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A SAMPLE REUSE METHOD FOR ACCURATE
PARAMETRIC EMPIRICAL BAYES CONFIDENCE INTERVALS

Bradley P. Carlin and Alan E. Gelfand

ABSTRACT

Parametric cmpirical Bayes methods of point estimation for a vector of unknown
parameters date to the landmark paper of James and Stein (1961). The usual approach
is to usc the mean of the estimated posterior distribution of cach parameter, where the
estimaticn of the prior parameters (“hyperparameters™) is accorplished through the
marginal distribution of the data.  While point estimates computed this way usually
perform well, interval estimates based on the estimated posterior {culled "naive™ EB in-
tervals) arc not.  They fuil to account for the variability in the estimation of the
hyperparameters, generally resulting in sub-nominal coverage probability in the "EB”

sense defined in Morrs (1983a).

In this paper we extend the work of Carlin and Gelfand (1989), who proposed a
conditional bias correction method for developing EB intervals which corrects the defi-
ciencics in the naive intervals, We show how bize correction can be implemented in
genceral via a Type 111 parametric boostrap procedure, a sample reuse method first em-
ployed by Laird and Louis (1987). Theorctical and simulution results indicate that in-
tervals which are uccurarte with respeet to nominal coverage ensue. We give two specific
applications (to binomial test data and Poisson failure ratc data) where we compute si-

multancous point and bias corrected interval estimates.

KEY WORDS: Conlfidence interval; parametric empirical Baves; parametric bootstrap;

bias correction; conditional calibration.




. INTRODUCTION

In this paper we consider the problem of multiparameter interval sstimation in the
parametiic empirical Baves (VER) framework. We consider the familiar exchangeable
model, where at the first stage, given 0, the data vectors I, arc independently distributed
as £(110),i=1,..,p. At the sccond stage, the 0, are supposed ii.d. with distribution
=(01n) over ©, where y indexes the family = The marginal distribution of Y, is
mun) = § £ @10 a(0,[)d8, , and the conditiona! independence structure of our model
implics that marginally the Y, are independent. Thus the joint marginal distribution of
all the data is m(y|y) = .Ifl'm,(g,ln). The posterior distribution of 8, depends on the data
only through y, and is denoted by £(9,|y., #) . though in the sequel we suppress the sub-

script on S to simplify the notation.

If n were known then point or interval estimates for 8, would be computed via the
posterior f(0,1y, n) . Gencerally, however, » is unknown. A pure Bayesian approach
would place a third stage prior (also known as a “hyperprior™) <(n) on » and then base

inference about 0, on the “marginal posterior,”

(0, y) = [ £ Oy, w)h(n [ y)dn (L1)

where K(n1y) e m(yln)x(n) . The hyperprior z(n) is often given vague specification.
Usually computation of (1.1) is an arduous task. In recent years substantial cffort has
been devoted to developing methodology to calculate the distributicn (1.1) and its
characteristics. (see for example Navlor and Smith 1982, Tierney and Kadanc 1986,

Smith ct. al. 1985, Smith ct. al. 1987, and Gelfand and Smith 1989).

An alternative is the PEB approach, which treats  as a fixed unknown, and replaces
the integration over x in (1.1} with estimation of » (usually via maximum likelihood)
from the marginal distribution m(y|n), obtaining ;1 = ;1()') . Inference is based upon the

"estimated posterior,”




S0y, 0 (1.2)

Note that (1.2) may be considered an approXimation to (1.1) of order O(p=!) in the sense

that, under mild reguiiirity conditions,

Eig0)1y) = Eg(0) g, L1 + 0(p™") (13,

(Kuss and Steffey, 1988). Expression (1.3) formalizes the fact that PEB estimates are

approximately fully Bayesian posterior means.

