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Ia) SCIENTIFIC RESEARCH GOALS

I-2 The main objective af this research is to investigate the

relationships between modern concepts of nonlinear dynamical

systems, chaos theory and fully turbulent boundary layers. The

approach that we are taking is to search for a connection between

strange attracLors and the large-scale coherent structures which

appear to play a dominant role in the dynamics of turbulent shear

flows. Within the framework of this research contract we are

S-attacking the high Reynolds number turbulent boundary layer from

two fronts: :i) From the lower Reynolds number transitional

boundary layers, which have the proper flow geometry but a lower

Reynolds number ano therefore lower dimensional dynamics; and

S~(-ii) from the high Reynolds number free shear layer flows, which

3ave a simpler flow geometry than the fully turbulent boundary

layer, but for which the coherent structures and their dynamics

I -/ aopear to be much simpler. Because of the somewhat reduced

1 complexity, investigating these flows first will offer a far

better opportunity to establish a connection of transitional

and/or turbulent behavior with low-dimensional strange

attractors. With t:ae experience and understanding gained from

these simpler flows, we will then be in a position to

successfully dttack the fully turbulent boundary layer
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b)MAJOR PROGRESS IN THE PAST YEAR

Continuation of build-up and/or modification of various

facilities for investigating coherent structures and their

connection to chaos:

3 i) Shear-layer facility (water) with e::tensive use of

various flow visualization techniques and advanced

measurement techniques (LDV, particle tracking, etc.).

(A. Glezer)

ii) Jet Tacility (air). (R. A. Petersen)

iii) Wind tunnel (air) for wake studies. (F. Champagne, I.

Wygnanski)

iv) New water channel for investigation of boundary layer

transition. (H. Fasel, A. Glezer, R. A. Petersen)

v) New versatile water channel for wakes (plane and

axisymmetric), shear layers, etc. (F. Champagne, A.

Glezer, R. A. Petersen, I. Wygnanski)

Eoerimental Investioations

- Connection between correlation dimension and large coherent

structures in jet -clows via the use of diagnostic tools. (R.

i Petersen, I. Wygnanski, H. Fiedler.)

i - Application of the proper orthogonal decomposition technique to

a harmronically forced plane mi:ing layer. (A. Glezer and A.

Pearlstein)

Theoretical Work in Proaress

- Dynamics and Stability of Soliton Solutions of the Damped and

Driven Sine-Gordon Equ&tion. (D. McLaughlin, A. Pearlstein)

I



I3.
- Development of Numerical Methods for Determining Dimensions,

Attractors from "Real" Data (data -From experiments, or Navier-

Stokes simulations). (S. Lichter, D. Rand, A. Newell)

- Coherent Mode - Stochastic Mode Decomposition of Turbulent

Fields. (A. Newell)

- Development of Navier--Stokes MethcJs for Investigating Dynamics

04 Coherent Structures in Free Shear Layers 4nd Wakes. (H.

J Fasel)

- Development of Navier-Stokes Methods for Simulating Later

Stages of Transition (appearance of random motion). (H. Fasel)

3 - Nonperiodic Flow Generated by an Oscillating Two-Dimensional

Cylinder. (A. Pearlstein)

I - Devel,3pment o-f chaos diagnostic tools that incorporate spatial

information (i.e., spatial coherence) and application to

transitional and turbulent jets. (D. Rand, J. Caputo , R.

Petersen)

c) PLANS FOR NEXT YEAR'S RESEARCH

All the work listed under b is in progress and will be

continued in the coming year.

Newly added activities will be:

- Chaos diagnostics and analysis of numerical data obtained from

Navier-Stokes simulation . of laminar-turbulent transition in

boundary layers. (A. Slezer, A. Pearlstein, H. Fasel)

-Development of numierical model for simulations o tr ns t _ion

and turbulence in axisymmetric jets (to allow direct comparison

I with jet experiments). (H. Fasel and R. Li)

i Phase space statistics analysis of data from jet experiments

( R. Petersen)
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U. Konzelmann), 6,(to bepublished in 1988).

"Numerical investigation of the Onset of Chaos in the Flow
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"On the Weak Limit of Rapidly Oscillating Waves," (with L.
Chierchia and N. Ercolani), to appear in Duke Math. J., 1988.

"Geometry of the Modulational Instability. Part 1: Local
Results; Part 2: Global Results," (with N. Ercolani and N. G.
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"Stability and Bifurcation of Spatially Coherent Solutions of the

Damped-Driven NLS Equation," (with G. Terrones and A. Pearlstein,
in preparation.

"Notes on Melnikov Integrals for Models of the Driven Pendulum
Chain," (with N. M. Ercolani and M. G. Forest) preprint, Univ. of

I Ariz., 1988.

"Chaos in a Perturbed Sine-Gordon Equation and in a Truncated
Modal System," (with A. R. Bishop, R. Flesch, M. G. Forest, and
E. A. Overman II) preprint, Los Alamos, 1987.

"Modal Representations of Chaotic Attractors for the Driven. Danped Pendulum Chain," (with A. R. Bishop, M. G. Forest, and E.
A. Overman II) preprint, Ohio State University , 1986.

"Finite Amplitude Modal Equations for Nearly Integrable PDE's,"
(with N. M. Ercolani and M. G. Forest) preprint, Ohio State
University, 1988.

A. Newell

"Fixed Points and Chaotic Dynamics of an Infinite Dimensional
Map," (with J. W. Moloney, H. Adachihara, and D. W. McLaughlin,
Chaos, Noise and Fractals, pp. 137-186, 1987.

"A Calculus Curriculum for the Nineties,.' (with 0. Lovelock)
Proceqdinqs NRC-MAA "Calculus Curriculum." Oct. 1987.

"Snell's Laws at the Interface Between Nonlinear Dielectrics,"
(with A. B. Aceves and J. V. Moloney), Physics Letters A_ Vol.
129, No. 4, 1988, pp. 231-235.
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"Reflection and Transmission of S.elf-focused Channels at
Nonlinear Dielectric Interfaces, (with A. B. Aceves and '. V.
Maloney).

Trajectories of Surface Waves at the Interface Between Nonlinear
Dielectrics (with A. Aceves and J. Moloney), submitted to Physics
Review Letters.

"Wavenumber Selection of Convection Rolls in a Box," (with W.
Arter and A. Bernoff), accepted Physics of Fluids Letters.

"Numerical Simulation of iayleigh-Benard Convection in Shallow
Tanks, (with W. ArterY, accepted Physics of Fluids.

"Solitary Waves as Fixed Points ,af Infinte-Dimensional Maps for
an Optical Bistable Ring Cavity: Analysis," (with H. Adachihara,
D. W. McLaughlin, and J. V. Moloney) , to appear J. of
Mathematical Physics.

"Lax Pairs, Backlund Transformations and Special Solutions for
Ordinary Differential Equations," (with J. D. Gibbon, M. T;abor,
and Y. Zeng), to appear Nonlinearity.

"Turbulent Transport and the Random Occurrence of Coherent
Events, (with D. Rand and D. Russell), to appear in special
volume of Phvsica D_ Nonlinear Phenomena, Sept. 1988.

"Theory of Beam Reflection, Transmission, Trapping, and Breakup
at Nonlinear Optical Interfaces, (with A. B. Aceves and J. V.
Moloney), to appear Oatical Bistability I 1988.

"Turbulent Dissipation Rates and the Random Occurrence of
Coherent Events." (with D. A. Rand and D. Russell). to appear
Phs. Letters A.

A. Pearlstein

"Onset of Convection in Variable Viscosity Fluids: An Assessment
of Approx imate Viscosity-Temperature Relations," Physics of
Fluids. 31, pp. 1380-1385, 1988.

"Stability of Free Convection Flows of Variable Viscosity Fluids
in Vertical and Inclined Slots," (with Y,-M. Chen) accepted J.
FlLid Mechanics.

"Temperature Distributions in a Laminar-Flow Tubular
Photoreactor," (with F. Chen) accepted AIChE Journal.

"Low Peclet Number Heat T ans-fer in a Laminar Tube Flow Subjected
to Axially Varying Wall Heat Flux," (with B. P. Dempsey) accepted
J. Heat Transfer.

"Efficient Transformation of Certain Singular Polynomial Matrix
Eigenvalue Problems," (with D. A. Goussi -) accepted J.
_Computational Phvsics.

"Removal of Infinite Eigenvalues in the Generalized Matrix
Eigenvalue Problem," (with D. A. Goussis) accepted a.
Comoutational Physics.
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2. Technical Reports:I H. Fasel

3 ONR Contract N0014-85-K-0412 yearly report, Mar. 1987

I 3. Presentations

a. Invited H. Fasel

"Navier-Stokes Simulations of Laii nar-Turbulent Transition,-
International Symposium on Computational Fluid Dynamics,
Sydney, Australia, 14-17 August 1987.

"Numerical Investigation of Stability and Transition in
Shear Flows," Euromech Colloquium on Boundary Layer
Instability and Transition, Exeter, England, 21-25 Sept.
1987.

"Numerical Investigation of Transition in Wall Sounded Sheer
Flows," Calif. Inst. of Technology, April 1988.

"Numerical Simulation of Breakdown to Turbulence," Illinois
Institute of Technology, Chicago, Ill., May 1988.

"Stability and Transition and Transition Control in Shear Flows,"
McDonnell Douglas Research Labs, St. Louis, Mo., May 1988.

SA. Glezer

DARFA/URI-Brown/Yale Conference on Turbulent Structures in Free
Shear Flows and Their Detection by Proper Orthogonal
Decomposition, Newport, RI, June 1988.

3 Cornell University, Mechanical and Aerospace Engineering Seminar,
March 1988.
Princeton University, Mechanical and Aerospace Engineering

Seminar, Dec. 1987.

.1 D. McLaughlin

Joint Summer Research Conferences in the Mathematical Sciences,
University of -.olorado, 1987.

Second Howard University Symposium on Nonlinear Semigroups,
Partial Differential Equations, and Attractors, 1987.

Summer School, 2 weeks of lectures, Ravello, Italy, 1987.

I1 Math Colloquium, University of California, Davis, 1988.

T.



Nonlinear Science Colloquium, University of California, San
Diego, 1988.

Nonlinear Schroedinger Conference, France, 1988.

"Critical Level Sets of Integrable PDE's," Solitons in Physics

and Mathematics, Minneapolis, Minn., Sept. 1988.

A. Pearlstein

Gordon Research Conference on Oscillations and Dynamic

Instabilities in Chemical Systems, Plymouth, NH, July 1988.

DARPA/URI-Brown/Yale Conference on Turbulence Structures in Free

Shear Flows and Their Detection by Proper Orthogonal
Decomposition, Newport, RI, June 1988.

University of California, San Diego, Dept. of Applied Mechanics

and Engineering Science, Feb. 1988.

Yale University, Applied Mechanics Colloquium, Nov. 1987.

b. Contributed

H. Fasel

Nonlinear Interactions of Two-Dimensional Tollmien-
Schlichting Waves in a Flat Plate Boundary Layer," (with J.
Currle and A. Thumm), GAMM Conference, Stuttgart, April

I1987.

"Numerical Simulation of Subharmonic Resonance in Boundary

Layer Transition," (with U. Konzelmann and U. Rist), GAMM
Conference, Stuttgart, April 1987.

"Numerical Investigation of the Onset of Chaos in the Flow
Between Rotating Cylinders," (with E. Laurien), GAMM
Conference, Stuttgart, April 1987.

I "Numerical Investigation of the Stability of Taylor Vortex
Flow in a Wide Gap," (with J.. A. Meyer), GAMM Conference,

I Stuttgart, April 1987.

"Numerical Simulation of the Boundary Layer Transition
Process Near the Secondary Instability," (with U. Rist and
U. Konzelmann), GAMM Conference, Stuttgart, April 1987

"Interaction Between a Tollmien-Schlichting Wave and a
Laminar Separation Bubble," (with K. Gruber and H. Bestek),
AIAA 19th Fluid Dynamics, Plasma Dynamics and Lasers
Conference, Honolulu, Hawaii, 6-10 June 1987.

71



"Numerical Investigation of the Three-Dimensional

Development in Boundary Layer Transition," (with U. Rist and
U. Konzelmann), AIAA 19th Fluid Dynamics, Plasma Dynamics
and Lasers Conference, Honolulu, Hawaii, 8.-10 Jun- 1987.

"Numerical Investigation of Unsteady Separation in Boundary

Layers," ARS/DFD Meeting, Eugene, OR, Nov. 1987.

A. (31ez er

"Evolution cf a Pulsed Two-Dimensional Disturbance Superimposed
on an Excited Turbulent Plane Mixing Layer," (with X. Gu and I.
J. Wygnar ski) APS/DFD Meeting, Eugene, OR, Nov. 1987.

"Concurrent Streamwise and Spanwise Forcing of a Turbulent.Mi,.inq
Layer," (with K. J. Nygaard and I. J. Wygnanski) APS/DFD eeting,
Eugene, OR, Nov. 1987.

"Application of the Proper Orthogonal Decomposition Technique to
an Anharmonically Forced Plane Mixing Layer," (with Z. Kadioglu
and A. J. Pearistein) APS/DFD Meeting, Eugene, OR, Nov. 1987.

A. Pearlstein

"The Onset of Instability Via Three-Dimensional Disturbances in
Parallel Shear Flows," APS/DFD Annual Meeting, Eugene, OR, Nov.

