Density of Electronic States in a Biased Resonant Tunneling Structure
by
L. N. Pandey, D. Sahu and Thomas F. George

Prepared for Publication
in
Applied Physics Letters

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

November 1989

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Density of Electronic States in a Biased Resonant Tunneling Structure

We calculate the change in the density of states due to a biased resonant tunneling structure. The maximum of the density of states near resonance gets shifted towards the low-energy side compared to the unbiased case, as is the transmission coefficient, although the two need not be identical. For the case of asymmetric barrier heights, the left-right symmetry of the density states is broken when the field is non-vanishing.
Density of Electronic States in a Biased Resonant Tunneling Structure

L. N. Pandey, D. Sahu and Thomas F. George
Departments of Physics & Astronomy and Chemistry
Center for Electronic and Electro-optic Materials
239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260

Abstract

We calculate the change in the density of states due to a biased resonant tunneling structure. The maximum of the density of states near resonance gets shifted towards low-energy side compared to the unbiased case, as is the transmission coefficient, although the two need not be identical. For the case of asymmetric barrier heights, the left-right symmetry of the density of states is broken when the field is non-vanishing.

PACS Nos.: 79.80+w, 73.20.Dx, 71.20.-b
In recent years scientists have become increasingly aware of the importance of resonant tunneling structures (RTSs) in electronic and optoelectronic device applications and their possible role in fundamental advances.¹⁻⁵ Therefore, many studies of static and dynamic aspects of resonant tunneling structures have been undertaken. A common static quantity of interest is the transmission coefficient $T(E)$; a related physical quantity is the width of the resonance peak, which is inversely proportional to the lifetime of the resonant state. A second important static quantity is the density of states, a knowledge of which is essential in understanding transition probabilities, dielectric functions and absorption and luminescence characteristics.

Recently the local density of states,

$$N(E,x) = \sum_{n} \delta(E-E_n) |\psi_n(x)|^2 ,$$

(1)

in a RTS has been obtained and analyzed in various limits.⁶,⁷ Here E_n are the energy eigenvalues of the system and ψ_n are the corresponding eigenstates. The global density of states obtained by integrating Eq. (1) following Ref. ⁵ would be identically zero. We therefore follow a different scheme to calculate the global density of states,⁸

$$N(E) = \sum_{n} \delta(E-E_n) .$$

(2)

In a big box of size L ($L \rightarrow \infty$), the energy levels form a quasi-continuous spectrum. Introduction of a structure inside the box changes the spacing between the levels and produces a change $\Delta N(E)$ in the global density of
states, which we calculate. In the neighborhood of a resonance, the changes in the spacing of the energy levels produces a pronounced change in density of states. If the resonances are sufficiently narrow, $\Delta N(E)$ and $T(E)$ coincide; however, for broad resonances this is not true.

For the sake of completeness, we briefly review our method for obtaining the density of states $\Delta N(E)$ for an unbiased RTS. For a flat box extending from $x = 0$ to $x = L$, the density of states in k-space is $N_0(k) = L/\pi$, where $E = \hbar^2 k^2/(2m*)$ is the energy and $m*$ the effective mass. Suppose now that the RTS is placed in the middle of the box, at $x = x_1 = L/2$, thereby squeezing more states into some energy region and depleting states in some other region. Suppose that the energy eigenvalues of the system are obtained from the condition $D(k) = 0$ where $D(k)$ is a determinental function of the solutions to the Schrödinger equation (see Eq. (9) below). The change in density of states associated with the n-th level having spacing Δk_n is

$$\Delta N(k_n) = \left(\frac{1}{\Delta k_n} - \frac{L}{\pi} \right).$$

The spacing Δk_n is easily obtained by finding the roots of the eigenvalue condition $D(k) = 0$ with the use of a Newton-Raphson method or any other appropriate scheme. As the previous work in our group emphasized, the shifts of the energy levels depend sensitively on the phase of the wave function at the position where the structure is introduced (i.e., at $x_1 = L/2$ in this case). This phase dependence produces apparently irregular spacings of the levels, and one has to calculate two "sub-densities" (since the RTS is in the middle) in the manner indicated above and add the two to obtain the total density. As expected, for a biased RTS, calculation of $\Delta N(k)$ and hence $\Delta N(E)$
is more complicated, and the phase of the wave function in the neighborhood of
the structure has to be constantly adjusted (by changing the position \(x_1 \) to
\(x'_1(\mathcal{E}) \)) to get the sub-densities correctly. The position \(x'_1 \) at which the
biased RTS should be placed is obtained from the relation

\[k'x'_1 = kx_1 \tag{4} \]

where \(k = \left(\frac{2m^*E}{\hbar^2} \right)^{\frac{1}{2}} \), \(x_1 = L/2 \) and \(k' = \left(\frac{2m^*(E+V_o)}{\hbar^2} \right)^{\frac{1}{2}} \). Here \(V_o \) is the
potential drop across the double barrier structure and is taken to be 10 meV
throughout this work.

