A two-stream multilayer, spectral radiative transfer model for sea ice
A two-stream multilayer, spectral radiative transfer model for sea ice

Donald K. Perovich
A Two-Stream, Multilayer, Spectral Radiative Transfer Model for Sea Ice

12. PERSONAL AUTHOR(S)
Perovich, Donald K.

13a. TYPE OF REPORT
13b. TIME COVERED
FROM ______ TO ______
14. DATE OF REPORT (Year, Month, Day)
July 1989
15. SUPPLEMENTARY NOTATION
Additional funding provided by Office of Naval Research N0001488WM24013

17. COSATI CODES
18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
   Field Group Sub-Group
   Albedo Sea ice
   Arctic Shortwave radiation
   Radiative transfer

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The reflection, absorption, and transmission of light at visible and near-infrared wavelengths is important for a number of geophysical problems. Light reflection is an important parameter in remote sensing studies, absorption is significant to ice thermodynamics, and transmission strongly influences biological activity in and under the ice. The focus of this report is on the reflection and transmission of light by spatially inhomogeneous and temporally varying sea ice covers. This is investigated using a two-stream, multilayer radiative transfer model in the wavelength region from 400 to 1000 nm. The model is computationally simple and utilizes the available experimental data on the optical properties of sea ice. The ice cover is characterized as a layered medium composed of selections from nine distinct snow and ice types. Three case studies are presented illustrating values of spectral albedo, transmittance, and transmitted photosynthetically active radiation (PAR) for 1) a spatially inhomogeneous ice cover, 2) a uniform ice cover as it undergoes a melt cycle, and 3) a temporally changing spatially variable ice cover. The importance of thickness and surface conditions on the reflected and transmitted radiation fields is demonstrated.
PREFACE

This report was prepared by Dr. Donald Perovich, Geophysicist, of the Snow and Ice Branch, Research Division, U.S. Army Cold Regions Research and Engineering Laboratory. Funding for this research was provided by DA Project 4A161102AT24, Research in Snow, Ice and Frozen Ground, Task SS, Work Unit 05, Electromagnetic and Radiative Characteristics of Snow, Ice and Frozen Ground, and by the Office of Naval Research, Contract N0001488WM24013.

The author thanks Walter Tucker and Gary Koh of CRREL for technically reviewing this report and Kathleen Jones for mathematical expertise.
CONTENTS

Abstract ........................................................................................................................................ i
Preface ........................................................................................................................................ ii
Introduction .................................................................................................................................. 1
Theory .......................................................................................................................................... 2
The sea ice model ......................................................................................................................... 5
Applications of the model ............................................................................................................. 7
  Spatial variations ....................................................................................................................... 7
  Temporal variations .................................................................................................................. 8
  Spatial and temporal variations ................................................................................................. 12
Discussion ..................................................................................................................................... 14
Literature cited .............................................................................................................................. 15
Appendix A: Decoupling of first-order differential equations .................................................... 17

ILLUSTRATIONS

Figure
  1. Schematic of two-stream, \( n \)-layer model ....................................................................... 3
  2. Matrix representing system of equations for two-stream, \( n \)-layer model .................... 4
  3. Spectral extinction coefficients for nine medium types used in the sea ice radiative transfer model .................................................................................................................. 5
  4. Normalized values of spectral incident irradiance under arctic conditions .......... 6
  5. Snow and ice thickness data from Tucker ........................................................................... 8
  6. Spatial distribution of light transmittance at 470 nm for ice and snow conditions ................................................................................................................................. 9
  7. Areally averaged values of spectral albedo and transmittance for ice cover .... 9
  8. Photographs illustrating surface conditions on Mould Bay ice cover ................... 10
  9. Temporal evolution of spectral albedo for the Mould Bay ice cover ....................... 11
 10. Temporal evolution of spectral and total PAR for the Mould Bay ice cover ....... 11
 11. Spectral albedos from sites 1, 2 and 3 ............................................................................ 13
 12. Total PAR as a function of time for sites 1, 2 and 3 ...................................................... 13
 13. Contours of spectral PAR for sites 1, 2 and 3 ................................................................. 14

TABLES

Table
  1. Scattering coefficients for nine medium types ................................................................. 5
  2. Environmental conditions for Mould Bay ice cover ....................................................... 10
  3. Environmental conditions for MIZEX 84 sites ............................................................ 12
A Two-Stream, Multilayer, Spectral Radiative Transfer Model for Sea Ice

DONALD K. PEROVICH

INTRODUCTION

The reflection, absorption, and transmission of shortwave radiation by snow and ice covers are significant in a variety of geophysical problems. Spectral reflectance is important in the interpretation of imagery from remote sensing instruments operating at visible and near-infrared wavelengths. Maykut and Untersteiner (1971), Grenfell and Maykut (1977), and Maykut and Perovich (1987) have established the critical role played by shortwave radiation in the heat balance of a sea ice cover. Primary productivity and other biological activity under a sea ice cover are strongly affected by the amount and spectral composition of transmitted light (SooHoo et al. 1987).

Because of this established importance, there is a substantial data base of optical measurements of reflected and transmitted light in snow and ice covers. Observational data on the optical properties of snow and of sea ice are reviewed in Warren (1982) and Perovich et al. (1986), respectively. These observations indicate that understanding radiative transfer in snow and ice is considerably complicated by the large temporal and spatial variability in the physical, and therefore optical, properties of the medium. For example, observations indicate that as a snow cover ages, and metamorphism increases its grain size, there is a decrease in albedo (Grenfell and Perovich 1981). The physical structure of sea ice can be even more complex, with vertical variations in vapor inclusions, ice temperature, salinity, and brine volume. Observations have demonstrated that the optical properties of sea ice depend on the ice temperature, brine volume (Perovich and Grenfell 1981) and surface conditions (Grenfell and Maykut 1977).

