
I 4

-. M xecutive System for Modeling with Rational B-Splines (
by

Glenn Roy Hottel, SR
B.S. and M.S., Nuclear Engineering, Purdue University (1978)

Submitted to the Department of

D T IC OCEAN ENGINEERING

E1ECTE In partial fulfillment of the

0CT 1 2198 requirements for the Degree of

D NAVAL ENGINEER

and

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

at the0
tMASSACHUSETTS INSTITUTE of TECHNOLOGY

MAY , 1989

© Glenn Roy Hottel, SR, 1989. All rights reserved.

The author hereby grants to M.I.T. and to the U.S. Government
permission to reproduce and distribute copies of this thesis

document, in whole or in part.

Certified By

Department of Ocean Engineering
Author, May, 1989

Professor N. M. Patrikalakis
Department of Ocean Engineering

Thesis Supervisor Accepted By

Professor P. E. Sullivan A. Douglas Carmichael, Chairman
Department of Ocean Engineering Department Graduate Committee

Thesis Supervisor Department of Ocean Engineering

Professor D. C. Gossard Ain A. Sonin, Chairman
Mechanical Engineering Department Committee on Graduate Studies,

Thesis Reader Mechanical Engineering Department

Approvowd fol u!e ees_29 /0 /3 /37
pulcreei

An Executive System for Modeling

With Rational I-Splines

by

Glenn Roy Hottel, SR

Submitted to the Department of Ocean Engineering and
Department of Mechanical Engineering on May 6, 1989,

in partial fulfillment of the requirements for
the Degree of Naval Engineer and Degree

of Master of Science in
Mechanical Engineering

ABSTRACT

An editor for use in the modeling of surfaces and curves with
non-uniform rational B-splines (NURBS) was developed. A com-
prehensive menu structure has been generated and a method for
interfacing future modules into this structure was developed
and discussed with examples.

Surface modules interfaced include: Gaussian, mean, normal and
principal curvature presentations; shading with light source
and color editing; presentation editing with full positioning
and rotation capabilities; and, isophote line calculation

Curve modules interfaced include entering and editing points
in the parametric space of a B-spline surface; generation of a
B-spline curve interpolating these points while staying on the
surface; and, fairing of the curve to get a smoother shape for
a curve on a surface.)

Implementation of the editor uses a DEC VAX Station II with the
NAG Mark 11 library. The display graphics are performed on a
Silicon Graphics IRIS 3030 Workstation networked with the VAX
station. . .

Thesis Supervisor : N. M. Patrikalakis, Ph.D.
Title : Assistant Professor of Ocean Engineering

Thesis Supervisor : P. E. Sullivan
Title : Associate Professor of Ocean Engineering

3i

4

ACKNOWLEDGMENTS

The United States Navy provided tuition and salary during
my stay at M.I.T and for this I am truly appreciative. Without
this assistance I would not have been able to have this valuable
educational experience.

The MIT Ocean Engineering Design Laboratory research in the
area of this thesis is supported by the Naval Sea Systems Command
of the U.S. Navy and the MIT Sea Grant College Program under
contract number NA86AA-D-SG089.

Special thanks go to Mr. Mike Drooker who gave me hours of
assistance in many different areas, all of which were crucial
to my work. The majority of the routines interfaced into the
editor are the work of Mr. Panagiotis Alourdas. His assistance
in helping me understand their inner workings is greatly
appreciated.

A number of the members of the Design Laboratory unselfishly
answered questions and gave assistance to me on the many occasions
when I became lost with the various operations of the laboratory.
To Mr. George Kriezis, Mr. Bradley Moran and Mr. Seamus Tuohy,
again, thank you for your help.

6

DEDICATION

To my wife Janet and four children, Kelly, Chris, Emily andGlenn Roy, JR, whose love and support made this possible andwithout whom it would all be meaningless.

,7
..

8

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION AND OUTLINE 21

CHAPTER 2 - DATA AND FILE STRUCTURES 23
2 .1 General 23
2.2 B-Spline Curves 24
2.3 B-Spline Surfaces 28
2.4 Ex:isting Structures 30

2 .4.1 egeom 30
2 .4 .2 fgeom 31

2.5 Developed Structures 32
2.5.1 Mouse Words 33
2.5.2 MenuEntry 35
2.5.3 Stats 37
2.5.4 Message 38
2.5.5 Choice List 39
2.5.6 FulCurv 39
2.5.7 FulSurf 42

2.6 File Naming Conventions 46

CHAPTER 3 - HELP FILE 49
3.1 Input Help File 49
3.2 Help File Processing Program 51
3.3 Generated Files 53

3.3.1 Message Files 53
3.3.2 Pointer Files 53
3.3.3 Include File 54

3.3.3.1 Define Lines 54
3.3.3.2 Extern Lines 54
3.3.3.3 Array Set Ups 55

CHAPTER 4 - MENU FILES 57
4.1 Menu Data Structure 57
4.2 Menu Tree Structure 58
4.3 Menu Interaction 62

CHAPTER 5 - EDITOR PROGRAMS AND LAYOUT 65
5.1 CHANGING A VIEW POINT 67
5.2 MAIN MENU 68

5.2.1 INPUT ROUTINES 68
5.2.1.1 CURVE (3-D) 68

5.2.1.1.1 ENTER FORM KEYBOARD 68
5.2.1.1.2 RECALL FRO LOCAL FILE 68
5.2.1.1.3 RECALL IGES FILE 68
5.2.1.1.4 INTERACTIVE INPUT 68

5.2.1.2 SURFACE 68
5.2.1.2.1 ENTER FROM KEYBOARD 68
5.2.1.2.2 RECALL FROM LOCAL FILE 68
5.2.1.2.3 RECALL IGES FILE 69
5.2.1.2.4 INTERACTIVE INPUT 69

9

5.2.1.3 CURVE ON SURFACE 70
5.2.1.3.1 ENTER FROM KEYBOARD 70
5.2.1.3.2 RECALL FROM LOCAL FILE 70
5.2.1.3.3 RECALL IGES FILE 70

5.2.1.4 ALGEBRAIC SURFACE 70
5.2.1.4.1 ENTER FROM KEYBOARD 70
5.2.1.4.2 RECALL FROM LOCAL FILE 70

5.2.1.5 GRID OF POINTS 70
5.2.1.5.1 ENTER FROM KEYBOARD 70
5.2.1.5.2 RECALL FROM LOCAL FILE 70

5.2.1.6 FUNCTION ON CURVE 70
5.2.1.6.1 ENTER FROM KEYBOARD 70
5.2.1.6.2 RECALL FROM LOCAL FILE 70

5.2.1.7 LIST OF POINTS 70
5.2.1.7.1 ENTER FROM KEYBOARD 70
5.2.1.7.2 RECALL FROM LOCAL FILE 70
5.2.1.7.3 INTERACTIVE INPUT 70

5.2.1.8 LIST OF LISTS 70
5.2.1.8.1 RECALL FROM LOCAL FILE 70
5.2.1.8.2 INTERACTIVE INPUT 70

5.2.1.9 LIST OF POINTS (3-D) 70
5.2.1.9.1 ENTER FROM KEYBOARD 70
5.2.1.9.2 RECALL FROM LOCAL FILE 70
5.2.1.9.3 INTERACTIVE INPUT 71

5.2.2 GEOMETRY GENERATION 71
5.2.2.1 CURVES 71

5.2.2.1.1 FIT POINTS IN 3-D 71
5.2.2.1.2 APPPOXIMATE WITH NURBS 71
5.2.2.1.3 OFFSET OF A PLANAR CURVE 71
5.2.2.1.4 OFFSET NORMAL TO PATCH 71

5.2.2.2 SURFACES 71
5.2.2.2.1 OFFSET OF ANOTHER SURFACE 71
5.2.2.2.2 RULED SURFACE 71
5.2.2.2.3 FIT/APPROXIMATE n TqOPARMET.P
LINES 71
5.2.2.2.4 FIT/APPROXIMATE GRID OF POINTS ... 71
5.2.2.2.5 CONVERT ALGEBRAIC TO NURBS 71

5.2.2.3 CURVES ON SURFACE 71
5.2.2.3.1 FIT/APPROXIMATE LIST OF POINTS -- >
calls submenu (see Chapter 5.3) 71
5.2.2.3.2 FIT/APPROXIMATE LIST OF LISTS 71
5.2.2.3.3 VARIABLE OFFSET OF ANOTHER CURVE
ON SURFACE 71

5.2.2.4 BLEND 71
5.2.2.4.1 BOUNDARY CONDITIONS 71

5.2.2.4.1.1 POSITION 71
5.2.2.4.1.2 NORMAL 71
5.2.2.4.1.3 CURVATURE 72

5.2.2.4.2 DEFINE SURFACE 72
5.2.2.4.3 DEFINE CURVES 72
5.2.2.4.4 EXECUTE BLEND72

10

5.2.3 GEOMETRY INTERROGATION 72

5.2.3.1 CURVES 72
5.2.3.1.1 VISUALIZATION 72

5.2.3.1.1.1 RESOLUTION 72
5.2.3.1.1.2 COLuR 72

5.2.3.1.1.3 VIEWPOINT 72
5.2.3.1.2 CURVATURE VALUES 72

5.2.3.1.2.1 RESOLUTION72
5.2.3.1.2.2 SHOW CURVATURE MAP 2

5.2.3.1.3 STATUS 72
5.2.3.1.3.1 ON 72
5 .2.3.1.3 .2 OF 72

5.2.3.2 CURVES ON SURFACE 72
5.2.3.2.1 VISUALIZATION 72

5.2.3.2.1.1 RESOLUTION 72
5.2.3.2.1.2 LINETYPE 72
5.2.3.2.1.3 VIEWPOINT 72

5.2.3.2.2 CURVATURE MAP 72
5.2.3.2.2.1 RESOLUTION 72
5.2.3.2.2.2 SHOW 72

5.2.3.2.3 STATUS 73
5.2.3.2.3.1 ON 73
5.2.3.2.3.2 OFF 73

5.2.3.3 SURFACE 73
5.2.3.3.1 VISUALIZATION 73

5.2.3.3.1.1 RESOLUTION 73
5.2.3.3.1.2 COLOR 73
5.2.3.3.1.3 VIEWPOINT 73

5.2.3.3.2 PLANE CONTOURS 74
5.2.3.3.2.1 SET # PLANES 74
5.2.3.3.2.2 SET START PLANE 74
5.2.3.3.2.3 SET PLANE DISTANCE 74
5.2.3.3.2.4 INTERSECTION ACCURACY 74

5.2.3.2 .2.4.1 2-D 74
5.2.3.3.2.4.2 3-D 74

5.2.3.3.3 CYLINDER CONTOURS 74
5.2.3.3.3.1 SET # CYLINDERS 74
5.2.3.3.3.2 SET START CYLINDER 74
5.2.3.3.3.3 CYLINDER DISTANCE 74
5.2.3.3.3.4 INTERSECTION ACCURACY 74

5.2.3.3.3.4.1 2-D 74
5.2 .3.3 -3.4 .2 3-D 74

5.2.3.3.4 SHADED :IMA E 74
5.2.3.3.4.1 REA- :YAGE 74
5.2.3.3.4.2 CALULATE IMAGE 74
5.2.3.3.4.3 :-1L§ 75
5.2.3.3.4.4 -E , :.:;HT SDURCE 77
5.2.3.3.4.5 7-7 "K;P :F-:NT 77

5.2.3. . .Y CE

5.2.3.3.5.1 READ TRACE78
5.2.3.3.5.2 CALCULATE TRACE 78
5.2.3.3.5.3 SET COL ..R 78

2.]

5.2.3.3.6 CURVATURE 78
5.2.3.3.6.1 READ CURVATURE 78
5.2.3.3.6.2 CHANGE VIEW 78

5.2.3.3.6.3 ALL CURVATURES 78
5.2.3.3.6.4 GAUSSIAN 79

5.2.3.3.6.5 MEAN 80
5.2.3.3.6.6 ABSOLUTE 80
5.2.3.3.6.7 MAXIMUM PRINCIPAL 80
5.2.3.3.6.3 M:NIMUM PRINCIPAL 80
5.2.3.3.6.9 NORMAL U 80
5.2.3.3.6.10 NORMAL V 81

5.2.3.3.7 ISOPHOTES 81
5.2.3.3.7.1 SET NUMBER 81
5.2.3.3.7.2 READ ISOPHOTE 81
5.2.3.3.7.3 CALCULATE ISOPHOTES 81
5.2.3.3.7.4 SHOW ISOPHOTES 81

5.2.3.3.8 REFLECTION LINES 82
5.2.3.3.8.1 SET NUMBER 82
5.2.3.3.8.2 READ IN LINES 82
5.2.3.3.8.3 CALCULATE LINES 82
5.2.3.3.8.4 SHOW LINES 82

5.2.3.3.9 GEODESICS 82
5.2.3.3.9.1 READ IN 82
5.2.3.3.9.2 CALCULATE 82
5.2.3.3.9.3 SHOW 82

5.2.3.3.10 SURFACE ON/OFF 82
5.2.4 GEOMETRY PROCESSING 82

5.2.4.1 CURVES 82
5.2.4.1.1 APPROXIMATE NURBS 82

5.2.4.1.1.1 SET ORDER 82
5.2.4.1.1.2 SET ACCURACIES 82
5.2.4.1.1.3 RUN 82

5.2.4.1.2 FAIRTNG 82
5.2.4.1.2.1 KNOT 82
5.2.4.1.2.2 AUTOMATED 82
5.2.4.1.2.3 RUN 82

5.2.4.1.3 CONTROL POINT EDIT 82
5.2.4.1.4 CHOOSE EXACT DEGREE 82
5.2.4.1.5 SUBDIVIDE 82
5.2.4.1.6 SPLIT CURVE 82

5.2.4.2 CURVE ON SUPFACE 83
5.2.4.2.1 CONVERT COS TO NURBS 83

5.2.4.2.1.1 SET ACCURACIES 83
5.2.4.2.1.1.1 POSITION 83
5.2.4.2.1.1.2 CURVATURE.................. 83
5.2.4.2.1.1.3 SLOPE..............83

5.2.4.2.1.2 RUN CONVERT 83
5.2.4.2.2 FAIRINS -- > calls s'.bmenu (see
Chapter 5.4) 83
5.2.4.2.3 EDITING 83
5.2.4.2.4 SUBDIVIDE IN UV 83
5.2.4.2.5 SPLIT IN UV 83

12

5.2.4.3 SURFACE B3
5.2.4.3.1 APPROXIMATE NURBS 83

5.2.4.3.1.1 SET ORDER 83
5.2.4.3.1.2 SET ACCURACIES 83

5.2.4.3.1.2.1 POSITION 83
5.2.4.3.1.2.2 CURVATURE 83
5.2.4.3.1.2.3 SLOPE 83

5.2.4.3.1.3 RUN 83
5.2.4.3.2 FAIRING 83

5.2.4.3.2.1 KNOT 83
5.2.4.3.2.2 AUTOMATED 83
5.2.4.3.2.3 RUN FAIRING 83

5.2.4.3.3 EDITING 84
5.2.4.3.4 DEGREE ELEVATION 84
5.2.4.3.5 SUBDIVIDE 84
5.2.4.3.6 SPLIT 84

5.2.4.4 INTERSECTIONS 84
5.2.4.4.1 LISTS 2-D 84
5.2.4.4.2 LISTS 3-D 84

5 .2 .5 QUIT 84
5 .3 UV MENU 84

5.3.1- INPUT U-V POINTS 84
5.3.2 OUTPUT U-V POINTS 85
5.3.3 SHOW U-V POINTS 85
5.3.4 ADD U-V POINTS 86
5.3.5 INSERT U-V POINTS 87
5.3.6 DELETE U-V POINTS 88
5.3.7 MOVE U-V POINTS 89
5.3.8 SELECT WINDOW 90
5.3.9 FIT POINTS 91

5.3.10 MAKE SYSTEM CURVE 92
5.3.11 SET STEPS 93
5.3.12 START AGAIN 94
5.3.13 QUIT 94

5.4 COSFAIR MENU 94
5.4.1 FAIR CHILD - SINGLE 94
5.4.2 FAIR CHILD - AUTO 95
5.4.3 SET SCALE 96
5.4.4 SET STEPS 96
5.4.5 REDRAW CURVES96
5.4.6 CHANGE VIEW, USE PARENT 96
5.4.7 CHANGE VIEW, USE CHILD 96
5.4.8 KEEP CHILD 97
5.4.9 SHOW WIRE FRAME/CURVE 97
5.4.10 SHOW SURFACE/CURVE 97
5.4.11 SET VIEW OF COS 98
5.4.12 QUIT FAIRING 98

5.5 WORLD MENU 98
5.5.1 SET BACKGROUND COLOR 98
5.5.2 SELECT CURRENT SURFACE 99
5.5.3 SELECT CURRENT CURVE 100

13

5.5.4 STATUS ROUTINES 100
5.5.4.1 LIST JOBS 100
5.5.4.2 SUSPEND JOBS 100
5.5.4.3 ACTIVATE JOBS 100
5.5.4.4 KILL JOBS 1............................100

5.5.5 SET PERSPECTIVE 100
5.5.6 TOGGLE BELL 101

CHAPTER 6 - NEW MODULES - EDITOR EXPANSION 103
6.1 Help File Additions 103
6.2 Menu File Additions 105

