Dioxygen Reduction at a Graphite Electrode Modified by Mononuclear Tetraneopentoxyphthalocyaninatocobalt(II) and Related Polynuclear Species

By

P. Janda, N. Kobayashi, P.R. Auburn, H. Lam, C.C. Leznoff and A.B.P. Lever*

in

Canadian Journal of Chemistry

York University
Department of Chemistry, 4700 Keele St., North York
Ontario, Canada M3J 1P3

Reproduction in whole, or in part, is permitted for any purpose of the United States Government

*This document has been approved for public release and sale; its distribution is unlimited

*This statement should also appear in Item 10 of the Document Control Data-DD form 1473. Copies of the form available from cognizant contract administrator
Dioxygen Reduction at a Graphite Electrode Modified by Mononuclear Tetraenpentoxaphthalocyaninatocobalt(II) and Related Polynuclear Species

P. Janda, N. Kobayashi, P.R. Auburn, H. Lam, C.C. Leznoff and A.B.P. Lever

Potentiodynamic data were obtained under argon for the mononuclear species tetraenpentoxaphthalocyaninatocobalt(II) species adsorbed on glassy carbon (GC), ordinary pyrolytic graphite (OPG) and highly oriented pyrolytic graphite (HOPG). Comparative data show that the most convenient material to use is HOPG whereon a limiting monolayer is apparently achieved. Data were also presented for the mononuclear and polynuclear analogues on HOPG under both argon and dioxygen. Comparison is made of the potential data obtained in water and in organic solvent.

A pH dependence study shows that the dioxygen reduction potential tracks the Co(II)TPC-Co(II)TPC redox couple with a slope of approximately -65mV/pH for the mononuclear species, in the acid regime, but substantially less than -65mV/pH for the polynuclear species. There is no pH dependence in the alkaline regime.

Possible mechanisms are discussed.
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Office of Naval Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Attn: Code 1113</td>
</tr>
<tr>
<td></td>
<td>800 N. Quincy Street</td>
</tr>
<tr>
<td></td>
<td>Arlington, Virginia 22217-5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Dr. David Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Code 334</td>
</tr>
<tr>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td></td>
<td>NSTL, Mississippi 39529</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Dr. Bernard Douda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attn: Code 334</td>
</tr>
<tr>
<td></td>
<td>Code 50C</td>
</tr>
<tr>
<td></td>
<td>Crane, Indiana 47522-5050</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Naval Weapons Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>China Lake, California 93555</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Scientific Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20380</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Naval Civil Engineering Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
</tr>
<tr>
<td></td>
<td>Port Hueneme, California 93401</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Defense Technical Information Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Building 5, Cameron Station</td>
</tr>
<tr>
<td>high quality</td>
<td>Alexandria, Virginia 22314</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>DTNSRDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attn: Dr. H. Singerman</td>
</tr>
<tr>
<td></td>
<td>Applied Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Annapolis, Maryland 21401</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Dr. William Tolles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Superintendent</td>
</tr>
<tr>
<td></td>
<td>Chemistry Division, Code 6100</td>
</tr>
<tr>
<td></td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20375-5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>U.S. Army Research Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Mr. John Boyle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Materials Branch</td>
</tr>
<tr>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Naval Ocean Systems Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td></td>
<td>San Diego, California 91232</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton SO9 5H UNITED KINGDOM

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, SO9 5NH UNITED KINGDOM

Dr. John Wilkes
Department of the Air Force
United States Air Force Academy
Colorado Springs, Colorado 80840-6528

Dr. Edward Fletcher
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Bruce Dunn
Department of Engineering & Applied Science
University of California
Los Angeles, California 90024

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Richard Pollard
Department of Chemical Engineering
University of Houston
Houston, Texas 77004

Dr. Steven Greenbaum
Department of Physics and Astronomy
Hunter College
695 Park Avenue
New York, New York 10021

Dr. M. Philpott
IBM Research Division
Mail Stop K 33/801
San Jose, California 95130-6099

Dr. Donald Sandstrom
Boeing Aerospace Co.
P.O. Box 3999
Seattle, Washington 98124

Dr. Martha Greenblatt
Department of Chemistry, P.O. Box 939
Rutgers University
Piscataway, New Jersey 08855-0939

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. Anthony Sammells
Eltron Research Inc.
4260 Westbrook Drive, Suite 111
Aurora, Illinois 60505

Dr. D. Rolison
Naval Research Laboratory
Code 6171
Washington, D.C. 20375-5000

Dr. C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Thomas Davis
Polymers Division
National Bureau of Standards
Gaithersburg, Maryland 20899
Dr. Henry S. White
Department of Chemical Engineering
and Materials Science
151 Amundson Hall
421 Washington Avenue, S.E.
Minneapolis, Minnesota 55455

Dr. Daniel A. Buttry
Department of Chemistry
University of Wyoming
Laramie, Wyoming 82071

Dr. W. R. Fawcett
Department of Chemistry
University of California
Davis, California 95616

Dr. Peter M. Blonsky
Eveready Battery Company, Inc.
25225 Detroit Road, P.O. Box 45035
Westlake, Ohio 44145
ABSTRACTS DISTRIBUTION LIST, OSIA

Dr. M. A. El-Sayed
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. E. R. Bernstein
Department of Chemistry
Colorado State University
Fort Collins, Colorado 80521

Dr. J. R. MacDonald
Chemistry Division
Naval Research Laboratory
Code 6110
Washington, D.C. 20375-5000

Dr. G. B. Schuster
Chemistry Department
University of Illinois
Urbana, Illinois 61801

Dr. J. B. Halpern
Department of Chemistry
Howard University
Washington, D.C. 20059

Dr. M. S. Wrighton
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. W. E. Moerner
I.B.M. Corporation
Almaden Research Center
650 Harry Rd.
San Jose, California 95120-6099

Dr. A. B. P. Lever
Department of Chemistry
York University
Downsview, Ontario
CANADA M3J1P3

Dr. George E. Walrafen
Department of Chemistry
Howard University
Washington, D.C. 20059