This complexity necessitates use of theoretical models both to interpret and to extrapolate the observational data. Over the years several different models have been formulated to describe radiative transfer in snow and ice. Warren (1982) provides an excellent summary of radiative transfer models that have been applied to snow. One, in particular, developed by Wiscombe and Warren (1980), has proved very useful for snow applications. Mullen and Warren (1988) used a modified delta-Eddington approach to model spectral albedos of lake ice. Perovich and Grenfell (1982) and Grenfell (1983) adapted the discrete ordinates method of Chandrasekhar (1960) to sea ice. The Dunkle and Bevans (1956) model, based on Schuster (1905), calculates the upwelling and downwelling irradiance in a snowpack. The model was used by Grenfell and Maykut (1977), Grenfell (1979), and Perovich and Grenfell (1981) to interpret field and laboratory measurements of the optical properties of sea ice.

These models all have features that both recommend and limit them for particular applications. Often there are tradeoffs between detailed physics and computational simplicity. In this report we will develop and present a two-stream, multilayer model of radiative transfer at visible and near-infrared wavelengths. While this discussion is directed specifically toward a sea ice cover, the formulation is sufficiently general to be easily adapted to other translucent media such as lake ice, river ice, or turbid water. The major limitation of this model
lies in its casual treatment of the physics of scattering, in particular in its assumption of isotropic scattering and the lack of information concerning the angular distribution of the radiation field. However, since our interest is in irradiance, the radiance integrated over angle, this is not a major difficulty. The model has three primary advantages. Computationally it is simple and fast, avoiding the numerical difficulties of more advanced methods. Thus it can be run quickly on a personal computer, allowing a wide range of cases to be investigated easily. In addition, this two-stream model can directly exploit the large observational data base of sea ice optical properties compiled by Grenfell and Maykut (1977), Grenfell (1979), and Perovich and Grenfell (1981). Finally, only a qualitative depiction of the ice structure (blue ice, white ice, melting ice) is needed, rather than the detailed statistical description of the scattering inhomogeneities demanded by more sophisticated models.

THEORY

The model is of two streams in that it calculates a downwelling ($F_1$) and an upwelling ($F_2$) irradiance in the medium. The irradiance is defined as the total energy per unit area per unit time (W/m²) incident on a horizontal plane from the lower ($F_1$) and upper ($F_2$) hemispheres. In the medium each layer is considered to be plane parallel, i.e. homogeneous in $z$ and infinite in extent in $x$ and $y$. The optical properties of a layer are defined in terms of wavelength-dependent scattering ($r_1$) and extinction ($k_1$) coefficients. The downwelling and upwelling irradiances are governed by the coupled first-order differential equations:

\[
\begin{align*}
\frac{dF_1(z,\lambda)}{dz} &= -k_1 F_1(z,\lambda) - r_1 F_1(z,\lambda) + r_2 F_2(z,\lambda) & (1) \\
\frac{dF_2(z,\lambda)}{dz} &= k_1 F_1(z,\lambda) - r_1 F_1(z,\lambda) + r_2 F_2(z,\lambda) & (2)
\end{align*}
\]

where $z$ is the depth within the medium (increasing downward) and $\lambda$ is the wavelength of the light. Scattering ($r_1$) and absorption ($k_1$) are treated through wavelength-dependent coefficients. Together the scattering and absorption coefficients define the extinction coefficient $k_1$, where $k_1 = \sqrt{(k_1^2 + 2r_1^2)}$. If there is no scattering eq 1 reduces to

\[
\frac{dF_1(z,\lambda)}{dz} = -k_1 F_1(z,\lambda)
\]

which when integrated yields the familiar Bouguer-Lambert law

\[
F_1(z,\lambda) \propto e^{-k_1 z}.
\]

Equation 2 reduces to $F_2(z,\lambda) = 0$ for the no-scattering case. Equations 1 and 2 can be reformulated as uncoupled second-order differential equations (see App. A for details) with general solutions of

\[
\begin{align*}
F_1(z,\lambda) &= A \sinh(k_1 z) + B \cosh(k_1 z) & (4) \\
F_2(z,\lambda) &= C \sinh(k_1 z) + D \cosh(k_1 z) & (5)
\end{align*}
\]
This method converges to a simple exponential decay for optically thick media, but as Grenfell (1979) points out it offers substantial improvements in accuracy over exponential decay for optically thin cases.

The geometry of the multilayer model is schematically illustrated in Figure 1. We consider \( N \) layers, with each layer \( i \) having thickness \( H_i \) and optical properties defined by the constants \( k_i \) and \( r_i \). We assume that there is no specular reflection at the interfaces between layers. To specify the solution to eq 4 and 5 for a layer it is necessary to determine the four constants \( A, B, C, \) and \( D \). Hence \( 4N \) equations are needed to solve an \( N \)-layer system.