There is also a substantial amount of literature which demonstrates that, as an est-
mator of g(8,), £(g(0,)1:. ;;) often performs well in a decision theoretic sense (see Morris,
1983a for a summary). Unfortunately, interval estimation of 8, through (1.2) has been
less successful; such "naive” confidence intervals based on appropriate percentiles of the
estimated posterior (cither highest posterior density or “equal tail” intervals) are gener-
ally too short, and hence fail to attain the nominal coverage probability. The explana-
tion for this problem from a PEB point of view is that we are ignoring the varability in

n ; from a Bayesian point of view, that we are ignoring the posterior uncertainty about

n. More precisely
Var(0,ly) = E,,[Var(0,ly , )] + Var,, LEO g m], (1.4)

and so the variance estimate based on (1.2), Var(6,]y,, ﬁ) , will, according to (1.3), only
approximate the first term in {1.4). Morris (1983b, 1987) develops improved approxi-
mations to (1.4) in special cases while Kass and StefTey (1988) give a gencral first order

approximation.

We proposc a more dircct attack on the interval estimation problem. We first for-
malizc our objective, nominal conditiosal or unconditional EB coverage. We then de-

scribe how to correct the bias in the naive interval estimate to incet the objective. Most
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importantly, we show that for many interesting problems implementation of the bias
correction can be accomplished via a sample reuse method. In particelar we employ the
Type 1 parametric bootstrap intraduccd by Laird and Louis (1987), applying it to two

discrete exponential family data sets,

In the EB framework (Morris 1983a,b, Hill 1988) a statistical model is appealingly

specified as a collection of joint probability distributions indexcd by some parameter,
© = {p,0n0), neH). (1.9)

A member of this familv is expressible in the sampling form as p(y, 0) = £(#]0) =(01y) ,
or in the inferential form as p(y, 0) = £(01y, ) m(vly) . Performance of an inference
procedure is evaluated over the variability inherent in both 0 and the data. Thus an

unconditional EB confidence set of size 1 ~ & for g(0) is a subset £,(Y) of © such that

inf P{g(@) e (M) 21 = (1.6)

Equation (1.6) has been criticized as being a weall statement.  First, we would likely
prefer P {g(0) € 1,(Y)} =1 — « over all distributions in . Sccond, we would likely prefer
a probability statement which offers conditional calibration given some appropriate data
summary (Rubin, 1984). For instance a pure Bayesian interval would be based upon
{0,1y), and so is conditionally calibrated given all the data. We propose modifying (1.6)
to a conditional statement by integrating instead over the distribution p(6,, y | b(y), ) for
a suitable statistic 5(Y) . That is, 1,(Y) is a conditional 1 —« EB confidence sct for g(0)

given b(Y) il for cach b(y)=b and y ,
P,(g(0) € 1,(Y)| b(y) = b} =} — . (1.7)

In Section 2, we review the “bias correcting” approach (given in Carlin and Gelfand,
1989) for obtaining intervals achieving this sort of coverage probability using various

choices of 5(Y). We then scttle on 5(Y) = Y, as a natural choice, and claborate on sam-
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ple reuse methods to implement the bins correction. Sccuon 3 discusses the mechanics
of hyperparameter cstimation and EB point and interval estimation of 0, in the context
of two discrete models, the binomial and the Poisson. For illustration, the analysis of
e data sets is given in Section 4. Finally in Scetion 5 we summarize and comment on

some remaining problems.

2, PEB MODELLING AND BIAS CORREC™ION

Adopting the EB framework we define the cancepts of sufficicncy and ancillarity (sce

Hill, 1988) for the model (1.5).

Definiti 9 1. A statistic T is sufficient for g(0) in (1.5) il and only if

o T is suflicient for g(0) in the posterior family, i.c., f RO ETE (g(0)ly, n) for all

n € H, and,
o Tis sullicient for » in the marginal family, i.e.. m(yle,n) = m(yls) foraliy e H.

For cxample, under the exchangeable structure of Section 1, if £(0) = 0, , then usually

T=(Y.7).

Using this definition it is straightforward to show that T carries all the information
about y in the model with respect to inference about g(0), i.c. we may replace Y by Tin

{1.6) and (1.7). In particular for 6, we nced only study intervals based on Y, and '1

Definition 2. A statistic A is ancillary for g(0) in (1.5) ifand only il 7'= (;1, a) is minimally

sufficient for g(0), where ;1 is an estimate of , and p(aly) = pla) for all n € H.

