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Executive Summary

This document summarizes the work performed under DARPA contract No. MDA 903-86-K-0037

during the period October 1985 through October 1988 at the Stanford Aerospace Robotics
Laboratory. The research was carried out by a team of Ph.D. candidate students under
the direction of Professor Robert H. Cannon, Jr. The ultimate goal of this research is to
develop and test a comprehensive base of new technology for very quick, precise two-arm
cooperative manipulation with the use of powerful new end-point control algorithms.

In order to achieve this goal, the research addresses the set of necessary, major ad-
vances in robotic technology, including: precision force control and dynamic cooperation
of two manipulators.

Robots in industry and in most research laboratories have position control of gross
motion, not force control for fine motion of mating parts. Our strategy has been to
study different aspects of force control of robots. Some of the tasks that have been
achieved include making contact with ob jects, exerting controlled forces on ob jects, and
making rapid motions of parts for assembly.

The obvious solution to end-point control of flexible manipulators is to measure
directly those quantities that are to be controlled; namely, to measure the end-point
position and force, and to feed these measurements back to a controller. Such a controller
would enable one to use lighterweight, flexible, robots. There is, however, a good reason
why this approach has not been widely used in the past: it poses an extremely severe
stability problem.

Here, by way of introduction, we describe how we have proceeded. Then we present
our research results to date in the formal Report on Research that is the body of this
Final Report.

Industrial robots are made stiff enough and strong enough to ignore loads. Unavoid-
able flexibility in drive trains of robots, and in their mounts, make precise end-point
control of flexible robots an issue of central importance. To advance the technology
for force control of manipulators, and to also contribute to lowering the cost of using
robots by making them much faster and more precise, we have developed a series of
experimental systems that require that an increasingly more-advanced control capabil-
ity be achieved to control them successfully. In each case, flexibility has been greatly
exaggerated to force us to solve the control problem in a fundamental way.

Supporting research described in this report is aimed at advancing force control
capabilities in the context of a single one-link flexible arm and a single two-link arm




having a very flexible drive train. Again, the goal is to develop and test new techniques
for effective two-arm cooperative manipulation using end-point control algorithms for
manipulators with flexible drive trains.

Several of our tasks have been achieved through the use of a mini-manipulator. The
mini-manipulator plays a key role in successful high-performance force control. The
rationale for using a mini-manipulator at the tip of an arm is that a mini-manipulator
can be used to perform tasks in a localized workspace at a much higher bandwidth than
is achievable by the main arm. Two chapters in this report discuss force control exper-
iments conducted with a mini-manipulator attached to the tip of a large manipulator
arm.

We have systematically developed the supporting technologies for two-arm cooper-
ation. A crucial capability for two-arm cooperation with flexibility in the drive train
is force control at each arm tip, but that is not sufficient. Force sensing at each joint
is also required to ensure that the commanded joint torque is actually achieved at the
joint, with minimum phase loss. The hardware to implement two-arm cooperation has
been designed, built, and is presently in the experimental stage. Larry Pfeffer is leading
this research team.

Using the flexible arm, Ray Kraft has recently demonstrated position and force con-
trol with a two dimensional mini-manipulator at the end of the very fiexible arm. Force
control techniques with the mini-manipulator are thus significantly more complex than
the force techniques we have previously developed with a single degree-of-freedom force
sensor. Control of the extra degrees of freedom is not trivial, since the transformation
between joint velocities and end-point velocities requires a computationally intensive
Jacobian.

Brian Andersen is currently experimenting with a force control methodology using
the mini-manipulator attached to the end of the two-link arm. This will be the first
implementation of force control on a non-linear, multiple input-multiple output plant.
This particular two-link arm has a flexible drive train, which increases the difficulty of
the problem by an order of magnitude.

The main areas that are covered in the report are as follows:

1. Cooperating two-link arms with flexible drive trains.
2. Control of a flexible robot arm with a two-degree-of-freedom mini-manipulator.
3. Force control of a two-link arm with flexible drive train.

Subsequent chapters of this report describe in detail the progress in the above areas.




Chapter 1

Introduction

The Aerospace Robotics Laboratory has conducted a program of experimental research

that has categorically responded to all aspects of the DARPA contract No. MDA 903-86-K-0037.

The goal of this research is to develop — and demonstrate conclusively — key elements
in the base of new technologies necessary for robots to advance to a new, important
level of capability, namely, two-arm intimate cooperative manipulation that is swift,
highly dextrous, precise, and sure, and that is managed astutely from a high level of
task specification.

The power and generality that intimate cooperation and deft movement will give to
robots is quite vast; it allows the performance of many new tasks previously entrusted
only to humans. We have spent the past several years identifying critical enabling
technologies, and have done focused experimental and theoretical work to advance them.

Specifically, if we are to succeed in achieving our ultimate goal, we must develop
and demonstrate technology that increases the utility of sets of flexible manipulators
by making them work cooperatively to handle tools and objects, especially elongated
ones, accurately and with dispatch, and by providing and documenting key extensions
to basic control theory that are necessary to accomplishing such a goal.

Our research indicates that the keys to deft and cooperative manipulation are the
mastery of three capabilities: (1) end-point sensing and pressure control of force and
position, (2) specification of desired tasks at the object level, and (3) control of quick,
versatile end effectors, including mini-manipulators. For example, directly controlling
the endpoint of flexible manipulators provides for a one-to-one matching with desired
object motion (which joint-angle control does not).

The following are specific control capabilities, crucial to the achievement of our goals,
for which we have developed algorithms and tested them experimentally:

1. Authoritative end-point control, both position and force.
2. Programmable compliance of the end effector.

3. Compensation for nonlinearities in the system’s dynamics, and robustness to pa-
rameter variation, e.g., payload mass (including adaptive control).

3
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4 CHAPTER 1. INTRODUCTION

4. Basic strategies for cooperation, including hierarchically structured task parti-
tioning, control mode switching, and the astute management of redundant sensor
information.

Our main emphasis is on the design and demonstration of these new control al-
gorithms for the cooperative operation of multiple manipulators. Techniques that are
generic to control of multiple flexible manipulators performing complicated tasks must
be developed in such a way that others can then use them to achieve similar goals.

In a broader sense, the nature of our goals for a new level of robot capabilities has
lead us to identify a number of advances that must be contributed to the body of basic,
generic automatic control theory; and we have made a series of such contributions.

In achieving our research objective we intend to solve fundamental problems in the
field of flexible manipulator control separately from the (equally important) problems of
three dimensional geometry, gravity, complicated sensor systems, and sophisticated end
effectors. This will be possible by operating, in these experiments, in a horizontal plane,
and by using upgraded versions of the special sensors we have developed as surrogates
for more sophisticated ones.

We must be able to take advantage of the flexibility in the manipulators to allow
rapid movements without generating excessive contact forces, and we must demonstrate
its value to cooperative tasks in which there is serious kinematic overconstraint.

The strategy we have used for achieving the set of enabling technology goals is to
pursue a sequence of specific experimental demonstrations. Each demonstration was
conceived to require a particular technology advance, and the set of them to enable the
graceful, intense cooperation of two flexible arms.

1.1 Background

Current work achieved under this contract is explained in detail in the body of this
report. The research centers around the following three major topics:

Creating an advanced test bed for, and achieving control of intimately cooperating
two-link arms with flexible drive trains (Chapter 2).

Achieving very quick, precise force and position control of a flexible robot arm with
a two-degree-of-freedom mini-manipulator (Chapter 3).

Achieving deft force control of a two-link arm with a flexible drive train and a two-
degree-of-freedom mini-manipulator (Chapter 4).

The work which was drawn on to achieve the resulis in the body of this report follows
most directly from the DARPA sponsored groundwork in previous contracts. We have
also carried out some other work, sponsored by the AFOSR and NASA, in flexible two-
link arm control and on spacecraft manipulators. The direct benefit of carrying out
this related work, in the same lab, is the ability to easily drawn upon it. This applies
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not only to control algorithms, but alsc to software, computer resources, sensors, and
in-house hardware designs.
As a sampling of recent experimental results that are germane, we have achieved:

1. The first end-point control of a very flexible manipulator.
2. The first real-time adaptive control of a very flexible beam.
3. The first experiments with potential-field guidance of manipulation.

4. The first switching, from (optical) position control to force control of a flexible
manipulator contacting a moving object.

5. The first impedance-based hierarchical control of two cooperating two-link arms,
in which the operator’s commands are for ob ject motion directly.

6. The first end-point control of a manipulator operating from a completely freely
moving base.

The research in the Stanford Aerospace Robotics Lab has laid the foundation for
the investigation of noncolocated control of flexible structures and end-point sensing.

We have addressed the basic question of what must be done to guarantee stability
and robustness (insensitivity to large variations in plant parameters) in controllers using
noncolocated sensors and actuators: and what are the ultimate limits to what can be
achieved on a very flexible manipulator. Experiments on a system of four inertia disks
connected by a torsion rod with 0.3% damping demonstrated the ease of achieving
colocated control (due to alternating poles and zeros on the imaginary axis) and the
difficulty of achieving stable and robust noncolocated control. LQG controllers could
always be found to notch out resonant modes and stabilize a noncolocated system;
but the controllers were extremely sensitive to variations in those resonant frequencies
caused by changes in plant parameters.

Initial experiments in noncolocated control of very flexible (0.5Hz) manipulators
were conducted by Eric Schmitz under NASA funding. Rigorous mathematical models
of the flexible manipulator were developed to explain the dynamics of the structure.
The fundamental response time limit in his single-link very flexible arm is associated
with the bending wave propagation speed. Optical end-point sensing was used to locate
a light at the arm’s tip, and stable end-point position control was established. The
closed-loop bandwidth was twice as high as the arm’s first cantilevered frequency, which
is the performance limit on the noncolocated control system.

Jim Maples extended this work under DARPA funding to stable force control at
the manipulator’s tip. A new end-point force sensor was developed to allow for the
demonstration of a slew-and-touch maneuver to a moving target without pause in the
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arm’s motion. Furthermore, very fast localized response has been achieved by adding a
short rigid wrist to the end of a flexible arm. The rational was that many operations
require fast, precise movement within a small workspace and relatively slower gross
movement over larger distances. This was the beginning of noncolocated control of
truly multiple-input multiple-output systems.

A much more complicated two-link manipulator system has been designed, built,
and controlled by Mike Hollars under DARPA and AFOSR funding. This two-link arm
has rigid members with lumped flexibility in the form of elastic linear springs. The
two-dimensional geometry gives rise to highly nonlinear equations of motion which are
more representative of modern industrial robots. Not only has stable colocated closed
loop control been experimentally achieved, but also stable noncolocated control. The
noncolocated controller uses a constant gain extended Kalman filter to estimate the
state of the two-link arm.

Stan Schneider, working under NASA funding, has completed work on a fixed-
base cooperative manipulation experiment where the problem of utilizing multiple rigid
robotic arms to control a single object was examined. This research had three major
goals:

1. Experimental evaluation of fundamental cooperative dynamic control techniques.

2. Investigation of manipulation strategies, especially as they pertain to multiply-
armed robotic systems.

3. Achieving a heirarchical control system in which, for the first time, the operator’s
commands are issued at the object level.

In addition to cooperative dynamic control, the experimental system incorporated
real-time vision feedback, a novel programming technique, and a graphical high-level
user interface. Not only these subsystems, but also their interfaces and interactions
have been studied, and a total, optimized system achieved.

We have systematically developed the supporting technologies for fiexible two-arm
cooperation. A crucial capability for two-arm cooperation with flexibility in the drive
train is force control at each arm tip, but that is not sufficient. Force sensing at each
joint is also required to ensure that the commanded joint torque is actually achieved at
the joint, with minimum phase loss. The hardware to implement two-arm cooperation
has been designed, built, and is presently in the experimental stage.
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1.2 Future Plans

Our future research plans include making contributions of three kinds that are central
to advancing robot capability from its present level to the much wider realm of use for
which it is inherently competent:

1. We will make key new advances in the specific technologies that are critical to
achieving true, effective integrated cooperation between compliant manipulators;

2. We will advance the art of motion planning and execution, for both gross and fine
maneuvering of awkward ob jects amidst obstacles, so that users can specify ob ject
motions at a high level; and

3. We will unite the path planning and manipulation functions through a major fun-
damental joint effort - with the Stanford Computer Science Robotics Laboratory
- in the foundation and achievement of comprehensive vertical integration.

Specifically, we will demonstrate experimentally the intimate vertical integration of path
planning with the manipulative skills of a pair of deft, cooperating robotic arms in the
rapid assembly of a complex configuration of awkward objects, all in response to only
high-level instructions.

1.3 Summary

Within this report three major topics are addressed.

Chapter 2 discusses cooperating two-link arms with flexible drive trains. The basic
objective of this research is to develop and demonstrate cooperative control of flexible
robots. The extension of robots to tasks that are not readily accomplished with one
(robot) hand has distinct advantages: cooperating robots can handle a broader class
of tasks, and they may be accomplished faster, more accurately, and in a more loosely
structured environment.

For generality, we wanted a pair of 6 DOF manipulators with a large dexterous
workspace. Furthermore, we wanted to be able to change the way the workspaces
overlapped for different experiments. However, we wanted to avoid the time and cost of
working against gravity in the long primary links and to have a simple means to lessen
the chance of collision (as collision avoidance a primary objective for other research).
This lead us to the SCARA configuration, with the arms side by side, one left handed
and one right handed.

The SCARA configuration keeps the first two links (those with the greatest mass
and moment arms) in the horizontal plane. This configuration also allows us to begin
cooperative work with less chance of collisions, as the robots generally have their elbows
well away from each other. This strategy allows us to avoid arm collisions by monitoring
endpoint position primarily. The kinematics are also considerably simplified by the
design’s four parallel axes. In our design, the actuators for the first two links remain
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fixed to the base (as in the Adept I robot) so that the mass of those actuators never
moves. Similarly, we use brushless motors, and low gear ratios for these unmoving
actuators, so that we have low levels of coulomb friction in the degrees of freedom that
have the flexibility and the primary responsibility during cooperation. For the rest of
the degrees of freedom, we accept the need for higher gearing using small servomotors
with brushes.

Chapters 3 and 4 discuss the use of a mini-manipulator. The mini-manipulator
plays a key role in successful high-performance control. The rationale for using a mini-
manipulator at the tip of an arm is that a mini-manipulator can be used to perform
tasks in a localized workspace at a much higher bandwidth than is achievable by the
main arm. By using end-point control in conjunction with a mini-manipulator, a flexible
robot would be able to achieve high bandwidth, precise control over a large workspace.
It is these considerations which motivated the research on position and force control of
a flexible robot arms with a two-degree-of-freedom mini-manipulator.

Chapter 3 discusses control of a flexible robot arm with a two-degree-of-freedom
mini-manipulator. The flexible arm has distributed flexibility and was intentionally
designed to exaggerate structural flexibility in the horizontal plane while remaining stiff
in the gravity influenced vertical direction. The purpose of exaggerating the horizontal
flexibility in this system was two fold: (1) to make problems associated with flexibility
more readily apparent, and (2) to lower the resonant frequencies of the flexible arm into
a region where easy laboratory sampling rates, in the neighborhood of 25 to 100 Hz,
could be used. A potentiometer is collocated with the hub motor and is used to measure
the base angle of the flexible arm. A light emitting diode (LED) array, whose position
can be sensed by a photodetector, is located at the end-point of the flexible arm.

The mini-manipulator is attached to the end-point of the flexible arm along one of
the side-rails. Essentially, it is a five link, closed kinematic chain — the base link being
fixed to the flexible arm. Each of the two inboard links is rigidly attached to one of
the two motors that drive the mini-manipulator. Located at the joint between the two
outboard links is another LED array which is used to sense the position of the end-point
of the mini-manipulator.

Below this LED array is a vertical, force sensing, aluminum beam. It is approxi-
mately 9.5 cm long and is equipped with strain gauges which provide a means of mea-
suring end-point force. At the bottom end of the force beam is a circular contact roller,
which allows the mini-manipulator to exert only normal forces on objects it comes into
contact with.

Finally, Chapter 4 describes work that has been accomplished to date on the two-link
arm with a flexible tendon drive and mini-manipulator. The objective of this research
is to allow the arm to slew into contact with a target, make a smooth touchdown, and
maintain a constant force on the target, using the mini-manipulator for augmentation
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of precision control. We believe the mini-manipulator is going to play a key role in
successful high-performance force control.

During the time covered by this report we have demonstrated initial position and
force control with the mini-manipulator on a fixed base. This work will form the basis
of the control algorithms when the mini-manipulator is added to the two-link arm.

The capability we wish to develop is very-high-bandwidth, precise control of the
force at the tip of a two-link manipulator having a very flexible drive train. We plan
to demonstrate this capability by (1) performing rapid slew and touch with a fixed
target while having no overshoot in the force! (2) controlling the arm so that its tip
moves along a wavy surface while maintaining a constant force on the surface, and (3)
slewing into contact with a moving target and maintaining a constant force on it while
it continues to move.

The chapters which follow, then, present the specific set of (we submit) crucial
contributions that DARPA contract No. MDA 903-86-K-0037 has allowed us to make
to a new technology base that will substantially advance the new capabilities and value
of the next generation of robotic systems.




Chapter 2

Hardware Development,

Modeling, and Experimental
Control of Two Cooperating,
Flexible-Drive Manipulators

Lawrence E. Pfeffer

Introduction

In this chapter, we report the progress and results from three years of experimental
research on the cooperating, flexible-drive manipulator testbed in our laboratory. This
testbed provides a base for the development, for the first time, of the following underlying
technologies: hierarchical, cooperative control; concurrent mechanism/control design;
realtime multiprocessor control of robots; advanced sensing/perception; and graphical
meta-teleoperative user interfaces. These are technologies that are essential for the new
level of robot capabilities and missions that our country needs for a strong defense
system and a vigorous manufacturing economy.

