versa. Based on this picture, A can be
subdivided into two subsets Ay and Ac. When the system is in the turbulent soup
Ap, it is dominated by what we call the hash modes consisting of the background
field and radiation modes left over from the formation of the coherent structures
(the filaments of Langmuir turbulence). This set is generally large dimensional and
in the case of shear flow turbulence could have dimension R¥. On the other hand,
when the system is in Ag, it is dominated by the coherent structures, although
large dimensional fluctuations about these orbits are still present. The orbits in
Ac are organized by a low dimensional submanifold of solutions B, which is the
stable manifold of an unstable saddle point S, possibly at infinity, corresponding
to an idealized state. In general, S may be a manifold of idealized states and in
many cases will be the orbit of some group action representing the symmetries
(translation, scaling) which are properties of the system at hand. In particular,
if the spatial dimension is large, coherent structures, each with the same shape,
can be localized at several locations, although occurring at different times, with
an approximately uniform density reflecting the amount of power (energy density
times area or volume) needed to form the structure. (In Langmuir turbulence, each
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filament requires an area of k~2; k depends on the turbulence intensity level.) In
constructing the phase space, one should think of the system as being confined to a
box of a sufficient size to contain one coherent structure or to a lattice in which case
the idealized solution S consists of an array of discrete translates of the prototype
and we consider the system to be in the state S when any one is triggered. The
unstable manifold of S (the burnout due to Landau damping) is asymptotic to Ag.
The speeds of attraction and repulsion at S are governed by two entirely different
processes and are not related. The former is determined by the faster than expo-
nential rate at which the filament becomes singular, the latter is governed governed
by dissipation. The picture we have described is drawn schematically in Figure 12,
and corresponds closely to an actual orb1t of the nonlinear Schrédinger equation
shown already in Figure 8.

We now turn to a discussion of the structure of the phase space, the nature of the
saddle point M and its unstable manifold. Whereas the perturbations of forcing
and damping modify the phase space structure, it is the topology of the phase space
of the unperturbed system which sets the stage for the large homoclinic excursions.
Two properties of the unperturbed system, which is Hamiltonian, are crucial. One s
the fact that its phase space contains many saddle points corresponding to unstable
fixed points and periodic orbits and separatrices joining these saddles. The second
crucial property is the non-compactness of the constant energy surfaces and the
existence of heteroclinic connections (HCI's) which join certain of the saddle points
to infinity. Whereas Hamiltonian perturbations of this system can destroy resonant
KAM tori and create new chains of elliptic centers and hyperbolic saddles and non-
Hamiltonian perturbations can turn the centers into attracting sinks or destroy them
altogether, the hyperbolic nature of the original saddles and their HCI's remain
intact and play a dominant role in the dvnamics of the perturbed system. As an
example, consider the perturbed Duffing’s oscillator

g +z ~2z° = F(t) - (;Bio)”:z:' (9)

where F(t) is small and the additional factor (Z)" has been added to the damping
term in order to arrange for it to turn on only When z is large. The unperturbed,
exactly 1ntegrable Hamiltonian system represents a particle in a quartic potential
V(z) = 3(2? — z*) with critical points - = z = 0 (a center) and 2* = 0, z =2 71;
(saddle pomts) Its phase plane is shown in Figure 13. The unstable and stable

manifolds emanatxng from z =T 715- are the non-compact energy level surfaces

E=:= -a: 2 + 2% — Zz* which join the saddles to infinity *hrough the HCI's
g = (22~ )forz: >0,z > 7-a.nd:z: =—(z?-1)forz' <0,z < 7— The other

branches, the stable manifolds of z* and z =% 7—, are repellers for positive t1me

In partlcular, observe that all energy level surfaces E >  and those for E < } for
which 22 > — approach the HCI’s at infinity and that any pomt on these tra_]ectorxes
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will reach infinity in a finite time. This can be seen in several ways. First, notice
that the distance z; — z2 between two constant energy curves E; and E; at a giver
value of = is given by (z? — 22)(2? + 22 — 1) = 2E, — 2E; so that asymptotically
Ty — zg ~ (2Ey - 2B, )(z1 + 23) "} (2% 4+22)~?. Second, one can construct a Laurent
series for any solution in the neighborhood of infinity,