Two equations are provided by the surface and bottom boundary conditions. At the surface we have

\[
F_{i,0}(0, \lambda) = (1-R_i)F_{i+1,0} + R_iF_{i,0}(0, \lambda),
\]

where \( F_i \) is the incident solar irradiance and \( R_i \) is the specular reflection at the surface. At the bottom boundary we assume that there is no specular reflection and there is no upwelling from below, yielding a boundary condition of

\[
F_{i,N}(H_i, \lambda) = 0.
\]

We require continuity at the interfaces between layers. These matching conditions provide \( 2(N-1) \) equations of the form

\[
F_{i,i}(H_i, \lambda) = F_{i+1,i}(0, \lambda),
\]

\[
F_{i,i}(H_i, \lambda) = F_{i+1,i}(0, \lambda).
\]

In eq 6 through 9 the two subscripts on \( F \) define the direction (\( \downarrow, \uparrow \)) and the layer number \( i \), and \( H_i \) is the layer thickness. The remaining \( 2N \) equations are obtained by applying the differential equations 1 and 2 at the top of every layer. This is done at the top of the layer, since \( z = 0 \) simplifies the resulting equations.

Substituting the general solutions (eq 4 and 5) into these \( 4N \) equations yields the following system of equations for each wavelength,

\[
(1 - R_i)F_{i+1,i} + R_iD_i = B_i,
\]

\[
C_i \sinh(k_i H_i) + D_i \cosh(k_i H_i) = 0
\]

\[
A_i \sinh(k_i H_i) + B_i \cosh(k_i H_i) = B_{i+1,i},
\]

\[
C_i \sinh(k_i H_i) + D_i \cosh(k_i H_i) = D_{i+1,i},
\]

\[
A_i k_i + B_i (k_i + r_i) - D_i r_i = 0
\]

\[
B_i r_i + C_i k_i - (k_i + r_i)D_i = 0
\]

(top boundary condition)

(bottom boundary condition)

\( (N-1) \) matching conditions, \( i = 1, N-1 \)

\( (N-1) \) matching conditions, \( i = 1, N-1 \)

\( (N \) equations for \( i = 1,N) \)

\( (N \) equations for \( i = 1,N) \).
Figure 2 presents the system of equations for an N-layer medium in matrix form. Once the system is solved and values of $A$, $B$, $C$, and $D$ determined, the upwelling and downwelling irradiance can be calculated anywhere in the medium. When computing irradiances the depth $z$ is with respect to the layer rather than the entire medium. This convention improves the numerical accuracy of the solution.

Two parameters of particular interest are the spectral albedo ($\alpha_\lambda$) and the transmittance ($T_\lambda$). The spectral albedo is the ratio of the reflected and incident irradiance, or

$$\alpha_\lambda = \frac{(R,F_{\lambda}+D_{\lambda})}{F_\lambda}.$$  

The spectral transmittance is the ratio of the transmitted and the incident irradiance, or

$$T_\lambda = \frac{[A_\lambda \sinh(\kappa_\lambda H_\lambda) + B_\lambda \cosh(\kappa_\lambda H_\lambda)]}{F_\lambda}.$$  

These spectral values can be integrated over wavelength to give bulk values of albedo ($\alpha_0$)

$$\alpha_0 = \int_\lambda [\alpha_\lambda F_\lambda(\lambda) d\lambda] / [F_\lambda(\lambda) d\lambda],$$

and transmittance ($T_0$)

$$T_0 = \int_\lambda [T_\lambda F_\lambda(\lambda) d\lambda] / [F_\lambda(\lambda) d\lambda].$$

For biological purposes, the downwelling spectral irradiance at the underside of the ice is of considerable interest. Since it is the number of photons of particular wavelengths that controls biological activity, irradiance is presented in terms of photons of wavelength $\lambda$ per unit area per time, rather than the more familiar units of W/m² (SooHoo et al. 1987). The basic unit for this is an einstein (E), which is equal to the energy of a mole of photons of wavelength $\lambda$. More precisely an einstein is defined as

$$E_\lambda = nhc/\lambda,$$

where $n = $ Avogadro's number ($6.025 \times 10^{23}$), $h = $ Planck's constant ($6.625 \times 10^{-34}$ J s), and $c$
The speed of light ($3 \times 10^8$ nm/s). The total photosynthetically active radiation (PAR) is equal to the irradiance (units of mE/m$^2$ s) integrated from 400 to 700 nm.

**THE SEA ICE MODEL**

To illustrate the efficacy of the multi-layer formulation, we now apply it to the specific case of a sea ice cover. The input parameters needed for the model are spectral scattering and extinction coefficients for each medium type considered, layer thickness, and optionally the incident spectral irradiance.

For the sea ice model nine medium types were included: 1) cold dry snow, 2) melting wet snow, 3) ice colder than the eutectic point, 4) surface scattering layer of white ice, 5) the interior portion of white ice, 6) cold blue ice, 7) melting blue ice, 8) bubble-free fresh ice, and 9) clear arctic water. Spectral extinction coefficients for these nine types are plotted in Figure 3. The extinction coefficients for ice types 1, 4, 5, and 7 came directly from Grenfell and Maykut (1977), type 3 from Perovich (1979), type 8 from Grenfell and Perovich (1981) and type 9 from Grenfell (1979) (Smith and Baker 1981). The melting wet snow and cold blue ice values were obtained by adjusting the scattering coefficients for cold dry snow and melting blue ice in order to reproduce spectral albedos reported in Grenfell and Perovich (1984) for melting snow and cold blue ice. Extinction coefficients beyond 800 nm have been extrapolated from observations and are somewhat suspect. Because of experimental errors due to light leakage and lack of spectral resolution, extinction coefficients at longer wavelengths are quite possibly larger than reported here.