Dr. Carmen Ortiz
Consejo Superior de Investigaciones Cientificas
Serrano 121
Madrid 6, SPAIN

Dr. Kent R. Wilson
Chemistry Department
University of California
La Jolla, California 92033

Dr. G. A. Crosby
Chemistry Department
Washington State University
Pullman, Washington 99164

Dr. Theodore Pavlopoulos
NOSC
Code 521
San Diego, California 92132

Dr. John Cooper
Code 6173
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Joseph H. Boyer
Department of Chemistry
University of New Orleans
New Orleans, Louisiana 70148

Dr. Harry D. Gafney
Department of Chemistry
Queens College of CUNY
Flushing, New York 11367-0904

Jr. Joe Brandelik
AFWAL/AADO-1
Wright Patterson AFB
Fairborn, Ohio 45433
Dioxygen Reduction at a Graphite Electrode Modified by Mononuclear Tetra-neopentoxyphthalocyaninatocobalt(II) and Related Polynuclear Species

by Pavel Janda, Nagao Kobayashi, Pamela R. Auburn, Herman Lam, Clifford C. Leznoff and A.B.P. Lever

Dept. of Chemistry, York University, North York (Toronto), Ontario, Canada, M3J 1P3

Keywords: Phthalocyanine; Electrochemistry; Dioxygen reduction; pH Dependence; Graphite electrode

Contacts for Authors:
Tel: 416-736-2100 x 2309
FAX: 416-736-5516
Bitnet: BLEVER@YUSOL
Abstract

Potentiodynamic data were obtained under argon for the mononuclear species tetraneopentoxyphthalocyaninato[Co(II)] species adsorbed on glassy carbon (GC), ordinary pyrolytic graphite (OPG) and highly oriented pyrolytic graphite (HOPG). Comparative data show that the most convenient material to use is HOPG whereon a limiting monolayer is apparently achieved. Data were also presented for the mononuclear and polynuclear analogues on HOPG under both argon and dioxygen. Comparison is made of the potential data obtained in water and in organic solvent. A pH dependence study shows that the dioxygen reduction potential tracks the Co(II)TNPc/Co(I)TNPc redox couple with a slope of approximately -65mV/pH for the mononuclear species, in the acid regime, but substantially less than -65mV/pH for the polynuclear species. There is no pH dependence in the alkaline regime. Possible mechanisms are discussed.
Abstract

Potentiodynamic data were obtained under argon for the mononuclear species tetra-neopentoxyphthalocyaninato-cobalt(II) species adsorbed on glassy carbon (GC), ordinary pyrolytic graphite (OPG) and highly oriented pyrolytic graphite (HOPG). Comparative data show that the most convenient material to use is HOPG whereon a limiting monolayer is apparently achieved. Data were also presented for the mononuclear and polynuclear analogues on HOPG under both argon and dioxygen. Comparison is made of the potential data obtained in water and in organic solvent. A pH dependence study shows that the dioxygen reduction potential tracks the Co(II)TNPc/Co(I)TNPc redox couple with a slope of approximately $-65\text{mV}/\text{pH}$ for the mononuclear species, in the acid regime, but substantially less than $-65\text{mV}/\text{pH}$ for the polynuclear species. There is no pH dependence in the alkaline regime. Possible mechanisms are discussed.
Dioxygen Reduction at a Graphite Electrode Modified by Mononuclear Tetraneopentoxyphthalocyaninatocobalt(II) and Related Polynuclear Species

by Pavel Janda, Nagao Kobayashi, Pamela R. Auburn, Herman Lam, Clifford C. Leznoff and A.B.P. Lever*

Dept. of Chemistry, York University, North York (Toronto). Ontario. Canada, M3J 1P3

Abstract

Potentiodynamic data were obtained under argon for the mononuclear species tetraneopentoxyphthalocyaninatocobalt(II) species adsorbed on glassy carbon (GC), ordinary pyrolytic graphite (OPG) and highly oriented pyrolytic graphite (HOPG). Comparative data show that the most convenient material to use is HOPG whereon a limiting monolayer is apparently achieved. Data were also presented for the mononuclear and polynuclear analogues on HOPG under both argon and dioxygen. Comparison is made of the potential data obtained in water and in organic solvent. A pH dependence study shows that the dioxygen reduction potential tracks the Co(II)TNFc/Co(I)TNFc redox couple with a slope of approximately -65mV/pH for the mononuclear species, in the acid regime, but substantially less than -65mV/pH for the polynuclear species. There is no pH dependence in the alkaline regime. Possible mechanisms are discussed.
Introduction

Macrocyclic complexes of iron and cobalt have proven useful in the development of a better dioxygen reduction catalyst for a fuel cell (1) cathode (2-45). In this regard phthalocyanine species are of particular interest (2,3,7-9,16,17). Recently we have reported (30) data for a series of binuclear cobalt phthalocyanine complexes whose electrocatalytic activity exceeds that of the mononuclear control molecule, [3,9,16,23-tetra (neck-pentoxy) phthalocyanato]cobalt(II), 1 by an amount proportional to the degree of molecular electronic coupling within the binuclear system. During these studies, control data were collected for mononuclear complex 1 on various graphitic substrates over a range of pH. The earlier work on the binuclear phthalocyanines was undertaken by depositing the phthalocyanine onto ordinary pyrolytic graphite (OPG) (30), but at that time no variable pH data were obtained. To obtain pH dependence data, this study was repeated on highly oriented pyrolytic graphite (HOPG) which is much more efficient to use since its surface can be prepared (renewed) much more readily than that of OPG. A tetranuclear species (46) was also studied. These data are now reported. Possible mechanisms for dioxygen reduction are discussed.

Experimental

Equipment: Potential scans (cyclic voltammetry) for dioxygen reduction were performed with a Pine Instruments RD3 potentiostat and the rotation studies with a Pine Instruments PIR rotator.
Footnote: For simplicity one isomer of species 1, and of its analogues are labelled here; however recognise that due to different neopentoxy group substitution patterns, there will be several isomers which are generally inseparable.