1
t—-1g

=

+ Els'(t —to) +c(t—10)° + Y _an(c)(t —to)"
n>3

which, because the system is integrable, has the Painlevé property (the series is
Laurent and has the required number of free constants, namely two, t, and c;
all the other coefficients a, can be calculated explicitly in terms of ¢). The free
constant ¢ is related to the energy £ = —5¢ + 77—2 The distance between any two
orbits is the minimum over ¢, and ¢, of z(¢;,¢;) — z{¢2,cz) which goes to zero
like (¢ — #1)3. We have thus introduced a new concept into Hamiltonian systems
with non-compact energy surfaces, namely the notion that certain orbits (HCI's)
can serve as cotiractors for all other orbits at infinity in the sense that they are
asympt. tically all the same. This notion does not violate conservation of volume in
phase space. Close to infinity, the stretching of nearby points in a direction parallel
to the HCl is faster than exponential (the local stretching exponent in this direction
is infinite) and therefore the contraction in the direction perpendicular to the HCI is
also faster than exponential. For small forcing, the orbits of the perturbed systems
which escape to infinity also follow the HCI very closely until 2 > z4 at which point
dissipation sets in. However, the important point is that for z, large, all escaping
orbits are approximately parallel to the HCI over large regions of the phase space.

One can look at the nature of the phase plane at the line at infinity by introducing
homogeneous projective coordinates given by z = -’Zf-, z =y = ¥ in which coordi-
nates the direction field (z—2z°)dz+ydy = 0 becomes (X Z°~2X°Z)dX +Y Z3dY +
(2X* — X22% —Y?2%)dZ = 0. Since the critical point at infinity is X = Z = 0,
it is interesting to look at the direction field in the affine chart given by ¥ # 0.
The line field in the X, Z coordinates is obtained by setting ¥ = 1 and dY = 0.
We observe in Figure 12 that invariant manifolds (Y2 4+ X2)Z2 — X4 - 2EZ* =0
organize the flow field in the neighborhoed of the line at infinity and in particular
all of them converge from the half plane X > 0 to the point X = Z = 0 on the
line at infinity and then reemerge in the left hand plane. The converge.ce of these
curves at infinity again shows that the HCI is an attractor there.

This simple example illustrates how the topology of the phase space of the un-
perturbed system is important in controlling .he dynamics of the perturbed sys-
tem. Likewise in the weakly perturbed nonlinear Schrédinger equation, in which
forcing is applied at smeall wavenumbers and the damping at large, it is the topol-
ogy of the phase space struciure of the unperturbed probiem which dominates the
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dynamics of the perturbed problem. The unperturbed problem is again Hamil-
tonian although, in this case, it is infinite dimensional with motion constraints
ng = [$U*dE,J =i [V " V)dF and H = } [(79- 79" = toPy 2)dz. In
particular, as we have mentioned, it is known that the energy surface is non-compact
and when H < 0, there are orbits in any surface ny > n. = 27 [~ R*(n)ndn which
connect the unstable saddle points to infinity. We remark, however, that in our
simlulation H was almost always positive although taken in the neighborhood of 2
collapse it was zero. The negativity of H is a sufficient but not necessary condition
for collapse.