The work reported here was performed during the last year of DARPA contract
MDA903-86-K-0037. We preceed it in section 2.1 with an overview of the work reported
previously. Then we develop (beginning in section 2.2) the complete kinematic model:
rigorous coordinate frame definitions, full forward kinematics, the inverse kinematics.
and the Jacobian matrix. The impact of the kinematics’ structure on control algorithms
is discussed, including computational complexity and effects of singularities. The next
section, 2.3 presents the results from the identification and control experiments per-
formed under this contract: mass property identifications, scale factor measurements,
and describing function measurements of the testbed. The final section, 2.4 describes
the follow-on research that will be performed on this testbed under a new DARPA
contract.

10
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Figure 2.1: The Cooperating Flexible Manipulators Holding a Long Part

2.1 Summary of Previous Research Progress

Over the past three years, we have designed, built, and started experimental research
on the cooperating flexible manipulators testbed. This research facility is comprised
of a pair of manipulators designed for cooperation; a fast and flexible realtime con-
trol computer; a SUN workstation for user interaction and code development; and the
sensor/actuator/safety interface subsystems that connect the realtime computer to the
robots. Each phase of the design, fabrication, and experimentation has yielded valuable
ideas in the theory and practice of robotics. This section is an overview, intended to
provide a context for the rest of the report.

Figure 2.1 shows the two cooperating manipulators (posed handling a long part.)
There are several aspects of the manipulator design that are worth emphasizing:

o Each arm is an identical six degree-of-freedom manipulator, and therefore can both
position and orient its end effector within its dexterous workspace — a necessary
geometric freedom for generic experiments in cooperation.

o The manipulators are of the basic SCARA configuration, with their first two
links moving in a horizontal plane, and the third link a vertical linear stage. This
configuration has two basic advantages: first, it eliminates large gravity torques on
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the primary actuators; second, having the first four axes parallel greatly simplifiies
the kinematics.

e The SCARA configuration provides a wide, flat dextrous workspace for each arm.
This aids in task planning and demonstrations, as it is similar to the sort of
two handed manipulation that a person (or two people) might do at a desk or
workbench.

e The robots are each attached to individual mounts that are stiff, massive, yet
movable. This permits free experimentation with varying degrees of workspace
overlap and with different robot orientations, e.g. side by side, across from each
other, or at right angles.

o The first two degrees of freedom (D.O.F.) of each arm have lumped (as opposed
to distributed) flexibility built into their drive systems. These are the D.O.F.
that correspond to the large motions (and large velocities) that span the mutual
workspace. This flexibility, properly controlled, permits cooperative control that
is precise and gentle without requiring a perfectly known and structured environ-
ment.

o There are sensors for each actuator, and more importantly, endpoint and interme-
diate joint sensors to measure the quantities that matter most in cooperation.

The basic ob jective of this research is to develop and demonstrate cooperative control
of flexible robots. The extension of robots to tasks that are not readily accomplished
with one (robot) hand has distinct advantages: cooperating robots can handle a broader
class of tasks, and they may be accomplished faster, more accurately, and in a more
loosely structured environment. The background, motivation and ob jectives are detailed
in last year’s report. The effects of the project objectives on the design are discussed
next.

2.1.1 Design Philosophy

The design philosophy for this project has been to develop a versatile testbed that is
easy to experiment with, and at the same time to minimize complications not in the
mainstream of our research.

For generality, we wanted a pair of 6 DOF manipulators with a large dexterous
workspace. Furthermore, we wanted to be able to change the way the workspaces
overlapped for different experiments. However, we wanted to avoid the time and cost of
working against gravity in the long primary links and to have a simple means to lessen
the chance of collision, as collision avoidance is not one of our primary objectives. This
lead us to the SCARA configuration, with the arms side by side, one left handed and
one right handed.

The SCARA configuration keeps the first two links (those with the greatest mass
and moment arms) in the horizontal plane. This configuration also allows us to begin
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cooperative work with less chance of collisions, as the robots generally have their elbows
well away from the other. This strategy allows us to avoid collisions by monitoring
endpoint position primarily. The kinematics are also considerably simplified by the
design’s four parallel axes. In our design, the actuators for the first two links remain
fixed to the base (as in the Adept I robot) so that the mass of those actuators never
moves. Similarly, we use brushless motors and low gear ratios for these unmoving
actuators, so that we have low levels of coulomb friction in the degrees of freedom that
have the flexibility and the primary responsibility during cooperation. For the rest of
the degrees of freedom, we accept the need for higher gearing and small servomotors
with brushes.

The robots are extremely well instrumented. There are position sensors on each
actuator (digital shaft encoders), which are supplemented by resolvers on the primary
motors (for the first two DOF') that yield analog position and rate. The two primary
joints, separated from their actuators by the flexibility, are instrumented with higher
resolution encoders for endpoint sensing. Force and torques are measured by joint torque
sensors built into the first two joints, as well as by endpoint force/torque sensors (not
shown mounted in photograph.) These sensors make it possible to obtain an accurate
and timely estimate of both the actuator and endpoint quantities of interest. This is a
key to good control in general and cooperation in particular.

2.1.2 Computer system

The realtime computer for the project is a multiple processor system coupled to the
rest of the lab’s computing resources over the ethernet. The realtime system is capa-
ble of rapid computation of complex control algorithms, hierarchical control, modular
expansion or upgrading, as well as ease of experimentation and data collection.

The overall computer consists of processors that are tied together through a high-
speed communications systems. The development system, or host, is the computer
that the user interacts directly with. Ours is a SUN-3/140 workstation. The realtime
control system was developed in our laboratory as a platform for controls research. The
realtime system is a multiple processor computer, composed of single board processors
and peripheral devices for communications with the robots, the host computer, and
other experimental equipment. One of the key aspects to the power and utility of this
system is that both the host and the realtime system use the same model microprocessor,
and the same model of electrical backplane (bus). This allows us to develop and test
software for the realtime system using all the tools available on the host.

The processor boards for the realtime system are MVME 147 and MVME133 single
board processors manufactured by Motorola Inc., microcomputer division. These cards
run at 16 -24 MHz, and each includes a 32 bit microprocessor (68030 or 68020, respec-
tively), a hardware floating point co-processor (68882 or 68881), one to four megabytes
of memory, as well as timers, a serial port, and sockets for ROM, etc. In terms of floating
point calculation speed, (which is the major bottleneck in robotics/controls work) one
of these cards is substantially faster than a VAX-11/780, especially on transcendental
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functions that are common time sinks (e.g. trig, arctrig, and square root) in robotics.

The current realtime system consists of two processor cards (with the possibility of
adding more), an analog to digital converter board (for reading analog signals), digital
to analog boards (for commanding actuators), a digital input/output board (for read-
ing/writing digital signals, e.g., reading shaft encoder inputs, or writing enable bits to
the safety system.)

This overview has described, in general terms, the experimental testbed that we have
built, analysed, and begun experimenting with over the last three years. The next
sections describe, in greater detail, the final year’s research using the testbed.

2.2 Kinematic Model

In order to build up a usable model of the robot system (beginning here with the robots’
kinematics), we need to have a set of well defined coordinate frames. Any ambiguity or
mistakes at this stage will ripple through the entire model building process, rendering
it useless. Thus, we have to be precise about our model’s foundations. There are two
types of coordinate systems that we will be interested in, these are:

Cartesian: These are coordinate systems that use three mutually perpendicular
(right handed throughout this discussion) basis vectors and an origin to define a coor-
dinate frame from which positions and orientations are measured. Positions are defined
by taking components of the position vector parallel to each of the basis vectors. Orien-
tations are described by a series of roll-pitch-yaw rotations (1-2-1 body fixed rotations,
true Euler angles) about axes that begin aligned with the reference frame. Our primary
interest is in the robot’s endpoint/toolpcint position measured in the robot’s base frame
[2, page 88]. Intermediate frames are introduced, as well, for steps in the analysis, these
are attached to each link of the manipulator.

Relative-displacement: These are coordinate systems that describe the configuration
of the robot in terms of (linear or angular) displacements of parts of the mechanism
relative to one another. We will be primarily interested in joint space and actuator
space. The joint space coordinates of the robot are defined as an ordered vector of
the robot’s joint displacements (our link frames and joint coordinates were described in
last year’s annual report [1). The actuator space coordinates are an ordered vector of
actuator displacements, in our case, these are all radian measures of the motors relative
to the reference configuration.

2.2.0.1 Notation for Coordinates of Interest

Elements in a vector that denotes robot configuration (position and orientation) are
called q’s. This is in keeping with the nomenclature used in the dynamics methodology
that we are using, and avoids the semantic violence of refering to a linear displacement
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as, for example, 63, when in reality the quantity is really a linear displacement. Following
the q, is another letter that defines what kind of frame we are dealing with: We use c (for
base frame Cartesian), j (for joint space), and m (for motor space). Finally, we append
a subscript to denote which coordinate in the vector we are referring to, this subscript
can be numeric (1 to 7) or a letter mnemonic that is meaningful in the coordinate space
we are using. The definitions following give examples.

For the cartesian coordinate systems, we adopt the following format and nomen-
clature for vectors and their components. The cartesian space configuration vector is
referred to as qc; the individual components of qc are defined below in their order.

X position gey or gex
Y position gca or gcy
Z position gc3 or qcz
yaw angle geq or gcy
pitch angle gcs or gc,
roll angle gce or qc,

Gripper jaw opening gc7 or gc,

where positions are in meters and angles are in radians.

For (robot) joint space, the entire configuration vector is referred to as qj the vector
format is:

Joint 1 (shoulder) angle g1 or qj,
Joint 2 (elbow) angle g4j2 or qje
Joint 3 (vertical slide) position gja or qj,
Joint 4 (yaw) angle qJj4 OT qjy
Joint 5 (pitch) angle qjs or qjp
Joint 6 (roll) angle qjs or gjr
Joint 7 (gripper) opening distance qjz or gj,

where positions are in meters and angles are in radians. The joint coordinates follow
the convention used by [2] angles are measured from the positive X axis of the previous
frame to the positive X axis of the current one, i.e. gj; is the angle between +X, and
+X). For the linear joints, gj3 denotes the distance between the origins of frames 3 and
4; qjr denotes the distance between the gripper jaws.

For actuator space, the entire configuration vector is referred to as qm the vector
format is:

Motor 1 (shoulder) angle gm, or gm,
Motor 2 (elbow) angle gmg or gm,
Motor 3 (vertical slide) angle gms or qm,
Motor 4 (yaw) angle gmy or qm,
Motor 5 (pitch) angle gms or gmy,
Motor 6 (roll) angle gmeg or gm,

Motor 7 (gripper slide) angle gmz or gmy,
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where angles are in radians.

The wrist mechanism we are using couples motors 4 through 6 into orientation in
a complex (meaning not one to one, except for yaw) manner. Our transmission, in
fact, also couples both of the first two motors into the elbow joint’s motion, but the
identification of shoulder and elbow motors is still clear, as the coupling is one way (only
the shoulder motor affects the shoulder joint, the other of the two is called the elbow
motor). The wrist coupling is less straightforward. The fourth joint coordinate, ¢j4
depends only on one of the motor coordinates, namely gm4. However, the next two joint
coordinates, ¢js and gjg depend on combinations of motor coordinates. Occasionally, we
will refer to motors 4, 5, and 6, as the yaw, pitch, and roll motors. This is an arbitrary
mnemonic device. It’s origin is from visualizing being a pilot sitting in the tool, facing
out along the tool’s axis (opposite the Zg vector). From this point of view, one can
think of roll, pitch, and yaw exactly as motions of ¢jg = ¢jr, ¢J5s = qJjr, and gjs = qjy,
respectively. Since qj, depends only on qmy, this motor can be referred to as the yaw
motor, and we will occasionally refer to motors 5 and 6 as pitch and roll, even though
this is arbitrary nomenclature it is occasionally useful.

2.2.0.2 Link Frames and Associated Transforms

We now present the definitions of the coordinate frames used in deriving the forward
kinematics of one of our cooperating manipulators. We will follow the convention of
[2], and will use homogeneous transforms as defined in his chapter 2 to define the
transforms between each adjacent frame, and finally the full kinematic transform for
one of our manipulators. The relative simplicity of our robots’ kinematics will then be
apparent, and will be addressed. Since the possible frame assignmerts for a manipulator
are not unique, a brief description of the origin and orientation of each frame we use is
presented.

Frame Deflnitions First, some comments and definitions that will make the frame
descriptions clear and succinct:

All definitions proceed from the assumption that the robot base is resting on its
intended supports, and has been properly leveled. Left and right are used as descriptive
terms, and assume (unless specified otherwise) that the viewer is head up, and has
his back to the front mounting plate of the robot. Similarly, forward is defined as
the direction normal to the front mounting plate, and directed from the plate into
the interior of the workspace. The wrist point is defined as that point (in the wrist
mechanism) where orientation is independent of positioning that point. All coordinate
frames are orthogonal and right handed.

Robot frame 0 Robot base frame
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Figure 2.2: Schematic showing Frames 0 through 4
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Figure 2.3: Schematic showing Frames 4 through 6 (dotted indicates previous frame)
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Frame origin The intersection of the shoulder axis and the horizontal plane that con-
tains the forearm (distil link) centerline.

X+ Forward
Y4 To the left
Z+ Vertical, upward

Robot frame 1 Robot upper arm frame

Frame origin The intersection of the shoulder axis and the horizontal plane that con-
tains the forearm (distil link) centerline.

X+ In horizontal plane, pointing from the frame origin to the elbow joint axis.
Y+ In horizontal plane, pointing to the left from the frame’s X+.

Z+ Vertical, upward.

Robot frame 2 Robot forearm frame

Frame origin The intersection of the elbow axis and the horizontal plane that contains
the forearm (distil link) centerline.

X+ In horizontal plane, along the forearm centerline, pointing from the origin toward
the end of the manipulator.

Y+ In horizontal plane, pointing to the left from the frame’s X+.

Z+ Vertical, upward.

Robot frame 3 Robot vertical stage frame

Frame origin The wrist point of the manipulator

X+ Always parallel to X+ of frame 2.

Y+ Always parallel to Y+ of frame 2.

Z+ Always parallel to Z+ of frame 2. (vertical, upward.)

Note that this the vertical stage of the robot is a pure translation, thus the coordinate
axes remain parallel to those of the previous frame.
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Robot frame 4 Robot wrist barrel frame
Frame origin The wrist point of the manipulator

X+ As marked on the wrist barrel: (X4+ is always in the horizontal plane, and always
perpendicular to Z5. It aligns with X3+ when ¢j4 = 0.)

Y+ As marked on the wrist barrel: (Y4+ is always in the horizontal plane and parallel
to Z5; it aligns with Y3+ when ¢js = 0.)

Z+ Vertical, upward.

Robot frame 5 Robot wrist yoke frame
Frame origin The wrist point of the manipulator

X+ As marked on the wrist yoke: always in the X4-Z4 plane, it aligns with X4+ when
s =10

Y+ As marked on the wrist yoke: always in the X4-Z4 plane, it aligns with Z4+ when
qjs=0

Z+ As marked on the wrist yoke; always opposite of Y4+

Robot frame 6 Robot wrist output frame
Frame origin The wrist point of the manipulator

X4 As marked on the wrist output: always in the X5-Z5 plane, it aligns with X5+
when gjg = 0

Y+ As marked on the wrist yoke: always in the X5-Z5 plane, opposite Z5+ when
Jje =0
Z+4 As marked on the wrist yoke: always parallel to Y5+

2.2.1 Forward Kinematics from Motor to Joint Space

Now that we have defined the link frames, and through them the joint coordinates of
these manipulators, we can present the first part of the forward kinematics, the mapping
that takes us from a known set of motor coordinates and gives us the joint coordinates.
Note that we have appended a coordinate for the gripper at the end of these vectors, so
that the configuration is described by seven coordinates.
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)

[ g7, | L 0 0 0 0 0 o0 qgmy
aje 2L oo 0 o0 qm;
9jx 0 0o L 0 0 0O 0 qms
gy |=10 0 0 3 0 0 0 qmy (2.1)
ij 0 0 0 0 ;—; i—é- 0 qms
9jr 0 0 O % ;'2-5' ;‘% 0 qmg
wiry ] 0 0 0 0 0 O %;; | L gmr

Where the geometric scale factors (usually gear ratios, except for the linear joints)
are:

ns = 9.0
ne = 3.0
nz = 4947.380111 radians/meter
n4 = 250
n5 = 360
n6 = 360

ngrip = 2782.901312 radians/meter

2.2.1.1 Link Transforms

Having defined a series of frames, one for the robot base, and one for each degree of
kinematic freedom, we can now derive the homogeneous transform from each one to the
next, given the general form of the link transform, and the relevant kinematic data in
the form of Denavit-Hartenberg notation, as defined in [2]. Craig defines a standard
form of this transform in his equation [3.6, his numbering.]

He also assembles the kinematic parameters into a table, such that the quantities
needed to write the transform from frame i to the next frame all appear on line i. We
can make the process straightforward and easy to automate by making this table into
a matrix with the number of rows equal to the number of degrees of freedom, and four
columns for the Denavit-Hartenberg parameters (in the order a;_1,8i-1,d;,qji .) We
denote this matrix as KP, for kinematic parameters. We can then write the general
form of the link transform as follows:

COS(KP.'A) - sin(KP.'A) 0 K.P."Q
-1 - cos(KP;,)sin(KP,4) cos(KP;y)cos(KP;4) —sin(KPi1) —KP,3sin(KF,)
! sin(K P;y)sin(K P, 4) sin(KP;1)cos(KPi4) cos(KP.,) KPj3cos(KPFi)
0 0 0 1
(2.2)

We can then substitute in the appropriate entries from KP to get the six transforms
we are interested in having. It is desirable to use MACSYMA to do this, both to
eliminate the possibility of algebraic error, and to have symbolic help in simplifying the
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overall transform, which is a product of six such matricies and very complicated looking
before simplification.

Link Parameters and Link Transforms The KP matrix is given as follows. The
joint coordinates are ¢j, qj2,d3, ¢j4,qJs, and gje. ..ngles are given in radians. We
have left /; and l; as symbols for generality, evan ‘ sough they are constants and are
equal (16 inches = 40.64 cm .) Note ** - '- _ .umber of zero terms; these lead to a
simple kinematic solution for the manipulators, even though they have all the geometric
freedom that we require.