Values for the scattering coefficients were not explicitly reported in any of the above papers, though spectral albedos were presented. Therefore we determined scattering coefficients by entering the extinction coefficients from Figure 3 into the two-stream model and varying the scattering coefficient to reproduce the reported albedos. In the visible and near infrared, the scattering inhomogeneities are much larger than the wavelength, and the scattering coefficient does not vary with wavelength (Grenfell 1983, Bohren and Huffman 1983). The bubble-free ice and clear arctic water cases were assumed to be purely absorbing media. Scattering coefficients (Table 1) varied from zero for bubble-free fresh ice and arctic water to 800 m$^{-1}$ for cold dry snow.

![Figure 3. Spectral extinction coefficients for nine medium types used in the sea ice radiative transfer model: 1) dry snow, 2) melting snow, 3) ice colder than the eutectic point, 4) surface scattering layer of white ice, 5) interior portion of white ice, 6) cold blue ice, 7) melting blue ice, 8) bubble-free fresh ice, and 9) clear arctic water.](image_url)

<table>
<thead>
<tr>
<th>Medium</th>
<th>Scattering coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold dry snow</td>
<td>800</td>
</tr>
<tr>
<td>Melting wet snow</td>
<td>160</td>
</tr>
<tr>
<td>Ice below eutectic</td>
<td>160</td>
</tr>
<tr>
<td>White ice scattering</td>
<td>120</td>
</tr>
<tr>
<td>White ice interior</td>
<td>2.5</td>
</tr>
<tr>
<td>Cold blue ice</td>
<td>1.8</td>
</tr>
<tr>
<td>Melting blue ice</td>
<td>1.2</td>
</tr>
<tr>
<td>Bubble-free ice</td>
<td>0.0</td>
</tr>
<tr>
<td>Clear arctic water</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Note: The scattering coefficients are constant with wavelength.
Spectral albedos and transmittances do not depend on the spectral composition of the incident radiation, so if these are the parameters of interest \( F_o(\lambda) \) is not needed. However, there are other situations, particularly in biological applications, where absolute values of upwelling or downwelling irradiance are desired. In these cases \( F_o(\lambda) \) must be specified.

Representative Arctic spectra of incident solar irradiances measured at Point Barrow, Alaska, were incorporated into the model (Grenfell and Perovich 1984). The sky conditions for the four curves presented in Figure 4 were 1) clear skies, 2) light clouds, solar disk clearly visible, 3) cloudy, solar disk barely visible, and 4) heavy overcast, solar disk not visible. The plotted values are normalized and represent the fraction per micrometer of the total incident irradiance and thus must be multiplied by the total incident irradiance from 400–2400 nm. One somewhat disturbing feature of the curves is that the maxima are about 700 nm, which is contrary to other observations (Gast 1960) and to our belief of a yellow sun. In actuality the maxima are not indicative of a reddening of the sun, but rather are a manifestation of 10–15% uncertainties in absolute spectral irradiances. This illustrates a need for more precise measurements of incident spectral irradiance under arctic conditions.

Both the albedo and the upwelling irradiance at the surface can have a specular reflection component \( R_s \). This is strictly a surface phenomenon arising from index of refraction differences at the interface between two media. The indices of refraction of ice and water are so close, 1.31 and 1.33 respectively, that \( R_s \) at the bottom ice-water boundary is assumed to be zero. However since air has an index of refraction of 1, \( R_s \) at the surface is not negligible. Under diffuse sky conditions, \( R_s \) for air/ice or air/water will be 0.05 (Perovich and Grenfell 1982). The dry and wet snow types have a rough granular surface and we cannot distinguish specular reflection from scattering, so we assume \( R_s = 0 \).

* Personal communication with T.C. Grenfell, University of Washington, 1988.
A computer program, utilizing the solution presented in the theory section, was written to calculate the upwelling and downwelling irradiances and associated parameters for an arbitrary medium consisting of up to 15 distinct layers. By inputting the reflection and extinction coefficients for the nine media types, the general model can be customized for sea ice. The model allows selection of the number, type, and thickness of layers, along with the incident shortwave irradiance, sky conditions and spectral range of interest. Output parameters include spectral values of surface upwelling irradiance, bottom downwelling irradiance, albedo, transmittance, and PAR, and wavelength integrated values of bulk albedo, transmittance, transmitted flux, and PAR. Because of the relative simplicity of the model, the solution can be quickly calculated on a personal computer.

APPLICATIONS OF THE MODEL

We shall demonstrate the utility of the radiative transfer model by applying it to three distinct cases: 1) obtaining a two-dimensional spatial picture of the transmitted radiation field through a cold ice cover which varies in X and Y, 2) monitoring temporal changes in light transmission through melting ice, and 3) determining combined spatial and temporal variations in light transmission. The major focus of these three examples will be on the transmitted spectral radiation, with some attention paid to spectral albedos. In addition to showing the capabilities of the model, the examples have been selected to illustrate the effects of variations in ice thickness, snow cover, surface conditions, and ice types on the optical properties.

Spatial variations

Tucker used a hot water drill to perform a detailed mapping of ice and snow thickness on several floes in the Beaufort Sea. Figure 5 summarizes the snow and ice thickness data from one of these floes, where 121 ice thicknesses were measured for a 100- x 100-m section using a 1-m grid. This area consisted of deformed multiyear ice with a primarily columnar crystal texture. Since the observations were made in April, the snow cover was cold and dry, and the ice was cold but not below the eutectic point. Ice thicknesses ranged from 1.8 to 6.5 m with a mean of 3.01 m, while snow thicknesses varied from 0 to 0.34 m with a mean of 0.07 m.