Our picture of the phase space then is as follows. For low levels of forcing (either
F is small or the domain area is small), the modulus of the electric field grows
till ny > n. at which stage the phase point eventually comes close to a modula-
tionally unstable saddle point which is joined to infinity via a collapsing filament.
The instability sets in, the filament is formed, it collapses, a certain portion of its
energy is dissipated (depending on the damping structure) and a remnant of high
k waves is left over. The system returns close to its original state and the process
is approximately repeated with the initialization of the collapsing filament being
due to either modulational or nucleational instabilities. In particular, the remnant
can provide a cavity for the nucleation of metastable cavitons which collapse once
the support disperses away. For larger values of the applied stress (either larger
forcing or larger boxes), the value n of the mean turbulence level is much larger
and can be many times n.. In this case, spatial correlations decay rapidly and
many collapsing filaments can occur at different spatial locations although since
each event is so rapid, they will rarely occur in the same time intervals. For these
large tarbulence levels, the saddle point M in Figure 12 represents a collection of
saddle points in the turbulent soup part of the attractor Ay, some of which cor-
respond to analogues of the modulational instability of more complicated periodic
shapes and others of which are best understood as nucleational instabilities. As
we have mentioned, the collapsing filament is often initiated in the remnant of a
hole left by a previous event or in holes simply produced by random fluctuations.
No matter what the mechanism, the important point is that the attractor contains
many saddle points M which are connected to infinity through HCI's and the phase

point passes sufficiently close to these points so that the large homoclinic excursion
is initiated.

We mention here that a similar situation obtains in the Euler equations. For
low values of the applied stress, laminar states can be destahilized by identifiable
instability mechanisms, centrifugal instabilities, mean flow profiles with inflexional
points and so on. These instabilities do not go away when the fluid becomes fully
turbulent. Indeed saddle points representing local inflexional and centrifugal in-
stabilities remain very much part of the strange attractor of the high Reynolds
number Navier Stokes equations and play 2 large role in transferring energy to high
wavenumbers where dissipation acts. In highly turbulent flows, the inflexional pro-
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file of the mean flow is not sustained for all time uniformly in space, but if it is
sustained long enough in a local region (see the discussion on turbulent boundary
layers in the following section), then rapidly growing packets of three dimensional
inflexional instabilities can erupt and carry energy off to the dissipation cemetaries.

Other illustrations of the random occurrence of coherent events

This view of turbulent transport, in which the major contribution comes from
a part of the attractor which corresponds to coherent structures whose dynamics
can be captured with a finite number of degrees of freedom, while not universal,
should have widespread application. We now suggest several other contexts in in
which these ideas may be important. We stress that in no case do we feel we have
presented the complete and final solution, but simply wish to suggest that it may be
worthwhile to look at each of these situations from a new viewpoint. The first is the

. burst-sweep cycle [10] which appears to dominate the production of turbulent energy

and momentum transport in turbulent boundary layers. Although no candidate for
the coherent structure which models the four step process constituting the burst
phase of this cycle has yet been put forward (there have been suggestions [11]), it is
not improbable that a singular, finite time collapse solution of the Euler equations
plays a significant role. This basic structure could probably be captured by a simpler
set of p.d.e.’s, analogous to the Zakharov equations, in which a long scale, three-
dimensional Tollmein-Schlichting like disturbance with large downstream vorticity
(streaks) is synchronously coupled to a packet of short inflexional waves produced
by an inflexiona! instability of the mean turbulence velocity profile caused by the
induced outflow of the streaks [10,11). The inflexional instability, ever present in
shear flows, together with the finite amplitude distortion of the mean profile by the
long scale state, plays the role that modulational and nucleational like instabilities

do in Langmuir turbulence. It continuously drives the initial stage of the bursting
solution.

Convection at large Rayleigh numbers is a second area in which the transport
properties are likely to be organized by coherent structures, in this case the slightly
tilted plumes observed by Krishnamurti and Howard [12] which dominate the flow
for a large range of Prandtl P and Rayleigh numbers R,. More recent observations
by Libchaber [13] ip what he calls the sort turbulence regime (R, < 107) would
seem to lend some credence to the admittedly siraplified picture, suggested many
years ago by Ho:vard [14], that the plumes would occur at a frequency d(:termined
by the time R, ° it takes for a conductive layer to build to a depth Rz ® sc as to
be convectively unstable. A crude picturs in which cne imagines that the coherent
plumes carry off all the healut in the unstable conductive layer would suggest a Nusselt
number proportional to RJ which is approximately what is observed, The inferences
of the Howard argument are also consistent with a “1aixing-length” analysis givern in
an earlier paper by Kraichnan [15]. To be sure, this picture is greatly oversimplified
and it is hard to see how the plumes, which combine into larger and larger ones,
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remember the Howard time scale. Nevertheless, Libchaber observes this scale as
dominant in the power spectrum of his signal, measured many conductive layer
depths from the bottom of the tank, over a large range of Rayleigh numbers up to
approxin.ately 107, At this stage, lo~al Reynolds numbers, which are proportional
to the square root of the Rayleig' _mber, are in the shear flow instability range
and other structures are producr vhich modify somewhat the Howard picture.