[0 0 0 gy
0 h 0 gj
_ 0 I d3 0
KP= 0 0 0 gqje (2.3)
/2 0 0 gjs
| -—1|’/2 0 0 qjs y

Substituting as mentioned above, we can obtain the first link transform, from frame
0 to frame 1:

i —8 0 0
s1T a 00
or = 0‘ 0‘ Lo (2.4)
0 0 01
Where ¢; stands for cos(gj;), s;; stands for sin(gj; + ¢j;), etc. — a convention that
we adopt.
In the same manner, we write the transform from frame 1 to frame 2:
c2 —s2 0 |
s2 ¢c2 0 0
Ir= 0’ 0’ Lo (2.5)
0 0 01
The transform from frame 2 to frame 3:
1 00 ¢
0100
I = 0 01 d; (2:6)
0 00 1
The transform from frame 3 to frame 4 is:
Cq4 —34 00
cg 00
¥ = *'g 0‘ Lo (2.7)
0 0 01
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The transform from frame 4 to frame 5:

Cs —S8s 0 0
0 0 -10
T = s ¢ 0 0 (28)
0 0 0 1
The transform from frame 5 to frame 6:
Cg —S¢ 00
0 0 10
= 2.9
gr s¢ ¢ 0 0 ( )
O 0 01

2.2.2 Forward Kinematics

Now that we have the six individual transforms, we can begin to multiply them together
to obtain the forward kinematics of increasingly complete fractions of the total manip-
ulator. We present the results in this fashion in order to show that the geometry we
have chosen results in a much simpler form than that of many other robots.

The keys to this are to remember that our geometry maintains the first four joint
axes parallel, and that the upper 3 by 3 submatrix of the overall transform specifies the
relative orientation between the frames (as direction cosines.) Therefore, the rotations
about axes 1, 2, and 4, are all about a parallel axis (joint 3 is a linear translation and
doesn’t effect orientation.) We expect to be able to simplify the rotation parts of the
forward kinematics up to frame 4 to a single rotation about vertical. This is the case,
and the kinematics are much simpler because of it.

This is the transform from frame 0 to frame 2, after simplifying using the sum of
angles identities:

a2 -%12 0 L
s 0 ULs

r=T T (2.10)
0 0 0 1

We can now multiply out the transform from frame 0 to frame 4 and again simplify
using the sum of angles identities:

e —S12¢ 0 Lz + 4o
s e 0 l812+ s
or = gu 1024 1 2 ud3 181 (2.11)
0 0 0 1

This is the complete forward kinematic transform from frame 0 to frame 6:
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®
C5C6C124 — 565124 —C6S124 — €586C124 —Ss5C124 l2c12 + 11y
C5C65124 + 365124  C6C124 — C5368124 —358124 2812 + 13y
= 2.12
® of 35¢6 —3s¢g cs d3 (212)
0 0 0 1

It should be noted that the simplification to this form is based on use of knowl-
edge about the geometry. Attempts to use MACSYMA in a brute force manner,
® without taking advantage of the structure of the system — the command TRIGRE-
DUCE(T1.T2.T3.T4.T5.T6) — results in an expression that is more complicated than
this result (in terms of number of trig evaluations) and possibly more complicated than
the original. Thus, symbolic methods are not a substitute for insight into the problem,
they are a tool whose use is still something of an art.

Comparison to the PUMA 560 A brief comparison to the forward kinematics of
a PUMA 560 is instructive. Craig derives these in his book as eq. 3.14.; we do not
need to reproduce them here. Even in factored form, the most complex element of the
PUMA'’s forward transform requires the evaluation of 11 different trigonometric terms;
[ the most complex for our arms require only five. This overstates the case , as many
of the trig terms are reused in different numbers in the two different kinematics we
are comparing, and the reuse of trig terms makes the advantage (measured solely in
terms of trigonometry) considerably less. However the complexity in terms of other
arithmetic operations still favors our arm substantially. The same PUMA term has
15 other arithmetic operations; ours has four. Again, there is more reuse of common
subexpressions in the PUMA solution, which can reduce computation time if these
can be stored and later recalled faster than recomputing them. Our purpose is not to
criticize the designers of the PUMA (some of whom have given us valuable guidance
on this and other research.) But, overall, we have succeeded in developing a pair of
P - manipulators whose geometry is much simpler to deal with in realtime control, enabling
us to concentrate our efforts on the dynamics (which are also simplified for the same
reasons) and control aspects of cooperation and flexibility.

Solving for the Cartesian Vector Although this is a correct formal representation,
P we are more interested in solving for the cartesian representation of the configuration
vector, given the joint vector, and vice versa. Thus, we do not usually need to represent
orientation by the 3 by 3 matrix of direction cosines, except perhaps as an intermediate
step in calculations. We can pull out of the transform the terms that enable us to solve
for the cartesian description of the arm’s configuration given the joint space description.
r Taking the terms in the last column of transform matrix in 2.12, we have:

gex =leya+ley =l ez + a1) (213)
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gcy = 1812 + 131 = (312 + 31) (2.14)

where we have made the previously noted simplification { = {; = I;

gcz = qj: = qJ3 (2.15)

Given our stated definition of orientation in the cartesian vector as a series of rota-
tions that begin aligned with the rererence frame, then we can determine the three roll,
pitch, and yaw angles in cartesian coordinates directly, without going through interme-
diate direction cosine matricies. Yaw in cartesian coordinates is the sum of the revolute
joint angles between the base frame and the main wrist barrel. All of these rotations are
about a vertical axis, and all have the same sense of sign. So cartesian yaw is the sum
of the shoulder joint angle, the elbow joint angle, and the wrist yaw angle (the vertical
translation of joint three does not effect yaw.)

qcy = qjs + @de + @Jy = Qi1 + Q2 + U (2.16)

Given our choice of orientation description in the two coordinate systems, pitch and
roll (and gripper opening, as well) translate across identically:

9¢p = Qp (2.17)
q¢ = Qjr (2.18)
qc; = g (2.19)

2.2.3 Inverse Kinematics

We now consider the problem of inverse kinematics. The first aspect of the inverse kine-
matics presented here is the solution for the robot’s configuration in joint space, given
its configuration in the cartesian base frame (frame zero as defined previously. There is
one additional piece of information that we need in order to make this relationship un-
ambiguous: we need to specify whether we want a right-handed or left-handed solution.
Left-handed coresponds to ¢j; < 0, right handed coresponds to ¢j2 > 0. The inverse
kinematic solution is best done, term by term in sequence. We begin by applying the
law of cosines to the triangle formed by the first two links (the third side is the line from
shoulder joint to the end of the second link.)

2 2
c3 = cos(qja) = _‘E%zqcz -1 (2.20)
The law of cosines calculation is simplified because we have deliberately made
ly = I3 = I(for notation)- in implementation, 2/? is a precomputed constant. We then
calculate gj,, using the arccosine, and calculate the sine, for use later.
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qjz = £ cos(cy) (2.21)

where positive means a right handed solution, negative is left handed.

sg = sin(gjz) = /1 -3 (2.22)

We must then handle some special cases to get the shoulder angle right under all
reachable conditions. when gc; = 0, we would be dividing by 0 when we attempt to
calculate the tangent of the shoulder angle, thus we have two special cases:

gi =7 -2, forqe. =0, andge, 20 (2.23)

gh=-%- %", forge; =0, andge, <0 (2.24)

ah = tan‘l(ﬂ - _qJ_z’ otherwise (2.25)
gcx 2

Since vertical position of the wrist point is the same in cartesian and joint spaces,
the third term of the inverse kinematics is available by inspection,

qJ: = qJ3 = qca. (2.26)

The fourth term, (yaw) is simple, because all of the rotations so far have been about
the same vertical axis. So, the yaw coordinate is:

gijs = qiy = 9¢y — (9s + 9Je)- (2:27)
Given our choice of representation for orientation in the cartesian configuration, we

have simple term by term equalities between the joint and cartesian vectors for the fifth
through seventh terms.

qJs = QJp = ¢S (2.28)

qje = qjr = qcr (2.29)

9J7 = qJg = 95 (2.30)
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2.2.4 The Jacobian Matrix

The Jacobian matrix can now be calculated from the kinematic relations we have. The
Jacobian is required for many control algorithms. It can be thought of as an instanta-
neous linear mapping from joint velocities to cartesian velocities (or equivalently from
joint forces/torques to cartesian forces/torques.) Our approach is to solve for the carte-
sian velocities on a term by term basis, and then assemble these six equations into matrix
form with the variables in the desired order. The first three cartesian quantities, the lin-
ear velocities in the x, y, and z directions in the base frame, can be found by taking the
derivative of the last column of JI', which expressed the forward kinematic transform.
The velocities (or rates) are referred to as u’s, with the rest of the nomenclature for the
three principal coordinate systems similar to that for the q’s except that the cartesian
orientation rates are defined and named slightly differently: The motor space velocity
vector is defined to be the time derivative of the motor space configuration vector, and
the joint space velocity vector is defined analogously:

um = qim (2.31)
uj = q.j (2.32)

The cartesian velocity vector is not simply the time derivative of the (base frame)
cartesian configuration vector. Following the convention of [2], we define the (base
frame) cartesian velocity vector as follows.

( ucy |
ucy
v ucz
w | = | uewx (2.33)
¢, ucwy
Ucuz
| ue, |

where %v is the cartesian velocity (in the base frame) of frame six’s origin and %w
is the angular velocity of frame six, expressed in the base frame and uc, is the gripper
separation velocity. This follows (2] equation 5.36. The first three components in uc
are the time derivatives of the coresponding terms in qc, so the first three components
can be found by straightforward differentiation of the term by term forward kinematics
for position, 2.13 through 2.15. Performing these differentiations, we get the following
three equations:

ucx = —L(syujl + s12(ujl + uj2))
ucy +L(c1usl + c12(ujl + uj2)) (2.34)
ucz = uj3
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In matrix form, the first three DOF are independent of the latter three, leaving us
with:

ucy —-L(s1+s2) —-L(s12) O uj
ucy = L(cl + C12) —L(Clg) 0 u.j2 (235)
ucz 0 0 1 uj3

Obtaining the equations for the last three cartesian u’s, namely uc,x, uc,y, and
u¢,Z, are more complex. These quantities are the last link’s angular velocity, resolved
into components about the unit vectors of the base frame. Note that these are not
simply the derivatives of the last three coordinates. To get the desired expressions, we
must first compute the angular velocity of the last link (and this calculation is best
done in that body’s attached frame), and then transform that back into the base frame.
The angular velocity is not merely the derivatives of the joint rates, instead, it can be
computed by propagating the angular velocity from link to link by applying Craig 5.16
once for each link. The result is the angular velocity of the last (sixth) link, resolved
into components of its attached frame:

85C6UJ124 — SgUJs
W' = | —ceujs — $586uJ124 (2.36)
ujg + Csuji24

Now we want to express this quantity in the base frame, so we multiply by R, which is
the upper 3 by 3 matrix in 3. After expanding all of the terms and simplifying using
trig identities, we get

3124855 — 85€124u56
%8 = | —s853124uj6 — c124uj5 (2.37)
csuj6 + uji2q
where uji34 = uj1 + ujz2 + ujs.
We can now write the equation for cartesian velocity as a function of joint velocity
in matrix form by combining equations 2.35 and 2.37.

uc =§ Juj (2.38)
where
[ —L(s1 +312) =-L(s12) 0 O 0 0 0]
+L(61 + ¢12) —L(C]z) 00 0 0 0
0 0 10 0 0 0
;\’ = 0 0 00 8124 —C12435 0 (2.39)
0 0 0 0 —ci12¢ —312485 0
1 1 01 0 cs 0
| 0 0 00 0 0 1 ]
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The Jacobian has some important structural features that have bearing on the com-
plexity and robustness of control algorithms. The matrix is almost block diagonal, and
the blocks are small (one 3 x 3, one 2 x 2, and two 1 x 1 blocks). The only terms that
are not block diagonal are the first two ones in the next to the bottom row. These terms
express the fact that the shoulder and elbow joint rates add directly to the last link’s
angular velocity about the base frame Z axis. This is a simple one way coupling. The
important results of this structure are twofold. The Jacobian, being fairly sparse and
simple, can be computed rapidly. Secondly, we can easily see when the Jacobian will go
singular (lose rank). First we consider the uppermost 2 x 2 block, namely

[ ~L(s1 +312) —L(s12)
+L(c1 +c12) —L(c1a)

, if we let gj2 = 0 or ¢j2 = +x, then this submatrix becomes singular. Physically,
we can understand these cases as follows: When ¢j; = 0, the arm is straight out, with
the wrist point as far out from the base frame origin as it can go; in this configuration,
incremental motions of either the shoulder joint or the elbow joint will move the wrist
point from side to side, but will cause no motion normal to the workspace boundary (in
or out). Similarly, when ¢j; = £x, the manipulator is folded back on itself, and incre-
mental motions of the shoulder or elbow cannot cause motion normal to the workspace
boundary. In practice, the elbow is prevented from reaching +, by mechanical limit
stops, in order to protect the wrist mechanism, so this case does not occur physically.
These cases are called workspace boundary singularities. Next we consider the 3 x 3
block, namely

0 s12¢ —C143s
0 —c124 —S12435
1 0 cs

, when ¢js = 0 or ¢js = tx, then this submatrix becomes singular. Again, the
+7 is outside the limit stops on the mechanism, and is not a problem. However, the
case of gjs = 0 is precisely the reference configuration for the fifth joint. When ¢js =
0, the fourth and sixth joint axes are aligned with each other (both vertical); this
condition is called a workspace interior singularity (also known as gimbal lock, a term
from gyroscopes, which also have the same mechanism geometry as our wrist). In this
configuration, the robot loses one degree of orientation freedom (cannot rotate about
the X axis), and gains redundancy in another (joints 4 and 6 are both vertical). Special
exception handling software must take this limitation of the mechanism into account,
and the human or Al system that performs the task planning must be aware of, and
properly plan for, this situation. This problem could be sidestepped by limiting the
range of motion of the fifth axis to 0 < gjs < # or 0 > ¢js > —, but this would be
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artificially discarding half of the mechanism’s reachable orientations, a gross limitation
of the dexterous workspace. This problem is fundamental to this class of wrists, and
has been a problem for many 6 degree-of-freedom manipulators.

2.3 Identification and Control Experiments

In this section, we present the principal results from the identification and control ex-
periments performed using the cooperating flexible-drive manipulators. The kinematic
parameters (link parameters and gear ratios) have been presented in the previous sec-
tion. In the sections below, we present the results of experiments designed to identify
important aspects of the dynamic model, namely mass properties and friction-flexibility
proper:ies of the manipulators.

2.3.1 Mass Property Identification Experiments

Knowledge of the mass properties is essential to an accurate dynamic model of the
manipulator. The mass properties, together with the kinematic model, are the heart
of the ideal mechanism dynamics ~ the dynamics of a manipulator with absolutely no
friction or flexibility. The properties that we need are the mass, location of the center
of mass, and the inertia properties (about the mass center) for each link. Often, due
to the geometry of a manipulator, some of this information is not used in the model,
and is thus not needed. For example, the first four links of our manipulator rotate
only about vertical axes; thus they never experience angular accelerations about any
other axis, and the only relevant inertia properties are their inertias (with respect to
their respective mass centers) about their vertical axes. A table of the most important
parameters follows:

ll Assembly name | Mass Center Location (M.) | Mass (Kg.) | Inertia Term | Inertia (KgM*) |

X; +0.150 I, 0.141
Forearm X, +0.225 6.345 Iy 0.222
Gripper n/a 0.6105 L, 0.001749

The actuator scale factors (in our case, these are all motor torque constants) together
with the geometric scale factors, and the scale factors associated with the interface
electronics, define the corespondence between commands from the computer to torques
generated at the motors (exclusive of friction). The scale factors for both the actuators
and the associated electronics are presented here. The interface electronics also impose
current (and thus torque) limits on the actuators; for the shoulder and elbow actuators,
these have two settings: a low power setting for safe testing of controllers and a full
power setting. These values are tabulated below.
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Actuator Torque const. | Amplifier const. | Max. Torque | Low Power Torque
(N-m/Amp) (Amps/volt) (N-m) (N-m)

Shoulder 0.941 1.00 9.41 1.88

Elbow 0.941 1.00 9.41 1.88

Z Axis 0.0224 0.50 0.112 0.112

Yaw 0.0224 0.20 0.0447 0.0447

Roll (motor 5) 0.0224 0.20 0.0447 0.0447

Pitch (motor 6) 0.0224 0.20 0.0447 0.0447

Gripper 0.0224 0.20 0.0447 0.0447

Actuator scale factors are the nominal values provided by the manufacturers; the
amplifier scale factors were measured experimentally, as were the peak torques at both
maximum and the low power settings.

2.3.2 Flexibility and Friction Identification Experiments

Identification and control experiments have been performed on the manipulator, with
particular emphasis on understanding the effects of joint flexibility on the system’s per-
formance. One of the foundations of our approach to cooperative control of flexible
drive manipulators is our ability to model and control the torque delivered to each link
through the flexible drive system. The subsystem of actuator, flexible drivetrain, and
link is modeled as a free, free, mass-spring-mass system (while not in contact with any-
thing in the environment [6]). Thus, in our identification and initial control experiments,
we look for evidence of response dominated by second order, lightly damped behavior.
In the experimental data shown in figure 2.3.2, we see clear evidence that the elbow
subsystem’s behavior coresponds to our model’s prediction. Additionally, we see the
evidence of some nonlinearities - friction (and/or cogging) — having a substantial effect
on the amplitude response. Thus we see clearly the need for more research.