The ice cover is assumed to be relatively homogeneous, consisting of interior white ice. Thus variations in light transmission are primarily due to differences in snow and ice thickness. The two-dimensional spatial distribution of transmitted light at 470 nm is plotted in Figure 6. The fraction transmitted spans over 5 orders of magnitude from 0.88 x 10^-5 to 0.63 x 10^-1. Features in this plot do not necessarily correlate with the ice thickness topography. The peaks in transmitted light correspond to areas of bare ice, while minimum values occur where the snow was the deepest. Distributions at other wavelengths are similar in shape to Figure 6, but have reduced magnitudes.

The question arises whether this detailed spatial computation results in a better representation of light reflection and transmission for this area. To address this issue, spectral albedos and transmittances were calculated for the 121 points on Tucker's thickness grid. These values were then averaged to generate an areal estimate for the region and are plotted as curve 1 in Figures 7a and 7b. For comparison another areal estimate was computed more simplistically by first determining the mean snow and ice thicknesses and then calculating spectral values for this single case (curve 2). As curves 1 and 2 indicate, there is a significant disparity between these two methods, with the simplistic method yielding albedos roughly 0.05 higher and transmittances near 1 order of magnitude lower than the more detailed analysis. Of course this is not surprising since radiative transfer processes are more exponential than linear with depth. As a direct consequence of this, the actual areal averaged transmittance will always be greater than or equal to values computed by using mean snow and ice thicknesses.

**Figure 5.** Snow and ice thickness data from Tucker (personal communication, 1988). The bottom and top surfaces represent the thicknesses of the ice and the snow cover respectively. The thickness data were taken at 10-m spacings on a 100- x 100-m grid.

thicknesses for the area. The difference is particularly pronounced for cases such as this in which part of the area is snow free.

**Temporal variations**

Even a spatially uniform ice sheet can be optically complex when it is undergoing temporal changes. From an optical perspective the most dramatic changes occur in the early portion of the melt season as the ice cover evolves from an opaque snow-covered medium to translucent bare or ponded ice. This transition is of particular interest biologically, since some of the organisms living in and under the ice are light limited and the removal of the snow cover governs the onset of biological activity. To illustrate this point we will examine the optical evolution of a topographically simple ice sheet during the early melt season. In the spring of 1982, Mould Bay fiord (Prince Patrick Island in the Canadian Archipelago) was covered by 2.2 m of flat, undeformed, first-year ice overlaid by 0.30 m of snow (Perovich 1983). The snow melted quickly between 21 and 25 June, transforming the entire ice sheet into a melt pond for a few days, until it isostatically readjusted, leaving predominantly melting blue ice and shallow melt ponds, with some patches of drained white ice. These changes in surface conditions are illustrated in Figure 8. By 10 July the ice had thinned to 1.46 m, with most of the melting occurring during July. Table 2 summarizes ice thickness, snow depth, pond depth,
Figure 6. Spatial distribution of light transmittance at 470 nm for ice and snow conditions of Figure 5.

Figure 7. Areally averaged values of spectral albedo and transmittance for ice cover of Figure 5. Curve 1 is the average of the albedos and transmittances computed for the 121 grid points. In curve 2 the average snow and ice thicknesses of the grid were determined; then using these average thicknesses the spectral albedos and transmittances were calculated.

incident shortwave irradiance, and cloud cover for 20 June to 10 July 1982. With these data as input, the radiative transfer model was run for each day.

In Figure 9 albedo is plotted as a function of wavelength and time. The first decrease in albedo occurred on 21 June when the snow began to melt. This drop was somewhat greater at longer wavelengths. There was a precipitous drop three days later when the snow melted and the surface became completely covered by melt ponds. After this point spectral albedos were fairly constant, with some small variations due to changes in pond depths.
Table 2. Environmental conditions for Mould Bay ice cover.