Third [15], we suggest that the self-similar features seen in the Rayleigh-Taylor
unstable interface two fluids of different densities are exact, singular solutions of the
Euler equations, which if they were known, would help one to calculate an approxi-
mation to the mass flux of heavier through lighter fluid. In the absence of a length
scale (surface tension is ignored), the set of attracting states S at infinity will be a
complicated fractal set reflecting the scale symmetries, but the basic elements of S
would represent the spikes (containing the heavier fluid falling through the lighter)
and bubbles (the lighter fluid pushing up through the heavier). Fourth [16], it is not
unreasonable to argue that the dissipation rate of shear flow turbulence arises not
from the wave-wave interaction familiar from Fourier space cumulant descriptions,
but instead to suggest it is dominated by the formation and destruction of thin
vortex sheets (the state S) in which almost all of the vorticity is concentrated. We
conjecture that the initial formation of surfaces of vorticity concentration follows
singular solutions of the Euler equations driven principally by inflexional instabili-
ties. Once formed (the system is close to S), these sheets are notoriously unstable,
to Kelvin-Helmholz instabilities of the tangential velocity discontinuities and to
Taylor-Gortler centrifugal instabilities of the helical flows induced by vortex lines
embedded in the curved sheets. These secondary instabilities [17,18] quickly trans-
fer the energy to the viscous cemetaries where energy is dissipated.and the system
is returned close to a state where approximately the same cycle can repeat.

Our last case study concerns the generation of turbulent spots in a boundary
layer. This example is somewhat different in nature to the preceding examples
but nevertheless exemplifies the general idea of transport occurring as a result of
the random occurrence of coherent events - in this case the formation and convec-
tion of the spots - which can be associated with homoclinic excursions. We shall
also discuss a simplified model and make some experimental predictions. However,
before doing this, let us recall the initial stages of the boundary layer instability
without receptivity (undue influence of fluctuations in the outer flow). When the
Reynold’s number, based on the boundary layer thickness which depends on the
distance from the leading edge, reaches a critical value, the unstable two dimen-
sional Tollmein-Schlichting (T.S.) wave concentrated at the critical layer quickly
becomes three dimensional thereby creating downstream vorticity. The induced
secondary flow causes an outward flow near the crests (the most downstream part
of the distorted “ vortex” lines) and an inward flow near the troughs. The three
dimensional distortion is enhanced by the mean shear, the downstream vorticity
increases and the initially sinusoidal three dimensional deformation of the vortex
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line becomes strongly distorted into the form of an elongated hairpin vortex. The
induced outward flow carries slow moving fluid to the outer part of the boundary
layer and causes the mean turbulent profile to develop inflexion points localized
in both time and the spanwise direction. At these points, short wavelength pack-
ets of an inflexionally unstable nature can grow and be absclately (rather than
convectively) unstable if they can phase lock with the travelling three dimensional
disturbance which gives rise to their formation in the first place. Along these tra-
jectories turbulent spots are formed which spread spatially into surrounding regions
by destabilizing the neighboring laminar flow. Our picture of the spots is that they
are essentially localized wavepackets in which the waves are breaking. Suppose one
monitors the velocity field v(¢) at a point just before the area in which the spots .
tend to form. A reconstruction of the attractor from this time-series should show
an attractor A with a well-defined phase corresponding to the phase of the incom-
ing T.S. waves and we propose using the methods of the following section to check
thiis conjecture. However, monitoring the velocity field in the full region one will
find an attractor A which will have an Ay somewhat similar to A, but also with
a part A¢ consisting of the homoclinic excursions which occur when a spot forms
and is convected downstream. When the spot reaches the region where they have
coalecced or left the channel, the system has returned to Ay.