2.4 Continuing Research

Research on cooperating, flexible drive manipulators will continue under DARPA con-
tract DAAA21-89-C-0002, with principal investigators Professor Robert H. Cannon, Jr.
in the department of Aeronautics and Astronautics and Professor Jean-Claude LaTombe
in the department of Computer Science. Under this new contract, research into the
dynamics and control of cooperating, flexible manipulators will continue, and will be
integrated with research on motion and task planning. The continuing work in dynamics
and control(s) will emphasize aclieving levels of dynamic control that will permit the
demonstration of good solutions to previously intractable problems for automation.
The new contract emphasizes research in three main areas: (1) the specific tech-
nologies that are critical to achieving true, effective integrated cooperation between




2.4. CONTINUING RESEARCH 31

Describing Function Response of Elbow Subsystem
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Figure 2.4: Model and experimental response to a sinusoidal input: describing function
data for the elbow subsystem excited by a 2.0 and 1.0 volts peak-to-peak input. The
solid line is the model, the dotted line the data at 2.0 V., and the dashed line the data
at1.0V.
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compliant manipulators; (2) motion planning and execution, for both gross and fine
maneuvering of awkward ob jects amidst obstacles, so that users can specify object mo-
tions per se at a high level; and (3) integration of the path planning and manipulation
functions. Specifically, we will demonstrate experimentally the intimate vertical in-
tegration of path planning with the manipulative skills of a pair of deft, cooperating
robotic arms in the rapid assembly of a complex configuration of awkward objects, all
in response to only high-level instructions.




Chapter 3

Control of a Flexible Robot with
a Mini-Manipulator

Raymond Kraft

3.1 Introduction

Present day industrial robots are slow and massive. Their motions are controlled by
inferring end-point position from joint angle measurements, and end-point force from
joint torque measurements. This is known as collocated control; that is, sensing and
actuation take place at the same physical location. Naturally, if there is any flexibility
in the system — something present in all real physical systems — the actual end-point
position and force will not agree with what is predicted by the joint angles and torques.
Consequently, robots have been designed to be very rigid, and hence very heavy, so as
to minimize errors introduced by flexibility.

The obvious solution to this problem is to directly measure those quantities that are
to be controlled. Namely, to measure the end-point position and force, and to feed these
measurements back to a controller that drives the actuators. Given such a controller,
this scheme would eliminate flexibility induced errors, and would hence enable one to
use lighter-weight, flexible, robots. There is, however, a good reason why this approach
has not been used in the past: it poses a much more difficult stability problem. Where
it is easy to achieve stable, albeit slow, control through the use of collocated control, it
is non-trivial to achieve good, stable control using end-point feedback.

While end-point feedback increases the speed and precision of manipulation, there is
still a fundamental problem inherent in controlling robots that are designed to operate
over a large workspace. Such a robot must obviously be large in size, and consequently
it becomes difficult to achieve rapid, precise end-point control using an actuator that
is far removed from the end-point. This difficulty may be attributed to two factors:
(1) fine end-point motions of a large manipulator translate into yet finer joint angle
motions, and (2) the flexibility in the manipulator limits end-point control bandwidth

33
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Figure 3.1: The Experimental System

to the time it takes a bending wave to travel the length of the manipulator.

A means of sidestepping this problem is to equip the manipulator with a small,
lightweight, rigid mini-manipulator located at the end-point of the main manipulator.
The mini-manipulator is then used for rapid, precise control within a small workspace,
while the main manipulator is used to ferry the mini-manipulator between widely sep-
arated workstations.

Thus, by using end-point control in conjunction with a mini-manipulator, a lightweight
robot would be able to achieve high bandwidth, precise control over a large workspace.
It is these considerations which motivated the research on position and force control of
a flexible robot arm with a two-degree-of-freedom mini-manipulator.

3.2 Experimental Apparatus

Figure 3.1 depicts the experimental system. It is comprised of the following ma jor sub-
systems: the flexible arm, the mini-manipulator, actuators, sensors, and a target. The
entire manipulator system operates in the horizontal plane with the end-point of the
flexible arm following a circular arc.

3.2.1 The Flexible Arm

The flexible arm has distributed flexibility and was intentionally designed to exaggerate
structural flexibility in the horizontal plane while remaining stiff in the gravity influenced
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vertical direction. The purpose of exaggerating the horizontal flexibility in this system
was two fold: (1) to make problems associated with flexibility more readily apparent, and
(2) to lower the resonant frequencies of the flexible arm into a region where reasonable
sampling rates, in the neighborhood of 25 to 100 Hz, could be used. The flexible arm
consists of a hub inertia block, two thin aluminum plates as side-rails, and fourteen
bridges which separate the side-rails and are connected to them by beryllium copper
springs. The flexible arm and the hub inertia block are 1.04 meters long, weigh 3.1 kg,
and have an inertia about the hub of 0.45 kg-m?. The two side-rails are 1 mm thick, 6.6
cm wide, and are made of 2024-T3 grade aluminum. The main actuator for the flexible
beam is the hub motor located at its base and below the table. A potentiometer is
collocated with the hub motor and is used to measure the base angle of the flexible arm.
A light emitting diode (LED) array, whose position can be sensed by a photodetector,
is located at the end-point of the flexible arm.

3.2.2 The Mini-Manipulator

The mini-manipulator is attached to the end-point of the flexible arm along one of the
side-rails. Essentially, it is a five link, closed kinematic chain — the base link being fixed
to the flexible arm (see Fig 3.10 for a close-up view of the mini-manipulator). The base
link measures 7.6 cm in length. Each of the two inboard links are 7.0 cm long and are
rigidly attached to the two motors that drive the mini-manipulator. The two outboard
links are 10.8 cm long. Located at the joint between the two outboard links is another
LED array which is used to sense the position of the end-point of the mini-manipulator.

Below this LED array is a vertical, force sensing, aluminum beam. It is approxi-
mately 9.5 cm long and is equipped with strain gauges which provide a means of mea-
suring end-point force. At the bottom end of the force beam is a circular contact roller,
which allows the mini-manipulator to exert only normal forces on objects it comes into
contact with. The entire five link chain, along with the force beam and contact roller,
weighs approximately 0.14 kg.

3.2.3 Actuators

The hub motor is an Aeroflex TQ-52W limited angle, brushless DC torquer with a peak
torque of 1.7 N-m and a linear range of +45 degrees. The mini-manipulator motors are
small, rare earth magnet, DC torquers with 0.15 N-m of peak torque.

Each of the motors is driven by a linear power amplifier that produces an output
current proportional to an input voltage. These amplifiers have a bandwidth of about
1kHz, which allows them to be modeled as a pure gain for the flexible arm and mini-
manipulator system.

3.2.4 Sensors

The hub angle is measured by a conductive plastic potentiometer mounted on the shaft
of the hub motor. The hub potentiometer has a sensitivity of about 3.4 Volts per radian.
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Angular rate is obtained by passing the signal of the potentiometer through an analog

pseudo-differentiator whose transfer function is %%.

Position sensing is achieved through the use of an overhead photodetector which
measures the Cartesian coordinates of a single light source. To enable the tracking of
multiple targets, a time multiplexing scheme is used, where multiple LED arrays are
sequentially flashed on and off at 1kHz. LED’s mounted at the end-point of the flexible
arm and at the end-point of the mini-manipulator provide a means of measuring these
two end-point coordinates. A finely tuned analog notch filter is used to filter out 60
Hz noise present in the system. Additionally, these position measurements are passed
through analog, single pole, low-pass filters to remove other high frequency noise. The
cut-off frequencies for measurements of the end-point of the flexible arm and the mini-
manipulator are 10 Hz and 40 Hz respectively. Overall, position sensing accuracy is
roughly £0.5 mm at a gain of about 0.1 Volts per centimeter.

The angular positions of the two inboard mini-manipulator links are measured by two
conductive plastic potentiometers mounted on the shafts of the mini-manipulator mo-
tors. The potentiometers have a sensitivity of about 3.4 Volts per radian. Angular rates
are obtained by passing the potentiometer signals through analog pseudo-differentiators
with transfer function 332,

The forces applied to the end-point of the mini-manipulator are measured by an
aluminum force beam. It is 9.5 cm long and has a 5mm square cross section. Semi-
conductor strain gauges are mounted on all four sides at the root of the force beam.
Thus Cartesian components of force in a local reference frame can be measured by
connecting opposing pairs of strain gauges in a bridge configuration, and amplifying the
bridge output. The force signals are filtered by a third order Bessel type filter with
poles at s = —151.6 and s = —334.0 & 530.2j. Overall, the force sensor has a gain of
roughly 14 grams force per Volt, with a noise level of about 1.5 mV.

3.2.5 The Target

A target was used to demonstrate force control and surface following. It was cut from
plexiglas on a Matsuura CNC machine. It is 11 inches long, 2.5 inches wide, and 1.5
inches thick. It offers a variety of complex contours from flat surfaces, to curved surfaces,
to sharp corners.

3.2.6 The Real Time Computer

Real time control was achieved using a DEC PDP 11/83 mini-computer with an RT-
11 operating system. The system has a floating point math board, 16 twelve-bit A/D
converters, and 12 twelve-bit D/A converters. All control programs were written in
FORTRAN 77 and PDP assembly language.
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3.2.7 Identification Equipment

A Schlumberger Solartron model 1254 frequency response analyzer was used to identify
the dynamics of the experimental system. The frequency response analyzer generates a
sinusoidal signal which is used to drive the system’s actuators. The resulting motions
and forces are then measured by the analyzer, and their magnitudes and phases relative
to the input are calculated.

3.2.8 Other Computing Equipment

Control law synthesis and simulation was done on both VAX and SUN workstations.
The commercially available control packages MATRIXx and PRO-MATLAB were used.

3.3 Modifying the Plant for Favorable Dynamics

One problem that was encountered in doing end-point control of the mini-manipulator
was the presence of torsion in the flexible arm. The flexible arm had been designed to
ideally be flexible only in the horizontal direction, and with earlier experiments that
used similar flexible arms, no torsion related problems were encountered. However, the
current two-degree-of-freedom mini-manipulator mounted at the end of the flexible arm
resulted in the flexible arm having a much higher end-point mass and inertia than pre-
vious experimental arms. This in turn resulted in a much lower frequency for torsional
oscillations. The frequency of the first torsion mode was approximately 10 Hz — just
within the desired 10 Hz mini-manipulator control bandwidth.

Further complicating matters, it was discoverrd that the transfer function from
mini-manipulator end-point force to mini-manipulator end-point position had a first
resonance pole at a lower frequency than the first resonance zero — an unfavorable
pole-zero configuration.

3.3.1 Favorable and Unfavorable Pole-Zero Patterns

Basically, the transfer function from mini-manipulator end-point force to mini-manipulator
end-point position in the lateral direction is that of a double integrator plant with an
added lightly damped torsional resonance. This, in addition to a simple lead com-
pensator, constitutes the original, unfavorable configuration of the system. Figure 3.2
shows the root-locus for the “Unfavorable Configuration”. Notice that the poles associ-
ated with the torsional resonance immediately move into the unstable right half-plane.
The fact that the pole frequency is lower than the zero frequency make this system
inherently difficult to control.

On the other hand, if the pole frequency is higher than the zero frequency, then one
has the system shown in Fig. 3.2 labeled “Favorable Configuration”. Notice that here
the resonance pole moves into the stable left half-plane.
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Figure 3.3: The Torsion Problem: Force Control Root-Locus
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Similarly, in Fig. 3.3 we see the “Favorable” and “Unfavorable” pole-zero configura-
tions for end-point force control of the mini-manipulator using integral control. When
in force control, the plant no longer has a rigid body mode. The pole at the origin is
due to integral control, and the two pairs of poles and zeros on the imaginary axis are
due to the torsional resonance.

If the experimental system could be modified to cause the pole frequency to be
greater than the zero frequency, the tasks of both position and force control would be
greatly simplified. This possibility will now be investigated.

3.3.2 A Simplified Model of the Torsion Mode

A simplified model of the flexible arm and mini-manipulator system will be used to
analyze the torsion mode. Figure 3.4 depicts this simplified model. It is essentially a
view of the flexible arm looking from the end-point towards the hub. A dextral set of
mutually perpendicular unit vectors n,, n,, and n, are fixed in inertial reference frame
N. Rigid body A, whose center of mass is located at C, has mass M and central inertia
scalar I about an axis parallel to nj. Point C is located a distance h along the n,
direction from an inertially fixed point O. A dextral set of mutually perpendicular unit
vectors a@,, a,, and a, are fixed in a reference frame attached to A. A linear torsion
spring with spring constant k is attached to A at C. This is intended to approximate
the torsional characteristics of the flexible arm. A point mass located at P with mass m
is constrained to move along groove G which is parallel to a, and lies a distance d along
the a, direction from C. This is intended to approximate the mass of the end-point of
the mini-manipulator. An LED located at L lies a distance ! in the a, direction from
C. It is connected to a massless rigid link which is connected to point P. A contact
point T lies a distance b in the —a, direction from C. It is connected to a massless rigid
link which is connected to point P.

This simplified system has three degrees of freedom described by three generalized
coordinates: ¢1, ¢z, and g3. Generalized coordinate g, is the angle between unit vectors
n, and a,. Generalized coordinate ¢; is the distance from O to C along the n, direction.
Finally, ¢3 is the distance from C to T along the a, direction. The generalized speeds
are defined simply as u; = éi (1=1,2,3).

Three forces contribute to the motions of the simplified system. An internal force
Fa, is exerted on P by body A. At the contact point T', an external force Rn, is exerted.
Finally, an external torque —kq;a, is exerted on A by the linear torsion spring.

Given this system, the linearized equations of motion may be written as

~(I + md®)iy, + md*iy + mdis + Rb—kq, = 0
mdi, ~ (M +m)ig—miuz+ R = 0 (3.1)
mduy —miz ~mig+ F+ R = 0.
When T is in contact with an object fixed in N, the following condition must hold

NoT.n, =0. (3.2)
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Figure 3.4: Simplified Torsion Model of the Experimental System
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Simplifying and linearizing Eq. (3.2) yields

buy +us +u3 =0. (3.3)

3.3.2.1 Position Control

When T is not in contact with an object, as is the situation during position control,
the object reaction force R is zero. Making this substitution and taking the Laplace
transform of Eqs. (3.1) yields

—(I + md?)s® -k mds® mds? q1(s) 0
mds? —(M + m)s® —ms? ] |: q2(s) ] = [ 0 | F(s). (3.4)
1

2 2 g3(3) -

mds -ms -ms?

Solving Eq. (3.4) yields

a(s) _ d

F(s) = Is*+k

q(s) _ -1

1"2‘(3) T Ms? (3:5)
q3(s) [(;l;‘i‘ﬁ)l'f‘d?] 82+k(;}‘-+ﬁ)

F(s) ~ s2(Is? + k) '

During position control, the position of the LED at point L is measured. More specifi-
cally, one measures a quaatity y given by

y = %0.n

g2 + cos(q1) g3 — Isin(q)
X -lg+q2+¢s. (3.6)

Substituting Eqs. (3.5) into Eq. (3.6) yields

y(s) _[I+md(d-1)]s*+ k.

F(s) ms?(Is? + k) (3-7)

To achieve the “Favorable Configuration” illustrated in Fig. 3.2, where the frequency of
the first resonance zero is less than that of the first resonance pole, Eq. (3.7) indicates
that the following condition must hold

d(d-1)>0. (3.8)
This can be met by one of the two following conditions
d>0 and d>1 (3.9)

or
d<0 and d< I (3.10)
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Enforcing the first condition is not easily feasible. By examining Fig. 3.4, one can see
that the first condition implies that the LED is located below the point mass P. In this
configuration, the point mass would most likely obscure the LED from the overhead
vision system.

The second condition is, however, quite feasible. It requires that the point mass P be
located below the center of mass of body A, and that the LED be above the point mass
P. Thus, we have an easily obtainable system configuration that produces a favorable
pole-zero pattern for position control.

3.3.2.2 Force Control

When in force control, the object reaction force R is non-zero and the condition described
in Eq. (3.3) must hold. It is convenient to define the following variables:

52 2 —[I+md(d+b)]
72 2 m(d+b)+ Mb (3.11)
3 2 m(d+b)

Under these circumstances, making the substitutions indicated above, and taking a
Laplace transform, Egs. (3.1) become

ns*-k 0 b q1(s) 0
28  Ms? 1 a(s) | =1 0 | F(s). (3.12)
2333 0 1 Rs(s) -1

Solving for R(s) yields

R(s) k-2zs
F(s) = (21 —bz3)s? =k’ (3.13)
By examining Eq. (3.13), achieving a “Favorable Configuration” requires that
I+m(d+b)* < I+ md(d+b) (3.14)
or
(d+0)* < d(d +b). (3.15)

Now there are two cases: one for (d + b) < 0, and one for (d + b) > 0. For each case,
Eq. (3.15) translates into

Case 1: (d+5) >0 | Case 2: (d+b) <0

d+b<d d+b>d
4 !
b<O b>0

Thus, there are two possibilitie: for favorable dynamics. The first is that

(d+5)>0 and b < 0. (3.16)
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However, given that for position control it is desirable to have d < 0, Eq. (3.16) is
impossible to satisfy. The second possiblity is that

(d+b)<0 and 5> 0. (3.17)

But for d < 0, it would be very difficult to produce a physical geometry that would
satisfy Eq. (3.17). Thus, for force control, the “Unfavorable Configuration” is practically
unavoidable.

3.3.3 Summary

In summary, by configuring the system such that the LED is situated above the point P,
and that P is in turn below C, one has a system with a favorable pole-zero pattern for
position control. Unfortunately, this also results in an unfavorable configuration for force
control, but this cannot be avoided. In physical terms of the actual mini-manipulator,
this configuration of the simplified model translates into the following: the LED should
be located above the center of mass of the mini-manipulator end-point, and the center
of mass of the mini-manipulator end-point should be located below the center of mass
of the flexible arm.

3.4 Collocated Control

Collocated control is a type of control where the sensors and actuators are located at the
same physical position. This is significant because it results in robust, stable control.
However, it has the drawbacks of not yielding good end-point accuracy and producing
relatively low bandwidth control. Nevertheless, there are times when it is appropriate
to use collocated control with the flexible arm and mini-manipulator system.

One such time is when the end-point of the flexible arm or the mini-manipulator
is either outside the field of view of the optical end-point sensor, or occluded from
the optical end-point sensor. In such instances, it is desirable to switch from high-
performance, end-point control to the more dependable collocated control.

