
1C1.11T'O, A.-SF CArc O F C -- S DAGE ~ n I --

REPORT DOCUMENTATION PAGE CM8 No 07040188

ca,- a y 7, %M;7A7.O, 'b RESTRJCT!2E VARK(;NGSCMN00408

3. DiSTRIBUT ON/AVAILABILITY OF REPORT

A D-A 217 577..--nli_--_-
R(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

__ o - 0 0 o 6
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable)

University of Minnesota AFOSR
6C. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS(Cty, State. and ZIP Code)

4-192 EE/CSci
200 Union Street SE Bolling AFB, Washington DC 20332-6448
Minneapolis, M1N 55455

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

11 _ _ _ __ I _ _ r_, AFOSR-87-0168
BC. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

" PROGRAM PROJECT TASK WORK UNI
2)ELEMENT NO. NO. NO' ACC 4O

IIO cl /ISb C ~633 -a "V _u.- C) ;ocl{ Xg
11. TITLE (Include Security ClaSsification) V

Final Report - Structure From Motion Aft ,12. PERSONAL AUTHOR(S)

William B. Thompson
13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year Month,ODay) 115S P11 3UNT
Final FROM1/8TO 9_1lB8 I 1988 November 17 A /

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if ntcestary and identify by block number)
FIELD GROUP SUB-GROUP ,-.:image Understanding, Time-Varying Image Analysis,

Visual Motion, Optical Flow, Segmentation, (7-

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
-'Analysis of surface boundaries has been extended to situations in which a camera is able to actively

track environmental surface points. Two problems were examined - the determination of relative
depth at a boundary and the determination of the direction of motion. In both cases, the ability
to actively track significantly decreases the complexity of the computations required. An analysis
of the computational basis for the visual detection of moving objects has been completed. We have
shown that moving object detection can exploit one or more of three general approaches. Each
approach has particular strengths and weaknesses. Two significant results have been obtained in
the area of motion-based segmentation. The first combines motion and contrast information in
a boundary detection method that is both more reliable and more accurate than possible using
only motion or only contrast. The integration is done in a manner involving little additional
computation. Secondly, we have shown how motion information can be used to reduce ambiguity
in the recognition of partially occluded objects. V 1, t : ., , ' -, L: \ : _

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

IUNCLASIFIOIUNLIMITED 0 SAME AS RPT C DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Dr. Abraham Waksman (202) 767-5027 I M I
00 Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF TI4S PAGE

m =are Ill milmll ii i /aa a m



0

FINAL REPORT - STRUCTURE FROM MOTION"---
AFOSR Contract AFOSR-87-0168 *7

AvailabilitY Codes
Avail and/orC ) Dist Speoua.

a. Objectives. O~

Our principal objective continues to be the development of robust computational approaches for
estimating the spatial organization of a scene using time varying properties of image sequences.
Three closely related problems are being pursued:

" Active tracking of surface boundaries.

Much attention is currently being paid to problems involving active vision. An active vision
system is able to at least partially control the manner in which perceptual information is
acquired. Within the context of motion, several authors have argued that active tracking of
moving objects or surface points provides additional constraints of use in solving structure-
from-motion problems. We have shown that this is not in fact true. Active tracking can,
however, significantly simplify some of the computations involved in analyzing visual motion.

Afoving object detection.

The detection of moving objects is an important task for many robotics applications. With
previous AFOSR support, we developed a series of algorithms for moving object detection in
a variety of special situations. Under this contract, we have placed these methods under a
coherent theoretical framework. As a result, it is now much easier to determine the difficulty
of detection for a given situation and to apply the most appropriate detection method.

" Motion-based segmentation.

We have done extensive research on methods for incorporating motion into the segmentation
process. Motion-based segmentation is important because it provides more information than
methods using only static cues. Two significant accomplishments have been achieved under
this contract:

- Integrating motion and contrast for segmentation.
Motion-based edge detection is sensitive only to actual surface boundaries. As a result.
ambiguity is reduced over methods based only on image contrast. Traditional brightness-
based edge detection is far more precise at localizing edges, however. We have shown
how edge detectors can be built that naturally incorporate the best aspects of brightness-
based and motion-based edge detection.

- Occlusion-sensitive matching.

Our most important result under the current contract deals with improvements in ob-
ject recognition that are possible using the results of our motion-based segmentation
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technique. Recognition in the presence of occlusion is difficult because it is hard to tell
what features are part of the object being analyzed and what features are actually part
of other objects partially occluding the object of interest. Our approach uses motion to
differentiate between occluding and occluded surfaces, and then uses this information to
remove irrelevant features from the classification process.

b. Status of research effort.

Active tracking of surface boundaries.

Others have argued that optical tracking of an environmental surface point significantly decreases
the intrinsic complexity of various structure-from-motion problems. This is not in fact true. Track-
ing provides neither additional constraints nor other sorts of new information. This is easily seen
by recognizing that all of the information in the tracking image is available in an image of the same
scene without tracking. Tracking is accomplished by generating a rotation of the eye/camera sys-
tem based on estimates of image drift such as optical flow at the image center. Once this rotational
velocity is determined, a non-tracking image sequence can trivially be converted into the equivalent
tracking sequence using standard techniques.

Active tracking can lead to important efficiencies in the implementation of certain structure-from-
motion algorithms. We have developed two such methods:

* Identification of occluding surface.

When a boundary element is visually tracked, the region to the side of the boundary corre-
sponding to the occluding surface will have near-zero image flow. The region to the side of the
boundary corresponding to the occluded surface will in general be associated with significant
visual motion.

e Determination of direction of observer motion.

When a boundary element is visually tracked, optical flow due to the more distant surface
indicates the direction of observer motion. The flow vectors point in the direction of the
image location corresponding to the line of sight coincident with the direction of translational
motion. Multiple fixations over the field of view can be used to solve for the actual direction
of translation.

The first of these techniques requires only the detection of regions with significant image motion, a
far easier tasks than the comparisons required by previously known methods. The second technique
eliminates difficulties due to camera rotation that plague most other solutions to this problem
Additional discussion is presented in [5].
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Moving object detection.

The reliable detection of moving objects is essential for many robotics applications. If the camera is
stationary and illumination constant, this can be done by simple techniques which compare succes-
sive image frames. looking for significant differences. If the camera is moving, however, the problem
is considerably more difficult. For a moving camera, both moving objects and stationary portions of
the scene may be changing position with respect to the camera and thus generating visual motion
in the imagery. A moving camera leads to difficulties because of the need to determine objects
moving with respect to the environment, rather than the much easier problem of finding objects
moving with respect to the camera. General solutions based only on vision are computationally
complex and likely to be numerically unstable. If partial information is available about camera
motion and/or scene structure, however, robust motion detection methods are possible.

We have shown that possible approaches to this problem fall into three categories:

" Violations of motion epipolar constraint.

Translational motion produces a flow field radially expanding from a "focus of expansion"
(FOE). Any flow vectors violating this constraint are due to moving objects.

* Comparison of optical flow and other depth information.

While patterns of optical do not uniquely specify depth, they do constrain the possible values.
Motion-based constraints on possible depth can be combined with static constraints obtained
from cues such as stereo. Violations of the combined constraints indicate that moving objects
are present.

" Violations of rigid object constraint.

Only certain patterns of optical flow can correspond the the imagery produced by a moving,
rigid, three-dimensional object. While we have not yet researched this approach extensively,
there is reason to believe that it may be possible to determine whether or not this rigidity
constraint is actually satisfied. If so, distin i. non-rigid motion corresponds to moving
objects.

Understanding the theoretical underpinnings of moving object detection has several advantages.
Perhaps most importantly, it is now possible to determine under what situations a particular
approach will work without having to examine the details of a specific algorithm. Likewise, the
strengths and weaknesses of whole classes of algorithms can be investigated at one time. Finally,
we expect that better performing algorithms will arise from a more complete understanding of the
basic constraints involved in the problem. More information can be found in [1].

Motion-based segmentation.

Edge detection algorithms based on visual motion perform significantly differently than those based
on brightness. Previous attempts to combine motion and contrast information in edge detection
have not recognized these differences. Static cues such as contrast edges give good spatial localiza-
tion. but are subject to highly ambiguous interpretations. Visual motion is a robust indicator of
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surface boundaries, but does not yield precise information on the location of the boundary. The
approach described in [4] accurately locates edges due to surface boundaries, without generating
many --false" edges. Furthermore. the combined method adds minimal computational complexity
to the edge detection process.

Our most important result under the current contract deal with the problem of recognizing partially
occluded objects. Most existing matching algorithms that are tolerant of occlusion look for a partial
correspondence between model and image features. If a partial match is found. unmatched model
components are assumed to be hidden by an occlusion. This approach leads to difficulties because of
the chances for partial matches occurring coincidentally. In our method, motion-based information
about occlusion boundaries is used to explicitly identify model features that will not be visible in
the image. Most of the remaining model features should be findable if the match is in fact correct.
Occluded model features are determined based directly on image properties at boundaries, rather
than just on the absence of an image feature at some expected location. The result is a significant
decrease in ambiguity. Details are found in [4].

c. Publications.

[11 W.B. Thompson and T.C. Pong, "Detecting Moving Objects," submitted to International Jour-
nal of Computer Vision.
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Detecting Moving Objects

William B. Thompson
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University of Minnesota
Minneapolis. MN 55455

Submitted to the International Journal of Computer Vision.

Abstract

The detection of moving objects is important in many tasks. 7his paper examines
moving object detection based primarily on optical flow. We conclude that in realistic

situations. detection using visual information alone is quite difficult, particularly when
the camera may also moving. The availability of additional information about camera
motion and/or scene structure greatly simplifies the problem. Two general classes of

techniques are examined. The first is based around the motion epipolar constraint -
translational motion produces a flow field radially expanding from a "focus of expansion"
(FOE). The second class of methods is based on comparing observed optical flow with
other information about depth. Examples of several of these techniques are presented.

1 Introduction.

One important function of a vision system is to recognize the presence of moving objects in a scene.

If the camera is stationary and illumination constant, this can be done by simple techniques which
compare successive image frames, looking for significant differences. If the camera is moving, the
problem is considerably more complex. For the purposes of this discussion, moving objects are
taken to be any objects moving with respect to the stationary portions of the scene, which we refer
to as the environment. For a moving camera, both moving objects and stationary portions of the
scene may be changing position with respect to the camera and thus generating visual motion in
the imagery. A moving camera leads to difficulties because of the need to determine objects moving
with respect to the environment, rather than the much easier problem of finding objects moving

This work was supported by AFOSR contract AFOSR-87-0168 and NSF Grants DCR-8500899 and IRI-8722576.

A preliminary version of this paper appeared in The Proceedings of the First International Conference on Com-
puter V uion, London, June 1987.
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with respect to the camera. In this paper, we deal with the problem of detecting moving objects

from a moving camera based on optical flow.

----------- ---------- =-j

* - --->

Figure 1: Is The Central Region a Moving Object?