The phase space associated with this dynamics is somewhat different from that
proposed previously for collapsing filoments. Nevertheless, while the homoclinic
excursion will not go to infinity, it will have several features in common with the
previous picture. We consider here a very simple mathematical model to illustrate
what we have in mind. Consider a locally unstable attracting periodic orbit ¥ in
phase space. This is an orbit which is attracting in the usual sense that all its
Floquet multipliers have modules less than one, but which at some points z in v
is actually repulsive. An example of such as orbit would be given by the periodic
solution z = 0 for the time-dependent system.

d
X(z,s): d—: = a(s)z + O(z?), %:— =1,(s,s) E R xT! (10)

where a(s) is a smooth function whichis —1Z.r0 < s < 1/2,1for5/8 < s < 3/4 and
nearly linear in between. Another more natural example is given by the following
flow in the plane (See Figure 14). If the periodic orbit v is close to the saddle Af
then v wiil be unstable near M even though « is attracting in the usual sense. Now
returning to the general picture, suppose that such a system is subject to some
periodic or almost-periodic forcing or perturbation. If the perturbation is large
when the state is near the unstable part of 4 then one will see a relatively large
excursion of v, otherwise the perturbation will be quickly damped out. This picture
is a useful oversimplification of the dynamical phase-space structure associated with
spots. The attractor Ay like v is unstable in some parts so that the incoming waves
perturb the state sufficiently to send it on an excursion in A¢. Of course, we are not
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suggesting that Ac and Ay are uncoupled as in the simple example: indeed, they
are part of a single strange attractor. But these can be thought of as coming from a
common picture as we now indicate. Consider again the situation shown in Figure .
If this system is periodically forced then the total system is described by a Poincare
map corresponding to advancing one period of the forcing and the above picture
can be regarded as being associated with the vector field X(z, s) given in Equation
(10) for s frozen. Suppose that the way in which this frozen vector field changes
during one cycle of the forcing is such that a limit cycle gets pushed through the
stable manifold of the saddle M. Then homoclinic orbits are formed in the complete
system and this will have an attractor consisting of a set Apy of orbits close to the
cycle 4 and horseshoes near M, and homoclinic excursions going from a region close
to M back to Ay. If this is a reasonable approximation of the phase space then
we can make a prediction. There should be a correlation between the creation of
spots and the phase on Ay. Experimentally this can be checked by reconstructing
A using the usual time-series methods and recording when spots occur in the region
just downstream from the monitoring point.

Identification of coherent structures

As the final part of this paper, we want to propose a method of time series analy-
sis which can identify those modes which contribute most to transport. These ideas
are based on and are a modification of the singular value decomposition (SVD)
methods of Broomhead and King [19] to improve phase-space constriction tech-
niques and Lumley’s method for identifying coherent structures in turbulent flows.
We will elaborate on these ideas in more depth in a future publication with David
Broomhead but here we will sketch the main points. The principal goal of the
method is to extract organized structures which may come and go from what ap-
pears to be a sea of disorganized and statistical fluctuations.

Firstly, let us recall the basic ideas from the perspective of dynamical systems.
We suppose that we have a dynamical system acting as a Hilbert space H with
an attractor A which has a natural measure v. Let the mean 5 = [wv(dv) be
subtracted from each of the vectors v so that they then have zero mean. We define

an orthogonal basis ey, e2,... of H by maximizing
F= /(e v)2u(dv) + A(Je]2 — 1) (11)
to get e;, and then, given e;,...,e;, taking for e;4; the maximum of F in the

orthogonal complement of e;,...,e;. We ignore for the moment the non-generic
situation where F' does not have such maxima and where A is contained in a finite-
dimensional linear subspace. For the maximal basis, we find