Materials: o-Dichlorobenzene (DCB) (Aldrich, Gold Label) was used as supplied. Tetrabutylammonium perchlorate (TBAP) (Kodak) was recrystallized from absolute ethanol and dried at 50 °C under vacuum for 2 days. Water was purified by double distillation over KMnO4, followed by passage through a Barnstead organic removal cartridge and two Barnstead mixed resin ultrapure cartridges. Fisher certified 1 N sodium hydroxide was used for pH 14 aqueous dioxygen reduction studies. Potassium hydrogen phosphate buffers were made up as required for other pH values and checked against a Beckman pH meter. Dilute H2SO4 was used for pH 0.7 and 1.0.

Argon gas (Linde) was purified by passage through preheated copper filings, anhydrous CaSO4 (Drierite), molecular sieves (BDH type 5A) and glass wool. Oxygen gas (Linde) was purified by passage through anhydrous CaSO4, NaOH pellets (AnalaR analytical grade), anhydrous CaSO4, molecular sieves and glass wool.

[3,9,16,23-tetra(neopentoxy)phthalocyanato]cobalt(II) 1 47,49), metal-free 3,9,16,23-tetra(neopentoxy)phthalocyanine, 2 47,48) and the polynuclear complexes were prepared by literature methods. The polynuclear complexes were:

1,2-bis-[2'(9',16',23'-trineopentoxyphthalocyanino)Cobalt(II)]ethane, C(2)[CoTrNPc]2 (3) 49) two cobalt trineopentoxyphthalocyanine rings linked via -(CH2CH2)-; Bis-[2'(9',16',23'-trineopentoxyphthalocyanino]Cobalt(II)]ether, O(1)[CoTrNPc]2 (4) 50) two cobalt trineopentoxy-...
phthalocyanine rings linked via a single dioxygen (ether) bridge.

Ethyl-methyl-bis-[2'-(9',16',23'-trineopentoxy phthalocyaninoxymethyl]
Cobalt(II) methane,

EtMeO(5)[CoTrNpc]_2 (5) (47,48)

two cobalt trineopentoxyphthalocyanine rings linked via

-O-CH2-C(Me)(Et)CH2O-;

1,2-bis-[2'-(9',16',23'-trineopentoxyphthalocyaninoxy]
Cobalt(II) benzene,

Cat(4)[CoTrNpc]_2 (6) (49)
two cobalt trineopentoxy-

phthalocyanine rings linked via

-O-C6H4-O- (o-catechol). These complexes are henceforth abbreviated by the label appearing before the square bracket immediately above, namely C(z), O(1), EtMeO(5) and Cat(4), the numeral representing the number of atoms in the bridge. The study also included the tetranuclear spiro species,

**1,1,1,1-Tetra-kis-[2'-(9',16',23'-trineopentoxy phthalocyaninoxymethyl]
Cobalt(II)] methane, [Co(II)TrNpc-2)]_4 (7) (46), abbreviated Tet.**

Electrodes:

Ordinary pyrolytic graphite (OPG), and highly oriented pyrolytic graphite (HOPG), sometimes called stress annealed pyrolytic graphite (SAPG) were obtained from Union Carbide. The OPG was mounted in Teflon to expose a circular area of 0.493 cm². The glassy carbon (GC) electrode, of area 0.07 cm², was purchased from Tokai Carbon Ltd, Japan.

Electrodes fabricated from OPG, GC and Pt were cleaned by polishing with 1.0, 0.3 and 0.05 μM alumina suspended in water. The cell for the adsorption experiments employed an SCE electrode, a graphite working electrode and a platinum wire counter electrode.

The HOPG was similarly mounted in a Teflon holder to expose a circular area of 0.44 cm². The basal plane of the graphite was perpendicular to the axis of the electrode. This enables a fresh surface of electrode material to be exposed when a piece of Scotch brand Magic Transparent tape is momentarily pressed onto the surface and then gently lifted off. Usually at least two layers are removed between each
adsorption study. The new surface thus revealed is used within a few minutes of exposure.

Catalyst coated electrodes were prepared by immersing and rotating (ca 400rpm) (on open circuit) the freshly prepared graphite surface in DCB solutions of a phthalocyanine of concentration approximately 5×10^{-5} M (varied from 1×10^{-7}M to 5×10^{-5}M in the case of 1). The coated electrode was washed with ethanol and distilled water and dried under reduced pressure.

The time required to achieve a steady state surface concentration of a designated phthalocyanine may be conveniently monitored by cyclic voltammetry ($v = 100$ mV/s). For these experiments, solutions containing the desired phthalocyanine were made 0.1M in TBAP and the state of the adsorbed layer was monitored at 5 minute intervals, until the peak current corresponding to a redox reaction of the adsorbed catalyst remained constant. Redox processes corresponding to the adsorbed and bulk species occur at different potentials and are thus easily distinguished. The adsorption equilibrium (as evidenced by constant first CV scan) was established in 10^{-7}M 1 solution in about 40 min and in about 10 min (or less) in the case of 5×10^{-5}M solution. Unlike the situation with similarly active (11) tetrasulfonated phthalocyanines (TSPc) (12) well defined voltammetric peaks were obtained without cycling of the electrode during the adsorption step. Indeed, continuous cycling during adsorption, in any potential range, significantly decreased the amount of 1 adsorbed at the surface.

Data in non-aqueous solution were referenced to SCE via incorporation of ferrocene as an internal calibrant (51).

Note that for good reproducibility of the dioxygen reduction data, the catalyst surface was renewed for every individual experiment, i.e.
for every scan. Successive scans, under dioxygen, using the same surface, show variations (shift in potential, loss of current etc) which may be due to loss of catalyst and/or some catalyst decomposition.

Results and Discussion

i) Adsorption of 1 on GC, OPG and HOPG.

Since it is feasible to study dioxygen reduction by laying down one or more layers of catalyst upon various types of graphitic surface, especially OPG, HOPG and GC, the best conditions to prepare electrodes modified by 1 were first investigated.