The visual detection of moving objects is a surprisingly difficult task. A simple example
illustrates just how serious the problem can be. Consider the optical flow field shown in figure 1

which appears to show a small, square region in the center of the image moving to the right and
surrounded by an apparently stationary background. Such a flow field can arise from several equally
plausible situations: 1) The camera is stationary with respect to the environment, and the central
region corresponds to an object moving to the right. 2) The camera is moving to the left with
respect to the environment, most of the environment is sufficiently distant so that the generated
optical flow is effectively zero, while the central region corresponds to a surface near to the camera
but stationary with respect to the environment. 3) The camera and object are moving with respect
to both the environment and each other, though the environment is sufficiently distant so that
there is no perceived optical flow. It is not possible to tell whether or not this seemingly simple
pattern corresponds to a moving object!'

Figure 1 provides one example of why a general and reliable solution to the problem of moving
object detection based only on optical flow is not feasible. Robust solutions require that additional
information about camera motion and/or scene structure be available. In this paper, we examine a

variety of types of information that might be available. Each information source places constraints
on the optical flow fields that can be generated by a camera moving through an otherwise static
environment. Violations of these constraints are thus necessarily due to moving objects.

'The flow pattern in figure I provides little information about actual camera motion. Apparently stationary image
regions can be due to the viewing of distant surfaces and/or rotational motion that tracks a surface point, keeping
it at a fixed point in the field of view. Even with significant non-zero flow existing over the whole of the image,
ambiguities exist between flow patterns due to translational motion and due to rotational motion (I].
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2 Background.

An extensive literature has developed on computational approaches to the analysis of visual motion
e.g.. see '2'). The majority of this work deals with what Ullman [3] has called the structure-

.rom-motion and motion-from-structure problems. Visual motion is used to determine the three-
dimensional position of surface points under view and/or the parameters of motion relating camera
and object. Almost without exception. papers describing structure-from-motion and motion-from-
structure algorithms deal only with a single, rigid object in the field of view. If the problem of
separately moving objects is mentioned at all. it is in a comment that the image must be segmented
into separately moving objects before the method being described is applied.

Some work has been done on the segmentation of images based on visual motion. The easiest
form of this problem occurs with a camera known to be stationary. In such circumstances. object
motion leads to significant temporal differences in an image sequence. Such differences correspond
to moving objects. and furthermore can be used to estimate the boundaries of the objects (e.g.,
"4. 5]). More classical edge-detection techniques can also be applied to time-varying imagery [6, 7,
3. 9, 10. 11]. Such approaches work for both moving and stationary cameras. When the camera is
moving, however, sharp spatial changes in visual motion can correspond to either the boundaries
of moving objects or to depth discontinuities between two rigidly attached surfaces. As a result,
motion-based edge detection is not sufficient to detect moving objects.

Jain is one of the few researchers to deal directly with the problem of detecting moving objects
using a moving camera (8]. His approach exploits the motion epipolar constraint which says that
for translational camera motion with respect to a static environment, optical flow will expand
radially from a focus of expansion corresponding to the direction of translation. For translational
motion, any flow values violating the epipolar constraint must be due to moving objects in the
scene. Unfortunately, this approach requires knowledge of the direction of translation and does not
work if the motion has a rotational component.

3 Possible approaches.

At least three general approaches to moving object detection are possible. Each exploits a particular
constraint that must hold if a camera is moving through an otherwise static environment. Detecting
moving objects becomes equivalent to a search for violated constraints.

* Motion epipolar constraint.

Translational camera motion produces a distinctive optical flow pattern. Flow vectors appear
to radiate out from a "focus of expansion" (FOE) corresponding to the line of sight coincident
with the direction of motion. This has the effect of constraining the orientation of flow vectors.
Visual motion which violates this orientational constraint must be due to moving objects.
Under some circumstances, the motion epipolar constraint may still be used when camera
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rotation is added to the translational movement.

Depth/flow constraint.

The optical flow generated by a surface point is a function of the relative motion between
camera and surface and of the range to the surface. If range values are available, then
inconsistencies between optical flow, range, and observer motion signal moving objects.

" Rigidity constraint.

A scene containing moving objects can be thought of as undergoing non-rigid motion with

respect to the camera. Structure-from-motion techniques which are sensitive to the presence
of non-rigid motion can thus be used to detect moving objects.

This paper will concentrate on epipolar and depth/flow methods. Though potentially effec-
tive, methods based directly on the rigidity constraint require longer frame sequences. temporal
derivatives of optical flow, and/or a wide field of view to enhance perspective effects.

4 Presumptions.

Many theoretically plausible techniques for analyzing visual motion are ineffective in practice.
Typically, the assumptions on which these techniques are either explicitly or implicitly founded do
not accurately represent real problems. For this work, we start with the presumption that motion
detection algorithms should be designed with the following properties in mind:

" The field of view may be relatively narrow.

Motion detection should not depend on the use of wide angle imaging systems. Such systems
may not be available in a particular situation, and if used may increase the difficulty or
recognizing small moving objects. As a result, detection algorithms should not depend on
subtle properties of perspective.

" The image of moving objects may be small with respect to the field of view.

This is clearly desirable for reliability. Moving objects may be far away and subtended by
relatively small visual angles. We need methods capable of identifying single image points, or
at least small collections of points, as corresponding to moving objects. Detection algorithms
thus cannot depend on variations in flow over a potentially moving object.

" Estimated optical flow fields will be noisy.

No method is capable of estimating optical flow with arbitrary accuracy. Motion detection
based on optical flow must be tolerant of noisy input.
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5 The Optical Flow Equation.

The basic mathematics governing the optical flow generated by a moving camera is well known.
Our notation is similar to !121. using a coordinate system fixed to the camera (e.g., the world can be
thought of as moving by a stationary camera). Optical flow values are a function of image location.
the relative motion between the camera and the surface point corresponding to the image location.
and the distance from the camera to the corresponding surface point:

F(p) = -+F,(p) (1)

rip)

Ft= (-U + zW -V + yW) (2)

F, = (.4x y- B(2+1)+Cy , A(y 2 + 1)-Bzy-CZ)) (3)

where F is the optical flow at image location p = (x. y), x and y are normalized by the focal length.
rHp) is the range from the camera to the surface point imaged at p, T = (U, V.,IV)T specifies the
translational velocity of the camera, and w = (A, B, C)T specifies camera rotation.

Most work on the analysis of optical flow has dealt with a camera moving through an otherwise
static environment or, equivalently, a single rigid object moving in front of a fixed camera. In such
cases, single values of T and w govern the flow over the whole image. If moving objects are present,
then the relative motion between camera and environment will be different than the relative motion
between camera and moving object. Notationally, we will specify the camera motion with respect
to the environment by T(enu) and w(e' u). The parameters specifying the relative motion between
the camera and an arbitrary scene point p will be indicated by T(P) and W(P). p lies on a moving
object if T (p) $ T(e" ' ) and/or w(P) A .(e1).

6 Detection based on Epipolar Constraint.

If complete information about instantaneous camera motion is available, then T(en") and w(11) are
known. If the camera is translating but not rotating with respect to the background, w('"') = 0,
F,- = 0, and all flow vectors due to the moving image of the background will radiate away from a
focus of ezpansion (FOE). From equations 1 and 2, it is easy to see that the image plane location
of the FOE is at:

= (L , L) (4)
While the location of the FOE depends only on the direction of translation and not on the speed, it
is important for detectability that the speed be sufficient to generate measurable optical flow. The
FOE is not restricted to lie within the visible portion of the image (and in fact may be a focus of
contraction). An FOE at oo corresponds to pure lateral motion, which generates a parallel optical
flow pattern.
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6.1 Direct use of motion epipolar constraint.

For pure translational motion, the direction of motion specifies the direction of optical flow associ-
ated with any surface point stationary with respect to the environment:

9/ce = V - W y  ()0Io =ta - 1 U - WX 5

where 0!o, is the expected flow orientation at the point (z, y). predicted using the motion epipolar

constraint. Note that this equation is still well defined when W = 0. corresponding to a focus

of expansion at x in image coordinates. Any flow values with a significantly different direction
correspond to moving objects [8]. (The converse is not necessarily true. It is possible that moving
objects coincidentally generate flow values compatible with this constraint.) This approach requires
the estimation of only the direction of flow, not either the magnitude or spatial variation of flow.

Camera rotation introduces considerable complexity. Knowledge of camera motion no longer
constrains the direction of background flow. Nevertheless, at a given point p, flow is constrainted to
a one-dimensional family of possible vector values. The family is given by (1-3) where r ranges over
all positive values. The analysis can be simplified because of the linear nature of (1). F, depends
only on the parameters of rotation and not on any shape property of the environment. Because
the value of F, at a particular point p does not depend on r(p), it can be predicted knowing only
w. At every point within the field of view, this value can be subtracted from the observed optical
flow field, leaving a translational flow field:

Ftran,= F - F, (6)

This field behaves just as if no rotation was occurring, and thus moving objects can be located using
the FOE technique described above. For the remainder of this paper, when rotation is present, we
will take the term FOE to refer to the focus of expansion of this translational field.

In principle, even if camera motion is not known T(e' ) and W(en) may be estimated from
the imagery (e.g., [12]), subject to a positive, multiplicative scale factor for T(nv). Two serious
problems exist, however. Narrow angles of view make estimation of camera motion difficult, as
significantly different parameters of motion and surface shape can yield nearly identical optical
flow patters [1]. In addition, techniques such as [121 uses a global minimization approach which will
not perform well if moving objects make up a substantial portion of the field of view. A clustering
approach (e.g., [13]) can be made tolerant of the moving objects, though great difficulty can be
expected dealing with a five dimensional cluster space.

6.2 Indirect use of motion epipolar constraint.

The motion epipolar constraint has an important implication for motion analysis methods that
operate only over small image neighborhoods. Away from the FOE, Ft(p) and F,(p) vary slowly
with p (equations 2 and 3). Over a small neighborhood, both Fc(p) and F,.(p) are essentially
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constant. As a result, over a small neighborhood. the component of flow due to rotational motion is
essentially constant, while the translational flow, Ft,, varies only by a scalar multiple dependent
on depth. That is. over the neighborhood Ft,=, . is essentially constant in direction. We can use this
result to simplify problems arising from rotational camera motion. In one technique. we explicitly
compensate for rotation. In a second technique, active tracking of potentially moving objects leads
to a particularly simple computational scheme.

6.2.1 Known rotation.

Often. information about camera rotation is available, even when the direction of translation is
not known. Non-. isual information about camera motion often comes from inertial sources. Such
sources are much more accurate in determining rotation than translation. Rotation involves a
continuous acceleration which is easily measured. The determination of translation requires the
integration of accelerations. along with a starting boundary value. Errors in estimated translation
values rapidly accumulate. A simple technique allows the detection of moving objects when only
camera rotation is known.

If all motion parameters are known, knowledge of camera rotation makes it possible to compute
the translational flow field, Ft,,as. Knowledge of translation can then used to locate the FOE and
thus constraint the direction of flow vectors associated with the environment. If only rotation is
known, it is still possible to determine the translational flow field, but not the FOE. Visual methods
an be applied to the translational flow field to estimate the location of the FOE, but these methods
suffer from a number of practical limitations when applied to noisy data.

An alternate approach can be used which does not require the prior determination of the FOE.
The translational flow field extends radially from the focus of expansion. From the arguments given
above, we know that over any local area away from the FOE, variations in the direction (but not
necessarily magnitude) of the translational flow field will be small. Flow arising due to moving
objects is of course not subject to this restriction. The gradient of flow field direction can thus
be used to detect the boundaries of moving objects. At these boundaries, flow direction will vary
discontinuously

2

A complementary technique is available to deal with situations in which translation but not
rotation is known. We can expect these situations to be rare, however. If the direction of translation
were known over some interval of time, it would be an easy matter to determine the rotation by
examining the rate of change of direction.

