
TABLOG:

o THE DEDUCTIVE TABLEAU

PROGRAMMING LANGUAGE
tN
0

Final Technical Report:
Department of the Navy

Contract N00039-84-C-0211 (task 7)
Expiration Date: November 20, 1987

by
Zohar Manna, Professor

Computer Science Department
Stanford University

Stanford, California 94305

DT!C
NOV 0 8 1988

- '.- RtBt1oN Srt--ST M J A1

AIprovved far rvubc vnl
.;,,--. " "3 '-= Ne

Defense Advanced Research Projects Agency (DoD)
1400 Wilson Boulevard
Arlington, Virginia 22209-2389

*TABLOG: THE DEDUCTIVE TABLEAU PROGRAMING LANGUAGE'

Issued by Space and Naval Warfare Systems Command

Under Contract #N00039-84-C-0211, Task 7

*The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.*

38 11 08 002

SECURtITY CLASSIFICATION OF THI1S PAGE (When~ oes Znjetnj

REPORT DOCUMENTATION PAGE "AD__ INSTRUCTIONS __

1.pa~o NMS3 . GOVT ACCESSIO 2. *CIPIENATI CATALOG HUNGER

4L ~ ~ ~ ~ ~ ~ ~ S TIL An 11611) " OP REPORT 6 ERO sovalmVERED

TABLOG: THE DEDUCTIVE TABLEAU PROGRAM4MING final technical report
LANGUAGE 111 21/85-11/20/87

L. 111110ORIu. ORPORT NUMBER

9 . AV146OR(s) a. CONTRACT OR GRANT NUMORW*eJ

Zohar Manna N00039-84-C-02 11, Task 7

SPERFORMING ORGAIZATION NME AND ADDRESS so.JU PINU21 TAUK

Computer Science Department NA1AWgb~tO'0*TJgMS

Stanford University
Stanford, CA 94305 _______________

It. CONTROLLING OPFICS MNIC AND ADORESS IL REPORT OATIK
*SPAWAR 3241C2 November 1988

Space and Naval Warfare Systems Coand Is. N*JMWEROFP PaEs

14. MONITOR11NG AGIENCY HNK & AOORESMj'I Elh'ang A CANmalha 00e.) SECURITY CL.ASS. (of IN@ ,nViq

ONR Representative - Mr. Robin Simpson Unclasified

Stafor Unvesit 1111 fC~IICATION1DOWN64 ONo

Approved for public release: distribution unlimited

IL SUPPLEMENTARY NOTEU

19. KEY WORMS (@M6ms aew usis - N"ft auueu d WdNWOF &I^ Neil

3L. AGSTRACT (Cadms e ewua# M! Nwsiw a OWp admIII i* OF IMN hs$1

See. attached report.

JA 073 TIONw OP I NOV " to OGDLETE

S/N lfl*LP.1~. 401SECURITY CL&SPICATON OF ?NeS PAGE (0%0 WOe -0e

TECHNICAL SUMMARY

* Our research concentrated on the following topics

-- The Deductive-Tableau System JMW 1][MW2])

Theorem provers have exhibited su/er-human abilities in limited, obscure subject domains
but seem least competent in areas in which human intuition is best developed. One reason for this
is that an axiomatic formalization requires us to state explicitly facts that a person dealing in a
familiar subject would consider too/bvious to mention; the proof must take each of these facts into
account explicitly. A person who is easily able to construct an argument informally may be too
swamped in detail to understand, let alone produce, the corresponding formal proof. A continuing
effort in our research is to make formal theorem proving more closely resemble intuitive reasoning.
One case in point is our treatment of special relations.

In most proofs of interest for program synthesis, certain mathematical relations, such as equal-
ity and orderings, present special difficulties. These relations occur frequently in specifications and
in derivation of proofs. If their properties are represented axiomatically, proofs become lengthy,
difficult to understand, and even more difficult to produce or discover automatically. Axioms such
as transitivity have many consequences, most of which are irrelevant to the proof; including them
produces an explosion in the search space.

For the equality relation, the approach that was adopted early on is to represent its properties
* with rules of inference rather than axioms. In resolution systems, two rules of inference, paramod-

ulation (Wos and Robinson) and E-resolution (Morris), were introduced. Proofs using these rules
are shorter and clearer, because one application of a rule can replace the application of several
axioms. More importantly, we may drop the equality axioms from the clause set, thus eliminating
their numerous consequences from the search space.