Another time when collocated control is appropriate is when the desired end-point
position is outside the workspace of the mini-manipulator. Under this circumstance,
it is desirable to use a collocated mini-manipulator controller while the flexible arm
controller moves the mini-manipulator into range. During this motion, the collocated
controller holds the mini-manipulato: in some nominal configuration. Once the desired
end-point position is in range, the mini-manipulator switches to end-point control.

The type of collocated control used is PD — Proportional and Derivative. More
specifically, the control torques for each of the three actuators may be described by

Th = Ko (kpH(q1ommans = 1) + kar (0 = 1))
TA = KA [kPA(q'l*chommond - qﬂ+l) + de(O - u"+1)] (3'18)
TB KB [kPB(qﬂ"'lcmmund - qﬂ+2) + kdB(O - u"+2)] .
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Figure 3.5: Step Response for Collocated Control of Flexible Arm

Here, Ty is the hub motor torque. T4 and Tp are the two mini-manipulator control
torques. The gereralized coordinates q;, qn+1, and gn42 correspond to the hub angle of
the flexible arm, and to the two mini-manipulator joint angles respectively. The time
derivatives of gy, gn+1, and gn42 are designated u;, tp4q, and tn4; respectively. Since
this control mode does not require high performance, the selection of feedback gains
was not rigorously optimized. Instead, gains were simply selected by using values which
experimentally proved to yield acceptable performance.

Figure 3.5 shows the response of the flexible arm to a step command in hub angle
position. The hub angle takes just over 2 seconds to make a 20 degree slew with very
little overshoot.

Figure 3.6 shows the response of one of the mini-manipulator links to a step command
in link angle. The slew takes approximately 0.2 seconds and has negligible overshoot.
Notice that there is a significant delay between the time when the actuator begins to
output a torque and when the link begins to move. This is due primarily to brush
friction in the mini-manipulator motors.

3.5 Friction Compensation

As described in Section 3.2, the hub motor is brushless, and hence adds very little friction
to the hub of the flexible arm. On the other hand, the mini-manipulator motors do have
brushes, and consequently they add a much greater amount of friction to the two base
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Figure 3.6: Step Response for Collocated Control of Mini-Manipulator

joints of the mini-manipulator. The friction level present in the two mini-manipulator
motors is roughly 0.007 Nm - about 5% of the peak torque of 0.15 Nm, and as much
as 20% of the torque required to control end-point force to common levels of about 35
grams force. In light of these significant levels of friction, some means of reducing the
effect of friction on the system was sought.

It was experimentally determined that the friction present in the motors was essen-
tially Coulomb friction. There was no discernible difference between static and kinetic
friction levels, and no significant viscous friction. Thus, the common practice of using
a dither signal to break-up static friction is not effective in this case.

Another type of friction compensation that was attempted was to feed-forward an
estimate of the Coulomb friction level to the motors. In one case, this estimate was
simply the absolute value of the Coulomb friction level multiplied by the sign of the
corresponding motor shaft angular velocity. More specifically,

Ta = Fsga(unt1) (3.19)
Ts = Fsgn(unta): (3.20)

where T4 and T are the two mini-manipulator motor torques, F is the absolute value
of the Coulomb friction level, and un4; and un4; are the two motor shaft angular
velocities. This scheme of friction compensation has a very noticeable drawback: when
the angular velocities are small, the friction compensation torques tend to “chatter”
(i.e. oscillate very rapidly) unless F is made very small. This chatter can be minimized
by the addition a dead-band and/or hysteresis.
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However, what experimentally proved to yield the best friction compensation was
the use of linear, angular velocity feed-forward with limits. Under this scheme, the
friction compensation torques may be described by

TA = { (ufm) uﬂ+l ‘uﬂ+1| S uhm (3.21)
F |un+ll > Ulim

Tg = (Z5) vtz lunsal < im (3.22)
F [unt2| > rim

This form of friction compensation was used only while the mini-manipulator was under
end-point position control. It would also have been desirable to use some kind of friction
compensation during force control, but none of the above methods yielded satisfactory
results — the primary problem was that they all tended to destabilize the torsion mode.

3.6 Identification of the Flexible Arm

As was demonstrated in Section 3.4, achieving satisfactory collocated control of the
flexible arm does not require an accurate model of the system. The price one pays for
this is poor performance. Achieving high-performance end-point control of the flexible
arm, on the other hand, requires a fairly accurate description of the flexible arm’s rigid
body and bending modes.

Since the whole point in having a mini-manipulator at the end of the flexible arm
is to produce much higher performance than possible with the flexible arm alone, it is
reasonable and very generic to assume that the controllers for the two systems will be
bandwidth separated. This spectral separation allows one to design the two controllers
independently. Thus, in terms of the flexible arm, it is only necessary to identify transfer
functions from the hub motor input to the two flexible arm outputs: end-point position
and hub angle.

3.6.1 Experimental Procedure

One way to identify the flexible arm is through the use of sine sweeps. That is, inputting
a sinusoidally varying torque to the hub motor, and measuring the relative magnitude
and phase of the end-point position and hub angle for a wide range of frequencies.

A frequency response analyzer was used to provide the sinusoidal input, and to
calculate the relative magnitude and phase of the outputs. The input frequency was
varied from as low as practically possible, 0.1 Hz, to a point where the bending mod~
resonances became insignificantly small, 14.0 Hz.

The experimental transfer function data taken with the frequency response analyzer
was then fit to two model transfer functions: one for the transfer function from hub
torque to hub angle, and the other for the transfer function from hub torque to flexible
arm end-point position. This fit was done using a numerical conjugate gradient search
algorithm to minimize a cost function.
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3.6.2 A Cost Function for the Transfer Function

Let G(s) represent the actual transfer function we wish to identify, and let G(s) represent
our estimate of G(s). We then wish to minimize some measure of the difference between
G(s) and G(s). This has to be done at each of the discrete frequency values s; (j =
1,...,n) where G(s) was measured. A typical measure to minimize is the square error
given by

n 2

Jr =3 {G(s) - Gsi)} - (3.23)

=1
This cost function, however, has the disadvantage of being heavily influenced by large
errors. A cost function that is less sensitive to large errors is one that is based on the
absolute value of the error.

J1 = il |G(si) - G(s0)|- (3.24)

This is the measure that was minimized to obtain an “optimal” estimate of G(s).

3.6.3 Experimental Model of the Flexible Arm

As has been shown in the past, a truncated modal form may be used to approximate
the transfer function of the system. Since no resonances beyond the third bending mode
were experimentally observed, only the first three modes were modeled. The transfer
function from hub torque to hub angle may be approximated as

a(s) 3 P
Tu(s) ~ s(s ¥ am) T ) { T 2(.-1;.-3 T } : (3.25)

i=1

The first term in Eq. (3.25) refers to the rigid body mode of the flexible arm. The
remaining three terms describe the first three bending modes of the flexible arm. Simi-
larly, the transfer function from hub torque to the end-point position of the flexible arm
may be approximated as

WEX(3) — G fwer Twezo 3 Twez;
Tu(s) ~ (" + “fww) (3(3 Yom) T 2 {32 + 2(wis + wf }) . (3.26)

1=1

Equation (3.26) has a leading factor not present in Eq. (3.25). This leading factor
reflects the presence of a 10 Hz analog low-pass filter.

The parameter ay represents the amount of viscous damping present in the hub
motor, and was experimentally determined by examining the rate of decay of the rigid
body mode. The parameter a,.. represents the known cutoff frequency of the low-pass
filter for the flexible arm end-point position sensor. Another parameter, that will be
discussed more later, is asy,;. It represents the known cutoff frequency of the pseudo-
differentiator that was used to derive angular rate information from measurements of
the hub angle. The other parameters in Egs. (3.25) and (3.26), namely rq,, Twez;» Gis
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Hub Motor Damping | Filter Cutoff Frequencies

aH Qfwez Gful
0.15 rad/sec 10 Hz 10.27 Hz
Mode Residue Frequency (Hz) | Damping Ratio
i Tq Twez; W G
0 0.2166 | -2.6863 0 —
1 0.4219 | 2.1429 2.60 0.0298
2 8.2046 | -2.1077 4.85 0.0153
3 0 2.4795 10.40 0.0248

Table 3.1: Values of the Flexible Arm Model Parameters

and w;, were determined by minimizing the cost function J;. The numerical values for
all of these parameters are tabulated in Table 3.1.

Using Eqgs. (3.25) and (3.26), and the values listed in Table 3.1, a numerical theoret-
ical model of the flexible arm was constructed. Figures 3.7 and 3.8 show the Bode plots
of the flexible arm transfer functions. One trace shows the actual experimental values
obtained using the frequency analyzer, and the other trace shows the values obtained
using the mathematical model.

Looking at the transfer function from hub torque to hub angle, one notices that there
is an alternating pole-zero pattern. Starting from the low end of the frequency scale and
moving to the right, one encounters first a zero, then a pole, a zero, and then another
pole — basically, two poles and zeros. The third bending mode makes no significant
appearance in this transfer function.

In contrast, the transfer function from hub torque to flexible arm end-point position
has three discernible poles, and no discernible zeros. This apparent lack of zeros arises
because the zeros of the transfer function are not located near the imaginary axis in
the s-plane. In fact, some of the zeros actually lie in the right half-plane. It is this
non-minimum phase characteristic of the non-collocated transfer function that makes
good end-point control so difficult to achieve.

3.7 End-Point Control Design for the Flexible Arm
3.7.1 State Space Model

For purposes of control law design, it is convenient to recast the equations describing
the theoretical model of the flexible arm, namely Eqgs. (3.25) and (3.26), into a state
space representation. In such a form, the equations of motion of the system may be
described simply as

@ = Fz+Gu
Yy = Hz. (3.27)
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Using a modal representation, one can arrive at the following block diagonal form for
the system dynamics matrices

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
(3.33)

(3.34)

The quantities Wg,, and u;,, are simply the filtered measurements of WE, and u;
respectively. These two filter transfer functions are given by

(3.35)

(3.36)

(3.37)
(3.38)

(3.39)
(3.40)
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Since the flexible arm is to be controlled by a digital computer, it is necessary to have
a discrete time model of the system. The continuous time system dynamics described by
Eqs. (3.27) may be transformed via a zero order hold into a discrete time representation
given by

Zpy = Pz, +Tu,

vn = Hz,. (3.41)

3.7.2 Optimal Regulator Design

An “Optimal Regulator” is a type of controller that minimizes some cost function. The
standard formulation is to minimize the cost J given by

1 N
J =5 D [#n RooZp + ug Ryt (3.42)
n=0
subject to the constraint
oy =Pz, + Tu,. (3.43)

R, and R,, are symmetric weighting matrices on the states and the controls, selected
to yield a desired performance. Since the quantity that is directly trying to be controlled
is Wg,, it is reasonable to choose R__ such that there is a cost associated with non-zero
values of Wg, . This may be done by choosing

Rizye: = R h

TTWeT wezr"“wez*

(3.44)

The damping in the system was enhanced by adding costs to the elements of R__,,.. cor-
responding to each of the modes of the system. In this case, the following modifications
to the basic R..,., given in Eq. (3.44) were made:

Rzzwc:(zy 2) — R::we:(2s 2) +0.2

Rzzwez(4o 4) — thwez(4y 4) + 1.0
Reswes(6,6) <= Rrzwes(6,6)+ 10.0 (3.45)
Rz:wez(s,s) <= R:rwe:(8,8).
Using a control cost
Ruywes = 0.0025 (3.46)

the cost function given by Eq. (3.42) was minimized to obtain the optimal feedback
control law

Up = Kwe:(zcommand - :l:n) (3.47)

where . nanq i8 the desired state vector and K, is the feedback gain matrix. The
actual numerical values of the feedback gains are

K,..=[3m 123¢ -11.63 1165 62201 3541 179 002 0 0 ]. (3.48)
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3.7.3 Steady-State Optimal Estimator Design

Since not all of the states are available for measurement, a steady-state optimal estimator
was used to estimate the state vector. For a discrete time system given by

Ty = Pz, + v, +IMNw, (3.49)
v, = Hez,+1v, (350)

where the process noise w,, and measurement noise v,, may be characterized by

g{wn} =E{v,} =0 (3.51)
E{w;wT} =E{v,0]} =0 if i#j (3.52)
and
£{rw,wlrl} £ Qq,, (3.53)
£{v,0T} 2 Q,, (3.54)

then it is desired to choose L such that

w1 = ®2 +Tu, (3.55)
nt1 = Tt L(Yap - HEZ, ) (3.56)

Q8

yields an “optimal” estimate & of the true state . The actual values of the process noise
and measurement noise covariances were not determined. Instead, Q.. and Q,, were
treated as design parameters to arrive at an estimator that had satisfactory performance.
In choosing Q. and Q,,, there is a trade-off between the “speed” of the estimator error
roots, and the “noisiness” of the state estimate. Basically, the noise covariance matrices
were chosen to yield the fastest possible estimator error roots, while providing no more
noise in the output estimate than was actually measured. Using the values

rrt (3.57)

Q TTWer

-4
Qe = [mo 100_,], (3.58)

the estimator gain matrix was found to be

T
L - -0.11 -0.74 -001 038 -000 008 0.00 -008 025 028 (3 59)
wezr -0.00 0.04 000 008 000 008 000 -002 000 047 ‘

Now, based on measurements of Wg,_ and uim, the state vector £ may be estimated
using the current estimator equations given in Eqs. (3.55) and (3.56).
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Figure 3.9: End-Point Control Step Response for the Flexible Arm

3.8 End-Point Coucrol of the Flexible Arm

Using the optimal regulator and estimator designed in Section 3.7, end-point position
control of the flexible arm is now possible. Running the controller at a sample rate of
100 Hz, the flexible arm was given a step command in end-point position. Figure 3.9
shows the time history of the end-point of the flexible arm and the control torque that
was used. One will notice that there is a roughly 50 msec (5 sample period) delay from
the time the step command is given to the time the flexible arm end-point begins to
move. This represents the time required for a bending wave to propagate down the
length of the flexible arm. The commanded slew of just over 5 cm was accomplished in
0.65 seconds with negligible overshoot. This compares quite favorably with the period
of the first cantilever mode of the flexible arm which is 1.4 seconds. This step resulted in
a peak control torque of approximately the same size as the maximum torque available.

3.9 Identification of the Mini-Manipulator

Now that the flexible arm is under end-point position control, there remains the task
of closing both a position and force control loop around the end-point of the mini-
manipulator. To do this, we must have some description of the dynamics of the mini-
manipulator. Figure 3.10 depicts a close-up view of the mini-manipulator. One will note
that in terms of the actuator torques applied at points X4 and Xp, and the Cartesian
position of the end-point Xg, this is a highly non-linear mechanism. It does, however,
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Figure 3.10: A Close-Up View of the Mini-Manipulator

have the advantage of being very elegant mechanically: it is all direct drive, and the
motors are not required to accelerate heavy masses such as other motors.

One strategy that is used in controlling non-linear systems involves having a knowl-
edge of the governing equations of motion, and using this to make the non-linear system
behave like a desired simple linear system. This is known as computed torque. Since
the full equations of motion of the mini-manipulator are far too complex to be dealt
with in real time with available computer power, some other means of addressing the
control problem must be found.

For a mini-manipulator that has linkages which are light compared to the end-
point mass, the equations of motion may be approximated by a much simpler set of
equations. All of the dynamic non-linear terms in the governing equations of motion
are associated with the dynamics of the linkages. Since in this case the linkages are
relatively lightweight, the non-linear dynamic terms in the equations of motion may be
neglected. Thus, one is left only with kinematic non-linearities and a greatly simplified
set of equations which approximate the full equations of motion of the mini-manipulator.

3.9.1 The Mini-Manipulator Jacobian

One can relate the variation in end-point position as seen in the mini-manipulator
reference frame A to the variation in joint angles via

5[ R. ] =J 6[ In+1 ] : (3.60)
R, Gn+2
where R, and Ry are the Cartesian coordinates of the end-point Xg in reference frame
A. The 2 x 2 matrix J is known as the Jacobian. In general, Eq. (3.60) may be written
as

bz = Jéq. (3.61)
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If one considers the case of static equilibrium, the principle of virtual work may be ap-
plied to the mini-manipulator. If T is a vector whose elements are the joint torques, and
F is a vector whose elements are the forces exerted by the end-point on the environment,
then the principle of virtual work may be stated as

TT6q - FT62 = 0. (3.62)
Substituting Eq. (3.62) into Eq. (3.61), one arrives at the expression

T=JTF, (3.63)

Ta|_q 1| hH
(2] <o 2] son
Thus, given a desired applied force, Eq. (3.64) allows one to calculate the joint
torques necessary to provide that force. In essence, we can make the system appear to
behave as if a force fa, + f2a, is acting on the end-point using only control torques T'4
and Tp. One must remember that this relationship holds exactly only when the base
link of the mini-manipulator is inertially fixed. However, actual practice has shown

that for the relatively slow motions of the flexible arm, Eq. (3.64) is still a very good
approximation.

or more specifically

3.9.1.1 Evaluating the Jacobian

Referring to Fig. 3.10, the sine and cosine of the angle g,44, represented by c,+4 and
Sn+4, may be found from known quantities via

e = \/[lo + hi(cat1 = asa)]’ + [h(sn41 = 8n42))? (3.65)
= £
“ = o (3.66)
Sa = yJl-¢2 (3.67)
l
o = (smz = snn1) (3.68)
ey = (f1-s2 (3.69)
Cntd = SaSy+Caly (3.70)
Sn4d4 = 85Cy — CaSy. (3.71)

Then, the following sequence of equations determine the Jacobian:

s - & [ll(3n+lcn+2 ~ Cn415n+2) — 10118n+1] (3.72)
ae] 1 2
Mnyz a [ll("nﬂsun = Sn+1Cn42) + 101“"‘“] (3.73)
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3211 = ;i} [elCn+l + (Sn42 — .s,._,_l)a(Z:l] (3.74)
3:::-: = c_:e% [elcn+2 = (Sn+2 — $nt1) 33::.2] (3.75)
8:.: - 21210 a(::l, (3.76)
8::: - 21—,.:,, 83::, (3.77)
ZZIII = af,z, - 3:11 (3.78)
g;;:: = a::, - af,::, (3.79)
T quu = ~hne QZ:II (3.80)
J1z OR: _ —li8n42 -lgs,.+4aq"+‘ (3.81)
n+2 Oqns2
Jn 82::1 =l g::H (3.82)
Iz ai“n = hensz+ s 33::- (3.83)
The Jacobian is then
=[] @80

3.9.2 Experimental Identification

With the Jacobian and the assumption of relatively lightweight linkages, we now have a
means of experimentally identifying the dynamics of the mini-manipulator. The general
idea is to input a desired sinusoidally varying end-point force, and to measure the
resulting position of, and force at, the mini-manipulator end-point.