1 1987

"Control of Planform Selection by Boundary Anisotropy," (with A.
Oztekin APS-DFD Annual Meeting, Eugene, OR, Nov. 1987.

"Application of the Proper Orthogonal Decomposition Technique to
an Anharmonically Forced Plane Mixing Layer," (with Z. Kadioglu3 and A. Glezer) APS-DFD Annual Meeting, Eugene, OR, Nov. 1q87.

"Modeling oF Mass Transfer Controlled Electrodeposition on Masked
Substi-ates," AChE Annual Meeting, New York. Nov. 1987.
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Application of the Proper Qrthoaonal Decomposition Technique to an
Anharmonically Forced Plane Mixing Layer

A. Glezer and A. Pearistein (with Z. Kadioglu)

e'O 1VP

I47IA IN
Iwrw d otal.c ;.sin



I -.

II
It

I



I
U
I,
I
I
U
I

.1*
II

I
I
'I
'I
I

U
I
3;

II 3 ______



I

S!The avaliable data consists of 10 chanels of U(x,y,t)

3 Before Applying the P.O.D.

* Smoothing in time

* Piecewise polynomial fit in Y
* Subtract the mean velocity

I

LLe

4



I APPLICATION OF THE P.O.t. TO 7HIE DATA

I ~Lumley(1967); Aubry, Holmes, Lumley &Stone (1986)

F3  Previous zpplications have been to fully developed turbulent
flows that are:

*Statistically Homogeneous in Two Directions

*Statistcally Stationary

IDESCRIPTION OF THE P.O.D.

U(1,1) ........... ........... U(1,n)
..... 0......... ......... I ....

A........................~..............

A ........... .Y )....................

U(m,1) ...... ................ ......Umn

I Singufar Value Decomposition of A SV)is equivalent '.- compu-
T*ting the Gigen values of A.A

The eigen values measure energy or action in corrc-pond ing eigen

* vectors ( spatial modes)

Eigen vectors constituta an orthogonal basis for representing:

I U(X,y,t)
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N To appear Ph .. Lett. A.

U Turbulent Dissipation Rates
and the Random Occurrence of Coherent Events

* by

Alan C. Newell, David A. Rand*, David R.issell t3 Department of Mathematics
University of Arizona

Tucson, AZ 85721

Abstract

In this letter, we suggest that the transport properties and dissipation rates of a
wide class of turbulent flows are determined by the random occurrence of coherent

events that .orrespond to certain orbits which we call homoclinic excursions in the
I high dimensional strange attractor. Homoclinic excursions are trajectories in the

non-compact phase space that are attracted to special orbits which connect saddle
points in the finite region of phase space to infnity and represent coherent structures3 in the flow field.

3 Introduction

It is generally accepted that turbulence in shear flows at Reynolds numbers of
10 and higher has a large number of active degrees of freedom. Although estimates
of Lyapun, and Hausdort dimensions ar- strictly upper bounds, the rapid loss of
spatial cor.elations over distances of the TL. lor microscale R- i and the broadband

I wavenumber spectrum suggest that many modes are playing an active role in the
dynamics. The RI estimate [1], which is consistent with the intuitive idea of Landau
that it is necessary to reolve a turbulent flow fielH in a box of volume V down to
the Kolmogoroff inner scale of (v3/6) (v is kinematic viscosity, = v ,7 vL 1 di
is the energy dissipation rate and is independent of v for a large range of large
Reynolds numbers), means that if R is 10, R* is a billion! It is unlikely that
replacing the Navier-Stokes equations by a system of a billion o.d.e.s. will either
bring much insight into the nature of turbulence or make it possible to calculate
the invariant measure on the attractor needed to compute averages. Therefore,
whereas the concept of 'a strange attractor on which the flow is everywhere unstable
and ergodic is a valuable and necessary one, a new idea is needed if one is to beIable to compute in a practical way average flow quantities and in particular those
averages which represent transport properties, the flux of heat across a convection

I *Present Address: Nonlinear Systems Laboratory, Warwick University, Coventry,

CV4 7AL United Kingdom

t Present Address: Center for Nonlinear Studies, Los Alamos, NM 87545

!1



layer, momentum across a boundamy layer, angular momentum between cylinders
rotating at different velocities, mass flux down a pipe or the amount of heavier fluid
which falls through a lighter one. It is also important to calculate the dissipation
rate which, in systems where energy is fed in at low wavenumbers and removed
at high ones, is equivalent to computing the flux or cascade of energy across any
middle wavenumber. One of the main goals of a turbulence theory is to predict the
transport and the dissipation rate as a function of the applied stress. The purpose of
this paper is to suggest one new avenue of approach to these problems of transport3in physical and wave space.

The basic idea is fairly simple. There is some evidence that, in a variety of
situations, transport is associated with organized flow structures. If this is the
case, one would like to identify and isolate those parts of the attractor and those
orbits in phase space which are the principal contributors to a particular flux. In
this letter we focus on a class of such special orbits which connect saddle points in
the finite part of phase space to infinity and which are the principal contributors
to the dissipation rate. The ideas are first illustrated in terms of a simple, but
nontrivial, example, the two dimensional forced, damped, nonlinear Schr6dinger
(NLS) equation

t -iV 2b - i1012  4=F-D (1)

which arises in models of Langmuir turbulence. Although this model is a poor
approximation to the full Zakharov equations on several counts, it nevertheless
retains the essential feature, emphasized for many years by Soviet colleagues [2],
that, in the limit of strong ion damping, dissipation is mainly due to the collapse
of filaments rather than energy transfer to high wavenumbers by resonant wave-
wave interactions. The filaments are closely related to an exact, singular, localized
solution of the unperturbed and conservative NLS equation (1), whose modulus hasU the shape

I0(i,t)I = \iR(7) , 7 = A'j5- oI1 (2)

near the blow-up point ;0. In (2), R(7) is the unique solution of R" + r-IRI -

R + R+ 3 = 0,R'(O) = O,R(oo) = 0 without zeros in (0, oo) and \(t) is a time
I dependent function which becomes zero after a finite time to. The rate of collapse

A(t) has not been yet satisfactorily determined. The two most recent efforts [3]
both agree that it has be form f(t)(t0 - t) i where f(t) tends to zero very slowly
(e.g.(ln(to - t))- 1 or (lnln(to - t)) - ') but differ on the exact asymptotic answer.
A sufficient but uot necessary condition for collapse is that the Hamiltonian H
I I  (jV,0j1-lkik)di is negative. The negativity of H guarantees that np = f 11 2 dE,

also a constant of the motion for the NLS equation, is greater than the minimum
power p = 27r fo R 2 7drl = 0.29 needed to sustain collapse. If np = p, Weinstein
[4] has shown that, if the solution blows up in finite time, then 0(5 t) converges
to (2) in the H' norm. On the other hand, if np < p, global existence is assured
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I and no blow-up occurs. Our interest is in larger values of np,. In particular, an
initial condition which is a small perturbation of the unstable, monochromatic state
0 = ?0 exp(if- - + i(k2 - 10, 12)t) in a square box of side length L with k =
27rL-1(m, n), m, n integers (m = n = 0 corresponds to the X' independent state) for
which np = 1012 L2 will develop approximately npp-' collapsing filaments, each3 having precisely the shape (2) near its collapse site 50 and time to. In the phase
space of the unperturbed system, each collapsing filament will be represented by
an orbit which joins the saddle point representing the unstable solution to infinity.3 We give these orbits a special name, heteroclinic connections to infinity or HCI's,
because all orbits which escape to infinity are attracted to them even though the
unperturbed system is conservative. In other words, all solutions of NLS which
become singular in finite time have the shape (2) as they approach infinity. Of
course, in the damped system, the singularity is never quite reached. Once the
filament diameter is of the order of the Debye radius, Landau damping (represented
by D in (1)) becomes important and the energy is transferred from the wavefleld
to electrons, a process know as burnout. The process of dissipation changes the
attracting point at infinity to a repeller and the system returns to the finite part
of phase space-where it again comes under the influence of a saddle point and the
cycle is repeated. We call these large excursions, from the finite part of phase space
to the neighborhood of infinit- and back again, homoclinic excursions. They are
organized by the HCI's in the sense that as the trajectory approaches infinity, the
corresponding solution in physical space approaches a very special shape and in
particular the amount of energy it carries off to the dissipation cemetery at infinity
is known. Before attempting to mathematize these notions any further, we present
some numerical evidence to support our picture.I
Numerical Results

We now turn to the main results of the numerical study. We integrated (1) using
a split-step Fourier algorithm on a grid of (128)2 points. The time step used was3 10' and adequate to resolve the largest linear (k2 ) and nonlineaz (lip1 2) frequencies
encountered in our simulations. Aliasing errors were judged to be insignificant by
making spot comparisons with a dealiased code on a (256)2 grid. More details
are given in [5]. Energy is fed into the system at low k and removed at high k
through F and D whose Fourier transforms are -Ib(k)0k and -Y,(k)4k respectively
( (k is the Fourier transform of 4(, t)). The support of 7b(k) is near k = 0 and
the support of 7f(k) is beyond kd where kd is the Debye wavenumber. It turned
out that in most of our simulations the global energy H (not a constant of motion
for (1)) was positive during all time intervals in which there were collapse events.
Figure 1 shows snapshots of k 2 (-, t)( before, during and after the collapse. Figure
2 displays the instantaneous rate of dissipation -I(t) - 2 "g -,e(k) kk1 2 , its integral

r(t) - f dt ,y(t'), and the global maximum Of 1bI 2 over a time interval including
several collapses in a strong-turbulent regime after transients have died out and
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5 the system has reached a statistically steady state. -r is just the energy lost due
to dissipation as a function of time. Observe' that a large fraction of the energy
dissipation occurs in sudden jumps and is directly correlated to the collapse events.
Energy np = k bi 2 is considered to be dissipated due to collapse only if 7 > 70,
where 7o is a threshold parameter. If this inequality holds over the interval [t 1 , t2 ],
then the energy burnt out is F(t1 ) - r(t 2), and the total energy lost due to collapse
for the entire simulation is the sum of all such differences. Denote this total energy
lost due to collapse by 6Sn and the total energy dissipated by Sn. We have plotted
the ratio Snc/6n as a function of 7o for several different turbulent regimes. As 70
decreases the ratio increases and is of course one at 70 = 0. 7o = 1 was the smallest
value that gave ratios judged to be free from contamination by non-collapse events3 for all cases studied, so it was chosen as the standard cut-off rate. With this choice
of 7o, as much as 80% of the total energy dissipated is dissipated by collapsing
filaments in the most energetic case examined (< np, >a 10). In the weakest5 case (< nOp >5- 5) more than 70% of the dissipated energy was lost in burned out
filaments. Furthermore, these estimates of the energy dissipation are conservative
because we have not yet included the more gradual loss due to the decay of the
high k remnant left over from the collapse. The reason for this remnant, peculiar
to the nonlinear Schr~dinger equation, is that a singular filament of this equation

* carries the minimum threshold energy p required to sustain collapse. (In contrast,
the energy of a collapsing Zakharov filament, again a constant of the motion, can
take on a ccntinuous range of values above the critical threshold.) Therefore, when

* a significant portion of the filament's spectral energy lies in the dissipative range
(k > kd), some of its energy is lost, collapse is arrested and only a partial burnout
occurs. It leaves behind a remnant in the form of broadened concentric cylindrical
shells of field energy centered at the collapse site (see Figure 3). In order to follow
the energy associated with the remnant, we monitored the field energy inside a small
cell centered at the collapse site and observed that the burnout of the central part
of the filament, or core, causes the fastest depletion of energy in the cell, but also
that it is immediately followed by a slower depletion. The slower loss is primarily
due to the fluxing of the remnant through the cell boundary. If we add the energy5 loss rp,0 <r < 1, due to the burnout of the core to that carried out of the cell
by the remnant, we obtain a total loss of energy in the cell very close to the total

- amount p carried by the collapsing filament. Figure 4 shows the disribution of r.
N

The remnant plays two roles in the dissipation process. Fir.st, it provides a
nucleating center for new collapses, a fact we have verified by examining the spatial
distribution of collapse sites. As a consequence the frequency of collapses increase-.
We found that for 7b(k) = 26(k - 1) (the beam drives just the lowest wavenumber

1i"- Lh wx), h disLb ution of collapse times is nearly Poisson with a mean time
between events of w; "1 =< r >= .08. Second, the gradual damping of the remnant
enhances the ambient dissipation rate < 7-A > (i.e., the dissipation rate averaged
over time intervals free from collapse) over that amount we would expect from
other dissipative mechanisms. In order to verify this, we carried out the following
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Il relaxation experiment. By changing the sign of the nonlinearity in equation (1) from
plus to minus, we obtain a system with the same linear dispersion as the plus system
and therefore presumably the same resonant wave interaction character but without
the unstable modulational and nucleational instabilities (which will be discussed in
the next section) and collapsing solutions. Initializing the two systems identically,
we ran them with the forcing turned off (-b = 0) and compared their dissipation
rates between collapses of the (+) system, before their energies had separated by
more than 10% of the common initial value. The ambient dissipation rate of the (+)

*m system was typically 50% greater than that of the non-collapsing (-) system while
the collapse remnants were dissipated. Including collapse events in the tally, the
(+) system lost energy three times as fast as the (-) system. We conclude, therefore,
that the amount of energy dissipated by non-collapse events is at most one-quarter
of the total energy dissipated. Therefore, the energy dissipation budget is as follows.
The average total dissipation rate < - >= we < r > p+ < 7A >= wcp < r > 6
since I- n. < 7 > depends only on the mean turbulence level < no > but,
as we have pointed out, < 7.4 > and we depend both on < no, > and the nature of
the dissipation. The average function < r > lost in burnout depends only on the

latter. We plotted both < y > and we as a function of < n, > and found that,
as expected from above, the product < 7 > w- 1 is almost independent of < no >.