We have discovered two rules of inference that play a role for an arbitrary relation analogous
to that played by paramodulation and E-resolution for the equality relation. These rules apply to
sentences employing a full set of logical connectives; they need not be in the clause form required
by traditional resolution theorem provers. We intend both these rules to be incorporated into
theorem provers for program synthesis.

Employing the new special-relations rules yields the same benefits for an arbitrary relation
as using paramodulation and E-resolution yields for equality: proofs become shorter and more
comprehensible and the search space becomes sparser.

4 The TABLOG language and its implementation ([M][MMWI][MMW2][MMW3])

Logic programnming uses formal proofs as the computation paradigm. That is, a logic program
is a theory, expressed in a given logic, that captures some properties of the real world. The
execution of such a program is the proof of some theorem in this theory.

TABLOG is a new logic-programming language ([M][MMW1][MMW2]) based on quantifier-
free first-order logic with equality, using the proof rules of the deductive-tableau theorem-proving
method as the execution mechanism.

The main features of TABLOG are consequences of the use of full first-order logic. In particular.
TABLOG incorporates all the standard connectives, not only implication and conjunction, but also
equality, negation and equivalence. Programs are nonclausal: they do not need to be in Horn-clause

2

form or any other normal form. Programs can compute relations (as in PROLOG) or functions (as
in LISP), whichever is more appropriate; this improves the clarity and the efficiency of programs.
Terms are lazy-evaluated to make the use of functions more convenient. No cut annotation is
required as the system can detect such optimizations dynamically.

Three deduction rules are used for the execution of the programs: nonclausal resolution (case
analysis), equality replacement (repalcement of equal terms), and equivalence replacement (repal-
cement of equivalent subsentences).

We have developed of a compiler for TABLOG; this compiler will produce code for a virtual
TAB LOG machine, similar to the Warren abstract machine. This compiler, written in TABLOG itself,

S- 2-will support a new syntax, which includes types and an elaborate notion of modules and generic
modules. The virtual machine was implemented on a Sun workstation.

A Resolution Approach to Temporal Proofsj A][AM1][AM2j)

A novel proof system for temporal logic was d eloped. The system is based on the classi-
cal non-clausal resolution method, and involves special treatment of quantifiers and temporal
operators. c

Soundness and completeness issueso resolution and other related systems were investigated.
While no effective proof metho temporal logic can be complete, we established that a simple
extension of the resolutio,s stem is as powerful as Peano Arithmetic.

The use of-Olmporal logic as a programming language was explored. We suggested that a
specialized-temporal resolution system could effectively interpret programs written in a restricted
versio6f temporal logic.

(We also provided analogous resolution systems for other useful modal logics, such as certain
(modal logics of knowledge and belief. frsc

Temporal Logic Programming,(A][AM1][AM3])

Temporal logic is a formali or reasoning about a changing world. Because the concept of
time is directly built intp -the formalism, temporal logic has been widely used as a specification
language for prosrans where the notion of time is central. For the same reason, it is natural
to write suchKp ograms directly in temporal logic. We developed a temporal logic programming
language,4._-EMPLOG, which extends classical logic programming languages, such as PROLOG, to
include"programs with temporal constructs. A PROLOG program is a collection of classical Horn
clauses. A TEMPLOG program is a collection of temporal Horn clauses, that is, Horn clauses with
certain temporal operators. An efficient interpreter for PROLOG is based on SLD-resolution. We
base an interpreter for TEMPLOG on a restricted form of our temporal resolution system, temporal

I SLD-resolution.

K4 Logic Programming Semantics: Techniques and Applications.([B I]-[B3])

It is generally agreed that providing a precise formal semantics for 4" ramming language is
helpful in fully understanding the language. This is especially true in te case of logic-programming-
like languages for which the underlying logic provides a well-defined but insufficient semantic basis.
Indeed, in addition to the usual model-theoretic semantics of the logic, proof-theoretic deduction
plays a crucial role in understanding logic programs. Moreover, for specific implementations of
logic programming, e.g. PROLOG, the notion of deduction stategy is also important.