In Fig. 1 we show the geometry of the device. The RTS has an extension
\(x_3 = a_1 + a_2 + d \), where \(a_1 \) and \(a_2 \) are the barrier widths and \(d \) is the well
width. The barrier heights are taken to be \(V_1 \) and \(V_2 \). The electric field in
the structure is uniform and is \(F = V_o / x_3 \). The electric potential at any
point \(x \) inside the structure is

\[V_F(x) = V_o (x_1 - x) / x_3 \tag{5} \]

We label the regions of piecewise continuous potential profiles by integers,
from 0 to 4, as indicated in the figure, and solve the stationary-state
Schrödinger equation for the envelope function in the effective mass
approximation where we assume, for simplicity, the same \(m^* = 0.067 m_e \) (\(m_e \) -
electron mass) throughout the structure. In region 1, for example, the
Schrödinger equation is

\[\frac{d^2 \psi}{dx^2} - \left(\frac{2m^*E}{\hbar^2} \right) \left[V_F(x) + (V_1 - E) \right] \psi(x) = 0 \tag{6} \]
This can be reduced to

\[\frac{d^2\psi(p)}{dp^2} - p\psi(p) = 0 \]

(7)

whose solutions are the Airy functions, \(A_1[\rho(x)] \), and the complementary Airy functions \(B_1[\rho(x)] \).

\[\psi(p) = A_1A_1(p) + B_1B_1(p) \]

(8)

where \(A_1 \) and \(B_1 \) are two arbitrary constants, \(\rho(x) = \alpha(\chi - x) + (V_1 - E)x^2/V_0 \) and \(\alpha = [2m^*V_0/(\hbar^2x_1)]^{1/3} \). The solutions in all the five regions can be obtained in a similar fashion. The eigenvalue condition is the condition of the vanishing of the wave function at \(x = L \), so that

\[D(k) = A_4\sin k'(L - x_2) + B_4\cos k'(L - x_2) = 0 \]

(9)

where \(x_2 = x_1 + x_3 \), and \(A_4 \) and \(B_4 \) are obtained by demanding the usual continuity of the wave function and its first derivative with respect to \(x \) across the interfaces:

\[
\begin{bmatrix}
A_4 & B_4
\end{bmatrix}^T = \hat{M} \begin{bmatrix}
\sin kx_L & \cos kx_L
\end{bmatrix}^T
\]

(10)

The \(2 \times 2 \) matrix \(\hat{M} \) in the equation above is

\[
\hat{M} = M^{-1}_{34}(R)M^{-1}_{34}(L)M^{-1}_{23}(R)M^{-1}_{23}(L)M^{-1}_{12}(R)M^{-1}_{12}(L)M^{-1}_{01}(R)
\]

(11)
The subscripts on the matrices indicate the two regions they connect, and L and R stand, respectively, for the left and right sides of the interface.

Equations (3), (4), (10) and (11) enable us to obtain $\Delta N(E)$ for a biased RTS, which can then be compared with the transmission coefficient $T(E)$ obtained in the usual way. We call the structure shown in Fig. 1 as a tilted box with a structure (TBWS). We define a background potential profile called the tilted box (TB) for which $V_1 = V_2 = 0$ in Fig. 1. The difference in density of states between TBWS and TB gives $\Delta N(E)$, which can be compared directly with $T(E)$.

Figures 2-4 show $T(E)$ and $\Delta N(E)$ for a double barrier device of barrier widths 50 Å each and heights 200 meV each, and a well width of 100 Å. Figures 2 and 3 show $T(E)$ and $\Delta N(E)$ for the first two bound state resonances, whereas Fig. 4 is for energies above the barrier energy. A comparison with the unbiased case shows that both $T(E)$ and $\Delta N(E)$ get shifted to lower energies than the corresponding unbiased case.

For the sake of completeness, we comment on the physical origin of the energy shift of transmission resonances due to the electric field. The electron resonance energy is a compromise between the increased kinetic energy due to a spatially-varying potential and the lowering of the potential energy brought about by the field. The electron wave function wiggles a lot to accommodate the increased kinetic energy and lowers its total energy. The electron resonance energy decreases linearly for both the ground state and the first excited state for the electric field considered by us. The magnitude of the rate of decrease with the field is larger for the ground state than the first excited state.
Finally, in Fig. 5 we show our results for an asymmetric double barrier structure without a field ($V_0 = 0$) and with a field ($V_0 = 10$ meV). The dot-dashed curves in Fig. (7a) and (7c) represent the field-free case, and these have left-right symmetry with respect to the interchange of the two barriers. In the presence of a field, this symmetry is broken. The dashed lines correspond to the case $V_1 = 100$ meV and $V_2 = 200$ meV, whereas the dotted line corresponds to the permuted case $V_1 = 200$ meV and $V_2 = 100$ meV. This asymmetry is important in calculating tunneling currents and transition probabilities.