Thus if A is ancillary, its distribution with respect to the marginal family is frec of 5. In

this definition, minimal sufficiency is with respect to (1.5) using Definition 1.



In the sequel we take g(® =, and let (U] 17 be a generic notation for the distrib-
ution of U given V. To strengthen the statement (1.6) suppose we replace the inte-
grauon over [0, ), ;)!u] in (1.0) with an integration over [0,,_1:,;1|b(\’). n3. 1M we take
b(Y) = Y then we are in fact integrating over [0,11., 4], the posterior distribution of 0,
If we choose &(Y) EB-ancillary, then typically (4, ;1 &) are such that fixing any wwo of
them determines  the  third. This means that  usually [0,,_)_',.;1|b. n]
=0, Y.\n. boyd[nle,n] =[0.) X u] - 01 ln). where we hive used Basu's well-known
theorem in the last step. Thus il we can find an EB-ancillary statistic, we can develop
intervals with EB-coverage conditional on the ancillary merely by integrating first over
the full posterior and then over the sampling distribution of our estimator ;1 However
in the discrete cases we study, and in fact rather generally, exact ancillary statistics are
not available. We have not investigated the notion of approximate ancillaries. 1f we
instead take &(Y) =Y, then our integration is over [0, 71X, n)=[0,1Y, )+ D11, 2] .
This choice of b is appealing since Y, is suflicient for 0, in the posterior family, Addi-

tionally, this conditioning is straightfonward to implemeat.

If we denote the o™ quantile of the posterior £(0,l, ) by 4.(v%, »), then the so-called

A

cqual tail “naive” EB interval can be written as

((IullQ.h ;;)| ql-a[l@h ;1)) (2.1)

As has alrcady been noted, intervals of this type fail to satisfy (1.6), and their coverage
conditional on 1, is also poor. Most of the waork in the arca of EB confidence intervals
has focused on “lengthening” these intervals by using the marginal posterior (1.1), cither
exactly or approximatcly. Deely and Lindley (:981) and Rubin (1982) perform the nu-
merical integration and compute /, dircctly. Morris (1987; advocates use of the member

of £(6,l

i) whose first two moments agree with the i3t two (estimated) moments of

\]
R21)

[ Laird and Louis (1987) suggest the use of a parametric bootstrep sampling methed




(which we discuss in some dJetail belows to approximate (1.1) where /15 tiken to be

ply I, the samphing Jdeasity of 7, with the arguments interchanged.

In our view, the weakness of these approaches is that they (il to address the salient
issuc. the existence and nature of an & which will be successful in achieving nominal EB
coverage. Put simply, they are all concerned with “matching” [, in (1.1), without speci-
fving how to choose & to begin with. This is understandable, as the whole approach is
not dircetly aimed at attaining a specificd level of EB coverage (either conditional or
unconditional). ['urthermore, while the lengthening of the naive intervals created by the
“mixing” in (1.1) is usually desirable, il our estimator n is badly biased, the naive intervals
can actually turn out to be 100 long. The real issue is how to correct the bias in (2.1).

A direct approach which would be applicd to cach tail separately is as follows:

Supposc we define

r(1, 1, 30 @) = PLO; = 9, M) 0~/ (6| 3 m)) (2.2)
and
v )= Fa " v o)) 2.
Ripyua)=E ,,,M{r(n.n.\t_t.a),- (2.3)
If we then solve
R,y )=« (24)

for «' = «'(y, y,, &), we conditionally “correct the bius™ in using ;1 Of coursce (2.4) is not
solvable as it stands since # is unknown. Using ;;. we proposc to obtain a bootstrap
estimate of the left hand side of (2.4) and thus solve instead for a'(y}, ¥ 2) . We correet
both the lower and upper percentiles of our naive interval, obtaining «,’ and «,/, and

then take




(‘?"D.Q‘_‘“ ,’ ,' ":K 'Q‘.' "" (2-5)
as our bias corrected interval for U,

Curlin and Gelfand (1989 showed that this bias corrected confidence interval is
unique provided ¢r/éx exists.  They further showed that if the distributions
L0, 7) and gly 1., n) are stochastieally ordered in y, then conditional bias correction