Phthalocyanines applied to the electrode by simple evaporation of their solution in an organic solvent can form uneven multi-layer films which are often microcrystalline. In addition only a fraction of the film may be electrochemically active, leading to problems of reproducibility. The slow diffusion of oxygen (and counter ions) from the solution into the film, and the potential drop caused by the resistance of the film and hence potential shift of the voltammetric curve also provide complicating factors (52,53). While vapour deposition provides a convenient method (54) for film preparation especially where insoluble, but volatile, phthalocyanines are concerned, adsorption is a simpler procedure for organic solvent soluble metallophthalocyanines. A monolayer of the catalyst formed at the electrode surface by adsorption yields much better electrochemical results under the conditions where adsorption is highly irreversible and the bare surface of the electrode shows minimal electrocatalytic activity toward dioxygen reduction. Such layers were laid down according to the procedures outlined in the experimental section.
No adsorption was found on a Pt electrode. In the case of OPG and especially HOPG strong adsorption was observed (Fig. 1). Essentially the same results were seen with 2, thus adsorption does not seem to involve metal ion interaction with defects on the surface. Low coverage and weak adsorption were observed on amorphous GC (Fig. 1D) which does not have the oriented graphitic structure of other electrodes.

On the OPG surface, the phthalocyanine surface concentration calculated to be present varies with the cleaning procedure. An OPG electrode polished by alumina, and washed only by distilled water yields a lower coverage (Fig. 1B) than an electrode in which the surface after the alumina treatment is further cleaned using a clean wet polishing cloth or ultrasonic cleaner. In the former case a highly hydrophilic surface is formed, presumably covered by alumina particles which can block the adsorption of TNPc. The surface cleaned using the second method is hydrophobic, as judged qualitatively from the water contact angle, and the amount of adsorbed TNPc is higher [Fig. 1A]. Thus the degree of coverage is variable and dependent upon the details of cleaning (55, 56). Moreover there is a relatively large residual current from the OPG surface, hindering the observation of waves of low faradaic current. Thus this material provides an unsatisfactory surface for routine and reproducible study of the electroactivity of supported phthalocyanines. The HOPG surface was undoubtedly the preferred surface with a low residual current and high reproducibility. When the bare electrode is rotated in a ca 10^{-5} M DCB solution of 1, the cyclic voltammogram rapidly reaches an equilibrium current maximum. This maximum, adopting the macroscopic area of the electrode, and assuming a one-electron redox couple (see below), corresponded approximately to an average surface concentration of 6 \times 10^{-11} \text{mol/cm}^2. It is conceivable
that the phthalocyanine molecules lie flat and form \(n-n \) bonds with the graphite lattice yielding an area of about 200 \(\text{Å}^2 \). Other aromatic molecules similarly show high affinity for graphite (54,56). The coverage, \(\Gamma \), then approaches a monolayer (Fig. 1c). Compounds 2–7 may be similarly adsorbed but no evidence was collected to determine their detailed surface behaviour.

The limit of one monolayer for 1, is instructive. If the molecules are lined up perpendicular to the surface, with a smaller effective area, (e.g. as suggested for tetrasulfonated cobalt phthalocyanine (13)) then the amount of charge, \(C_p \), would correspond to an incompletely covered surface and further adsorption would have been anticipated.

The assumption that the redox couples observed under argon were one-electron in nature, was checked using eq.[1]. Thus:

\[
\frac{\gamma}{A_{\text{M}^{+}}^{n}} \quad \text{ip} = n^2 F^2 v/4RT
\]

and since \(C_p = nF\Gamma \)

then:

\[
\frac{\text{ip}}{C_p} = nFv/4R \quad [1]
\]

where \(\text{ip} \) and \(C_p \) are the current and charge densities respectively. Thus a plot of the ratio of these quantities against scan rate \(v \), provides a measure of \(n \), the number of electrons (14). Experimentally, using the Co(II)TNPc(-2)/[Co(I)TNPc(-2)] redox couple of 1, a value of \(n = 0.78 \) is obtained (Table 1).

Alternatively, if a Langmuir isotherm is assumed to be valid to describe the adsorption of the catalyst on the surface (see (30,57) for detailed discussion), then the number of electrons, \(n \), is related to the half-bandwidth of the cyclic voltammetric peak, \(W_{1/2} \), by:-
\[n = \frac{2RT\ln(3 + 2J2)}{FW1/2} \]

This yields a \(n \) value of 1.1 - 1.2 electrons for the several voltammetric peaks involved, using 1. The deviation from unity probably reflects some deviation from true Langmuir isotherm behaviour, i.e. probably some interaction between adjacent molecules. Note however that the use of any isotherm requires a dynamic equilibrium between surface and solution, and the absence of any phthalocyanine catalyst in solution precludes such an equilibrium here.

In the HOPG case, the true surface area of the electrode and that measured macroscopically are not likely to be very disparate. A significantly higher coverage on OPG seems to be caused by a higher roughness factor of the OPG surface which is also confirmed by a higher residual current, i.e. the true microscopic surface area is larger than the macroscopically measured area.

Comparative CV data taken in DCB and in water show that the catalyst layer survives the transfer to the water medium.

ii) Electrochemical behaviour of an HOPG electrode covered by a monolayer of 1:

Under argon:

The redox peaks of a monolayer of catalyst on the surface, under argon, can readily be observed in water solutions (Fig. 2a). A pair of voltammetric peaks in the region negative of 0V vs SCE, under argon, correspond to the \([\text{Co(II)TNPc(-2)}/\text{[Co(I)TNPc(-2)]}]\) couple, by analogy with a wealth of data collected in solvent media (58-67). They are adsorption peaks having a current proportional to the scan rate (not its square root) (68), and approach more reversible behaviour in acidic solution, the separation between the anodic and cathodic components decreasing with pH (Table 2). The half-wave potential for the \([\text{Co(II)TNPc(-2)}/ \text{[Co(I)TNPc(-2)]}]\) couple, in the alkaline range, near
-700mV vs SCE, is essentially the same as that observed in the aprotic organic solvents such as DCB (67) (Table 3), but distinctly more negative than either CoPc or CoTsPc under the same adsorption conditions. A second reduction peak at more negative potentials arises from the [Co(i)TNPc(-2)]-/Co(I)TNPc(-3)]2- redox process.