3.9.2.1 Position Transfer Function

Using the frequency response analyzer, a sinusoidal signal s(t) was generated. This was
then used to generate two desired end-point force vectors given by

Fy, = [8?]

0
de = [s(t)}

One may then substitute these desired force vectors into Eq. (3.63) to yield two sets of
mini-manipulator joint torques

(3.85)

(3.86)

T, = JTF,, (3.87)

T
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T, = JTde, (3.88)

Then, while applying joint torque T',, one uses the frequency analyzer to measure the
lateral position of the mini-manipulator end-point R; and to determine the relative
magnitude and phase. This determines the transfer function from lateral force to lat-
eral position, or R:(s)/fia(s). In a similar fashion, by applying joint torque T', and
measuring Ry, one arrives at the transfer function from longitudinal force to longitudinal
position, or Ry(3)/ fai(s).

Again, using 2 truncated modal form, the experimental frequency response data was
fit to a model described by

R’ (8) — as Treg s Trz;
fld(s) - (8 + Zf’) ( s? * Z {32 + 2Crz,Wrz; 8 + ng.’ }) (3.89)

=1

B(s) _ (_os Trwp | Prue
faals) (" + :!r) ( EpY {33 + 2(,-“(-::'34.-3 +wl, }) : (3.90)

i=1

It should be noted that although the mini-manipulator represents a highly non-linear
device, we are mapping the mini-manipulator dynamics through the Jacobian and at-
tempting to fit the result to a linear model. The leading factors in Eqs. (3.89) and
(3.90) reflect the presence of a 40 Hz analog low-pass filter. As before, the cost function
J1 given in Eq. (3.24) was minimized to yield optimal estimates of the parameters r,,,
Tryis Wrris Wry;y re;y a0d (y,. In the lateral direction, the experimental data was fit to
Eq. (3.89) for m,; = 1. The reason for using m,, = 1 is that experimental evidence
showed that only the rigid body and torsion mode were significant. In the longitudinal
direction, the experimental data was fit to Eq. (3.90) for m,, = 0. Here, the reason
for only considering the rigid body mode is that bending and torsion in the flexible
arm affect motions primarily only in the lateral direction. The numerical values of the
parameters obtained from the optimization are listed in Table 3.2.

Using Eqs. (3.89) and (3.90), and the values listed in Table 3.2, a numerical, theo-
retical model of the mini-manipulator position dynamics was constructed. Figures 3.11
and 3.12 show the Bode plots of the mini-manipulator position transfer functions. As
before, one trace shows the actual experimental values obtained using the frequency re-
sponse analyzer, and the other trace shows the values obtained using the mathematical
model.

Examining the transfer function from lateral end-point force to position, or R.(s)/fi(s),
one can see that the two mode linear model does a reasonable job of fitting the experi-
mental data. One will note that, as predicted in Section 3.3, the zero frequency is less
than the pole frequency. This results in “favorable” dynamics that make the system
eagy to control. The single pole seen in Fig. 3.11 is due to the torsion mode. The bend-
ing modes in the flexible arm have only a negligible impact on the frequency response
— their presence being seen in the slight differences between experiment and model at
about 3 Hz and 8 Hz.

The transfer function from longitudinal end-point force to position, or Ry(s)/ fa(s),
looks just like a 1/s? plant. Again, the single mode linear model does a reasonable
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[ Filter Cutoff Frequency

afp
40 Hz

Lateral Direction (m,r = 1)

Mode | Residue | Frequency (Hz) | Damping Ratio
t Trz; Wrz; Crz
0 85.0834 — —
1 19.3234 11.40 0.0385

Longitudinal Direction (m,, = 0)
Mode | Residue | Frequency (Hz) | Damping Ratio
i Trys Wryi Cry;

120.7804 —

Table 3.2: Values of the Mini-Manipulator Model Parameters: Position

:rrgfe't' Function From Lateral End-Point Force to Position

102

100 10t 102
Frequency (Hz)

Figure 3.11: Bode Plot for Mini-Manipulator Position R,
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Figure 3.12: Bode Plot for Mini-Manipulator Position R,

job of fitting the experimental data. The slightly larger phase lag in the experimental
model may be attributed to time delays in the digital computer that was used during
the identification process.

3.9.2.2 Force Transfer Function

To identify the force transfer functions, the mini-manipulator end-point was brought into
contact with an inertially fixed object. As in identifying the position transfer functions
of the mini-manipulator, the frequency response analyzer was used to generate the
two desired end-point force vectors given by Eqs. (3.85) and (3.86). In this case, the
sinusoidally varying desired force vectors contained a DC bias level to ensure that the
mini-manipulator end-point remained in contact with the object. However, now instead
of measuring the end-point position, the end-point force wa: casured. The lateral
force f; and the longitudinal force f, were measured, thereby -+ rmining the transfer
functions f1(s)/ f14(s) and fa(s)/ f2a(s)-

The truncated modal form used to fit the experimental data was

f © ™,
f;((‘:)) = B(s) (r,,o +y { 11 }) (3.91)

S+ 2% s +why,
fa(8)

— = 7‘!2..
faa(s) ~ B(s) (rno + Z {82 F 2 awymns + b, }) - (3.92)

=1
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Bessel Type Filter
bsn | 5.9530 x 107 || DC Gain 1
braz | 819.62 Pole 1 ~151.62
bsas | 4.9391 x 10° Pole 2 | —334.00 + 530.16;
bsde | 5.9530 x 107 Pole 3 | —334.00 — 530.167

Lateral Direction (ms; = 1)
Mode | Residue | Frequency (Hz) | Damping Ratio

! 115 wri; Cf 1
0 3.6444 — —
1 7619.3 10.72 0.0568

Lateral Direction (my; = 3)
Mode | Residue | Frequency (Hz) | Damping Ratio

' Tf1, Wi, ¢y
0 2.9885 — —
1 -237.01 3.46 0.0501
2 1015.2 8.85 0.0694
3 7154.6 10.72 0.0595

Longitudinal Direction (ms; = 0)

Mode | Residue | Frequency (Hz) | Damping Ratio
i r12; w2, Cra
0 5.4385 — —

Table 3.3: Values of the Mini-Manipulator Model Parameters: Force

where B(s) is a third order Bessel type filter given by

- byn
B(s) - (33 + b!d232 + bfdas + bfd4) . (3-93)

Minimizing the cost function J; given in Eq. (3.24), the force transfer function param-
eters were determined for both my, = 1 and my; = 3, and for my; = 0. The numerical
values of the parameters are listed in Table 3.3.

Using Eqs. (3.91) and (3.92), and the values listed in Table 3.3, a numerical theoret-
ical model of the mini-manipulator force dynamics was constructed. Figures 3.13 and
3.14 show the Bode plots of the mini-manipulator force transfer functions.

For the transfer function from lateral end-point force to measured force, or f1(3)/ fi4($),
one sees bode plots of the experimental system, the single pole model, and the three pole
model. The three pole model does a reasonably good job of matching the experimental
bode plot. The single pole model does not do as good a job of modeling some of the
lesser resonances, however it does do well at modeling the major torsion resonance at
10.72 Hz. Experimentation has shown that using the three pole model does not produce
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Approximately Linear System

Sinusoid

ini-Manipulator:.

v

Figure 3.15: Identification by Approximate Linearization

significantly better closed-loop performance than the single pole model. For this reason,
the simpler single pole model was used.

In the frequency range of interest, from DC to about 10 Hz, one can see from
Fig. 3.14 that the transfer function from longitudinal end-point force to measured force,
or fa(8)/fad(s), is almost a pure gain — no dynamics. Thus, for control purposes, a
zero pole model is adequate.

3.9.3 Approximate Linearization Via the Jacobian

The mini-manipulator represents a highly non-linear dynamic system. In general, iden-
tifying such a non-linear system would involve measuring all of the mass, stiffness, and
damping properties of the flexible arm and mini-manipulator, and using these measured
values in the very complicated equations of motion that describe the system dynamics.
However, as demonstrated, for a mini-manipulator that has lightweight linkages and
most of its mass concentrated at the end-point, this highly non-linear system may be
“mapped”, via the Jacobian, into an approximately linear system.

Using the Jacobian, one can calculate the joint torques necessary to provide a desired
end-point force for the case of static equilibrium. This is done using Eq. (3.63). If,
however, the linkages are lightweight, and the end-point mass is relatively large, the
joint torques calculated from Eq. (3.63) approximate the torques necessary to make the
mini-manipulator end-point behave as if it is a point mass acted upon by the desired
force — a linear system. Figure 3.15 shows a graphical illustration of the identification
procedure.

Intuitively, the reasoning behind why the Jacobian can be used to map such a non-
linear system into an approximately linear one is as folows. The full equations of motion
contain many non-linear terms. Some of these are related to dynamic effects, and others
are related to purely kinematic effects. As the linkages of a manipulator become more
lightweight, and the end-point mass becomes larger, the dynamic non-linearities become
insignificant. Thus, one is left primarily with equations of motion that contain kinematic
and dynamic linear terms, and purely kinematic non-linear terms. However, these non-
linear kinematic terms are exactly what the Jacobian describes, and using the Jacobian,
one can essentially subtract them out of the equations of motion. This method of
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linearizing the mini-manipulator dynamics is generic, and can be applied to all systems
that have relatively lightweight linkages, relatively large end-point masses, and a square
Jacobian.

3.10 Mini-Manipulator Control Design

As with the control design of the flexible arm controller, the mini-manipulator controller
was designed using modern optimal control techniques. Using the model parameters
identified in Section 3.9, modal state space models of the position and force dynamics
were constructed. Cost matrices and covariance matrices were chosen, and the corre-
sponding optimal regulator and estimator were then calculated.

3.10.1 Position Control Design
3.10.1.1 State Space Model

To facilitate control design, the transfer functions described by Eqs. (3.89) and (3.90)
were recast into a state space form given by

:i:u, = Frzzrz + Grzu"l'

¥z = H,z,

&, = F z,+G.u,y (3.94)

yy = H,z..

Using a modal representation, one can arrive at the following block diagonal form
for the system dynamics matrices

[0 1 ]
00
F, = 0 1 (3.95)
-wgzl - 2("3‘] wr:c]
L afPhrz: —asp |
T
G, =[01010] (3.96)
H, = [00001] (3.97)
where
T
., = [‘Ir:o Qrzo qrz, qrzl Rtm] (398)
Uy = fid (3.99)
Yz = Rim (3100)
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and
0 1
F,,=|0 0 (3.101)
afrhry I —afp |
T
G, = [01 0] (3.102)
H,, = [o 0 1] (3.103)
where
) T
Tyy = [quo drye Rym] (3.104)
u,.y = fzd (3-105)
Yry = Rym. (3.106)

The quantities Ry and Ry, are simply the filtered measurements of R; and R, re-
spectively. The filter transfer functions are given by

%ﬂ. - (sifavh) (3.107)
ER!-;"- = (%) (3.108)

The output matrices h,, and h,, are defined by
R = h,z,, (3.109)
R, = h, =z, (3.110)

where

h,, = [r,,0 0 rzy 0 0] (3.111)
ey = [rme 0 0]. (3.112)

Again, to facilitate digital control, a discrete time model of the system was formed.
The continuous time system described by Eqs. (3.94) was transformed via a zero order
hold into a discrete time representation given by

zr:u+| = ¢r:zrx.. + rr:ufzu
Yz, = H,,z,.,"
Trynsr = erzry,‘ + rry“ry.. (3.113)

Yryo = Hryz

Tyn*
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3.10.1.2 Optimal Regulator Design

As with the design of the regulator for the flexible arm, one needs to assign some cost
to state variables and controls. This cost can then be minimized subject to constraint
equations — the discretized equations of motion — to yield an optimal feedback gain.
The cost matrices R,,.., Ruurz, Rrzry, and Ryyyy were selected to yield acceptable
closed-loop roots. The selections arrived at were

Rr:rrz = h?-;:hr:: (3'114)
Ruurz = 0.002 (3.115)
R.,, = hlh, (3.116)
Ruwry = 0.004. : (3.117)

To enhance damping in the system, some of the costs associated with state rates, ¢;’s,
were modified. The modifications were

Rizrz(2,2) <= Rezrz(2,2)+5.0
Rrzrz(4,4) <= Rzzrz(4,4)+10.0 (3.118)
Rzzry(2,2) <= R:zry(2,2)+5.0.

Using these cost matrices, the optimal feedback control law is
Uz, = Kiz(Trzcommand = Trz,) (3.119)
Uryn = Kry(zrycammand - zry,.) (3.120)

where 2, ,mmand 30 T, commana 3T€ the desired state vectors, and the feedback gains
are

K,, = [995.95 5444 965.50 29.54 0 | (3.121)
K [ 1340.63 57.42 0]. (3.122)

ry
The actual control torques are then calculated using the Jacobian. Given u,; and u,y,
which correspond to fi4 and f4 respectively, the control torques are

Ta | _ ;7| fud
[Ta ] =J [fu ] (3.123)

3.10.1.3 Steady-State Optimal Estimator Design

As with the optimal estimator for the flexible arm, the process noise and measurement
noise covariances were treated as design parameters. Satisfactory estimator performance
was achieved using

Qrzrz = Frxr?z (3.124)
Qure = 107° (3.125)
Q:ery = TwyI7, (3.126)

Qury = 1073 (3.127)
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Using the above covariance matrices, the steady-state, optimal estimator, feedback gains
were found to be

T
L. = [00088 02189 -0.0811 0.7031 | (3.128)

T
L., = [0.0076 0.2057 0.8225] . (3.129)

ry

Due to calculation time delays resulting from signal processing, a predictor estimator
was used. Thus, the optimal estimate of the state vectors z,, and z,, may be found
via the equations

.1

TZn4t ﬁrzzrz.. + I'rzu'"»'n + er(yrz.. - Hr::zrzn) (3'130)
rinps = Pry®ryn + Loytiryn + Ley(¥ry, — Hoyzpy,)- (3.131)

®
I

3.10.2 Force Control Design

3.10.2.1 State Space Model

Again, it is convenient to recast Eqs. (3.91) and (3.92) into a modal state space form.
i]l = Fﬂzﬂ+Gﬂuﬂ
yn = Hpzp
ilz = F,g@,g + G,gﬂ]z (3132)
yr2 = Hpzp.

In the modal representation, the dynamics matrices are

0 1
—w}h =205, w1,
Fp= 0 1 0 (3.133)
0 0 1
L 1 0 —bas —bgaz —byaz ]
T
Gn = [0 rm 00 rflo] (3.134)
Hpy = [0 0 bpm 0 0] (3.135)
where
, : . T
Ty = [fI!l in €nm Enm fﬂm] (3.136)
un = S (3.137)
¥n = fim (3.138)
and
0 1 0
Fp=f 0 0 1 (3.139)

—braq —bgaz b
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T
Gp = [0 0 7y | (3.140)
Hy = [b 0 0] (3.141)
where
. % T
Ty, = [fnm §ram Efzm] (3.142)
up2 = fu (3.143)
2 = fam. (3.144)

The quantities fi, and fo,, are simply the filtered measurements of f; and f; respec-
tively. The filter transfer functions are given by

Jim(s) = f2m(:) - brn
H(8)  faw) 2 +braas? +bgazs + braa

(3.145)

The continuous time system described by Eqs. (3.132) was transformed via a zero order
hold into a discrete time representation given by

T = Pnxp, + Loun,
yvn, = H neTn,

Zprp = PpZ, + Lpup, (3.146)
Y. = Hpzp,

3.10.2.2 Optimal Regulator Design

Since the force transfer functions behave much like a pure gain at low frequency, it
is desirable to include integral control to eliminate steady state tracking error to step
commands, and to provide good disturbance rejection. To facilitate the addition of
integral control, the state vector may be augmented with an integral of the measured
forces.

In discrete time, the integral of the force may be expressed by

€flays = €1, tThima =en, tTHpzn, (3.147)
€241 = €52, +Tfom, = €52, + TH a4, (3.148)

where 7 is the sample period — 0.01 seconds for the sample frequency of 100 Hz. Thus
the augmented state vector may be written as

zp, [—”ﬂn-} (3.149)
611"

Ty, = [—’ﬂn-] : (3.150)
€12,
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We may now define a new system that contains the augmented state vectors z'ﬂ
and :l:'n. The new discrete time dynamics matrices are:

$, = :;;—{;Lll-(l)—] (3.151)
ry = —-POJL-] (3.152)
H) = fH,llo] (3.153)
&, = rrffsz (1’] (3.154)
ry, = {_roﬂ—] (3.155)
Hy = [Hp|o]. (3.156)

We will now assign a cost to the augmented state vectors and controls to arrive at
an optimal controller that minimizes these costs. For the lateral force controller which
regulates f}, it is desirable to assign a cost to both the torsion mode and to the integral
of the force. For the longitudinal force controller which regulates f,, it is desirable to
assign a cost to the integral of the force. Thus, the following cost matrices were arrived
at:

[ 0003 0 0 0 0 0]
0 00O0OO
0 00O0O0TO
R:zfl = 0 00000 (3.157)
0 000O0O
| 0 0 00 0 1]
Ryupn = 0.015 (3.158)
[0 0 0 O
0000
[0 0 01
R.up1 = 0.020. (3.160)
The optimal feedback control law is then
Ufln = Kfl(zjlcommand - zjl.,) (3.161)
uga, = Ky(Tsrcommand = Ty2,) (3.162)

where 2, . mand 204 Z50mmang a€ the desired state vectors, and the feedback gains
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0.1466
0.0047
4.5666 x 10°
= 3.163
Kn 1.7084 x 103 ( )
2.8536

5.7886

[ 4.6502 x 10° ]
1.7037 x 10°

= . 3.164
Kn 2.8530 (3-164)

5.9288

As in position control, the control torques are calculated using the Jacobian. Given u f
and g3, which correspond to fi4 and f24 respectively, the control torques are given by

Eqgs. (3.123).