6.2.1 Menu Entry Formats 106
6.2.2 Menu Addition Examples 107
6.2.3 Menu Replacement Examples 107

6.3 Interface Examples 109
6.3.1 Add Call To Existing Routine 109
6.3.2 Add New Simple Entry 109
6.3.3 Add New Compound Entry 111
6.3.4 Consolidation Of Routines 114
6.3.5 Multiple Related Routines Requiring Iden-
tical Setup 115
6.3.6 Add Routine To Run External Job 120

CHAPTER 7 - DEMONSTRATION OF EDITOR 127
7.1 Screen Layout 127
7.2 Starting A Design - Input Data 130
7.3 Surface Operations 130

7.3.1 View Changing 132
7.3.2 All Curvatures 134
7.3.3 Segmentation Selection 134
7.3.4 Shaded Image 137
7.3.5 System Level Routines 140
7.3.6 External Jobs 144
7.3.7 Further Development In Surface Area 144

7.4 Curve Operations - Entering and Editing 146
7.4.1 Input Of Data Points From File 146
7.4.2 Windowing 148
7.4.3 Adding New Points 148
7.4.4 Help Screens 151
7.4.5 Insert New Points 151
7.4.6 Data Point Corrections 154

7.4.6.1 Move A Point 154
.. 6.2 Delete A Point 154

7.4.7 Fit Of Points and Step Size 157
7.4.8 Making a System Curve and Quitting 157

7.5 Curve Operations - Fairing 159
7.5.1 Actual Fairing 159
7.5.2 Setting the Scale 159
7.5.3 Porcupine View 161
7.5.4 Curve on Wire Frame 161

7.6 Open Parametric Curve 164

14

CHAPTER 8 - SUMMARY 167

CHAPTER 9 - REFERENCES 169

CHAPTER 10 - APPENDICES 171
10.1 MAIN MENU DATA FILE 171
10.2 UV MENU.DAT DATA FILE 187
10.3 PROGRAM MAKEFILE. 189

15

16

TABLE OF FIGURES

Sample Menu Structure 37
Help File Entries 49
Menu Data Structure Interaction 59
Menu Tree Skeleton 60
Complete Editor Menu Tree 66

New Menu Entry Formats 106
Editor Screen Presentations 129
Initial Gaussian Curvature Map 131
View Selection Display : Before Change 131
View Selection Display : After Change 133

Gaussian Curvature Map : New View 133
Display of All Curvature Maps 135
Surface Rendering Segmentation Selection 135
Wire Frame Segmentation Selection 136
All Curvature Maps : Increased Segmentation 136

Gaussian Curvature Map : Specific Area 138
Shaded Image : Default Color 138
Light Source Positioning Presentation 139
Shaded Image : Modified Light Source 139
Shaded Image : Color Changed (CYAN) 141

Shaded Image : Color Changed (YELLOW) 141
Shaded Image : WOOD Coloring (CYAN) 142
Shaded Image : WOOD Coloring (MULTI) 142
Menu Showing SYSTEM SELECTION Header 143
Shaded Image Set Up for Screen Duip 143

External Job : Status Box 145
External Job : Complete Job 145
Curve on Surface Input Prompt 147
Curve on Surface : Check for Valid Input 147
Initial Windowing Presentation 149

Windowing Intermediate Presentation 149
Point Adding : Initial Presentation 150
Point Adding : After Addition 150
Example Help Screen 152
Insert Points : Initial Presentation 152

Insert Points : After Insertions 153
Move : After Point Selection, Before Move 153
Move : After Move 155
Delete : After Selection, Before Deletion 155
Delete : After Deletion 156

17

Curve Fit Drawn With 25 Steps..156
Curve Fit Drawn With 100 Steps 158
Data Saving Prompt 158
Initial Fairing Screen Presentation 160
Fairing Screen With Scale of 0.1....................... 160

Parent and Child Curves : After Fairing 162
View Change of Porcupine Curves 162
Faired Curve on Surface Wire Frame 163
Curve and Wire Frame : Transformed View 163
Open Curve in Parametric Space 165

Open Curve : Before Fairing 165
Open Curve : After Fairing 166
Open Curve on Surface Wire Frame 166

18

TABLE OF TABLES

Structure: egeom.. 31
Structure: fgeom.. 32
Structure: MouseWords.................................. 34
Structure: Menu_'Entry................................... 36
Structure: Stats.. 38

Structure: Message...................................... 38
Structure: ChoiceList.................................. 39
Structure: FulCurv...................................... 40
Structure: FulSurf...................................... 43
Example Menu Data File...................................61.

All Curvatures Screen Arrangement....................... 79
Menu Replacement Ex-,amples................................ 108

19

20

CHAPTER 1

INTRODUCTION AND OUTLINE

Non-uniform rational B-spline (NURBS) curves and surfaces

are used extensively in modern computer aided design and research

continues in this area for advanced applications. Many routines

have been developed in the Ocean Engineering Design Laboratory

at M.I.T. as practical demonstrations of many of the theories

about the use of B-splines. However, since this development

has been done by many different people to support individual

research projects, there has been very little integration of

the different programs into a system that allows the different

programs to work together.

The object of this thesis is to

1. Develop the data and menu structures for a general

editor designed to use B-spline curves and surfaces.

2. Develop a method by which future additions to the

editor can be done easily, helping to ensure the editor is

kept up to date and useful.

3. Interface many of the basic visualization routines

that will be needed for all future modules.

4. Develop a method for running external jobs separately

from the editor.

The philosophy behind all of the various areas of development

was to make all of the modules easy to use by even a novice

designer. The basic structure of the thesis is as follows:

21

Chapter 2 will first discuss the basic information necessary

to understand B-spline curves and surfaces. Then, all of the

data structures used in the editor are listed with explanations

of their data fields and use.

Chapters 3 and 4 explain the make up and use of the help

file and menu files respectively. The contents of these files,

as well as how they are generated, is discussed.

Chapter 5 explains each of the interfaced modules. The

chapter also includes a title entry for those modules not yet

interfaced. This is done to give the reader a sense of the

full menu layout.

Chapter 6 gives detailed direction and examples of how to

expand the editor. All possible types of expansion are discussed.

Chapter 7 shows an example of how the editor can be used

during a design. Included are photographs of the computer

screen as the example develops.

Chapters 8 and 9 are a summary of the work completed in the

thesis and the list of references used during the thesis

respectively.

Chapter 10 is the appendices which include a copy of the

main menu data file, main menu.dat, as Appendix 10.1, a copy

of a submenu data file, uv menu.dat, as Appendix 10.2 and a

copy of the editor make file, Makefile, as Appendix 10.3.

Appendi:: 10.1 and 10.3 are annotated as discussed in various

places of Chapter 6.

22

CHAPTER 2

DATA AND FILE STRUCTURES

2.1 General

For ease and clarity in programming, large blocks of related

data should be grouped into a single data structure. This makes

it much easier to manipulate the related data in all aspects

of the program. A considerable effort must be expended at the

beginning of any programming project to ensure that the data

structures developed are both adequate for the task at hand and

have sufficient growth capability to allow small adjustments

for unplanned changes.

The system that is used for development of a computer program

will usually have a major influence upon the layout of the

program and the data structures used in the program and this

was the case with this editor. The computer set up for this

development was a Silicon Graphics IRIS 3030 Workstation used

for the display of the graphical output and a DEC VAX Station

II for computations. In addition to the remote IRIS Graphics

Library installed on the DEC VAX station, many of the routines

developed use functions of the NAG Mark 11 Fortran library.

The editor primarily employs the C programming language with

occasional calls to the ULTRIX operating system.

23

As important as data structures are the file structures

used for data storage and the system of naming these storage

files. A suggested system for file naming developed for this

editor is discussed at th7 end of this section.

To support this editor it was necessary to develop many new

structures. Previously developed structures were utilized

whenever possible to aid in compatibility across application

boundaries. Because they are essentially a subset of the new,

larger structures, the preexisting structures used in the editor

are briefly discussed first.

The central idea of this editor is the use of non-uniform

rational B-spline curves and surfaces for modeling of free-form

(sculptured) shapes. The most basic data structures that hold

the information needed to define these curves and surfaces are

egeom and fgeom respectively. These data structures are listed

in detail after a brief review of the terms needed to understand

the definition of B-splines. The discussion here comes mainly

from [1].

2.2 B-Spline Curves

If T=(,,,...,k) is a set of real numbers such that tti +, then

a real valued function f(t) defined in the domain [t,t] is called

a spline of order M, or degree M-1, if f(t) is a polynomial of

degree M-1 on each sub interval [t1,t,] and its first M-2

derivatives are continuous in the entire interval [t,,tj. More

24

important, the higher derivatives of a spline function are

continuous everywhere except at t,O5i5k. The values t,t1,...,t

are the knots of the B-spline function and T is the knot vector.

A basis for the vector space spanned by spline functions was

found by Curry and Schoenberg [2] and an expression of this

basis best suited for numerical evaluation has been provided

by De Boor [3] and Cox [4]. The definition of this basis

function is recursive and is listed below:

1 if t, t<t,+(

(= 0 otherwise (1

=W(+ M>1 (2)

The functions defined through (1) and (2) are called B-spline

basis functions over T. In evaluating (2) the convention 0/0 = 0

is used whenever such a ratio appears. N.M(t) is a weighted

average of the B-spline functions associated with knots i and

i+1. Each weight is the ratio of the distance between the

parameter and the corresponding end of the support, t, or ti4,,

to the length of M-1 spans starting from t,,t,+I, respectively.

Thus, N.M(t) extends over M spans of the knot vector covered by

the interval [r,, K]- N,M(t) is zero in the remainder of [to, k].

Non-uniform knot vectors offer certain advantages. Local

manipulation of the curve shape is better achieved by a finer

hnot mesh in areas where accurate shape control is Jesirable.

In applications where interpolation of unevenly spaced points

25

is required using the B-spline basis, a better parameterization

results with a non-uniform knot vector. Curve and surface

subdivision (refinement) for enhanced control also necessitates

use of a non-uniform knot vector.

These concepts can be extended to vector-valued functions,

i.e. spline functions f(t) : [to,t]-R 3 . In this case, f(t) is a

vector, f(t) = (x(t) y(t) z(t)), where x(t) , y(t) and z (t) are

scalar spline functions over the same knot vector T=(tO,t,...,tk).

The basis functions are the same as those given by equations

(1) and (2) . The parametric representation of curves with

vector-valued spline functions cffers certain advantages with

respect to explicit methods such as independence of coordinate

systems, easy mathematical formulation of multiple-valued shapes

and representation of derivative singularity within the same

formulation.

A class of spline functions with the so called open knot

vector

T = [tot, TOT ToT21 I._ - ._,,- I _% +, -M+I] = (., .. , +m-,) (3)

where , and T,-M+, each repeat M times

is of particular interest for deign applications. This curve

representation can be expressed as

n-I

Rm(t)= P, N,. (t) (4)

26

where P, are the n vertices of the associated control polygon

(P) described in terms of their (x,y, z) coordinates in a Cartesian

system.

One point on a B-spline curve for the parameter value t can

be computed recursively through the Cox-De Boor's algorithm.

Let T=(to,t,...t,+_1) be the knot vector and i an index such that

t-t <t,+1 . Then

RM(t) = PA-I- () (5)

where Pk(t) [(k 1,ift) (6)

and t-t,.and X=- (7)
ti- l - tk

One vertex of the control polygon of a general B-sp'ine curve

according to (4) affects M consecutive intervals

[,,t,+ [,+M_t+M] and one interval is affected by M consecutive

vertices. Hence, local control of the B-spline curve is possible

by shifting only a limited number of vertices.

Rational B-spline curves [5] provide a generalizaticn of

integral or polynomial B-sp±ine curves. They permit the

representation of a wider class of free-form curves as well as

classical algebraic curves such as conics, in particular circul.ar

arc segments as a special case. A rational B-spline curve of

orJer M over :he contrcl oclyocn P with n aes l knct

vector T is defined as

27

h, PiN,,M(t)

RM(t) -0 (8)

I hN,,M(t)
-=0

where the h, are Positive real numbers (weights). The integral

B-spline curve is a special case of the rational. It is obtained

by setting h; equal to 1 and observing

Y'Ni.m(t)=1 , to<t<tM_,
-0

Rational B-splines have all the properties of integral B-splines.

In addition, they are closed under bilinear transformations,

i.e. transformations of the form t=(at'+b)/(ct'+d) with a,b,c,d all

real.

2.3 B-Spline Surfaces

The B-spline patch is the surface analogue of the B-spline

curve anc is a tensor product surface defined by a topologically

rectangular set of control points P,1 , 0:5i:<m-l Oj:<n-1 ,

which are the vertices of the control polyhedron, P, and two

knot vectors, T and S, associated with each parameter, u, v.

Let

T = (to, t t. M -,) (9)

S =(So, S1..... Sl N- 1) (10)

be the knot vectors, where M and N are the orders in u and v

respectively. The :orrespon-ding integral 5-spline patch is

given by

28

rn-I n-1

SM'N(U, V) P,j N,.M(u)Nj.N(v) (11)
i=O j=0

where N,.m(u) and Nj.N(v) are obtained from (1) and (2) by replacing

the parameter t with u and v respectively.

Isoparametric or, simply, parametric lines on a B-spline

patch are obtained by letting u = constant or v = constant. A

parametric line with u = uO is a B-spline curve in v with S as

its knot vector and vertices Q1 , O-j <- n-1 given by

Mr-I

Q = I Pl o r"NM'M(uO) (12)
i=0

Some of the properties of B-spline curves can be easily

extended to patches. The support of the basis functions extends

over a rectangular area of MxN adjacent intervals of the

parametric space. Surface discontinuities can also be repre-

sented by using multiple internal knots in either knot vector.

Rational B-spline suraces are generalizations of integral

B-spline patches. Given a control polyhedron P with m, n

vertices in each parametric direction and the knot vectors T

and S, the corresponding rational B-spline patch of orders M, N

in u, v is

M-In-I

Y I h,.1 Pi,N,M(u)Nj.N(v)
RJ.(V(13)RMN(u ' M-In-I
I. I' h,,N,,m(u)N,.,i,)

j2=0

29

where hi~j are positive real numbers. By taking h,,,=l in (13)

the rational B-spline patch is reduced to an integral tensor

product patch. The properties of integral B-spline patches are

easily extended to rational patches [5]. Rational B-spline

patches can be employed to represent a wider class of free-form

surfaces in comparison to integral B-spline patches. In

addition, they allow representation of classical algebraic

surfaces such as quadrics, torii and surfaces of revolution

with planar rational B-spline profiles.

2.4 Existing Structures

The existing structures used in this editor are the core

of the interaction between all of the Design Laboratory programs

developed for B-spline curves and surfaces. The names of the

structures are egeom and fgeom for edgc (curve) geometry and

face (surface) geometry respectively. These structures are

given in Chapters 2.4.1 and 2.4.2 and are defined in the include

file gen.h.

2.4.1 egeom

This structure is used to hold the information needed

for three-dimensional non-uniform rational B-spline curves.

There are many variables in the editor with the type definition

ParCurv. This type definition is a short hand notation for

the egeom structure.

30

Table 2.1 - Structure : egeom

int type Currently used to code the type of
egeom the data has been generated
for. For example, 261326 would be a
periodic parametric curve.

short order The order of the B-spline curve.

short ncontpts The number of control points for the
curve.

short kmem The assigned size of the knots array
> (order + ncontpts)

short pmem The assigned size of the control
points array ncontpts

double2 *knots Pointer to array of knots ordered
from the smallest parametric value
to the largest.

vector Pointer to array of control points
**contpts for the curve.

2.4.2 fgeom

This structure is used to hold the basic information

needed for a three-dimensional non-uniform rational B-spline

surface. The variables in the editor with the type definition

ParSurf are this type of structure.

31

Table 2.2 - Structure : fgeom

int type Currently used to code the specific
kind of fgeom the data has been
generated for. For example, the
code for a parametric surface,
periodic in u, is 262931.

short uorder The order of the B-spline surface
in the u direction.

short vorder Same as uorder but for the v direc-
tion.

short ucontpts The number of control points in the
u direction.

short vcontpts Same as ucontpts but for the v
direction.

short ukmem The assigned size of uknots array
> (uorder + ucontpts)

short vkmem Same as ukmem but for the v direc-
tion.

short upmem The assigned size of contpts array
> ucontpts.

short vpmem Same as upmem but for the v direc-
tion.

double2 *uknots Pointer to the knot vector in the u
direction ordered from the smallest
parametric value to the largest
parametric value.

double2 *vknots Same as uknots but for the v direc-
tion.

vector Pointer to the vector array holding
***contpts the values for the control points

for the surface.

2.5 Developed Structures

The structures developed specifically for the editor

include:

32

1. MouseWords - Used for setting the mouse icon wording.

2. MenuEntry - Used to build the linked menu structure.

3. Stats - Keeps track of external jobs.

4. Message - Used to send messages between external

processes and the main program of the editor.

5. Choice List - Used to implement a popup menu

structure.

6. FulCurv - Incorporates the egeom structure discussed

in Chapter 2.4.1 into a full system curve.

7. FulSurf - Incorporates the fgeom structure discussed

in Chapter 2.4.2 into a full system surface.

Each new structure is discussed separately below.

2.5.1 Mouse Words

This structure is used anytime the routine for labeling

the mouse icon is called. The following items are included

in the structure:

33

Table 2.3 - Structure : MouseWords

int press 1/0 : there is/is not a valid press
operation for some mouse button

int release 1/0 : there is/is not a valid release
operation for some mouse button

char *text[8] The left and right mouse buttons have
four lines of text associated with
their operation, two each for press
and release. Each line can be up to
eleven characters long. Since the
different operations are color coded,
it is important to use the correct
lines.

char Serves the same purpose for the
*middle[2] middle mouse button as 'text' serves

for the other two mouse buttons.
Only one entry (vice two) is needed
for the middle mouse button opera-
tions because these lines can be much
longer, 24 characters.