S’

vaa'(n,

\
1 wtt

“works™ with respect w0 (L), Qe E :'w";""' a)) . the expected conditional
bias corrected tail probability, fulls in an interval containing « (for some n, it will be
slightly more than «; for others, slightly lessi. They also provide simulation support in
several clementary cases. Note that while we describe bias correction of the naive in-
terval (2.1) we could just as well have chosen to bias correct intervals resulting from

(1.1). Such corrcction could be uscd to possibly obtain shorter intervals achieving de-

sired coverage levels.

Let us briclly investigate the mechanics of bias correction. 1 7(01x) is chosen as the
standard conjugate prior for f(3,16,) then of course the posterior /(0,1 y., 7) belongs to the

same standard family, and r in (2.2) takes the relatively simple form

A . -l
o 0 Y &i = l-“_.'. " [1':E ) ;,( «)] (2.6)

where F is the posterior ¢.d.f. To compute R in (2.3) necessitates integrating over the
distribution g(:; ly.m) . If g is available in closed form this will require a numerical in-
tegration (cither Monte Carlo or other quadrature method). Then we compute the
marginal MLE r} and solve equation (2.4) at g =r} for «' via regula falsi. This replace-
ment of an unknown population parameter by its estimate from the marginal empirical

c.d.f. is referred to as a “parametric bootstrap” by Laird and Louis (1987).

Examples where this procedure can be carried out efficiently and casily are discussed

in Carlin and Gelfand (1989). However, in many cases (in particular the discrete settings




in Secuon 31 a closed form for giyly, 21 18 unavailuble. In fact, in several clementary
conjugate stuations, the marginal MLE y itself’ has no closed form and can onl be
computed numencally. In such cases we estimate Ry, g, z1 through the use of & "Type

HI parametnie boatstrap,” a sample reuse method introduced by Laird and Louis (1987)

and modificd here for the case of EB coverage conditional on ).

Let us first review the unconditional version. To estimate expectations under the
sampling dJensity of ;J.M;Il)}). we obtain y° from the distribution p(» I»}) as follows,
Draw 05, ... , 8; i, from =(01y) , then draw Y independently from f @lo)im 1, ., p,
and finally compute 5° from the "pseudodata”™ {17} in the same way that ?l wits computed

from the duga {).} . Concisely, we huve
n = {0 = {7}~ 0 (2.7)

For correction conditional on Y, we modity the Laird and Louis procedure in order

to draw observations from g rather than p by changing (2.7) to
= (O ki) = (Y ki) = = (@ Xk k) (28)

[ »
Repeating this process .\ times we obtain n;~g(« [p, n).j=1,..., N, and our Type I

parametric bootstrap estimate of R(y, 31, «') becomes
N o« A ' v
jEl,(,'j' ”v\}_'h « ) IA . (2'9)

We cquate (2.9) to @, and solve for &’ by regula faisi as above. Note that since only the
X are needed to caleutate n°, il m(y,|n) can be sampled from directly we un omit the

gencration of the 8; (sec Example 2.2).

The Type 111 parametric bootstrap can obviously be modificd to implement bias
correction conditional on b(Y) other than Y. [lowever the theoretical results below (2.5)

arc only established given Y.,




3. SPECIFIC DISCRETE MODELS

We now apply the preceding methodology to perhaps the two most common diserete

models.