N -

3.10.2.3 Steady-State Optimal Estimator Design

Using process noise and measurement noise covariance matrices given by

Qeepn = I'yI'h (3.165)
Quwn = 1073 (3.166)
Qizpz = I'ppl'Y, (3.167)
Qusz = 1073, (3.168)

satisfactory estimator performance was achieved. The corresponding steady-state, op-
timal estimator, feedback gains were

[ 0.3215
12.4454
7.5940 x 10~°
- .169
Ln ~3.7997 x 10~7 (3.169)
1.6615 x 10~4

0

[ 4.6368 x 1079 ]
~6.9493 x 10-7
L, = . 3.170
12 1.7783 x 104 (3.170)
I 0 1
Again, due to computation time delays resulting from signal processing, a predictor
estimator was implemented to estimate the force states. Thus, the optimal estimate of
the state vectors = 51 and x,, may be found via the equations

=i=!l»-n = ds!l:"ll.. + Lpun, + le(yﬂ,‘ -Hpzy ) (3.171)
é!’n-ﬂ = ﬁnznn + Pf2u/2u + Lf2(yf2n - H,zzn“). (3172)
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Figure 3.16: Position Control Step Response for the Mini-Manipulator

3.11 End-Point Control of the Mini-Manipulator

Using the optimal regulators and estimators designed in Sections 3.7 and 3.10, end-
point position and force control of the flexible arm and mini-manipulator system is
now possible. The position controller for the flexible arm and the position and force
controller for the mini-manipulator were designed separately. This was made possible
by the fact that the flexible arm and the mini-manipulator are bandwidth separated —
the mini-manipulator is about six times as fast as the flexible arm.

Running the controller at a sample rate of 100 Hz, the mini-manipulator was given
a step command in end-point position. Figure 3.16 shows the time history of the end-
point of the mini-manipulator. The roughly 5 cm step takes 0.11 seconds to complete.
In comparison, the flexible arm required about 0.65 seconds to complete a 5 cm slew.

Next, the mini-manipulator was given a step command in end-point force. In
Fig. 3.17 we see a time history of the force level during this step command. It takes
about 0.06 seconds to complete a transition in force level from 21 grams force to 35
grams force. In comparison, the time required to achieve a step change in force level
using the earlier flexible arm system, which did not have a mini-manipulator, was about
0.7 seconds.
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Figure 3.17: Force Control Step Response for the Mini-Manipulator

3.12 Surface Following

As humans, we can appreciate the value of being able to follow the contours of surfaces
using touch. It is an ability that is useful in tasks such as cleaning windows, mopping
floors, and sanding wood. A robot with this ability would hence be very valuable. Since
the flexible arm and mini-manipulator system possess a sense of touch, namely the force
sensing beam, it is possible to demonstrate a surface following ability.

When the mini-manipulator end-point comes into contact with an object, it senses
a force. Because the force sensing beam is equipped with a contact roller, the forces
sensed are ideally only normal forces. Thus, given the direction of the contact force,
one knows that the surface normal lies in the opposite direction. The surface tangent
is then orthogonal to this. Thus, one knows the local direction of the surface, and it is
possible to move in this direction while applying forces in the surface normal direction.

The surface following algorithm that was implemented is as follows. At time ?o,
determine the surface normal and tangent directions. Next, command a position that
lies a distance k in the tangent direction. Also, command a force in the direction opposite
to the surface normal. Now, at a time ¢; that is one sample period after ¢y, determine
the new surface normal and tangent directions. Project the old commanded position
onto a line that is parallel to the new surface tangent and passes through the current
convact point. To this projected position, step a distance k in the tangent direction and
define this as the new commanded position. Again, command a force in the direction
opposite to the current surface normal. Repeat this every sample period.
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One may also state this algorithm in a more mathematical form. If the current
applied force vector is

f = fznx + fyn21 (3-173)
then the current surface normal vector is
t = t:ny +n,
Jy fz
= ln - ZEq, 3.174)
™M A™ (

Let (ps,p,) be the Cartesian coordinates of the current end-point position, and let
(Pzc1,Pyc1) be the Cartesian coordinates of the last commanded position. Then the
projection of the last commanded position on a line passing through (pz, p,) and parallel
totis

I = (pzer = pe)tz + (Pyer — py)ty. (3.175)

Finally Cartesian coordinates of the next commanded position, (pzc2, Pyc2), are given by
Pz2 = Pr+(I+k)t; (3.176)

Pz = py+ (I +k)ty, (3.177)

where k is a constant.

This algorithm involves position control in one direction, and force control in an
orthogonal direction. One will recall that the position controller generates a control
effort u,, corresponding to fi4, and u,, corresponding to fo4. Let fi4,,, and faq,,, be
the control efforts determined by the position controller. The force controller generates
a control effort us; corresponding to fi4, and uy; corresponding to faq. Let frd,,, and
fad,,, be the control efforts determined by the force controller. The combined position
and force control effort is then

fldcombincd = fldpo. + fld[or (3'178)
fzdeomﬁncd = fzdpo‘ + f2d’°,-' (3-179)
One then uses the relation
Ta T | Fideomss
=J combined 3.180
[ TB ] decmbmcd ( )

to determine the joint torques.

Using this algorithm, the flexible arm was commanded to follow the contours of
a target at a speed of 4 cm/sec. Figure 3.18 shows an experimental plot describing
this maneuver. The solid line describes the path made by the end-point of the mini-
manipulator, and essentially outlines the shape of the target surface. The many short,
straight lines emanating from the target surface describe what the force controller es-
timated the local surface normal to be. These estimates are shown every 0.2 seconds.
Based on measurements of link angles and LED positions, the configuration of the flex-
ible arm and mini-manipulator is shown every 3.0 seconds.
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Figure 3.18: Surface Following

3.13 Conclusion

End-point position and force control of a flexible arm with a two degree-of-freedom
mini-manipulator has been demonstrated. The end-point position of the flexible arm
can be controlled at a bandwidth of 1.5 Hz — this compares quite favorably with the

first cantilever mode of the flexible arm which is 0.7 Hz.

The torsional interactions of the mini-manipulator and the flexible arm were mod-
eled. From this, it was determined that the criginal system could be modified to greatly
simplify position control by providing a favorable pole-zero configuration. At the same
time, it was shown that there was no convenient means of achieving this favorable

pole-zero configuration for force control.

A generic means of mapping a non-linear system into an approximately linear one
was demonstrated. This approach is applicable to any system with a square Jacobian,
and linkages that are light compared to the end-point mass. In this experiment, a
non-linear mini-manipulator was mapped into an approximately linear system. This
linearization facilitated the use of standard techniques for identifying and controlling

linear systems.

Using optimal control techriques, an end-point position and force controller were
developed for the mini-manipulator. These controllers took advantage of the fact that
the flexible arm and the mini-manipulator could be bandwidth separated. This made it
possible to design controllers for the mini-manipulator and the flexible arm separately.
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The resulting bandwidth for position and force control at the end-point of the mini-
manipulator was about 10 Hz — roughly ten times better than for a flexible arm without
a mini-manipulator.

Finally, the ability to follow the contours of a surface, without a priori knowl-
edge of its shape, was demonstrated. This involved having the end-point of the mini-
manipulator “feel” its way around an object. It also demonstrated the ability to nego-
tiate sharp, right angle changes in surface orientation. The surface following algorithm
is insensitive to slow motions of the target ob ject.

3.14 Status

The work described in this chapter is in a state of near completion. The original goals
~f demonstrating position and force control, as well as surface following, have been
ccomplished. This work is currently being written up as a PhD thesis.




Chapter 4

Force Control of a Two-Link
Arm With Flexible Drive Train

Brian Andersen

Introduction

A crucial capability for two-arm cooperation will be exquisite force control at each arm
tip. The supporting research effort described in this chapter is aimed at advancing that
capability in the context of a single two-link arm having a very flexible drive train.

This section of the final report describes work that has been accomplished to date
on the two-link arm with flexible tendon drive and mini-manipulator. The objective
of this research is to allow the arm to slew into contact with a target, make a smooth
touchdown, and maintain a constant force on the target, using the mini-manipulator
for augmentation of precision control. We believe the mini-manipulator is going to play
a key role in successful high-performance force control. In this chapter we describe
its use on a two-link arm. Chapter 4 describes additional fundamental force-control
experiments with the two-degree-of-freedom mini-manipulator mounted on a single, very
flexible beam.

During the time covered by this report we have demonstrated initial position and
force control with the mini-manipulator on a fixed base. This work will form the basis
for the control algorithms when the mini-manipulator is added to the two-link arm.

This is a facility which was completed three years ago, and with which we have
already demonstrated precise, rapid control of very large pick-and-place tasks with heavy
targets of varying weight. A schematic representation of the two-link-arm apparatus is
shown in Fig. 4.1, in which the mini-manipulator is not shown to scale. The main arm
actually has approximately six ¢' 1es the reach of the mini-manipulator.

The rationale for using a 1. _.i-manipulator at the tip of the two-link arm is that,
for most robotic tasks, a great deal of the manipulation is performed in a few localized
workspaces. A mini-manipulator can be used to perform these tasks in the localized
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Figure 4.1: The Two-Link Arm with Mini-Manipulator

workspace at a much higher bandwidth than is achievable by the main arm. The main
arm is used to move the mini-manipulator between the localized workspaces.

The status of this project is that the experimental hardware has been built and
is functional. The computer hardware and interface electronics have also been built
and are functional. Initial experiments with the mini-manipulator on a fixed base have
demonstrated position and force control. Using the same experimental set-up, following
a su.face while maintaining a desired force has also been demonstrated. This work can
be extended when the mini-manipulator is added to the two-link arm.

This chapter of the report describes the various demonstrations that will be per-
formed to test the control methods developed, the design of the experimental hardware,
the various position and force control algorithms that have been developed, results from
their experimental implementation, and future plans for this project.

4.1 Objective of this Project

The capability we wish to develop here is for very-high-bandwidth, precise control of
the force at the tip of a two-link manipulator having a very flexible drive train. We
plan to demonstrate this capability by (1) performing rapid slew and touch with a fixed
target while having no overshoot in the force, (2) controlling the arm so that its tip
moves along a wavy surface while maintaining a constant force on the surface, and (3)
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Figure 4.2: Demonstration of Force Control Capabilities

slewing into contact with a moving target and maintaining a constant force on it while
it continues to move.

The initial experiments will be performed with some massive object for a target that
will not move when the arm tip exerts a force against it. The important elements to
demonstrate are that the arm is controlled accurately both in and out of contact with
the environment, and that there is quick switching between modes of control. This will
be preceded by performing the same experiment with the mini-manipulator on a fixed
base.

The next demonstration, shown in Fig. 4.2, requires a massive target which will have
surface waves of the order of magnitude of the range of the mini-manipulator. The arm
will be controlled to maintain a constant force while following the surface. The main
arm will be controlled to track primarily along a straight line along the target while the
mini-manipulator follows the waves in the target surface.

This demonstration will also be performed with the mini-manipulator on a fixed
base. In some ways, performing this task on a fixed base is more difficuit. When the
mini-manipulator is attached to the main arm, the tip of the main arm can be moved so
that the mini-manipulator is in the center of its workspace. When the mini-manipulator
is on a fixed base, however, it can only apply the desired force wherever the target is in
its workspace.

The final demonstration, shown in Fig. 4.3, will address controlling force applied
to a moving target. We plan to use as a target a model railroad train similar to one
that has been developed for another experiment and which should require little if any
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Figure 4.3: Demonstration of Force Control Capabilities

modification. This will demonstrate the ability to follow a moving surface in a large-
disturbance environment.

4.2 Experimental Apparatus

4.2.1 Two-Link Arm

The experimental two-link manipulator is a SCARA manipulator operating in the hori-
zontal plane with two revolute joints and vertical plunge actuator at the tip. A drawing
of the manipulator is shown in Fig. 4.4 with the base, supports, and mini-manipulator
removed to show the essential features. Both of the links of the manipulator are ap-
proximately 0.5m in length. The reach of the manipulator ranges from a minimum of
about 0.5m to a maximum of about 1.0m. The vertical plunge actuator gives a range
of motion of about 15.0cm.

The links of the manipulator are driven by two identical DC electric motors with
maximum torque capability of 11.2N — m. The upper link is connected to the shoulder
motor via a reduction stage and a cable drive with four springs mounted in-link to
provide for exaggerated flexibility. Similarly, the forearm is connected to the elbow
motor via an idler pulley and a cable drive with two springs mounted in-line. The
shoulder drive train provides a 5.91:1 gear reduction, and the elbow drive train provides
a 2.44:1 gear reduction.

The motors, both joints of the manipulator and the vertical plunge actuator are
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Figure 4.4: Drawing of the Experimental Two-Link Manipulator




80 CHAPTER 4. FORCE CONTROL OF A TWO-LINK ARM

T

T2
fe— b—>

Figure 4.5: The Mini-Manipulator

equipped with rotary encoders to provide angular position information. These encoder
signals are processed electronically, using a first difference at low rates or a period
count at high rates, to give angular velocity information. In addition, each motor has a
tachometer to provide angular velocity information. Finally, there is an optical sensor
that senses center of brightness. This observes the triad of infrared LEDs mounted
on the top of the vertical plunge actuator to determine the end-point position of the
manipulator.

4.2.2 Mini-Manipulator

The mini-manipulator is a small five-link, closed-kinematic-chain manipulator which
operates in a horizontal plane. It is shown schematically in Fig. 4.5. The connection
between the two-link manipulator and the mini-manipulator is shown in greater detail
in Fig. 4.6. The base link, which is rigidly attached to the vertical plunge actuator
of the two-link manipulator, is approximately 5.1cm in length. The two inner links of
the mini-manipulator are approximately 7.6cm in length and the two outer links are
approximately 10.2cm in length. The inner and outer links are hollow tubes for light
weight and fast speed. At the end of the outer links where they are connected through
a revolute joint, there is a vertical beam with a square cross section. At the bottom
end of this beam is a bearing enclosed by a hard rubber ring. It is the rubber ring that
makes contact with the environment.

The two inner links of the mini-manipulator are driven relative to the base link by
two small DC electric motors. These motors have a peak torque of 0.35N — m.

Mounted on top of the mini-manipulators are rotary encoders to provide angular
position information. These encoder signals are processed using the same electronics as
the two-link arm encoders to give angular velocity information.

The vertical beam at the tip of the mini-manipulator is equipped with two pairs of




I I

4.2. EXPERIMENTAL APPARATUS 81

z-axis Motor ——__

z-axis Drive
Two-Link
Forearm
'} Mini-manipulator
Motors
/ Mini-manipulator End-point
—~ / P / LED

=

Force Sensor—%

Figure 4.6: Connection of the Two-Link Arm with Mini-Manipulator

strain gages near the top of the beam. One gage is mounted on each face of the beam.
Each pair of gages on opposite faces of the beam is connected in a bridge configuration
with two resistors on a strain-gage amplifier board to produce a signal proportional
to the force applied in one direction with only a small amount of noise. These gages
and electronics are used to produce an estimate of the force applied at the tip of the
mini-manipulator in two perpendicular directions in the horizontal plane.

4.2.3 Control Computer and Interface Electronics

The real-time control of the mechanical system is handled by a Motorola 68020 single-
board processor with a 68881 floating point coprocessor. Both operate at 16.67TM H z.
This board is connected via a bus repeater to a Sun 3/160 workstation using the VME
Bus. Using this connection, software can be developed and debugged in the flexible
development environment of the Sun workstation and then down-loaded to the 68020
processor. Using software developed in this laboratory, the 68020 processor controls
the experimental hardware while sending data through the VME Bus back to the Sun
workstation for display and processing.

Control signals are output from the computer using the VMIVME-4116 8-channel
16-bit Digital-to-Analog Converter. Analog signals, such as the force sensor and the
motor tachometers, are sampled by the XVME-566 Analog-to-Digital Converter that
provides 16 differential input channels with 12-bit resolution. Finally, the MVME340




82 CHAPTER 4. FORCE CONTROL OF A TWO-LINK ARM

Parallel Interface/Timer Module drives the encoder interface electronics built in the
laboratory and provides for output of discrete signals such as a motor heartbeat. All
three of these boards are connected to the 68020 processor via a VME Bus backplane.

4.3 Analysis and Controller Design

4.3.1 Equations of Motion

The equations of motion of the two-link arm with mini-manipulator and the mini-
manipulator alone, both in and out of contact with its environment, have been deter-
mined. These equations will be used for simulation and for comparison with the actual
system.

The equations were derived using Kane’s dynamics. It includes intermediate pul-
leys between the motors and the joints of the main arm. Friction is included in the
motors, springs, and joints of the main arm. It is not included in the joints of the mini-
manipulator since that is considered to be small compared to the friction in the rest of
the system. This could be included later without much difficulty. The environment is
modelled as a spring and a linear damper attached at one end to a point of contact on
the target and to the tip of the arm on the other end. This models any elasticity in the
target, force sensor, or both. A large spring constant for the environment can be used
if it is desired to modei the target surface as rigid.

The system as modelled has eight rigid bodies (two main arm motors, two main arm
links, and only four mini-manipulator links since the base link is rigidly attached to the
fore arm link) and four constraint equations (the matching of position and velocity of
the ends of the two outer links of the mini-manipulator), for a total of twelve degrees
of freedom for the system. Due to the complexity of these twelve equations of motion,
they are not presented here.

The equations of motion for both the mini-manipulator alone and the mini-manipulator

on the end of the two-link arm have been incorporated into a simulation. The simula-
tion is written as subroutines tb  are linked into MatrixX/System Build, a non-linear
system simulation package.