A typical use of this variable is shown in the following

code (assumes mousew has been declared of type MouseWords).

This would tell the user that some sort of action will be

taken as a result of the press or subsequent release of the

left mouse button.

/* press operation */
mousew.text[0] = strdup("SELECT");
mousew.text[l] = strdup(" POINT");
press = 1;

/* release operation */
mousew.text[2] = strdup("ACCEPT");
mousew.text[3] = strdup(" POINT");
release = 1;

mousewords(&mousew, l);

34

The routine strdup() allocates memory for a copy of the

argument string. The routine mousewords() actually labels

the mouse icon and if called with a 1 releases the memory

allocited by the strdup call. Calling with a 0 will stop

the freeing of this memory.

2.5.2 MenuEntry

This structure is used to build the meni ee structure

used throughout the program. Any number of these variables

can be made and interfaced in adding future modules. Currently

four such menus are used. This structure contains pointers

to occurrences of itself so it is essentially a recursive

definition. To facilitate this, the original definition is

in terms of menu-entry (no caps) and the definition used

throughout the program is Menu-Entry.

35

Table 2.4 - Structure : MenuEntry

char entryname[25] The text printed when this item
is part of a menu.

char menutitle[25] The text printed when this
item is the head of a menu.

int num subs The number of menu selections
directly available in the
menu that this entry is the
head of. Can range from 2,
if this entry has no submenu
items, to an upper limit of
14, based upon screen layout
limitations.

char help[5] The help file index abbrevi-
ation for this selection.

struct menuentry Points to the menu entry that
*from directly called this entry.

struct menuentry Points to the first member of
*first_sub any subentries.

struct menu-entry If this is a subentry, points
*next to the next entry if it

exists.

struct menu-entry Points to the calling menu
*head item of the submenu that this

item is a part of.

Shown next is a sample menu structure. For this

structure the various values of the Menu_Entry CIRCLE are

listed.

36

Figure 2.1 - Sample Menu Structure

entry_name : CIRCLE

menu title : Circle Routines

num subs : 4

from : points to LINE entry

next : points to SQUARE entry

head : points to Edit Routines entry

The storage requirements of a menu are dynamically

allocated when the program is called. This allows the

menu arrangement to be changed external to the program.

For a more in depth discussion of the menu structure used

in the program see Chapter 4.

2.5.3 Stats

This structure is used to keep track of the status of

external jobs started by this program. It consists of the

following elements:

37

Table 2.5 - Structure : Stats

int colors The color of a specific
entry, where colors are used
to code progress of jobs.

char *file-name Pointer to the name of the
externally running program.

char *pathname Pointer to a string contain-
ing the full path of the
externally running program.

This data structure will need to be expanded as the routines

that check and manage external jobs are completed and added

to the editor.

2.5.4 Message

This structure is used to read and write system messages.

This is the method used for communication between processes

in the editor. With these messages it is possible for the

main calling program to keep track of the progress of the

externally running programs.

Table 2.6 - Structure : Message

long type The numerical type identifier
of the message.

char text[1024] The actual message text.

As with the Stats data structure, as the message handling

characteristics of the editor are extended this structure

will be expanded.

38

2.5.5 Choice List

This structure is used to generate popup menus that

have the same appearance as the menus generated in the menu

tree. They are used in a slightly different way though.

Table 2.7 - Structure : ChoiceList

short type The number that the entry
will be in the menu.

char *text Pointer to text string hold-
ing the entry name.

This structure has only limited use in the editor. See

Chapter 4.3 for a further discussion.

2.5.6 FulCurv

This is one of the tw inawu. structures of the editor.

It contains a pointer to the curve data structure discussed

previously (egeom) and various other data fields to make the

curve into a full, system curve. Since the structure has

pointers to structures of the same type as itself, it is

necessary to use an initial name for the structure of curves.

The name used throughout the program to reference this type

of data structure however is FulCurv. The data items are

listed below.

39

Table 2.8 - Structure : FulCurv

ParCurv *egeom Pointer to curve geometry data
structure

double2 **pts Pointer to two dimensional,
dynamically allocated array of
u and v points from which the
curve was initially generated
(if that is the method used for
curve generation).

int parent number The number in the system curve
array where the parent to this
curve is stored if there is a
parent.

int n The number of u,v points in the
pts array.

double2 umin Minimum u parameter value of
the space over which this curve
is defined.

double2 umax Maximum u parameter value of
the space over which this curve
is defined.

double2 vmin Minimum v parameter value of
the space over which this curve
is defined.

double2 vmax Maximum v parameter value of
the space over which this curve
is defined.

Object obj[9] An array of objects saved dur-
ing editor operation. However,
no objects are currently saved
or stored. This is generally
due to the fact that c9bjects
needed for curve prto.zntation
can be more quickly aenerated
than those needed for surface
presentation. The array has
been included for future expan-
sion.

char *parentname Pointer to the name of this
curve's parent (if the parent
exists).

40

struc curves Pointer to curve structure this
*child-of is a child of.

struct curves Pointer to curve structure this
*copy_of is a copy of. There is no

distinction made at this time
between a "child of" and a
"copy_of". Because of this,
only the child of pointer is
currently used.

struct curves Pointer to curve that this is
*offset of an offset of.

char *surface name Pointer to the name of the file
where the surface that this
curve belongs to is stored or
if the surface has not been
stored, a description of the
surface.

char *showit Points to a string of l's and
O's that signify which parts of
the structure are to be shown
in the various sections of the
editor.

char *has_parts Points to a string of l's and
O's that signify which parts of
the structure have already been
generated.

char *parts-saved Points to a string of l's and
O's that signify which parts of
the structure have been saved
to a file.

char *copy_name Pointer to the file name where
the curve this is a copy of is
stored.

char *offset name Pointer to the file name where
the curve this is an offset of
is stored.

char *scurve map Pointer to the file name where
the curvature map data has been
stored.

char *sgrowth_1 Pointers for future growth.

char *sgrowth_2 i t "

char *sgrowth_3 i i it

41

char *sgrowth_4

char *sgrowth_5 It

char *saved as Pointer to the file name where
this curve has been saved.

char *desc Pointer to a description of
this curve.

int sysnumber Location in system curve array.

int color Color to be used with the curve
when it is drawn.

char *have_obj String of l's and O's that
signify which of the objects in
the obj[] array have been gen-
erated.

int steps The number of steps to use when
rendering the curve.

int is-open Signifies the type of curve, 1
is open (non-periodic) and 0 is
closed (periodic). This same
information in a different for-
mat is available in the egeom
structure.

2.5.7 FulSurf

This is the second major structure of the editor. It

contains a pointer to the surface data structure discussed

previously (fgeom) and various other data fields to make the

surface into a full, system surface. Since the structure

has pointers to structures of the same type as itself, it is

necessary to use an initial name for the structure of surfaces.

The name used throughout the program to reference this type

of data structure however is FulSurf. The data items are

listed below.

42

Table 2.9 - Structure : FulSurf

ParSurf *fgeom Pointer to surface data
structure.

struct surfaces Pointer to surface this is a
*copyof copy of.

struct surfaces Pointer to surface this is an
*offset-of offset of.

char *show it Points to a string of l's and
O's that signify which parts
of the structure are to be
shown in the various sections
of the editor.

char *has_parts String of l's and O's that
signify which parts above
have been generated.

char *partssaved String of l's and O's that
signify which parts have been
saved. The following are the
positions in the hasparts
and partssaved strings:

0 surface (fgeom)
1 surface (auxiliary

data)
2 curvature values
3 : shaded image
4 : ray traced image
5 : wire frame
6 : open
7 : open
8 : open

char *copy_name Pointer to the file name
where the surface this is a
copy of is stored.

char *offset-name Pointer to the file name
where the surface this is an
offset of is stored.

char *scurvature These are all pointers to
file names where the given
data has been stored.

char *sshaded; same as above

char *sraytrace; same as above

43

char *sgrowth_!; same as above but for future

growth

char *sgrowth_2; for future growth

char *sgrowth_3; for future growth

char *sgrowth_4; for future growth

char *sgrowth_5; for future growth

char *saved as; Pointer to file name where
this surface has been saved

char *desc Pointer to description of
this surface.

double2 box[6] Array of minimum and maximum
x, y and z values of the
surface control points.

double2 light[31 Array of light vectors used
for making shaded image.

float seelight[3] Source intensity, azimuthal
angle and incident angle of
light source. Used in set-
ting light source position
routine. After the routine,
the values are transformed
into light[] values.

int nsegu The number of segments to be
used in the u direction when
producing shaded and curva-
ture surfaces.

int nsegv Same as nsegv but for the v
direction.

int npointsu The number of segments to be
used in the u direction when
making the wire frame model.

int npointsv Same as npointsu but for the
v direction.

int sys_number The location of this surface
in the system surface array.

float ssee[4] Perspective values to be used
when viewing shaded image
alone.

44

float csee[4] Perspective values to be used
when viewing curvature
images.

float ctrans[4] Translation values to be used
when viewing curvature
images.

float strans[4] Translation values to be used
when viewing shaded image
alone.

int port[4] Viewport values used to view
images.

int color Color to be used when produc-
ing shaded image and wire
frame.

Object obj[9] Array for objects generated
during the various portions
of the editor.

Object key[9] Color keys for the objects
generated.

char *have_obj String of l's and O's that
signifies which objects above
have been generated. The
following positions are used
in the obj and key arrays and
in the haveobj string:

0 : wire frame
1 : shaded image
2 : Gaussian curvature
3 : mean curvature
4 : absolute curvature
5 : maximum principal cur-

vature
6 : minimum principal

curvature
7 : normal U curvature
8 : normal V curvature

double2 ***curv Curvature values along the u
and v directions. Curvatures
KI, K2, normal U and normal V
are stored for later use.

double2 ***pt Three dimensional array of
calculated points lying on
the actual surface.

45

double2 ***norms Normals at the points on the
surface stored in pt array.

int **intensity Intensity values at points on
the surface. Each intensity
value translates into a spe-
cific color for the shaded
image.

2.6 File Naming Conventions

Because many external programs will be used with the editor

and the primary method of passing information between these

programs will be through data files, a file naming convention

must be adopted so that the history of a file can be somewhat

extracted from the name. This will help users go from one

session of the editor to the next.

If a curve or surface is started from scratch, the user

will be prompted for the file name without any extension, for

example surface_1. The program will append the extension 'base'

to the name entered, making the complete file name surfa-

cel.base. This basic name will be used throuchout all operations

on this surface or curve.

As operations are performed on this curve or surface, the

program will append additional extensions onto the file name

as needed. For instance, if the surface is shaded, the shaded

surface file will be named surface1.uhade and if the surface

has the curvature mapping done, the name of the map will be

surfacel.map.

46

If a completely new surface is generated using an existing

surface (for example an offsetting process) the new surface

will retain some of the previous surface's name. For example,

a surface named surface_1.base would generate the name sur-

face_1_offsetl.base if the offset routine were performed upon

it. The base extension is used since this new surface can have

all of the routines (curvature, shading, etc.) performed upon

it that could have been performed upon the original surface.

The numerical identifier is used since a surface can have many

offsets run for it and they must be kept separate. While it

is possible to generate a surface that would have a name such

as surface 1_offsetl offsetl.base (or longer), it is recommended

that this not be done. Besides being confusing, the directory

for the files would become unusable. If more than one level

of offsetting is desired, it is recommended that the first

offset file be copied to another surface name before the off-

setting is done.

47

48

CHAPTER 3

HELP FILE

The actual help files used by the editor are built by running

the program makemsg on the input help file. Once these files

have been built, it is not necessary to run the makemg program

again unless the input help file is modified. The structure

of the input help file and a discussion of the making and use

of the generated files is given below.

3.1 Input Help File

The input help file (for the current editor this file is

called helpfile.m) contains an entry for every menu item in

all of the menus of the editor, including header items. Each

entry is of one of the following two forms:

Executable Menu
Routine Header
Format Format

Vxxx Vxxx
programname line count number -n
line count number - n line 1

line 1 line 2
line 2 line 3
line 3

line n
line n

Figure 3.1 - Help File Entries

49

The form on the right is used for header items. These items

do not have program names associated with them. They are only

used to give help information to the user about the items in

the menu.

The form on the left is used for all help file items that

actually call a routine. The function of each part of these

forms is as follows:

1. The Vxxx is called the help file identifier. The make

up of the identifiers is as follows:

a. The identifier letter signifies the t of the

routine called. V is for void, F for float, D for double

and I for integer. Currently only the void type is used

in the editor. The N type (for NONE) is only used for menu

headers.

b. The xxx is the identifier number. These numbers must

appear sequentially within a specific group, without missing

numbers. This means the sequence (VO,V1,DO,DI,V2,FO,V3)

would be correct since the three groups represented are all

in order with respect to their own group

(VO,VI,V2,V3;DO,Dl;FO). However, the sequence

(VO,Vl,DO,V3,D2,V2) is wrong for two reasons: the V sequence

is out of order (VO,Vl,V3,V2) and the D sequence skips a

number (DO,__ ,D2).

50

2. The number called line count is the number of help lines

in the item. It is a total of all lines between the number

line and the exclamation line. Any blank lines included are

counted.

3. The help lines are the specific text lines that will be

given to the user when this item is referenced for help. There

is no current provision made for multiple pages of help. It

is suggested that only 35 lines of text be given here since

that is the maximum number that will show on the help screen.

4. The exclamation point is used to signify the end of a

specific entry. This must appear in the first column of the

first line after the last help line in an item.

3.2 Help File Processing Program

The program makemag is used to process the input help file

into the files needed for system operation. The call of this

program is as follows:

makemeg helpfile.m GOOD hottel

where

helpfile.m is the input help file generated for the editor

GOOD is a four letter code used to name the output files

from this program

hottel is an include file generated by the program (it will

have the file extension ".h" added to the entered name)

The names used can all be changed as long as the following

changes are also made:

51

1. The name of the input file must match the name listed

in the program call exactly, including file extension.

2. The four letter abbreviation GOOD is in the include

file defines.h as a definition for the variable

MAINHELPFILE. If the abbreviation is to be changed in

the program call, the entry in defines.h must also be

changed.

3. The include file hottel.h is part of the program

mainmenu.c and is part of the dependencies in the system

make file Makefile. If the name is changed in the makemsg

program call, the mainmenu.c program and the Makefile program

must also be changed.

The following error checking is performed on the input help

file by the makemsg program:

1. The entered line count for all entries is checked against

the actual line count. If there is a problem, the program

stops and prints the message

Error : # of lines incorrect at Vxxx

where the xxx is the number where the problem was detected.

Two things can cause this error. Since the width of the

help screen is limited, the length of any given input line

must be limited. This limit is 7__a characters. This includes

any leading and trailing blanks. If a longer input line

than this is given, the program will automatically break

the too long line into two lines. This will usually cause

52

the line count to be too high and an error will result.

The other way for this error to occur is simply to miscount

the input lines.

2. If one of the sequences is improperly ordered, the

following message will be printed where the error is

detected:

Error : V routines out of order at Vxxx

where again the xxx is the number where the problem was

detected.

3.3 Generated Files

When the program makemsg is run, various files will be

generated. All of these files are discussed in the following

section.

3.3.1 Message Files

The message text entered in helpfile.m is split into

five different files. Each file has a name of the form

GOODmsg9.V where only the file extension changes for the

different types of messages. Only the help text is kept in

these files.

3.3.2 Pointer Files

In order to recover the text stored in the message text

files, a file of pointer offsets is generated for each of

the message te.:t files with a name of the form GOODptrs.V.

There are two pointers for every menu item - the pointer

53

offset to the start of the applicable message text and the

pointer offset to just past the applicable message text. This

method of retrieval is very quick regardless of the size of

either the pointer or message files.

3.3.3 Include File

The include file hottel.h is also generated by the

makemsg program. This file has three types of lines : define

lines, extern lines and array set ups.

3.3.3.1 Define Lines

All help file identifiers in helpfile.m, except

type N, cause a line of the following form to be generated

in hottel.h :

#define V21 list of lists interactive

The identifier given in helpfile.m is paired with its

routine to generate this entry. This allows the use of

the iuentifier in all other areas of the file which shortens

the file considerably.

3.3.3.2 Extern Lines

There is also one extern line generated for each

of the define lines above and these extern lines have the

following format

etern void V21();

54

where the void will be the correct type corresponding to

the V portion of the identifier. This ensures that the

pointer to each of the routines is available to this

file.

3.3.3.3 Array Set Ups

Each routine in the editor has a specific pointer

associated with its location in memory. By setting these

pointers into arrays, it is possible to call the routines

by only making reference to one array location.

The type definitions for the arrays are in the

struct.h file and are listed below:

typedef int (*INTFUNCTIONPTR)();

typedef void (*VOIDFUNCTIONPTR) ();

typedef float (*FLOATFUNCTIONPTR) ();

typedef double (*DOUBLEFUNCTIONPTR) ();

The meaning of these definitions is that INTFUNCTIONPTR

types a variable as an array of pointers to functions that

return integer values. The other definitions have similar

meaning. These type definitions are then used in setting

up the pointer arrays in the following manner (example

shown is for void type)

55

VOIDFUNCTIONPTR v routine_ptr[] =

Vo,
vi
V2,

Vxxx,
};

Each of the array entries corresponds to one of the routine

entries referenced in helpfile.m.