The catalyst oxidation peaks are seen near (+475) - (+720)mV vs SCE, (Fig.2a) and are composite, at some pH showing two clear cathodic components. Solution studies (67) reveal that the [Co(II)TNPc(-1)]+/Co(II)TNPc(-2) and [Co(III)TNPc(-2)]+/Co(II)TNPc(-2) oxidation couples are likely to be close together and critically dependent upon potentially ligating groups in solution (or on the surface). In the absence of clearly defined behaviour for these couples their discussion will be postponed for later study.

Under Dioxygen:

It is very convenient that the bare HOPG surface also has a low catalytic activity towards dioxygen reduction in water solutions allowing one to measure the electrocatalytic activity of the catalyst without interference of the bare surface (Fig.2b).

An HOPG electrode surface modified with a layer of the metal free 2 does not show any electrocatalytic activity. However the cobalt complex 1 is active. In Fig.2c are shown the cyclic voltammograms for the 1 modified HOPG electrode in water solution at pH 13, under argon, to which has been added 0.5mL of solution containing 10^-3M dioxygen. The appearance of a signal due to dioxygen reduction can clearly be observed at a potential positive of the catalyst reduction peak (Table 2). The hydrogen peroxide re-oxidation wave can also be observed at +170mV (Fig.2c).

As shown in in Fig.2b, with excess dioxygen, the anodic peak
(observed under argon), corresponding to the re-oxidation of [Co(I)TNPc(-2)]-, completely disappears since the [Co(I)TNPc(-2)]- has already been oxidized by dioxygen to Co(II)TNPc(-2).

a) Cyclic voltammetry:—The current exhibited by the dioxygen reduction wave is proportional to the square root of the scan rate and is therefore a diffusion wave (68). The dioxygen reduction wave occurs positive of the catalyst Co(II)/Co(I) redox couple, by about 250mV in the alkaline regime decreasing to about 100mV in the acid regime (Table 2, Fig.2b).

The pH dependence of the dioxygen reduction potential, for 1, parallels that of the Co(II)TNPc(-2)/[Co(I)TNPc(-2)]- couple with a slope, in the acid region, of -66mV/pH. We return to this issue below.

At a more negative potential, a second reduction wave is observed (Table 2, Fig.2c), which corresponds to the successive reduction of hydrogen peroxide to water. Scanning positively again after the first reduction peak yields a hydrogen peroxide re-oxidation wave at about 0.2V (Fig.2c). Further proof was obtained by adding microlitre quantities of dioxygen-free hydrogen peroxide to the electrochemical cell and observing an increase in the height of this second wave, relative to the first. The pH dependence of the second reduction wave is not very clearly defined since it is observed very close to the solvent limit and is therefore subject to some error. This behaviour is very similar to that observed with a crown phthalocyanine cobalt species (69-71) where a well defined pH dependence was observed (71). Previous studies of the two-electron reduction of dioxygen to hydrogen peroxide, have noted the existence of a second reduction process ascribed to hydrogen peroxide reduction (4,23,31,72). In acid solution, under Argon, the second reduction process, namely [Co(I)TNPc(-2)]-/Co(I)TNPc(-3)]2-
occurring very close to the Co(II)TNPc(-2)/[Co(I)TNPc(-2)]- couple (12),
may catalyse the hydrogen peroxide reduction to water. In alkaline
solution, this couple moves dramatically more negative (12) explaining
why the hydrogen peroxide to water reduction process is not observable
in alkaline solution.

b) Rotating disc and ring disc electrode (RDE and RRDE) studies:- The
magnitude of the limiting current, \(i_L \), in the RDE dioxygen reduction
wave depends linearly on the square root of the rotation rate in the
range of 400 - 2500 rpm and is in agreement with the two-electron
reduction of dioxygen to peroxide throughout the pH range studied. The
halfwave potential \(E_{1/2} \) of the dioxygen reduction wave tracks the
Co(II)TNPc(-2)/[Co(I)TNPc(-2)]- pH dependence (Fig. 3a).

The standard expression for the limiting current of a diffusion
limited RDE plateau is given by (68):

\[
i_L = 0.620nFAD_o^{2/3}v^{1/2}C_{ox}^{1/6}
\]

where \(n = 2\pi f/60 \) (f in rpm). The terms \(D_o^{2/3}v^{1/6}C_{ox} = 1.77 \times 10^{-9} \)
mol cm\(^{-2} \) s\(^{-1/2} \) calibrated with a platinum electrode assumed to be well
behaved (73) and to provide a four electron limiting wave, and the
kinematic viscosity, \(\nu_c = 9.97 \times 10^{-3} \) cm\(^2\) s\(^{-1} \). The expression yields a
limiting two-electron current of 1068\(\mu \)A at 900rpm compared with an
experimental value of 1075\(\mu \)A (complex 1) (Fig. 2b).

Logarithmic analysis of the current, i.e. a plot of potential
versus Log(\(i/i_L-i \)) yields a value falling between -110 and -130mV/pH
unit (Tafel slope) through the pH range from ca 1.0 to 13, with a
regression coefficient generally of 0.999. This corresponds to a charge
transfer coefficient generally of 0.5 and a one-electron rate determining step,
a common observation with cobalt macrocycle catalysts which reduce
dioxygen to hydrogen peroxide (14,74). Similar results are obtained for
the binuclear and polynuclear species described immediately below.

Finally a rotating ring disc experiment (RRDE, OPG, gold ring), with the ring polarised to oxidise any hydrogen peroxide which may be formed, provides additional proof of the generation of hydrogen peroxide in this experiment (at pH 9.2, Fig. 4).

iii) Binuclear and Tetranuclear Species, 3-7, adsorbed on to HOPG.

