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Introduction

The vestibular organs of mammals, birds, and some lizards possess an unusual kind
of sensory cell, the type I hair cell, in addition to the type II hair cell
which 1is ubiquitous in acousticolateralis organs (Baird and Lowman, 1978;
Jorgensen, 1974; Jorgensen, 1989; Wersall, 1956). The two types of cell are
morphologically defined. The type II cell is generally cylindrical and receives
bouton synaptic contacts from the primary afferent neurons. The type I cell is
described as "amphora-like" in shape, and receives a large afferent synaptic
contact called a calyx, which may entirely surround the basolateral surface of
the cell. The two cell types are differently distributed within the sensory
epithelia. Most afferents make contact with both types of hair cell - i.e., they
form bouton endings on some cells and calyceal endings on others (Baird et al.
1988; Fernandez et al. 1988).

What is the function of the unusual type I hair cell and afferent contact? The
mixing of type I and type II input at the level of the afferent nerve has made
it difficult to answer this question. The large calyceal contact is reminiscent
of the end-bulbs and calyces of Held found at higher order synapses in the
auditory system. These large synaptic contacts have been associated with
pathways involved in temporal encoding of sound location in space: they are
thought to ensure rapid and faithful transmission of timing information (Yin and
Chan, 1988). Other clues to the special role of the type I cells can be found
in studies of primary vestibular afferents and vestibular neurons within the
central nervous system, which show a range of evoked and spontaneous properties.
At one extreme are found cells that (among other properties) adapt strongly to
vestibular stimuli and whose spontaneous discharge is highly irregular; at the
other extreme are cells that are tonically active during vestibular stimulation
and which fire very regularly in the absence of stimulation (Fernandez and
Goldberg, 1971; Goldberg and Fernandez, 197la,b; Fernandez and Goldberg,
1976a,b,c). It appears that there is segregation of these response properties
within the central nervous system; for example, vestibular inputs to
vestibulocollic reflexes appear to be largely those with irregular spontaneous
discharge (Bilotto et al. 1982), and the adapting and tonic inputs to the
vestibuloocular reflex may take different pathways (Lisberger and Pavelko, 1986).

A plausible possibility is that some of the functional variation within the
vestibular central nervous system arises at the sensory periphery, as occurs in
the visual and somatosensory systems. We wish to investigate this possibility
directly, by recording the electrical signals of individual hair cells. In
particular, we can ask whether type I hair cells adapt more rapidly to mechanical
stimulation than type II cells, and whether the ionic currents underlying their
voltage signals have different properties?




Methods

In the past year we have used two experimental approaches: (1) intracellular
voltage recording from hair cells and primary afferents in excised vestibular
organs; (2) whole-cell current recording from isolated vestibular hair cells.

(1) Intracellular voltage recording in excised vestibular epithelia

Recordings were made from type II hair cells and primary afferents in saccules
excised from bullfrogs, and from hair cells (of unknown type) in utricles excised
from guinea pigs. Techniques were largely similar to those described in Eatock
et al. (1987) (Eatock et al. 1987), with the following differences: The guinea
pig utricular maculae were maintained in either L-15 or Hanks’ Balanced Salt
Solution (HBSS), at pH 7.4, rather than in the artificial perilymph used for the
frog saccules. In some experiments individual hair cells were stimulated by
moving their hair bundles with a glass probe mounted on a piezoelectric bimorph
element (Corey and Hudspeth, 1980), and the hair cells' receptor potentials were
recorded with intracellular microelectrodes. In most of the experiments on
bullfrog saccules, recordings were made from single saccular nerve fibers while
the entire otolithic membrane was displaced by a bimorph-mounted stimulus probe.
Both spikes and postsynaptic potentials were recorded, amplified, filtered and
stored on computer. In some of these experiments we eliminated spikes by adding
tetrodotoxin (TTx) to the bath (10 ug/ml), in order to record postsynaptic
potentials alone.

(2) Whole-cell current recording from isolated vestibular hair cells

Hair cells were isolated from frog saccules and from rat utricles and
semicircular canal organs, using the following dissociation protocols.

The bullfrog saccules were superfused for 20 minutes with a low-Ca®* artificial
perilymph (in mM: 120 Na*, 2 K%, 0.1 ca®*, 122 Cc1°, 3 D-glucose, 5 HEPES; pH 7.25)
containing 50 ug/ml of Sigma protease type XXVII. The otolithic membranes were
then removed, and the saccules were superfused for 15 minutes with low-Ca?®"
artificial perilymph containing 500 ng/ml of papain (Sigma crude) and 2.5 mM 1-
cysteine. This was following by superfusion for 5 minutes with low-Ca?*
artificial perilymph containing 500 ng/ml of bovine serum albumen (BSA; Sigma).
Cells were dislodged from the sensory epithelium using an eyelash and plated onto
a clean glass coverslip. During recording the cells were superfused with a high-
Ca?* artificial perilymph, which was identical to the low-Ca?* solution except.
that it contained 4 mM Ca?* and 128 mM C1°. L

The protocol for the rat vestibular organs differed in the following ways: (1)
The low-Ca?* medium was HBSS, buffered with HEPES and to which 1.16 mM EGTA was
added; pH 7.3. (2) The initial protease treatment lasted 10 minutes. (3) The
papain treatment was for 30 minutes.