Example 3.1: Binomial-heta. Suppose the data vectors Y, are simply vectors of zeroes
and oncs, cuch clement corresponding to a success or failure on the  independent
Bernoulii trial in the ™ population, j= 1, ..., 0, i=1,..,p. Atthe first stage of the hi-
erarchy, we assume the probability of success on any given trial 10 be the same for all
trials within the # population, but possibly different across populations. By sufficicncy
we reduee to Aﬂ-)% ¥, and so .\’,IO,‘r Bin(n,0) . Under the conjugate prior
a,ln'-'-' Betafa, b), i=1,..,p , Where y=(a,b), a,b>0, the posterior distribution is
SO lx,a,b)= Beta(a+x,b+n-~x) , and the marginal distribution s
mix,|a, b) = (':;)B(a + X, b+ n,~x)B(a, b), where B(.,«) represents the beta function.

The marginal likclihood,
P
L(a, b) = m(xla, b) = 1nl(§:)ma + X b+ = x)| Ba, b), (3.1)

is maximized via numerical methods to produce the marginal MLE, n =(a, b). The naive

(1-0/2),

EB confidence interval {2.1) is computed as (Y(":' . («f2), Y 2

»
2. en=3) (LR X PY R Y P

where Y, ,, is the c.d.f. of a beta distribution with parameter ¢ and 4.

To implement the bias correction we note that (2.2) becomes

H N -1
'(,7’ ”' ‘rl. a) = ((°+ xq' b+ ﬁ‘ - i)(Y(‘: + Xgus + n, - xl)(a)) (3.2)

which is available numerically using a scientific subroutine library. Using the Type 111

parametric bootstrap procedure (2.9) becomes

o () IN (3.3)

;ElY(a 45,0 b =x)\ " (@ +X.5 +n—x)
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which we equite to « and solve for a’. Seuting & to the desired nominal level (e.g.,
&= (.05,.95) for 90% conditional EB coverage), we solve for the corresponding
(zy 2")y and compute our interval for 0, using (2.5). Note that we bias correet cach
8-interval scparately, i=1,...,p, but of course the correction in cach case depends on
the data through (a, 6). 1f we desire intervals corrected only for unconditional B cov-

erage, our bootstrap equation becomes

A‘

b ~ . -c‘ ‘. e . ‘' g

J:]Y(a ‘*‘X;‘.b +ﬂ,-.‘°)(Y(", +xv;lb’ +n:-xg)(a )) I“\ =& (3‘4)
Note that (3.4) difers from (3.3) only in replacing the given value x, by the bootstrapped
X, 's. Now we are "averaging over .Y,,” as in (1.6), rather than conditioning on X, We
must still bias correct cach 0-interval separately, unless we have a balanced experiment

(all , cqual). In this case the x’s are marginally exchangeable, hence so are the X! s,

and so we need only solve (3.4) once for (x,’, a') before using (2.5).

Example 3.2: Poisson-gamma. Supposc we have data of the form (x, 1), i=1,..., p,
where the x, are obscrved counts during the time interval (0, ). For example, the data
might be calls arriving at p different switchboards in the same zounty. We assume
X,I(],m-d Poissen (0,1),i= 1, ..., p, where the ¢, are known “time cxposures.” Under the
conjugate prior, O,Iq‘-‘: Gamma (a, b) (again 5y =(a, b), a,b> 0 ), the posterior distrib-
ution 0,1x,is Gamma (a+x,, (1, + 1/b)-) , and the marginal distribution of X, is Nega-

tive Binomial, i.c.,

st )= () (7 ) ()" 59

If (a, 1;) maximize the marginal likelihood (a and b are not available in closed form; sce

Secction 4), then the naive EB confidence interval for 6, is

11




(nz(‘;m(;/zu[zu, B, D, 0 = el 220+ | /i»)]). (3.6)

where 0, denotes the el of & chi-square distribution with & (not necessarily integer)

degrees of freedom.

In this case (2.2) becomes
Dagas xpl L+ D) [ (o 116)] Dy, (). (3.7)

"o EB corrcction conditional on .\, = x,, analogous to (3.3), the Type 11 parametric
bootstrap (2.9) becomes

,g, s (10, 11b) | (1 + 1)) D{(:,} Fn @Y (3.5)

which we equate to « and solve for x’. For unconditional correction analogous to (3.4)

we have the equation

T Dy o 1B) [t U Dk o)) IN = (3.9)

A
J=

The remark after (2.9) reminds us that in this case we would generate negative binomial
]

X’s dircetly. In addition, il £,=1¢ for all i, we nced only solve (3.9) once for (o', ay')

before using (2.5).