4.3.2 Control Methods

The combination of the main two-link arm and the mini-manipulator makes an intricate
dynamic system with very complicated equations of motion. Rather than try to develop
a controller design that can handle the complicated dynamics of the whole system,
we take advantage of the fundamental dynamic behavior of the system. The mini-
manipulator is designed to be smaller and quicker than the main two-link arm, so its
control bandwidth will be much larger. We can take advantage of this spectral separation
of the two systems to design controllers for the two systems independently. The main
arm will have a slower controller designed without considering the dynamics of the mini-
manipulator. This is a good approximation since the mini-manipulator dynamics have
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a small effect on the dynamics of the main arm.

The mini-manipulator will have a control algorithm designed independently of the
dynamics of the main arm. However, because the dynamics of the main arm are strongly
coupled with the dynamics of the mini-manipulator, the motion of the main arm must
be taken into effect in some way. This probably can be accomplished by simply using the
kinematic quantities of the tip of the main arm, such as position, velocity, and possibly
acceleration. The exact method has yet to be determined.

4.3.2.1 Main Arm

Control of the main arm will draw on the work of Michael Hollars from this laboratory.
He demonstrated high-bandwidth position control for the tip of the main arm carrying a
variety of payload masses, as described in [5]. His control algorithm involved designing
a Linear Quadratic Regulator (LQR) for the system linearized about an elbow angle
of 35°. Attempts to use a Kalman Filter for the estimator failed, however, due to the
large non-linearities in the system. Instead of a linear estimator, a method called the
Constant Gain Extended Kalman Filter (CGEKF) was used. This method uses the
same linear measurement update as the usual Kalman Filter. Instead of using a linear
state update, though, it integrates the full equations of motion of the system to arrive
at the new state estimate. This method has proved to work very well for the two-link
arm with no mini-manipulator while not in contact with its environment.

Specifically, the CGEKF was implemented in three equations: a measurement up-
date:

2(k) = z(k) + Ly(y(k) — Caz(k)) (4.1)
a time update: \
ik +1) = /. ::)“) F(3(R), u(k))dt (4.2)

and finally the control equation:
u(k +1) = Kq(zc(k +1) - Z(k+ 1)) (4.3)

where £(k) is the estimated value of z at the current time, Z(k+ 1) is the predicted value
at the next time, Lq is the estimator gain matrix, y(k) is the current measurement, Cy
is the matrix that converts states to measured values, u(k) is the control torque, Ky is
the controller gain matrix, and z = f(z(k),u(k)) are the nonlinear equations of motion
of the system.

4.3.2.2 Mini-Manipulator

To date, there have been three control algorithms tested experimentally using the mini-
manipulator on a fixed base. The first two of these are methods for controlling the
position of the tip, and the third controls the force applied by the tip.

The first control algorithm tested was a simple Proportional-Derivative (PD) control
loop, using the motor angles. This scheme indirectly controls tip position by using the
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inverse kinematics of the mini-manipulator to determine the angles that give the desired
tip position. It does not, however, address the motion of the tip through the workspace.

The second control algorithm tested was an impedance controller. This control
algorithm was originally described by Hogan in [3]. This control scheme takes into
account the kinematics of the mini-manipulator so that the tip is controlled directly in
Cartesian space. However, it does not consider the dynamics of the mini-manipulator,
8o it does not compensate for dynamic effects such as centrifugal acceleration. It can
be considered in a somewhat simplistic view as a PD controller of the tip position and
velocity.

An impedance controller establishes a fixed relation between the position of the tip
and the force on the tip. In this case, the relationship is

F= KP(Z - zde:) + KV(I - j"deo) (4'4)

where F' and z are the force on and the position of the tip, respectively, z4., and Zg4.,
are the desired position and velocity of the tip, and Kp and Kv are gains that can be
adjusted to change the impedance of the arm. Using the relation

r=JTF (4.5)
where J is the Jacobian of the mini-manipulator, this relation becomes
T=JTKp(z — 24e,) + JTKv (2 — Zdes) (4.6)

where T is the torque of the mini-manipulator motors.

The non-dynamic impedance controller just described has the desirable pronerty of
regulating the interaction between the error in tip position and the force applied to the
environment, at least in a static sense. It can be said to be a method of regulating
the force applied to the environment. Unfortunately, the input to this controller is a
desired position, not a desired force. It is possible to determine a desired position from
a desired force, but only if the exact position of the edge of the target and the combined
compliance of the target and end-effector are known. In practice, neither of these will
be known exactly. Moreover, the properties of the target must be known, so all objects
would have to be categorized in advance, thus limiting the generality of the algorithm.

To overcome these limitations, feedback can be used to set the desired position
instead of setting it a priori. For example, it can be modified using the difference
between the desired and actual force. This is the basis of the third control algorithm
that has been experimentally tested. The same impedance controller operates at all
times, whether in or out of contact with the environment. When contact has been
made, however, a control loop is used to regulate the desired position. In this method,
the force error, integral force error, and error in velocity normal to the perceived surface
of the target are combined to determine an incremental change in the desired position.
The desired position thus determined is then used by the impedance controller.
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The distance within the surface to place the desired position is determined by the
equation

Step = Kp(F — Fues) + Kvyyy i ENormal + K1 / (F = Fg,)dt (4.7)

where K, Kvy,_,,...» and K are constant gains, F and Fy,, are the actual and desired
force applied by the arm respectively, £n,rmai is the velocity normal to the surface of
the target, and Step is the distance inside the surface to command the desired position.
Using this value, the desired positions for the impedance controller can be computed
using the equations

Tdes = Ztip — Stepcos OF (4.8)

Ydes = Ytip — Stepsinfp (4.9)

where z4., and y4., are the Cartesian coordinates of the desired position of the tip, z¢ip
and yyp are the actual position of the tip, and O is the angle at which force is applied
by the target.

With this scheme, the addition of sliding along the surface is not very difficult. The
desired velocity along the surface can be set to the desired sweep speed. The desired
position is set to the desired position calculated by the force loop in Eqns. 4.8 and
4.9 plus a step along the surface equal to the sweep speed multiplied by the sample
period. In this way, the calculation of the desired position along and into the surface
are independent of one another.

The addition of sliding along the surface does not change Eqn. 4.7. Eqns. 4.8 and
4.9 become

Tdes = Ttip — Stepcos O — VsyeepTs sinbp (4.10)

Ydes = Ytip — Stepsin O + Vsyeepl's cOS or (4.11)
with the additional equations

Zdes = —Vsweep sin br (4.12)

Ydes = Vsweep c0s OF (4.13)

where Vsycep is the desired speed at which to sweep along the surface, Ts is the sample
period, and #4., and §,., are the Cartesian coordinates of the desired velocity tor the
impedance controller.

4.4 Experimental Results

This section will examine and discuss the experimental results obtained to date. All
results are for the mini-manipulator on a fixed base. All three control methods discussed
in Sect. 4.3.2.2 are demonstrated and discussed.
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Figure 4.7: Step Command in Angle for PD Angle Controller

4.4.1 Position Control

The PD angle controller was given a step command such that the mini-manipulator tip
moved parallel to the X axis from a Y coordinate of 10 cm to a Y coordinate of 0 cmr
The angle of motor 1 versus time is shown in Fig. 4.7. The motor 1 angle follows a
well-damped trajectory to the new desired angle. This is expected because the motor
angles are being controlled.

The motor angles of the mini-manipulator are not the important quantities, however.
It is the position of the tip of the mini-manipulator that must be controlled. The
response of the tip of the mini-manipulator in Cartesian space is shown in Fig. 4.8.
The trajectory followed by the tip has a large curve in it and is not the straight path
that is desired. This shows graphically the resuit of controlling the motor angles and
not the tip position.

The impedance controller, on the other hand, is controlling position of the mini-
manipulator tip directly. The response of the mini-manipulator tip to the same step
command described for the PD controller is shown in Fig. 4.9. The tip position follows
a nicely damped trajectory, which is the desired behavior.

A comparison of the manipulator tip trajectories for the two controllers is shown
in Fig. 4.10'. This shows clearly the superior behavior of the impedance controller
in following a straight-line trajectory at the mini-manipulator tip. Other than the
deviation at the end of the trajectory, which might be due to the friction in the system,

1These trajectories do not start and end at exactly the same place because these points were specified
to one in terms of angles and the other in terms of cartesian tip coordinates. In addition, friction causes
positioning errors.




4.4. EXPERIMENTAL RESULTS

Y Tip Position (mm)

100 102 104

106 108 110 112 114 116

X Tip Position (mm)

Figure 4.8: Cartesian Trajectory for PD Angle Controller

Y Tip Position (mm)

Figure 4.9:

100 v —

e

Step Command in Y Coordinate for Impedance Controller

0.3

Time (sec)

0.4 0.5 0.6

87




88 CHAPTER 4. FORCE CONTROL OF A TWO-LINK ARM

100 v
——— Impedance
------- PD Angle
so}- s g
-~ 60F ) <4
£ .
g 40 [ “‘ )
& A
> 20}k 4 .
<
----- N‘-"‘
ol Se-dettT
20 . " " s
90 95 100 105 110 115 120
X Tip Position (mm)

Figure 4.10: Trajectory Comparison for Two Position Controllers

the impedance controller takes the mini-manipulator tip very close to a straight line.
The time tics on the plot are spaced evenly at approximately 40 msec intervals along the
trajectory. Note that not only is path closer to a straight line, the impedance controller
takes about half the time to arrive in the vicinity of the desired point.

However, the impedance controller implemented is strictly non-dynamic control. It
doesn’t take into account any of the acceleration terms in the equations of motion. Its
ability to follow a straight-line trajectory should therefore get worse over larger slews
when the manipulator is moving faster and these terms are larger. These effects are
demonstrated in Fig. 4.11. For a step command in position approximately twice the
size of the previous one, the trajectory deviates from a straight line more than the
previous one. This is partially due to the larger velocities and accelerations, especially
in the middle of the trajectory, and partially due to the saturation of the motors at the
beginning of the trajectory. It does not, however, deviate as much from a straight line
as the trajectory for the PD angle controller.

If the performance of this controller is not good enough to meet performance speci-
fications, there are ways to increase performance. One possibility is to use trajectories
rather than simple step commands in position. In that way, acceleration terms could
be kept within set bounds, so they will have less effect on the trajectory. Also, motor
saturation can be avoided.

If this still does not result in the desired performance gain, an impedance controller
could be implemented using the full equations of motion of the manipulator. This
controller algorithm was described by Hogan in [4]. This would theoretically result
in a straight-line trajectory, with only the effects of unmodelled dynamics, errors in
modelling, and the digital rather than analog implementation of the controller causing
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Figure 4.11: Trajectory for Impedance Controller for a Larger Step

deviations. Because of the complexity of the equations of motion of this system, however,
this would be a computationally intensive process to be performed inside a control loop.
The computational complexity might cause a reduction of sample rate to the point of
offsetting any gains from using the full equations of motion.

4.4.2 Force Control

The force control experiments were performed with the mini-manipulator tip already in
contact with a massive target. The ability to make a smooth touchdown is not tested
in any of these experiments.

The first test of the force controller was to give a step command increase to the
desired force from 0.2N to 1.0N. The force applied to the target as a function of time is
shown in Fig. 4.12. In this plot and all plots in this section, the desired force is shown
as a dashed line. The response is well damped with a very small overshoot and a rise
time of less than 0.14sec. This is a satisfactory response to a step command.

The next experiment was the reverse of the previous. While the force was stabilized
at 1.0N, the commanded force was set to 0.2N. The response should be the inverse of
the previous one. This experiment was designed to test whether a step from a high to a
low force level would cause the mini-manipulator tip to lose contact with the target. The
response, which is shown in Fig. 4.13, is similar to the previous one. More importantly,
the manipulator did not lose contact with the target. Again, there is almost no overshoot
to the step command in force.

Another experiment performed was to test the response to disturbances in force.
The mini-manipulator was held against the surface with a larger force than would have
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Figure 4.14: Response to a Disturbance in Force

been applied by the motors alone. This force was released and the response recorded.
This response is shown in Fig. 4.14. It shows a large swing in the force below the
desired force when the disturbance force is released. While this behavior is expected,
the extent of it is somewhat distressing. Had the disturbance force been very much
larger, the mini-manipulator would have lost contact with the target. The gains should
be changed to prevent this occurence.

The final test of the ability of this controller to maintain a constant force at a fixed
point on the target was to move the target while the mini-manipulator tip was in contact.
The target was moved by hand with a speed on the order of 1em/sec. The results are
shown in Fig. 4.15. This shows that the errors in force are all less than 10%. This
bodes well for the ability of the mini-manipulator to follow a moving target and reject
any position disturbances in the target. |

One more part of the control algorithm should be noted. The sine and cosine of the
angle at which the force is being applied is being filtered with a single pole roll-off digital
filter. This was necessary only for the case when the two motor angles are nearly equal
and opposite. Any significant noise in the force sensor at this point can cause the force
angle to switch rapidly between positive and negative. In this part of the workspace,
this will also cause the motor torques to switch rapidly between positive and negative. If
this switching is too rapid, it exceeds the mechanical time constant of the motors,which
will oscillate and not apply the desired torque.

In order to have the manipulator maintain a desired force on a fixed point on the
target two problems remain to be solved. First, as shown above, the response to force
disturbances is currently unacceptable. This problem can probably be solved simply
by changing the gains on the controller. The second problem is that the manipulator

o
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Figure 4.15: Response with moving target

tip, while at a few positions in the workspace and in contact with a few different target
geometries, will not stay at the contact point but will drift a small distance along the
surface. This problem has not been solved as yet. It is currently believed to be caused
by the force sensor being slight misaligned from the vertical, causing the actual contact
point to be different from the point calculated from the mini-manipulator kinematics.
This problem is still being investigated.

4.4.3 Surface Following

The control algorithm to have the mini-manipulator tip follow the surface of the target
while maintaining a constant force, descriked in Sect. 4.3.2.2, was experimentally tested
and the results are described in this section. All the tests were performed using a circular
target, the outline of which is shown in Fig. 4.16. In all cases, the commanded force
was 1.0N.

The first test was to command the manipulator tip to sweep along the surface at
3.0cm/sec. The response is shown in Fig. 4.17. This shows that the force is maintained
at all points on the surface to within 7%.

Next, the sweep speed was increased to 13cm/sec. The response is shown in Fig. 4.18.
This shows that the maximum force error has increased to about 13%. This increase
in force error is expected since the controller is now trying to track variations in the
surface at a faster rate. At even higher rates, the manipulator tip will lose contact with
the target.

This experiment was attempted at several sweep speeds to study how the maximum
force error changed with sweep speed. The results are shown in Fig.4.19. The error
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does generally increase with sweep speed as expected.

There are currently two problems with the performance of this controller. The first
is that below a certain commanded sweep speed, the mini-manipulator tip will stick at
one point on the surface. While this is expected at very low rate due to friction between
the force sensor and the target, the sweep speed at which sticking currently appears is
unexpectedly large.

The second problem is that the performance appears to be unsymmetric with respect
to the direction in which the target surface is traced. In fact, the maximum sweep speed
at which sticking occurs is approximately twice as large in one direction as the other.
Also, the sweep speed at which the mini-manipulator tip looses contact with the surface
is approximately twice as large in one direction as the other. While the actual speeds
at which sticking and loss of contact occur differ with different target locations, the
relation between these quantities in the two directions seems to be the same.

The current explanation for these occurences is that the force sensor probe is slightly
misaligned from the vertical. Thus the position of the manipulator tip calculated using
kinematics is not precisely the same as the actual position of the tip of the force sensor.
The difference between these will differ throughout the workspace, causing differences
in behavior with differences in position and velocity.

4.4.4 Summary of Experimental Results

The response of the mini-manipulator on a fixed base in acceptable, both in position
and force control. With the correction of a few problems, these algorithms should be
ready for use controlling the mini-manipulator on the main arm.
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Figure 4.19: Maximum Force Error as a Function of Sweep Speed

4.5 Current Status

Work with the mini-manipulator on a fixed base is nearing completion. There are still a
few problems yet to be resolved, however, as described in Sects. 4.4.2 and 4.4.3. Using
the mini-manipulator on a fixed base has helped work out many of the problems that
would otherwise have been seen when the mini-manipulator was attached to the main
arm.

After completion of the work on the mini-manipulator on a fixed base, the next
step experimentally will be to work on control of the main two-link arm. While the
actual algorithms will be the same as those implemented by Hollars, as described in
Sect. 4.3.2.1, this was implemented on a different control computer with a slightly dif-
ferent mechanical configuration. Therefore, there will be some changes in the actual
coding of the algorithm required.

4.6 Further Research

The force controller described in this report uses force error, force integral error and
velocity normal to the surface to set the desired position for the impedance controller
in a straightforward way. While this has proved to be effective so far, there are other
schemes that could possibly take into account the system dynamics and that would result
in better performance of this controller. This is one subject which must be examined.
The control of the main two-link arm to a desired position should not be very difficult
to implement, using the work of Hollars described in Sect. 4.3.2.1. However, there is a
question of what position should be the desired position of the main arm. It should be
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possible to set the desired position of the main arm so that the mini-manipulator is in
a configuration that is “optimal” in some sense. This is a topic for continuing research.

Question about how the effects of a moving mini-manipulator base will be included
in the control algorithm are raised by the incorporation of the mini-manipulator on the
tip of the two-link arm. It should be possible to use information about the tip of the
main arm to compensate for this motion. The exact method has yet to be determined.

Currently, the speed at which the surface of the target is traced is a fixed quantity,
specified by the user. It would be better, however, to set this speed based on information
about the surface such as slope and curvature. For example, it would be better to go
slowly when going around a sharp corner, but the speed can be much faster when
tracing a straight line. This information can be obtained either from previous tracings
of the same target or on estimates based on the surface just traversed. The method of
determining this speed has not been determined.

The best method for going into and out of contact with the target has yet to be
determined. The desired position for the impedance control should be chose to be
withing the surface such that bouncing does not occur upon contact. Also, the mini-
manipulator tip should return to the surface in the event of loss of contact. The best
method for doing this is being looked into.
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