3Futhermore it was equal to .13 which is equal to the product of p (which was .29),
< r > (which was .3) and 6 (which was about 1.3). Graphs showing the loss of
energy from a small cell surrounding the collapsing filament, 2 as a function of
-7o, < 7 > and we as a function of < no, >, the distribution of collapse times, the
angle-averaged correlation function and actual trajectories illustrating homoclinic

[3 excursions will be given elsewhere [5].

Whereas these results confirm the thesis that coherent collapse events dominate
dissipation, the expense involved in two dimensional experiments did not allow us
to run a sufficient number of simulations in order to determine in what limit, if
any, L approaches unity. In connection with this question, and in parallel with
the ideas of DiPerna and Majda [6], one would also like to develop the notion of
a weak solution in which solutions of the undamped equations could he continued
beyond the collapse time by simply deleting the collapsed filament and lowering the

3L2 norm of the solution by a fixed amount. In order to examine these questions,
we simulated the one dimensional nonlinear Schrdinger and Zakharov models with
quintic nonlinearities on grids of 1024 and 256 points respectively. Allasing errors3 were removed by smoothly interpolating 0 onto a grid of 8 x 1024 or 256 points before
forming the nonlinear frequency 14,1. The results for NLS showed that, for the same
tl th .prcnt a .f .th diii . accounted for by collapses
rose from 59% at kd = 128 (where, because the dissipation effects are clearly felt
in the early stages, there are many failed attempts to form collapsing filaments), to
72% for kd = 256, to 82% for kd = 512. The average loss of energy per collapse
decreases with kd (the amount of energy greater than kd in the Fourier transform
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5 - of the collapsing filament decreases with increasing ld) but the frequency of events
increases proportionately so that the average dissipation rate remains the same.
The evidence clearly suggests that in the large k limit, all the energy dissipated is
dissipated by collapse events which occur infinitely often with infinitisemal losses of
energy per event.

A much more striking result was obtained when we ran the very same experiment

on the Zakharov model 3k, - iO.. + ipi = F- cD (3)

p3 + 2v, o pt - = (I014)== (4)

where F and D are as before and 2v o pt is a convolution integral modelling ion
damping. The ion acoustic field p(x, t) is no longer slaved to the electric field
intensity (for NLS, p in the equation (3) is replaced by _I b4). Therefore, during
collapse, in which the fields take on a self-similar form close to (2) but in which
the inertial acceleration pu is also important, the cavity formed by the ion field
encourages total burnout of the filament (see Figure 5). We found that when e =
1, kd = 32, < np >= 1.625, the average energy < r > p lost per event was 1.95,
the average time between events was .83 and - was 92%. (For the Zakharov
model, the amount of energy carried ih the filament, a constant of the motion for
the unperturbed equations, can take on a range of values greater than the threshold
value p = .43 in this case. Thus r > 1). The distribution of r' rose sharply after
r = 1, had a mean of 1.95/.43 and had a relatively long tail. Also, we observed that
all the collapses occurred in 9. nonoverlapping sites, were driven by the nucleational
instability (see the section after next for discussion), and the sites drifted about the
box. When we increased kd to 64, < np >= 1.8, the frequency of events increased

*w to (.69)-i (there were 287 events in 198 time units) and the distribution of r came
closer to one. The average energy lost per event was 1.57 units and 6'e was 95%.
(In contrast, at the same paramete values and over 100 time units, the NLS model

3had 972 events with an average energy loss of .09 and an was 72%.) Furher,
when we decreased s to 1 (again ld = 64), the distribution of r cam closer to
threshold and a was 98%. Also, for c = 1, when kd was increased to 128, ,
was 98%. This leads us to conjecture that as ld increases and c decreases, the
distribution of r will cluster about one, and that each collapsing event will burn off
exactly the threshold energy p = .43. In this asymptotic limit, the weak solution
of the unforced, undamped equation in which the turbulence eventually decays, is
found by simply removing the collapsing filament from the field and reducing the

. .- ""-he weak mnit of O(z,A)as 0if3 f C(X)M(X, O)dx = lim f W(z)O(x, A)dz where W is smooth, of a collapsing filament

is zero because it oscillates very fast and its width decays at a faster rate than its
amplitude increases). We will report more details elsewhere. We are also currently
testing some ideas concerning the estimation of the frequency of events.
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Coherent Events

Our picture, then, is that in this and a wide variety of similar situations, the
dissipation rate is governed by the random occurrence of coherent events. In order
to compute a good approximation to the dissipation rate, one need only know the

* following information; (i) the nature of the honaoclinic excursion (equivalently the
U spatial and temporal shape of the coherent structure) and the energy lost in the

cycle and (ii) the average frequency of occurrence. Although finding approximations
to these quantities will not in general be an easy task, it should be considerably
simpler than finding the complete statistics on the turbulent flow. Further, this
picture suggest that the most natural decomposition of the turbulent field is one in
which the field is divided into low dimensiona organized structures (the collapsing
filaments) and a high dimensional component consisting of chaotic fluctuations in
the field during intervals when no collapse events occur. In phase space, the highI dimensional component will cause the homoclinic excursion to fluctuate chaotically
about the HCI but, because in physical space these fluctuations represent chaotic
behavior away from the collapse site, it is reasonable to expect that their effects
can be captured using low order statistics and that they will not appreciably affect
the dissipation rate.

I One would like to understand better the low dimensionality and attractive nature
of the organized, singular structures. Why is it that the bnly structures through
which the O(E, t) field becomes singular are relatively simple? We have no mathe-
matically rigorous or even plausibly compelling argument but suggest that this is
a very important question to answer. Our own attempt at an answer is incom-

I pplete but stresses the importance of the scaling symmetry which the NLS (and Za-
kharov) equation enjoys: if 0(i, t) is a solution, so is W( , T) where p = A-10, X =

-- 2 t which suggests the family 0 = A-R(A - I{I))exp(-i)- 2t) of exact
solutions. If 4' is to approach infnity as A-1 (t), then in order that the dispersion
and time derivative terms can balance cubic nonlinearity, ; must scale as A- and
t as A-2 . Thus a singular solution in which dispersion can balance nonlinearity

* (spatially independent solutions, some of which can be singular, are unstable) de-
mands scale symmetry. If one inserts ?P = A- 1 V(.9 = A-19, T - f A- 2,t) into

* the NLS as the leading term in an asymptotic expansion and if one makes the fur-
ther ansatz that V = f() exp i, where 9 = A- 2dt+ lower order terms, then the
demand that the coeffcient of A- 3 be zero gives a nonline.r eigenvalue problem

I 3 for f(i) for which there is a unique isotropic ground state solution, namely R(7).
However, the separation ansatz is not forced at this level. One might conjecture
that if one attempts to construct a uniformly valid expansion for 4, then both this

* ansatz and the behavior of A(t) might result from solvability conditions. This is the
point of view taken by Zakharov [3]. Despite the absence of a rigorous argument,
it would appear, nevertheless, that symmetry constraints have much to do with the3 low dimensionality of the singular structures.
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Geometry of Phase Space

The dominance of filaments in the dissipation process suggests that the attractor
A contains two saddle-like unstable sets M and S and heteroclinic orbits between
them. M contains saddle points representing modulationally or nucleationally un-
stable (we discuss these shortly) solutions of (1), (3) and (4). The stable manifold
of S at infinity is low dimensional and corresponds to the idealized collapsing f1-
aments of the unperturbed equation. The unstable manifold of M intersects the
stable manifold of S. The unstable manifold of S (the burnout due to Landau
damping) intersects the stable manifold of M. The speed of attraction and repul-
sion at S are governed by two entirely different processes and are not related. The
former depends on the faster than exponential collapse while the latter depends
on dissipation and, for the Zakharov equation, the slow relaxation of the ion hole.
Based on this picture A can be roughly subdivided into two sets Ac and AH. When
the system is in AH, it is dominated by what we all the hash modes consisting of the
background field and radiation modes left over from the formation and collapse of
the coherent structures. This set will generally be large dimensional but contributes
little to the dissipation rate. On the other hand, when the system is in AC, it is
dominated by the coherent structures, and in particular as the saddle point S at in-
finity is approached, the trajectories asymptotically tend to the special Qrbit which
we have earlier called the HCI. In other words, the part of the turbulent solution
which provides the principal contribution to the dissipation rate is low dimensional.
After the energy is removed by Landau damping (or in general by whatever dissi-3 pation process is relevant) the phase point returns to the turbulent soup AH where
it again comes under the influence of the saddle points in M and the cycle repeats.

We now turn to a discussion of the structure of the phase space, the nature
of the saddle point M and its unstable manifold. Whereas the perturbations of
forcing and damping modify the phase space structure, it is the topology of theI phase space of the unperturbed system which sets the stage for the large homo-
clinic excursions. T% . properties of the unperturbed system, which is Hamiltonian,
are crucial. One is the fact that its phase space contains many fixed points and
periodic orbits of saddle type and separatrices joining these. The second crucial
property is the non-compactness of the constant energy surfaces and the existence
of heteroclinic connections (HCI's) which join certain of the saddle points to in-
finity. Whereas Hamiltonian perturbations of this .system can destroy certain tori
through resonances and create new chains of elliptic centers and hyperbolic saddles
and non-Hainiltonian perturbations can turn the centers into attracting sinks or
destroy them altogether, the important point to make is that the hyperbolic nature
of the original saddles and the attracting nature of their HCI's remain intact and
play a dominant role in the dynamics of the perturbed system. The instabilities
which give rise to collapsing filaments in (1) are closely related to the naturally
occurring instabilities of the unperturbed NLS equation, an infinite dimensional,
Hamiltonian system with Hamiltonian H and the additional motion constants np
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and J = i f(b V " - V b)dZ. There are two types of unstable critical points.
The first are nonlocal solutions which are constant or purely periodic in space with
a time behavior depending on amplitude (so they are really unstable periodic or-
bits). These states are unstable to sideband disturbances (fluctuations with a spatial
period close to that of the unstable solutions), an instability known as the modu-
lational instability. The second type are called cavitons and are analogous to the
solitons of the one dimensional equation. Like the collapsing filament, they have
zero H value and any perturbation which decreases H will render them unstable.
Because of the existence of unstable solutions, the phase space of the unperturbed
Hamiltonian system contains many saddle points. Increasing the size of the do-
main or the amplitude of the 0 field (the important parameter is the L2 norm) will
create saddle-center bifurcations and increase the number of saddles. Hamiltonian
perturbations such as the addition of a term V(X)1012 to H can create additional
island chains of hyperbolic saddles and elliptic centers and in particular, if V(x)
is a localized potential well, these new critical points can correspond to the just
mentioned localized caviton states (7]. The presence of a small amount of dissi-
pation will destroy centers, turning some into sinks, but the saddles will persist.
Other non-Hamiltonian perturbations, such as forcing, can destroy the stable sinks
and destabilize the weakly stable cavitons which are localized in potential wells. In

±1l practice, this scenario often arises [8], particularly for the Zakharov equations and
UB in some instances for the nonlinear Schr~dinger equation. If ion damping is large,

the hole in the ion acoustic density field remains after the burnout of the electric
field. The hole acts as a slowly relaxing potential which can serve to focus electric
field energy into a metastable caviton [7]. When the hole amplitude is sufficiently
small, the caviton destabilizes and the field intensity and ion acoustic field again
form collapsing filaments (see Figure 5). We call this the nucleational instabilityt.
The phenomenon was discovered in numerical simulations by Doolen, Russell, Rose
and DuBois [8] and has also been confirmed in experiments by Cheung and Wong
[9]. It is from a combination of modulational and nucleational instabilities that the
collapsing filaments are born. The cycle time of the homoclinic excursion in each

* case depends on (a) the time taken for the phase point to come under the influence
of a saddle instability and (b) the growth rate of the instability. In the NLS case it
is difficult to estimate the former. In the Zakharov case, however, this time, during
which the phase point returns from S back to AH, can be estimated by calculating
how long it takes for the hole to relax [10].