The use of these arrays is as follows. When either

a help request or a program selection is made, the identifier

letter is used to determine which array of function pointers

to use (V for v routineptr[], etc.) or which message

and pointer files to use (GOODmsgs.V and GOODptrs.V, etc.

) and the identifier number is used to get the correct

function pointer or message pointers from the array or

files.

56

CHAPTER 4

MENU FILES

There is one main menu file used with the editor, main me-

nu.dat, and three other smaller menu files, uvmenu.dat,

world menu.dat and cosfair menu.dat. While these files all

have the same general format, each is tailored for a specific

use. The general layout and use of all of these menu structures

are discussed below. Chapter 4.1 lists the menu data structure

used for making menu trees and Chapter 4.2 discusses how the

menu data files should be written to make these trees. Chapter

4.3 discusses the interaction between the various types of menus

available in the editor.

4.1 Menu Data Structure

The menu files are designed to be read into the following

data structure:

structure menuentry
{

char entryname[25];
char menu title[25];
int num subs;
char help[51;

struct menu entry *from;
struct menuentry *first sub;
struct menuentry *next;
struct menuentry *head;

} MenuEntry;

For a description of each of the fields of the structure, refer
to Chapter 2.5.2.

57

4.2 Menu Tree Structure

The menu data structure is used by the program menuallocate

to generate the menu tree structure used in the editor. Shown

in Figure 4.1 is the interaction of the fields of the data

structure. Shown is only a very small portion of a generated

tree structure. For an explanation of the data fields, see

Chapter 2.5.2.

58

*r r

Figure 4.1 -Menu Data Structure Interaction

59

An example menu tree skeleton is shown below in Figure 4.2.

The numbers inside the boxes are the help identifiers. The

larger boxes drawn around the small rectangles signify the

boundaries of a given menu presentation. The menu items are

inside the larger box and will be listed from left to right in

the box for a top to bottom menu presentation. The top item

of the menu will be the rectangle attached to all members of

the menu. The data file to get this tree is shown in Table 4.1.

1 \3

S\9

Figure 4.2 - Menu Tree Skeleton

The abbreviations used are MI for menu item and MT for menu

title. The () brackets would be replaced with actual titles

and names.

60

Table 4.1 - Example Menu Data File

3
SMI - NO I
f MT - NO
NO

3
{ MI - N1
MT - NI1

N1
1
(MI - VO
v0
2
{ MI - N2 }

MT - N2
N2

{ MI - Vi I
Vi
1
I MI - V2 }
V2

1
I MI - V3 I
V3

1
{ MI - V4
V4
2

MI - N3
MT - N3 I

N3
3
MI - N4
MT -N4

N4
2
f MI - N5 I
f MT - N5
N5

1
(MI - V5
V5
1
(MI - V6 1
V6

1
f MI - V7 }
V7
1
{ MI - V8 I
V8

1
(MI - V9
V9

0
END

61

The indentation scheme used in the data file is for clarity

only in developing the file. All leading blanks and tab

characters are ignored when the file is read in.

Entries with no actual subroutines have a '1' listed for

the number of subroutines. This signifies to the input routine

that the entry has no subroutines and therefore will not have

a menu title line. As discussed previously, the help identifier

is actually the entry location in the routine pointer array.

This method of a linked-tree menu generation was chosen to

allow the development of a program structure that has the

following characteristics:

2. The position in the menu structure can always be

reconstructed by back tracking through the tree. This aids

the development of position sensitive help files.

2. The menu structure is more compact and entries are more

easily changed as an application is updated.

4.3 Menu Interaction

There are three basic types of menus used in the editor.

The main menu is loaded when the program is first started. The

majority of the routines are called from this menu. All routines

called directly from the main menu must use global variables

for information passing because no provision is made for variable

set up once the menu looping program linked menu is entered.

Because there are situations where a certain set of programs

need the same type of set up and the routines needed would work

62

quicker and more straight forward by passing parameters, a

method for separate menu structure generation is included with

the editor.

The separate menus are of two types. The first to be

discussed is special in that it is available from all other

menus directly. This menu has been interfaced through the menu

header line of all menus. The menu header line normally displays

the name of the menu. However, if the cursor is taken to this

entry, the name will change to SYSTEM SELECTIONS (se- Figure

7.18) and these system selections can be chosen from all menus.

This was necessary because there are some functions in the

editor that must be available at all times - for example,

choosing the system background color, choosing a specific curve

or surface and checking the status of external jobs. If the

system menu is selected, the user is kept from recursively

calling it again from inside itself.

One of the unique things about this system menu selection

is that if the cursor is placed at the header line and the help

function is chosen, the help given is for the header entry and

NOT THE SYSTEM ROUTINE.

The third type of menu available is part of a normally

called routine. The called routine includes the code to generate

another menu structure in addition to the main menu. This new

menu is transient in that it is released when the routine

completes. This type of menu is normally used when the routines

63

that are to be used in a submenu require some sort of set up

that is not appropriate for the main menu program to perform.

A discussion of how to set this structure up is given in Chapter

6.3.5.

There is one other menu form available in the editor. The

popup menu routine included as part of the IRIS documentation

[6] has been extensively modified to be used as another type

of menu. It is currently only used in the color choosing portion

of the editor. Its main usefulness is to allow the user to

choose a specific option from a list which can be presented in

the same way as a normal menu. This menu form should not be

used with options that are not entirely straight forward since

no help is available. Most appropriate are single item choices,

for example choose the first item -o get a one, choose the

second for a two and so on, where the number gotten is used for

a simple and straight forward option selection, such as color

selection.

64

CHAPTER 5

EDITOR PROGRAMS AND LAYOUT

The editor menu structure is built as shown in Figure 5.1

The dashed lines joining some of the menu items signify menus

that are generated from auxiliary menu data files. The smaller

menu placed alone is the SYSTEM SELECTION menu that is available

from all other menus.

This section will discuss all of the routines that have been

interfaced into the editor. If some of the routines in a sub

section have been interfaced and some have not, those that have

not been interfaced are specifically listed as "Not interfaced

at this time." If no routine in a sub section has been interfaced,

all entries are left blank.

Because it is called from many different places in the editor,

the view changing routine is discussed first in Chapter 5.1.

All references to this routine direct the user back to this

section.

The remaining layout of this section follows the layout of

Figure 5.1 with the main menu starting with Chapter 5.2 and the

uv menu, cosfair menu and world menu submenus discussed in

Chapters 5.3, 5.4 and 5.5 respectively.

65

Fiue51 Com leS t Ed. u vienu ______

- S..- 66

5.1 CHANGING A VIEW POINT

All routines which set a specific view of an object call

the changeviewaziy program. This program will be explained

in detail here and all routines which call this routine will

be listed with the object they use as the input object.

The user is given a display showing the current azimuthal

and incident angles along with the distance of the viewpoint

from the object. The azimuthal angle is with respect to the

negative y axis in a counter clockwise rotation in the XY plane.

The incident angle is measured down from the positive z axis.

The distance value is in screen units. The user can change

either of these angles and the distance from the object.

The distance from the object and translation of the object

(in x, y and z) are controlled by selecting plus and minus boxes

in the editing window. All of the quantities start changino

slowly and change more rapidly the longer the change is selected.

Also, each of the quantities can be reset to their original

values (those values set when the routine was called) by selecting

the zero option square on the screen.

The incident and azimuthal angles are set by moving the mouse

while depressing the left mouse button. Care must be taken to

ensure that the wire frame is actually in the desired orientation.

Once the object has been positioned correctly, using the middle

mouse button accepts the entered values.

67

5.2 MAIN MENU

5.2.1 INPUT ROUTINES

5.2.1.1 CURVE (3-D)

5.2.1.1.1 ENTER FORM KEYBOARD

5.2.1.1.2 RECALL FRO LOCAL FILE

5.2.1.1.3 RECALL IGES FILE

5.2.1.1.4 INTERACTIVE INPUT

5.2.1.2 SURFACE

5.2.1.2.1 ENTER FROM KEYBOARD

Not currently interfaced.

5.2.1.2.2 RECALL FROM LOCAL FILE

This allows surface data from a local file to be read

into the system. The user is prompted for a file name

to use. The file is checked to ensure it is a valid

file name and that the file is readable. If the file

name fails either of these tests, the user is prompted

for another name. This loop is repeated until either

a valid file name is entered or the user selects the

abort option.

The entered file name is first used to call the

library routine needed to read in a parametric surface,

ReadParSurf. After the basic surface data has been

read, the system is checked to see if an au::iliary file

with the same name exists. If such a file does exist

68

(it would have been created by previously saving data

from the editor) the auxiliary data for the surface is

read in. If such a file has not been created, the

auxiliary surface variables are assigned default values

as follows:

.. All flags are set to NULL.

2. The shading light source is positioned at 135

degrees azimuthal (relative to -x axis), 45 degrees

incidence (relative to +z axis) and intensity of 8.00

(relative to an ambient intensity of 1.00).

3. The shading and curvature segmentation is set

to 5 in both parametric directions.

4. The wire frame segmentation is set to 10 in

both parametric directions.

5. The translation values are set to the center

of a box that holds all of the surface control points.

6. The viewpoint is from a distance of 200.0, an

azimuthal angle of 160 degrees and an incident angle

of 45 degrees (in relation to the same positions as

in 2.).

7. The color is set to green.

5.2.1.2.3 RECALL IGES FILE

Not currently interfaced.

5.2.1.2.4 INTERACTIVE INPUT

Not currently interfaced.

69

5.2.1.3 CURVE ON SURFACE

5.2.1.3.1 ENTER FROM KEYBOARD

5.2.1.3.2 RECALL FROM LOCAL FILE

5.2.1.3.3 RECALL IGES FILE

5.2.1.4 ALGEBRAIC SURFACE

5.2.1.4.1 ENTER FROM KEYBOARD

5.2.1.4.2 RECALL FROM LOCAL FILE

5.2.1.5 GRID OF POINTS

5.2.1.5.1 ENTER FROM KEYBOARD

5.2.1.5.2 RECALL FROM LOCAL FILE

5.2.1.6 FUNCTION ON CURVE

5.2.1.6.1 ENTER FROM KEYBOARD

5.2.1.6.2 RECALL FROM LOCAL FILE

5.2.1.7 LIST OF POINTS

5.2.1.7.1 ENTER FROM KEYBOARD

5.2.1.7.2 RECALL FROM LOCAL FILE

5.2.1.7.3 INTERACTIVE INPUT

5.2.1.8 LIST OF LISTS

5.2.1.8.1 RECALL FROM LOCAL FILE

5.2.1.8.2 INTERACTIVE INPUT

5.2.1.9 LIST OF POINTS (3-D)

5.2.1.9.1 ENTER FROM KEYBOARD

5.2.1.9.2 RECALL FROM LOCAL FILE

70

5.2.1.9.3 INTERACTIVE INPUT

5.2.2 GEOMETRY GENERATION

5.2.2.1 CURVES

5.2.2.1.1 FIT POINTS IN 3-D

5.2.2.1.2 APPROXIMATE WITH NURBS

5.2.2.1.3 OFFSET OF A PLANAR CURVE

5.2.2.1.4 OFFSET NORMAL TO PATCH

5.2.2.2 SURFACES

5.2.2.2.1 OFFSET OF ANOTHER SURFACE

5.2.2.2.2 RULED SURFACE

5.2.2.2.3 FIT/APPROXIMATE n ISOPARAMETER LINES

5.2.2.2.4 FIT/APPROXIMATE GRID OF POINTS

5.2.2.2.5 CONVERT ALGEBRAIC TO NURBS

5.2.2.3 CURVES ON SURFACE

5.2.2.3.1 FIT/APPROXIMATE LIST OF POINTS -- >

calls submenu (see Chapter 5.3)

5.2.2.3.2 FIT/APPROXIMATE LIST OF LISTS

5.2.2.3.3 VARIABLE OFFSET OF ANOTHER CURVE ON

SURFACE

5.2.2.4 BLEND

5.2.2.4.1 BOUNDARY CONDITIONS

5.2.2.4.1.1 POSITION

5.2.2.4.1.2 NORMAL

71

5.2.2.4.1.3 CURVATURE

5.2.2.4.2 DEFINE SURFACE

5.2.2.4.3 DEFINE CURVES

5.2.2.4.4 EXECUTE BLEND

5.2.3 GEOMETRY INTERROGATION

5.2.3.1 CURVES

5.2.3.1.1 VISUALIZATION

5.2.3.1.1.1 RESOLUTION

5.2.3.1.1.2 COLOR

5.2.3.1.1.3 VIEWPOINT

5.2.3.1.2 CURVATURE VALUES

5.2.3.1.2.1 RESOLUTION

5.2.3.1.2.2 SHOW CURVATURE MAP

5.2.3.1.3 STATUS

5.2.3.1.3.1 ON

5.2.3.1.3.2 OF

5.2.3.2 CURVES ON SURFACE

5.2.3.2.1 VISUALIZATION

5.2.3.2.1.1 RESOLUTION

5.2.3.2.1.2 LINETYPE

5.2.3.2.1.3 VIEWPOINT

5.2.3.2.2 CURVATURE MAP

5.2.3.2.2.1 RESOLUTION

5.2.3.2.2.2 SHOW

72

5.2.3.2.3 STATUS

5.2.3.2.3.1 ON

5.2.3.2.3.2 OFF

5.2.3.3 SURFACE

5.2.3.3.1 VISUALIZATION

5.2.3.3.1.1 RESOLUTION

With this routine the user sets the number of

segments to be used when generating the shaded image,

curvature plots and wire frame presentations. The

shaded image and curvature plots use the same seg-

mentation values. The user can select between 2 and

32 segments and the U and V segmentation can be set

separately. The more segments chosen the finer the

presentation of a surface. The cost of this improved

definition is a decrease in speed of presentation.

5.2.3.3.1.2 COLOR

Not currently interfaced.

5.2.3.3.1.3 VIEWPOINT

This routine calls the basic view setting program

discussed in Chapter 5.1. The object used is the

wire frame. Changing the view at this level changes

the view of both the curvature plots and the shaded

surface. The input values for this routine come from

the curvature settings.

73

Tills routine gives the user a method to easily set

the curvature and shaded image views to the same

values so that when all curvatures are shown to the

screen along with the wire frame and shaded image,

all plots will have the same view.

5.2.3.3.2 PLANE CONTOURS

5.2.3.3.2.1 SET # PLANES

5.2.3.3.2.2 SET START PLANE

5.2.3.3.2.3 SET PLANE DISTANCE

5.2.3.3.2.4 INTERSECTION ACCURACY

5.2.3.3.2.4.1 2-D

5.2.3.3.2.4.2 3-D

5.2.3.3.3 CYLINDER CONTOURS

5.2.3.3.3.1 SET # CYLINDERS

5.2.3.3.3.2 SET START CYLINDER

5.2.3.3.3.3 CYLINDER DISTANCE

5.2.3.3.3.4 INTERSECTION ACCURACY

5.2.3.3.3.4.1 2-D

5.2.3.3.3.4.2 3-D

5.2.3.3.4 SHADED IMAGE

5.2.3.3.4.1 READ IMAGE

Not currently interfaced.

5.2.3.3.4.2 CALCULATE IMAGE

This routine forces the calculation and presen-

tation of the shaded image. The speed with which

74

this routine operates depends upon the order of the

surface and the number of segments it has be separated

into.

Once the image is calculated, it is presented.

The object is saved for immediate viewing at a later

time. The image does not need to be recalculated as

long as the shaded image/curvature segments are not

reset and the position and intensity of the light

source are not changed.

5.2.3.3.4.3 COLOR

This allows the user to set the color to be used

for the wire frame and the shaded image. The routine

uses the popup menu capabilities of the editor. This

means that once the routine is selected, even though

the menus look like regular menus, no help screens

are available.

The user is presented with the following color

options

75

SHADING
COLOR
LIST

RED

GREEN

YELLOW

BLUE

MAGENTA

CYAN

WHITE

WOOD

If any but the last selection is chosen, the routine

is finished. Selecting the last entry will give the

following display

WOOD

COLORS

BLACK

RED

GREEN

YELLOW

BLUE

MAGENTA

CYAN

MULTIPLE

and the user selects the wood color to use. This

option is useful to show a representation of constant

intensity bands on the surface rather than a smooth

transition of intensity values over a single color

76

range. When the color is chosen, the color map is

called and the colors are changed immediately. This

means that if a surface is being displayed using the

GREEN color and the CYAN color is selected, the screen

display will change to CYAN as soon as the new color

is selected.

5.2.3.3.4.4 SET LIGHT SOURCE

This routine callc the standard view setting

routine (Chapter 5.1) . In this case rather than

changing a viewing location, the light source location

is changed. Since the light source always points

towards the origin, there is no need for translation

capabilities in this routine so they are omitted.

Also, the distance variable is changed to an intensity

variable. The source intensity is in relation to an

ambient intensity of 1.00.

Changing the light source placement or intensity

will force the shaded image to be recalculated.

5.2.3.3.4.5 SET VIEWPOINT

This routine calls the standard viewing routine

(Chapter 5.1) with the wire frame as the input object.

Changing the view at this level only changes the

shaded image viewpoint. Since the shading of the

surface depends only upon the surface normals and

light source placement, neither of which is changed

77

in this routine, the shaded image does not need to

be recalculated. However, because of the z buffering

of the editor (a type of hidden surface removal) the

surface presentation will change.

