performance oriented packaging testing of
CNU-263/E fiberglass maverick missile container

HQ APLC/DSTZ
AIR FORCE PACKAGING EVALUATION ACTIVITY
Wright-Patterson AFB OH 45433-5999

21 NOVEMBER 1988
When government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related government procurement operation, the United States Government thereby incurs no responsibility whatsoever, and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto. This report is not to be used in whole or in part for advertising or sales purposes.

ABSTRACT

Ogden Air Logistics Center (00-ALC/MUWM), Hill Air Force Base, Utah 84056-5609 requested assistance from the Air Force Packaging Evaluation Activity (AFPEA) to conduct Performance Oriented Packaging (POP) testing on a fiberglass Maverick missile container (CNU-263/E).

The CNU-263/E container was designed and fabricated by Plastics Research Corporation, Santa Fe Springs CA. The containers are environmentally sealed with a humidity indicator, desiccant port, and a pressure relief valve. The containers are designed to protect one AGM-65A/B/C/D all-up-round Maverick missile during worldwide shipment, storage, and handling. The containers will also be used for one missile without the guidance unit and for one missile without the guidance unit and the hydraulic actuation system.

The test plan used for the container was derived from United Nations (UN) Standard (Ref. ICAD 4.3), UN "Transport of Dangerous Goods", and DOD Hazardous Materials Packaging Test Plan.

Results of the tests conducted on the containers were acceptable. The containers did successfully pass the POP tests, as prescribed by the UN test criteria.

PREPARED BY: SUSAN M. HUGHES
Mechanical Engineer
AF Packaging Evaluation Activity

PUBLICATION DATE: 28 NOV 1990

APPROVED BY: CHARLES D. EDMUNSON

NOTICE
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>PURPOSE</td>
<td>1</td>
</tr>
<tr>
<td>TEST SPECIMEN</td>
<td>1</td>
</tr>
<tr>
<td>TEST OUTLINE AND TEST EQUIPMENT</td>
<td>1</td>
</tr>
<tr>
<td>TEST PROCEDURES AND RESULTS</td>
<td>2</td>
</tr>
<tr>
<td>TEST NO. 1, UN DROP TEST</td>
<td>2</td>
</tr>
<tr>
<td>TEST NO. 2, UN STACKING TEST</td>
<td>2</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>2</td>
</tr>
<tr>
<td>TABLE I, CONTAINER TEST PLAN</td>
<td>3</td>
</tr>
<tr>
<td>FIGURE 1, CONTAINER CONFIGURATION</td>
<td>4</td>
</tr>
<tr>
<td>FIGURE 2, CNU-263/E, SERIAL NUMBER 75231</td>
<td>5</td>
</tr>
<tr>
<td>FIGURE 3, CONTAINER AFT END</td>
<td>5</td>
</tr>
<tr>
<td>FIGURE 4, MIDDLE STRAP UNDONE</td>
<td>6</td>
</tr>
<tr>
<td>FIGURE 5, TORN FORWARD CUSHION</td>
<td>6</td>
</tr>
<tr>
<td>FIGURE 6, FORWARD END OF MISSILE, STRAP UNDONE</td>
<td>7</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>8</td>
</tr>
</tbody>
</table>

Accesion For

<table>
<thead>
<tr>
<th>NTIS CRA&I</th>
<th>DTIC TAB</th>
<th>Unannounced</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

BACKGROUND: Ogden Air Logistics Center (OO-ALC/MMWMM), Hill Air Force Base, Utah 84056-5609 requested assistance from the Air Force Packaging Evaluation Activity (AFPEA) to conduct Performance Oriented Packaging (POP) testing on a fiberglass Maverick missile container (CNU-263/E). The CNU-263/E container was designed and fabricated by Plastics Research Corporation, Santa Fe Springs CA.

PURPOSE: The purpose of this project was to determine whether the CNU-263/E container would not spill its contents, the AGM-65A/B/C/D all-up-round (AUR) Maverick missile. The container will also be used for shipment, storage, and handling of the missile less the guidance unit (GU) and the missile less both the GU and the hydraulic actuation system (HAS). The United Nations (UN) hazard code for the missile is class 1.1F. The packing code is Group II, with the packing method of E146.

TEST SPECIMEN

Two containers (serial numbers 75231 and 75590) were sent from OO-ALC. The corners of the containers were numbered from the aft end (see figure 1).