U! Simple Example of a HCI

jI The existence of RCI's depends on two crucial properties of the underlying un-
perturbed (undamped, unforced) equations; the presence of saddle points in the
finite part of phase space and the non-compactness of the energy surface on which
they lie (or the intersection of the level surfaces of the constants of the motion of
there is more than one). The existence of saddle points and the noncompactness
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of the energy surface means that there are many unstable solutions whose unstable
manifolds are unbounded. We do not yet understand why, in infinite dimensional
systems, the HCI is attracting and low dimensional although we can illustrate the
former property with a simple finite dimensional example. Consider the perturbed

ullg's oscillator x'" +z-2x3 = F(t)-(Xz;')X, where F(t) is small and the ad-
ditional factor (xx-')n has been adddd to the damping term in order to arrange for
it to turn on only when x is large. The unperturbed, exactly integrable Hamiltonian
system represents a particle in a qunrtic potential V(x) = 2(z2- X4) with critical
points x = x = 0 (a center) and x = 0,x 7+2. (saddle points). The unstable
and stable manifolds emanating from x =_ 7 are the non-compact energy level

surfaces E I *2 + LX2 _ X4 which join the saddles to infinity through the
HCI'sx = ( _ for > > andx=-(x" - -)forx' <Ox <- The
other branches, the stable manifolds of x' and x -, are repellers for increasing

--_ 1ar e
time. All energy level surfaces E > I.and those for E < I for which z 2 > I escape
to infinity in finite time to and it is easy to zhow that all escaping orbits are asymp-
totically equal at infinity. By this we mean that the distance between all escaping
orbits tends to zero as they approach infinity. To see this easily, consider the Lau-
rent series about the finite blow-up time to in the unperturbed Duffng equation;

z(t) = (t-tn)- +6(t-to)+ . c2j+l(E)(t-t0)2 i+l. Observe that the information
j=1

as to which escaping orbit one is on is contained in the terms cubic and higher in
(t-t 0 ). The singular part of all escaping orbits are the same. One can also introduce
a canonical change of coordinates, u = -x-, v = X2(z - z 2 + ) in which one can
see that the orbit " -, z x X> -, corresponding to E attracts all other

13l orbits escaping to infinity. The fact that Hamiltonian systems can have attracting
orbits (the point at infinity itself is not even a fixed point) at infinity does not seem
to be generally known although it is apparent in the work of Bogoyavlenskii [11]3! who examines the neighborhood of infinity for several Hamiltonian systems.

II Nonlinear Schr5dinger HCI's

* This simple example illustrates how the topology of the phase space of the un-
perturbed system is important in controlling the dynamics of the perturbed sys-
tem. Likewise in the weakly perturbed nonlinear Schr6dinger equation, in which

* forcing is applied at small wavenumbers and the damping at large, it is the topol-
ogy of the phase space structure of the unperturbed problem which dominates the
dynamics of the perturbed problem. The unperturbed problem is again Hainil-
tonian although, in this case, it is infinite dimensional with motion constants
np,= f 00'd57 i f 0 -)d:andH= If(.V;2-0*)dF.
In particular, the intersection of the level surfaces and in particular the energy is
non compact and there are orbits (HCI's) in the surface n, > n, = p which join the
saddle points representing modulational and nucleational instabilities to infinity.
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Our picture of the phase space then is as follows. For low levels of forcing (either
F is small or the domain area is small), the modulus of the electric field grows
till n V, > n. at which stage the phase point eventually comes close to an unstable
saddle point which is joined to infinity via a collapsing filament. The instability sets
in, the filament is formed, it collapses, a certain portion of its energy is dissipated
(depending on the damping structure) and a remnant of higb k waves is left over.
For the Zakharov system, we expect a more complete burnout. The system returns
close to its original state and the process is approximately repeated with the initial-
ization of the collapsing filament being due to either modulatioual or nucleational
instabilities. In particular, either the remnant or the ion acoustic field can provide
a cavity for the nucleation of metastable cavitons which collapse once the support
disperses away. For larger values of the applied stress (either larger forcing or larger
boxes), the value n of the mean turbulence level is much larger and can be many
times n,. In this case, spatial correlations decay rapidly and many collapsing fila-
ments can cecur at different spatial locations although, since each event is so rapid,
they will rarely occur in the same time intervals. For these large turbulence levels,
the saddle point M represents a collection of saddle points in the turbulent soup
part of the attractor AH, some of which correspond to analogues of the modula-
tional instability of more complicated periodic shapes and others of which are best
understood as nucleational instabilities.

Other turbulent situations

We mention here that a similar situation obtains in the Euler equations. For3 low values of the applied stress, lamnina states can be destabilized by identifiable
instability mechanisms, centrifugal instabilities, mean flow profiles with inflexional
points and so on. These instabilities do not go away when the fluid is more highly
stressed and becomes fully turbulent. Indeed saddle points representing local inflex-
ional and centrifugal instabilities remain very much part of the strange attractor of
the high Reynolds number Navier Stokes equations and play a large role in trans-

Sferring energy to high wavenumbers where dissipation acts. In highly turbulent
flows, the inflexional profile of the mean flow is not sustained for all time uniformly3 in space, but if it is sustained long enough in a local region, then rapidly growing
packets of three dimensional inflexional instabilities can erupt and carry energy off
to the dissipation cemetaries. In addition, the level surfaces in the phase space are
noncompact. Moreover, it is not unreasonable to argue that the dissipation rate
of shear flow turbulence arises not from the wave-wave interaction familiar from

.,,,, ,.-,at decriptions, but "stead to suggest it is doiinated by the

formation and destruction of thin vortex sheets or surfaces containing vortex tubes
(the state S) in which almost all of the vorticity is concentrated. One might conjec-
ture that the initial formation of surfaces of vorticity concentration follows singular
solutions (either finite or infinite time) of the Euler equations driven principally by
inflexional instabilities. Once formed (the system is close to S), these sheets would1' 11



be notoriously unstable, to Kelvin-Helimholz instabilities of the tangential velocity
discontinuities and to Taylor-Gortler centrifugal instabilities of the hellical flows in-
duced by vortex lines embedded in the curved sheets. These secondary instabilities
quickly transfer the energy to the viscous cemetaries where energy is dissipated and
the system is returned close to a state where approximately the same cycle can

3 repeat.

Finally, we suggest that these ideas are not restricted to the approximation of
dissipation rates. Other transport properties such as the momentum exchange from
the plate to the outer flow in a turbulent boundary layer also seem to be dominated
by "organized events," namely the burst-sweep cycle. It is interesting that Aubry,

* Holmes, Lumley and Stone [12] have found a type of homoclinic excursion in their
analysis of the "long wave" structure of a turbulent boundary layer suggesting the
beginning of a burst sweep cycle, although their excursion does not lead to any

I fkind of singular behavior. One might conjecture that the latter could result if
one were to add a short scale inflexional wave component which can result from
such a wavepacket being phase locked to and growing on the local distortion of the3 turbulent mean profile. Further, we suggest it may be also valuable to apply these
ideas to heat transport at high Rayleigh numbers (where thermal plumes would
play the role of singular structures):and Rayleigh-Taylor instabilities.

Acknowledgements

The authors are grateful for a series of extremely useful conversations with Harvey
Rose, Don DuBois, David McLaughlin, Volodja Zakharov and Sacha Rubenchik.I This work was supported by ONR Engineering grant N0001485K0412 and AFOSR,
grant FQ8671-8601551. David Russell was partially supported by an ONR grant atI CNLS. -

12

!I



IIII I" w"

References

[1.] D. Ruelle, Commun. Math. Phys. 87, 287-302 (1982). Commun. Math. Phys.
93, 285-300 (1984).

C. Foias, 0. P. Manley, R. Teman and Y. M. Treve, Physica 9D, 157-188 (1983).

C. Doering, J. D. Gibbon, D. D. Holm and B. Nicolaenko, to be published in
Nonlinearity (1987).

J. M. Hyman and B. Nicolaenko, Los Alamos Report LA-UR-85-1556.

[2.] A good review article is "Collapse versus Cavitons" by A. M.
Rubenchik, R. Z. Sagdeev and V. E. Zakharov. Comments on Plasma
Physics and Control Fusion 9, 183-206 (1985)

M. V. Goldman, Reviews of Modern Physics 56, 709 (1984).

[3.] B. LeMesurier, G. Papanicolaou, P. Sulem and C. Sulem, Private Communication
(1988).

V. E. Zakharov, Private Communication (1988).

[4.] M. J. Weinstein. Comm. Partial Differential Equations 11, 545-565 (1986).

[5.]' A.C. Newell, D.A. Rand, D. Russell to appear Physica D Special Volume'in honor
of Joseph Ford (1988).

[6.] A. Majda, R. DiPerna, Private Communication.

[7.] H. A. Rose and M. I. Weinstein, Physica 30D, 207-218 (1988).

[8.] G. D. Doolen, D. DuBois, H. A. Rose, Phys. Rev. Lett. 54, 804 (1985).

D. Russell, D. Dubois, H. A. Rose. Phys. Rev. Lett. 56, 838 (1986).

D. Russell, D. DuBois, H. A. Rose. Phys. Rev. Lett. 60, 581 (1988).

[9.] A. Y. Wong, P. Y. Cheung, Phys. Rev. Lett. 52 122"2 (1984).

P. Y. Cheung, A. Y. Wong, Phys. Rev. Lett. 55 1880 (1985).

[10.] H. A. Rose, Private Communication.

[11.] 0. I. Bogoyavlen-kii, Methods of the Qualitative Theory of Dynamical Systems in3 Astrophysics and Gas Dynamics, Springer-Verlag, Berlin (1981).

[12.] N. Aubry, P. Holmes, J. Lumley, E. Stone, Cornell University Preprint (1988).

13



Figure Captions

I
Figure 1. Snapshots of 1 2(5, t)jI at times (a) beg ing of (b, during and (c) after collapse.I
Figure 2. A record over a short period of time of the instantaneous rate of dissipation

,y(t) 2r,;y( ) )12 , its integral r(t) - t -(t')dt', and the global spatial

mammum of kb([)I2 as functions of time in the strong turbulent regime with
7b = 26(k- 1).

Figure 3. Concentric shells which are the remnants of two simultaneous collapses. Note:
simultaneous collapses are rare and these were initiated by a symmetric initial
state.

I Figure 4. The distribution of r for two-dimensional NLS.

I Figure 5. The (a) nucleation, (b) collapse and (c) burnout of a filament of the Zakharov
equation. The overshoot of the cavity during burnout encourages tetal dissipation
of the filament.
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Abstract

We suggest that the transport properties and dissipation rates of a wide class
of turbulent flows are determined by the random occurrence of coherent events
which correspond to certain orbits which we call homoclinic excursions in the high
dimensional strange attractor. Homoclinic excursions are trajectories in the non-
compact phase space that are attracted to special orbits which connect saddle points
in the finite region of phase space to infinity and represent coherer. structures in the
flow field. This picture also suggests that one can compute fluxe using a relatively
low dihiensional description of the flow. A method for extracting the organized
structures from a time-series is given and provides a local analogue of the notion of
Lyapunov exponents.

This paper is dedicated to Joe Ford, a pioneer in modern dynamics and a master
of the Southern simile. It will appear in a special .volume of Physica D, Nonlinear
Phenomena (about September 1988) which celebrates his 60th birthday and his
many years of service as an editor of this journal.
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Introduction

It is generally accepted that turbulence in shear flows at Reynolds numbers of 103

and higher has a large number of active degrees of freedom. Although estimates of
Lyapunov and Hausdorff dimensions [1] ate strictly upper bounds, the rapid loss of
spatial correlations over distances of the Taylor microscale R- * and the broadband
wavenumber spectrum suggest that many modes are playing an active role in the
dynamics. The R' estimate, which i's consistent with the intuitive idea of Landau
that it is necessary to resolve a t-.i'buent flow field in a box of volume V down to
the Kolmogoroff inner scale of (v% 1)T (v is kinematic viscosity, 6 = V fV 1,7 u12 d 
is the energy dissipation rate and is independent of v for a large range of large
Reynolds numbers), means that if R is 104 , R2 is a billion! It is unlikely that

I replacing the Navier-Stokes equations by a system of a billion o.d.e.s. will either
bring much insight into the nature of turbulence or make it possible to calculate
the invariant measure on the attractor needed to compute averages. Therefore,
whereas the concept of a strange attractor on which the flow is everywhere unstable
and ergodic is a valuable and necessary one, a new idea is needed if one is to be
able to compute in a practical way average flow quantities and in particular those
averages which reI-.esent transport properties, the flux of heat across a convection
layer, momentum across a boundary layer, angular momentum between cylinders
rotating at different velocities, mass flux down a pipe or the amount of heavier fluid
which falls through a lighter one. It is also important to calculate the dissipation
rate which, in systems where energy is fed in at low wavenumbers and removed3 at high ones, is equivalent to computing the flux or cascade of energy across any
middle wavenumber. One of the main goals of a turbulence theory is to predict the
transport and the dissipation rate as a function of the applied stress. The purpose of
this paper is to suggest one new avenue of approach to these problems of transport
in physical and wave space.

3 The basic idea is fairly simple. The.e is some evidence that, in a variety of
situations, transport is associated with ,rganized flow structures. If this is the case,
one would like to identify and isolate those parts of the attractor and those orbits
in phase space which are the principal contributors to a particular flux. Our claim
is that they are homoclinic excursions analogous to homocinic orbits which occur
at random intervals on the attractor and connect that large dimensional part of the
attractor, consisting of states of the system which contribute little to the flux, to
itself. The homoclinic excursions are arranged by orbits connecting the main part
of the attractor to an organizing structure which is represented in phase space by
a generalized saddle. Of particular interest to us is the case where this structure
is at infinity and corresponds to a singular solution. We give the orbits connecting
saddles in the attractor to the singular structure at infinity the name heteroclinic
connections to infinity (HCI's). There are also orbits from the singular structure
back to the main part of the attractor. The HCI's are important because we shall3 sshow that there is a sense in which they are attracting even when the system is
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conservative. The existence of HCI's depends upon two crucial properties of the
unperturbed (undamped, unforced) equations: the presence of saddle points in the
phase space of the unperturbed system and the non-compactness 'of the energy

* surface on which they lie (or the intersection of the level surfaces of the constants of
motion if there is more than one). The existence of saddle points in the phase space
of the unperturbed system and the non-compactness of the energy surface means
that there are many unstable solutions whose unstable manifolds are unbounded.
The HCI, which lives in the unstable manifold, corresponds in physical space to a
coherent structure which is usually localized in space, has a finite lifetime and is
connected with a family of exact, albeit singular, solutions of the field equations.
At infinity, where a large portion of the energy of these solutions is in small scales,
the structure becomes unstable to dissipative processes which drain its energy and
relax the system back to the neighborhood of its initial state, thus completing the
cycle. Towards the end of this paper, we will discuss a prescription for identifying
and finding these structures using time series data.