F=o= /(e; -v)?u(dv) (12)
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Then the o; can be regarded as the moments of inertia of A if A is regarded as a
body the mass of whose points is given by v. The e, are the corresponding axes
of inertia and these can be easily calculated by constructing the inertia tensor by
differentiating (11) and solving for its eigenvectors. In this case the inertia tension
is the n xn matrix X*X where X is the n x N matrix whose i** row is the vector ;.
This is completely practical procedure which we have carried out on a number of
(finite dimensional realizations of) p.d.e.’s. In practice, the vectors #;, ¢ = 1--- NV,
could be the n— vector V(7},%;), when 7; is an array of n points distributed in
space and V is some flow component which is measured at the sequence of times
t,2 = 1,---N. The (¢,5) element in the inertia tensor is then the correlation
function < V(7},t)V(7j,t) >. A major reason for the importance of this basis is
that if v(t) is a generic solution in A and ¢;,42,... is any orthogonal basis for H,
then the r.m.s. error of a k-th order truncation

T k
%l M PORS S CORAT (19)

=0

is minimal for all £ > 0 precisely ~hen ¢; = ¢; for all j > 1.

The local version of this procedure is equally important, because of the intermit-
tency and fluctuation of the organized structures. Like the filaments of Langmuir
turbulence, they will often have a transient character and averages taken over all
time or over the global attractor will miss them. Accordingly, we define the notion
of a local SVD as follows. Given z € 4, let B,(z) denote the ball of radius ¢ about
z. Instead of taking the whole of A, we regard the points in B¢(z) as making up
the mass with their weights again given by v, but suitably normalized. Just as
in the global case, we can then obtain an orthogonal decomposition cf H and the
associated moments. We assume that, as e — 0,the axes converge to the axes

e(z): e1(z), e2(z), e3(z), . - .

and have the spectrum

o(z) : o1(z) > o2(z) > o3(z) > -

If the flow field is locally dominated by a d-dimensional structure, then the spec-
trum of moments o(z) has the property that the o,(z) decay exponentially in j for
J > d. This feature is very important as it allows us to contruct a local analogue of
the Lyapunov spectrum, which is defined as the set of growth rates of successively
larger sub volumes of the tangent space of a trajectory in the phase space. Under
fairly weak assumptions (sufficient hyperbolicity on the attractor to ensure that
any trajectory eventually covers the attractor), the Lyapunov spectrum exists as
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a global quantity. It would be tempting to suggest (hope!) that this is a natural
decomposition of the Lyapunov spectrum into a small set of a d order one exponents
and a much larger set D whose magnitudes cluster around zero. In general, this
will not be true, because the homoclinic excursions are dramatic local events which,
although responsible for transport, may be relatively rare and therefore a global
average using the usual density of points invariant measure on the attractor will
smear local large values of the growth rate over the whole trajectory. Therefore it
is unlikely that the Lyapunov spectrum will decompose as one might optimistically
hope. Neither can the Lyapunov exponent be defined locally. However the local
SVD decomposition is well defined and does discriminate between various directions
in the local tangent space. For example, if we take a ball on the attractor at a point
z from which a the homoclinic excursion begins, the d directions associated with

the dominant moments inertia o,(z) do span what we have called the order one
unstable manifold of Ay at z.

Moreover, we can adapt these further in order to look for correlations between
organized structures and the transport properties of the flow. To do this we have
to bring in the ideas of Broomhead and King on time-series analysis. Suppose that
besides measuring a representation of the state v(t) at time ¢, we also record a mea-
sure n(t) of the transported quantity. For simplicity of notation and compatibility
with real data we assume that the time ¢ is discrete. For each ¢ consider the vectors

w() = (v(t),n(t = a), .., n(t = B)).