5.2.3.3.5 RAY TRACE

5.2.3.3.5.1 READ TRACE

5.2.3.3.5.2 CALCULATE TRACE

5.2,3.3.5.3 SET COLOR

5.2.3.3.6 CURVATURE

5.2.3.3.6.1 READ CURVATURE

Not currently interfaced.

5.2.3.3.6.2 CHANGE VIEW

This routine calls the standard viewing routine

discussed in Chapter 5.1. The surface wire frame is

used as the input object. Only the view of the

curvature plots is changed at this level of the editor.

5.2.3.3.6.3 ALL CURVATURES

This routine shows the curvature plots discussed

in Chapters 5.2.3.3.6.4 through 5.2.3.3.6.10 at one

time along with the wire frame surface and the shaded

image (Chapter 5.2.3.3.4). The graphics screen is

separated into nine sections as diagrammed below in

Table 5.1

78

GAUSSIAN MEAN ABSOLUTE

MAXIMUM WIRE NORMAL U

PRINCIPAL FRAME

MINIMUM SHADED IMAGE NORMAL V

PRINCIPAL

Table 5.1 - All Curvatures Screen Arrangement

5.2.3.3.6.4 GAUSSIAN

All curvature values are calculated as discussed

in [7]. If this is the first curvature routine called

the curvature array must be calculated first. All

of the different curvature plots are combinations of

the values calculated for this array. This means the

first curvature plot calculated will be much slower

than all of the others.

The curvature array contains the following values

for each point calculated on the surface

K1 - Maximum Principal Curvature

K2 - Minimum Principal Curvature

Normal U - Curvature in U direction

Normal V - Curvature in V direction

The GAUSSIAN curvature is defined as follows:

K = KI.K2

79

5.2.3.3.6.5 MEAN

This routine uses the curvature array calculated

as discussed in Chapter 5.2.3.3.6.4. The MEAN cur-

vature is defined as follows:

H = -(KI+K2)
2

5.2.3.3.6.6 ABSOLUTE

This routine uses the curvature array calculated

as discussed in Chapter 5.2.3.3.6.4. The ABSOLUTE

curvature is defined as follows:

IK11+IK2I

5.2.3.3.6.7 MAXIMUM PRINCIPAL

This routine uses the curvature array calculated

as discussed in Chapter 5.2.3.3.6.4. The MAXIMUM

PRINCIPAL curvature is the K1 value of the array.

5.2.3.3.6.8 MINIMUM PRINCIPAL

This routine uses the curvature array calculated

as discussed in Chapter 5.2.3.3.6.4. The MINIMUM

PRINCIPAL curvature is the K2 value of the array.

5.2.3.3.6.9 NORMAL U

This routine uses the curvature array calculated

as discussed in Chapter 5.2.3.3.6.4. The NORMAL U

curvature is the third entry of the four in the array.

80

5.2.3.3.6.10 NORMAL V

This routine uses the curvature array calculated

as discussed in Chapter 5.2.3.3.6.4. The NORMAL V

curvature is the fourth entry of the four in the

array.

5.2.3.3.7 ISOPHOTES

5.2.3.3.7.1 SET NUMBER

Not currently interfaced.

5.2.3.3.7.2 READ ISOPHOTE

Not currently interfaced.

5.2.3.3.7.3 CALCULATE ISOPROTES

This routine spawns an external job that calculates

a user selected number of constant intensity lines,

or isophotes. When the routine is selected, the user

is prompted

Enter the number of isophotes desired

and the user enters the number of isophote lines to

be drawn. When the number is selected and external

job is spawned to calculate the isophotes. When the

job is complete a message will be sent to the parent

system and the user will be prompted that the job is

complete.

5.2.3.3.7.4 SHOW ISOPHOTES

Not currently interfaced.

81

5.2.3.3.8 REFLECTION LINES

5.2.3.3.8.1 SET NUMBER

5.2.3.3.8.2 READ IN LINES

5.2.3.3.8.3 CALCULATE LINES

5.2.3.3.8.4 SHOW LINES

5.2.3.3.9 GEODESICS

5.2.3.3.9.1 READ IN

5.2.3.3.9.2 CALCULATE

5.2.3.3.9.3 SHOW

5.2.3.3.10 SURFACE ON/OFF

5.2.4 GEOMETRY PROCESSING

5.2.4.1 CURVES

5.2.4.1.1 APPROXIMATE NURBS

5.2.4.1.1.1 SET ORDER

5.2.4.1.1.2 SET ACCURACIES

5.2.4.1.1.3 RUN

5.2.4.1.2 FAIRING

5.2.4.1.2.1 KNOT

5.2.4.1.2.2 AUTOMATED

5.2.4.1.2.3 RUN

5.2.4.1.3 CONTROL POINT EDIT

5.2.4.1.4 CHOOSE EXACT DEGREE

5.2.4.1.5 SUBDIVIDE

5.2.4.1.6 SPLIT CURVE

82

5.2.4.2 CURVE ON SURFACE

5.2.4.2.1 CONVERT COS TO NURBS

5.2.4.2.1.1 SET ACCURACIES

5.2.4.2.1.1.1 POSITION

5.2.4.2.1.1.2 CURVATURE

5.2.4.2.1.1.3 SLOPE

5.2.4.2.1.2 RUN CONVERT

5.2.4.2.2 FAIRING --> calls submenu (see Chapter

5.4)

5.2.4.2.3 EDITING

5.2.4.2.4 SUBDIVIDE IN UV

5.2.4.2.5 SPLIT IN UV

5.2.4.3 SURFACE

5.2.4.3.1 APPROXIMATE NURBS

5.2.4.3.1.1 SET ORDER

5.2.4.3.1.2 SET ACCURACIES

5.2.4.3.1.2.1 POSITION

5.2.4.3.1.2.2 CURVATURE

5.2.4.3.1.2.3 SLOPE

5.2.4.3.1.3 RUN

5.2.4.3.2 FAIRING

5.2.4.3.2.1 KNOT

5.2.4.3.2.2 AUTOMATED

5.2.4.3.2.3 RUN FAIRING

83

5.2.4.3.3 EDITING

5.2.4.3.4 DEGREE ELEVATION

5.2.4.3.5 SUBDIVIDE

5.2.4.3.6 SPLIT

5.2.4.4 INTERSECTIONS

5.2.4.4.1 LISTS 2-D

5.2.4.4.2 LISTS 3-D

5.2.5 QUIT

5.3 UV MENU

5.3.1 INPUT U-V POINTS

This allows the user to recall U-V points previously saved.

The user is given the following prompt

Enter complete path and name of file to read from
(or ! to abort) :

The entered file name is checked for validity. if valid,

the data is read in, the points are plotted along with

connecting lines to show the progression of the data points,

and the user is asked to confirm that the data file shown is

the one that is wanted. The user ::an acce t the data and

continue or reject the data and enter another file .ame... This

.ooo continues until the user either enters a file name ana

4

5.3.2 OUTPUT U-V POINTS

This allows entered U-V points to be saved for later use.

When the routine is selected, the user is prompted for the

output file name. 1mnis file name is checked against the

system. If the file does not already exist, the user is

given the following prompt:

Entered file does not exist : create it? (Y or N)

An 'n' response asks for a file name again, a 'y' response

creates the file. This check is performed because the most

frequent use of this routine is to store updated points to

an existing file not to create new files. The only data

fields stored with this routine are the minimum and maximum

U-V values of the surface these points were generated for,

the number of points being saved and the actual U and V values

of the points.

5.3.3 SHOW U-V POINTS

This shows the data points connected by lines in the

currer window setting. This allows the user to get a quick

look at the point set up before selecting the nex:t editing

operation. Also shown is the minimum and max imum U and V

values of the current window.

85

5.3.4 ADD U-V POINTS

This allows U-V points to be added at the end of the

existing data base. When chosen, the current window is given

with the existing points drawn connected by permanent lines.

Since the user is allowed to set the window used for

displaying the data points, it is possible that the current

window will have been set such that the last point entered

in the data base is not shown. IF THE CURRENT WINDOW DOES

NOT CONTAIN THE LAST POINT IN THE DATA FILE, the window layers

are stepped through until a window is found that does hold

the last point.

The cursor is drawn in the selected window and a temporary

line is drawn from the cursor to the last point in the data

base. Pressing the left mouse button enters a new point at

the cursor position. The cursor position coordinates are

printed at the bottom of the screen (U on the left, V on the

right) to assist the user in point placement.

When a point is entered, a permanent line is drawn from

it to the previously entered point. This gives the user an

updated presentation of the order of the data poirts. When

adding is complete the user quits the routine by selecting

either the end periodic or end non-periodic option by using

the apprcoriate mouse button.

86

Although there is essentially no limit to the number of

points that can be entered into the system overall (except

for the finite size of the computer memory), only 50 points

can be added witn a single call to this routine. When 45

points have been added, the user is given the following

prompt:

ONLY {50-n} ENTRIES LEFT

When 50 points have been entered, the user is given the

prompt:

DATA ARRAY IS FULL - USE MOUSE BUTTON
TO CHOOSE TYPE OF CURVE TO END.

and is forced to select one of the ending options.

If the INSERT U-V POINTS routine is called and either

there are no points in the system or the last point is chosen

as the insertion point, the editor transfers to this routine.

5.3.5 INSERT U-V POINTS

This allows points to be entered into the interior of a

set of data points. When the routine is first called the

user is presented the current window with points connected

by permanent lines and is prompted to select the point AFTER

WHICH the insertion is to be done. When the insertion point

is selected, the line joining the point to the next point is

made temporary and the cursor is placed between the two

points.

87

The left mouse button is used to insert points. As the

points are inserted the line from the inserted point to the

previous point will be made permanent. This is done so that

the user is constantly aware of the progression of points in

the data base. When inserting is complete the user ends the

routine by selecting the middle or right mouse button. As

with the adding of points routine (Chapter 5.3.4), only 50

points can be inserted with a single call to the routine.

If it is desired to insert points before the first point

in the system the following procedure must be followed. Use

the MOVE U-V POINTS routine (Chapter 5.3.7) and select the

first point in the system. Move this point to the position

of the desired first point. Then choose the INSERT U-V POINTS

routine and select the first point as the insertion point.

Enter new points as desired, remembering to insert a new

point at the old first point location if it is still needed.

If this routine is called and either there are no points

in the system or the last point in the system is chosen as

the insertion point, the editor transfers to the ADD U-V

POINTS routine, Chapter 5.3.4.

5.3.6 DELETE U-V POINTS

This allows the user to remove previously entered points

from the data base. When the routine is called the current

window is shown with the points connected with permanent

lines. The user is prompted to select the point to be deleted.

88

When the point has been selected (the selection is not made

until the mouse button has been released), a box is drawn

around the point and the user is prompted to be sure the

correct point has been selected. If the user answers that

the correct point was selected, it is deleted. When the

point is deleted the points on either side of it are joined

with a permanent line.

Any number of points can be deleted with one call to this

routine. If all points are deleted the user is returned to

the main U-V menu upon the deletion of the last point. When

the user has deleted all the desired points, the square

labeled SELECT TO EXIT must be selected to quit the routine.

To sel ct this square, move the cursor point to the interior

of the square and press and release the left mouse button.

Depending upon the network set up being used and the load

on the network, the user may experience a lag between when

the mouse button is depressed and released to select a point

and when the point is actually selected. The time lag is of

no consequence as long as the mouse is not moved before the

point is picked.

5.3.7 MOVE U-V POINTS

This allows the user to move previously entered data

points. The user is prompted to select a point to be moved.

The point is selected with the left mouse button AND THE

BUTTON MUST BE HELD DOWN WHILE THE MOUSE IS MOVED to move

89

the point. Once the point has been moved to the desired

point, the left mouse button is released and the new placement

is accepted.

The initial screen presentation has the current window

with all points plotted and permanent lines between them.

When a point has been selected for moving it is connected to

its neighbors with temporary lines. As the point is moved

these temporary lines are maintained and the point position

is printed at the bottom of the screen. This helps the user

correctly place the point.

When all points have been moved the SELECT TO EXIT square

is used to quit the routine as discussed in the DELETE U-V

POINTS write up, Chapter 5.3.6.

5.3.8 SELECT WINDOW

This allows the user to zoom ii on a specific area of the

parameter space. This is done by selecting a smaller viewing

box around the area of interest. When the routine is selected,

the user is prompted to place the cursor at one corner of

the desired viewing box. Once the cursor has been positioned,

the left mouse button is depressed and KEPT DEPRESSED while

the mouse is used to drag the cursor to the opposite corner

of the desired viewing box. As the mouse is moved, the new

viewing bo:: is drawn to give the user feedback on the selected

90

area. Once the second corner placement has been set correctly,

the left mouse button is released and the viewing area has

been changed.

There are nine levels available in the window queue. To

go back to the previous level, the middle mouse button is

used. To go all the way back to the first window from any

level, the right mouse button is used.

If when called there are no previous window layers set

up (this is the first time the routine has been called for

the given data), the user is allowed to abort the routine by

using the middle mouse button.

Another way for the user to leave the routine without

making a new window is to release the left mouse button with

the same U or V value used when the button was pressed (the

screen display will appear as a horizontal or vertical '2ine'

rather than a 'box').

The only other time that the user is allowed to abort the

routine with no action is if the window queue is full. If

this is the case, the left mouse button can be used to abort

rather than to select a new window.

5.3.9 FIT POINTS

This allows the user to have a B-spline curve fit through

the entered points. This curve will. interpolate all of the

entered points. The type of curve used to fit these points

depends upon the type of curve selected when the data points

9K

were entered (see Chapter 5.3.4 or 5.3.5), i.e. periodic

(closed) or non-periodic (open). The curve is drawn to the

screen along with the points after the fit has been performed.

The curve is broken into the number of steps set in the SET

STEPS routine, Chapter 5.3.11. Depending upon the step size

and curvature values, the drawn curve may appear not to pass

through all of the entered points.

The editor uses a curve of order four (degree three) to

interpolate the actual points. With this fourth order curve

there must be at least four data points in the system to use

this routine. If fewer than four points exist in the data

base, the user is given the following message:

Must have at least 4 data points.
Press <RETURN> to continue.

The library routine used to interpolate the points is capable

of h?-dling higher order curves. However, if an order higher

than four is used the curve will be a least sauares fit of

the entered points, not an interpolation. Because it is

desired to ha-'e the curve actually pass through all of the

entered points, the fourth order curve was selected for the

editor.

5.3.10 MAKE SYSTEM CURVE

Before this routine can be used the FIT POINTS routine

(Chapter 5.3.9) must have been run. If this has not been

done, the user is given the following message:

92

Do not have a current curve to keep.

Press <RETURN> to continue.

Up until this routine is called, the points entered in

the system and the curve fit (if done) have used a dummy data

structure. Using this routine, the user can bring this dummy

data into the system so that other editor routines can operate

with it. Whea the routine is selected, the user is prompted

Enter Curve Description :

and a small description of the file should be entered so

that it can be easily distinguished from other files in

the system.

5.3.11 SET STEPS

This routine is used to set the number of steps used to

draw a curve. Any time the curve is drawn this number of

steps is used. Each curve has its own number of steps. The

default number of steps is 50 and the number chosen must be

at least 25. There is no upper limit to the number of steps

chosen. However, the larger the number of steps, the longer

many routines that operate on curves will take to run. The

following prompt is given

Current step setting is : xxx
Enter steps desired (>= 25)

93

5.3.12 START AGAIN

This routine is used to initialize the dummy curve so that

new poirts can be entered into the system. This is not needed

if points are to be entered into the system by recalling data

points from a file

5.3.13 QUIT

This routine cleans up the dummy data structure. If the

data structure has not been saved, the user is prompted:

Current data not saved: Save it? (USE MOUSEBUTTONS)

Answering with the left mouse button (YES - SAVE IT) transfers

the user to the OUTPUT U-V POINTS routine, Chapter 5.3.2.

Answering with the middle mouse button (NO - DON'T SAVE)

completes the clean up and returns the user to the COS

Generation Menu.

5.4 COSFAIR MENU

5.4.1 FAIR CHILD - SINGLE

This routine prompts for the starting and ending knot for

the fairing operation. The user is prompted

Enter starting knot (>=xx , <=yy)

where xx and yy are identification numbers of the lower and

upper knots available for fairing and will vary depending on

the number of knots and the type of curve (periodic or

non-periodic) . Once the starting knot has been entered, the

user is prompted

Enter ending knot (>=xx , <=yy)

94

The starting knot (ks) is compared to the ending knot (ke)

to determine the direction of fairing since even on a closed

curve the user can not fair across the "ends". This means

that if the starting knot for fairing is 10 and the ending

knot is 3 (assuming 12 knots), the order of fairing will be

{10,9,8,7,6,5,4,3} NOT {10,11,0,1,2,3}.

The fairing operation is performed as discussed in [7].

When completed, the starting and ending knots are listed

along with the knot where the largest curvature discontinuity

occurs. The initial, previous and current global curvature

discontinuities are also printed to judge the progression of

the fairing. When the fairing iz complete a new child object

is drawn in the Dottom window of the fairing screen.

5.4.2 FAIR CHILD - AUTO

This routine performs the same function as the FAIR CHILD

- SINGLE routine (Chapter 5.4.1). However, the user is not

asked for a starting and ending knot. Instead, the previously

selected ending knot becomes the new starting knot and the

previously selected starting knot becomes the new ending

knot. If this is the first time a fairing operation has been

selected, the starting and ending knots default to the minimum

and maximum values possible respectively. The same output

is given to the user as in the SINGLE option.