DESIGN: The CNU-263/E is a controlled-breathing container with a pressure relief valve, a humidity indicator, and a desiccant port. The container is designed to limit the transmission of shocks to the missile at 40G or less when subjected to the conditions in AFSC Specification 1308. Thirty-four T-bolts attach the container cover to the container base. The missile is attached to the container base with two forward, two middle and one aft strap.

CONSTRUCTION: The container consists of a fiberglass reinforced plastic cover and base, which have been gel coated. Two pound density polyethylene foam provides cushioning between the missile and the container base. A neoprene (or equivalent) gasket provides a seal between the container base and the container cover.

TEST OUTLINE AND TEST EQUIPMENT

TEST PLAN: Tests were conducted in accordance with table I. Test methods and procedures used were as outlined in UN Standard (Ref. ICAD 4.3), UN "Transport of Dangerous Goods", and DOD Hazardous Materials Packaging Test Plan.

TEST CONTAINERS: The tests in this report were performed on CNU-263/E, serial number 75231 (see figure 2). Only one
TEST LOADS: All tests were conducted using the heaviest missile the container was designed for. The test load was an inert training missile weighing approximately 460 pounds. A container base loaded with 2230 pounds (three times the gross weight of a container with a light standard load) was also used for test number 2 to simulate stacked containers.

TEST SITES: Testing was conducted at AFPEA, HQ AFLC/DSTZ, Building 70, Area C, Wright-Patterson AFB OH. The equipment required for testing was a temperature chamber and a forklift truck.

TEST PROCEDURES AND RESULTS

UN DROP TEST

Test No. 1: The container was conditioned at 320°F for 24 hours and then dropped flat on side 4 (long side), the top, the bottom, side 1 (short side), and top corner 1-2. The container shall not spill its contents.

Results: Visual inspection revealed that three T-bolts on side 4 disengaged, the top corner 1-2 had a crack, the aft end had a 6 inch crack and the records receptacle cover detached from the container (see figure 3). The container was opened and the following damage was found: aft bottom cushion unglued, one middle strap undone (see figure 4), forward bottom cushion torn (see figure 5) and one forward strap was no longer around the missile (see figure 6). The missile moved in the container and this was evident by a dent in the missile and the shattered dome (see figure 6). However, the container did not spill its contents. Results of this test are acceptable.

UN STACKING TEST

Test No. 2: At ambient temperature, a superimposed load of 2230 pounds was placed on the container for 24 hours. The container shall not permanently deform.

Results: The container was dimensionally checked and no permanent deformation occurred during the stacking test. The results of this test are acceptable.

CONCLUSION

1. The container successfully passed the POP tests, as prescribed by the UN test criteria.
<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>REF STD/SPEC AND TEST METHOD OR PROCEDURE NO'S</th>
<th>TEST TITLE AND PARAMETERS</th>
<th>CONTAINER ORIENTATION</th>
<th>INSTRUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>UN DROP TEST *(9.7.3)</td>
<td>Condition at 52°F for not less than 24 hours. Drop height 1.2m (3.94 ft) as required for Packaging Group II. The container shall not spill its contents. A different container may be used for each drop.</td>
<td>One each flat drop on the bottom, top, long side, short side and a corner. Total of 5 drops. Test with the heaviest AUR.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>UN STACKING TEST *(9.7.6)</td>
<td>Simulate stacking to a minimum height of 3m (9.84 ft) for 24 hours. There shall be no permanent deformation.**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM NAME</th>
<th>MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGM-65 Maverick Missile</td>
<td>Plastics Research Corporation</td>
</tr>
</tbody>
</table>

TABLE I.

AIR FORCE PACKAGING EVALUATION ACTIVITY

<table>
<thead>
<tr>
<th>CONTAINER SIZE (L x W x D) (INCHES)</th>
<th>WEIGHT (LBS)</th>
<th>CUBE (CU. FT.)</th>
<th>QUANTITY</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERIOR:</td>
<td>GROSS:</td>
<td>ITEM:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107 x 29 x 30</td>
<td>743</td>
<td>460</td>
<td>54</td>
<td>2</td>
</tr>
</tbody>
</table>

AFPEA PROJECT NUMBER

88-P-116

CONTAINER NAME

CNU-263/E (UN Tests)