Our picture, then, is that in a wide variety of situations, turbulent transport is
* achieved and the dissipation rate is governed by the random occurrence of coherent

events. In order to compute a good approximation of the dissipation rate or flux
in question, one need only know the following information, (i) the nature of the
homoclinic excursion (equivalently the spatial and temporal shape of the coherent
structure) and the energy lost in this cycle, and (ii) the average frequency of occur-
rence. Although finding approximations to these quantities will not in general be
an easy task, it should be considerably simpler than accurately following the full
dynamics. Obtaining these estimates by largely deterministic means is not intended
to disregard the fact that turbulence is a stochastic process in which statistical fluc-
tuations are important. What it does suggest, however, is that the most natural
decomposition of the turbulent field is one in which the field is divided into orga-
nized motions represented by dominant orbits in the phase space and statistical
fluctuations about these orbits. The method, discussed later, by which we iden-
tify the organized structures and their dynamics is a variation of Karhunen-Loeve
expansions (later used by Lumley [2] in the context of turbulence) which extract
from statistical data dominant shapes and forms. Our method is novel in that it
is a weighted local version of the Lumley method and is therefore able to pick out
selectively relatively rare coherent evel.bs which long time averages would lose. As
we have mentioned, we believe that in many cases these dominant shapes will be
closely related to exact. singular solutions of the governing equations which act as
asymptotic attractors in a sense to be described below. Further, with this decompo-
sition, it may even be possible to approximate the full dynamics on the attractor, at
least to some degree of accuracy, by a finite and low dimensional system of o.d.e.'s,
with stochastic coefficients reflecting the influence of the many, many other active
degrees of freedom contained in the fluctuations about the principal orbits. It is our
thesis that a good approximation to the transport mhy be obtained either by ig-3 noring altogether or by simply taking average values of these stochastic coefficients.
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3 In any event, we suggest that using this decomposition, the fluctuations can be de-
scribed with low order statistics. The principal difference with previous thinking [3"
in which one attempts to embed the attractor in a large but finite dimensional Eu-
clidean manifold (the inertial manifold approach) is that we no longer demand that
the approximation to the turbulent field keeps the phase point, which represents3 the state of the system, always in the attractor. Rather we simply demand that it
moves parallel to the real attractor, respecting the directions associated with large
homoclinic excursions which we claim are largely responsible for transport. This re-3 quirement, much weaker than the cone condition of inertial manifold theory, means
that far fewer coordinates are needed to describe those particular features of the
dynamics associated with the homoclinic excursions.

Before attempting to mathematize these notions any further, let us first consider
a representative case study in which these ideas take concrete form.

The Zakharov model of Langmuir turbulence.

The Zakharov equations,

3 22 p
V2 (itW-d W)eVO+V+prd EO) +2V . ,

tt ot-272 i V 2 1v7 12  (2)

couple the density fluctuations p(XF, t) and the longitudinal component of the electric
field E V(OewPt +(*))+fo in a plasma and constitute a popular nonlinear fluidI model of Langmuir turbulence [4]. Here wp is the plasma frequency at which a cold
plasma is resonant in the longitudinal mode and the envelope 0( , t) is assumed to

3 vary slowly in time compared to w "1 . The linear, dissipative convolution opera-
tors -f, and -fi are used to model Landau damping; both increase with increasing
wavenumber but -t, does so abruptly in order to cut off the coherent longitudinal
oscillations as the Debye wavenumber kd = Z is approached; rd is the distance at
which the Coulomb potential of a bare charge is diminished exponentially by the
ambient plasma. F is a forcing term that injects electric field energy into the plasmaSand is also modelled by a linear convolution operator -b of. Equation (2) is the ion
acoustic wave equation in which ion density fluctuations are driven by gradients of
the electric field intensity, the so-called pondermotive force. If the ions are quasi-
stationary, the dominant term on the left hand side of (2) is the last and, in this
case, the ion density fluctuation p is directly slaved to the field intensity 17 [12. In
one spatial dimension and with suitable rescalings, the Zakharov equations reduce
to the familiar nonlinear Schr6dinger equation in dimensionless variables for the
electric field envelope t)
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Our case study will principally focus on the two dimensional version of (3). Although
this model is a poor approximation to the real physics on several counts (it ignores
finite sound speed effects and the role that sound waves play in energy transfer, it
assumes the ion density is slaved to the electric field intensity, it is two dimensional
and the premises from which it is derived become suspect as the electric field reaches
its singular limit), nevertheless it retains the essential features of the full dynamics
in the sense that the dissipation rate is controlled by the filament dynamics ',nergy
is fed in at low k and removed at high k through F and D whose respective Fourier
transforms are 7 b(k)/(k) and 7f(k) (k)(4(k, t) is the Fourier transform of i(, t))
with the support of (k) being near k = 0 and the support of y,(k) being k > kd.

For many years it has been conjectured by Soviet colleagues [4] that the principal
mechanism for the transfer of spectral energy, at least in the limit of large ionacoustic damping where free Wave effects can be ignored, is not resonant wave-wave

interactions, but rather the collapse of filaments which are closely related to exact,
localized, singular solutions of the unperturbed equations. in the two-dimensional
nonlinear Schr6dinger equation, these filament solutions take the form [5]

I4(,t)l ~ -. R(q), .77 -V (4)

where the shape R is the unique solution of R" + 77- 1R1 - R + R' = 0,R'(0) =
0,R(oo) = 0 without zeros in (0,oo). The function A(t) approaches (Inln(to-
t))-l(to - t)'" as t -+ to [6]. The filaments preserve the L 2 norm and so the power
no = f I112d carried by one of these coherent structures is p = 2.r f0o R2r7dr7
and is a pure number equal to .29 in our units independent of time and initial
conditions. The value of H for the filament structure is exactly zero bit each of its
two comporients f 1 7 k2 dE and f 1I 4 di becomes unbounded. The structure of
the singular filaments for the Zakharov equations and for the nonlinear Schr6dinger
equation in three dimensions is somewhat different but in each case the role is the
same. These solutions are initiated by instabilities of the unperturbed equations
and serve to carry the energy from large to small scales simply by squashing it in
collapsing filaments. In reality, the singularity is never reached. Once the filament
diameter is of the order of the Debye radius, Landau damping becomes important
and the energy is transferred from the wave field to electrons, a process known as
burnout. This cycle of events is shown in Figure 1.

The instabilitic - which give rise to collapsing filaments in (3) are closely related
to the naturally occurring instabilities of the unperturbed nonlinear Schr6dinger
equation, an infinite dimensional, Hamiltonian system with Hamiltonian H and the
additional motion constants no and J = i f(7 V * - 0* 7 0)d. Although we
will discuss the geometry of phase space in more detail in the next section, it is
important to mention at least two types of unstable critical points of the dynamical
system. The first are nonlocal solutions which are constant or purely periodic in
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3 space with a time behavior depending on amplitude (so they are really unstable pe-
riodic orbits). These states are unstable to sideband disturbances (fluctuations with
a spatial period close to that of the unstable solutions), an instability known as the
modulational instability. The second type are called cavitons and are analogous to
the solitons of the one dimensional equation. Like the collapsing filament, they have
zero H value and any perturbation which decreases H will render them unstable.
Because of the existence of unstable solutions, the phase space of the unperturbed
Hamiltonian system contains many saddle points. Increasing the size of the do-
main or the amplitude of the 0 field (the important parameter is the L 2 norm) will
create saddle-center bifurcations and increase the number of saddles. Hamiltonian
perturbations such as the addition of a term V(x)141 2 to H can create additional
island chains of hyperbolic saddles and elliptic centers and in particular, if V(x) is
a localized potential well, these new critical points can correspond to the just men-
tioned localized caviton states (7]. The presence of a small amount of dissipation3 will turn centers into sinks, but the saddles will persist. Other non-Hamiltonian per-
turbations, such as forcing, can destroy the stable sinks and destabilize the weakly
stable cavitons which are localized in potential wells. In practice, this scenario of-
ten arises [8], particularly for the Zakharov equations and in some instances for the
nonlinear Schr~dinger equation. If ion damping is large, the hole in the ion acoustic
density field remains after the burnout of the electric field. This hole can serve to
focus electric field energy and nucleate a metastable caviton. However, as the hole
slowly collapses, the caviton destabilizes to a collapsing filament. We call this the
rucleaiional instability. It is from a combination of modulational and nucleational
instabilities that the collapsing filaments are born.

We now turn to the numerical evidence for the dominance of collapse events.
Figure 2 displays' the instantaneous rate of dissipation y(t) 2-,(k)l k12 , its

integral P(t) - ft dt'-(t'), and the global maximum of 1k12 over a time interval
II including several collapses in a strong-turbulent regime. -r is just the energy lost

due to dissipation as a function of time. Observe that a large fraction of the energy
dissipation occurs in sudden jumps and is directly correlated to the collapse events.
Energy n, - E kI2 is considered to be dissipated due to collapse only if - > 70,

* where 70 is a threshold parameter. If this inequality holds over the interval [t1, t2],
then the energy burnt out is'(ti) - P(t 2), and the total energy lost due to collapse
for the entire simulation is the sum of all such differences. Denote this total energy

I flost due to collapse by 6n, and the total energy dissipated by SnT. In Figure 3 we
have plotted the ratio Snc/6nT as a function of yo for several different turbulent
re.imes. As io decreases 'the ratio increases and is of course one at 70 = 0. 70 = 1
was the smallest value that gave ratios judged to be free from contamination by non-
collapse events for all cases studied, so it was chosen as the standard cut-off rate.
With this choice of 7y0, as much as 80% of the total energy dissipated is dissipated3by collapsing filaments in the most energetic case examined (< np > 10). In

3| 6
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the weakest case (< p >- 5) more than 70% of the dissipated energy was lost in
burned out filaments. Furthermore, tihese estimates of the energy dissipation are
conservative because we have not yet included the more gradual loss due to the decay
of the high k remnant left over from the collapse. The reason for this remnant is
peculiar to the two dimensional nonlinear Schr6dinger equation and occurs because
a singular filament of this equdtion carries the minimum threshold energy p required
to sustain collapse. (In contrast, the energy of a collapsing Zakharov filament, again
a constant of the motion, can take on a continuous range of values above the critical
threshold.) Therefore, when a significant portion of the filament's spectral energy
lies in the dissipative range (k > kd), some -f its energy is lost, collapse is arrested
and only a partial burnout occurs. A histogram showing the distribution of the
fraction of the filament energy lost in the burnout is shown in Figure 4. It leaves
behind a remnant in the form of broadened concentric cylindrical shells of field
energy centered at the collapse site (see Figures le, f). In order to follow the energy
associated with the remnant, we monitor (Figure 5) the field energy inside a small
cell centered at the collapse site. We note in Figure 5b that the burnout (t =_ .08)
of the central part .f the filament, or core, causes the fastest depletion of energy
in the cell, but also that it is 'immediately followed by a slower depletion (the drop
over the time interval .08 < t < .12, which we call the "shoulder"). The. slower loss
is primarily due to the fluxing of the remnant through the cell boundary. If we add
the energy loss rp, 0 < r < 1, due to the burnout of the core to that carried out of
the cell by the remnant, we obtain a total loss of energy in the cell very close to the
total amount p carried by the collapsing filament.

The remnant plays two roles in the dissipation process. First, it provides a nu-
cleating center for new collapses, a fact we have verified by examining the spatial
distribution of collapse sites. As a consequence the frequency of collapses increases.
In Figure 6, we plot a histogram of the times between successive eventsw for the
case 7b = 2. The distribution is nearly Poisson with a mean time between events
of _-1 =< 2 >= .08. Second, the grardual damping of the remnant enhances the
ambient dissipation rate < -tA > (i.e., the dissipation rate averaged over time inter-
vals free from collapse) over that amount we would expect from other dissipative
mechanisms. In order to verify this, we carried out the following relaxation ex-
periment. By changing the sign of the nonlinearity in equation (3) from plus to
minus, we obtain a system with the same linear dispersion as the plus system and
therefore presumably the same resonant wave interaction character but without
the unstable modulational and nucleational instabilities and collapsing solutions.
Initia izing the two systems identical! , we ran them with the forcing turned off
(7b = 0) and compared their dissipation rates between collapses of the (+) system,
before their energies had separated by more than 10% of the common intial value.
The ambient dissipation rate of the (+) system was typically 50% greater than that
of the non-collapsing (-) system while the collapse remnants were dissipated. In-
cluding collapse events in the tally, the (+) system lost energy three times as fast
as the (-) system. We conclude, therefore, that the amount of energy dissipated by
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non-collapse mechanisms is at most one quarter of the total energy dissipated.