2Marr (14] claims "if direction of [visual] motion is ever discontinuous at more than one point - along a line, for
example, - then an object boundary is present." Note that this is only necessarily true if no camera rotation is
occurring (or equivalently, if camera rotation has been normalized by using the translational flow field).



6.2.2 Active tracking.

A vision system which can actively control camera direction is capable of tracking regions of interest

over time. keeping some particular object centered within the field of view. Tracking regions

of interest is desirable for many reasons other than the detection of moving objects (e.g.. [15]),

though the analysis of imagery arising from a tracking camera has not received much study by the

computer vision community. If there are significant variations in depth over the visible portion of

the background and if moving objects are relatively small with respect to the field of view, then

moving object detection based on tracking can be accomplished without any actual knowledge of

camera motion. (For motion detection, the tracking can easily be simulated if the camera is not

actively controllable.)

If an object is being tracked. then its optical flow is zero.3 Flow based methods for determining

whether or not a tracked object is moving must depend wholly on the patterns of flow in the

background. Object tracking helps in moving object detection because it minimizes many of the

difficulties due to camera rotation. When dealing with instantaneous flow fields. we can decompose

the problem by considering all translational motion to be due to movement of the camera platform

and all rotational motion due to pan and tilt of the camera to accomplish the tracking. (We will

disregard any effects due to spin around the line of sight.) Consider the effect of tracking a point

that is in fact part of the environment. Tracking is effected by generating a rotational motion that

exactly compensates for the translational flow at the center of the image. This is accomplished by

choosing Fr such that:
F-(,0) F(0, 0) (7)

r(0,0)

For a small enough neighborhood, Ft and F, can be treated as constant, leading to the following

flow equation:

Ft,.k(p) = --- JFt (8)ri-p) r(,0))

The effect on the optical flow field is that in the neighborhood of the tracked point, the direction of

flow will be approximately constant (modulo 1800), with a magnitude dependent on the difference

between the range to the corresponding surface point and the range to the tracked point.

Now, consider tracking a point that is moving with respect to the environment. If environ-

mental surface points are visible in the neighborhood of the tracked point, Ft and F, are no longer

constant within the neighborhood. For environmental points:

Ft(env) Ft (objeci)Ft,.,k(p) = ("--_ + Fr( " ) -(9)
r(p) r(0,0)

F(env), F,(en v), and Ft (obje ct) will in general differ in orientation. If there is a variation in range to
visible environmental points, then there will be a variation in direction of observed flow over th,

neighborhood. (Note that detection is not possible if there is no variation in r(p) over the visible
environment. This situation is similar to that depicted in figure 1.)

'To simplify discussion, we ignore the case of an object rotating in depth. The method developed does in fact
deal effectively with this situation.
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Figures 2 and 3 illustrate the effect. Figure 2 shows the optical flow over a neighborhood in
which no motion is occurring with respect to the environment. Figure 2a shows the flow before any
tracking motions are initiated. The dashed line indicates the translational component of flow. The
rotational component of flow is indicated by the dotted line. The solid line is the observed optical
flow. the sum of the translational and rotational components. The translational components are
parallel. The variations in magnitude correspond to underlying variations in range. The rotational
components are constant over the neighborhood. Note that the observed flow varies in orientation
- as previously indicated. orientational variability alone is not enough to detect moving objects.
Figure 2b shows the flow that results when the point in the center of the region is being tracked.
The center flow is of course zero. The dashed lines now indicate the flow that would be observed
without tracking. The dotted lines indicate the rotational flow that is introduced to stabLize the
center point withing the field of view. The solid line shows the resulting optical flow. Note that
the flow vectors are parallel, but in this case differ by 1800.

2a: Before tracking 2b: After tracking

Figure 2: Tracking a Stationary Surface Point.

Figure 3 shows the same flow vectors in the case where the center point corresponds to a moving
object and the two other points correspond to portions of the environment. Note that in figure 3a,
the translational flow varies significantly in orientation. If we actually knew the translational flow,
this fact would be enough to determine that a moving object was present. Without information
about camera rotation, however, we must resort to more indirect methods.

7 Detection Based on Flow/Depth Constraint.

-ecently, efforts have been made at developing integrated approaches to analyzing stereo and
motion (e.g., [6, 16]). These approaches simultaneously deal with motion and stereo disparity,
either by comparing flow fields taken from different viewing positions or by establishing point
correspondences over both time and viewing directions. Similar multi-cue analysis can greatly
aid in the detection of moving objects. We claim, however, that it is not necessary to adopt a

9 9



3a: Before tracking 3b: After tracking

Figure 3: Tracking a Moving Object.

strategy requiring the unified low-level integration of motion and stereo. Rather, depth estimates
from whatever sources are available can be used. In addition to stereo, these sources can include
the full range of non-motion depth cues: familiar size, focus, gradients of various properties, aerial
perspective, and many more [171. Furthermore, while precise estimates of depth are obviously
useful, relative depth or coarse approximations to depth can also aid in the analysis.

7.1 Objects moving on surfaces.

Knowledge of the shape of environmental surfaces can be used to simplify the motion detection
problem. Scene structure may be known precisely (e.g., the range to visible surface points) or in
terms of general properities (e.g., significant depth discontinuities can be expected). If moving

objects must remain in contact with environmental surfaces (e.g., vehicular motion), a less complex
technique depending only on knowing the image plane locations corresponding to discontinuities
in range is possible. If no objects are moving within the field of view, equations (1-3) show that
flow varies inversely with distance for fixed p. Both F, and Ft vary slowly (and continuously) with
p. Discontinuities in F thus correspond to discontinuities in r. This relationship holds only for
relative motion between the camera and a single, rigid structure. When multiple moving objects
are present, equation 1 must be modified so that there is a separate F, ( and Ft( ) specifying the
relative motion between the sensor and each rigid object. Discontinuities in flow can now arise
either due to a discontinuity in range or due to the boundaries of a moving object. If independent
information is available on the location of range discontinuities, and other discontinuities in flow
must be due to moving objects.

The motion detection problem becomes particularly simple if the environment is planar. In
this case, depth discontinuities are not possible and any discontinuity in flow (either direction or

magnitude) corresponds to the boundary of a moving object. Note that it is not sufficient to know

10



simply that the environment is a "smooth" surface. From some viewing positions. even smooth
surfaces may exhibit range discontinuities.

7.2 Direct comparison of depth and flow.

A simple way of combining depth and visual motion to detect moving objects is possible if accurate
3-D position information is available for a sufficient number of surface points in the environment
and on any moving objects. If both the optical flow and the depth are known for a collection
of surface points in the environment, then equations (1)-(3) can be used to create a system of
equations which can be solved for the parameters of motion T("'rn) and W("ft). (Knowing depth
values makes this an easier task than the standard structure-from-motion problem.) If the collection
of points includes some values associated with the environment and others associated with one or
more objects moving with respect to the environment, the system of equations used to solve for
T and w will be inconsistent. Checking the system for consistency can therefore be used as a test
for the presence of a moving object (e.g., a test for non-rigid motion in the field of view). Only
the consistency of the system is important. The actual values of T and W are not relevant to the
detection problem.

7.3 Indirect comparison of depth and flow.

The availability of accurate 3-D position estimates depends in large part on having accurately
calibrated camera systems. Not only is this calibration difficult, but it is continuously subject to
variability due to mecd nical compliance. Relative measures of visible motion and/or stereo can
be used to avoid this calibration problem (e.g., [181). For example, Reiger and Lawton have shown
how to use local spatial differences to minimize difficulties due to rotation [19). If no moving objects
are visible, then large local differences in flow can only be due to a change in depth. If p(i) and
p(.) are image points on either side of such a boundary, then from equation (1) we have:

F -F,(p()) - F,(p(J) + Ft(p) F(p) (10)
Ir(p(i)) r(p(i)))1

If pW() and p(i) are sufficiently close, F,(p()) F,(p(j)) and F,(p(')) ft Ft(p(j)). As a result the
rotational component of flow cancels out in the spatial difference and:

That is, the difference in flow across the edge is proportional to the difference of the reciprocal of
depth across the edge. The relationship between stereo disparity and depth is very similar to the
relationship between optical flow and depth:

d(p) -- d(p) + d" ) (12)
r(p)
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where d(p) is the stereo disparity at p, d, is a term dependent on the camera vergence. and d6 is
a term dependent on the baseline separating the cameras. Using the same argument as above, we
have:

Ad• ;z wl dg(p)nA (13)

Over a local neighborhood. Ft and db will remain essentially constant, while A- will generally vary.
Dividing equation (11) by equation (13) shows that the ratio of AF to Ad remains constant, as
long as the points over which the differences are taken are the same for flow and disparity.

Flow boundaries associated with moving objects are not subject to this constraint. As a result
we can detect moving objects by looking for local neighborhoods over which the ratio AF/Ad varies
significantly. We never have to solve for the actual depth. nor do we need to know the functions
Ft, F,, d,, or db. The solution does not depend on information about camera motion or relative
camera geometry. For this approach to work, however, there has to be significant changes in depth
over the background, not just between the background and any moving objects. There is reason to
believe that such variation is important to a large class of moving object detection algorithms.

8 Examples.

All of the methods described in sections 6 and 7 have been tested experimentally. Four examples
are presented below, all involving a moving camera and potentially moving objects. Two cases
exploit the epipolar constraint. The first of these involves a situation in which camera rotation
is known, but not camera translation. In the second case, a potentially moving object is being
actively tracked. Results are also presented for two methods utilizing constraints resulting from
the comparison of depth and flow. The simplest of these involves objects moving over a smooth
environment. The final example compares flow and disparity across boundaries of possibly moving
objects, using the technique of section 7.3.

Figure 4 shows the first frame in a sequence of of images of an outdoor scene. In this example,
the camera rotates and translates with respect to the environment while the toy vehicle moves
to the right between image frames. The rotational velocity of the camera with respect to the
environment was measured. The optical flow field shown in figure 5 was obtained by the token
matching technique described in [20]. The translational flow field shown in figure 6 was obtained
by subtracting the rotational flow component computed from the known rotational velocity from
the observed optical flow field (figure 5). The gradient of flow direction in the translational flow
field was used to detect the boundaries of moving objects. Figure 7 shows the detected boundary
of a moving object overlaid onto the first frame of figure 4.

12
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Figure 4: First frame of outdoor sequence.

Figure 5: Optical flow field obtained from the image sequence of figure 4.
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Figure 6: Translational flow field determined from the optical flow field of figure 5.

'lip

Figure 7: Boundary of a moving object overlaid onto the first image of figure 4.
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Figure 8: First frame of tracking sequence.

Figure 9: Optical Rlow field obtained from the image sequence of figure 8.



Figure 10: Histogram of the flow direction of the optical flow vectors in figure 9.

As a comparison, a similar experiment in which the tracked object, a rock, is stationary with
respect to the environment while the camera is moving was also preformed. A pair of images similar
to that of figure 8 were obtained. The resulting estimated optical flow field is shown in figure 11. Its
corresponding histogram is shown in figure 12. Note that only one distinct peak is observed in this
histogram. The global variation in flow direction in this case was computed to be approximately
11 which is significantly smaller than that of the previous example.