PACK DESCRIPTION

Fiberglass Container

CONDITIONING

As noted below.
FIGURE 2. CNU-263/E, SERIAL NUMBER 75231.
FIGURE 4. MIDDLE STRAP UNDONE.
FIGURE 6. FORWARD END OF MISSILE, STRAP UNDONE.
Performance oriented Packaging Testing of CNU-263/E Fiberglass Maverick Missile Container

Susan M. Hughey

Final

FROM SEP 88 TO OCT 88

88-NOV-21

20

Ogden Air Logistics Center (OO-ALC/MMWNN), Hill Air Force Base, Utah 84056-5609 requested assistance from the Air Force Packaging Evaluation Activity (AFPEA) to conduct Performance Oriented Packaging (POP) testing on a fiberglass Maverick missile container (CNU-263/E).

The CNU-263/E container was designed and fabricated by Plastics Research Corporation, Santa Fe Springs CA. The containers are environmentally sealed with a humidity indicator, desiccant port, and a pressure relief valve. The containers are designed to protect one AGM-65A/B/C/D all-up-round Maverick missile during world-wide shipment, storage, and handling. The containers will also be used
The test plan used for the container was derived from United Nation (UN) Standard (Ref. ICAD 4.3), UN, "Transport of Dangerous Goods", and DOD Hazardous Materials Packaging Test Plan.

Results of the tests conducted on the containers were acceptable. The containers did successfully pass the POP tests, as prescribed by the UN test criteria.
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Agency</th>
<th>Location</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTIC/FDAC</td>
<td>Cameron Station, Alexandria, VA 22304-6145</td>
<td>12</td>
</tr>
<tr>
<td>HQ AFLC/DSTZ Library</td>
<td>Wright-Patterson AFB OH 45433-5999</td>
<td>20</td>
</tr>
<tr>
<td>HQ AFLC/DS</td>
<td>Wright-Patterson AFB OH 45433-5999</td>
<td>2</td>
</tr>
<tr>
<td>HQ AFLC/DST</td>
<td>Wright-Patterson AFB OH 45433-5999</td>
<td>2</td>
</tr>
<tr>
<td>HQ AFLC/DSTTP</td>
<td>Wright-Patterson AFB OH 45433-5999</td>
<td>2</td>
</tr>
<tr>
<td>HQ USAF/LETT</td>
<td>Washington DC 20330</td>
<td>1</td>
</tr>
<tr>
<td>HQ AFSC/LGT</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>OC-ALC/DST</td>
<td>Tinker AFB OK 73145</td>
<td>1</td>
</tr>
<tr>
<td>OO-ALC/DST</td>
<td>Hill AFB UT 84406</td>
<td>2</td>
</tr>
<tr>
<td>SA-ALC/DST</td>
<td>Kelly AFB TX 78241</td>
<td>1</td>
</tr>
<tr>
<td>SM-ALC/DST</td>
<td>McClellan AFB CA 95652</td>
<td>1</td>
</tr>
<tr>
<td>WR-ALC/DST</td>
<td>Robins AFB GA 31098</td>
<td>1</td>
</tr>
<tr>
<td>ASD/AWL</td>
<td>Wright-Patterson AFB OH 45433</td>
<td>1</td>
</tr>
<tr>
<td>ASD/ALXP</td>
<td>Wright-Patterson AFB OH 45433</td>
<td>2</td>
</tr>
<tr>
<td>AFSC AD/YBA</td>
<td>Eglin AFB FL 32542</td>
<td>2</td>
</tr>
<tr>
<td>GSA, Office of Engineering Mgt</td>
<td>Packaging Division, Washington DC 20406</td>
<td>1</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST (Cont'd)

Commander
Naval Supply Systems Command
Attn: N. Karl (SUP 0611F)
Washington DC 20376-5000

Commander
Naval Air Systems Command
Attn: E. Panigot (AIR 41212A)
Washington DC 20361

Commander
Space and Naval Warfare Systems Command
Attn: T. Corbe (Code 8218)
Washington DC 20360

Commander
Naval Facilities Engineering Command
Hoffman Bldg. #2, Room 12S21
Attn: C. Manwarring (FAC 0644)
Alexandria, VA 22332

Commanding Officer
Naval Construction Battalion Center
Attn: K. Pollock (Code 15611K)
Fort Hueneme, CA 93043