In this example if we take the gamma scale hyperparameter b to be knevn (say
b=1 wlo.g.), and if we assume f,=1 (= | w.lec.g.), then the marginal famaly (3.5) is
Negative Binomial (a, 1/2). The method of rmements (instead of maximum likzlihood)
estimator of a is a=X =é‘.l.\’,/p and the distribution of alx, a follows from wiiting
a=(IV+ X)|p where IV =‘§'A’,~ Negative Binomial (a(p — 1), 1/2). Thus we can inte-

grate (2.4) directly, avoiding the Type 11 resampling algorithm.




4. DATA EXAMPLES

We illustrate the implementation of the bias corrected naive EB confidence interval
approach with two discrete data sets. Results of several simulation studies evaluating

coverage probabilitics and interval lengths are discussed in Carlin (1989).

The data sct in Table | comes from Burton and Turvey (1988), and gives the results
ol a psychological evaluation of six independent subjects. Each subject was given three
hollow woodcen balls, two of which contained a small pyramid and the third cither a
hemisphere, a block, a cylinder, or 4 cone. On each of the four resulting trials, the
subject had to guess which ball was not like the others simply by shaking, turning, cte.
Table 1 gives the results of this (balanced) experiment, where Y, is the number of
questions answered incorrectly by subject £, and r, is the raw failure rate, which of course

is also the usual classical point cstimate of 8,, the truc failure rate for subject /.
(Insert Table 1 about here)

In terms of modelling this experiment, our binomial-beta model secems natural. At
the first stage (given 0,), a subject’s {our responses could reasonably be assumed to be
i.i.d. Bernoulli trials, and the beta provides a broad choice for the second stage distrib-
ution of the {0,} . In fact, since our prior beliclis that the questions are relatively casy,
the simpler family Beta(l, 4), b> 1 scems adequate. Finally this data sct benefits sub-
stantially from cmpirical Bayes modclling, since the small amount of information on

cach subject severcely limits frequentist inference.
(Insert Table 2 about here)

The results of our analysis are given in Table 2. Since we are in a balanced (i.i.d.)
case, the results for subjects 1 and 2 (who both answered two questions incorrectly) are
identical, as arc those for subjects 4, 5 and 6 (all of whom made no mistakes). Note the

familiar shrinking of the classical point estimates toward the overall proportion of
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questions answered incorrectly (8724 = ,208) by the EB point estimator, Classical con-
fidence intervals (based on Fisher's exact test statistic for 0,) and naive EB intervals are
shown, along with versions that are bias corrected unconditionally (via (3.4)) and con-
ditionally (via (3.3)) for nominal coverage y =.90. We chose N = 1000 bootstrap reps
in solving these wwo cquations, using FORTRAN augmented by the IMSL subroutine
library. Onec can see that both types of bias corrected intervals have lengths that are
between those of the classical and naive EB methods. owever, since nominal condi-
tional coverage implies nominal unconditional coverage, ncither bias corrected interval
can be uniformly shorter. In particular we sce that the conditional intervals are shorter

when U= 2, but that the unconditional intervals are shorter when X =0,

The data presented in Table 3 record numbers of pump failures, X, observed in
thousands of hours, 1, , for p=10 different systems of a certain nuclear power plant.
The obscrvations are listed in increasing order of raw failure rate r, = X/t which again
is the classical point estimate of the true failure rate 6, for the ™ system. This data ori-
ginally appeared in Worledge, Stringham, and McClymont (1982), and was subjected to

an cmpirical Bayes analysis by Gaver and O’Muircheartaigh (1987).
(Insert Table 3 aboust here)