,, ,'i

3 (O C)

Ecw~

We provided semantics for two types of logic programming languages and develop application.,

of these semantics. First, we propose a semantics of PROLOG programs that we use as tile basis of
a proof method for termination properties of PROLOG programs. Second, we turn to the temporal
logic programming language TEMPLOG of Abadi and Manna, develop its declarative semantics.
and then use this semantics to prove a completeness result for a fragment of temporal logic and to
study TEMP LOG'S expressiveness.

In our PROLOG semantics, a program is viewed as a function mapping a goal to a finite or
infinite sequence of answer substitutions. The meaning of a program is then given by the least
solution of a system of functional equations associated with the program. These equations are
taken as axioms in a first-order theory in which various program properties, especially termination

or non-termination properties, can be proved. The method extends to PROLOG programs with
extra-logical features such as cut.

For TEMPLOG, we provide two equivalent formulations of the declarative semantics: in terms
of a minimal temporal Herbrand model and in terms of a least fixpoint. Using the least fixpoint

semantics, we are able to prove that TEMPLOG is a fragment of temporal logic that admits a
complete proof system. This semantics also enables us to study TEMPLOG's expressiveness. For
this, we focus on the propositional fragment of TEMPLOG and prove that the expressiveness of

propositional TEMPLOG queries essentially corresponds to that of finite automata.

REFERENCES

Research papers and Ph.D. theses supported by this contract.

* indicates papers that are attached as part of this report.

[A] M. Abadi (supervised by Z. Manna), Temporal-logic theorem proving, Ph.D. Thesis, Com-
puter Science Dept., Stanford University (1986).

[AM1] A. Abadi and Z. Manna, "Nonclausal temporal deduction," Logic of Programs Confer-
ence, Brooklyn, NY, Lecture Notes in Computer Science 193 (R. Parikh, ed.), Springer-
Verlag, June 1985, pp. 1-15.

[AM2] A. Abadi and Z. Manna, "A timely resolution," Symposium on Logic of Computer

Science, Cambridge, MA, June 1986, pp. 176-186.

*[AM3] A. Abadl and Z. Manna, "Modal theorem proving," 8th International Conference

on Automated Deduction, Oxford, England, Lecture Notes in Computer Science 230
(R. Parikh, ed.), Springer-Verlag, July 1986, pp. 172-189.

*[AM4] A. Abadi and Z. Manna, "Temporal logic programming," 4th Symposium on Logic

Programming, San Francisco, CA, Sept. 1987, pp. 4-16. To appear also in the Journal of

Symbolic Computation (1989).

*[B1] M. Baudinet, "Proving Termination Properties of PROLOG Programs: A Semantic Ap-

proach", Proceedings of the Third Annual Symposium on Logic in Computer Science,, pp.
336-347, Edinburgh, Scotland, July 1988.

4

*[B2] M. Baudinet, -Temporal Logic Programming is Complete and Expressive". Pro. edings yf

the Sixteenth ACM Symposium on Principles of Programming Languages, Austin. Texas.
January 1989.

(B31 M. Baudinet (supervised by Z. Manna), Logic Programming Semantics: Techniques and
Applications, Ph.D. Thesis, Computer Science Dept., Stanford University (1989).

[M] Y. Malachi (supervised by Z. Manna), Nonclausal Logic Programming, Ph.D. Thesis,
Computer Science Dept., Stanford University, 1986.

*[MMW1] Y. Malachi, Z. Manna, and R. Waldinger, "TABLOG - The deductive tableau pro-

gramming language," ACM Symposium on LISP and Functional Programming, Austin,
Texas (Aug. 1984), pp. 323-330. Also in Logic Programming: Functions, Relations, and

Equations (D. DeGroot and G. Lindstrom, eds.), Prentice-Hall, Englewood Cliffs, NJ,
1986, pp. 365-394.

[MMW2I Y. Malachi, Z. Manna, and R. Waldinger, "TABLOG: Functional and relational

programming in one framework," IEEE Software, Vol. 3, No. I (Jan. 1986), pp. 75-76.

*[MMW3] E. Muller, Z. Manna, and R. Waldinger, "The TABLOG Language," Draft, 1988.

*[MW1I Z. Manna and R. Waldinger, "Special relations in automated deduction," Journal of

the ACM Vol. 33, No. 1 (Jan. 1986), pp. 1-59.

*[MW2] Z. Manna and R. Waldinger, "The origin of the binary-search paradigm," Science of

Computer Programming Journal, Vol. 9, No. 1 (August 1987), pp. 37-83.

51