95

5.4.3 SET SCALE

When the curvature plots are placed on the screen the

curvature spines may be too large to be kept on the screen.

If this happens, the user can set the scale with this routine.

The user is shown the current scale and prompted for the new

scale to be used. The initial scale is 1.0.

5.4.4 SET STEPS

See Chapter 5.3.11 for a discussion of this routine.

5.4.5 REDRAW CURVES

There are occasions when the parent curve will be erased

from the screen. To get this curve and the child redrawn to

the screen select this routine.

5.4.6 CHANGE VIEW, USE PARENT

This routine uses the program discussed in Chapter 5.1

with the parent curve as the input object. Although only

the parent curve i3 the input object for this view change,

the view of both the parent and the child curves will be

changed when the routine is completed.

5.4.7 CHANGE VIEW, USE CHILD

This routine uses the program discussed in Chapter 5.1

with the child curve as the input object. Although only the

child curve is the input object for this view change, the

view of both the child and the parent cur%-es will be changed

when the routine is completed.

96

5.4.8 KEEP CHILD

This allows the user to save the child as a system curve

and then continue with fairing. The following prompt is

given

Choices : Replace Parent with Child (R)
Add Child To System (A)
Abort (!)

Enter choice (R , A or !)

Choosing the R will replace the parent data with the child

data. Selecting A will make a new system curve with the

description of copy of (parent description). If it is decided

not to save the child, choosing the abort option is the proper

action.

5.4.9 SHOW WIRE FRAME/CURVE

This routine takes the child curve and draws it onto the

wire frame of the current system surface. There must be a

system surface already set up prior to calling this routine.

If there is no surface, the user receives the following

message

There is no surface in the system!
Press <RETURN> to continue.

5.4.10 SHOW SURFACE/CURVE

Not currently interfaced.

97

5.4.11 SET VIEW OF COS

This routine uses the program discussed in Chapter 5.1

with the wire frame of the current surface as the input

onject.

5.4.12 QUIT FAIRING

If the child has not been saved (see Chapter 5.4.8) prior

to choosing this routine, the user is prompted

Do you want to save child? (Y or N)

If the child is to be saved the user is transferred to the

KEEP CHILD routine, Chapter 5.4.8. Once saved, the quit

routine continues with no other user interfacing.

5.5 WORLD MENU

5.5.1 SET BACKGROUND COLOR

This allows the user to set the graphics background color

to either white or black. Black is better for taking pho-

tographs of the screen and white is better for doing screen

dumps to a printer. If the user is only interested in on

screen graphs, it is a matter of individual preference in

deciding which color to use. The mouse buttons are used to

select the color, left for black and right for white. The

midaie button quits the routine. When a specific color is

chosen, an axis is drawn to the screen with the chosen

background as a demonstration.

98

5.5.2 SELECT CURRENT SURFACE

This routine allows the user to select the current surface

from a list of system surfaces. The surface and curve routines

are identical in their user interface so only the surface

routine will be described in detail.

If the routine is called with no surfaces in the system,

the user is given the message

There are no surfaces in system.
Press <RETURN> to continue.

If there is only one surface in the system, the user is given

the message

Only one surface in system -
{ description)

Press <RETURN> to continue.

If more than one surface has been entered into the system,

the user is given the following display and prompt

0 (surface 0 file name) (surface 0 description)

-- > 1 {surface 1 file name) (surface 1 description)

n (surface n file name) (surface n description)

PRESS LEFT MOUSE ON FILE NUMBER DESIRED (current -->)

and the cursor must be placed on the file number desired and

the left mouse button used to select the surface. The current

'-' ' ' ', " i I I II I I I I I I I I 99

surface is shown with a --> to the left of the file number.

If no change is desired, the middle mouse button can be used

to quit.

Once a surface has been selected, the user is prompted

YOU HAVE SELECTED xx
IS THIS CORRECT ?

and the mouse buttons are used to answer the question (left

mouse button YES, middle mouse button NO) . If NO is selected,

the user is again prompted to select a surface. If YES is

selected, the surface is selected and the routine ends.

5.5.3 SELECT CURRENT CURVE

The operation of this routine is identical to the SELECT

CURRENT SURFACE routine except that it works on curves rather

than surfaces. See Chapter 5.5.2 for an explanation of the

surface routine.

5.5.4 STATUS ROUTINES

5.5.4.1 LIST JOBS

5.5.4.2 SUSPEND JOBS

5.5.4.3 ACTIVATE JOBS

5.5.4.4 KILL JOBS

5.5.5 SET PERSPECTIVE

This allows the user to set the field of view, near plane

and far plane values used for perspective views of three

dimensional figures. The field of view (fov) is an integer

100

in tens of degrees (entering 40 means four degrees) and the

near and far planes are floating point values in screen units.

The values should be entered in the following format (where

the symbol A denotes a blank space and an x is a decimal

digit)

xxxAxxxx.xAxxxx.x

where the order is fov, near, far.

For good surface presentation, the near and far planes

should be as close to the -xtents of the surface as possible.

Good starting values for surfaces for the above three numbers

are 40, 0.0 and 2000.0. These are the default values.

Sometimes better results can be gotten by moving the near

plane to the positive side. If at any time a surface or

curve has been sent to the screen but nothing is visible,

there is a good chance the perspective values have been set

incorrectly. Returning to the default values will usually

solve the problem.

5.5.6 TOGGLE BELL

This allows the user to turn the bell prompt used in many

of the prompts off or on. No further prompt is given, the

bell is just toggled.

101

102

CHAPTER 6

NEW MODULES - EDITOR EXPANSION

When the editor is to be expanded, the programmer must decide

which of the categories the expansion belongs in. It may be a

routine that is already called from another place in the editor

and is to be used again for the same or a related purpose.

Similar to this would be a routine that does not already exist

in the editor but can run directly from the editor with no

arguments. The most involved addition is a set of ro-"tines

that require an extensive and identical initial set up. This

type of addition is best handled with its own menu structure.

Finally, a routine that is to be run as an external job will

require special treatment. Each of these expansions is discussed

in the following sections. There are also certain common actions

that must be taken for all of the types of additions and these

are explained first.

6.1 Help File Additions

The most important step in the whole interfacing process

is the help file maintenance. The only time that a change to

the help file is not required is when calling an existing routine

with no changes. This is because, as discussed in Chapter 3,

modules are really called by their help file identifier and if

an e::isting v-niitine is being called, it already has an identifier.

103

All routines must be interfaced through the help file. One

important thing to remember is that regardless of where in the

actual editor the new routine is to be callec from, additions

to the help file are always made at the end of the file. This

is because adding a new routine will require a new identifier

and the identifiers must be in sequential order in the help

file. The following is an example help file entry -

Vxxx

adding_newroutine

7

New Routine Title

This routine allows the new function to be

performed by the editor. When the help file

has had this addition made it will be able to

interface the routine.

- The Vxxx signifies that the routine being added,

adding new.routine, returns type VOID. The xxx is the next

number available for VOID routines. It is one higher than the

last V entry in the help file (helpfile.m).

- The routine name must appear exactly as it appears in the

program and it does not include any parentheses.

104

- The number 6 signifies the number of help message lines

that are part of this entry. While the blank lines are not

required, they help format the screen presentation and are

suggested. If included, they must be counted.

- The trailing exclamation point signifies that the entry

is complete.

This has shown an entry for only one new routine. There

must be a help file entry for each menu entry that will be added

to the editor. For example, if a menu entry EDIT was to be

added to some menu and it was going to call a menu with four

subroutines ADD, DELETE, MOVE and CHANGE, then five entries

would have to be made to the help file, probably an N entry and

four V entries. As discussed in Chapter 3, the N entry has no

routine name included and is only used for help messages and

heading a submenu.

It is suggested that complete help entries be generated

initially rather than adding skeleton entries to be filled in

later. Formalizing the text that is to be given to a user on

a help screen acts as a good flow chart for programming.

IF ANY CHANGES ARE MADE TO THE FILE helpfile.m, THE PROGRAM

makemsg MUST BE RERUN TO HAVE THESE CHANGES APPLIED TO THE

APPLICABLE FILES.

6.2 Menu File Additions

Next, the programmer must decide on which menu, and where

on that menu, the new routine will be located. This placement

105

can easily be changed if it turns out that the initial set up

is not the best for the user. As mentioned earlier, there are

four menu files currently being used. They are the main menu,

the two-dimensional parameter space menu, the curve on a surface

fairing menu and the world item selection menu. If it is not

suitable to add the new routine to any of these menus, a new

menu can be created as discussed in the examples below.

6.2.1 Menu Entry Formats

Figure 6.1 shows the two formats available for new menu

entries. If a compound entry is added, each of the m entries

can be either a simple or compound entry, and so on. The

new entry can then be put into a menu structure either as an

addition or a replacement.

Figure 6.1 - New Menu Entry Format

106

6.2.2 Menu Addition Examples

Going back to the previous e::ample with the EDIT menu

entry and four "sub" entries, they could be added to the menu

structure shown in the left column of Table 6.1 below to make

the new structure in the center column. Note that the number

of entries directly above POINTS is now a 5. Except for the

simple word processing function of inserting the new menu

entries, changing the 4 to a 5 is the only change needed to

the menu data file to add these new functions to the menu.

6.2.3 Menu Replacement Examples

Another frequent operation will be to replace an

existing entry with another, either a simple or complex entry.

If the desire was to replace the GRAPH DATA simple entry

above with the new compound entry, the third column would be

the result. One of the important loints here is that the

number of entries in the POINTS menu is still 4 so the lead

number has not changed. This example also shows how an N

entry can be nested under another N entry.

These are the only operations needed to add functions

to the menu structure. Removal of functions is the exact

opposite and will not be addressed further.

107

ADD NEW ENTRY REPLACE GRAPH

EXISTING MENU TO EXISTING MENU DATA
WITH NEW ENTRY

5 4

POINTS POINTS

Point Capabili- Point Capabili-
ties ties
N27 N2 7

1
INPUT DATA INPUT DATA

4 VS1 V51
POINTS 1 1
Point Capabili- OUTPUT DATA OUTPUT DATA

ties V53 V53
N27 1 1

1 EDIT DATA EDIT DATA
INPUT DATA N62 N62
V51 1 1
1 ADD ADD

OUTPUT DATA VIO0 VIo
V53 1 1
1 DELETE DELETE
GRAPH DATA Viol Viol
V54 1 1
1 MOVE MOVE
QUIT V102 V102
V55 1 1

CHANGE CHANGE
V103 V103

1 1
GRAPH DATA QUIT
V54 V55
1
QUIT
V55

Table 6.1 - Menu Re1la:ement E::amzes

108

6.3 Interface Examples

The following examples will take tne existing menu data

file, main menu.dat, as the base file. This file is included

in Appendix 10.1 for reference. THE CHANGES MADE IN THIS SECTION

ARE INDICATED BY BULLETS ON THE APPENDIX AS TO WHERE THEY WOULD

GO. The examples below will be cumulative. Any routines added

will be added "in function" only - the routine will not actually

be written but the function will be listed. Changes mentioned

to the file Makefile are shown in Appendix 10.3 by bullets also.

6.3.1 Add Call To Existing Routine

It is possible a user could want to set the wire frame

and surface resolutions from inside the

GEOMETRY INTERROGATION r, SURFACES , SHADED IMAGE menu. To

add this function, do the following:

1. Add the following lines at position T in Appendix

10.1:

1
SET SEGMENTATION
V57

2. Change the number pointed to by B to a 6.

This completes the adding of a repetitive call of an existing

routine.

6.3.2 Add New Simple Entry

Tne current :clor of the curve or a surface is always

red. If, with future system development, it is possible to

10)

show more than one curve on a surface at one time, it will

be necessary to be able to change the color of these curves.

To add this capability, do the following:

1. Add the following lines at position C in Appendi::

10.1:

1

SET COS COLOR
V164

2. Change the number pointed to by D to 4.

3. Add the following to the end of the file helpfile.m

(where <-b-> indicates a blank line):

V164
change cos color
5
<-b ->7

Change Curve On Surface Color
This routine allows the user to set the curve

on surface color to any of the primary colors.
<-b->

4. Generate the file changecoscolor.c that actually

changes this color for a specific curve.

5. Add change._coscolor.o to Appendix 10.3, the

makefile for the editor, as indicated by a.

NOTE: Lnytime directions are given to change

the makefile entries it has been assumed that the

added rouitine has been put in a separate file. :f

110

instead the new routine has been added to an existing

file, the changing of the makefile will not be

necessary.

6. Perform system call make -k to generate new

executable code.

6.3.3 Add New Compound Entry

This is essentially the same as adding many simple

entries except for the addition of an N entry. The editor

is designed to have many curves and surfaces in the system

at one time but only one curve or surface is "active" at any

given time and only the active curve or surface can be shown

at one time. It will be necessary to be able to show more

than one curve or surface when the editor has the capability

to do blending operations. The functions to perform the

multiple presentation could be interfaced as follows by adding

a new compound entry.

1. Add the following lines to Appendix 10.1 at the

point :

iii

8
N53
MULTIPLE ENTITIES
Multiple Entities Routines

1
PICK SURFACES
V165
1
PICK CURVES
V166
1
REMOVE SURFACES
V167
1
REMOVE CURVES
V168
1
SET VIEW
V169
1
SHOW SURFACES
V170
1
SHOW CURVES
V171
1
SHOW CURVES/SURACES
V172

2. Change the 5 pointed to by in Appendix 10.1 to

6.

3. Add the following lines to the end of helpfile.m:

N53
mo

mO help lines

V165
pick_surfaceto show
ml

ml help lines_7

V166
pick_curves to show
m2

m2 help lines

V167

112

remove surfaces to show
m3

m3 help lines

V168
remove curves to show
m4

m4 help lines

V169
set_compound view
m5

m5 help lines

V170
show compoundsurfaces
m6

m6 help lines

V171
showcompound_curves
m7

m7 help lines

V172
show compoundcurvessurfaces
m8

m8 help lines

4. Add the following program calls to Appendix 10.3

at the point indicated by H.

pick surfaces to show.o
pick curves to show.o
remove surfaces to show.o
remove curves to show.o
setcompoundview.o
show_ccmpound_surfaces.o
showcompound_curves.o
show compoundcurves surfaces.o

5. Generate the programs and code necessary to perform

the options listed. Each routine must be a different

file to go with the makefile entries listed above.

113

Although this example has been explained in detail, it

is only a long version of the previous example. The only

new item is the N entry at the top of the added items and at

the top of the help file insertion.

6.3.4 Consolidation Of Routines

There is currently a limit of fourteen entries for any

menu of the editor. This is due to the screen layout, not

to any program limitation. As more functions are needed for

a specific area of the editor this limit may be reached or

exceeded. One remedy to this problem is to group some of

the menu items into a submenu with a new N entry. This keeps

all of the functions in essentially the same place in the

editor and also frees up some menu entries. As an example,

the curvature maps will be made into one submenu under the

GEOMETRY INTERROGATION , SURFACES , CURVATURE 1 menu.

1. Add the following lines to Appendix 10.1 where the

C- is:

8
DRAW CURVATURES
Curvature Plots
N54

2. Change the 10 pointed to by the - in Appendix 10.1

to a 3.

3. Although not required, it is suggested that the

lines indicated by T in Appendi:: 10.1 be further

indented. While this is not needed for correct

114

program operation, it makes the menu file much easier

to read and understand if more changes are required

in the future.

4. Add the following lines to the end of helpfile.m:

N54
9
<-b->

The routines under this entry allow various
curvature maps to be shown either
individually or all at one time. The
curvature types available are Gaussian,
Mean, Absolute, Maximum Principal,
Minimum Principal, Normal U and Normal
V.
b

6.3.5 Multiple Related Routines Requiring Identi-

cal Setup

The type of addition to be discussed here was used to

interface the fairing of the curves on a surface section and

the entering of points in parameter space. An important

difference for this type of interface when compared to the

regular type of routine is that, when routines are added

using this method, THERE MUST BE A SPECIFIC QUIT ROUTINE

ASSIGNED AS PART OF THE MENU. Using the right mouse button

will not quit from the menu.

The new routine to be added is called run new entry.

The C program code needed for this program to interface

115

correctly with the editor is shown below. The code needed

for the snecific application is called required common setup

in the listing.