Therefore, the energy dissipation budget is as follows. The average total dissipa-
tion rate < 7 > is given by

< 7 >= w, < r > p+ < 7A > . (5)

The ambient dissipation rate can be eliminated in terms of -n6- since <t> = 5n
and we obtain '5 T 6)

< 7 >=wcp < r" > .T (6)

In (5) and (6), < 7 > depends only on the mean turbulence level < n, > but, as
we have pointed out, < -yA > and w, depend both on < np > and the nature of
the dissipation < r > depends only on the latter. In Figure 7, we plot both < 7 >
and w. as a fraction of < np > and, consistant with (6), these curves are parallel
over a large range of < n,. >. Indeed, we checked the product < -y > w- 1 for
a range of values of < n, > and found it to be almost independent of the mean
turbulence energy level and equal to 13 and equal to the product < r > taken

(nefromFigurs3and4(<r>=.3, (6)- .75). We expect that as the dissipation
mechanism is postponed to higher k, the fraction of energy lost in burnout will
increase and the histogram in Figure 4 will accumulate at p = .29. We also expect
that we will decrease proportionately and that in this limit the proP,,,:t wc < r >
can in principal be activated theoretically by arguing that in a homoclinic excursion
the phase point spends the longest time in its cycle near the saddles in the finite
part of phase space. If this were the case w. < r > would be given by a product
of o, the growth rate of the modulational or nucleational instabilities, and k2 , the
mean density of collapses. Both these quantities should depend mainly on < np >.
Verification of these suggestions requires extensive computation which is presently
underway but not yet complete.

In summary, then, we have demonstrated that the turbulent transport of field
energy to dissipative spatial scales in the two dimensional nonlinear Schr6dinger
equation is overwhelmingly dominated by the explosive collapse of localized states
or filaments, just as it is dominated by caviton collapse in the Zakharov equations.
To help visualize these events as fluctuations about a basic homoclinic excursion(s)
we have plotted flow trajectories projected onto the global observables n,, H and
V 1f.. to produce a curve in three dimensions shown in Figure 8a. In Figure 8b,

we have projected this curve onto the three coordinate planes to aid visualization.
Those trajectories which are fluctuations about homoclinic excursions are the sparse
loops passing through the largest values of 1012ma. The denser, more jittery part of
the curve lies in what we call (in the next section) the hash part of the attractor.

Whereas these results confirm the thesis that coherent collapse events dominate

dissipation, the expense involved in two dimensional experiments did not allow us
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to run a sufficient number of simulations in order to determine in what limit, if
any, . approaches unity. In connection with this question, and in parallel with
the ideas of DiPerna and Majda [9], one would also like to develop the notion of
a weak solution in which solutions of the undamped equations could be continued
beyond the collapse time by simply deleting the collapsed filament and lowering the3L2 norm of the solution by a fixed amount. In order to examine these questions,
we simulated the one dimensional nonlinear Schr6dinger and Zakharov models with
quintic nonlinearities on a grid of 1024 points. Aliasing errors were removed by
smoothly interpolating O onto a grid of 8 x 1024 points before forming the nonlinear
frequency bIk4. The results for NLS showed that, for the same turbulence levels,
the percentage of the dissipation rate accounted for by collapses rose from 59% at

I kd = 128 (where, because the dissipation effects are clearly felt in the early stages,
there are many failed attempts to form collapsing filaments), to 72% for kd = 256,
to 82% for kd = 512. The average loss of energy per collapse decreases with kd (the
amount of energy greater than kd in the Fourier transform of the collapsing filament
decreases with increasing kd) but the frequency of events increases proportionately

I so that the average dissipation rate remains the same. The evidence clearly suggests
that in the large kd limit, all the energy dissipated is dissipated by collapse events
which occur infinitely often with infinitisemal losses of energy per event.

I A much more striking result was obtained when we ran the very same experiment
on the Zakharov model

I ¢ - i¢k,. + ipO = F -,sD (7)

pt + 2v o pt - pxx = (1¢k't 4) (8)I
where F and D are as before and 2v o pt is a convolution integral modelling ion
damping. The ion acoustic field p(x, t) is no longer slaved to the electric field
intensity (for NLS, p in the equation (7) is replaced by -kbI 4). Therefore, during
collapse, in which the fields take on a self-similar form close to (2) but in which
the inertial acceleration Ptt is also important, the cavity formed by the ion field
encourages total burnout of the filament. We found that when e = 1, kd = 32, <
np >= 1.625, the average energy < r > p lost per event was 1.95. the average time
between events was .83 and -' was 92%. (For the Zakharov model, the amount
of energy carried in the filament, a constant of the motion for the unperturbed
equations, can take on a range of values greater than the threshold value p = .43 in3 this case. Thus r > 1). The distribution of r rose sharply after r = 1, had a mean
of 1.95/.43 and had a relatively long tail. Also, we observed that all the collapses
Occur= in nonovelappinq sites, were driven by the nucleational instability and

3the sites drifted about the box. When we increased kd to 64, < nP >= 1.8, the
frequency of events increased to (.66)-l (there were 151 events in 100 time units)
and the distribution of r came closer to one. The average energy lost per event was
1.55 and - was 95%. (In contrast, at the same parameter values and in the same
time interval, the NLS model had 972 events with an average energy loss of .09 and
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6 was 72%.) Further, when we decreased e to (T,, 4a (again kd =64), the distribution

I of r came closer to threshold and 6. was 98%. This leads us to conjecture that
3 as kd increases and e decreases, the distribution of r will cluster about one, and

that each collapsing event will burn off exactly the threshold energy p = .43. In
this asymptotic limit, the weak solution of the unforced, undamped equation in
which the turbulence eventually decays, is found by simply removing the collapsing
filament from the field and reducing the L2 norm by p. (The weak limit, i.e. 4'(x, 0)
is a weak solution if f p(x)O(x, 0)dx = lim f W(x)?b(x, A)dx where p is smooth, of

A-0
a collapsing filament is zero because it oscillates very fast and its width decays at
a faster rate than its amplitude increases). We will report more details elsewhere.3 We are also currently testing some ideas concerning the estimation of the frequency
of events.

SIn Figure 9, we give the angle-averaged correlation function

J2r dO

32 = O ZeikPCOSO < [ ()1 2 >0 k

3 = Jo(kp) < k

in the turbulent regime -yb = .2. Observe that the correlation length A = 2r <
k 2 >-r' .7 is much less than the simulation box size (2,r) so that the turbulence
is independent of the periodic boundary conditions.

I We end this section with a few remarks about the two-dimensional numerical
scheme. In calculating solutions to (3), we use the following "split-step" numerical3 algorithm to advance the solution from t to t + dt.

mb(- t + dt) = 0

where (^ refers to Fourier transform)

3 M~~~ = ik(k, t)exp(-1b(k) - -y,(k) + ik2)dt

3 This method exactly conserves np(- f dilP12) in the conservative limit (-ye 0)
and when aliasing errors are absent; errors in the Hamiltonian )dif(I 7k - kbI4)d
are 0(dt2 ). Aliasing errors incurred during the nonlinear part of the evolution are
minimized by strong dissipation at short scales (see figure 9) that curtails the time-
averaged spectrum (see figure 10). Our time step (dt) is 10', and is sufficient to
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resolve the maximum nonlinear frequencies (I b < 4 X 103) encountered in the
most intense turbulent regime studied. The Landau damping function used is shown
in Figure 10. Its asymptotic shape is chosen to be sufficiently steep ("- kl+c, C > 0)
so that the collapsing filament is eventually arrested but not too steep so as to reflect
the collapsing filament in k - space. It depends on a single parameter, the ion-to-
electron mass ratio M, which in our analysis we take to be 7344 (the mass ratio in
a singly-ionized Helium plasma), and increases abruptly at k 2 .2kd = .2(2-v/r-).
The turbulence energy level is changed by varying the forcing term F. In all cases

F I-yb[O(A-, Aky + P(- A k ) + (Ak,- A )+?p(- A k,-ACy)],

i.e., energy is injected by linearly destabilizing four modes symmetrically in k -
space, where Ak _ -, = k L=, Ak , and L. = Ly = 27r. (Our simulations are in a
square box 27r long on each side spanned by a regular grid of 1282 points.) Because
this scalar forcing is isotropic, the turbulence is isotropic. (See Figure 10). Notice
that as a filament collapses it will decouple from the forcing which is confined to long
wavelengths. Thus the dominant transport mechanism (collapse) is independent of
the details of injection.

I Geometry of phase space

While the full attractor A is large dimensional, the dominance of filaments sug-
gests that A is the fuzzy covering of a skeleton which consists of generalized saddle
points M and S and two heterocinic orbits. In the case study just discussed, Ad
is the set of saddle points which are modulationally or nucleationally unstable and
S is the idealized collapsing filament, namely the singular self-similar solution of
the two dimensional nonlinear Schr6dinger equation. The unstable manifold of Al
intersects the stable manifold of S and vice versa. Based on this picture, A can be3 subdivided into two subsets AHf and AC. When the system is in the turbulent soup
AH, it is dominated by what we call the hash modes consisting of the background
field and radiation modes left over from the formation of the coherent structures
(the filaments of Langmuir turbulence). This set is generally large dimensional and
!n the case of shear flow turbulence could have dimension R9. On the other hand,
when the system is in AC, it is dominated by the coherent structures, although
large dimensional fluctuations about these orbits are still present. The orbits in
Ac are organized by a low dimensional submanifold of solutions B, which is the
stable manifold of an unstable saddle point S, possibly at infinity, corresponding
to an idealized state. In general, S may be a manifold of idealized states and in
many cases wil be the orbit of some group action representing the symmetries
(translation, scaling) which are properties of the system at hand. In particular,
if the spatial dimension is large, coherent structures, each with the same shape,
can be localized at several locations, although occurring at different times, with
an approximately uniform density reflecting the amount of power (energy density
times area or volume) needed to form the structure. (In Langmuir turbulence, each
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I
filament requires an area of k- 2 ; k depends on the turbulence intensity level.) In

constructing the phase space, one should think of the system as being confined to a
box of a sufficient size to contain one coherent structure or to a lattice in which case
the idealized solution S consists of an array of discrete translates of the prototype
and we consider the system to be in the state S when any one is triggered. The
unstable manifold of S (the burnout due to Landau damping) is asymptotic to AH.
The speeds of attraction and repulsion at S are governed by two entirely different
processes and are not related. The former is determined by the faster than expo-
nential rate at which the filament becomes singular, the latter is governed governed
by dissipation. The picture we have described is drawn scheniatically in Figure 12,
and corresponds closely to an actual orbit of the nonlinear Schr6dinger equation
shown already in Figure 8.

* We now turn to a discussion of the structure of the phase space, the nature of the
saddle point M and its unstable manifold. Whereas the perturbations of forcing
and damping modify the phase space structure, it is the topology of the phase space
of the unperturbed system which sets the stage for the large homoclinic excursions.
Two properties of the unperturbed system, which is Hamltonian, are crucial. One is3 the fact that its phase space contains many saddle points corresponding to unstable
fixed points and periodic orbits and separatrices joining these saddles. The second
crucial property is the non-compactness of the constant energy surfaces and the
existence of heteroclinic connections (HCI's) which join certain of the saddle points
to infinity. Whereas Hamiltonian perturbations of this system can destroy resonant
KAM tori and create new chains of elliptic centers and hyperbolic saddles and non-
Hamiltonian perturbations can turn the centers irito attracting sinks or destroy them
altogether, the hyperb6lic nature of the original saddles and their HCI's remain
intact and play a dominant role in the dynamics of the perturbed system. As an

example, consider the perturbed Duffing's oscillator

x* + x - 2x = F(t) - (-) 9
xo

3 where F(t) is small and the additional factor (-E)n has been added to the damping
term in order to arrange for it to turn on only when x is large. The unperturbed,
exactly integrable Hamiltonian system represents a particle in a quartic potential
V(X) = !(X2 - X4) with critical points x" = x = 0 (a center) and x" = 0, x =+
(saddle points). Its phase plane is shown in Figure 13. The unstable and stable
manifolds emanating from =+ are the non-compact energy level surfaces

E== _ . 2 r x 2  07 4 which join the saddles to infinity through the HCI's
" = (x2 -I) for "> O, > andx -" -( 2 - ) for x" < O, x < - 1. The other

branches, the stable manifolds of x' and x -+ a-_7. , are repellers for positive time.

In particular, observe that all energy level surfaces E > !. and those for E < 1 for

which x2 > 1 approach the HCI's at infinity and that any point on these trajectories
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3 will reach infinity in a finite time. This can be seen in several ways. First, notice
that the distance x, - X2 between two constant energy curves El and E 2 at a given
value of x' is given by (x 2 - x2)(x2 + x2 - 1) = 2E 2 - 2El so that asymptotically
X x 1 -X 2  (2E 2 - 2E1 )(xl +X 2 ) 1 (X2 + X). Second, one can construct a Laurent
series for any solution in the neighborhood of infinity,

I = 1+ (t ) + c(t- t 3 + an(c)(t-to)'

In>3

which, because the system is integrable, has the Painlev6 property (the series is
Laurent and has the required number of free constants, namely two, to and c;
all the other coefficients an can be calculated explicitly in terms of c). The free
constant c is related to the energy E = -5c + -. The distance between any two
orbits is the minimum over t, and t 2 of X(tl, CI) - X(t 2 , c2 ) which goes to zero
.ike (t - tl1) 3 . We have thus introduced a new concept into Hamiltonian systems
with non-compact energy surfaces, namely the notion that certain orbits (HCI's)
can serve as attractors for all other orbits at infinity in the sense that they are
asympt. tically all the same. This notion does not violate conservation of volume in3 phase space. Close to infinity, the stretching of nearby points in a direction parallel
to the HCI is faster than exponential (the local stretching exponent in this direction
is infinite) and therefore the contraction in the direction perpendicular to the HCI is
also faster than exponential. For small forcing, the orbits of the perturbed systems
which escape to infinity also follow the HCI very closely until x > x0 at which point
dissipation sets in. However, the important point is that for x0 large, all escaping
orbits are approximately parallel to the HCI over large regions of the phase space.