Acknowledgments

This research was supported by the Office of Naval Research, the National Science Foundation under Grant CHE-8620274 and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009.

References

Figure Captions

1. Geometry of the tilted box with a structure (TBWS). The box extends from $x = 0$ to $x = L$ (we take L to be of the order of $1.5 \times 10^5 \, \text{Å}$ to $1.0 \times 10^6 \, \text{Å}$ in this work) whereas the structure extends from $x = x_1$ to $x = x_1 + x_3$, where $x_3 = a_1 + a_2 + d$. The external electric field is $F = V_o/x_3$. We take $V_o = 10 \, \text{meV}$ throughout this paper. The zero of the energy for this and the following figures (Figs. 2-5) is taken to be the bottom of the left-most part of the box.

2. Transmission coefficient $T(E)$ and density of states $\Delta N(E)$ for a symmetric double barrier structure (DBS) in an applied electric field. The barriers are each $50 \, \text{Å}$ wide and $200 \, \text{meV}$ high, and the well is $100 \, \text{Å}$ wide. The energy range shown is in the neighborhood of the first resonance energy. The middle panel shows $\Delta N(E)$ for a tilted box (TB), (solid curve) and a TBWS (dashed curve).

3. $T(E)$ and $\Delta N(E)$ as in Fig. 2, but for the second resonant state.

4. $T(E)$ and $\Delta N(E)$ as in Fig. 2, but for the energies above the barrier energy.

5. Transmission coefficient $T(E)$ and density of states $\Delta N(E)$ for an asymmetric DBS. The barriers and the well are each $50 \, \text{Å}$ wide, and the barrier heights are $100 \, \text{meV}$ and $200 \, \text{meV}$. The dash-dotted curves show $T(E)$ and $\Delta N(E)$ without the field, and these curves exhibit left and right degeneracies. The dotted curves are for $V_1 = 200 \, \text{meV}$ and $V_2 = 100 \, \text{meV}$, whereas the dashed curves are for $V_1 = 100 \, \text{meV}$ and $V_2 = 200 \, \text{meV}$. The solid curve in the middle panel is for a tilted box, as explained in the caption to Fig. 2.
\[\Delta N(E)(\text{meV}^{-1}) \quad \Delta N(E)(\text{meV}^{-1}) \quad T(E) \]

- \[0.90 \quad 0.00 \]
- \[z \quad -14 \quad -17 \quad 3.0 \quad 1.5 \quad 0.0 \quad 24.0 \quad 25.5 \quad 27.0 \]
- \[\text{energy (meV)} \]

Fig. 2
Fig. 3

![Graph showing three plots labeled (a), (b), and (c). The x-axis is labeled 'energy (meV)' and the y-axis is labeled 'T(E)'.]
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Office or Organization</th>
<th>No. Copies</th>
<th>Office or Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Office of Naval Research</td>
<td>1</td>
<td>Dr. David Young</td>
</tr>
<tr>
<td></td>
<td>Attn: Code 1113</td>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td></td>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td></td>
<td>Arlington, Virginia 22217-5000</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Bernard Doua</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td></td>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td></td>
<td>Code 50C</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Crane, Indiana 47522-5050</td>
<td></td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>1</td>
<td>Naval Civil Engineering Laboratory</td>
<td></td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td></td>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td>12</td>
<td>Defense Technical Information Center</td>
<td></td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td></td>
<td>Attn: CRD-AA-IP</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td></td>
<td>Building 5, Cameron Station</td>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td></td>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>1</td>
<td>DTNSRDC</td>
<td>1</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. H. Singerman</td>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td></td>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td></td>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>1</td>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td></td>
<td>Superintendent</td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td></td>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td></td>
<td>Naval Research Laboratory</td>
<td></td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>1</td>
<td>Dr. David L. Nelson</td>
<td>1</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research</td>
<td></td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
<td>Attn: Code 6100</td>
</tr>
<tr>
<td></td>
<td>Naval Research Laboratory</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20375-5000</td>
<td></td>
<td>Code 6100</td>
</tr>
</tbody>
</table>
Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. J. H. Weaver
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. K. J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
 Cookeville, Tennessee 38501

Dr. D. DiLella
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. J. M. White
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. J. M. White
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. W. Kohn
Department of Chemistry
University of Maryland
College Park, Maryland 20742

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037
ABSTRACT DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
University of Pittsburg
Chemistry Building
Pittsburg, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton 509 5NH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. A. Steckl
Department of Electrical and
Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. W. Goddard
Department of Chemistry and Chemical
Engineering
California Institute of Technology
Pasadena, California 91125

Dr. G. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. R. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and
Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. J. Baldeschwieler
Department of Chemistry and
Chemical Engineering
California Institute of Technology
Pasadena, California 91125