Let A denote the set Nrsg U=t {w(t)} and construct the axes & and moments of
inertia &, for A as for the attractor A in the global procedure above. In practice
A will be finite so for v one takes the measure on A which give the points equal
weight. For small ¢ the axes

& = (ei,N—q,...,np)

will then give the dominant structures, each being an important spatial structure
e; together with the transport time-series n_,,...n; correlated with this. It thus
gives us the relationship between spatial structures and transport. The problem
is that the spatial structures which transport the most may not correspond to the
dominant moments because of their infrequent occurrence (and hence low weight
with respect to v), or because they may get mixed (as linear combinations) with
modes transporting less. To overcome this problem we propose that the vectors v(#)
should be weighted by An(t + ¢) for some suitable ¢ and A > 0. Provided A is large
enough, the dominant moments should then correspond to those which transport
most. For example, A might be chosen to be the transport itself or some suitable
power thereof. As well as obtaining the relationship between spatial modes and
transport properties, this procedure singles out those modes which transport most.
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Finally, we note that one can perform a local version of the global axes of inertia.
This may be especially useful when there are problems with phase fluctuations or
variations [20].
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Figure Captions

(1) Snapshots of |¢(z)|? at times before (2) during (b) and after (c) the collapse
of a filament in the turbulent ensemble sustained by driving with vy = 0.2.
The nearly simultaneous collapse of two filaments (d) and their remnants (e
and f) shortly after collapse. Note the outward propagation and diminution
of the concentric cylindrical shells that comprise the remnants.

(2) (a) The instantaneous rate of dissipation () =237, ve(k) B (E)[?, its integral

I'(¢) = — [* 4(¢)d#, and the global spatial maximum of |¢(z)[? as functions
of time in the strong turbulent regime sustained with v, = 2.

(b) As in (a) but for a longer time. Notice that strong, sudden dissipation
is exactly correlated with collapse and that the loss of energy (—T') is approxi-
mately linear over long times.

(3) The total energy dissipated by collapsed filaments (6n.) divided by the total
energy dissipated (énr) for three different turbulent ensembles differing in
mean intensity, < ny >, as a function of the cut-off rate v used to define
filament collapse. (See text for discussion.) Note that this ratio necessarily
approaches one as 4o — 0.

(4) A histogram of energies (6n) dissipated in the strong turbulent regime main-
tained by driving with §, = 2. The cut off delta vy = 10. Note that the
distribution shifts towards the critical value p = .29 as 49 — 0 (see texty for
discussion).

(8) (a) As in Fig. 2(2) but confined to a small domain or “box” centered at a
single collapse site in the case 45 = .2. (The time origin has been redefined
for convenience.)

(b) The total energy in the box (rpoz = f;,, d = 2|¥(— z)|* and the conser-
vative flux through the boundary of the box

(fluo= | " 4/27m /a it (7 47)

as functions of ‘ime. Note the “shoulder” in the nj,; graph, corresponding to
the fluxing of . » collapse remnant out of the box immediately following the
sudden burnout of the core of the filament. Adding the energy lost in burnout
(t = .08) to that carried away by the remnant (.08 < ¢ < .12, i.e., the shoulder)
we chiain very nearly the critical value p = .29.
(6) A histogram of times passed between successive collapse events in the case
vp = 2. Note that the distribution is nearly Poisson, with a mean time
between events of < 7 >2 .08. Fluctuations are still affecting the tail.
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(7) Mean dissipation rate < ¥ >= 3°; 27.(k) < |[#)(k)|> > and mean time between

collapse as a function of the level of turbulence (< ny > for several different
cases.

(8) Flow trajectories in the turbulent regime with v; = .85 covering about 10
collapse events. The trajectories are projected onto the global observables
(ny, H,|4|%,az) to produce a curve in 3 dimensions displayed in (a). In (b)
we have projected this curve onto the three coordinate planes to aid visual-
ization. Those trajectories that are fluctutions about homoclinic excursions
are the smooth sparse loops passing through the larger values of |[¢|2maz.
The denser, more jittery part of the curve lies in Ay.

(9) Angle-averaged correlation function.