One can look at the nature of the phase plane at the line at infinity by introducing
homogeneous projective coordinates given by x x* = y in which coordi-
nates the direction field (x-2 3 )dx+ydy = 0 becomes (XZ-2X Z)dX YZ dY+

I(2X - X 2 Z 2 - Y 2 Z 2 )dZ = 0. Since the citical point at infinity is X = Z = 0,
it is interesting to look at the direction field in the affine chart given by Y 0.
The line field in the X, Z coordinates is obtained by setting Y = 1 and dY = 0.
We observe in Figure 12 that invariant manifolds (y 2 + X 2 )Z 2  X 4 - 2EZ4 = 0
organize the flow field in the neighborhood of the line at infinity and in particular
all of them converge from the half plane X > 0 to the point X = Z = 0 on the
line at infinity and then reemerge in the left hand plane. The convergeice of these
curves at infinity again shows that the HCI is an attractor there.

This simple example illustrates how the topology of the phase space of the un-
perturbed system is important in controlling' he dynamics of the perturbed sys-
tem. Likewise in the weakly perturbed nonlinear Schr~dinger equation, in which
forcing is applied at small wavenumbers and the damping at large, it is the topol-
ogy of the phase space structure of the unperturbed problem which dominates the
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dynamics of the perturbed problem. The unperturbed problem is again Hamil-
tonian although, in this case, it is infinite dimensional with motion constraints
n"P = f 0bz*di,J = i ?V.*-O"Vk)dgand H = .f(VO7 p v ? 2 7 *2 )d:. In
particular, as we have mentioned, it is known that the energy surface is non-compact
and when H : 0, there are orbits in any surface np >_ n. = 27r f R R2 (77) 77dq which
connect the unstable saddle points to infinity. We remark, however, that in our
simlulation H was almost always positive although taken in the neighborhood of a
collapse it was zero. The negativity of H is a sufficient but not necessary condition
for collapse.

Our picture of the phase space then is as follows. For low levels of forcing (either
F is small or the domain area is small), the modulus of the electric field grows
till np > n. at which stage the phase point eventually comes close to a modula-
tionally unstable saddle point which is joined to infinity via a collapsing filament.
The instability sets in, the filament is formed, it collapses, a certain portion of its
energy is dissipated (depending on the damping structure) and a remnant of high
k waves is left over. The system returns close to its original state and the process
is approximately repeated with the initialization of the collapsing filament being
due to either modulational or nucleational instabilities. In particular, the remnant
can provide a cavity for the nucleation of metastable cavitons which collapse once
the support disperses away. For larger values of the applied stress (either larger
forcing or larger boxes), the value n of the mean turbulence level is much larger
and can be many times n.. In this case, spatial correlations decay rapidly and
many collapsing filaments can occur at different spatial locations although since
each event is so rapid, they will rarely occur in the same time intervals. For these
large t arbulence levels, the saddle point M in Figure 12 represents a collection of
saddle points in the turbulent soup part of the attractor AH, some of which cor-
respond to analogues of the modulational instability of more complicated periodic
shapes and others of which are best understood as nucleational instabilities. As
we have mentioned, the collapsing filament is often initiated in the remnant of a
hole left by a previous event or in holes simply produced by random fluctuations.
No matter what the mechanism, the important point is that the attractor contains
many saddle points M which are connected to infinity through HCI's and the phase
point passes sufficiently close to these points so that the large homoclinic excursion
is initiated.

We mention here that a similar situation obtains in the Euler equations. For
low values of the applied stress, laminar states can be destabilized by identifiable
instability mechanisms, centrifugal instabilities, mean flow profiles with inflexional
points and so on. These instabilities do not go away when the fluid becomes fully
turbulent. Indeed saddle points representing local inflexional and centrifugal in-
stabilities remain very much part of the strange attractor of the high Reynolds
number Navier Stokes equations and play a large role in transferring energy to high
wavenumbers where dissipation acts. In highly turbulent flows, the inflexional pro-
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file of the mean flow is not sustained for all time uniformly in space, but if it is
sustained long enough in a local region (see the discussion on turbulent boundary
layers in the following section), then rapidly growing packets of three dimensional

inflexional instabilities can erupt and carry energy off to the dissipation cemetaries.

Other illustrations of the random occurrence of coherent events

This view of turbulent transport, in which the major contribution comes from

a part of the attractor which corresponds to coherent structures whose dynamics

can be captured with a finite number of degrees of freedom, while not universal,
should have widespread application. We now suggest several other contexts in in
which these ideas may be important. We itress that in no case do we feel we have

presented the complete and final solution, but simply wish to suggest that it may be
worthwhile to look at each of these situations from a new viewpoint. The first is the
burst-sweep cycle [10] which appears to dominate the production of turbulent energy
and momentum transport in turbulent boundary layers. Although no candidate for
the coherent structure which models the four step process constituting the burst
phase of this cycle has yet been put forward (there have been suggestions [11]), it is
not improbable that a singular, finite time collapse solution of the Euler equations
plays a significant role. This basic structure could probably be captured by a simpler
set of p.d.e.'s, analogous to the Zakharov equations, in which a long scale, three-
dimensional Tollmein-Schlichting like disturbance with large downstream vorticity
(streaks) is synchronously coupled to a packet of short inflexional waves produced
by an inflexional instability of the mean turbulence velocity profile caused by the
induced outflow of the streaks [10,11]. The inflexional instability, ever present in
shear flows, together with the finite amplitude distortion of the mean profile by the
long scale state, plays the role that modulational and nucleational like instabilities
do in Langmuir turbulence. It continuously drives the initial stage of the bursting

* solution.

Convection at large Rayleigh numbers is a second area in which the transport
properties are likely to be organized by cohe.ent structures, in this case the slightly

tilted plumes observed by Krishnamurti and Howard [12] which dominate the flow
for a large range of Prandti P and Rayleigh numbers R,. Mote recent obsermations
by Libchaber (13] in what he calls the soft turbulence regime (R. < 10) would
seem to lend some credence to ihe admittedly simplified picture, suggested many
years ago by Howard [14], that the plumes would occur at a frequency determined

2 1
by the time R " it takes for a conductive layer to build to a depth R" _' so as to

be convectively unstable. A crude picture in which cne imagines that the coherent
plumes carry off all the heat in the unstable conductive laver would suggest a Nusselt

number proportional to Ra which is approximately what is obs.erved. The inferences
of the Howard argument are also consistent with a "mixing-length" analysis givel .n
an earlier paper by Kraichnan [15]. To be sure, this picture ,; greatly oversimplified

and it is hard to see how the plumes, which combine into larger and larger ones,
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remember the Howard time scale. Nevertheless, Libchaber observes this scale as
dominant in the power spectrum of his signal, measured many conductive layer
depths from the bottom of the tank, over a large range of Rayleigh numbers up to
approxin.ately 10'. At this stage, loal Reynolds numbers, which are proportional
to the square root of the Rayleig' -mber, are in the shear flow instability range
and other structures are produce ,¢hich modify somewhat the Howard picture.

I Third [15], we suggest that the self-similar features seen in the Rayleigh-Taylor
unstable interface two fluids of different densities are exact, singular solutions of the
Euler equations, which if they were known, would help one to calculate an approxi-
mation to the mass flux ofheavier through lighter fluid. In the absence of a length
scale (surface tension is ignored), the set of attracting states S at infinity will be a
complicated fractal set reflecting the scale symmetries, but the basic elements of S
would represent the spikes (containing the heavier fluid falling through the lighter)
and bubbles (the lighter fluid pushing up through the heavier). Fourth [16], it is not3 unreasonable to argue that the dissipation rate of shear flow turbulence arises not
from the wave-wave interaction familiar from Fourier space cumulant descriptions,
but instead to suggest it is dominated by the formation and destruction of thin
vortex sheets (the state S) in which almost all of the vorticity is concentrated. We
conjecture that the initial formation of surfaces of vorticity concentration follows
singular solutions of the Euler equations driven principally by inflexional instabili-
ties. Once formed (the system is close to S), these sheets are notoriously unstable,
to Kelvin-Helmholz instabilities of the tangential velocity discontinuities and to
Taylor-Gortler centrifugal instabilities of the helical flows induced by vortex lines
embedded in the curved sheets. These secondary instabilities [17,18] quickly trans-
fer the energy to the viscous cemetaries where energy is dissipated.and the system3 is returned close to a state where approximately the same cycle can repeat.

Our last case study concerns the generation of turbulent spots in a boundary
layer. This example is somewhat different in nature to the preceding examples
but nevertheless exemplifies the general idea of transport occurring as a result of
the random occurrence of coherent events - in this case the formation and convec-
tion of the spots - which can be associated with homoclinic excursions. We shall
also discuss a simplified model and make some experimental predictions. However,
before doing this, let us recall the initial stages of the boundary layer instability
without receptivity (undue influence of fluctuations in the outer flow). When the
Reynold's number, based on the boundary layer thickness which depends on the
distance from the leading edge, reaches a critical value, the unstable two dimen-
sional Tollmein-Schlichting (T.S.) wave concentrated at the critical layer quickly
becomes three dimensional thereby creating downstream vorticity. The induced
secondary flow causes an outward flow near the crests (the most downstream part
of the distorted " vortex" lines) and an inward flow near the troughs. The three
dimensional distortion is enhanced by the mean shear, the downstream vorticity
increases and the initially sinusoidal three dimensional deformation of the vortex
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line becomes strongly distorted into the form of an elongated hairpin vortex. The
induced outward flow carries slow moving fluid to the outer part of the boundary
layer and causes the mean turbulent profile to develop inflexion points localized
in both time and the spanwise direction. At these points, short wavelength pack- I
ets of an inflexionally unstable nature can grow and be absclately (rather than
convectively) unstable if they can phase lock with the travelling three dimensional
disturbance which gives rise to their formation in the first place. Along these tra-
jectories turbulent spots are formed which spread spatially into surrounding regions
by destabilizing the neighboring laminar flow. Our picture of the spots is that they
are essentially localized wavepackets in which the waves are breaking. Suppose one '1
monitors the velocity field v(t) at a point just before the area in which the spots

tend to form. A reconstruction of the attractor from this time-series should show
an attractor .A with a well-defined phase corresponding to the phase of the incom-
ing T.S. waves and we propose using the methods of the following section to check
thiis conjecture. However, monitoring the velocity field in the full region one will
find an attractor A which will have an AH somewhat similar to A, but also with
a part AC consisting of the homoclinic excursions which occur when a spot forms
and is convected downstream. When the spot reaches the region where they have
coalesced or left the channel, the system has returned to AH.

The phase space associated with this dynamics is somewhat different from thatI proposed previously for collapsing ficments. Nevertheless, while the homoclinic
excursion will not go to infinity, it will have several features in common with the
previous picture. We consider here a very simple mathematical model to illustrate
what we have in mind. Consider a locally unstable attracting periodic orbit y in
phase space. This is an orbit which is attracting in the usual sense that all its3 Floquet multipliers have modules less than one, but which at some points x in -Y
is actually repulsive. An example of such as orbit would be given by the periodic
solution x = 0 for the time-dependent system.

dx z~ xGx ds ()
X(x,s) : Lx= a(s)x +-C(x), d- = 1,(s, s) ER x (10)

where a(s) is a smooth function which is -1 -, r 0 < s < 1/2, 1 for 5/8 < s < 3/4 and
* nearly linear in between. Another more natural example is given by the following

flow in the plane (See Figure 14). If the periodic orbit -y is close to the saddle J11
then -t will be unstable near M even though -1 is attracting in the usual sense. Now3 returning to the general picture, suppose that such a system is subject to some
periodic or almost-periodic forcing or perturbation. If the perturbation is large
when the state is near the unstable part of ' then one will see a relatively large
excursion of -y, otherwise the perturbation will be quickly damped out. This picture
is a useful oversimplification of the dynamical phase-space structure associated with
spots. The attractor AH like -y is unstable in some parts so that the incoming waves
perturb the state sufficiently to send it on an excursion in A¢. Of course, we are not
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[suggesting that Ac and AH are uncoupled as in the simple example: indeed, they
are part of a single strange attractor. But these can be thought of as coming from a
common picture as we now indicate. Consider again the situation shown in Figure .

I If this system is periodical forced then the total system is described by a Poincare
map corresponding to advancing one period of the forcing and the above picture

*can be regarded as being associated with the vector field X(x, s) given in Equation
I (10) for s frozen. Suppose that the way in which this frozen vector field changes

during one cycle of the forcing is such that a limit cycle gets pushed through the
* stable manifold of the saddle M. Then homoclinic orbits are formed in the complete

system and this will have an attractor consisting of a set AH of orbits close to the
cycle -' and horseshoes near M, and homocinic excursions going from a region close

* to M back to AH. If this is a reasonable approximation of the phase space then
we can make a prediction. There should be a correlation between the creation of
spots and the phase on AH. Experimentally this can be checked by reconstructing3 A using the usual time-series methods and recording when spots occur in the region
just downstream from the monitoring point.