An image sequence starting with the frame shown in figure 13 is used to illustrate the technique
for detecting objects moving in a smooth environment. In this example, the camera moves with
respect to an environment consisting of various small pieces of hardware lying on a planar surface.
The optical flow field shown in figure 14 was obtained in the same manner as in figure 5. Figure 15
shows the locations of large variations in optical flow values, corresponding to the boundary of a
moving object.

A stereo image sequence starting with the stereo pair shown in figure 16 is used to illustrate
the technique of indirect comparison of flow and disparity as a basis for moving object detection.
Both the flow field shown in figure 17, and the disparity field shown in figure 18 were obtained using
the method of figure 5. Comparing the ratio of the change in disparity values to the change in flow
values across neighboring points, and selecting as the boundaries of moving objects those areas in
which there is a distinct discontinuity in that ratio, results in the identification of the boundaries
indicated in figure 19.
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Figure 11: Optical flow field obtained from tracking an object which is stationary with respect to
the environment.

Figure 12: Histogram of the flow directions of the optical flow vectors in figure 11.
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Figure 13: First frame, miscellaneous hardware sequence.

Figure 14: Optical flow field obtained from the image sequence of figure 13.
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Figure 15: Boundary of a moving object overlaid onto the first image of figure 13.

Figure 16: First pair of stereo images in a sequence.
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Figure 17: Optical flow field obtained for right image sequence of figure 16.

Figure IS: Disparity field obtained across the stereo pair in figure 16.
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Figure 19: Boundary of a moving object overlaid onto the right image of the stereo pair in figure 16.

9 Discussion.

9.1 Which method to use?

This paper presents a collection of loosely related techniques for visually detecting moving objects.
Detection based purely on visual motion from a single camera seems quite difficult. Each of the
methods presented here uses some sort of additional information, either about current camera
motion or scene structure. The methods are characterized by the additional information used, the
underlying constraints exploited, and the particular computational structure used to implement
the technique. It is likely that reliable moving object detection will require several complimentary
techniques, along with a method for selecting which detector to trust in any particular situation.

9.2 Computational structure.

The methods described above can be grouped into three classes. Point-based techniques (com-
pletely known motion) compare individual optical flow vectors against some standard to determine
incompatibilities with the motion of the camera relative to the environment. In all cases described
here, the compatibility measure is based on a directional constraint associated with the focus of
expansion of the translational flow field. Point-based methods have the advantages of computa-
tional simplicity and the ability to detect very small moving objects. They will be most effective
when parameters of motion are known precisely and the magnitude of the translational flow field
at the point in question is sufficiently large to allow an accurate estimate of direction. Edge-based
techniques (known rotation, smooth surface) roughly correspond to traditional edge detection.
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Edge-based motion detection is characterized by the differential flow properties examined and by
the filtering technique used to separate edges due to range discontinuities from those due to moving
objects. The approach is effective when surfaces are smooth and techniques exist for accurately
locating those range discontinuities that do exist. Edge-based methods have the advantage of spec-
ifying the outline of moving objects that are detected. They are likely to be of limited use when
moving objects are quite small. Region-based techniques (tracked object. depth/flow comparisons)
examine optical flow values over a region. searching for distributions incompatible with rigid mo-
, on. As with edge-based approaches. the viewed region must include portions of both object and
nvironment. As long as the region includes portions of both object and environment, this is an

e,7.ctive test for moving objects that does not require any information about camera motion. The
r-gion-based method based on tracking potentially moving objects does not require any information
about camera motion. but does require that there be significant variations in range over the visible
portions of the environment.

9.3 Limitations.

All detection algorithms founded on the motion epipolar constraint share two important short-
comings. First, environmental flow vectors will be small near the FOE regardless of the ranges
involved. As a result, detection based on flow orientation will be unreliable within a region around
the FOE. 4 This means that epipolar-based methods will have difficulties for viewing directions
close to the direction of motion. This is of course the direction in which moving object detectior
is likely to be most important. One heuristic for partially overcomming limitations near the FOE
is to look for large magnitude values of translational flow near the FOE. Such values correspond
either to moving objects or to environmental points that are very close to the camera. Secondly,
while the motion epipolar methods were developed to allow for the possibility of a moving camera.
translational camera motion is actually a requirement. Without translational motion, there is no
motion epipolar constraint to violate. More specifically, not only must the camera be moving,
but significant portions of the visible environment must be sufficiently clo'e to generate detectable
non-zero translational flow values. Most methods based on the depth/flow or rigidity constraints
should work for both moving and stationary cameras.

No method for detecting moving objects will be effective if it depends on knowing precise
values of optical flow. Techniques for estimating optical flow are intrinsically noisy (e.g., see (221).
Additional difficulties arise due to the idealized nature of equations (1-3). Real cameras are not
point projection systems. Substantial effort is required to accurately determine the values of z and
y in (1-3). Geometric distortions in the optical and sensing systems affect measured locations on
the image plane. Variabilities in effective focal length can be substantial. Reliable techniques will be
based on searching for large magnitude effects in the flow field [231. All of the methods described
above compare flow vectors to some predetermined standard, or look for significant differences
across flow boundaries. As a result, all deal with relatively large magnitude effects. Reliability is

'Lawton talks about a 'dead zone' around the FOE within which no information based exclusively on camera
motion is available (21]. This effect is a problem not only for moving object detection, but also for techniques such
as motion stereo.
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still dependent on scene structure, the nature of camera motion, and position in the visual field
relative to the direction of translation.
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DETECTING MOVING OBJECTS

Wilis a. Thompson Ting-Chuefn Pang

Computer Science Deparmntm
Uni veiry of Minnesota
Minnapolis. MN4 55455

ABSlRACr ermua1111t Is SUfficienly distant so tha there is no perceived opti-
cal Bow. It is not possible to tell whether or not this seemingly sum.

Thie detection of moving objects is importns in many tasks. This Pie patint corresponds to a moving object!
paper examines moving object desection based primarily on visual
motion. We conclude thin in realisic: situations. detection using Figu= I provides ore example of why a general and reliaile
visual information alone is quit difficult. particularly when the S01110o1 to the problem of moving object detection based only on
Cament is also moving. 711e Availability of adiditional, inrationt viwal motion is not feasible. Robust soiluiom remquir tha a"d-
about camera motion aid/or scene stricture greatly simplifies the uonaInformation about camera motion and/or scene i Prcture be
problem. We develop detection ail m itun for the cases in which 1) available. In this paper we examine a variety of types of informa-
camera motion is known. 2) only camera rotaton is known. 3) only tion t" might be availabile. Eacht information source places con-
camera translation is known. 4) objects move in contact with a strium on the optical flow kild ha can be generated by a camera
smooth surface, and 5) an objec is being actively tracked, but the moving through ani otherwise static envirornment. Violations of
camera motion associated with the tracking is not known precisey. thes conusints are thus necessarily due to moving objecis
Examples of several of these techniques are presented. _________________________

1. Initoduction.

One iinportm function of a vision system is to recognize the
presence of moving objects in a scene. If the camera is staioary
anid illumination, cotust. this cm be dornr by simple tecbines
wich compare successive image frames, lookingr for siguificant
differences. If die camera is moving, 11 problem is cDaWideabY
more cotmplex. For the purposes of this discussion. Riowang objects
are taken to be any objects moving with respect to the stancinary
portions of the scene, which we refer to as the enwronnrum. For a
moving camera, both moving objects and stationary Portions of the __________

see may be changing position with respect to the camera and thus
generating visual motion in the imagery. A moving camra leads to
difficulties because of the reed to detertmne objects MOvWn with F19M 1: Is The Central Region a Moving Object?
respect to the environment, rathe than the much ease problem of ___________________

finding objects moving with rePect, to the camera. In this p a;P we
deal with the problem of detectn moving objects from a moving
camera, based on optical flow. Figure 2 simaue pauendal source of inbmmon and the

assocamd comtiiss on optical nlow. The am sec=~ list gUenem
Tie visual detection of moving objeca is a surptisingly proPerie neededbymreiabedetectionulgodai. Follointhis

difficult task. A simple example linm jie PM w serou the is a deivadon of each of the flow i - anmm , we conclude with
problem can be. Co he opical flow fiel shown in ASgu= 1. experimerutal deinonsiratiun of sevealt of the techniques anid general
which appemr to show a onsA squiiui region in the cemer of ft owervamnr about the nur of these Methods.
image moving to t rigk a -sm - 1d'by an iipparmdy station-
ary background. Such a flow fiel cman se fuom several equally L. Airumidons
plausible situatons: 1) Mhe camer is Lalarery with resec to ft
ernment. and ft ceruu regmo orresporifs to an obp mav We =t with the presimption thit motion detection algp-
ing to t tight. 2) The caer 'is moving io the left with respect to itim ShMul be designuri with fte fWlowing properties in muid:
the environment. most of die eruvisrmen is sufficiently dim so

am the geatd optical flow is effectivuly zeo. while 13 ceinal Thea o~ldqvlew wayr be Pekaaveo nwrow.
regio corresponds to a surfm neow to the n but stationary
with respect to the envuromam 3) The amena and object ame mov- MIOdwn dewetion should not depend on the use of wide angle imag-
ing with resp ec to bothe envitnente and each odle. though the ing syuYL SUCh Ey7ms may rnot be availabl in a particular

simdo. arid if used may 1ice tie difficulty or recogrulting
_________________Mai moiving ob*ets As a rei.decman atlgosits shLd not

Thi wor wa mp.db Air., 0. Ofia adsdiinbifau lt e depn on sAde properties of persective.
AR14.O352
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Let p =(x. y) refertw an image location. where z and y have been
normalized by the focalletigtof the camer. Let P =(X. Y.Z) be
the coorinaIItes of the surfface PoinE peoecang Onto (z. Y) specified

KnwiirY~s ctinift on: in a cootdinsi ytem~ with origin at th .7s n xi ln
the optical axi of tecamera. Specify the motioin of the point at
(X. Y. Z) with respect to the camers in terms of a vanLational velo-

full prametrs ofmotio Bow aluescity T -(U. V. W)' arda aion alvelocty w (A.5a. CV. Th
MlarneIfmtiS lw~iusoptical Bow.D- m. v). a p is pa y afunction ofx. y, T..aand

parametesof otaflo variability of Blow direction MoU,U I V UV14V, 1
where ui is die x component of Blow. v is the y component of flow.

it ~surfaMe ame Smooth loca variability of diection -4 + iW M -V + vW

obpa is beingtakd global vanability of u, Axy -B(x21 +l)+Cy(3
direction of flow Y, - A(y2+1).BZy.'-Cx

Let the parameters specifying camera motion with respect to the
environment be T, and a, and the corresponding parametets; speci-

Figure 2: Constraints on Slow. fyng relative motion between the camera and a scene point P be Tp

The image of moving objects may be small with respect to the fieLd 31 nw rnlto n oain

of view. The paramrm~ of camera monoon coafuwmn possible opacai flow
values tham can occur due to cwara motion wit respect to the