Our approach is that of Zxample 3.2 above, using the conjugate Gamma(a, b) prior
for 0, Gaver and O'Muircheartaigh also explore this approach, but after computing the
estimated posterior {also gamma, of coursc) in the usual way, they obtain an approxi-
mate EB confidence interval for 0, by assuming that the posterior distribution of
¢, = log(0) is approximately normal. Thus their EB point estimate for 6, is exp(g,), and

their naive 90% EB confidence interval for 6, is given by

(cxp(ﬁ,- 1.6456), cxp(i;+ 1.6453,)), “.1)




where g, and g, are the mean and standard deviation, respectively, of the (log-gamma)
estimated posterior for ¢, (Actually, the authors” concern about conjugate priors’
overshrinkage of outliers leads them to prefer a heavier-tailed log-Student’s t prior on
¢. However, they conclude that this assumption docs not greatly affect the results. To
make a fuir comparison, we will compare our intervals only with their gamma-based in-

tervals.)

Solving (3.8) and (3.9) involves computing N MLE vectors (4}, &), one for each
bootstrapped pscudodata sample. In order to expedite the maximization Gaver and
O’Muircincartaigh suggest using as starting values crude moments estimators obtained
by cquating the first two sample moments of the crude rates, 7 and &, to the corre-
sponding moments in the marginal family, namely, E{r)= LX)/, =ab and

Var(r) = Vor(X)[i} = abji,+ ab* . This results in

dyon = PSS =71~ (4.2)
and
bytons = [s2=7e~" Y7 (4.3)

where 171 = é:' t7'p. (These estimators do not exist if £ < 717 , whence any other rea-
sonable values, possibly the “parent” values (a, 1;). can be used.) Our algorithm begins
with Newton-Raphson. If it diverges, we use a local grid scarch to find a better (higher
likclihood) place to restart. We iterate grid search and Newton-Raphson up to twenty
times, finally giving up and regencrating new pscudodata if the algorithm still fails. We

werc able to keep the “failure rate” under 1% using this algorithm.

Gaver and O’Muircheartaigh felt that the ‘intcrvals (4.1) were likely to be too short
due to hyperparameter estimation. Their ad hoc remedy was to compute approximate
joint 95% confidence regions for their computed values of (a = .8223, b= .7943) using

a chi-squared likclihood ratio technique. They then scarched over all (a, I;) in this re-
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gion, taking the largest value of exp(a, -+ 1.6430,) obtained as their "corrected” upper
confidence limit for 8. (A similar procedure could have been undertaken for the lower
limit, but was not since the authors’ interest was, understandably, only in how large the
fuilure rates could be.) While this process certainly does increase the upper confidence

limit, it is not clear what confidence level to attach to it.
(Insert Table 4 about here)

Table 4 gives the results for observations 1, §, 6, and 10 using the classical interval,
(12« DsMaf2), Y2+ D3} (1 —af2)), applied to the raw rates, the naive and corrected
Gaver and O'Muirchzartaigh (G & O) methods, the naive EB iaterval (2.1), and the
conditional and unconditional bias corrected methods (3.8) and (3.9) above. Bias cor-
rected percentile (o'} values used in these methods are shown in parentheses below the

corresponding interval endpoint.

Some conclusions are: while the classical point estimates scem all right, the corre-
sponding interval estimates are very wide. The naive G & O point estimates have been
uniformly shrunk closer to zero than the regular EB point estimates, while the corre-
sponding upper confidence limits are uniformly further from zcro. The naive G & O
interval cstimates are not necessarily too short; in the casc of the smallest abservation,
the naive G & O upper limit is already larger than either of the bias corrected upper
limits! The “conrected” G & O upper limit is always much larger than that of any of the
other EB mcthods, reflecting the substantial conservatism embodied in this procedure.
Note that more bias correcting (more extreme values of ', hence longer confidence in-
tervals) is present for cases having shorter history (smaller ) -- observation #3, for cx-
ample. This jibes with our intuition about EB point cstimation: that cases with less
infcrmation have more uncertainty associated with them and possibly exhibit more ex-
treme shrinkage patterns. It also appears that conditioning on the value of a more
highly variable X, {like observation #5) results in a longer interval than would have been

obtained had only unconditional coverage been ssught.
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5. CONCLUSION

