THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.
The principal goal of this research has been the synthesis and characterization of boron analogues of important biologically active molecules such as the amino acids. During this period of research syntheses were developed for amides of a variety of simple boron analogues of common amino acids such as alanine. Peptides containing boron were completed. Synthetic approaches were developed for boron analogues of phosphonates. Collaborative studies on the biological activity of many of these compounds were carried out by Professor Iris H. Hall at the University of North Carolina. Significant antitumor and hypolipidemic activity have been found in animal model studies.
The principal goal of this research has been the synthesis and characterization of boron analogues of important biologically active molecules such as the amino acids. During this period of research syntheses were developed for amides of a variety of simple boron analogues of common amino acids such as alanine. Peptides containing boron were completed. Synthetic approaches were developed for boron analogues of phosphonates. Collaborative studies on the biological activity of many of these compounds were carried out by Professor Iris H. Hall at the University of North Carolina. Significant antitumor and hypolipidemic activity have been found in animal model studies.
PUBLICATIONS

1. A. Sood, B.F. Spielvogel, "Boron Analogs of Amino Acids VII. Synthesis of Alminonia-(N-ethylcarbamoylmethyl)borane, \(\text{H}_3\text{NBH(CH}_3\text{)C(O)}\text{NHEt} \), a Boron Analog of the N-ethylamide of Alanine" Main Group Metal Chemistry. In press.

Personnel Supported

Dr. Anup Sood
Dr. Barbara Shaw