#include <stdic.h>
#include <math.h>
#include <string.h>
#include <malloc.h>

#include <sys/types.h>
#include <sys,/ipc.h>
#include <sys/msg.h>
#include <sys/errno.h>

#include "struct.h"
#include "defines.h"
#include "external variables.h"

application include files

#define NEWHELPFILE MAINHELPFILE

application define lines

extern Menu Entry *linked menuo;
extern void message_handling();
extern MenuEntry *menu allocate();
extern void menu deallocate();

application extern files
application extern variables

void run new entry()

Menu_Entry *wherefrom,*pnew_entry,*pptr,*pnptr;
int moreentries,number ofsubs,is message,type=O;
FILE *fptr
Message msg;

other variable declaration

wherefrom = pnull; /* an external variable */
moreentries = 0;

fptr = fopen("new menu.dat","r");
pnew_entry =

menu allocate(moreentries,wherefrom, fptr,0);
fclose (fptr);

116

pptr = pnew-entry;

-required common setup

ccontinue = 1; /* an e.::ternal variable *
var-quit routine = ;/* an external variable *

while (ccontinue !var_quit-routine

pnptr =linked menu (pptr,MENULETTERS,MENUBORDER,
MENUBACKGROUND, MENUHIGELIGHT,
MENUMASK,port[MENUAREA] [0],
port [MENUAREA] [3] ,1,
NEWHELPFILE);

is-message = msgrcv(status-msgqid,&msg,
sizeof(msg.mtext) ,type,
MSG -NOERROR IIPC NOWAIT);

if (is__message > 0)
message_handling (msg);

if (pnptr == pnew_entry

ccontinue = 0;
pptr =pnptr;

else if (pnptr == pptr

pptr =pnptr->head;

if (pptr != pworld)in-world =0;

else

number -of -subs = pnptr->num subs;
if (number of subs > 1
pptr = pnptr;.

else
subs (pnptr->menu title);

/ * end of while *

var-quit-routine = 0;

menu deallocate(pnew-entry);

free((char *)pnew_entry);

/* end routine run new-entry() *

In order to process messages that may be sent from

externally running jobs while the program is inside this new

menu setup, the portion of the code including

ismessage = msgrcv(... and if (is-message > 0) ... is needed

[8]. The check if (pptr != pworld) ... is needed to ensure

that if the user is not in the world menu structure it will

be possible to get into it later. The flag inworld is used

for this purpose. If it is a 1, the user is in the world

menu structure and cannot call it again from inside itself.

The file used for storing the new menu data structure

has been called new menu.dat. This data file must be prepared

and will have the same format at that listed in Appendix 10.2

for the uvmenu.dat file. One thing to remember here is that

the numbers used in the new menu data file must be referenced

in helpfile.m. The editor is not currently set up to use

more than one help file. However, if future development

should allow this option, the defined variable NEWHELPFILE

is used and set to be equal to the MAIN HELP FILE so that it

can be set to another file name.

Once this file has been generated, the programmer must

decide where in the editor the routines should be interfaced.

It will be assumed that the new routines have something to

do with geometry generation for purposes of demonstration.

The following steps must now be taken to fully integrate the

above routine into the editor:

118

1. Insert the following lines into Appendix 10.1 where

the - is located:

1
NEW ROUTINE ADDED
V173

Note that because these routines will have their

own menu structure, they only need one entry in the

main menu structure

2. Change the 4 pointed to by T in Appendix 10.1 to

a 5.

3. Generate the new menu.dat file with the desired menu

structure. The specific layout of this file is up

to the programmer but the general format must be

the same as that used for the main menu.dat or

uv menu.dat files shown in Appendices 10.1 and 10.2

for examples. One important thing to remember: THE

NEW MENU STRUCTURE MUST HAVE A SPECIFIC QUIT ROUTINE

CALL AVAILABLE AND THIS ROUTINE MUST AS A MINIMUM

SET THE SYSTEM VARIABLES ccontinue TO 0 AND

var_quitroutine TO 1. Without this, the program

will be unable to exit the new menu structure. It

is expected that along with these requirements, the

quit routine will also have to perform a general

cleanup after the common routines.

4. Generate the routines called by the new menu.dat

menu structure.

119

5. Add references to all of the added routines to the

end of helpfile.m as discussed in previous examples.

There are advantages and disadvantages to setting up

a new menu structure such as that explained here. The major

advantage is that the routines can be developed external to

the editor and, when running correctly on their own, interfaced

to the editor through a single routine call. As shown, very

few changes need to be made to the main portion of the editor

to interface a very extensive module if this type of addition

is performed.

Another advantage is the complete menu structure does

not have to be in memory at any given time. However, this

can also be a disadvantage since every time the routine with

the separate menu structure is called the menu structure will

have to be generated. Although not of major concern, large

menu structures can take a noticeable amount of time to be

made and any unnecessary slow down in an interactive program

should be eliminated if possible.

6.3.6 Add Routine To Run External Job

There is currently only one routine interfaced to the

editor that allows for running an external program. This

routine is isophotes and it calls the program hiso. From

the beginning it was known that many portions of the final

editor would need this capability, for e::ample when inter-

facing contouring or other general intersection modules. The

120

decision was made to develop the structure needed to run

external jobs even though initial editor development would

not need the function except to show its possibilities.

The following C code is necessary to interface a program

that is to be used to run an external job [8][9].

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <malloc.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <sys/errno.h>

#include "struct.h"
#include "defines.h"
#include "external variables.h"

application include files

application define lines

extern void sta box);
extern char *strdup);
extern void exit);
extern void sleep);

application extern files
application extern variables

void newexternalprogram()
{
int ii,j,jobnumber,messagetype;
FILE *ifptr;
char *file name,*argv[2],inline;

other variable declaration

j = (-1);

while (j == -1

for (ii=O ; ii<20 ; ii++
{
if (status[ii].colors == 64

121

ii -20;

if(j =()

printf ("'"n ",r Waiting for opei. ex-ternal p-ouch");

job-number = j

promPt for needed info

ifptr -fopen("indummy.appl', "w");

print needed info to f-2'.e

fprintf(ifptr,"%d ",job-number);

message type = 10;
fprintf(ifptr, "%c ",ressage_type);

sprintf(inline,"STAT ");
fprintf (ifptr, "%s", inline);

sprintf (inline, "outdurnmy.appl");

fprintf (ifptr, "%s", inline);

folose (ifptr);

status (j] .colors = GREEN;
sta-bo-();

if (fork() / * starting chi-ld process *,

sleep (1),

else

file-name = stdp" uLpt fpormt u
argv[O] = strd-up "' program name to run only")
argv[13 = (char *)NULL;

e::ecv(file-name,argv);

/* end routine new-ex:ters al-program()*

122

The file named indummy.appl is a dummy file set up to be read

in by the application program for the information needed to

run correctly. The file named outdummy.appl is the output

file from the application that the editor will need to use

to bring the information into the editor.

The programmer must also generate the application

program to use the data stored above. This application

program must include the following lines of code in addition

to the code needed to perform the application.

/* applicationprogram */

main ()
{
int job number,msgqid,length,i;
char inline[LEN];
FILE *ifptr;
long message_type;
key_t key;
Message msg;

ifptr = fopen("indummy.appl","r");

read needed info

fscanf(ifptr,"%d",&job number);

fscanf(ifptr,"%d",&message_type);

fscanf(ifptr,"%s",inline) ;
messageid = strdup(inline);

fscanf(ifptr,"%s",inline);
output-file = strdup(inline);

fclose (ifptr);

application specific routines

123

key = getkev(message id);

msgqid = msgget(key,O);

msg.mtype = messagetype;

sprintf(inline," { message to user } ");
sprintf(msg.mtext,"%2dCOMPLETE%s", job number,inline);

length = strlen(msg.mtext);

i msgsnd(msgqid,&msg,length,O);

if (i = -1) printf('\n \r Error in sending message.");

/* end of application */

The relative order of this code is important. The message

function should be done last to ensure the application program

has been completed prior to sending the message. Note that

only the code needed to properly make and send the message

has been shown.

The only -?raining operation is o add the necessary

lines to the menu file and to helpfile.m. Since this is a

single entry addition that was not previously used, these

additions will be the same as described in the Chapter 6.3.2,

Add New Simple Entry and will not be discussed further here.

124

125

126

CHAPTER 7

DEMONSTRATION OF EDITOR

In this chapter an example of how the editor can be used as

a design tool will be given. The screen displays given to the

user as the design progresses will also be shown. A detailed

description of any specific routine discussed in this chapter

can be found in the applicable sub section of Chapter 5, EDITOR

PROGRAMS AND LAYOUT.

7.1 Screen Layout

Wigure 7.1 shows the different ways in which the screen is

sectioned for the major applications of the editor. The mouse

icon is always in the upper left hand corner. This gives the

user direction as to the function of the mouse buttons. As the

functions of these buttons change, the user is shown the changes.

This makes the editor easier to use for novice and experienced

users alike. Immediately below the mouse icon is the menu.

While the number of lines in the menu is variable, the menu

placement on the screen is constant. This allows the user to

know exactly where the menu will be throughout the use of the

editor. Added to this, the cursor is always placed inside the

menu whenever a menu selection is required. These two features

make menu item selection easier and quicker for the user.

The area at the lower left of the screen is the external

job status box. The editor has the capability of starting

external jobs so that the designer is free to use the editor

127

for interactive design work while slower, computation intensive

programs can be run in the background. When the status of these

external jobs changes, the status box is used to inform the

designer of the changes. As shown, this area is sometimes

overwritten for other data presentations. However, whenever

the auxiliary data presentation has been completed, the status

box is again drawn to the screen.

The text port used throughout the editor is along the bcttom

right of the screen. Although small, this area is adequate for

the editor because all routines in the editor have been optimized

for visual presentation and mouse interaction.

The main graphics presentation is in the area above the

textport and to the right of the mouse icon and menu. This

area is also used for help screen displays but it is refreshed

after the help item has been cleared.

The areas discussed above are the main uses of the screen.

During some portions of the editor there will be other uses of

some of these areas.

128

.....-- ----

v E.

Figure 7.1 - Editor Screen Presentations

129

7.2 Starting A Design - Input Data

To start the design some sort of data must be entered into

the editor. For this demonstration, the input data will be a

surface geometry from a local file. This data is the minimum

information necessary to define a B-spline surface. The surface

for this demonstration resembles a sine wave in both parametric

U and V directions. This surface was chosen because it easily

shows most of the capabilities of the editor.

7.3 Surface Operations

Once the data has been entered, the curvature of the surface

will be investigated by selecting the GEOMETRY INTERROGATION I

SURFACE , CURVATURE menu items (the boxes are actual menu

item selections made). The first curvature operation to be

done is to view the Gaussian curvature map of the entered

surface. Figure 7.2 shows the results of the selection. Because

only the bare minimum surface information was entered into the

system, the view and segmentation of the surface was assigned

default values. From the figure it appears that these default

values are inadequate so they must be changed.

130

VAN,

......

7.3.1 View Chanqing

First the view of the surface will be changed.

Figure 7.3 shows the view selection screen with a wire frame

of the surface in the initial orientation. It is sometimes

difficult to tell from looking at a wire frame which portion

of the figure is closest to the point of view. By using the

rotation features of the view setting routine, it is easier

to visualize the actual surface orientation.

Once the orientation of and distance from the surface

has been set to the values as shown in Figure 7.4, the view

changing routine can be quit and the curvature routine for

Gaussian curvature recalled. Since the curvature values were

previously calculated and these values are independent of

surface orientation, the new curvature presentation occurs

immediately. Figure 7.5 shows the Gaussian with the new

orientation.

132

---

7.3.2 All Curvatures

Next all curvatures will be presented at one time on

the screen as shown in Figure 7.6. This feature allows the

designer to easily see all of the useful curvature presen-

tations at one time. This will make it easier to compare

the different curvatures. Although it is possible to see

the general differences in the areas of interest of the

various curvatures with the default segmentation, the pre-

sentation does not give sufficient detail for use in moving

to a specific area for further investigation.

7.3.3 Segmentation Selection

Selecting the segmentation routine, the number of

segments to be used in surface rendering can be selected as

shown in Figure 7.7 or the number of segments for wire frame

drawing can be selected as shown in Figure 7.8. The maximum

possible value will be chosen in each case for the U and V

directions. Once these selections are made, the routine can

be exited. As the number of segments is increased, the time

to calculate the various values needed for surface rendering

increases. A large portion of these calculations is performed

before the segmentation routine is completed so there will

be a noticeable time lag between when the segmentation routine

is quit and when the menu is placed on the screen.

134

........... ..

IX

............

Agog,

- -- - ---------

...........

AAA.,

ANN..................

......................

AWL

--------- -----

.

:14

..

Once these calculations are complete, all curvatures

can again be shown as Figure 7.9. A more specific area of

interest can now be seen on the Gaussian curvature plot and

the area can be further zoomed in on for investigation as is

shown in Figure 7.10.

7.3.4 Shaded Image

The bottom of Figure 7.9 shows the shaded image that

is available. Going to the shaded image portion of the menu,

this object can be displayed on the full screen, as shown in

Figure 7.11, for a better presentation.

The highlights of a surface are best realized when the

light source is placed to give good definition to these

highlights. The user has the capability to position the

light source and change its intensity. The screen given to

the user during this position-ng is shown in Figure 7.12.

The ambient intensity is always set at 1.0 and the light

source intensity can be varied as desired. Changing the

light source changes the presentation given in Figure 7.11

to that of Figure 7.13.

137

........................
IR:

...................

............ -

x l

...............

.

Because some colors show detail better for different

people, the editor gives the user the capability to change

the colors used when drawing the wire frame and when shading

the surface. Figure 7.14 shows the green color changed to

cyan and in Figure 7.15 the color has been set to yellow.

Another option for setting the color is to use the "wood"

color choice. This gives a very rapid presentation of constant

intensity bands on the surface. This type of coloring is

shown in Figure 7.16 using the cyan shaded wood pattern.

Figure 7.17 shows the multicolored wood pattern.

7.3.5 System Level Routines

There are various system level routines available.

These are accessed by moving to the menu header within any

menu. Figure 7.18 shows the menu header will change to SYSTEM

SELECTIONS and become highlighted. This system menu can be

used to change the background color used during 4urface

presentation. This could be needed if a hard copy of the

screen presentation was needed and the method to be used

required a white background. Also, some users may find the

white background preferable to the black. Selecting the

white background and returning to the shaded image menu to

change the surface color to white will give the presentation

shown in Figure 7.19.

140

...........

.

. t

...

..-.

7.3.6 External Jobs

As mentioned previously, the editor has the capability

to run external jobs. This capability is used to calculate

constant intensity lines called isophotes. Selecting the

isophote option of the surface menu and then selecting the

calculate isophotes item will start this external process.

Figure 7.20 shows the editor screen just after this job has

started. Notice the change in the status area of the screen.

Job . status is now green indicating that an external job

has started and is running. When the job completes a message

will be sent to the editor and the green color will change

to cyan signifying the job has completed and input is ready

for the system. Figure 7.21 shows what this will look like

(note that this screen would not be seen this soon after the

isophote job was started).

7.3.7 Further Development In Surface Area

The routines shown up to this point mainly have dealt

with presentation of a surface. There are routines available

for editing surfaces, for example tweaking of control points

and subdividing and fairing of surfaces, but they have not

as yet been interfaced into the editor. Since all functions

of the editor will need the capability to visualize curves

and surfaces, it was more important to ensure the presentation

144

-~~

modules were complete before application interfacing was

done. Chapter 6, NEW MODULES - EDITOR EXPANSION, discusses

how the editing function can be easily added to the editor.

7.4 Curve Operations - Entering and Editing

One editing section that has been interfaced to the editor

is entering points in the parameter space of a parametric

surface, in this case a NURBS surface patch. This allows the

user to design a curve on a surface for further processing.

One routine that will require this type of interface is blending

operations between two curves on surfaces. The presentations

given during the input and editing of the parameter points will

be discussed next.

7.4.1 Input Of Data Points From File

By selecting the GEOMETRY GENERATION

CURVE ON A SURFACE FIT LIST OF POINTS I items, the user

will be in the U-V entry submenu. By selecting the input

option, the prompt shown in Figure 7.22 is gotten. When a

valid file name is entered, the data is read in and a simple

point to point line presentation is given as shown in

Figure 7.23. The user is allowed to select this curve if it

is correct or select another if some mistake has been made.

Once the correct file has been entered, all of the editing

routines can be used.

146

.................
........

7.4.2 Windowing

It is probable that the designer would want to narrow

in on a smaller area of the curve. To do this, the window

option is selected. The current window with the curve is

given as shown in Figure 7.24. Once the first point has been

selected, the presentation will change to that of Figure 7.25.

Releasing the left mouse button will fix the selected window.

7.4.3 Adding New Points

Once the area of interest has been selected, the editing

functions can be used. First is the addition of points. This

is done to the end of the data point array. As shown in

Figure 7.26, the last point in the data is connected to the

cursor with a temporary line. When a point is actually

chosen, this line becomes permanent and a new line is drawn

from here to the new cursor position as shown in Figure 7.27.

Once all pcints have been added, the middle or right mouse

button is used to quit the add routine.

148

...

.............

...................

....

...

7.4.4 Help Screens

Each option of the editor has a help entry associated

with it. Many of the decisions of how to organize the editor

and present information to the user were based upon having

this help feature available. To access this help feature,

the user needs only to place the cursor on the desired menu

item and press the middle mouse button. Figure 7.28 shows

the help screen available for the insert routine.

7.4.5 Insert New Points

When the insert routine is selected, the user is prompted

to select the point after which the insertion is to occur.

Once this point is selected, the cursor is placed between

the two points and the previously permanent connecting line

becomes temporary. Figure 7.29 shows this arrangement.

Inserting a point will cause a permanent line to be drawn

from the initial point to the inserted point and another

point can be inserted. Figure 7.30 shows the situation after

three points have been inserted.

151

..

...............

...........

----- ----------

...............

.

7.4.6 Data Point Corrections

If one of the points has been entered incorrectly the

user has two ways to fix the problem - move and delete.

7.4.6.1 Move A Point

When the move routine is entered the user is prompted

to select the desired point. When the poifiL is selected

the permanent joining line to the points on either side

is changed to a temporary joining line as shown in

Figure 7.31. Once the final position is selected the mouse

button is released and Figure 7.32 shows the result.

7.4.6.2 Delete A Point

The other way to correct mistakes is to delete a

point. The user is prompted to select a point and when

this is done, the prompt and screen shown in Figure 7.33

is given to the user. If the response is to delete the

point, it is deleted immediately and Figure 7.34 is the

result. If the point is not to be deleted, it is released

unchanged.