Identification of coherent structures

As the final part of this paper, we want to propose a method of time series analy-
sis which can identify those modes which contribute most to transport. These ideas
are based on and are a modification of the singular value decomposition (SVD)
methods of Broomhead and King [191 to improve phase-space constriction tech-
niques and Lumley's method for identifying coherent structures in turbulent flows.
We will elaborate on these ideas in more depth in a future publication with David
Broomhead but here we will sketch the main points. The principal goal of the

3 method is to extract orga:nized structures which may come and go from what ap-
pears to be a sea of disorganized and statistical fluctuations.

3 Firstly, let us recall the basic ideas from the perspective of dynamical systems.
We suppose that we have a dynamical system acting as a Hilbert space H with
an attractor A which has a natural measure v. Let the mean V = f vv(dv) be3 subtracted from each of the vectors v so that they then have zero mean. We define
an orthogonal basis el, e2,.., of H by maximizing

SF v(dv) + A( (11)

I to get el, and then, given e1 ,...,ei, taking for ei+l the maximum of F in the
orthogonal complement of e1 .... ,. We ignore for the moment the non-generic
situation where F does not have such maxima and where A is contained in a finite-
dimensional linear subspace. For the maximal basis, we find

3F = ?=J(e . V)2 VdV) (12)
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Then the oi can be regarded as the moments of inertia of A if A is regarded as a
body the mass of whose points is given by v. The e, are the corresponding axes
of inertia and these can be easily calculated by constructing the inertia tensor by3 differentiating (11) and solving for its eigenvectors. In this case the inertia tension
is the n x n matrix XtX where X is the n x N matrix whose ith row is the vector Vi.7
This is completely practical procedure which we have carried out on a number of

I (finite dimensional realizations of) p.d.e.'s. In practice, the vectors i, i =1 ... N,
could be the n- vector V(F1 , ti), when Fy is an array of n points distributed in
space and V is some flow component which is measured at the sequence of times
tii = 1,...N. The (i,j) element in the inertia tensor is then the correlation
function < V(ri,t)V(fj,t) >. A major reason f6r the importance of this basis is
that if v(t) is a generic solution in A and 01, 02,... is any orthogonal basis for H,
then the r.m.s. error of a k-th order truncation

lim T 1  II v(t) - Z(v(t) o I 112 dt (13)
T-o 10 j=O

U is minimal for all k > 0 precisely -"hen Oj = ej for all j > 1.

The local version of this procedure is equally important, because of the intermit-
tency and fluctuation of the organized structures. Like the filaments of Langmuir
turbulence, they will often have a transient character and averages taken over allU time or over the global attractor will miss them. Accordingly, we define the notion
of a local SVD as follows. Given x E A, let B,(x) denote the ball of radius 6 about
x. Instead of taking the whole of A, we regard the points in B,(x) as making up
the mass with their weights again given by v, but suitably normalized. Just as
in the global case, we can then obtain an orthogonal decomposition of H and the
associated moments. We assume that, as e --+ 0,the axes converge to the axes

e(X) el (X),e 2 (X), e3 (X),.

I and have the spectram

a()OIX > 0 >(X > ".()

5 If the flow field is locally dominated by a d-dimensiona structure, then the spec-
trum of moments o(x) has the property that the o,(x) decay exponentially in j for
j > d. This feature is very important as it allows us to contruct a local analogue of
the Lyapunov spectrum, which is defined as the set of growth rates of successively
larger sub volumes of the tangent space of a trajectory in the phase space. Under
fairly weak assumptions (sufficient hyperbolicity on the attractor to ensure that
any trajectory eventually covers the attractor), the Lyapunov spectrum exists as
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a global quantity. It would be tempting to suggest (hope!) that this is a natural
decomposition of the Lyapunov spectrum into a small set of a d order one exponents
and a much larger set D whose magnitudes cluster around zero. In general, this
will not be true, because the homoclinic excursions a:e dramatic local events which,
although responsible for transport, may be relatively rare and therefore a global
average using the usual density of points invariant measure on the attractor will
smear local large values of the growth rate over the whole trajectory. Therefore it
is unlikely that the Lyapunov spectrum will decompose as one might optimistically
hope. Neither can the Lyapunov exponent be defined locally. However the local
SVD decomposition is well defined and does discriminate between various directions
in the local tangent space. For example, if we take a ball on the attractor at a point
x from which a the homoclinic excursion begins, the d directions associated with
the dominaxit moments inertia cr,(x) do span what we have called the order one
unstable manifold of AH at x.

I Moreover, we can adapt these further in order to look for correlations between
organized structures and the transport properties of the flow. To do this we have
to bring in the ideas of Broomhead and King on time-series analysis. Suppose that
besides measuring a representation of the state v(t) at time t, we also record a mea-
sure n(t) of the transported quantity. For simplicity of notation and compatibility
with real data we assume that the time t is discrete. For each t consider the vectors

* w(t) = (v(t), n(t - a),... , n(t - b)).

Let A denote the set flT>O U'=T {w(t)} and construct the axes 9, and moments of
inertia &, for A as for the attractor A in the global procedure above. In practice

will be finite so for v one takes the measure on A which give the points equal
weight. For small i the axes

6i- (ei,n-a,..., nb)

will then give the dominant structures, each being an important spatial structure
ei together with the transport time-series na,.., nb correlated with this. It thus3 gives us the relationship between spatial structures and transport. The problem
is that the spatial structures which transport the most may not correspond to the
dominant moments because of their infrequent occurrence (and hence low weight
with respect to v), or because they may get mixed (as linear combinations) with
modes transporting less. To overcome this problem we propose that the vectors v(t)

- should be weighted by An(t + c) for some suitable c and A > 0. Provided A is large
enough, the dominant moments should then correspond to those which transport
most. For example, A might be chosen to be the transport itself or some suitable
power thereof. As well as obtaining the relationship between spatial modes and
transport properties, this procedure singles out those modes which transport most.

* I20



Finally, we note that one can perform a local version of the global axes of inertia.
This may be especially useful when there are problems with phase fluctuations or
variations [201.
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References and Footnotes

3 [1.] There have been several papers on the estimation of the Hausdorff dimen-
sion of the attractor for Navier-Stokes and other simpler p.d.e.'s such as
Kuramoto-Sivashinsky(KS) and complex Ginzburg-Landau (CGL). Before
listing them, we want to make several remarks. (i) The R2 estimate for
the Navier Stokes equations is an upper bound which assumes the global ex-
istence of solutions and the existence of certain integrals, neither of which
has been established. (ii) The nature of the power spectrum, the rapid loss of
spatial conditions on the Taylor microscale of R-i, the apparent importance

* of the Kolmogoroff inner scale all suggest that for large Reynolds numbers
the upper bound is not unexpected or a gross overestimate. (iii) Even if one
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Figure Captions

(1) Snapshots of I4p(x)I 2 at times before (a) during (b) and after (c) the collapse
of a filament in the turbulent ensemble sustained by driving with Vb = 0.2.
The nearly simultaneous collapse of two filaments (d) and their remnants (e
and f) shortly after collapse. Note the outward propagation and diminution
of the concentric cylindrical shells that comprise the remnants.

(2) (a) The instantaneous rate of dissipation -/(t) -2 Ek -,(k) I (k)12, its integral

F(t) - ft 7'(tt)dti, and the global spatial maximum of I4(Z)I2 as functions
of time in the strong turbulent regime sustained with Vb = 2.

(b) As in (a) but for a longer time. Notice that strong, sudden dissipation
is exactly correlated with collapse and that the loss of energy (-F) is approxi-
mately linear over long times.

(3) The total energy dissipated by collapsed filaments (6n,) divided by the total
energy dissipated (6nT) for three different turbulent ensembles differing in
mean intensity, < nV, >, as a function of the cut-off rate -0o used to define
filament collapse. (See text for discussion.) Note that this ratio necessarily
approaches one as -o -+ 0.

(4) A histogram of energies (8n) dissipated in the strong turbulent regime main-
tained by driving with 8b = 2. The cut off delta. yo = 10. Note that the
distribution shifts towards the critical value p = .29 as -t0 - 0 (see texty for
discussion).

*(5) (a) As in Fig. 2(a) but confined to a small domain or "box" centered at a
single collapse site in the case yb = .2. (The time origin has been redefined3 for convenience.)

(b) The total energy in the box (nboz fbo= d ---+ Xlik(.- x)12 and the conser-
-3vative flux through the boundary of the box

(f lux - (V) j
as functions of "ime. Note the "shoulder" in the nbox graph, corresponding to
the fluxing of L - collapse remnant out of the box immediately following the3 sudden burnout of the core of the filament. Adding the energy lost in burnout
(t 5 .08) to that carried away by the remnant (.08 < t < .12, i.e., the shoulder)

ebtain very narly the cr:cal value p = ..•~~~ ~ ,Iv, L L.Y % , ). A tIA

(6) A histogram of times passed between successive collapse events in the case
vb = 2. Note that the distribution is nearly Poisson, with a mean time
between events of < r > - .08. Fluctuations are still affecting the tail.
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(7) Mean dissipation rate < -" >= 2-1, (k) < k¢(/.)I2 > and mean time between
collapse as a function of the level of turbulence (< np > for several different
cases.

(8) Flow trajectories in the turbulent regime with vb = .85 covering about 10
collapse events. The trajectories are projected onto the global observables
(no, H, 141 ax) to produce a curve in 3 dimensions displayed in (a). In (b)
we have projected this curve onto the three coordinate planes to aid visual-
ization. Those trajectories that are fluctutions about homoclinic excursions3 are the smooth sparse loops passing through the larger values of k&I2max.
The denser, more jittery part of the curve lies in AH.

3 (9) Angle-averaged correlation function.

(10) The damping function, -r,(k). Note the rapid turn-on of damping at k0 
-

30 5 .2kd, where kd = VM " and in all cases studied M = 7344.

(11) A contour plot of the long-time averaged spectral energy density < k(k)1 2 >.
* The scale is logarithmic: energy densities on adjacent solid contours differ by

a factor or 100. Note that the turbulence is isotropic and that the damping
(Fig. 3) confines the (time-averaged) energy to long and intermediate scales.

(12) A schematic drawing of the attractor and the homoclinic excursion.

3 (13) Phase plane for x*' = -x + 2x1.

(14) A scenario for the homoclinic excursion associated with turbulent spots.
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3 Streamwise Evolution of Naturally Occurring Instabilities

R. A. Petersen

Power spectral densities of streamwise component u' ,neasured

3 at r/P = 0.5 and at various streamwise positions within the

laminar/turbulent transition region of axisymmetric jeL -t a U_j

I 16 m/s. The initial instability frequency is near 120 Hz.

Successive parings result in spectral peaks at 600 Hz =nd 300

Hz. The inertial subrange (f -5/3*) emerges near x/D = 0.8.

m Fourier Decomposi tion

3 Since the velocity field is statistically homogeneous and

periodic in the aximuthal direction, it is appropriate to

I decompose the field into Fourier modes. Measurements at

[:/D,r/D] = E0.2,0.53, jet speed = 16 m/s.

TOP: Sample time series from eight hot wire sensors. Samole:

I 1024 points digitized at 50 Hz.

I BOTTOM: Decomposed time series. Natural l y occurring

instabilities are predominantly axisymmetric.

Phase PortraitI
Stereoscopi'c representation phase portrait embedded in three

dimensions. Modes: a0(t7, bl(t), a 2 (t); jet speed = 16 mls;

measurement locali, .nID,,/D) = ro.2,0.5); 1024 points e 50 kHZ.

Even though the time series exhibits temporal and spatial

I coherence, the phase portrait appears high dimensional.

Consequently, an attempt is made to develop a statistical model

3 from the phase portrait.
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Phase Space Statistics

Based on the Fact that the Navier Stokes equations involve

fi rs t diffences in t.me a .nd that the (incompressible) pressure

is catermined b. '-he instantaneous velocity field, we model the

sysilem .s A noise driven Markov process. That is, the

t:,pecta ion of the future =tare of the system depends only on the

preseri.

Thne conditicnal mean represents Lhe t-emporally coher-'t p',rt

u,. the decomposed signal and is related to the temporal cross

correl-ation -Function. The "Fine scale" turbulence is m;odelled

by a random vector of zero mean and unity variance. The

coand4tion] I :ovariance can be decomposed locally into a set of

ei gen vectors and eigenvalue_. IT the conditional, jointi

statistics are uncorrelated one would e:gpect the conditional

eigenvectors to parallel the basis vectors of the original

decomposi ti on.

Measured Condi ional Accelerations

Joint statistics are based on a 0 (t), horizontal ax:is, and on

b (t), vertical ax'is. Measurements span the region from laminar

flow to fully developed (based or-, emergence of inertial subrange)

turbulence. At x/D = 0.2 the conditional convariance

eigenvectors are correlated by the instability; by x/D = 0.8 the

conditional means are smal l compared to the conditional

covariance eigenvalues (root mean square) and the. conditional,

joint statistics appear to be uncorrelated.

In each case the sampling rate was 50 kHz, and the joint

statistics are based on 1,024,000 data points. The data was
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digi'ized in 1024 point records and de-meaned before being

decomposed into Fourier modes. The display is modulated by

contours of joint prob.bi Ii Ly densi Lv: con-ours bet'ween 50--70%

and hvtween 80-1001% of Lhe peak value were selected. The joint

probability distributions are evidently skewed and the dispiay is

appr.imteJ.y 4 x 4 standard deviations. Approximate because the

s wiing is. based on I.h -, +irst 1.% of Lhe database.
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