<table>
<thead>
<tr>
<th>Date</th>
<th>Ice thickness (m)</th>
<th>Surface conditions</th>
<th>Incident shortwave (W/m²)</th>
<th>Cloud conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 June</td>
<td>2.22</td>
<td>0.30 DS</td>
<td>310</td>
<td>Heavy overcast, solar disk not visible</td>
</tr>
<tr>
<td>21 June</td>
<td>2.22</td>
<td>0.30 MS</td>
<td>316</td>
<td>Light clouds, solar disk clearly visible</td>
</tr>
<tr>
<td>22 June</td>
<td>2.22</td>
<td>0.20 MS</td>
<td>357</td>
<td>Clear skies</td>
</tr>
<tr>
<td>23 June</td>
<td>2.22</td>
<td>0.10 MS</td>
<td>352</td>
<td>Clear skies</td>
</tr>
<tr>
<td>24 June</td>
<td>2.22</td>
<td>0.10 MP</td>
<td>209</td>
<td>Heavy overcast, solar disk not visible</td>
</tr>
<tr>
<td>25 June</td>
<td>2.70</td>
<td>0.20 MP</td>
<td>198</td>
<td>Heavy overcast, solar disk not visible</td>
</tr>
<tr>
<td>26 June</td>
<td>2.18</td>
<td>0.05 MP</td>
<td>178</td>
<td>Heavy overcast, solar disk not visible</td>
</tr>
<tr>
<td>27 June</td>
<td>2.16</td>
<td>0.05 MP</td>
<td>353</td>
<td>Light clouds, solar disk clearly visible</td>
</tr>
<tr>
<td>28 June</td>
<td>2.14</td>
<td>0.05 MP</td>
<td>235</td>
<td>Cloudy, solar disk barely visible</td>
</tr>
<tr>
<td>29 June</td>
<td>2.12</td>
<td>0.05 MP</td>
<td>332</td>
<td>Clear skies</td>
</tr>
<tr>
<td>30 June</td>
<td>2.10</td>
<td>0.10 MP</td>
<td>326</td>
<td>Clear skies</td>
</tr>
<tr>
<td>1 July</td>
<td>2.03</td>
<td>0.05 MP</td>
<td>231</td>
<td>Cloudy, solar disk barely visible</td>
</tr>
<tr>
<td>2 July</td>
<td>1.96</td>
<td>0.10 MP</td>
<td>337</td>
<td>Clear skies</td>
</tr>
<tr>
<td>3 July</td>
<td>1.89</td>
<td>0.05 MP</td>
<td>228</td>
<td>Cloudy, solar disk barely visible</td>
</tr>
<tr>
<td>4 July</td>
<td>1.83</td>
<td>0.05 MP</td>
<td>126</td>
<td>Heavy overcast, solar disk not visible</td>
</tr>
<tr>
<td>5 July</td>
<td>1.76</td>
<td>0.05 MP</td>
<td>170</td>
<td>Heavy overcast, solar disk not visible</td>
</tr>
<tr>
<td>6 July</td>
<td>1.69</td>
<td>0.05 MP</td>
<td>241</td>
<td>Cloudy, solar disk barely visible</td>
</tr>
<tr>
<td>7 July</td>
<td>1.62</td>
<td>0.05 MP</td>
<td>313</td>
<td>Light clouds, solar disk clearly visible</td>
</tr>
<tr>
<td>8 July</td>
<td>1.56</td>
<td>0.05 MP</td>
<td>335</td>
<td>Clear skies</td>
</tr>
<tr>
<td>9 July</td>
<td>1.53</td>
<td>0.05 MP</td>
<td>312</td>
<td>Clear skies</td>
</tr>
<tr>
<td>10 July</td>
<td>1.49</td>
<td>0.05 MP</td>
<td>312</td>
<td>Clear skies</td>
</tr>
</tbody>
</table>

Note: The surface conditions give the thickness and type of surface layer where DS is dry snow, MS is melting snow, and MP is melt pond.
Temporal evolution of spectral albedo for the Mould Bay ice cover.

Spectral values of transmitted PAR for the same time period are plotted in Figure 10. The snow cover was still present for the first few days and an insignificant amount of light was transmitted. Once the snow melted and ponds formed, PAR values increased sharply, especially at shorter wavelengths. As the ice thinned over the next two weeks there was a general upward trend in transmitted PAR. This upward trend increased in July as the ice thinning accelerated. The occasional small decrease occurred on cloudy days with low incident solar irradiance. The spectral peak of transmitted PAR was at 530 nm. Total PAR displayed a similar behavior, increasing by more than an order of magnitude as the snow cover began to melt (20–21 June), then sharply by a factor of 100 as the snow completely melted and the ice surface became flooded (21–24 June), and finally a gradual 10-fold increase as melting progressed and the ice cover thinned (25 June–10 July).

Spatial and temporal variations

In the more dynamically active regions of the Arctic simple undeformed ice sheets, as found in Mould Bay, are quite scarce. More common is an ice cover with some surface topography, perhaps a ridge, a few hummocks, a low area or two, and typically a variable snow cover. In such a case, spatial variations in ice conditions can further complicate the temporal evolution of the transmitted radiation field.

To illustrate the combined effects of spatial and temporal variations let us examine three sites that were monitored from 20 June to 7 July during the 1984 Marginal Ice Zone Experiment (Maykut and Perovich 1985). These sites were all within 5 m of one another along a small pressure ridge. Site 1 was on the side of the ridge where the snow cover was deepest and had snow present through 7 July. Site 2 was at the top of the ridge, where the surface was snow free, though covered with 0.03 m of melting granular white ice throughout the experiment. Site 3 was initially covered by 0.21 m of snow, which melted by 3 July. A melt pond formed at this site, reaching a depth of 0.20 m by 7 July. Snow and ice thicknesses, surface conditions and the incident radiation field for these three sites are summarized in Table 3.

Spectral albedos for the three sites are summarized in Figure 11. Surface conditions at site
Figure 10. Temporal evolution of spectral and total PAR for the Mould Bay ice cover. Units of PAR are \(\mu E/m^2s\).

2 (dashed line) remained constant during the experiment and this was reflected in an albedo that was temporally invariant. Site 1 (shaded envelope) exhibited a very slight decrease with time due to the thinning of the snow cover. Changes in spectral albedo were most dramatic at site 3, where surface conditions evolved from cold dry snow, to melting snow, to bare white ice, to melting blue ice, to a melt pond with a corresponding continual decrease in albedo. Daily albedos at site 3 from 20 June to 7 July are represented by the family of curves in Figure 11.