(10) The damping function, 7.(k). Note the rapid turn-on of damping at ko =
30 = .2ky, where kg = %\/M_ and in all cases studied M = 7344.

(11) A contour plot of the long-time averaged spectral energy density < |(k)[% >.
The scale is logarithmic: energy densities on adjacent solid contours differ by
a factor or 100. Note that the turbulence is isotropic and that the damping
(Fig. 3) confines the (time-averaged) energy to long and intermediate scales.

(12) A schematic drawing of the attractor and the homoclinic excursion.

(13) Phase plane for z"* = —z + 2z3.

(14) A scenario for the homoclinic excursion associated with turbulent spots.
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Streamwise Evolution af Nalkurally Occurring Instabilities

R. A. Petersen
Fower spectral densities of streamwisa component w’ aeasured
at r/D = 8.5 and at various streamwise positions wikhin the
laminar/turbulent transition region of axisvometric jebt at U_J =
1& wm/s. he initial instability frequency is near 12982 H=.

Successive parings result in spectral peaks at 688 Hz snd  I60

Hz. The inertial subrange (£"-3/3%) emerges near x/D = 2.8.

Fourier Decompasition

Since the velacity ftield is statistically homogeneous and
periodic in the aximuth%l 'directian, it is appropriate to
dacompose the +ield into Faourier modes. Measurements at

£:#/D,r/B1 = [B.2,8.51, jet speed = 16 m/s.

TOPF: Sample  time series from eight hot wire sensors. Sample:

AT

1024 points digitized at 3@ H=z.

AN T

I

£

BOTTOM: Decomposed time series. Naturally cccurring

e o e e —

ey

i s

instabilities are predaminantly axisymmetric.

Fhase Portrait

Stereoscoprc representation phase portirait embedded in three
dimensions. Mades: a (t), by(t), a,(t); jet speed = 16 m/s;
ngasurement location Ix/D,r/R1 = [2.2,2.5]1; 1224 points @ S8 kiH:z.

Even though the time series exhibits temporal and spatial

coherence, the phase partrait appears high dimensional.

Consequently, an attempt is made to develop a statistical moadel

i

fram the phase portraict.
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Fhase Space Statistics
Based on the fzct that the Navier Stokes equations Jnvolve
firsk differences in time and thet the (incompressible) pressure

is determined by “he instantansous velocity field, we modz2l +Lhe

]9

E

syslam a8 & 2 noise driven Markov process. That is, th%
erpectation of the future state of the system depends only on the
preassant., .

The conditional mean rapresenks bhe tenporally cohereni pact
b Lhe decomposed signal and is relahed to Lhe temporad  orose
correlation function. The "“fine sgale” turbulence is modelled
by a random vecior of zero mean and unity variancs. The
corditional covariance can be decomposed locally inte = zet  of
eigenvectors and =igenvalues. 4 &the conditional, Jjoint
statistics are uncorrelated one would expect the conditional

eigenvectars to parallel the basis vectors of the original

’

decomnposition.

Mezsured Conditional Accelerations

Joint statistics are based on ao(t), horizontal aunig, and on
b ()Y, vertical auis. Measuwremenis span the region from laminar
flow to fully developed (based on emergence of inertial suvbrange)
turbulence. At %/D = @B.2 the conditional convariance
eigenvectors are correlated by the instapility;y by =/D = 0.8 the
conditional means are small compared to *he conditional
covariance eigenvalues (root mean square) and the conditional,

joint statistics appear to be uncorrelated.

In each case the sampling rate was 5@ kHz, and the joint

(11}

statistivs are based on 1,824,000 data points. The data was

v
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digiiized in 1824 point records and de-meaned before bsing

dacanposed into Fouriwsr wmodes. The display is owodulated by
contouwrs of joint probability density: contours beltween S@-70%
ang  hatween 8B-100% of ithe oeak value were selescted. The Jjoint

probability digstributions are evidently skewed and the display is

approvimstwly 4 x 4 standard desviations. Aporoximate becauss the

s aling is baued on Lhe first 1% of Lbhe database.