This is clearly desirable for reliability. Moving objects may be far envIrropneft.
away and subtendedl by relatively small visual angles. We need
methods capable of identifyitig single image points. or at least small If complete information sbout instantuieous camera motion is
Coilecon of points, as corresponding to moving objects. Detec- available, then T, and a, are itnown. If the camera is Translating
tion algondims thus cant depend on vmriations in flow over a but not rotating with resec to the bacitground. ca, - 0 and all
potentially moving object flow vectors due to the moving image of the background will radiate

away from a focus of epansuwn (FOE). Fronm equation (1). it is
Only monocular imagery is avaiable, easy to se that die image plante location of the FOE is at:

U V
This is equivalent to the situation where objects of interest can be X = - W y,.. - 7 (4)
far away relative to the camera base-line in a stereo viewing s''ia-

tion. te location of the FOE depends only on the direction of transla-
tioin. tnt on thes speed, so methods for motion detection which

Estimated opticalfAow fields will be noisy. depend on the location of the FOE do not actally requitit the com-
plete parameters of tianslaztional motion. Thie FOE may not Lie

No method is capable of estimating optical flow with arbitrary accu- within the visible potion of the image (and in fact may be a focus
racy. Mocion detectin based on optical flow must be tolerant of of conflacoon). A FOE at - cornwponds eD pure lateral motion.
noisy input, which g ,aw a parallel optical flow pattern. At every image

pout p. ktnowing die FOE fully specifies the direction of optical

0* *1glsano,* I opcllw rje flow ssaccated with any surface point stationary with respect to fth
environmentL At p:

A resimo to ion MUS flow eflitinatesII the use of temporli ___

derivatives of flow and/or multiple views a distinct time intervasls. *JI-tai -X 5
Temporal diffeninfitin will ireas noise in the estimated flow wo f stednto rmptwd h O r ,. sf
values. Use of mublp views increae computational complexity. wa ~ stedrcinfn oad h O n ,,,a h

(In act exealo wih Tere re easns t beiev tha muti- direction of optia flow at p. (Note that the first equaition is stil
(i fuL eprecwihIeeam f5sini t beiv that mo£1] well definsd even if W = 0. conesponding to a focus of expansion at
thouhae aresi wcdq m in hcs wo prov) reibltyP an image coordinaes.) Any flow values with a dlffetent dueooa

diouh tey m nt P I - inthi woL) ortespand to moving objects (3). E-g.. moving objects exis when.
3. Constraints on Optical Flow, ever It8 m- Of,, > L for somet appnare L (It Is possible that

moicVing o*=ct coicidentlly gu 0 Bow values compsable with
Mhe basic madanmi governing the optical flow generate this , , lm) 7his app 9ach ei the estimation of only the

by a moving camera is well kinwi. We take our nttion from [2). diniction of flow, not either the magramade or spatial variation of
using a coDordia SySM &ed to die caMera (L~g. the world can be flw
thougtIl of $a moving by Aatinary camera). Optical flow values ae ro n uidus codral cmpety
ame a function of image locati=n the relative motion between the Conlde amerriation ino loner cousideablde diret .o
camera and the surface post correspondinig to thes unag locootI6l bKowlg oflow.= Netiens.a ao lonen onrint p.e dlicon o
and the distance from the camera to the conuponding surface point.o.Nvetees.a gvnpin .Bw scn
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stamdto a onedimin al family of possibl vector values. The r ef
family is given by (1) - (3) where Z rangesover a positve values.&~f-~ 8
The analysis can be simplied beciaie of de inear nanuem of (1). &L 8~L y (.-Y i+ (z. - z)

i.and v, depend only on the pasumn of rotation and not on any whom (zf. vw sdie image plane location, of the FOE. We can
Shape Vpery of the arvroment. Because die values of u, uAd v, sea from the above equation din over my lowa are away from the
al a particular point p do not depiend on Z. they can be predicted FOL vauiations in the direction of die trialionl flow field will
knowiag only a. These values can be subtacted fromo die observed beuaJ lwangdetmoigbecistcureota-

dnalfow field. leavng A oaaaAiaA)O f&b -a"ld Flo &rsn du ta moin oj is~ dofcoon not sub-

F, - (1. v,)- F- F,. F,.(iv) (6) beusidtodateboundarmoftovgabjppms Artheseboon-
where u,. and it, ame defined in equation (3). This field behaves just dae Bo ieo will vary dsnously'.
as if no rotation was occurring, and thun movig object can be A ~ eamu saalbet elwt aa
located usig the FOE techuque described above. For the A opeetr cuje is aiabl Woelcantexseon
remainider of WiS paper, when romaan is ;p-eseF. we will take die tion in wich trumlaon but tm P sko.W anepc
term FOE to refer to the focus of expauion of this WUsLsnonal these sinoue to be mei. however. If the direction of uwuanan

fied.wene know. over some inserval of time. it would be an eay --
to determine the rotation by examisung the rat of chuage of direc-

In principle. even if camera mono i a nim own T, aid 91, d
may be estimated from the imagery (21. subject to a positive. multi- J oinoe mohsrlcs
plicative scale factor for T, Two seriu prolkis exist. however. 3.Moona smohura.
Narrow angles of view make esinnon of cera motin iffcut ObJect motion over smiooth sufaces conwunata she local vartabiliry
as sipuxficantly different parameters of moton and surface shape fl .
can yield negarly identcal optical flow panrs (4). In addition tech-
niques-such as (21 uses a global mumaon approach wich will Knoege of the shape of envuroumeral surfaces can be
niot perform well if movinig objects make up a substantial portion of used to simplify the motian detection problem. Soeme structure may
the hield of view. A clustering approach (e.g. 151) can be made be known precisely (e.g. the rasie to visible surface poem) or in
tolerux of the movinig objects. though great difficulty cani be terms of general properites (e.g. signiicua depth discontinuities
expected dealing with a five dinmsonal cluster space. can be expected). hiftimano about scenetructure can came from

Visald sources (eCg asteRo (9.101). or from pe41mcig models of the
3.L nownrotaion.etoivonmen. If both dhe optical flow. (u. v). and die depth. Z. ame

known for a collection of surace paints mn the enviromeaLi diem
The part ters of carvera roinim oiiCn W the local rarilry Of (1) - (3) can be use to cruis a syne of equana which an be
oical flow doiicton LAw can occur due so camera Ifoflon wUDI solved far the pa-mes1r, of motion T and a If doe calleaio of
remect to the e*iroiifmf. poet tduie some valsaw anocued with die enamue ad

Ofte. iformtio abot cmerarotnon s aailale.~ otersassociated with one or more objects moving with respec to
wham. e direct on f ou cameasl ation , is ai nw.Nnvsulale vnors the envioument. the sYm of equunrow usd to solve for T anid a

whe di diecton f ranlaton s nt kow. Nn-vstil. nfon- will be utosm Cecd the smr for conistmncy can there-
tios about camera maont often comes from inertial s0ources. Such fore be used as a teat for die I - P P of a moving object (e.g. a tet
sources ame much motm accurate in determining romcan than Ormn- fi o-ii oir nteAi fve.
lahan. Romaran involves a coninou aceorai whn-igh maso indiasedilyie.
rmeasured. The determination of translation_ rimpues die integration If amifg obje cm mus remain in cm with environmental
of acceleraioriu. along with a starting boundary value. Erter in surtaces (eg. vehicular mocion). a less complex =eclnqu depend.
estimated translation values rapidly accumulate. A simple tech- tig Only on knowing theigeuplt PLocaom canesoridi to
ruque allows the deteenion of moving object whin only camera dicaunimmnes in range is posuble. If no objects are moving within
rotan ts known. the fid of view. equafinw (1) -(3) can be simplified int the fol-

In die previous accunts knowledge of camer mmon made it lowing form:
possble to comptse the trinrulatcnai flow fi"d F,.- Knowledge of (' )
translation was dien used to licitte the FOE aid dOm canamtde flow (p) - f,(p) * (9)
direction of flow vector s mocie with the aovircment. If only )
tuc is known. then it 1s still pamble to do1sri the niniA- where at an image point p. jtow(p) is die oprica Dow (a two-

tional flow field, but =o die FOE. Visald methoeds could be applied dimnio vecto. f, is the compoent of die Boaw due to dhe
to die transational flow field o esaum the icoaon of the FOE. mudim of die sme with 1espeF to die semor. f, is dependen 00
but these meis suffer hawi a number of pmactical limitaions the translatonal madam of th emar ad tbe viewing angle reatIve
when applied to nosy, dam. An akerm aIproeI can be used to the direction of trunion, wad a ie disanc between the sen-
which doesi not requwe die prior delenmiuo of the FOE The sot and die 5Wfust visible a p (Le. the va"i of Z in equamc 2
tranaln flow, fie eirtm radaly free the focus af expamuon. coinponding to the ismage locationi pl%. For fixed p. flow vain
At any point sipuiicanaly away frm the FOR. the dIrecton of flow invoisely with diltofim. Both f, aid f, vary slowly (aid conmo-
(but rnot niecessarily the magaimade of flow) will vary slowly. Direc- ousty) with p. Dlscamimides in flowv that - rreg ondto disco.-
tional, variability can be evaluated based onk equation (5): -- kriI in r. This relationship holds only for Pdladve ooSO

6 W(V -yW)betwe die canerand a single. rigid stumcre When mult*l
So.* V-W oving objects ane prseteation (9) must, be modified so that

ax (V-,W)a4(U-z7) M (615) if o (vWdi momaw dou n It -
o- - WU-g)dm PM -n~nee W I; 0 lit U s. - sM a 06bow"I 0v

OY (V-YW9+'(U-zW)a PM140ow . I VW d sol 6e moou n a 69lUU
The gradient of tie direction of die translational flow field can thus (or oqu'ably. atu in um bw bum ommi bY -ft *AMWD
be obtained as Aiw AM GM.
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there is a seprat f" anM f,") specifying the relative motion (mfodulo I1SM. with a ma1101116e dependent on the difference
between the itraro and each tigid Object. Discontinuities in flow be twshe r"g to the corresponding surface palm and the range
can Dow anse eCOWn due so A dis1cOOMnnUCy in range or due to die to dhe tracked pOUL Now. cotnder flicking a pomm =i is Moving
boundares Of a moving Ohio= If iindependent information is avald- with respect, to tie envirolnment. If amfl mtail surfac point ar
able on the loOS of rMng disconinuities. aid other disconafiw- visible in the neighborhood of the tricked pO=. and if there Is a
ties un flow must be due so moving objects. vaa== In rang tW these eviUMMMM points. thdim will be a

flie motioin detection proiblern becomes particulauly simple if vnm.o ndrcino o v h e atd

the UIVIluene is plna. In this case. depth discontinues am nor 4. Examples.
Possible And AAnY discoMntnity in flow (either direction or magru.
tude) corresporifs to the boundary of a moving Object. Note that it A ut of expenimes on moving object detection based on the
is nux tufficieit to know simply that the environment is a - smooth' tchniques discussedl in die previoius seUOnn have bow preformed
surface. From some viewing positions. even smooth surfaces may on rea images. Expurmeaa results awe pres, ed in this section
exhibit rage discornnmes. for the cases in which 1) the camera rotation is known. 2) objects

move in a smooth environment. and 3) at potentily moving object
3.4. Tracking region of interest, is being actively tracked.