Fig. 3b-f illustrates the pH dependence of the Co(II)/Co(I) couple under argon, and the dioxygen reduction peak potentials, as a function of pH, for complexes 3-7. In all cases, and similar to the monomeric species 1 the Co(II)/Co(I) couple has a ca -(60-70)mV/pH unit dependence in the acid regime, between pH 1 and ca 5.0, and then becomes pH independent (75).

The dioxygen reduction wave appears at some 200 - 250mV more positive a potential than the Co(II)/Co(I) wave, in the alkaline range, dropping to about 50mV more positive in the acid range. However there is characteristic difference between the polynuclear species and the control species 1. In the latter, the slope of the dioxygen reduction wave is ca 65 mV/pH in the acid range, but for the polynuclear species it is invariably significantly smaller (Table 4). Indeed the dioxygen reduction wave and Co(II)/Co(I) wave in these polynuclear species will occur at essentially the same potential near pH 0 (see intercept in Table 4).

iv) Mechanism and pH Dependence

The -65mV/pH unit dependence of the Co(II)TNPC(-2)/[Co(I)TNPC(-2)]- couple, seen with all the species investigated here, infers that the reduced and negatively charged [Co(I)TNPC(-2)]- species binds a proton, probably to a peripheral nitrogen atom (12). This pH dependence is very similar to that observed with the TsPcM(II)/[TsPcM(I)]- redox couples (M
= Co,Fe (12) and differs from that generated by the
TsPcM(III)/TsPcM(II) redox couple (M = Co,Fe) where the pH dependent
region lies above 7 rather than below 7.

There have been a number of studies of the role of pH on the
dioxygen reduction potential of macrocyclic catalysts (3,14,18,20,23, 25,27, 29,37, 38,76,77) including a similar study of the pH dependence
of the unsubstituted cobalt phthalocyanine in its Co(II)/Co(I) redox
couple (3,77).

Ni and Anson have (28) discussed the relative potentials for
reduction of the adsorbed species, for various cobalt macrocyclic
catalysts under argon and under dioxygen. They note that where the
Co(III)/Co(II) couple of an adsorbed catalyst is involved, reduction of
dioxygen often occurs at a potential considerably more negative than the
Co(III)/Co(II) couple. The mechanism is perceived to be a "CE catalytic"
mechanism where Co(II) is formed and subsequently reacts with dioxygen
(the C step) prior to eventual electron transfer with reduction of
dioxygen (the E step) (28,78). This is construed to differ from other
systems where the reduction of the catalyst drives the dioxygen
reduction immediately in an "EC catalytic" mechanism. This occurs both
in homogenous solution (4,25,29,39,42,43,79) and for some adsorbed
catalysts (25,27,29,39,41,42,76,77), where the dioxygen reduction occurs
at, or slightly negative of the catalyst redox couple.

However dioxygen reduction may occur at a potential positive of the
catalyst redox process. This may be a consequence of an EC mechanism
where the chemical and E step are so fast (80,81) that dioxygen
reduction can occur to a significant extent at a potential positive of
the half-wave potential of the catalyst redox process, where a
nernstian-determined small concentration of the active reduced form of
the catalyst will occur.

However if this process occurs some 250mV or more positive of the catalyst redox wave, the quantity of reduced catalyst (e.g. Co(I)Pc here) is so small that the rate constant for dioxygen reduction needs to be excessively if not impossibly high (25, 29, 78, 80-86) Thus this likelihood is discounted, i.e. even though the dioxygen reduction tracks the Co(II)/Co(I) couple, it is not Co(I)Pc which is the primary active species. This conclusion is further supported by the observation of dioxygen reduction some 800 mV positive of the Co(II)Pc/Co(I)Pc wave at pH 14 using a newly investigated system (87).

A general set of relevant equations may be written:-

\[
\begin{align*}
\text{Co(II)TNPc} + e^- & \longrightarrow \text{Co(I)TNPc}^- & \text{[4]} \\
\text{O}_2 & \text{[4'L]} \\
\text{CoTNPcO}_2 + e^- & \longrightarrow \text{CoTNPc(O}_2)^- & \text{[5]} \\
\text{H}^+ & \text{[5'L]} \\
\text{intermediates} & \longrightarrow \text{H}_2\text{O}_2 & \text{[6]}
\end{align*}
\]
It is generally assumed, that Co(III)TNPc species are not involved in dioxygen reduction.

Dioxygen reduction catalysis is not a consequence of activation by Co(I)TNPc, at least at the higher potentials (positive of the Co(II)/Co(I) wave). Thus the right-hand channel \([4.4'R,5'R]\) is not important until very close or beyond the Co(II)TNPc/Co(I)TNPc redox potential. Thus reaction must occur with Co(II)TNPc species.

Then the reaction mechanism may be written following \([4'L,5'L]\) above. Equilibrium \([4'L]\) lies well to the top since, at room temperature, there is little tendency to form an dioxygen adduct with Co(II)Pc. Such species are, however, observed at reduced temperatures (88). A significant overpotential is required to drive the reaction towards hydrogen peroxide. The Co(III)Pc/ Co(II)Pc couple is pH independent in the acid regime (89) emphasizing that the pH dependence seen for dioxygen reduction in the acid regime must involve the irreversible binding of a proton to the coordinated di-oxygen as a first step towards hydrogen peroxide formation (85,90); the fact that it appears to track the Co(II)/Co(I) wave is then fortuitous.