Transmitted values of total PAR for the three sites are presented in Figure 12. Total transmitted PAR integrated over the 18-day period was 17.6 \(\mu E/m^2s\) for site 1, 12.6 for site 2, and 31.6 for site 3. Values at sites 1 and 3 were small initially, but increased as the snow cover melted. Transmitted PAR was the greatest at site 3 after the snow melted and a melt pond formed. At site 2 results were fairly constant during the entire observation period. There was a sharp increase in total transmitted PAR at site 1 between 6 and 7 July as the snow thickness decreased from 0.10 to 0.04 m. On 20 June site 2 had the highest transmission, yet by the end of the experiment

Figure 11. Spectral albedos from sites 1, 2, and 3. The shaded area represents albedos for site 1, the dashed line shows the albedo at site 2, and the series of curves depicts daily albedos at site 3 from 20 June (high) to 7 July (low).
Table 3. Environmental conditions for MIZEX 84 sites.

<table>
<thead>
<tr>
<th>Date (1984)</th>
<th>Cloud conditions</th>
<th>Incident shortwave (W/m²)</th>
<th>Site 1</th>
<th>Site 2</th>
<th>Site 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 June</td>
<td>Clear skies</td>
<td>300</td>
<td>0.38</td>
<td>2.02</td>
<td>0.00</td>
</tr>
<tr>
<td>21 June</td>
<td>Clear skies</td>
<td>305</td>
<td>0.34</td>
<td>2.01</td>
<td>0.00</td>
</tr>
<tr>
<td>22 June</td>
<td>Light clouds, solar disk visible</td>
<td>215</td>
<td>0.32</td>
<td>2.01</td>
<td>0.00</td>
</tr>
<tr>
<td>23 June</td>
<td>Light clouds, solar disk visible</td>
<td>220</td>
<td>0.29</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>24 June</td>
<td>Clear skies</td>
<td>277</td>
<td>0.28</td>
<td>1.98</td>
<td>0.00</td>
</tr>
<tr>
<td>25 June</td>
<td>Cloudy, solar disk barely visible</td>
<td>183</td>
<td>0.27</td>
<td>1.96</td>
<td>0.00</td>
</tr>
<tr>
<td>26 June</td>
<td>Cloudy, solar disk barely visible</td>
<td>194</td>
<td>0.25</td>
<td>1.92</td>
<td>0.00</td>
</tr>
<tr>
<td>27 June</td>
<td>Cloudy, solar disk barely visible</td>
<td>172</td>
<td>0.24</td>
<td>1.85</td>
<td>0.00</td>
</tr>
<tr>
<td>28 June</td>
<td>Cloudy, solar disk barely visible</td>
<td>171</td>
<td>0.24</td>
<td>1.83</td>
<td>0.00</td>
</tr>
<tr>
<td>29 June</td>
<td>Cloudy, solar disk barely visible</td>
<td>159</td>
<td>0.23</td>
<td>1.79</td>
<td>0.00</td>
</tr>
<tr>
<td>30 June</td>
<td>Cloudy, solar disk barely visible</td>
<td>168</td>
<td>0.19</td>
<td>1.76</td>
<td>0.00</td>
</tr>
<tr>
<td>1 July</td>
<td>Heavy overcast, solar disk not visible</td>
<td>114</td>
<td>0.17</td>
<td>1.71</td>
<td>0.00</td>
</tr>
<tr>
<td>2 July</td>
<td>Cloudy, solar disk barely visible</td>
<td>170</td>
<td>0.16</td>
<td>1.68</td>
<td>0.00</td>
</tr>
<tr>
<td>3 July</td>
<td>Cloudy, solar disk barely visible</td>
<td>157</td>
<td>0.15</td>
<td>1.67</td>
<td>0.00</td>
</tr>
<tr>
<td>4 July</td>
<td>Heavy overcast, solar disk not visible</td>
<td>136</td>
<td>0.13</td>
<td>1.65</td>
<td>0.00</td>
</tr>
<tr>
<td>5 July</td>
<td>Heavy overcast, solar disk not visible</td>
<td>137</td>
<td>0.11</td>
<td>1.62</td>
<td>0.00</td>
</tr>
<tr>
<td>6 July</td>
<td>Heavy overcast, solar disk not visible</td>
<td>104</td>
<td>0.10</td>
<td>1.60</td>
<td>0.00</td>
</tr>
<tr>
<td>7 July</td>
<td>Heavy overcast, solar disk not visible</td>
<td>100</td>
<td>0.04</td>
<td>1.60</td>
<td>0.00</td>
</tr>
</tbody>
</table>

*H for site 3 designates the formation of a melt pond.

Figure 12. Total PAR (μE/m²s) as a function of time for sites 1, 2, and 3.
it was the lowest. In fact, readings at site 3 increased from 20% of site 2 to 500% of site 2. Even over this small 5-m spatial scale, at a particular time, differences in transmitted PAR between the three sites were as large as a factor of five, illustrating the potential inaccuracies of estimating transmitted PAR from a single set of measurements.

Transmitted PAR as a function of time and wavelength for sites 1, 2, and 3 are plotted in Figure 13. The contours are isopleths of the base 10 logarithm of transmitted PAR (0.2 intervals). The sharp dropoff of PAR at wavelengths beyond 650 nm is evident in all three cases. Maximum PAR is transmitted between 450 and 550 nm. Temporal changes were greatest at site 3, with an increase in PAR at 470 nm of one and a half orders of magnitude. In essence the formation of the melt pond at site 3 is analogous to opening a window in the ice cover.