Traclang an object coiroains Atm global variabiliy of the directton Figure 3 shows the first framein a seqluenc of of images ofan
of flow in tihe swrowiUng rwea. indoor scaie. In this exampl, mihe camera mutes arid translaes,

with respect so the environment while the soy vehicle on the table
A vision system which can actively control camera direction is moves to the right between image frames. The rotational velocity

capable of tracking regions of interest over time. keeping some par- of the camera ith respect so the eninittnag was measured. The
ticular object centered within the field of view. Tracking regions of optical flow field shown us figure 4 wa obtained by the token
tirerst is desirable for many reasons other thant the detection of matching techiuque described in (101. The transiarional nlow field
mroving objects (e.g. [I ID. though the analysis of imagery ansing show n u figure 5 was obtained oy subuacting the roational flow
from a tracking camera has not received much study by the com. comporomaI computed froim the known roatinaL velocity from the
Purer vision comamity. If dwnr are significant vaniations in depth observed optical flow field (figure 4). The grea of flow direction
over the visible portion of the background and if moving objects ame in the ruiuiladonal flow field was used to detect the bosundaries of
relatively small with respec tso the field of view. then moving object moving objects. Figuit 6 shows die detected bounidary of a moving
detection based on tricking can be accomplished without any actual object overlaid onto din first frame of figure 3.
knowledge of camsea motion. (For motion detection, the tracking
can easily be simulated if the camera is not actively controllble.)

If an object is being nicked, then its optical Blow is zero.
Flow base methods for determining whether or riot a nicke object
is moving must depend wholly on the pa- 1 - of flow in die back-
grand. Object micking "ep in moving object detection because is
miminizes many of dhe difficilties due so rotation. When dealing
with instantaneous flow fields, we cm decompose the problem by

co muieg all trasaonal motion to be due so movement of the
camera platform and all rotational motion due to pan and ailt of the
camera so accomplish the tracksig (We will disregard any effects
due to spin aroun the line of sigit) Consider the effect of tracking
a point that is in fact part of the anvmmaet. The translational
componus Of motion indcea pic F low paer fiel extendst
radially from the focus of expuinn with magrtime dependent on
the range so the corresponinng surfac poises Over a local area
away from the focus of expuasuon. din diretox of trrslational Bow
will be approxnaudy consan. 11he mutmon" component of
motion induces a Blow pinn which over a local area is approui-
musly consan us both direction and magritude.The magnitude
and direction = exactly oppoite din trniltional flow of the
tricked paint. From eqluations (2) ad (3). it is eas so see that at
the tracked point (z .y) - (0.0)

U V

FF1@mf 3: FhWa frIs of Inooscum.
u, n-0, v A (1I)

Since the optical flow is zero ath dinracked point we have
U

-- 8=B0. or ii.-, (12)

--. AuO, or v,u-v, (13)z
The effectontdincombi- ilsI hti h egbrodo h
tracked pouLt. e direction of flow will be apprximatey constan



An iMage squ starting wita he frame mw in figue 7

7:Z i used to Liusawe die ediriue for detecting objects momig w a
smohenvuUinen. Ithsexampl. tecamera moves with

-.. ~ - -~ rspect iA a mronmenm consistng of its and bolts lying on a
planar surfac The optca flow field shown n fig 8 was

--.-- -ob-ad in te same m as in figure 4. Figure 9 shows die:. - _..T ..- . --- -- * - ... ------. a-imflm4 Fil~ gsw ~l
, . . -locaona of Iavamos iopcal ow Values. oRm i to

. " . " - .--I uh bowaay of a moving object

o"N.• • x - • "

Flgure 4: Optical flow field obtained from
the image sequence of figure J.

5*. • - " .
5 . ":, ". .- " .5: .

" " ' ( "7: F framenus a abolts sequene

~i I

Figure 5: Trandstional flow field determined . j" , i1 ""
ftom the opthcal flow field of figure 4.~ 5