It is significant that the slope of the dioxygen reduction potential versus pH plot is less than -65mV/pH for all the polynuclear species (Table 4), but is close to -65mV/pH for dioxygen reduction at the mononuclear species, and for the Co(II)TNPc/Co(I)TNPc couple for the mononuclear and polynuclear species. That the dependence is about -65mV/pH for this latter couple in the polynuclear species shows that the reduction of each Co(II) is unconcerted, i.e. the reduction of one Co(II) moiety has no detectable electrochemical consequence for the other even though the electronic spectra of the polynuclear Co(II)TNPc species shows evidence of some electronic coupling (46,91).
A slope of less than -65 mV/pH can arise through the inclusion partially or wholly of a concerted two-electron dioxygen reduction process in the polynuclear species, and not the mononuclear is quite credible. Consider, for example, the concerted process [7,8]:

\[
\text{Bridge}[\text{Co(II)TrNPc}]_2 + \text{O}_2 \rightarrow \text{Bridge}[\text{TrNPcCo(III)(O}_2^{2-})\text{Co(III)TrNPc}] \quad [7]
\]

\[
\text{Bridge}[\text{TrNPcCo(III)(O}_2^{2-})\text{Co(III)TrNPc}] + \text{H}^+ + 2\text{e}^- \\
\rightarrow \text{O}_2\text{H}^- + \text{Bridge}[\text{Co(II)TrNPc}]_2 \quad [8]
\]

It is not at all unreasonable that the formation of a most likely bridged peroxo derivative in at least those polynuclear CoTrNPc species capable of cofacial configurations in one or more of their conformations could lead to some concerted character in the dioxygen reduction and re-formation of the starting polynuclear Co(II) species. We see no direct evidence in these complexes for such a binuclear peroxo species which need however only be present to a small equilibrium degree to give rise to the observed electrochemical behaviour. In the cofacial crown phthalocyanine cobalt species, however, there is much more direct evidence for the formation of such a dioxygen adduct (69,94).

Acknowledgements

We are indebted to the Natural Sciences and Engineering Research Council (Ottawa) and the Office of Naval Research (Washington) for financial support. PRA is indebted to Prof. A. Vlcek of the Heyrovsky Electrochemical Institute for hospitality and the CSSR Academy of Science for financial support.
Figure Legends

Fig. 1. Adsorption isotherms for Co(II)TNPc, (1). No. of monolayers versus concentration of Co(II)TNPc in depositing solution (0.1 M TBAP/DCB) at 20°C. A) OPG Hydrophobic surface. B) OPG Hydrophilic surface. C) HOPG. D) GC. The shaded region shows a continual gradation between highly hydrophobic and highly hydrophilic surfaces.

Fig. 2. a) Cyclic voltammogram for Co(II)TNPc (1) layer deposited from a TBAP/DCB solution onto a HOPG electrode, and immersed in 0.1M aq. phosphate buffer at pH 7, under argon. The left-hand couple is Co(II)TNPc(-2)/ $[\text{Co(I)TNPc(-2)}]$ while the right-hand couple is probably an overlap of the Co(III)/Co(II) and Pc(-1)/Pc(-2) couples.

b) (left-hand) a) Cyclic voltammogram for Co(II)TNPc (1) layer deposited from a TBAP/DCB solution onto a HOPG electrode, and immersed in 0.1M aq. phosphate buffer at pH 7, saturated with dioxygen at 20°C. b) as a) but a bare unmodified HOPG surface.

(right-hand) Rotating disc electrode study of a Co(II)TNPc (1) layer deposited from a TBAP/DCB solution onto a HOPG electrode, and immersed in 0.1M aq. NaOH at pH 13, saturated with dioxygen at 20°C. The lower scan is observed at 900rpm and the upper at 1600rpm.

c) Cyclic voltammogram for Co(II)TNPc (1) layer deposited from a TBAP/DCB solution onto a HOPG electrode, and immersed in 0.1M NaOH at pH 13, under argon. Solid line - as described; hatched line with addition of 0.5mL of 1×10^{-3}M O$_2$ dissolved in 0.1M NaOH. The new peak at -420mV in the second spectrum corresponds to dioxygen reduction while the new peak at $+170\text{mV}$ corresponds to hydrogen.
peroxide oxidation.

Fig. 3 pH versus potential plots for all the species under consideration. In each case the upper plot refers to dioxygen reduction half-wave potential, and the lower plot to the Co(II)/Co(I) half-wave potential. The species are a) 1, b) 3, c) 4, d) 5, e) 6, f) 7.

Fig. 4 A rotating ring disk experiment with Co(II)TNPc (I). Gold ring - OPG disk (0.18 cm2 area) response for adsorbed 1 immersed in 0.1M phosphate buffer at pH 9.2, saturated with dioxygen at 20$^\circ$C. The upper curve shows reduction of dioxygen at the disk, and the lower response, re-oxidation of hydrogen peroxide at the ring (polarised at +1.0V). Rotation rate is 400 rpm, and scan rate is 10mV/s.
Bibliography

75. The data for the mononuclear species I were obtained at York, while the data for the polynuclear species were obtained by the same procedure in Prague, but using a different electrode and different equipment. These latter data are more scattered than the York data, with a probable error of at least ±20mV. The reason for this scatter is not known, but it does not invalidate the general conclusions.
87. A. B. P. Lever, N. Golovin, K. Jayaraj, and P. Seymour, work in progress.
94. A. B. P. Lever, P. Seymour and N. Kobayashi, work in progress.
Table 1 Charge under the Co(II)TNPc/Co(I)TNPc Redox couple of complex 1 as a function of scan rate.

<table>
<thead>
<tr>
<th>Scan Rate (V/s)</th>
<th>Current (μA) ip</th>
<th>Charge (μC) C</th>
<th>ip/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>8.5</td>
<td>7.64</td>
<td>1.13</td>
</tr>
<tr>
<td>0.125</td>
<td>6.0</td>
<td>6.31</td>
<td>0.93</td>
</tr>
<tr>
<td>0.1</td>
<td>5.0</td>
<td>6.80</td>
<td>0.75</td>
</tr>
<tr>
<td>0.075</td>
<td>4.0</td>
<td>7.20</td>
<td>0.54</td>
</tr>
<tr>
<td>0.05</td>
<td>2.0</td>
<td>6.10</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Plot of i_p/C versus scan rate, including the origin point, yields a least squares slope of 7.58 (for $nF/4RT$) corresponding to $n = 0.78$ and with a regression coefficient of 0.998.
Table 2 Voltammetric Data (mV) for CoTNPC under Dioxygen and Argon, as a Function of pH.