In this paper we have deseribed a sample reuse method (the Type 111 parametric
bootstrap) to correct the bias in nuive empirical Bayes conlidence intervals when trac-
table distribution theory 1= unavailable. Through ¢ata examples we have shown that this
method is casily implemented yiclding intervals which retain much of the intuitive appeal
associated with PEB and shrinkage estimation. Future cfTort is directed at more general
applications. For example, the conjugate prior assumption may be dropped, using nu-
merical methods to evaluate (2.6} in the absence of a convenicnt form for the posterior.
Additionally we might choose to bius correct intervals based on the marginal posterior
(1.1}, rather than the naive intervals based on the estimated posterior (1.2). Beginning
with a richer class of intervals could lead to shorter corrected intervals achieving nominal
coverage. Finally, cfTorts to unite the PEB and hicrarchical Bayesian literature, as in

Section | of this paper as well as Kass and Stefey (1988), continue to be important.
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TABLE 1. Pycholopical Test Data

Subject n X ro= 65“'""“
] 4 2 S0
2 4 2 S0
3 4 ] 25
4 4 0 00
5 4 0 00
6 4 0 00

Source: Burton and Turvey (1988)

TABLE 2. Psychological Test Data Analysis

Subject 90% Classical ClI EB 90% Naive EB Cl

i r, Lower Upper Lenpth PtEst Lower Upper  Length
1,2 10.500 0.098 1.902 0.503 0336 | 0.112  0.604 0.491
3 10250 0.013 0.751 0.739 0.224 0.047 0.474 0.427
4,5,6 10,000 0.000  0.527 0.527 0.112 | 0006 0315 0.308

Subject  90% Unconditional BCN CI 90% Conditional BCN Cl

: i Lower Upper Length Lower Upper  Length
1,2 0.108 069 0582} 0.100 0627 0.528
3 0044 0570 0526 | 0.047 0576  0.529
4,56 0006 0415 0409 | 0.008 0455 0447

Note: Hyperparameter estimate (MLE): b = 3.9296.

TABLE 3. Pump Tailure Data

A
System, X, t r, = (iRl
1 § 94.320 053
2 1 15.720 064
3 5 62.880 .080
4 14 125.760 J11
5 3 5.240 S73
6 19 31.440 .604
7 ] 1.048 954
8 1 1.048 954
9 4 2.096 1.910
10 22 10.450 2.099

Source: Electric Power Rescarch Institute Report
(Worledge, Stringham, and McClymont 1982)
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TABLE 4. Pump Failure Data Analysis

"t Estimate

%e Confidence Interval

Intenal Length

Obsenvation: |
Classical 053 000 3.098 3.098
"Naive"G& O 056 027 J14 087
“Comected* G & O * J25 .-
Naive ER 061 026 107 081
Unconditional BCN - 026 109 083
(472 (.9533)
Conditional BCN " 025 108 082
(.0453) (9507
Obscervation: 5
Classical 573 004 4.032 4.028
NaiveG& O ) el 207 1.258 1.051
“Comected" G & O - ... 1.553
Naive EB 588 195 1.154 939
Unconditional BCN - 158 1.271 1114
(.0268) (.9705)
Conditional BCN - 163 1.284 1.121
(.0298) (9721
Qbscrvation: 6
Ciassical 604 006 4.087 4.081
“Naive" G & O 577 395 861 466
“Comected”" G & O - 905
Naive EB 606 401 846 445
Uaconditional BCN ” 394 .363 469
(.0437) (.9594)
Conditional BCN - 398 863 465
(.0471) (.9594)
Obscrvation: 10
Classical 2.099 396 6.444 6.048
*Naive" G & O 1.896 1.343 2.691 1.348
“Comrected" G & O ’ -e- 2.945 -
Naive EB 1.944 1.327 2.658 1.332
Unconditional BCN ’ 1.230 2.735 1.505
(.0250) (.9638)
Conditional BCN - 1.311 2.674 1.363
(.0452) (.9532)
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