I-• • • .- ..-

• . "..I; '." " -. .- " -" ._---"
~~~~~~*-- Z, • , _ . = -. .

L. -n. .".
' '  

5." "-- - * -= - ,....
• * . . 5o •% ...

Ftpue 8: Optical flow Gold obtained
.om tte lump saqum of fure 7.

. 645.-ery ofmetingm objeft
owulid ote the &rv iml of fIgure 3.
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magnitude of die translational flow field at the point in question is
sufficiently large to a&How an accurate estimate of direction. Edge-
based techiques (kownl rotation. smooth surface) roughly

Sconesponi to traditional edg detection. -based oto dtc
Liis character~ize b te dff ,n w properieseamined

I: ~~.. A * disconamoiztes fromi those dus to movisig object. The approach a
~~. effective when surfaces ame smaodh and teclnuques exist for accu-

: .- : *methods have the advantage of specifying the outline of moving~, .. - ~L~ ~objects that amdetected. Thety ame likely tbeof limited use when
movng bjets m qinesmal.Region-based techniques (tracked

objec) examine optical flow values over a region. searching for dis-

~ * ~-c~ i~qapproaches. the viewed region must include portions of both object.kK'~. and environmens. As long as the region includes portions of both
obetand enirmonent this is an effective rest for moving objects

that does not requir any information about camera motion. The4
region-based method bae on tracing potentially moving objects

Flgiit 13: Opticail Saow field obtained from tracking an object does not require any information about camera motion. but does
which is stationary with respect to thhe environment. reqwir that theme be sigificanit variatons in range over the visible

portions of the environmenL.

One region-based technique not discussed above is based on
an explicit check for rigidity. Several trnicture-from-motion algo-
rnhms provide in estmate of rigidity (11.12.131. Such checks canl
presumably be used to recognize non-ngid moin due to the pres-
ence of a moving object. Numerical structure-from-motion algo-
nthms have proven to be unsatisfactory in practice due to severe
problems with ill-conditioning. It is not yet clear whether or not the
test for rigidity can be performed in a sufficiently noise tolerant
manner to provide for reliable moving object detection.

No method for detecting moving objects will be effective if ic
depends on knowing precise values of optical Blow. Techniques for
estimating optical flow are intinsically noisy (e.g. see 1141). Addi-
tional. difficulties aris due to the idealized nammz of equations (1) -
(3). Real cameras are not poit projection systems. Substantial
effort is required to accurately determine the values of x and y in
(2) andl (3). Geometric distortions in the optical and sensing systems
affect measured, locations on dhe image plane. Variabilities in effec-
tive focal length to to focus can be substantial. Reliable techniques
will be based on searching for large magiude effects in the flow
field (151. All of the methods described above compare iow vec-
tors to some predetermined standard. or look for sigxuficant differ-

Figure 14: Histogram of the flow diriections ences acros flow bounidaries. As a resuLt all deal with relatively
of the Optical Blow vectors in figure 13 large magnitude effects. though reliability is dependent on scene

structure the nature of camera motion. and position in the visual
hield relative to die directon of transilaion.

Marty of the technque described above are based on compar-
ig flow values at differnt porn within the field of view. All of

these methods requir that measurable opi flow exist for points
both mnUdi environent arid on moving objects. (Some requre only
tha the taland allw be measurables.) such methods share three

5. Dlscusion important limitanoes: I) diey are tneffectual near the FOE, 2) t
camera must be moving. and 3) pomoot- of doe visible environment

The methods descibed above cm be grouped into three m=m be saffclently close to gea - reoniably rn-zero transia-
classes. Point-haed techiue (nowit motiOt ktioim translationi) uonAl flow values. Newr the FOE. fow due to th amminep will
compare indual" optical flow vectors against some standard to be close to zero. regardless of range. If the camera is not moving.
demo=un incompanbllities with the mooon of the camera relative all environmenal flow values will be zero. The same is true if all
to th enviro-a. in all canes described heme the compatibility pont in th arnmm are very distant relative to the speed of
messure is bae On direction constaa asciated with die trn~sott These Limitations do not apply just to the methods
focus of expWMo of the tunuional flow field. Point-based listed above. as illustrated by figure 1. they are gealk problems
methods have the advunM of compmsadonal. simplicity and the associated with any vision-based motion detection scheme that does
ability mi detect very mall movug 1o11ec"M They will be most not have accurate Information about camera translation and/or range
effiective when parameters Of motion am known precisely and the to visible surface poins
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THE 21-D SKETCH

William B. Thompson Lincoln G. Craton Albert Yonas

Computer Science Institute of Institute of
Department Child Development Child Development

University of Minnesota
Minneapolis, MN 55455

1 Introduction.

It has been known for many years that motion information provides a cue for depth. Two rather distinct
types of information are provided. Relative motion of surface points is an indication of the relative depth
of the points. (In this article, we will use the term depth to indicate the range from the observer to visible
surface points.) If the surface points in question are part of the same rigid object, the analysis of relative
visual motion leads to the structure-from-motion and motion-from-structure algorithms currently receiving
much attention. Motion parallax also generates relative visual motion that provides information about the
overall spatial layout of a scene. The second motion cue to depth occurs at dynamic occlusion boundaries.
Surfaces on either side of such boundaries are moving visual with respect to one another. Until recently,
it was though that the depth cue at dynamic occlusion boundaries was due to the appearance (accretion)
or disappearance (deletion) of surface texture due to the occluded surface being progressively uncovered or
covered by the occluding surface.

We have shown that there is an alternate source of information for relative depth at dynamic occlusion
boundaries. This information comes from the relative motion of the boundary itself with respect to the
surfaces on either side. The invetigation of this new cue to depth at surface boundaries is an excellent
example of the productive interaction between research in computational models of vision and research
in perceptual psychophysics. We start by outlining the computational theory of determining depth at
boundaries due to motion. Next, we describe experiments designed to determine whether this cue is used
in human perception. We finish with a number of open questions raised by this research. In particular, we
argue that Marr's 2J-D sketch is inadequate for representing surface boundaries.

2 The Boundary Flow Constraint.

Visual motion can be used to locate surface boundaries (1]. Edges in an image due to motion can arise from
far fewer causes than static image cues such as brightness, color, and texture. In particular, a discontinuity
in optical flow can occur only because there is a corresponding discontinuity in depth and/or two separate
objects are moving with respect to one another. Perhaps even more important, motion provides information

This work wa supported by AFOSR contract AFOSR-87-016& NSF Grant DCR-550069, and NICHD Grant HD-16924.



and Barrow and Tennenbaum (6]. Marr and Barrow and Tennenbaum suggest a computational architecture
with a bottom-up, linear data flow. Use of the boundary flow constraint requires that the boundary be found.
the motion of the boundary deterrruned, and the motion of the surrounding surfaces be determined prior
to the determination of relative depth. To complicate the computation further, the boundary itself may be
signaled only by visual motion. The linear data flow model imposes a predefined ordering on computational
operations. It is not clear what ordering could work for boundary flow analysis and still perform adequately
for the many other types of low-level computations that are required.

There is an even more important implication. Marr's 21-D sketch was proposed, in part. as an alter-
native to the purely 2-D segmentation-based representations that were then popular. The 21-D sketch was
considered as an advantage as it provided 3-D information about surfaces, while not requiring the global
organization of the image into "objects". The 27-D sketch shares one critical deficiency with segmentation-
based representations, however. Both are two-dimensional representational structures. Edges in these rep-
resentations are separations between two regions differing in some visual property. What is missing is any
indication of the asymmetric nature of boundaries: edges corresponding to surface boundaries provide in-
formation about the occluding surface, but not the occluded surface. Thus, we need something like a 21-D
sketch in which overlapping surfaces can be described.

One explanation of why the subjective contour displays are more effective than the objective contour
displays is that the particular subjective contour that was used is a less ambiguous indicator of a depth
discontinuity than is the simple straight line which could have arisen from many different causes. The
suggestion is that some image cues suggest the existence of an "unsigned" depth boundary [7]. This cues
indicate that one surface is in front of another, without indicating which of the surfaces is actually nearer.
Cues such as boundary flow can then be used to determine that sign of the depth change. Computational
analysis of this sort requires a representation of boundaries more sophisticated than that provided by current
models.

References

[1] W.B. Thompson, K.M. Mutch, and V.A. Berzins, "Dynamic occlusion analysis in optical flow fields."
IEEE Trans. Pattern Analysts and Machine Intelligence, July 1985.

[2] G.A. Kaplan. "Kinetic disruption of optical texture: The perception of depth at an edge," Perception
and Psychophysics, vol. 6, pp. 193-198, 1969.

[3] A. Yonas, L.G. Craton, and W.B. Thompson, "Relative motion: Kinetic information for the order of
depth at an edge," Perception & Psychophysics, vol. 41, no. 1, 1987.

(4] L.G. Craton and A. Yonaa. "Infants' sensitivity to relative motion information for depth at an edge,"
submitted to Child Development.

[5] D.A. Marr, Vision, San Francisco: W.H. Freeman and Company, 1982.

[6] H.G. Barrow and J.M. Tennenbaum, "Recovering intrinsic scene characteristics from images," in Com-
puter Vision Systems. A.R. Hanson and E.M. Riseman, eds., New York: Academic press, 1978.

[7] J.M. Farber and A.B. McConkie, "Optical motions as information for unsigned depth," Journal of Er-
pertmental Psychology: Human Perception and Performance, vol. 5, no. 3, 1979.

3



OCCLUSIO-N-SENSITIVE M-\ATCHIN-\G

71S paper outunies two met nocs for imorovine trle reuabiLjtv 01

Abstract atcine in lte nresence ol nartlai occiu.5ion. i7;t. ;ce Iescrioe
Tccinnoue t % mc uit vis lai miotion c an be- coni D1lleG% wit n st atic

* s~- -a~e ecenilon01 nrtiils~ 1 1' : ze cues to titorove tie Ptlectivietiesb o1 tiS PiCSe lecton tiro-
-:j~t roontino arak rvuv i)-,i.a-~h Our teciinue recoenizes ttiat static anai, 0. iamtc enie iiI's

01aseo 7ii fleeu to aIcceot iiiiir .. 51(1iil oV
of rlocel eatues orrsooa toinitzei,-rqre. Ios -ovicie different sorts 01 iniormatilill boll1t a uoul nuiarv. a tatic

-uoaet 0! aoue Ietue coreson tIAa asa~ cotrs eres. gl
tu~~iementine3 sucos asrta iiontrast toee -qitt e eooed soatlai ;oraiization. out are

-"'Ious roneDiMS oue to amolZUitv.- [:iiorovments ti norior- it iect to miiiniyv aMInolUOUS in Eerpretat ions. - uat motion is a

Lire Doosiole D% riirectly *xotoiting evirtence ior occliusioni biust linuicator 01 suriace uounoiaries. but lops not % ieid ore-
miae. tic aoctentai iactinasj~oll11%:in iisieel oc ie inlormation on tile loration oi the bounclarv. 1"',e aDoroacii

: ;Ln 'es cll e -Aeu o prctit notios ofan oupi -. ,en here arcurateiv locates efiges oius in --iriace noulncaries.

it a.- not tik.-iv to be %lsi ole in tile image. \W' trrinnr Omnl ittiout (zeneratiniz manv alse iceps. Lv'tn more imoortanti.

a.Loritsmi ior matctiinz usina occiusioni (tiie. .;u. a ni'lo -e method zlves a direct iiiliratioii 01 15 itk sle 01 anl eage
orresponus to tile occiucline surface lieneratlite the -(iee.

;rrtb ithe ti e presence ot occiusion ill-el oi V, in i 11115

lo: s.iciuditi5 surfaces are recoitizea %%;it iii ariac It

A, orriumes motion and contrast twlormatioll. i..'~ "l100l "C tie seconal tecanioue uses infiormation ano-it occlusion to aiu in

:a'eiv iucalizes cocges. Lietects otily tiloie 19 l-yto corrtt- :e matcnine process. :,ost existiniz matctirne aigorithms thtat
-011(l~~~~~~~~ ~ ~~~~ TovrrieDuure.aaooie l nlctolM"lli e tolerant o1 occlusion lookl or a oartiai correstnotlence t)--

111 0i Mele correspondts to tile OCCILdILlS iirtaCP. -veen mocfeit and imnace fearures. ii a nartial matcn is iosnoa. un-
natctied moucei components are assumneu to tie iluden ov an or-
usion. This anproacni leads to niffirulties because 01 tile cihances

ir partial niatcnies occurrloc rcot irldentaiv. I:i oli rmett iu.
Introduction. *rmation about ocriusioti rouiioaries is usea to oxoiitiv idoll-

Y mouei features that wiil not tie visible titTilie mIace~2. -

Atile remaiinine mooiel features siloull. beP titable if tile matcii
:.i% r(iit-tlntationai mooeis for on tort rercoenition lwenca ill in fact correct. Occluded moaei features are al'ermineo ijasesi
-.is' iv hMatriling two-'limenslonai otlict ttioneis to itoi- -rectiv onl Iiiae properties at Iolnuaries. rallier I ian iSt oil

-- staures. i-D itatcnine is not iite to tomolate ilatrclimi P aosence of all maze feature at somne exrlectcd location.
luirtims. iacceritiv. manv rercognition inoproarnes nafve teen tit IS; R ;sltflcattt decrease tin amoitruitv.
- toopuj x irci use thiree-dimensionai Dartiliect nioucls atlt
:iitiszicatea S-D matchine strategves. ijccause 01 tile miYt am-
:-:ous nature oi tie prooiemn. ttil final staize titi icti flietliotis

'u:raiiv a vPrlttcation Step in wiiich hirlotitesized illormatloli Background.
lout idjentivication. position. also oricntation is tieu to nrotert

:500 )cl into tnie imaixe to De matcnieo auainst ltt actual

Aile features. .1 Comnbining moctioni and conltrast information
for edge detectioni.

; ietilticalit Drobiemns plifue matchlill operatiotns. Fust 01

raze features ltines, corners. iioies. etc. I inflot tOs oe- -ementation schemes which combine motion ano contrast infor-
-'rmlned in a iiighiiv reliable manner. -l.odel features are otten .,ation date bacK to at least to tile work oi Jasin. lAartin. anlO

>51115 in :i~r mc.iaypten eetd image ies-rsarwai 1' This annroacii useni a illiferetice otlrator rietween
lri00 not corresoiono to actual ubtect proipertiis or are flot --o f rames to find areas tit tile iniaze that nao diancea due to

iineu witnin tile models. Spconchlv. il compiex scenes olipct; ontion. A tatic seqmenter wag then run %Iritifi tee areas To

-,tmen nartilv occiuded. Dvaiing witt occlusionI i% arcent. :i the nootnoarles 01 tile moving reetons. Ehomoson used a re-
-rflai Ina~clics increases c0oltlatioltai cotpexiv '%nitle rV~I- .on merzer an~proacn that aroupea nixeis into reetons nasea on

':ie r-iiatiiitv of t lite matrlli process. * iiiiiarities to contrast ano motion lni ortfatlon - .. aves att'

s'nrk -ssu snvortea bv AFOSR -onrict i c)p...->. , 4 iu '- tins developied anl edee detector based on a orouct 01 the spa-
,III 0.5 t'-,").9 ai grauient alloi a teirnporai operator 3.. F:., ouirLpoe 1555, 11



imit sensitivitv 'o areas signaled by both static and dynamic estimates of model features likely to be hidden by occlusions 13.
.,ffects. More recently. Gamble and Poggio have developed a Evidence for visibility and occlusion came from a presumption
' larko% Random Field model for recovering optical flow in a man- That visible features were spatially adjacent rather than from
:-or tnat integrated contrast boundaries with visual motion 1 n. ny three-dimensional analysis of the imagery.
i Ieir aoproacn constrained discontinuities in fiow to occur oniv
,t U..e. sitV PoCIes.

3 Motion-based Segmentation.
.1oiati-eiv little work has been done on differentiating between
,c,':o.ng ano occiuded surfaces without resort to fitting object or
-,art moels. Waltz useo constraints associated with line drawing Thompson. Mutch. and Berzins develop an edge detector for op-
.,r, ces to identi( extremal contours and to determine which side tical flow fields (1. One important aspect of this work is that