Commander
Naval Sea Systems Command
Attn: G. Mustin (SEA 66P)
Washington DC 20362

Commander
Naval Sea Systems Command
Attn: F. Basford (SEA 05M3)
Washington DC 20362

Commanding Officer
Naval Aviation Supply Office
700 Robbins Avenue
Attn: J. Yannello (Code EPP-A)
Philadelphia, PA 19111-5098

Commanding Officer
Navy Ships Parts Control Center
P.O. Box 2020
Attn: F. Sechrist (Code 0541)
Mechanicsburg, PA 17055-0788
DISTRIBUTION LIST (Cont'd)

Commanding Officer 1
Naval Air Engineering Center
Attn: F. Magnifico (SESD Code 9321)
Lakehurst, NJ 08733-5100

Commanding Officer 2
Naval Weapons Station Earle
NWHC/Code 8023
Colts Neck, NJ 07722-5000

ASO/TEP-A 4030 1
700 Robbins Ave
Philadelphia, PA 19111

US AMC Packaging, Storage, and Containerization Center/SDSTO-T
Tobyhanna, PA 18466-5097 1

DLSIE/AMXMC-D
US Army Logistics Mgt Ctr
Ft Lee VA 23801-6034

US Army AMCOM/SMCAR-AED
Dover, NJ 07801-5001 1

US Army Natick Labs/STRNC-ES
Natick MA 01760 1

HQ DLA/OWP
Cameron Station
Alexandria, VA 22304-6100 1

HQ AFLC/MNA
Wright-Patterson AFB OH 45433 2

AFALC/CV
Wright-Patterson AFB OH 45433 2

AFALC/OA
Wright-Patterson AFB OH 45433 2

AFALC LOC/CV
Wright-Patterson AFB OH 45433 2

AFALC LOC/TL
Wright-Patterson AFB OH 45433 2

ASD/SDM
Wright-Patterson AFB OH 45433 2
DISTRIBUTION LIST (Cont'd)

HQ TAC/LGWL 2
Langley AFB, VA 23665

OO-ALC/DSTD 2
Hill AFB, UT 84056

OO-ALC/MMWNN 2
Hill AFB, UT 84056-5609
and the container base. A neoprene (or equivalent) gasket provides a seal between the container base and the container cover.

TEST OUTLINE AND TEST EQUIPMENT

TEST PLAN: Tests were conducted in accordance with table I. Test methods and procedures used were as outlined in UN Standard (Ref. ICAD 4.3), UN "Transport of Dangerous Goods", and DOD Hazardous Materials Packaging Test Plan.

TEST CONTAINERS: The tests in this report were performed on CNU-263/E, serial number 75231 (see figure 2). Only one container was used for testing since the tests were severe and it would be too costly to provide a new container for each drop.
Results: The container was dimensionally checked and no permanent deformation occurred during the stacking test. The results of this test are acceptable.

CONCLUSION

1. The container successfully passed the POP tests, as prescribed by the UN test criteria.
Figures in parenthesis refer to UN "Orange Book" requirements.
** The superimposed load test in MIL-STD-648 exceeds the UN stacking test.

PREPARED BY: Susan Hughey, Mechanical Engineer
APPROVED BY: [Signature]

AFALD 3RD 4
PAGE 1 OF 1
FIGURE 1. CONTAINER CONFIGURATION

<table>
<thead>
<tr>
<th>CORNER 4-1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>CORNER 1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desiccant Port Records HI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIDE/EDGE 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 3. CONTAINER AFT END.
FIGURE 5. TORN FORWARD CUSHION.
FIGURE 6. FORWARD END OF MISSILE, STRAP UNDONE.
Ogden Air Logistics Center (OO-ALC/MMWNM), Hill Air Force Base, Utah 84056-5609 requested assistance from the Air Force Packaging Evaluation Activity (AFPEA) to conduct Performance Oriented Packaging (POP) testing on a fiberglass Maverick missile container (CNU-263/E).

The CNU-263/E container was designed and fabricated by Plastics Research Corporation, Santa Fe Springs CA. The containers are environmentally sealed with a humidity indicator, desiccant port, and a pressure relief valve. The containers are designed to protect one AGM-65A/B/C/D all-up-round Maverick missile during world-wide shipment, storage, and handling. The containers will also be used for one missile without the guidance unit and for one missile without the guidance unit and the hydraulic actuation system.