154

------ -----

........... ---- ------- -----

__

7.4.7 Fit Of Points and Step Size

Once all points have been entered and edited as desired,

the user can fit a fourth order B-spline curve through the

points. This curve interpolates all the data points. If

this does not appear to be the case it is because the number

of steps chosen to display the curve is too small. Setting

the number of steps to a larger value will fix this visu-

alization problem. Figures 7.35 and 7.36 show the same

curve using 25 and 100 steps.

7.4.8 Making a System Curve and Quitting

Wben the fit operation is complete, the user could make

a system curve and then quit the menu. Care has been taken

to ensure data entered into the system is not lost acci-

dentally. If the quit routine is chosen before saving the

current data set, the user is prompted as shown in Figure 7.37

and positive action must be taken to continue on in the

editor.

157

......

7.5 Curve Operations - Fairing

Once the designer is satisfied with the points entered for

the curve, the GEOMETRY PROCESSING j , CURVE ON A SURFACE

FAIRING routine would be called to ensure the curve is suf-

ficiently smooth for use. The various options in the area are

discussed below.

7.5.1 Actual Fairing

When the fairing routine is first entered a copy is

made of the curve and a curvature map of both curves is given

on a split screen presentation. These maps are called

porcupines for obvious reasons. The designer can fair the

curve on the lower screen. Fairing can be done manually or

automaticalIV.

7.5.2 Setting the Scale

The scale of the porcupines can be set to bring all

curvatures into view. Figure 7.38 shows the screen upon

first entering the fairing routine and Figure 7.39 shows the

same presentation but with a scale of 0.1

159

..........

..

7.5.3 Porcupine View

As the designer fairs the lower curve, the curvature

values will change causing the porcupine to change. After

fairing has progressed the user may see the changed pre-

sentation of Figure 7.40. To get a better idea of the

porcupine details, the view of the parent and child porcupines

can be changed as desired. The routine for changing the view

works as previously discussed in Chapter 7.3.1. Figure 7.41

shows the screen after changing the view.

7.5.4 Curve on Wire Frame

Once the curve is sufficiently fair, the designer can

have a wire frame of the surface of interest and the curve

displayed at the same time. This is shown in Figure 7.42.

As with other presentations, the wire frame and curve viewing

position can be changed to suit the designer and Figure 7.43

shows the curve and surface in Figure 7.42 after such a view

change.

161

,low% V14'.

------------------ --- -

.

......

.

...........

If the curve can not be faired to suit the designer,

the fairing routine can be exited and the points in the U-V

space changed as necessary. This type of movement through

the editor is to be expected during the design process. Once

the curve is sufficiently smooth and the presentation of the

curve on the surface is acceptable, the child curve can be

saved and the editor session can continue with another problem.

7.6 Open Parametric Curve

The example given above for curve fairing used a periodic

curve. The editor will also accept open curves. Figure 7.44

shows an example of an open curve in the parametric space.

Figures 7.45 and 7.46 show this curve before and after fairing.

Figure 7.47 shows this curve with the same surface and viewport

as used in Figure 7.43.

164

in I

............

.

PIP

....................

CHAPTER 8

SUMMARY

The previous caapters have discussed the general idea behind

the development of the editor, including the need for such an

editor and the structure of both the data files and menu

arrangements. Examples were given on how to expand the editor

to include all the functions listed in the menus. Finally, a

pictorial example of the use of the current editor was given.

Future development on the editor should address the continued

interfacing of new modules. In addition to this expansion,

there are a few enhancements to the modules already interfaced

from which the user would benefit. The following are some of

these enhancements:

1. Allow the user to enter specific segmentation values

greater than 32.

2. Add a call to segmentation routine from within the shading

and curvature menus.

3. Allow the step size in the translation and distance portion

of the view setting routine to be user selectable and

variable.

4. Allow the user to set the color of the background to values

other than black and white.

5. Increase the size of the parameter space data input to

the larger, 3-D portion of the screen.

167

6. List applicable data files and allow user to select from

the list with the mouse or enter name manually if desired.

These are but some of the enhancements that can be implemented

to make the editor even more user friendly. As the editor is

used by more designers there will be many more additions and

enhancements that need to be made. This is the nature of any

program - the more it is used, the more the user will want. Tt

is because of this that the editor was designed for easy additions

and changes.

168

CHAPTER 9

REFERENCES

[1] Patrikalakis, N. M., Bardis, L. and Kriezis, G. A.

Approximate Conversion Of Rational B-Spline Curves and

Surfaces Patches. Design Laboratory Memorandum No.

88-5, July, 1988.

[2] Curry, H. B., and Schoenberg, I. J.

On the Polya Frequency Functions IV: The Fundamental

Spline Functions and their Limits. Journal d' Analyse

Mathematique, 17:71-107, 1966.

[3] De Boor, C.

On Calculating with B-Splines. Journal of Approxima-

tion Theory, 6:50-62, 1972.

[4] Cox, M. G.

The Numerical Evaluation of B-Splines. Journal of the

Institute for Mathematics Applications, 10:134-149,

1972.

[5] TilLer, W.

Rational B-Splines for Curve and SurfFce Representa-

tion. IEEE Computer Graphics and Applications,

3(6) :61-69, September, 1983.

[6] IRIS User's Guide, Volume 1, Programming Guide, Ver-

sion 4.0, Document Number 007-1101-040, Silicon Graph-

ics, Inc., Mountain View, CA, 1987.

169

[71 Alourdas, P. G.

Shape Creation, Interrogation and Fairing Using

B-Splines. Naval Engineer's Thesis, Massachusetts

Institute of Technology, Cambridge, Massachusetts,

May, 1989.

[8] Thomas, R., Rogers, L. R., and Yates, J. L.

Advanced Programmer's Guide To UNIX System V. Osborne

McGraw-Hill, Berkeley, CA, 1986.

[9] Kernighan, B. W., and Ritchie, D. M.

The C Programming Language, 2nd Edition. Prentice-

Hall, Englewood Cliffs, NJ, 1988.

170

CHAPTER 10

APPENDICES

10.1 MAIN MENU DATA FILE

The following file is used to set up the main menu of the

editor. Additions and changes discussed in Chapter 6 are

indicated by bullets, 5. As discussed previously the inden-

tation scheme is not required but it is suggested that it be

used to add clarity in the presentation of long data files.

Also, for a clearer presentation the data file has larger spacing

between the different menu items that would be the actual case

in the data file. THERE CAN BE NO BLANK LINES IN THE DATA FILE.

5
MAIN MENU
Main Menu Routines
N50

9
INPUT ROUTINES
Input Menu Routines
N9

4
CURVE (3-D)
3-D Curve Input Routines
NO

1

ENTER FROM KEYBOARD
VO

1
RECALL FROM LOCAL FILE
Vl

1
RECALL IGES FILE
V2

1

INTERACTIVE INPUT
V3

171

4
SURFACE
Surface Input Routines
Ni

1
ENTER FROM KEYBOARD
V4

1
RECALL FROM LOCAL FILE
V5

1
RECALL IGES FILE
V6

1
INTERACTIVE INPUT
V7

3
CURVE ON SURFACE
Curve On A Surface Data
N2

ENTER FROM KEYBOARD
V8

1
RECALL FROM LOCAL FILE
V9

1
RECALL IGES FILE
Vi0

2
ALGEBRAIC SURFACE
Algebraic Surface Inputs
N3

1
ENTER FROM KEYBOARD
Vil

1
RECALL FROM LOCAL FILE
V12

2
ID OF POINTS
Grid Of Points Input
N4

172

1

ENTER FROM KEYBOARD
V13

1
RECALL FROM LOCAL FILE
V14

2
FUNCTION ON CURVE
Function On A Curve Menu
N5

1
ENTER FROM KEYBOARD
V15

1
RECALL FROM LOCAL FILE
V16

3
LIST OF POINTS
List Of Points Input Menu
N6

1
ENTER FROM KEYBOARD
V17

1
RECALL FROM LOCAL FILE
V18

1
INTERACTIVE INPUT
V19

2
LIST OF LISTS
List Of Lists Input Menu
N7

1
RECALL FROM LOCAL FILE
V20

1
INTERACTIVE INPUT
V21

3
LIST OF POINTS (3-D)
List Of Points (3-D)
N8

173

1

ENTER FROM KEYBOARD
V22

1
RECALL FROM LOCAL FILE
V23

1
INTERACTIVE INPUT
V24

4
GEOMETRY GENERATION
GEO Generation Routines
NI5

4
CURVES
Curve Generation Menu
NI0

1
FIT POINTS IN 3-D
V25

1
APPROXIMATE WITH NURBS
V26

1
OFFSET OF A PLANAR CURVE
V27

1
OFFSET NORMAL TO PATCH
V28

5
SURFACES
SUR Generation Routines
NIl

1
OFFSET OF ANOTHER SURFACE
V29

1
RULED SURFACE
V30

1
FIT/APPROX n ISOPARAMETER
V31

174

1
FIT/APPROX GRID OF POINTS
V32

1
CONVERT ALG TO NURBS
V33

3
CURVE ON SURFACE
COS Generation
N12

1
FIT/APPROX LIST OF POINTS
V34

1
FIT/APPROX LIST OF LISTS
V35

1
VAR OFFSET OF ANOTHER
V36

4
BLEND
Blend Generation
N14

3
BOUNDARY CONDITIONS
Blend Boundary Conditions
N13

1
POSITION
V37

1
NORMAL
V38

1
CURVATURE
V39

1
DEFINE SURFACE
V40

1
DEFINE CURVES
V41

175

1
EXECUTE BLENDV42

3
GEOMETRY INTERROGATION
Geometry Interrogation
N36

3
CURVES
Curve Interrogation
N19

3
VISUALIZATION
Curve Visualization
N16

RESOLUTION
V43

1
COLOR
V44

1
VIEWPOINT
V45

2
CURVATURE VALUES
Curvature Map Values
N17

1
RESOLUTION
V46

1
SHOW CURVATURE MAP
V47

2
STATUS
Curve Status
N18

1

ON
V48

1
OFF
49

176

3
CURVES ON SURFACE
Curves On Surface
N23

3 D
VISUALIZATION
Visualization Routines
N20

1

RESOLUTION
V50

1

LINETYPE
V51

1
VIEWPOINT
V52

2
CURVATURE MAP
Curvature Map Routines
N21

1
RESOLUTION
V53

1
SHOW
V54

2
STATUS
Status
N22

1
ON
V55

1
OFF
V56

10
SURFACES
Surface Routines
N35

177

3
VISUALIZATION
Visualization Routines
N24

1
RESOLUTION
V57

1
COLOR
V58

1
VIEWPOINT
V59

4
PLANE CONTOURS
Plane Contours Menu
N25

1
SET # PLANES
V60

1
SET START PLANE
V61

1
SET PLANE DISTANCE
V62

2
INTERSECTION ACCURACY
Intersection Accuracy
N26

1
2D
V63

1
3D
VT4

4
CYLINDER CONTOURS
Cylinder Contours
N27

1

SET # CYLINDERS
V65

178

1

SET START CYLINDER
V66

1
CYLINDER DISTANCE
V67

2
INTERSECTION ACCURACY
Intersection Accuracy
N28

1

2 D
V68

1
3D
V69

5 -

SHADED IMAGE
Shaded Image Routines
N29

1

READ IMAGE
V'70

1
CALCULATE IMAGE
V71

1
COLOR
V72

1
SET LIGHT SOURCE
V73

-A

1
VIEW
V74

3
RAY TRACE
Ray Trace Routines
N30

1
READ TRACE
V75

179

1

CALCULATE TRACE
V76

1

SET COLOR
V77

10
CURVATURE
Curvature Routines
N31

1
READ CURVATURE
V78

1
CHANGE VIEW
V87

1
ALL CURVATURES
V79
1
GAUSSIAN
V80
1
MEAN
V81
1
ABSOLUTE
V82
1
MAXIMUM PRINCIPLE
V83
1
MINIMUM PRINCIPLE
V84
1
NORMAL U
V85
1
UO0PY AL
786

IsoNhote Routines
N 32

180

1

SET NUMBER
V88

1
READ ISOPHOTE
V89

1
CALCULATE ISOPHOTE
V90

1
SHOW ISOPHOTE
V91

4
REFLECTION LINES
Reflection Lines
N33

1
SET NUMBER
V92

1
READ IN LINES
V93

1
CALCULATE LINES
V94

1
SHOW LINES
V95

3
GEODESICS
Geodesics Routines
N34

1
READ IN
V96

1
CALCULATE
V97

1
SHOW

1
SURFACE ON/OFF
V99

181

4
GEOMETRY PROCESSING
Geometry Processing
N49

6
CURVES
Curves Processing
N39

3
APPROXIMATE NURBS
Approximate NURBS
N37

1
SET ORDER
Vi00

1
SET ACCURACIES
Viol

1
RUN
V102

3
FAIRING
Fair Curve
N39

1
KNOT
V103

1
AUTOMATED
V104

1
RUN
V105

1
CTRL PT EDIT
V106

1

EXACT DEGREE
Vi07
1

SUBDIVIDE
V108

182

1
SPLIT CURVE
V109

5
COS PROCESSING
Curve On Surface
N43

2
CONVERT COS TO NURBS
Convert Curve On Surface
N41

3
SET ACCURACIES
Accuracy Setting
N40

1
POSITION
v1l0
1
CURVATURE

Vill

1
SLOPE
V112

1
RUN CONVERT
V113

1

FAIRING

V114

1
EDITING
V117

1
SUBDIVTDE IN UV
V118

1
SPLIT IN UV
V119

6
SURFACE PROCESSING
Surface Processing
N47

183

2
APPROXIMATE NURBS
Approximate With NURBS
N45

SET ORDER
V120

3
SET ACCURACIES
Set Accuracies
N44

1
POSITION
V121

1
CURVATURE
V122

1
SLOPE
V123

3
FAIRING
Surface Fairing
N46

1
KNOT
V124

1
AUTOMATED
V125

1
RUN FAIRING
V126

1

EDITING
V127

1
DEGREE ELEVATION
V128

1
SUBDIVIDE
V129

184

SPLIT
V130

2
INTERSECTIONS
Intersections
N48

1.
LISTS 2_D
V131.

1
LISTS 3-.D
V132

QUIT
V1 33

0
END MENU

185

186

10.2 UV MENU.DAT DATA FILE

13
FIT/APPROX LIST OF POINTS
COS - Fit UV Pts w/ NURBS
N53

1
INPUT UV POINTS
V141

1
OUTPUT UV POINTS
V142

1
SHOW UV POINTS
V150

1
ADD UV POINTS
V143

1
INSERT UV POINTS
V144

1
DELETE UV POINTS
V145

1
MOVE UV POINTS
V146

1
SELECT WINDOW
V147

1
FIT POINTS
V148

1
MAKE SYSTEM CURVE
V151

1
SET STEPS
V158

1
START AGAIN
V161

187

QUIT
V149

0
END MENU

188

10.3 PROGRAM MAKEFILE

The make file listed in this appendix was used to compile

the editor program during development. The additions discussed

in Chapter 6 are indicated by 7-

ROOT = /ul/deslab/hottel
BINDIR = ../bin

INCLUDE = /usr/local/einclude
INCLUDE2 = $(ROOT)/thesisl

OBJECTS2 = getsubs.o menu allocate.o linked menu.o \
readhelp.o sta_box.o subs.o changeviewaziy.o \
surface input_local.o segments.o surface vis.o \
hdraw.o all curvature.o shaded.o set world.o \
pick_surf.o isophotes.o message_handling.o \
run uv entry.o delete uv points.o moveuvpoints.o \
insertuv_points.o window uvpoints.o \
input uvpoints.o output uv_points.o \
adduv_points.o togglebell.o set steps.o \
pick_uv_points.o quit uvpoints.o view uv_points.o \
fit uv.o pick_curv.o run cos fairing.o-\
copy_FulCurv.o make child fromparent.o \
fair cos child.o keep_coschild.o fairperknot.o \
calc-desc.o fairknot.o quitcosfairing.o \
finddeviation.o porcupine.o get_newuvpoints.o \
curveinputlocal.o putcurve on surf.o \
cos and wire frame.o cos and shaded surface.o \
print_FuiCurv.o popup.o a b

OBJECTS3 = getkey.o strdup.o setmapcolor.o show mouse.o
mousewords.o vp.o check file.o cleararea.o

OBJECTS1 = mainmenu.o

MESSAGES = linked menu.o mainmenu.o messagehandling.o \
iuncosfairing.o run uv entry.o

CFLAGS = -g -p -I$(INCLUDE) -I$(INCLUDEl)
FFLAGS = -g -p -I$(INCLUDE) -I$(INCLUDE1)

LIB = /usr/local/elib/libbspl.a /usr/local,/elib/libgen.a \
/usr/local/elib/libgraph.z

189

LIBi = rg12

LIB2 = oegl5O

OBJECTS = main.o $(OBJECTSI) $(OBJEOTS2) $(OBJECTS3)

menu: Makefile $(OBJECTS)
f77 -g -o mainmenu $(OBJECTS) $(LTB) -1$ (LIBi) -lm -inagz

$(OB.JECTS1) : $(ROOT)/thesisl/struct.h
$ (OBJECTS1) : $ (ROOT) /thesisl/hottel.h

$(OBJECTS2) : $(ROOT)/thesisl/struct.h

$(OBJECTS) : $(ROOT)/thesisl/defines.h

$(MESSAGES) : $(ROOT)thesisl/msg.h

190