, iuca a contour corresponded to an occluding surface '5}. Smit- motion-based edge detection directly .yields information about

*.-v anu Bajcsy identified occluding surfaces in stereo imagery by which side of the edge corresponds to the occluding surface.
onioarinz corretations between frames for images patches on ei- This identification is based on a comparison between the opti-

'ter ;;e of a boundary '61. If the correlations differed substan- cal flow on either side of the boundary and the visual motion
:ad. .he bounoarv was assumed to be due to occlusion and the of the boundary itself. (Aperture effects usually require that all

region with the highest correlation between views was assumed image flows be projected onto an axis parallel to the normal to
.o corresoond to the occiuding surface. Thompson. .,lutch, and the edge.i The principle underlying the identification of occluded
iBerzins snowea how eaes in optical flow could be used to recog- surfaces is summarized in the boundary flow constraint:
:ize occiudinz surfaces i7. Their approach is discussed in more
:etaii n section 3. At a surface boundary, the visual motion of the bound-

aryj itself is the same as the t-sual motion of the sur-
face generating the boundary.

2.2 Matching.

At a boundary, we need only look at the image-plane motion of

.. mpiate matching was one of the first methods proposed for the the boundary (the boundary flow and the optical flow immedi-
,.:suai recognition of objects. Template matching utilizes a corre- ately to either side. Optical flow inconsistent with the boundary

ation measure between one or more model patterns and images flow corresponds to an occluded surface.
ro be analyzed. Invariance to translation and/or rotation can be
obtained byv appropriate scanning of the template tattern over One problem with exploiting the boundary flow constraint is the
,in image. While useful in some applications, template matching apparent need to determine the actual motion of the boundary.
,urfers from problems due to computational complexity and is In many circumstances, this can result in a difficult correspon-
inaole to deal effectively with the matching of three-dimensional dence problem. [7] demonstrated how the motion of optical flow
nodets to two-dimensional imagery. edges can be related to the boundary flow constraint in a man-

ner that does not explicitly compute boundary motion. In that

Recognition of three-dimensional objects is often done by us- work. the boundary that was moving was itself indicated by a

ang configurations of image features to estimate how a three- motion cue. Here, we extend the result to show how any zero-
iimensiona object is being projected into the two-dimensional crossing style edge operator can be easily used to distinguish
mage. The object model is subjected to the appropriate pro- between occluding and occluded surface. As shown in [7], with
,ction. resulting in a prediction of the objects appearance in an appropriate change of coordinate systems it is sufficient to

-le image. A verification process is used to determine if the consider only two cases. In one. two surfaces are moving towards
predicted configuration of object features actually appears in the one another with equal but opposite optical flows. In the sec-
imate( e.g.. iS.9.101). Such methods avoid many of the problems ond case, the surfaces are moving away from one another with

Associated with straightforward template matching. equal but opposite flows, Over time. the Laplacian pattern at the
boundary will move with the surface to which it is attached. If a

Recognition of partially occluded objects has been a major chal- zero-crossing edge detector is applied to an optical flow pattern.

.enze ior many years. Most approaches attempt to find good all that is necessary to classify the edge is to observe the sign of

partial matches between subsets of object models and image fea- the Laplacian pattern as it translates.

"ires ,e.g.. I..12.131). Allowing for partial matches increases
,he likelihood of false positive classification errors. In addition, The situation is somewhat more complicated if edges are sig-

the extraneous configurations of boundaries generated by over, naled by some feature other than optical flow. In such cases. it

lapping objects causes additional confusion. is necessary to consider both the contrast orientation of the edge
and the pattern of motion to either side. The sign of the Lapla-

5nme preiiminary attempts have been made to directly incorpo. cian function can be used to determine the direction of boundary

rate occlusion information into the matching process. Fisher de. movement relative to the direction of the gradient at the bound-

% Pioped evidence for extraneous or missing image features based ary. If we observe the value of the Laplaci-n at the zero cross-

,)n boundary topology and other information about the depth ing and that value goes negative, then we Know that the edge

ordering of surfaces i14). Specialized heuristics were used to dis- has moved in the direction of the gradient. If the value of the
-ount the irreievant mismatches during a verification stage. Cas. Laplacian goes positive, then the edge motion is in the direction

an used the resuits of a partial matching process to deterrmine opposite to the gradient. It is still necessary to compare edge
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Figure 5: Best fit location for model.

Figure 1 Model set.

Figure 6: Unmatched edges.

.. .., V..
Figure 2: Frame from T image sequence.

Figure 7: Masked portions of T model.

elements in figure 3 that are not associated with differential op-
tical flow across the edge. Figure 5 shows the position of the
T model in the image resulting in the highest matching score.
Figure 6 shows the unmatched edges within the T model when
applied to the image at the location shown in figure 5. The hash

marks along the edges point to the occluding surface, as indi-
cated by the boundary flow constraint. Finally, figure 7 shows
the portions of the T model which have been masked as a result
of the internal edges shown in figure 6.

Figure 3: T contrast edges.

Table 1 shows the matching scores for all model types evaluated
against the T and L sequences. The highest scores in each column

have been italicized. The models are matched against the raw
contrast edges, the motion/contrast edges, the motion/contrast

edges using the model/non-model orientational compatibility con-

straint, and finally using all of the matching constraints described
above (differential motion, model/non-model edge orientation.

and masking), The data. while currently limited to a few test
cases, suggests that using occlusion information can reduce am-

biguity in matching. Using all of the available matching con-
straints. both examples are correctly classified. Using either tra-
ditional template matching or using only a subset of the matching

Figure 4: T motion/contrast edges. constraints causes one or both of the images to be misclassified.
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T image sequence L image sequence

Model contrast motion/ nodel/ occlusion Contrast motion/ model/ cciuslon
edges, contrast non-model maskins; edges contrast non-model masking

.Al, IL) .635 422 145 .439 .d47 394 350 o37

.2 (Cros) .659 362 511 542 754 51" 448 134

.M13 (Squan .642 218 215 196 .512 260 192 1J2

.14 (Asymmetric triangle) 628 520 456 603 416 321 257

Afs (Qudiradleru.) .652 380 295 526 761 .377 338 138
.A1. (Rectangle) .800 348 388 638 704 504 356 156
.1? (T .670 532 494 667 543 127 270 236
Vs. i Narrow triangle) 665 343 20 320 715 198 412 412

A.t (Inverted tnangle) .769 174 446 475 713 478 430 410
.t,0 (Narrow diamond) .621 571 566 606 797 648 571 71
A,1iI (Standard diamond1 583 456 406 437 772 594 356 ,59

.,112 (Broad triangle) 563 340 398 325 716 425 372 380

.f1 (Tilted trapesoid) 635 450 375 551 745 625 590 390
Af14 (Tilted rectangle) 574 26 413 439 702 603 554 3561

Table 1: Matching scores - all models applied to T and L sequences
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Abstract

Active visual tracking of points on occlusion boundaries can simplify certain compu-
tations involved in determining scene structure and dynamics based on visual motion.
Two such techniques are described here. The first provides a measure of ordinal depth
by distinguishing between occluding and occluded surfaces at a surface boundary. The
second can be used to determine the direction of observer motion through a scene.

1 Introduction.

The study of computational models of active vision has received a flurry of recent activity (e.g.,
[1,2,3]). These and similar papers have investigated ways in which the visual process can be
simplified and/or extended if active control is available over camera motion. Much of this work
has dealt specifically with the issue of eye/camera rotation [2,3]. The ability to visually track
environmental points can lead to significant simplifications in computing visual properties. This
note describes two such simplifications, both involving the tracking of edge points corresponding
to occlusion boundaries. The first technique determines local depth orderings by recognizing which
side of a boundary corresponds to an occluding surface. The second technique is able to estimate the
direction of observer motion in a simpler manner than most other, previously proposed approaches.

The methods described below are most effective when the following three assumptions hold: An
observer is moving though an environment in which at most a relatively small portion of the visual

This work was supported by AFOSR contract AFOSR-87-0168 and NSF Grants DCR-8500899 and IRI-8722576.



field corresponds to moving objects. Occlusion boundaries involving significant changes in depth

commonly occur. The observer is able to keep a selected edge element centered in the field of
view. This last assumption is at least plausible in most natural situations where boundaries are not
straight and/or surfaces are visually textured. Analysis will be based on optical flow in the image
near the tracked edge element. Note that in biological terms, this corresponds to retinal flow, not
the Gibsonian idea of flow in the "optic array".

2 Analysis.

fb

Figure 1: Optical flow near a surface boundary.

Visual motion depends on the instantaneous translational velocity of the eye/camera, the range to
surface points in the scene, and the rotational velocity needed to track a particular scene point.
Figure 1 illustrates the situation in the neighborhood of a boundary when no rotation is occurring.
S, corresponds to a near surface, which has associated optical flow fr. S, is occluding a more
distant surface Sd, with associated flow fd. The boundary itself moves in the image with flow
fb. From [4], we know that close to an occlusion boundary the visual motion of the occluding
surface and the visual motion of the boundary are the same. Thus, fb - f,,. Figure 2 describes

S"

Figure 2: Optical flow with edge tracking.

2



the situation when the edge is being accurately tracked. Tracking is effected by introducing an
eye/camera rotation of velocity w = (A, B,O)T which exactly compensates for fb. This also has the
effect of nulling out f. The only visible flow left, fd = fd - fb, is associated with the more distant
surface.

A simple set of equations defines the relationship between optical flow, motion, and scene structure
[5]. Using a planar imaging system, perspective projection, and a coordinate system centered at
the camera with z axis along the line of sight:

U=ut+,+ , V =Vt+V, (1)
where u and v are the x and y components of flow, z is the distance to the surface point imaged at
(x, y), translational velocity is T = (U, V, W)T, and

_-U + rW -V_+__
Ut , Vt = V+YW (2)

z z

u, = Azx - B(z 2 +1) , v= A( 2 + 1)- Bzy (3)

The optical flow equations simplify considerably at the center of the field of view:
-U -V

lim ut=- lim t=- (4)X't-O Z 'Vt-O Z

lim u= -B , lim v, = A (5)

If the tracked boundary element is centered within the field of view and if surface flow is measured
near this center, then fb, f, and fd are all determined by equations 4-5.

Utilizing the fact that z, < Zd, we can now compute f,:

fd= fd- fb = fd- f. (6)
f- -U+B -v -v )

= .-.-. +B -+A - - A (7)ZdZn Zd  Zn

= (Qi l , (-,v 8

= (aU, aV) , a>O (9)

ft is thus a scaled version of the projection of the translation vector onto the image plane.

We can now summarize the two algorithms for analyzing visual motion using edge tracking:

Identification of occluding surface.
When a boundary element is visually tracked, the region to the side of the boundary corre-
sponding to the occluding surface will have near-zero image flow. The region to the side of the
boundary corresponding to the occluded surface will in general be associated with significant
visual motion.
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Determination of direction of observer motion.

When a boundary element is visually tracked. optical flow due to the more distant surface
indicates the direction of observer motion. The flow vectors point in the direction of the
image location corresponding to the line of sight coincident with the direction of translational
motion. (This location is commonly called the "focus of expansion", but the term is only
strictly correct for purely translational motion.) Multiple fixations over the field of view can
be used to solve for the actual direction of translation.

3 Discussion.

Both algorithms offer significant computational simplifications over alternate approaches. The few
previously reported optical flow based techniques for differentiating between occluding and occluded
surfaces require reasonably accurate flow estimates on either side of the boundary [4,6]. The method
reported here only requires that regions of significant image motion be recognized. It is far easier to
determine that image motion is occurring than it is to estimate the specific characteristics of that
motion. When eye/camera rotations are possible, the determination of observer motion is difficult
because of the complex manner in which translational and rotational motion interact to generate
an optical flow field (see [5]). Edge tracking eliminates the complexity associated with rotation.

It is important to note that eye tracking does not reduce the conceptual difficulties associated
with these two tasks. Eye tracking provides neither additional constraints nor other sorts of new
information. This is easily seen by recognizing that all of the information in the tracking image is
available in an image of the same scene without tracking. Tracking is accomplished by generating
a rotation of the eye/camera system based on estimates of image drift such as optical flow at
the image center. Once this rotational velocity is determined, a non-tracking image sequence can
trivially be converted into the equivalent tracking sequence using equation 3. In fact, both of the
algorithms described above are really special cases of methods already presented in the literature.
Occlusion analysis is described in [4]. The method for determining direction of motion is essentially
equivalent to that described in [7]. What is different are the simplifications in actual algorithms,
not the underlying computational theory.

The effectiveness of these two algorithms is limited by the accuracy with which boundaries can be
tracked and by the visual texture present adjacent to the boundaries. While biological systems
are capable of tracking environmental points with relatively high precision, the computer vision
community has only recently begun to study the engineering difficulties involved in tracking features
in complex scenes. Aperture effects are a further consideration. It is generally felt that only the
component of motion perpendicular to an edge can be determined. This is actually only true if the
edge does not curve (e.g., see [8]). Reasonably reliable two-dimensional tracking should be possible
for most realistic scenes, though sufficient experimentation has not yet been done. Both algorithms
depend on recognizing aspects of image motion in the neighborhood of the tracked edge. This is
most easily accomplished if both surfaces are visually textured. This will hold in many but not all
scenes. We do know that human vision is capable of "filling in" the motion of homogeneous portions
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of surfaces. We do not as yet have good computational models of how this is done. however.

Open questions remain as to whether or not biological vision systems actually use methods of this
sort to simplify the determination of scene structure and motion trajectories. To answer these
questions. we need to know more about fixation patterns in realistic dynamic environments and
about how fixation and eye tracking affect the perception of relative depth.
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