aa

Whole-cell currents were recorded using the giga-ohm seal technique (Hamill et
al. 1981). The pipettes had impedances of 5-10 MQ. In recordings from frog
saccular cells, the pipettes were filled with a solution comprising (in mM) 120
K", 2 Mg?*, 47 C1”, 43 Asp”, 10 EGTA and 5 HEPES; pH 7.3. In recordings from rat
vestibular cells, the pipette solution contained (in mM): 140 K%, 2 Mg?*, 131.5
Cl”, 5 EGTA and 5 HEPES. Currents were amplified, low-pass filtered at 10 kHz, . -]
digitized and stored on computer.
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Results
(1) Intracellular voltage recording from hair cells and primary afferents

Using the bullfrog saccule, we have recorded receptor potentials from hair cells
and postsynaptic potentials and spike discharges from the primary afferents.
When stimulated with sinusoidal displacements of varying frequency, some nerve
fibers were found to be tuned with best frequencies between 20 and 80 Hz; others
appeared to be low-pass with a cut-off frequency below 20 Hz. Our goal is to
use this kind of preparation to study signal processing by the afferent synapse,
e.g. by comparing the receptor potentials and postsynaptic potentials evoked by
similar stimuli.

The experiments on the bullfrog saccule were preparatory to similar experiments
on excised mammalian vestibular organs. In a preliminary set of experiments,
we recorded from hair cells of the excised guinea pig utricle. Although normal
resting potentials were frequently encountered, responses to imposed hair bundle
motions were rare. An example is shown in Figure 1.

As an alternative approach, we have
recently focussed on developing a | ™Y
preparation of 1isolated mammalian ' um
vestibular hair cells, which can be
studied with the giga-ohm seal
technique. Results of this approach

are described next.

(2) Whole cell currents in vestibular
hair cells S
200 ms
Because the whole-cell currents of
bullfrog saccular hair cells have been
studied in detail (Holton and Hudspeth,
1986; Hudspeth and Lewis, 1988), we
used these cells in a series of
experiments in which we developed a
dissociation protocol and a whole-cell
recording set-up. The whole-cell
currents we recorded during depolarizing voltage steps displayed the same
features described by Hudspeth and Lewis (1988) (Fig. 2). Depolarizing voltage
steps evoked an early inward current and a later outward current. Both currents
grew with increasing depolarization up to about +40 to +60 mV. The analysis of
Hudspeth and Lewis showed that the early inward current is a voltage-dependent
Ca®* current, while the later outward current is a Ca?'-activated K' current.
Both currents saturate with increasingly positive voltages as the driving force
on Ca?" declines. As shown in Figure 2, the kinetics of the currents varied in
different cells. This variation underlies the variation in the frequency of
the cells’ electrical resonance. The electrical resonance in turn is important
in determining the frequency at which the cells respond best to mechanical

stimulation (Art and Fettiplace, 1987; Lewis and Hudspeth, 1983).

Figure 1. Intracellular potential (upper
trace) in a hair cell of the guinea pig
utricle, during sinusoidal deflection of
its hair bundle (lower trace).




frog saccular hair cells
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Figure 2. Whole-cell currents from two bullfrog

saccular hair cells in response to depolarizing voltage
steps of (in mV) O, 20, 40, 60, 80, 100, 120, 140, and
in the lower panel alone, 160; from hol_.ng potentials
of -60 mV (upper) and -70 mV (lower).




We have recently begun recording from rat vestibular hair cells. An encouraging
finding has been that the morphologies of the dissociated hair cells fall into
two broad categories: (1) more or less cylindrical cells, reminiscent of the frog

saccular cells in shape but about half
the size, which we tentatively assign
astype II cells; (2) cells with a
pronounced amphora-like shape (Fig. 3),
which we assume are type I cells. Data
from a cylindrical cell are shown in
Figure 4. The whole-cell currents
elicited by depolarizing voltage steps
appear qualitatively similar to those
in chick vestibular hair cells (Ohmori,
1984), in some pigeon type II
vestibular hair cells (Lang and
Correia, 1989) and in frog saccular
cells, albeit faster than any of our
records from frog cells. Again, an
inward current 1is followed by a
sustained outward current; the latter
can be seen to saturate at about +40
mV, consistent with its being dominated
by a Ca®*-activated K' current. The
speed of activation of the inward and
outward currents is interesting; by
analogy with observations on frog
saccular and turtle cochlear hair
cells, the fast activation may indicate
an electrical resonance that is high-
frequency relative to the mechanical
best frequencies of squirrel monkey
primary afferents (Fernandez and
Goldberg, 1971; Fernandez and Goldberg,
1976) and more in 1line with the
mechanical best frequencies of pigeon
vestibular afferents (Dickman and
Correia, 1990). We have also recorded
from some cells with much smaller,
slower outward currents than those
shown in Figure 4, and with no
discernable inward current.

Concluding Remarks
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Figure 4. Whole-cell currents in

vestibular hair cells from a frog (upper)
and a rat (lower) during depolarizing
voltage steps of (in mV) 20, 40, 60, 80,
100, 120, 140, and in the upper panel
alone, 0; from holding potentials of -60
mV.

Our preliminary results with rat vestibular hair cells suggest that we shall be
able to identify isolated hair cells as being probably type I or type II, and

to compare their whole-cell currents.

We wish to examine whether either the

mechanosensitive currents or the voltage- and ion-dependent currents differ in
the two cell types, and if such differences could contribute to the documented
variation in the stimulus-evoked responses of higher-order vestibular neurons.




Figure 3. Rat vestibular hair cells viewed with Hoffman-modulation contras:
optics at 600x. The cells are about 5 um long. The amphora-like shapc
of the cell in the upper photograph suggests that it is a type I cell.
A micropipette to the left of the cell is faintly visible. The cell in
the lower photograph is probably a type 11 cell.
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