<table>
<thead>
<tr>
<th>pH</th>
<th>Argon/CVa</th>
<th>Dioxygen/CVb</th>
<th>Dioxygen/RDEc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wave 1</td>
<td>Wave 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-420(60)</td>
<td>-300</td>
<td>-280</td>
</tr>
<tr>
<td>2</td>
<td>-460(40)</td>
<td>-340</td>
<td>-330</td>
</tr>
<tr>
<td>3</td>
<td>-510(40)</td>
<td>-425</td>
<td>-390</td>
</tr>
<tr>
<td>4</td>
<td>-570(40)</td>
<td>-480</td>
<td>-390</td>
</tr>
<tr>
<td>5</td>
<td>-630(60)</td>
<td>-520</td>
<td>-400</td>
</tr>
<tr>
<td>6</td>
<td>-685(90)</td>
<td>-520</td>
<td>-470</td>
</tr>
<tr>
<td>7</td>
<td>-720(70)</td>
<td>-500</td>
<td>-440</td>
</tr>
<tr>
<td>8</td>
<td>-720(85)</td>
<td>-500</td>
<td>-480</td>
</tr>
<tr>
<td>9</td>
<td>-700(100)</td>
<td>-485</td>
<td>-435</td>
</tr>
<tr>
<td>10</td>
<td>-475</td>
<td>-425</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-700(85)</td>
<td>-480</td>
<td>-435</td>
</tr>
<tr>
<td>12</td>
<td>-695(80)</td>
<td>-470</td>
<td>-430</td>
</tr>
<tr>
<td>13</td>
<td>-720(40)</td>
<td>-465</td>
<td>-420</td>
</tr>
</tbody>
</table>

a) Cyclic voltammogram under argon - average of anodic and cathodic waves; peak to peak separation in parentheses.
b) Cyclic voltammogram under dioxygen, peak observed at a scan rate of 0.10 V/s; wave 1 is dioxygen to hydrogen peroxide and wave 2 is hydrogen peroxide to water.
c) Half-wave potential of rotating disc electrode peak, under dioxygen.
Table 3
Variation of Redox Potentials (V) of Cobalt Phthalocyanine Reduction Processes as a function of Environment.a

<table>
<thead>
<tr>
<th>Cobalt Speciesb</th>
<th>Conditionsc</th>
<th>[Co(I)TNPc(-2)]-</th>
<th>[Co(II)TNPc(-2)]-</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoTsPc/ads</td>
<td>Aq. pH 13</td>
<td>-1.37</td>
<td>-0.51</td>
<td>12</td>
</tr>
<tr>
<td>CoTsPc/ads</td>
<td>Aq. pH 2</td>
<td>-0.60</td>
<td>-0.31</td>
<td>12</td>
</tr>
<tr>
<td>CoTNPc/ads</td>
<td>Aq. pH 3</td>
<td>-0.71</td>
<td>tw</td>
<td></td>
</tr>
<tr>
<td>CoTNPc/ads</td>
<td>Aq. pH 4</td>
<td>-0.57</td>
<td>tw</td>
<td></td>
</tr>
<tr>
<td>CoTNPc</td>
<td>DCB Soln.</td>
<td>-1.76</td>
<td>-0.60</td>
<td>67</td>
</tr>
<tr>
<td>CoTNPc</td>
<td>DMF Soln.</td>
<td>-1.76</td>
<td>-0.54</td>
<td>67</td>
</tr>
<tr>
<td>CoCRPc/ads</td>
<td>Aq. pH 11</td>
<td>-0.60</td>
<td>69,71</td>
<td></td>
</tr>
<tr>
<td>CoCRPc/ads</td>
<td>Aq. pH 2</td>
<td>-0.48</td>
<td>-0.34</td>
<td>69,71</td>
</tr>
<tr>
<td>CoPC</td>
<td>Py</td>
<td>-0.61</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>CoPC/adsd</td>
<td>pH 14</td>
<td>-0.57</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>CoPC/adsd</td>
<td>pH 2</td>
<td>-0.29</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

a vs SCE. tw = this work. b TsPc = tetrasulphonated phthalocyanine; also TNPc = tetraneopentoxyphthalocyanine. CRPc = tetracrownphthalocyanine. ads = adsorbed on HOPG. c DCB = o-dichlorobenzene. DMF = dimethylformamide. Py = pyridine. d Adsorbed on ordinary pyrolytic graphite.
Table 4 Line Equations in the Acidic Range

<table>
<thead>
<tr>
<th>Complex</th>
<th>Couple</th>
<th>Slope mV/pH</th>
<th>Intercept b mV</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monomer</td>
<td>Co</td>
<td>-53</td>
<td>-359</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>O$_2$</td>
<td>-58</td>
<td>-239</td>
<td>0.98</td>
</tr>
<tr>
<td>Binuclears</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)</td>
<td>Co</td>
<td>-83.4</td>
<td>-224</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>O$_2$</td>
<td>-41</td>
<td>-252</td>
<td>0.98</td>
</tr>
<tr>
<td>C(2)</td>
<td>Co</td>
<td>-73.6</td>
<td>-247</td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td>O$_2$</td>
<td>-48.1</td>
<td>-253</td>
<td>0.985</td>
</tr>
<tr>
<td>Cat(4)</td>
<td>Co</td>
<td>-63.4</td>
<td>-299</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>O$_2$</td>
<td>-32.5</td>
<td>-288</td>
<td>0.95</td>
</tr>
<tr>
<td>EtMeO(5)</td>
<td>Co</td>
<td>-65.1</td>
<td>-290</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>O$_2$</td>
<td>-45.7</td>
<td>-247</td>
<td>0.99</td>
</tr>
<tr>
<td>Tet</td>
<td>Co</td>
<td>-69.2</td>
<td>-263</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>O$_2$</td>
<td>-49.3</td>
<td>-239</td>
<td>0.97</td>
</tr>
</tbody>
</table>

*a) Data for least square lines from approximately pH 2 to 5. Data are presented in millivolts. b) Intercept with respect to sce. c) Refers to the Co(II)TnPc(-2)/[Co(I)Pc(-2)]$^-$ couple. d) Refers to the Dioxygen reduction couple.