**DISCUSSION**

A sea ice cover can have tremendous variability in the reflected and transmitted radiation fields. On a single floe ice thickness can vary from centimeter-thick nilas to ridges tens of meters thick, while snow depths can range from zero to a meter or more. Over horizontal distances of a few meters surface conditions can change from snow-covered ice to bare white ice to ponded ice. As we have seen in the three case studies, this can result in values of light transmittance that vary by several orders of magnitude. Temporal evolution during the melt cycle is also quite significant. Removal of the snow cover results in a reduction in albedo and a sharp increase in transmittance. The formation of melt ponds causes a further decrease in albedo and enhancement of transmittance.
This complexity makes estimation of areally or temporally averaged values of reflected or transmitted light difficult. However, such values are important for a number of applications, including assessments of biological activity, internal ice melting, and regional albedos. Single point measurements of albedo or transmittance are inadequate to define areal averages, while measurements on a detailed spatial scale are not practical.

The model presented in this report provides a mechanism for estimating light reflection and transmission for such complex ice covers. Because of the model's computational simplicity, the optical properties of an ice cover can be represented in spatial or temporal detail. The input parameters needed for the computation are all easily observable quantities: ice thickness, snow depth, ice surface conditions, and a qualitative description of the medium's composition in terms of ice and snow types. Once the structural description is specified, the model enables spectral albedos, PAR values, and transmittances to be calculated.

Currently the model is limited to nine snow and ice types. While these types constitute a considerable collection, there are a few significant omissions. For example, there is a scarcity of data on the optical properties of antarctic pack ice. Because of the significant biological activity within and beneath the antarctic ice cover, this is a region of extreme interest for optical modeling. Structurally antarctic sea ice is quite different from arctic ice (Gow et al. 1982), with large expanses of pancake ice and a preponderance of frazil rather than columnar crystals. This difference in ice structure presumably results in some disparity in optical properties. The presence of contaminants in the ice, such as biological organisms, would also change its optical properties. Measurements are needed to determine spectral scattering and extinction coefficients for these ice types to extend the model to these cases.

LITERATURE CITED


APPENDIX A: DECOUPLING OF FIRST-ORDER DIFFERENTIAL EQUATIONS

The upwelling and downwelling irradiances are defined by the coupled differential equations

\[ dF_1(z,\lambda) = -k_1 F_1(z,\lambda)dz - r_1 F_1(z,\lambda)dz + r_1 F_1(z,\lambda)dz \]  
(A1)

\[ dF_2(z,\lambda) = k_2 F_2(z,\lambda)dz - r_2 F_2(z,\lambda)dz + r_2 F_2(z,\lambda)dz \]  
(A2)

In order to solve for \( F_1(z,\lambda) \) and \( F_2(z,\lambda) \) these equations are reformulated as uncoupled second order equations. Equations A1 and A2 can be rewritten as

\[ (d/dz + k_1 + r_1) F_1(z,\lambda) - r_1 F_1(z,\lambda) = 0 \]  
(A3)

\[ r_1 F_1(z,\lambda) + (d/dz - k_1 - r_1) F_1(z,\lambda) = 0 \]  
(A4)

respectively. Operate on eq A3 by multiplying by \( r_1 \):

\[ r_1 (d/dz + k_1 + r_1) F_1(z,\lambda) - r_1^2 F_1(z,\lambda) = 0. \]  
(A5)

Operate on eq A4 with \( (d/dz - k_1 - r_1) \):

\[ (d/dz + k_1 + r_1) (d/dz + k_1 + r_1) F_1(z,\lambda) + (d/dz - k_1 - r_1) r_1 F_1(z,\lambda) = 0. \]  
(A6)

Subtracting eq A5 from A6 gives

\[ (d^2/dz^2) F_1(z,\lambda) - (k_1 + r_1) (k_1^2 + 2k_1 r_1) F_1(z,\lambda) = 0, \]  
(A7)

which has the solution

\[ F_1(z,\lambda) = C \sinh(\kappa_1 z) + D \cosh(\kappa_1 z). \]  
(A8)

An equation for \( F_2(z,\lambda) \) is determined in a similar fashion. Equation A3 is operated on with

\[ (d/dz - k_2 - r_2) \]

and eq A4 is multiplied by \( r_2 \) giving

\[ (d/dz - k_2 - r_2)(d/dz + k_2 + r_2) F_2(z,\lambda) - (d/dz - k_2 - r_2) r_2 F_2(z,\lambda) = 0 \]  
(A9)

and

\[ r_2 ^2 F_2(z,\lambda) + (d/dz - k_2 - r_2) r_2 F_2(z,\lambda) = 0. \]  
(A10)

Adding eq A9 and A10 gives

\[ (d^2/dz^2) F_2(z,\lambda) - (k_2 + r_2) (k_2^2 + 2k_2 r_2) F_2(z,\lambda) = 0, \]  
(A11)

which has the solution

\[ F_2(z,\lambda) = A \sinh(\kappa_2 z) + B \cosh(\kappa_2 z). \]  
(A12)

Equations A8 and A12 can also be expressed in terms of \( \exp(\kappa_1 z) \) and \( \exp[-(\kappa_1 z)] \). A solution using \( \sinh(\kappa_1 z) \) and \( \cosh(\kappa_1 z) \) was selected because it gave greater numerical stability when inverting the matrix defined in Figure 2.
A facsimile catalog card in Library of Congress MARC format is reproduced below.

Perovich, Donald K.
iii, 20 p., illus., 28 cm. (CRREL Report 89-15.)
Bibliography: p. 15.
END
FILMED
10-89
DTIC